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We develop an approach to calculating the cup and cap products
on Hochschild cohomology and homology of curved algebras asso-
ciated with polynomials and their finite abelian symmetry groups.
For polynomials with isolated critical points, the approach yields
a complete description of the products. We also reformulate the
result for the corresponding categories of equivariant matrix fac-
torizations. In an Appendix written jointly with Alexey Basalaev,
we apply the formulas to calculate the Hochschild cohomology of
a simple but non-trivial class of so-called invertible LG orbifold
models. The resulting algebras turn out to be isomorphic to what
has already appeared in the literature on LG mirror symmetry un-
der the name of twisted or orbifolded Milnor/Jacobian algebras.
We conjecture that this holds true for all invertible LG models.
In the second part of the Appendix, the formulas are applied to a
different class of LG orbifolds which have appeared in the context
of homological mirror symmetry for varieties of general type as
mirror partners of surfaces of genus 2 and higher. In combination
with a homological mirror symmetry theorem for the surfaces, our
calculation yields a new proof of the fact that the Hochschild co-
homology of the Fukaya category of a surface is isomorphic, as an
algebra, to the cohomology of the surface.
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1. Introduction

The problem of extending the classical Hochschild-Kostant-Rosenberg the-
orem to various classes of spaces has long been a popular topic of research.
In any geometric setting, the ultimate goal of this activity is to describe —
in geometric terms — the Hochschild homology and cohomology of spaces
in question as completely as possible, including all parts of the rich struc-
ture that the Hochschild invariants carry: the cup and cap products, the
Gerstenhaber bracket, pairings, etc. This work is devoted to HKR like iso-
morphisms in the setting of affine Landau-Ginzburg orbifolds, i.e. triples
(X,W,G) where X is a (say complex) smooth affine variety, W ∈ C[X],
and G is a finite group of automorphisms of (X,W ). Our results can be
summarized as follows: For a class of such orbifolds we present a complete
description of the Hochschild cohomology and homology together with their
cup and cap products.

We should clarify what kind of Hochschild invariants of LG orbifolds we
have in mind. We adopt here the definition from [10, Sect.6]: The Hochschild
(co)homology of (X,W,G) is the Hochschild (co)homology of the curved al-
gebra (C[X]⋊G,W ) where C[X]⋊G is the ordinary crossed product alge-
bra associated with the G-action. A curved algebra [38] is pair (A,W ) where
A is an associative not necessarily commutative algebra andW ∈ A is a cen-
tral element (“curvature”). A variant of the classical Hochschild theory for
such objects was developed in [10, 36].

Let us explain why the use of the physics terminology is legitimate here,
or in other words, what the invariants we study have to do with the ac-
tual topological LG model associated with (X,W,G). According to a gen-
eral philosophy [12, 22, 23, 29, 30], the truly useful Hochschild invariants
associated with a topological string model are those of the correspond-
ing D-brane category which in the LG case is the category MFG(X,W )
of G-equivariant matrix factorizations of W [2, 3, 34]. The point is that the
Hochschild (co)homology of (C[X]⋊G,W ) is isomorphic to the Hochschild
(co)homology of MFG(X,W ). An explicit isomorphism was found in [36, 39]
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and it turns out to preserve the cup and cap products (see Section 4.4). In
particular, the Hochschild cohomology of (C[X]⋊G,W ) is (or should be)
isomorphic to the closed string algebra of the LG model. (We have to admit
though that we do not know how to describe the topological metric on this
algebra solely in terms of the Hochschild theory of (C[X]⋊G,W ), whereas
in terms of MFG(X,W ) it can be done [37, 41].)

As mentioned above, this work is about explicit formulas for the products
on the Hochschild (co)homology of (C[X]⋊G,W ) for special X, W , and G.
Modulo minor details, those special triples look as follows:

1) X is CN , that is, C[X] = C[x1, . . . , xN ];

2) W has isolated critical points;

3) G acts on C[X] by rescaling the variables xi; in particular, G is abelian.

We would like to comment on the situation with more general cases. Firstly,
we actually treat a slight generalization of CN which looks exotic but turns
out useful for applications (as demonstrated in Section A.2). However, ab-
stract affine varieties are completely out of reach with our methods. Sec-
ondly, the problem with non-abelian groups is easy to explain: our HKR
isomorphisms depend on the coordinate system (x1, . . . , xN ) and are equiv-
ariant only with respect to rescalings. We do not yet know how to bring
different coordinate systems under one roof in a way compatible with the
cup and cap products. Lastly, the requirement that W have isolated singu-
larities is more of a stylistic issue. In Section 4.2, while proving our theorem,
we work out the general case. The problem is that our findings in the general
case are not easy to formulate as a concise statement.

Let us outline the results of this paper in some more detail, focusing on
the case of Hochschild cohomology HH

∗ and its cup product.
We assume from now on that X, W , and G are as in (1)–(3) above.

Although we think of X as a variety, everything is linear in this setting
and we will use the language of linear algebra and talk of subspaces of X
instead of subvarieties, etc. For g ∈ G we will denote by Xg the subspace
of g-invariants in X. It has a unique g-invariant complement which we will
denote by Xg. Since G is abelian, both Xg and Xg are G-stable. Let also
dg := dim Xg. Finally, let W

g stand for the restriction of W to Xg and
M(W g) for its Milnor algebra.
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Let us first formulate an additive HKR theorem for the Hochschild co-
homology. Consider the following Z/2Z-graded vector space:

(1.1) M∗(X,W,G) :=
⊕

g∈G
M(W g)⊗ det(Xg)

where M(W g) and det(Xg) are placed in degrees 0 and dg mod 2, respec-
tively. The space carries a degree preserving G-action coming from the G-
action on M(W g) (induced by that on C[Xg]) and the above-mentioned
G-action on the subspace Xg (recall that it is G-stable). One has:

There is an isomorphism of Z/2Z-graded spaces

HH
∗(C[X]⋊G,W ) ≃ M∗(X,W,G)G.

The claim in fact holds for arbitrary polynomials but with M(W g) =
H0(∧∗TXg , [W g, ·]) replaced by H∗(∧∗TXg , [W g, ·]) where [·, ·] is the Schouten-
Nijenhuis bracket. There are analogous results for the Hochschild homology.
We prove all these claims in Section 4.2 (see Propositions 4.10, 4.12 and Sec-
tion 4.2.4) but these facts seem to be known to the experts, in one version
or another [4, 10, 37, 39].

The question we are really interested in is the following: What is the
product on M∗(X,W,G)G that corresponds under the isomorphism to the
cup product on the Hochschild cohomology? There is another, even more
interesting question, namely: Is there a natural G-equivariant product on
M∗(X,W,G) that gives rise to the correct product on the invariants? In
fact, such a product has to exist for very general reasons which we explain
in Section 2.2. Moreover, we know some of its properties:

(1) It preserves the G-grading:

(M(W g)⊗ det(Xg)) ∪
(
M(W h)⊗ det(Xh)

)
⊂
(
M(W gh)⊗ det(Xgh)

)
.

(2) It is braided super-commutative:

(1.2) vg ∪ vh = (−1)|vg||vh|vh ∪ h−1(vg)

for all vg ∈M(W g)⊗ det(Xg) and vh ∈M(W h)⊗ det(Xh) (| · | denotes the
Z/2Z-degree). The induced product on the G-invariants is then super-
commutative.

Let us make a guess as to what this product might look like. In the
non-equivariant case the usual product on M(W ) can be interpreted as the
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product on the 0th cohomology of the complex (∧∗TX , [W, ·]) induced by
the wedge product on polyvector fields. If we knew an equivariant analog
of ∧∗TX with its wedge product, we could try to predict the shape of the
product on M∗(X,W,G). But, in fact, a good equivariant analog of ∧∗TX
is known: it is the Hochschild cohomology of the crossed product C[X]⋊G
itself. As shown in [1, 35, 43], this Hochschild cohomology is isomorphic, as
an algebra, to the G-invariant part of

⊕
g ∧∗TXg ⊗ det(Xg) equipped with

the product

(Xg ⊗ ξg) ∪ (Xh ⊗ ξh)

=

{
(−1)dg·|Xh|(Xg|Xgh ∧ Xh|Xgh)⊗ (ξg ∧ ξh) Xg ∩Xh = Xgh (⋆)

0 otherwise

where Xg ∈ ∧∗TXg , ξg ∈ det(Xg), etc. The transversality condition (⋆) is
equivalent to Xg ⊕Xh = Xgh and the second wedge product on the right-
hand side is simply the canonical isomorphism

det(Xg)⊗ det(Xh) →̃ det(Xg ⊕Xh) = det(Xgh).

So, here is our guess: The sought-after product on M∗(X,W,G) is given
by the formula
(1.3)

(φg ⊗ ξg) ∪ (φh ⊗ ξh) =
{
(φg|Xgh · φh|Xgh)⊗ (ξg ∧ ξh) Xg ∩Xh = Xgh

0 otherwise

where φg ∈M(W g) and φh ∈M(W h). This product is easily seen to satisfy
all the properties we want: it is G-equivariant, G-graded, and braided super-
commutative. (But, in fact, it is also super-commutative in the ordinary
sense!) Let us consider a simple example.

Let X = C, W (x) = x3, and G = Z/3Z = {0, 1, 2} where G acts by mul-
tiplication by the cubics roots of unity: n 7→ ζn for ζ a primitive root. In
this case X1 = X2 = C and therefore, as a Z/2Z-graded space,

Meven(X,W,G) = Cξ0 ⊕ Cxξ0, Modd(X,W,G) = Cξ1 ⊕ Cξ2

where ξi stands for a generator of det(Xi). The product (1.3) is quite boring
in this case: ξ0 is the unit and all other elements multiply to 0.

Actually, our guess is wrong: (1.3) is not the sought-after product on
M∗(X,W,G) and it does not induce the right cup product on M∗(X,W,G)G.
The relation between the product (1.3) and the actual one turns out to be
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very similar to the relation between the classical and quantum cohomology
of a symplectic manifold. Namely, M∗(X,W,G) with the above product is
the limit of M∗(X, tW,G) with the true product as t→ 0.

The true product on M∗(X, tW,G) has the following form: For any fixed
choice of generators {ξg}g∈G of the one-dimensional spaces det(Xg) there
are elements σg,h ∈M(W gh) such that

(φg ⊗ ξg) ∪ (φh ⊗ ξh)(1.4)

=

{
t

dg+dh−dgh

2 (σg,h · φg|Xgh · φh|Xgh)⊗ ξgh dg+dh−dgh
2 ∈ Z≥0

0 otherwise

As we mentioned above, the condition (⋆) in (1.3) is equivalent to dg + dh −
dgh = 0. When the condition is satisfied, the power of t in (1.4) disappears
and the corresponding products survive the limit t→ 0 (and, in fact, become
what we had before). All other products tend to 0.

Our main result — Theorem 3.1 — gives explicit, though quite com-
plicated, formula for σg,h. Together with (1.4) (for t = 1) this provides a
complete description of the product on M∗(X,W,G) and, consequently, a
complete description of the product on M∗(X,W,G)G ≃ HH

∗(C[X]⋊G,W ).
In the one-dimensional example we discussed above, the correct product

on M∗(X,W,G) differs from the naive one in that the product of ξ1 and ξ2
is not 0 anymore: up to a renormalization of the generators ξi one has

(1.5) ξ1 ∪ ξ2 =
1

ζ − 1
xξ0, ξ2 ∪ ξ1 =

1

ζ−1 − 1
xξ0.

Even in this simple example one can observe that the product on M∗(X,W,G)
is indeed not super-commutative in general but braided super-commutative.

In fact, the formulas (1.5) can be compared with something that has
already appeared in the literature. The point is that x3 is (almost) the
simplest example of an invertible polynomial [33], i.e. a quasi-homogeneous
polynomial with an isolated critical point at the origin having the same
number of variables and monomials. These polynomials have been studied
quite extensively due to an important role they play in LG mirror symmetry
and Fan-Jarvis-Ruan-Witten theory [7, 14, 32]. In particular, there already
exists an analog of M∗(X,W,G) in this setting which was constructed “by
hand” in [31] (building on pioneering ideas of [25–27]) and later used in
[15] to prove LG mirror symmetry at the level of Frobenius algebras. In
the recent work [6], a more systematic study of these algebras was under-
taken and, in particular, an improved version of the original definition was
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proposed (under the name of the G-twisted Jacobian algebra of W ) which
satisfies various expected properties, e.g. the braided super-commutativity.
For W (x) = x3 this G-twisted Jacobian algebra can easily be seen to be iso-
morphic to M∗(X,W,G). In Appendix A.1 the two algebras are compared in
less trivial examples and turn out to be isomorphic there as well. We believe
this holds true for all invertible polynomials.

There is yet another class of LG orbifolds against which our formulas
can be tested, namely, certain orbifolded cusp singularities (in dimension 3)
which are shown in [13, 40] to be homological mirror partners of two dimen-
sional symplectic surfaces. In Appendix A.2 we calculate M∗(X,W,G)G for
these LG models and show that the resulting algebras are isomorphic to the
cohomology of the corresponding surfaces, as it should be for certain general
reasons [16–18].

We would like to conclude the Introduction by confessing that we do
not yet understand the geometric meaning of our formulas for the above-
mentioned “structure constants” σg,h. Perhaps, they could somehow be re-
lated to the Chern characters of matrix factorizations of W (x)−W (y) but
we have no evidence to support this idea. In any case, understanding what
σg,h mean geometrically should help to extend the results beyond the limited
setting of the present work.

Acknowledgements. I am grateful to Alexey Basalaev for following the
progress of the work with constant interest, for testing preliminary formulas
(and spotting inconsistencies in some of them) and, of course, for collabo-
rating on Appendix A. Many thanks also to Sheel Ganatra for answering my
questions about [16] and further comments and explanations. Last but not
least, I would like to thank Christian Sevenheck, who was the first to read
my earlier writings on this topic and provided many helpful suggestions.

2. Hochschild invariants of curved crossed product algebras

In this section, and throughout the paper, K is an arbitrary field of charac-
teristic 0.

2.1. Curved Hochschild calculus

2.1.1. Outline. For any algebra A the Hochschild cohomology functor
HH

∗(A,−) from the category of A-bimodules to that of graded vector spaces
carries a natural monoidal structure; the corresponding maps HH∗(A,M1)⊗
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HH
∗(A,M2)→ HH

∗(A,M1 ⊗AM2) are usually referred to as “cup prod-
ucts”. Also, the Hochschild homology functor HH∗(A,−) has a natural struc-
ture of an HH

∗(A,−)-module which is encoded in “cap products”. The com-
bination of these two structures is what is called Hochschild calculus in this
paper. The aim of Section 2.1 is to discuss a counterpart of the Hochschild
calculus for curved algebras. In fact, such a counterpart, in the much broader
context of curved dg categories, already exists [36] (albeit without mention-
ing the products explicitly). In particular, one has a notion of Hochschild
(co)homology “of the second kind” of a curved algebra with coefficients in
a curved bimodule. However, for the purposes of this work the full power
of the theory developed in [36] is not needed. We will only be interested
in curved bimodules sitting in degree 0 (We call them simply bimodules,
without the adjective “curved”.) For such bimodules, the theory of [36] can
be streamlined by implementing the language of mixed complexes.

2.1.2. Mixed complexes. Recall [24]1 that a mixed complex is a triple
(C, b, B) where C = ⊕n∈ZCn is a Z-graded vector space and b and B are
operators on C of degrees 1 and −1, respectively, satisfying

b2 = 0, B2 = 0, bB +Bb = 0.

The degree of c ∈ C will be denoted by |c|. A morphism (C, b, B)→ (C′, b′, B′)
is by definition a degree preserving map C → C′ commuting with both dif-
ferentials. Such a morphism is a called a quasi-isomorphism if the induced
morphism of complexes (C, b)→ (C′, b′) is a quasi-isomorphism.

Mixed complexes form a tensor category under

(C, b, B)⊗ (C′, b′, B′); = (C ⊗ C′, b⊗ 1 + 1⊗ b′, B ⊗ 1 + 1⊗B′)

where ⊗ on the right-hand side is the usual tensor product in the category of
graded vector spaces (namely, (C ⊗ C′)n = ⊕p+q=nCp ⊗ C′q and the new dif-
ferentials pick up signs when applied to the elements of C ⊗ C′, in agreement
with the Koszul rule of signs).

A mixed complex (C, b, B) together with a morphism (C, b, B)⊗2 →
(C, b, B) satisfying the associativity and unitality conditions will be called a
mixed dg algebra. The notion of a mixed dg module over a mixed dg algebra
is defined similarly.

Let us fix now a formal variable t of degree 2. Given a graded vector space
C = ⊕n∈ZCn, we will denote by C((t)) the graded K[t±1]-module spanned

1Unlike in [24], our mixed complexes are not necessarily left or right bounded.
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(over K) by homogeneous formal Laurent series in t with coefficients in C:

(2.1) C((t))n =

{ ∞∑

i=i0

cit
i | ci ∈ Cn−2i

}
.

The correspondence C 7→ C((t)) can be promoted to a functor from the cat-
egory of mixed complexes to that of graded K[t±1]-modules, namely:

(2.2) (C, b, B) 7→ H∗(C((t)), b+ tB).

We call H∗(C((t)), b+ tB) the periodic cohomology of (C, b, B).
Let us point out two properties of the functor (2.2) which we will use in

the future. Firstly, the functor is lax monoidal. In particular, it transforms
mixed dg algebras into K[t±1]-linear algebras and mixed dg modules over
the former into K[t±1]-linear modules over the latter. Secondly, the functor
transforms quasi-isomorphisms into isomorphisms [20, Prop.2.4].

2.1.3. Hochschild mixed complexes. Recall that the bar resolution of
an associative unital algebra A is the complex (B∗(A), δbar) of A-bimodules
with B−n(A) := A⊗A⊗n ⊗A (n = 0, 1, . . .) and

δbar(a0[a1| · · · |an]an+1) = a0a1[a2| · · · |an]an+1

+

n−1∑

i=1

(−1)ia0[a1| · · · |aiai+1| · · · |an]an+1

+ (−1)na0[a1| · · · |an−1]anan+1.

where a0[a1| · · · |an]an+1 is shorthand for a0 ⊗ a1 ⊗ · · · ⊗ an ⊗ an+1.
Let now W ∈ A be a central element. Associated with W there is a

degree −1 differential on B∗(A), namely

δcurv(a0[a1| · · · |an]an+1) =

n∑

i=0

(−1)ia0[a1| · · · |ai|W |ai+1| · · · |an]an+1.

One has

(2.3) δ2curv = 0, δbarδcurv + δcurvδbar = lW − rW

where lW (resp. rW ) is the operator in B∗(A) of left (resp. right) multipli-
cation with W .
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Remark 2.1. All the results and conclusions in this paper remain valid if
one start with the normalized version (B∗(A), δbar, δcurv) where B−n(A) :=
A⊗ (A/K)⊗n ⊗A.

Let M be an (A,W )-bimodule, i. e. an A-bimodule in which the opera-
tors lW and rW of left and right multiplications with W coincide:

(2.4) lW − rW = 0.

Let B∗(A,M) := HomA⊗Aop(B−∗(A),M) where Aop denotes the opposite
algebra. (Note that B∗(A,M) is non-negatively graded.) The pairing of
an element D ∈ B∗(A,M) with an element a ∈ B∗(A) will be written as
⟨a,D⟩ ∈M ; so ⟨a0 a a1, D⟩ = a0⟨a,D⟩a1 for a0, a1 ∈ A.

Remark 2.2. We will also use ⟨·, ·⟩ in a more general sense, namely, to
denote the natural pairing X ⊗HomA⊗A(X,Y )→ Y for any A-bimodules
X,Y .

The Hochschild cochain mixed complex of (A,W ) with coefficients inM
is defined by

HH∗(A,W ;M) :=
(
B∗(A,M), ∂Hoch := δ∨bar, ∂curv := δ∨curv

)

where δ∨ denotes the standard dual of δ defined by

⟨−, δ∨(D)⟩ = (−1)|D|⟨δ(−), D⟩.

(That it is indeed a mixed complex follows from (2.3) and (2.4).) We will
denote its periodic cohomology by tHH

∗(A,W ;M), or simply tHH
∗(A,W )

when M = A.
Let B∗(A,M) :=M ⊗A⊗Aop B∗(A) where the right-hand side is an ab-

breviation for

M ⊗ B∗(A)/{a0ma1 ⊗ a−m⊗ a1 a a0 | a0, a1 ∈ A,m ∈M,a ∈ B∗(A)}.

(Note that B∗(A,M) is non-positively graded.) The Hochschild chain mixed
complex of (A,W ) with coefficients in M is defined as the mixed complex

HH∗(A,W ;M) := (B∗(A,M), bHoch := 1⊗ δbar, bcurv := 1⊗ δcurv)

Its periodic cohomology will be denoted by tHH∗(A,W ;M) or tHH∗(A,W )
when M = A.
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Remark 2.3. As we have already mentioned in Section 2.1.1, “our” Hoch-
schild (co)homology is nothing but a special case of the Hochschild (co)homo-
logy of the second kind of (A,W ) with coefficients in a curved (A,W )-
bimodule introduced in [36]. However, the reader familiar with [36] will
notice that even in the special case our definition does not match the one
in [36] because the variable t does not appear there. The (co)homology
HH

II,∗(A,W ;M) and HH
II
∗ (A,W ;M) of [36] are the Z/2Z-graded spaces de-

fined as the cohomology of the Z/2Z-graded complexes

(
⊕

i even

Bi(A,M)⊕
⊕

i odd

Bi(A,M), ∂Hoch + ∂curv

)

and
(
∏

i even

Bi(A,M)⊕
∏

i odd

Bi(A,M), bHoch + bcurv

)
,

respectively. It is easy to see that there is a straightforward relation between
the two definitions, namely, tHH is just a 2-periodic Z-graded version of
HH

II:

HH
II,even ≃ t

HH
2n, HH

II,odd ≃ t
HH

2n+1 ∀n
and the same for homology. As a consequence, all the results we obtain in
the present work have Z/2Z-graded counterparts for HHII.

2.1.4. The cup and cap products. Let ∆ = ∆bar : B∗(A)→ B∗(A)⊗A
B∗(A) be the morphism of A-bimodules given by

(2.5) ∆(a0[a1| · · · |an]an+1) =

n∑

i=0

(a0[a1| · · · |ai]1)⊗ (1[ai+1| · · · |an]an+1).

This morphism is coassociative, i. e. (∆⊗ 1)∆ = (1⊗∆)∆, and is easily
seen to be compatible with the differentials δbar and δcurv:

∆ · δbar = (δbar ⊗ 1 + 1⊗ δbar) ·∆, ∆ · δcurv = (δcurv ⊗ 1 + 1⊗ δcurv).

Given two (A,W )-bimodules M1 and M2, ∆ induces the cup product

∪ = ∪Hoch : B∗(A,M1)⊗ B∗(A,M2)→ B∗(A,M1 ⊗AM2),

⟨a,D1 ∪D2⟩ := ⟨∆(a), D1 ⊠D2⟩(2.6)

= (−1)|D1||a(2)|⟨a(1), D1⟩ ⊗ ⟨a(2), D2⟩ (∀ a ∈ B∗(A)),
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as well as the cap product

∩ = ∩Hoch : B∗(A,M1)⊗ B∗(A,M2)→ B∗(A,M1 ⊗AM2),

(m⊗ a) ∩D := m⊗ ⟨∆(a), D ⊠ idB∗(A)⟩(2.7)

= (−1)|D||a(2)|(m⊗ ⟨a(1), D⟩)⊗ a(2)

where a(1) ⊗ a(2) := ∆(a) (Sweedler’s notation) and ⊠ denotes the natural
map

HomA⊗A(X1, Y1)⊗HomA⊗A(X2, Y2)(2.8)

→ HomA⊗A(X1 ⊗A X2, Y1 ⊗A Y2)

for A-bimodules Xi, Yi. The following facts follow easily from the definitions:

Proposition 2.4. (1) The cup product is a morphism of mixed complexes
and hence yields a product

∪ : tHH∗(A,W ;M1)⊗K[t±1]
t
HH

∗(A,W ;M2)→ t
HH

∗(A,W ;M1 ⊗AM2)

(2) For any (A,W )-bimodules Mi, i = 1, 2, 3, the following diagram is com-
mutative:

B∗(A,M1)⊗ B∗(A,M2)⊗ B∗(A,M3)
id⊗∪−−−−→ B∗(A,M1)⊗ B∗(A,M2 ⊗AM3)y∪⊗id

y∪

B∗(A,M1 ⊗AM2)⊗ B∗(A,M3)
∪−−−−→ B∗(A,M1 ⊗AM2 ⊗AM3)

In particular, HH∗(A,W ) is an associative mixed dg algebra2 and for any
(A,W )-bimoduleM HH∗(A,W ;M) is a mixed dg bimodule over HH∗(A,W ).
As a consequence, tHH

∗(A,W ) is an associative K[t±1]-linear algebra and
tHH

∗(A,W ;M) is an tHH
∗(A,W )-bimodule.

(3) The cap product is a morphism of mixed complexes and therefore yields
a product

∩ : tHH∗(A,W ;M1)⊗K[t±1]
t
HH

∗(A,W ;M2)→ t
HH∗(A,W ;M1 ⊗AM2)

2The unit is the element of Hom (K, A) (0-cochain) sending the unit of K to the
unit of A.
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(4) For Mi as above, the diagram

B∗(A,M1)⊗ B∗(A,M2)⊗ B∗(A,M3)
id⊗∪−−−−→ B∗(A,M1)⊗ B∗(A,M2 ⊗AM3)y∩⊗id

y∩

B∗(A,M1 ⊗AM2)⊗ B∗(A,M3)
∩−−−−→ B∗(A,M1 ⊗AM2 ⊗AM3)

is commutative. In particular, HH∗(A,W ;M), for any (A,W )-bimodule M ,
is a right mixed dg module over HH∗(A,W ) and tHH∗(A,W ;M) is a right
tHH

∗(A,W )-module.

Remark 2.5. Just as in the non-curved case [19] tHH∗(A,W ) turns out to
be super-commutative. This is a special case of a stronger result which we
will discuss in Section 2.2.4.

2.1.5. Künneth isomorphisms for Hochschild calculi. Let (A,W )
and (A′,W ′) be two curved algebras. Their tensor product is defined as
the curved algebra (A⊗A′,W ⊗ 1 + 1⊗W ′). Observe that for an (A,W )-
bimodule M and an (A′,W ′)-bimodule M ′ the A⊗A′-bimodule M ⊗M ′ is
actually an (A⊗A′,W ⊗ 1 + 1⊗W ′)-bimodule. Thus, it is natural to ask
if, and how, the Hochschild calculus of (A⊗A′,W ⊗ 1 + 1⊗W ′) can be
“calculated” in terms of the Hochschild calculi of (A,W ) and (A′,W ′). It is
indeed possible, at least for a class of algebras, namely,

Recall [33] that an algebra A is called (homologically) smooth if, as a bi-
module over itself, it admits a bounded below resolution by finitely generated
projective A-bimodules.

Proposition 2.6. If A and A′ are smooth then there are natural isomor-
phisms

t
HH

∗(A,W ;M)⊗K[t±1]
t
HH

∗(A′,W ′;M ′)

≃ t
HH

∗(A⊗A′,W ⊗ 1 + 1⊗W ′;M ⊗M ′),
t
HH∗(A,W ;M)⊗K[t±1]

t
HH∗(A

′,W ′;M ′)(2.9)

≃ t
HH∗(A⊗A′,W ⊗ 1 + 1⊗W ′;M ⊗M ′),

compatible with the cup and cap products.

Proof is given in Appendix B (page 238).



✐

✐

“6-Shklyarov” — 2020/5/19 — 21:39 — page 202 — #14
✐

✐

✐

✐

✐

✐

202 Dmytro Shklyarov

2.2. Hochschild (co)homology of equivariant curved algebras

2.2.1. Outline. Suppose A is acted upon by a finite symmetry group G
(i.e. one has a group homomorphism G→ Aut(A)). Recall that the crossed
product A⋊G is defined as the algebra

A⊗K[G] =
⊕

g∈G
A⊗g, (a⊗g) · (b⊗h) := ag(b)⊗gh, a, b∈A, g, h∈G.

A G-invariant element W ∈ A gives rise to the curved algebra (A⋊G,W ).
Our aim in this section is to develop an analog for (A⋊G,W ) of some
standard technique [1, 5, 9, 21, 35, 43, ...] that allows one to calculate the
(co)homology of A⋊G in terms of the Hochschild calculus of A with coef-
ficients in A⋊G.

2.2.2. G-twisted Hochschild (co)homology. The multiplication on
A⋊G endows each subspaceA⊗ g ⊂ A⋊G with an (A,W )-bimodule struc-
ture and induces isomorphisms of (A,W )-bimodules

(2.10) (A⊗ g)⊗A (A⊗ h)→ A⊗ gh.

Then Proposition 2.4 implies that

HH∗(A,W ;A⋊G) =
⊕

g∈G
HH∗(A,W ;A⊗ g),

HH∗(A,W ;A⋊G) =
⊕

g∈G
HH∗(A,W ;A⊗ g)

have natural structures of a mixed dg algebra and a right mixed dg module
over the dg algebra, respectively. Notice that the additional G-grading on
both of them is compatible with the cup and cap products. (Perhaps, it is
worthwhile mentioning explicitly that the G-grading is non-homological, in
the sense that it does not affect the Leibniz rule.) Consequently,

t
HH

∗(A,W ;A⋊G) =
⊕

g∈G

t
HH

∗(A,W ;A⊗ g),

t
HH∗(A,W ;A⋊G) =

⊕

g∈G

t
HH∗(A,W ;A⊗ g)

have structures of an associative (Z×G)-graded K[t±1]-linear algebra and
a right (Z×G)-graded module over this algebra, respectively.
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Furthermore, observe that G acts on A⋊G by conjugation: h(a⊗ g) =
h(a)⊗ hgh−1 (h ∈ G), and this action induces isomorphisms (of vector
spaces) h : A⊗ g → A⊗ hgh−1 which are compatible with the isomorphisms
(2.10). Also, G acts, in the obvious manner, on the bar resolution B∗(A), and
this action respects the differentials δbar and δcurv, as well as the coproduct
∆bar. Combining the above two actions one gets well-defined G-actions on
B∗(A,A⋊G) and B∗(A,A⋊G), namely

B∗(A,A⊗ g) ∋ D 7→ h(D) := h ◦D ◦ h−1 ∈ B∗(A,A⊗ hgh−1),

(2.11)

B∗(A,A⊗ g) ∋ m⊗ a 7→ h(m⊗ a) := h(m)⊗ h(a) ∈ B∗(A,A⊗ hgh−1).

These G-actions are easily seen to be compatible with all the structures we
are interested in:

(1) They preserve the Z-gradings and commute with the differentials, thereby
inducing G-actions on the mixed complexes

HH∗(A,W ;A⋊G) and HH∗(A,W ;A⋊G).

(2) They commute with the cup and cap products:

(2.12) k(D1 ∪D2) = k(D1) ∪ k(D2), k(ω ∩D) = k(ω) ∩ k(D)

for all k ∈ G, D1 ∈ B∗(A,A⊗ g), D,D2 ∈ B∗(A,A⊗ h), and ω ∈ B∗(A,A⊗
g).

2.2.3. Hochschild (co)homology of the curved crossed product. It
follows from (2.12) that the cup and cap products on HH∗(A,W ;A⋊G)
and HH∗(A,W ;A⋊G) descend to well-defined cup and cap products on
the mixed complexes HH∗(A,W ;A⋊G)G and HH∗(A,W ;A⋊G)G where
( )G resp. ( )G denote the space of G-invariants resp. G-coinvariants. One
has:

Proposition 2.7. There are isomorphisms of Z-graded K[t±1]-modules

t
HH

∗(A⋊G,W ) ≃ t
HH

∗(A,W ;A⋊G)G,
t
HH∗(A⋊G,W ) ≃ t

HH∗(A,W ;A⋊G)G

compatible with the cup and cap products.

Proof is given in Appendix B (page 242).
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2.2.4. Braided (a.k.a. G-twisted) commutativity. We conclude this
section by formulating an equivariant curved analog of the classical result of
[19] on the super-commutativity of the Hochschild cohomology of ordinary
algebras.

Proposition 2.8. The algebra tHH
∗(A,W ;A⋊G) is braided super-

commutative: For all homogeneous classes [D1] ∈ tHH
∗(A,W ;A⊗ g), [D2] ∈

tHH
∗(A,W ;A⊗ h)

(2.13) [D1] ∪ [D2] = (−1)|[D1]||[D2]|[D2] ∪ h−1([D1]).

Proof is given in Appendix B (page 243).

When G is trivial, the braided super-commutativity is just the ordinary
super-commutativity, so

Corollary 2.9. For any (A,W ) the algebra tHH
∗(A,W ) is super-

commutative.

3. Main results

3.1. Setting and notation

From now on, we focus on the following case:

• A = K[X] := K[x1, x2, . . . , xN ][S
−1] where S is the multiplicative set

generated by a finite (or empty) set of polynomials of the form (xi − λ)
with λ ∈ K∗.

• The “curvature” is just a regular function W =W (x) ∈ K[X] (x :=
(x1, . . . , xN )). In the statement of the main result we will require W
to have isolated critical points by which we understand the condition
that the cohomology of the complex (Ω∗

X , dW ∧ ·) vanishes in degrees
less than N .

• The group G acts on K[X] by rescaling the variables:

(3.1) (K∗)N ∋g=(g1, . . . , gN ) : (x1, . . . , xN ) 7→(g1x1, . . . , gNxN )=:g(x).

Let us introduce some notation which will be used in the statement of the
main theorem, as well as throughout the proof.
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3.1.1. Difference derivatives. We will write the elements of K[X]⊗2 as
functions of two sets of N variables where the second set is y = (y1, . . . , yN ).
Similarly, the elements of K[X]⊗3 will be written as f(x, y, z).

Observe that because of the special form of the above multiplicative set
S, we have the following well-defined maps:

∇i = ∇x→(x,y)
i : K[X]→ K[X]⊗2 (i = 1, . . . , N),(3.2)

∇i(f) :=
li(f)− li+1(f)

xi − yi
.

where li(f) := f(y1, . . . , yi−1, xi, . . . , xN ) for i = 1, . . . , N + 1. (In particular,
l1f = f ⊗ 1 = f(x) and lN+1f = 1⊗ f = f(y).) Note that

(3.3)

N∑

i=1

(xi − yi)∇i(f) = f(x)− f(y).

The symbol ∇y→(y,z)∇x→(x,y) will have the following meaning: ∇x→(x,y)

is applied to a function of x and produces a function of (x, y); then ∇y→(y,z)

is applied to this new function viewed as a function of y, with x “frozen”;
the result is a function of (x, y, z).

The symbol ∇x→(x,ψ(x)), where ψ(x) is some function of x, will have
the following meaning: ∇x→(x,y) is applied to a function of x and then
ψ(x) is substituted for y; the result is a new function of x. The symbol
∇x→(x,ψ′(x))∇x→(x,ψ′′(x)) is the composition of two operations of this type
for two different functions of x; the result is again a function of x.

3.1.2. Clifford algebra. We will denote by ClN the Nth Z-graded Clif-
ford algebra:

ClN = K[θ1, . . . , θN , ∂θ1 , . . . , ∂θN ], |θi| = −1, |∂θi | = 1 ∀i

modulo the relations

θiθj = −θjθi, ∂θi∂θj = −∂θj∂θi , ∂θiθj = −θj∂θi + δij .

For I ⊂ {1, . . . , N} we write ∂θI :=
∏
i∈I ∂θi , θI :=

∏
i∈I θi where in both

cases the multipliers are taken in increasing order of the indices.
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We endow the subspaces K[θ]=K[θ1, . . . , θN ] and K[∂θ]=K[∂θ1 , . . . , ∂θN ]
with left Z-graded ClN -module structures via the isomorphisms

K[θ] ≃ ClN/ClN · ⟨∂θ1 , . . . , ∂θN ⟩, K[∂θ] ≃ ClN/ClN · ⟨θ1, . . . , θN ⟩.

Given a Z-graded space C, the spaces C[θ] := C ⊗K[θ] and C[∂θ] := C ⊗K[∂θ]
are endowed with ClN -module structures by (graded) C-linearity.
3.1.3. Notation related to the group action. For an element g ∈ G
as in (3.1) we define

Ig := { i | gi = 1 }, Ig := {1, . . . , N} \ Ig, dg := |Ig|.

We denote by K[Xg] the quotient of K[X] by the ideal generated by xi with
i ∈ Ig and by resg the projection K[X]→ K[Xg]. We write xg instead of
resg(x), i.e. xgi = xi if i ∈ Ig and 0 if i ∈ Ig.

3.2. The main theorem

LetW g := resg(W ) andM(W g) := K[Xg]/(∂xi
W g)i∈Ig . Consider the follow-

ing two (Z×G)-graded K[t±1]-modules:

(3.4)

tM
∗
(X,W,G) :=

⊕

g∈G
M(W g)[t±1] · ξg,

tΩ
∗
(X,W,G) :=

⊕

g∈G
M(W g)[t±1] · ωg

where the elements of M(W g) have degree 0, ξg is a formal generator of
degree dg, and ωg is a formal generator of degree dg −N . We equip (3.4)
with degree preserving K[t±1]-linear G-actions by requiring that G act on
M(W g) in the natural way and on ξg and ωg as follows:

(3.5) G ∋ h = (h1, . . . , hN ) : ξg 7→
∏

i∈Ig
h−1
i · ξg, ωg 7→

∏

i∈Ig
hi · ωg.

Furthermore, for g, h ∈ G we define σg,h ∈M(W gh) as the coefficient at ∂θIgh
in the expression

1

dg,h!
Υ

((
⌊HW (x, g(x), x)⌋gh + ⌊HW,g(x)⌋gh ⊗ 1(3.6)

+ 1⊗ ⌊HW,h(g(x))⌋gh
)dg,h

⊗ ∂θIg ⊗ ∂θIh
)
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where

(1) HW (x, g(x), x) is the degree −2 element of K[X]⊗K[θ]⊗2 defined as the
restriction to the set {y = g(x), z = x} of the following degree −2 element
of K[X]⊗3 ⊗K[θ]⊗2

(3.7) HW = HW (x, y, z) :=
∑

1≤j≤i≤N
∇y→(y,z)
j ∇x→(x,y)

i (W ) θi ⊗ θj ;

(2) HW,g ∈ K[X]⊗K[θ] is the degree −2 element of K[X][θ] given by the
formula

HW,g = HW,g(x) :=
∑

i,j∈Ig, j<i

1

1− gj
∇x→(x,xg)
j ∇x→(x,g(x))

i (W ) θj θi;(3.8)

(3) ⌊f⌋g for f ∈ K[X] denotes the class of resg(f) ∈ K[Xg] inM(W g); we ex-
tend this operator to an operator K[X]⊗ V →M(W g)⊗ V by V -linearity;

(4) dg,h := dg+dh−dgh
2 and the dg,h-th power in (3.6) is computed with respect

to the natural product on K[X]⊗K[θ]⊗K[θ]; we set

(3.9) σg,h = 0 if dg,h is not a non-negative integer;

(5) Υ is the K[X]-linear extension of the degree 0 map K[θ]⊗2 ⊗K[∂θ]
⊗2 →

K[∂θ] defined by

(3.10) p1(θ)⊗ p2(θ)⊗ q1(∂θ)⊗ q2(∂θ) 7→ (−1)|q1||p2|p1(q1) · p2(q2)

where pi(qi) denotes the action of pi(θ) on qi(∂θ) via the ClN -module struc-
ture on K[∂θ] introduced in Section 3.1.2 and · is the natural product in
K[∂θ].

Theorem 3.1. Assume W has only isolated critical points. Then

(1) For all g, h ∈ G the K[t±1]-linear maps

∪ :M(W g)[t±1] · ξg ⊗K[t±1] M(W h)[t±1] · ξh →M(W gh)[t±1] · ξgh,
⌊f1⌋g · ξg ⊗ ⌊f2⌋h · ξh 7→ tdg,h · ⌊f1f2⌋gh · σg,h · ξgh,(3.11)
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∩ :M(W g)[t±1] · ωg ⊗K[t±1] M(W h)[t±1] · ξh →M(W gh)[t±1] · ωgh,
⌊f1⌋g · ωg ⊗ ⌊f2⌋h · ξh 7→ tdg,h · ⌊f1f2⌋gh · σg,h · ωgh

(∀f1, f2 ∈ K[X])

are well-defined and make tM
∗
(X,W,G) into a (Z×G)-graded K[t±1]-linear

G-equivariant braided super-commutative associative algebra (with unit ξe)
and tΩ

∗
(X,W,G) into a (Z×G)-graded K[t±1]-linear G-equivariant free

rank 1 right tM
∗
(X,W,G)-module (with generator ωe).

(2) There is a G-equivariant isomorphism

(
t
HH

∗(K[X],W ;K[X]⋊G),∪, tHH∗(K[X],W ;K[X]⋊G),∩
)

≃
(
tM

∗
(X,W,G),∪, tΩ∗

(X,W,G),∩
)
.

Applying Proposition 2.7, we obtain

Corollary 3.2.

(
t
HH

∗(K[X]⋊G,W ),∪, tHH∗(K[X]⋊G,W ),∩
)

≃
(
tM

∗
(X,W,G)G,∪, tΩ∗

(X,W,G)G,∩
)
.

Let us formulate a variant of the above results for the Hochschild homol-
ogy of the second kind (see Remark 2.3). Let M∗(X,W,G) and Ω∗(X,W,G)
stand for the algebra and the module over the algebra defined just as
tM

∗
(X,W,G) and tΩ

∗
(X,W,G) but with K[t±1] replaced by K and the

Z-grading reduced to a Z/2Z-grading.

Corollary 3.3. There is a G-equivariant isomorphism

(
HH

II,∗(K[X],W ;K[X]⋊G),∪,HHII
∗ (K[X],W ;K[X]⋊G),∩

)

≃ (M∗(X,W,G),∪,Ω∗(X,W,G),∩ ) .

Consequently,

(
HH

II,∗(K[X]⋊G,W ),∪,HHII
∗ (K[X]⋊G,W ),∩

)

≃
(
M∗(X,W,G)G,∪,Ω∗(X,W,G)G,∩

)
.

3.3. Implications for equivariant matrix factorization categories

Associated with any curved algebra (A,W ) there is a differential Z/2Z-
graded (dg) category of curved dg (A,W )-modules [36] whose objects are the
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pairs (E, δE) where E = Eeven ⊕ Eodd is a Z/2Z-graded finitely generated
projective A-module and δE : E → E is an odd morphism satisfying δ2E =
W · idE . When (A,W ) = (K[X]⋊G,W ), the category is precisely what we
denoted by MFG(X,W ) in the Introduction.

The aim of this short section is to present a HKR like theorem for
the Hochschild invariants MFG(X,W ). Although we do not discuss the
Hochschild theory of dg categories in this paper, this material is much more
standard than in the curved case and is much better represented in the
literature; in particular, [36] can also serve as a reference.

Theorem 3.4. Assume, in addition, that the only critical value of W is 0.
Then

(HH∗(MFG(X,W )),∪,HH∗(MFG(X,W )),∩ )
≃
(
M∗(X,W,G)G,∪,Ω∗(X,W,G)G,∩

)
.

As will be explained in Section 4.4, this theorem is essentially a reformulation
of Corollary 3.3.

4. Proofs

4.1. A multiplicative HKR isomorphism for the Hochschild
calculus of LG models

4.1.1. Outline. The aim of this section is to establish an isomorphism of
two calculi associated with (K[X],W ):

(
t
HH

∗(K[X],W ;−),∪, tHH∗(K[X],W ;−),∩
)

≃
(
t
Kos

∗
(K[X],W ;−),∪, tKos∗(K[X],W ;−),∩

)

where tKos is the periodic cohomology of what we call Koszul mixed com-
plexes and ∪ and ∩ are certain explicit products on tKos.

In this section, W is arbitrary (e.g. W = 0 is allowed). We use freely the
notation and conventions established Section 3.1.1, 3.1.2, 3.1.3.

4.1.2. Koszul mixed complexes. The Koszul resolution of K[X] is the
complex (K∗(K[X]), δKos) of K[X]-bimodules with K∗(K[X]) = K[X]⊗2[θ]
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and

δKos :=

N∑

i=1

(xi − yi) · ∂θi .

Associated with W there is a degree −1 differential on K∗(K[X]), namely

δcurv :=

N∑

i=1

∇i(W ) · θi,

and it follows from the commutation relations in ClN and (3.3) that

δ2curv = 0, δKosδcurv + δcurvδKos =W (x)−W (y).

Let M be a (K[X],W )-bimodule. We set

K∗(K[X],M) := HomK[X]⊗2(K−∗(K[X]),M),

K∗(K[X],M) :=M ⊗K[X]⊗2 K∗(K[X]).

As in the abstract context, M gives rise to two mixed complexes

Kos∗(K[X],W ;M) =
(
K∗(K[X],M), ∂Kos := δ∨Kos, ∂curv := δ∨curv

)
,

Kos∗(K[X],W ;M) = (K∗(K[X],M), bKos := 1⊗ δKos, bcurv := 1⊗ δcurv) .

Their periodic cohomology will be denoted by tKos
∗
(K[X],W ;M) and

tKos∗(K[X],W ;M).

4.1.3. Koszul vs Hochschild complexes. Consider the morphism of
K[X]-bimodules

Ψ : B∗(K[X])→ K∗(K[X])

defined by Ψ(f0[]f1) = l1(f0)lN+1(f1) = f0(x)f1(y) and

(4.1) Ψ(f0[f1| · · · |fn]fn+1)

= l1(f0)


 ∑

1≤j1<···<jn≤N
∇j1(f1)θj1∇j2(f2)θj2 · · · ∇jn(fn)θjn


 lN+1(fn+1)

for n ≥ 1 where the product on the right-hand side is taken in K[X]⊗2[θ].
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Proposition 4.1. One has

Ψ · δbar = δKos ·Ψ, Ψ · δcurv = δcurv ·Ψ.(4.2)

Moreover, Ψ : (B∗(K[X]), δbar)→ (K∗(K[X]), δKos) is a quasi-isomorphism.

Proof is given in Appendix B (page 246).

Remark 4.2. After having discovered the formula (4.1), we looked for
similar results in the literature and found them. We suspect that for K[X] =
K[x1, . . . , xN ] the map (4.1) coincides with the map ΨB from [42, Sect.4].
The description given in loc.cit. is quite combinatorial and we will not claim
this as fact.

The previous proposition and the fact that both (K∗(K[X]), δKos) and
(B∗(K[X]), δbar) are K-projective complexes of K[X]-bimodules, and hence
K-flat [8, Sect.10.12], imply

Corollary 4.3. For any (K[X],W )-bimodule M the morphisms of mixed
complexes

Ψ∗ := Ψ∨ : Kos∗(K[X],W ;M)→ HH∗(K[X],W ;M)

(Ψ∨ stands for the dual of Ψ) and

Ψ∗ := 1⊗Ψ : HH∗(K[X],W ;M)→ Kos∗(K[X],W ;M)

are quasi-isomorphisms.

4.1.4. The cup and cap products on Koszul complexes. Our next
goal is to “transfer” the cup and cap products to the Koszul mixed com-
plexes. The naive idea that there exists a morphism of bimodules ∆ :
K∗(K[X])→ K∗(K[X])⊗K[X] K∗(K[X]) — an analog of (2.5) — that is com-
patible with δKos and δcurv and matches (2.5) under the quasi-isomorphism
Ψ from the preceding section does not work. Calculations show that such a
map does not exist even in the one-dimensional case (N = 1). As we will see
in this and the next sections, the situation is more complicated.
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Consider the sequence of morphisms of K[X]-bimodules

∆−2l : K[X]⊗2[θ]→ K[X]⊗3 ⊗K[θ]⊗2, l = 0, . . . , N

defined in terms of the (x, y, z)-coordinates (see Section 3.1.1) as follows:

∆−2l : f(x, y) · p(θ1, . . . , θN )(4.3)

7→ 1

l!
f(x, z) ·HW (x, y, z)l · p(θ1 ⊗ 1 + 1⊗ θ1, . . . , θN ⊗ 1 + 1⊗ θN )

where HW is the element (3.7).
Note that we can also view these maps as maps to K[X]⊗2[θ]⊗K[X]

K[X]⊗2[θ] where we identify the latter with K[X]⊗3 ⊗K[θ]⊗2 via

f1(x, y)p1(θ)⊗ f2(y, z)p2(θ) 7→ f1(x, y)f2(y, z)⊗ p1(θ)⊗ p2(θ).

Keeping this in mind, one has

Proposition 4.4. The morphism of K[X][t±1]-bimodules

∆ = ∆Kos : K[X]⊗2[t±1][θ]→ K[X]⊗2[t±1][θ]⊗K[X][t±1] K[X]⊗2[t±1][θ]

given by the formula

∆ =

N∑

l=0

∆−2lt
l = etHW ·∆0

is compatible with the operator (δKos + tδcurv):

∆ · (δKos + tδcurv) = ((δKos + tδcurv)⊗ 1 + 1⊗ (δKos + tδcurv)) ·∆.

Proof is given in Appendix B (page 250).

It is the above operator ∆Kos that will be playing the role of ∆bar (2.5)
in the “Koszul theory”. Just as in the abstract setting, ∆Kos gives rise to
cup and cap products which one defines exactly as in (2.6) and (2.7): For
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two (K[X],W )-bimodules M1 and M2

∪ = ∪Kos : K∗(K[X],M1)[t
±1]⊗K[t±1] K∗(K[X],M2)[t

±1]

→ K∗(K[X],M1 ⊗K[X] M2)[t
±1],

is the map determined by

∀ω ∈ K∗(K[X]) : ⟨ω, ξ1 ∪Kos ξ2⟩ := ⟨∆Kos(ω), ξ1 ⊠ ξ2⟩(4.4)

= (−1)|ξ1||ω(2)|⟨ω(1), ξ1⟩ ⊗ ⟨ω(2), ξ2⟩

and

∩ = ∩Kos : K∗(K[X],M1)[t
±1]⊗K[t±1] K∗(K[X],M2)[t

±1]

→ K∗(K[X],M1 ⊗K[X] M2)[t
±1],

is the map defined by

(m⊗ ω) ∩Kos ξ := m⊗ ⟨∆Kos(ω), ξ ⊠ idK∗(K[X])⟩
= (−1)|ξ||ω(2)|(m⊗ ⟨ω(1), ξ⟩)⊗ ω(2).

In the above formulas, ⟨·, ·⟩ and ⊠ have the same meaning as before, that is,
as in Remark 2.2 and in (2.8), respectively. (Formally speaking, ⟨·, ·⟩ above
is a K[t±1]-linear extension of the previous definition.)

Proposition 4.4 yields

Corollary 4.5. The maps ∪Kos and ∩Kos descend to products on the peri-
odic cohomology

t
Kos

∗
(K[X],W ;M1)⊗K[t±1]

t
Kos

∗
(K[X],W ;M2)

→ t
Kos

∗
(K[X],W ;M1 ⊗K[X] M2),

t
Kos∗(K[X],W ;M1)⊗K[t±1]

t
Kos

∗
(K[X],W ;M2)

→ t
Kos∗(K[X],W ;M1 ⊗K[X] M2).

Remark 4.6. Note that, unlike ∪Hoch and ∩Hoch, the products ∪Kos and
∩Kos are not associative on the cochain level. However, as we will see shortly,
the induced products on the periodic cohomology are associative.
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4.1.5. Comparing the products on the Hochschild and Koszul com-
plexes. The diagram

B∗(K[X])((t))
∆bar−−−−→

(
B∗(K[X])⊗K[X] B∗(K[X])

)
((t))

yΨ

yΨ⊗Ψ

K∗(K[X])[t±1]
∆Kos−−−−→

(
K∗(K[X])⊗K[X] K∗(K[X])

)
[t±1]

is not commutative (e. g. because only ∆Kos “depends” on t). Nevertheless,
one has

Proposition 4.7. The diagram is commutative up to homotopy: There ex-
ist morphisms of K[X]-bimodules

hi : B∗(K[X])→ K∗(K[X])⊗K[X] K∗(K[X]), |hi| = −2i− 1, i = 0, 1, . . .

such that

(Ψ⊗Ψ) ·∆bar −∆Kos ·Ψ(4.5)

= ((δKos + tδcurv)⊗ 1 + 1⊗ (δKos + tδcurv))

×
∞∑

i=0

hit
i +

∞∑

i=0

hit
i · (δbar + tδcurv).

Proof is given in Appendix B (page 251).

Corollary 4.8. The isomorphisms

Ψ∗ : tKos
∗
(K[X],W ;M)→ t

HH
∗(K[X],W ;M),

Ψ∗ :
t
HH∗(K[X],W ;M)→ t

Kos∗(K[X],W ;M),

induced by the quasi-isomorphisms from Corollary 4.3, are compatible with
the cup and cap products:

Ψ∗(ξ1 ∪Kos ξ2) = Ψ∗(ξ1) ∪Hoch Ψ
∗(ξ2),

∀ ξi ∈ t
Kos

∗
(K[X],W ;Mi),

Ψ∗(ω) ∩Kos ξ = Ψ∗(ω ∩Hoch Ψ
∗(ξ))

∀ω ∈ t
HH∗(K[X],W ;M1), ξ ∈ t

Kos
∗
(K[X],W ;M2).
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4.1.6. A more explicit description of the Koszul calculus. Our aim
in this section is to rewrite all the structures in the Koszul calculus in a
slightly more explicit way. We start by working out a more convenient de-
scription of the mixed Koszul complexes.

Let ⋆ : ClN → ClN be the algebra involution (i.e., a K-linear degree 0
involutive map satisfying (ξ1ξ2)

⋆ = (−1)|ξ1||ξ2|ξ⋆2ξ⋆1) determined by

θ⋆i = θi, ∂⋆θi = −∂θi , ∀ i = 1, . . . , N.

Consider the following perfect pairing between K[θ] and K[∂θ]:

{·, ·} : K[θ]⊗K[∂θ]→ K,(4.6)

{p(θ), q(∂θ)} := (−1)|p(θ)||q(∂θ)| CT (q(∂θ)
⋆(p(θ)))

where on the right-hand side we apply the “differential operator” q(∂θ)
⋆ to

the polynomial p(θ) and take the constant term of the resulting polynomial.
One can easily check that

{ξ(p(θ)), q(∂θ)} = (−1)|p(θ)||ξ|{p(θ), ξ⋆(q(∂θ))}(4.7)

∀ξ ∈ ClN , p(θ) ∈ K[θ], q(∂θ) ∈ K[∂θ]

where ξ acts on K[θ] and K[∂θ] as described in Section 3.1.2.
Let M be a (K[X],W )-bimodule. The above pairing gives rise to the

pairing

K∗(K[X])⊗M [∂θ]→M,(4.8)

{f0(x)f1(y)p(θ),mq(∂θ)} := (f0mf1){p(θ), q(∂θ)}

which induces an isomorphism

(4.9) M [∂θ]→ K∗(K[X],M).

Under this isomorphism the differentials ∂Kos = δ∨Kos and ∂curv = δ∨curv on
the right-hand side correspond to the differentials (denoted by the same
symbols)

∂Kos :=

N∑

i=1

(xi − yi) · ∂θi , ∂curv := −
N∑

i=1

∇x→(x,y)
i (W ) · θi
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on M [∂θ] where the x-variables act on M from the left and the y-variables
act from the right. Thus,

(4.10) Kos∗(K[X],W ;M) ≃ (M [∂θ], ∂Kos, ∂curv) .

There is a similar description of Kos∗(K[X],W ;M). Namely, observe
that

(4.11) K∗(K[X],M)→M [θ], m⊗ f0(x)f1(y)p(θ) 7→ (f1mf0)p(θ)

is an isomorphism. It transforms the differentials bKos = 1⊗ δKos and bcurv =
1⊗ δcurv on the left-hand side into the differentials

bKos :=

N∑

i=1

(xi − yi) · ∂θi , bcurv :=

N∑

i=1

∇x→(x,y)
i (W ) · θi

on M [θ] where now the x-variables act on M from the right and the y-
variables act from the left. Thus,

(4.12) Kos∗(K[X],W ;M) ≃ (M [θ], bKos, bcurv) .

Our next goal is to describe ∪Kos and ∩Kos in terms of the mixed com-
plexes on the right-hand side of (4.10) and (4.12). In what follows, M1 and
M2 are two (K[X],W )-bimodules. We start with the cup product.

Take arbitrary two elements ξi ∈Mi[∂θ] (i = 1, 2) and let ξ̂i ∈
K∗(K[X]),Mi) denote their images under (4.9). Take also any p(θ) ∈ K[θ] ⊂
K[X]⊗2[θ] = K∗(K[X]). Then, by our definitions (see (4.4))

{p(θ), ξ1 ∪Kos ξ2} = ⟨p(θ), ξ̂1 ∪Kos ξ̂2⟩ = ⟨∆Kos(p(θ)), ξ̂1 ⊠ ξ̂2⟩.

The pairing ⟨·, ·⟩ in the last term is the K[t±1]-linear extension of the pairing

K∗(K[X])⊗K[X] K∗(K[X])⊗HomK[X]⊗2(K∗(K[X])

⊗K[X] K∗(K[X]),M1 ⊗K[X] M2)→M1 ⊗K[X] M2.

Under the isomorphism

HomK[X]⊗2(K∗(K[X])⊗K[X] K∗(K[X]),M1 ⊗K[X] M2)

≃M1[∂θ]⊗K[X] M2[∂θ]

ξ̂1 ⊠ ξ̂2 is just ξ1 ⊗ ξ2 and the above pairing is nothing but the pairing (4.6)
for ClN ⊗ ClN = Cl2N (or, rather, its extension analogous to (4.8)). Let us
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denote it by {{·, ·}}. Putting everything together, we obtain

{p(θ), ξ1 ∪Kos ξ2} = {{etHW∆0(p(θ)), ξ1 ⊗ ξ2}}.

Furthermore,

{{etHW∆0(p(θ)), ξ1 ⊗ ξ2}} = {{∆0(p(θ)), e
tH⋆

W (ξ1 ⊗ ξ2)}}
= {{∆0(p(θ)), e

tHW (ξ1 ⊗ ξ2)}}

where we use that HW is even (so no signs pop up upon using (4.7)) and also
that H⋆W = HW . To conclude the calculation of the cup product, we observe
that

{{∆0(p(θ)), q1(∂θ)⊗ q2(∂θ)}} = {p(θ), q1(∂θ)q2(∂θ)} ∀ p, q1, q2

where on the right-hand side we multiply q1(∂θ) and q2(∂θ) just as elements
of K[∂θ]. The formula is easily verified by substituting monomials for p, q1
and q2.

Summarizing the above calculations, we obtain the following result. Let
us write symbolically

etHW =
∑

hi,pi,l

(h1 ⊗ h2 ⊗ h3)(p1 ⊗ p2)tl, hi ∈ K[X], pi ∈ K[θ].

Then for m1q1(∂θ) ∈M1[∂θ] and m2q2(∂θ) ∈M2[∂θ]

(4.13) m1q1(∂θ) ∪m2q2(∂θ) = Υ(etHW ⊗m1q1(∂θ)⊗m2q2(∂θ))

where the right-hand side is an element in (M1 ⊗K[X] M2)[∂θ][t
±1] given by

the formula

Υ(etHW ⊗m1q1 ⊗m2q2) =
∑

(h1m1h2 ⊗m2h3)Υ(p1 ⊗ p2 ⊗ q1 ⊗ q2) tl

with Υ on the right-hand side being the map (3.10).
There is a similar formula for ∩Kos, namely:

(4.14) m1p(θ) ∩m2q(∂θ) = Υ†(etHW ⊗m1p(θ)⊗m2q(∂θ))

where the right-hand side is an element in (M1 ⊗K[X] M2)[θ][t
±1] given by

the formula

Υ†(etHW ⊗m1p⊗m2q) =
∑

(h3m1h1 ⊗m2h2)Υ
†(p1 ⊗ p2 ⊗ p⊗ q) tl
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with Υ† : K[θ]⊗K[θ]⊗K[θ]⊗K[∂θ]→ K[θ] being the unique map such that

{Υ†(p1 ⊗ p2 ⊗ p⊗ q), q′}(4.15)

= (−1)|p|(|p1|+|p2|){p,Υ(p1 ⊗ p2 ⊗ q ⊗ q′)} ∀q′ ∈ K[∂θ].

The derivation of (4.14) is analogous to that of (4.13) and is left to the
reader.

In the remainder of this section, we will identify Kos∗(K[X],W ;M) with
(M [∂θ], ∂Kos, ∂curv) and Kos∗(K[X],W ;M) with (M [θ], bKos, bcurv).

4.2. A multiplicative HKR isomorphism for the Hochschild
(co)homology of LG orbifolds

4.2.1. Outline. In this section, W ∈ K[X] is again arbitrary (e.g. 0) and
we also fix an abelian group G of symmetries of (X,W ) of the form specified
in Section 3.1.

The results of the previous section yield an explicit isomorphism between
the tuples

(
t
HH

∗(K[X],W ;K[X]⋊G),∪Hoch,
t
HH∗(K[X],W ;K[X]⋊G),∩Hoch

)

and

(
t
Kos

∗
(K[X],W ;K[X]⋊G),∪Kos,

t
Kos∗(K[X],W ;K[X]⋊G),∩Kos

)
.

Our aim in this section is to derive a more detailed description of the latter
tuple and also a description of the G-action on the Koszul (co)homology that
corresponds to the G-action on the Hochschild (co)homology (Section 2.2.2)
under the isomorphism.

4.2.2. G-twisted Koszul (co)homology. Let g be an arbitrary element
of G. Our first goal is to “calculate” the Koszul (co)homology

t
Kos

∗
(K[X],W ;K[X]⊗ g) and t

Kos∗(K[X],W ;K[X]⊗ g).

We start with the cohomology.
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The isomorphism K[X]⊗ g → K[x], f ⊗ g 7→ f induces an isomorphism
of mixed complexes

(4.16) ((K[X]⊗ g)[∂θ], ∂Kos, ∂curv) ≃ (K[X][∂θ], ∂Kos(g), ∂curv(g))

where

∂Kos(g) :=

N∑

i=1

(xi − g(xi)) ∂θi , ∂curv(g) := −
N∑

i=1

∇x→(x,y)
i (W )|y=g(x) θi.

Observe that ∂Kos(g) =
∑

i∈Ig(1− gi)xi ∂θi and ∇x→(x,y)
i (W )|y=g(x) =

l
x→(x,g(x))
i (∂xi

W (x)) for i ∈ Ig. The latter observation suggests one to split
∂curv(g) into two components, namely

∂Kos(g) + t∂curv(g) = ∂Kos(g) + t∂curv(g)
′ + t∂curv(g)

′′

with

∂curv(g)
′ := −

∑

i∈Ig
∇x→(x,g(x))
i (W ) θi,

∂curv(g)
′′ := −

∑

i∈Ig
l
x→(x,g(x))
i (∂xi

W (x)) θi.

Lemma 4.9. Let HW,g be as in (3.8). Then

∂Kos(g) + t∂curv(g) = etHW,g ·
(
∂Kos(g) + t∂curv(g)

′′) · e−tHW,g(4.17)

viewed as elements of K[X][t±1]⊗ ClN .

Proof is given in Appendix B (page 253).

By this lemma the map etHW,g : K[X][∂θ][t
±1]→ K[X][∂θ][t

±1] induces a
quasi-isomorphism

(K[X][∂θ][t
±1], ∂Kos(g) + t∂curv(g)

′′)(4.18)
∼→ (K[X][∂θ][t

±1], ∂Kos(g) + t∂curv(g)).

Let us calculate the cohomology of the complex on the left-hand side.
Let K[∂gθ ] denote the subalgebra in ClN generated by {∂θi}i∈Ig . Consider

the projection K[∂θ]→ K[∂gθ ] · ∂θIg which annihilates monomials containing
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less than dg elements ∂θi , i ∈ Ig. This projection together with the restric-
tion resg : K[X]→ K[Xg] (Section 3.1.3) give rise to a morphism of mixed
complexes

(K[X][∂θ], ∂Kos(g), ∂curv(g)
′′)→ (K[Xg][∂gθ ] · ∂θIg , 0,

∑

i∈Ig
(∂xi

W g)θi)

which clearly is a quasi-isomorphism. In particular,

H∗(K[X][∂θ][t
±1], ∂Kos(g) + t∂curv(g)

′′)

≃ H∗−dg

(
K[Xg][∂gθ ][t

±1] · ∂θIg , t
∑

i∈Ig
(∂xi

W g)θi

)

≃ t
Kos

∗−dg(K[Xg],W g).

Combining this observation with (4.18), we obtain:

Proposition 4.10. As a Z-graded K[t±1]-module,

t
Kos

∗
(K[X],W ;K[X]⊗ g)

≃ t
Kos

∗−dg(K[Xg],W g)(≃ H∗−dg(∧∗TXg , [W g, ·])[t±1]).

Remark 4.11. For the purpose of calculation of the cup products it is im-
portant to have explicit representatives of classes in tKos

∗
(K[X],W ;K[X]⊗

g). Let us therefore formulate the above observations more carefully. The
natural embedding K[X][∂gθ ] · ∂θIg →֒ K[X][∂θ] induces a map

Ker(t∂curv(g)
′′|K[X][∂g

θ ][t
±1]·∂θIg )(4.19)

→ H∗(K[X][∂θ][t
±1], ∂Kos(g) + t∂curv(g)

′′)

which by the preceeding discussion is surjective. Consequently, representa-
tives of classes in tKos

∗
(K[X],W ;K[X]⊗ g) can be obtained by applying

the map (4.18) to elements of the space Ker(t∂curv(g)
′′|K[X][∂g

θ ][t
±1]·∂θIg ). To

complete this description, we need to understand what the kernel of (4.19)
looks like. It is easy to describe: it contains Im(t∂curv(g)

′′|K[X][∂g

θ ][t
±1]·∂θIg ),

as well as the closed elements annihilated by resg. Thus, the kernel equals

Im(t∂curv(g)
′′|K[X][∂g

θ ][t
±1]·∂θIg ) + Ker(t∂curv(g)

′′|K[X][∂g

θ ][t
±1]·∂θIg )

∩
∑

i∈Ig
xi ·K[X][∂gθ ][t

±1] · ∂θIg .
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Let us derive an analogous description for tKos∗(K[X],W ;K[X]⊗ g).
Since the argument is very similar, we will only sketch it and omit details.

There is a natural isomorphism of mixed complexes

((K[X]⊗ g)[θ], bKos, bcurv)(4.20)

≃
(
K[X][θ], bKos(g), bcurv(g) = bcurv(g)

′ + bcurv(g)
′′)

where bKos(g) := −
∑

i∈Ig(1− gi)xi ∂θi ,

bcurv(g)
′ :=

∑

i∈Ig
∇x→(g(x),x)
i (W ) θi,

bcurv(g)
′′ :=

∑

i∈Ig
l
x→(g(x),x)
i (∂xi

W (x)) θi.

By analogy with the previous case, we have a quasi-isomorphism

etH
†
W,g : (K[X][θ][t±1], bKos(g) + tbcurv(g)

′′)(4.21)
∼→ (K[X][θ][t±1], bKos(g) + tbcurv(g))

where this time

H†
W,g = H†

W,g(x) :=
∑

i,j∈Ig, j<i

1

1− gj
∇x→(x,xg)
j ∇x→(g(x),x)

i (W ) θj θi.

LetK[θg] stand for the subalgebra in ClN generated by {θi}i∈Ig . Consider
the projectionK[θ]→ K[θg] that annihilates monomials containing θi, i ∈ Ig.
This projection and the homomorphism resg give rise to a quasi-isomorphism
of mixed complexes

(K[X][θ], bKos(g), bcurv(g)
′′)→

(
K[Xg][θg], 0,

∑

i∈Ig
(∂xi

W g)θi

)
,

which we combine with (4.21) to obtain

Proposition 4.12. As a Z-graded K[t±1]-module,

t
Kos∗(K[X],W ;K[X]⊗ g) ≃ t

Kos∗(K[Xg],W g)(≃ H∗(Ω∗
Xg , dW g ∧ ·)[t±1]).
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Remark 4.13. Note that the embedding K[X][θg] →֒ K[X][θ] induces a
surjective map

(4.22) Ker(tbcurv(g)
′′|K[X][θg][t±1])→ H∗(K[X][θ][t±1], bKos(g) + tbcurv(g)

′′)

and so explicit representatives of classes in tKos∗(K[X],W ;K[X]⊗ g) can
be obtained by applying (4.21) to elements of Ker(tbcurv(g)

′′|K[X][θg][t±1]).
The kernel of (4.22) equals

Im(tbcurv(g)
′′|K[X][θg][t±1]) + Ker(tbcurv(g)

′′|K[X][θg][t±1]) ∩
∑

i∈Ig
xiK[X][θg][t±1].

Remark 4.14. Part of the above picture can be generalized to not nec-
essarily abelian subgroups G ⊂ GLN (K). Namely, even if g is not diago-
nal but can be diagonalized (say when K = C), Propositions 4.10 and 4.12
hold true for the simple reason that neither the Hochschild (co)homology
tHH

∗(K[X],W ;K[X]⊗ g), tHH∗(K[X],W ;K[X]⊗ g) nor the geometrically
defined cohomology H∗(∧∗TXg , [W g, ·]) and H∗(Ω∗

Xg , dW g ∧ ·) depend on any
coordinate systems. Furthermore, even though the explicit description of the
cohomology classes that we have derived in Remarks 4.11, 4.13 does not ap-
ply to non-diagonal elements g, the underlying idea — namely, splitting the
differentials into two parts and using exponential twists to simplify com-
plexes — seems quite universal. In order to calculate the g-twisted Koszul
(co)homology in a concrete example, one can write the differentials ∂Kos(g),
∂curv(g), bKos(g), bcurv(g) in linear coordinates in which g is diagonal, ap-
ply the above idea to do calculations, and write the result in terms of the
original coordinates.

4.2.3. Products. Our next goal is to describe the products

t
Kos

∗
(K[X],W ;K[X]⊗ g)⊗K[t±1]

t
Kos

∗
(K[X],W ;K[X]⊗ h)

∪→ t
Kos

∗
(K[X],W ;K[X]⊗ gh),

t
Kos∗(K[X],W ;K[X]⊗ g)⊗K[t±1]

t
Kos

∗
(K[X],W ;K[X]⊗ h)

∩→ t
Kos∗(K[X],W ;K[X]⊗ gh).

The following proposition is an immediate consequence of (4.13) and (4.14).
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Proposition 4.15. Under the isomorphism (4.16), (4.20) the above prod-
ucts transform into

f1q1(∂θ) ∪ f2q2(∂θ) = f1 · g(f2) ·Υ(etHW (x,g(x),gh(x)) ⊗ q1(∂θ)⊗ q2(∂θ)),
f1p(θ) ∩ f2q(∂θ) = f1 · g(f2) ·Υ†(etHW (g(x),gh(x),x) ⊗ p(θ)⊗ q(∂θ)),

respectively, where f1, f2 ∈ K[X] and Υ, Υ† are the K[X]-linear extensions
of (3.10) and (4.15).

Remark 4.16. Note that these formulas are valid for non-abelian groups
as well.

4.2.4. G-actions. Our final goal in this section is to transfer the G-
actions on the Hochschild (co)homology

t
HH

∗(K[X],W ;K[X]⋊G), t
HH∗(K[X],W ;K[X]⋊G)

(see (2.11)) to the corresponding Koszul (co)homology groups. According to
Proposition 2.7, the (co)invariants of the resulting G-actions are isomorphic
to tHH

∗(K[X]⋊G,W ) and tHH∗(K[X]⋊G,W ).
Since we are dealing with an abelian group, the G-actions on

HH∗(K[X],W ;K[X]⋊G) and HH∗(K[X],W ;K[X]⋊G)

preserve the mixed subcomplexes

HH∗(K[X],W ;K[X]⊗ g) and HH∗(K[X],W ;K[X]⊗ g),

for all g. Let us introduce the following G-action on the algebra ClN :

(4.23) G ∋ g = (g1, . . . , gN ) : θi 7→ giθi, ∂θi 7→ g−1
i ∂θi .

Note it is compatible with the ClN -module structures on K[∂θ] and K[θ] from
Section 3.1.2. The combination of the G-actions on K[X] and ClN yields
G-actions on various spaces we have been studying, e.g. on K[X][∂θ] and
K[X][θ], and also on the underlying space K∗(K[X]) of the Koszul resolution
of K[X]. The latter action commutes with the differentials δKos and δcurv.
This follows from the observation that δKos and δcurv are G-invariant and
from the above-mentioned compatibility of the ClN - and G-actions on K[θ].
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As a result, we obtain G-actions on the mixed complexes

Kos∗(K[X], w;K[X]⊗ g) = (K∗(K[X],K[X]⊗ g), ∂Kos, ∂curv) ,

Kos∗(K[X], w;K[X]⊗ g) = (K∗(K[X],K[X]⊗ g), bKos, bcurv) .(4.24)

defined on the underlying spaces of the complexes by analogy with (2.11).

Proposition 4.17. (a) The quasi-isomorphisms (see Corollary 4.3)

Ψ∗ : Kos∗(K[X], w;K[X]⊗ g)→ HH∗(K[X], w;K[X]⊗ g),
Ψ∗ : HH∗(K[X], w;K[X]⊗ g)→ Kos∗(K[X], w;K[X]⊗ g)

are G-equivariant.

(b) The isomorphisms (4.10) and (4.12) between the mixed complexes on the
right-hand sides of (4.24) and the mixed complexes

((K[X]⊗ g)[∂θ], ∂Kos, ∂curv) (≃ (K[X][∂θ], ∂Kos(g), ∂curv(g))),

((K[X]⊗ g)[θ], bKos, bcurv) (≃ (K[X][θ], bKos(g), bcurv(g)))(4.25)

are also G-equivariant.

Part (a) follows from the observation that the morphism (4.1) intertwines
the G-actions on the bar and Koszul resolutions. Part (b) is obvious for the
second complex; for the first one the claim follows from the fact that the
pairing (4.6) is G-invariant.

Let us also point out that the G-actions on (4.25) are compatible with
the explicit description of the cohomology classes that we worked out in Re-
marks 4.11, 4.13. More precisely, the splitting of the differentials ∂curv(g) =
∂curv(g)

′ + ∂curv(g)
′′ and bcurv(g) = bcurv(g)

′ + bcurv(g)
′′ is G-invariant and

the isomorphisms (4.18) and (4.21) intertwine the G-actions.

Remark 4.18. Unlike the results of the previous two sections (cf. Remarks
4.14, 4.16), the above picture relies very heavily on the fact that G acts by
rescaling the variables. The major problem with other groups is that the
morphism (4.1) will not be equivariant anymore, even if G ⊂ GLN (K).

4.3. Proof of Theorem 3.1

In this section, we assume thatW has only isolated critical points. Then each
W g ∈ K[Xg] also has isolated critical points. Indeed (cf. [37, Lem.2.5.3]), the
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equality W (g(x)) =W (x) implies (by differentiating both sides)

res
g(∂xi

W ) = 0 ∀ i ∈ Ig, res
g(∂xi

W ) = ∂xi
W g ∀ i ∈ Ig

which in turn implies that resg induces a surjective map H∗(Ω∗
X , dW ∧ ·)→

H∗(Ω∗
Xg , dW g ∧ ·).

Let us start by writing down explicit isomorphisms

tM
∗
(X,W,G) ≃

⊕

g∈G
H∗(K[X][∂θ][t

±1], ∂Kos(g) + t∂curv(g)),

tΩ
∗
(X,W,G) ≃

⊕

g∈G
H∗(K[X][θ][t±1], bKos(g) + tbcurv(g))(4.26)

as (Z×G)-graded G-equivariant K[t±1]-modules. Since allW g have isolated
critical points, Propositions 4.10, 4.12 and Remarks 4.11, 4.13 imply that
etHW,g : K[X][∂θ][t

±1]→ K[X][∂θ][t
±1] induces an isomorphism

(4.27) etHW,g :M(W g)[t±1] ∂θIg ≃ H∗(K[X][∂θ][t
±1], ∂Kos(g) + t∂curv(g))

and etH
†
W,g : K[X][θ][t±1]→ K[X][θ][t±1] induces an isomorphism

(4.28) etH
†
W,g :M(W g)[t±1] θIg ≃ H∗(K[X][θ][t±1], bKos(g) + tbcurv(g)).

The specific isomorphisms (4.26) we are interested in are the K[t±1]-linear
extensions of the maps

(4.29)
⌊f⌋g · ξg 7→ ⌊f⌋g · [etHW,g(∂θIg )],

⌊f⌋g · ωg 7→ (−1)Ndg+||Ig|| ⌊f⌋g · [etH
†
W,g(θIg)]

(f ∈ K[X]) where [ ] denotes the cohomology class and ||(i1, i2, . . . , ik)|| :=
i1 + i2 + · · ·+ ik. Obviously, these isomorphisms preserve the gradings and
respect the G-actions (cf. (3.5), (4.23)).

Let us now calculate the cup products between elements of the form
⌊f⌋g · [etHW,g(∂θIg )]. To begin with, the existence of σg,h ∈M(W gh) such
that

[etHW,g(∂θIg )] ∪ [etHW,h(∂θIh )] = tdg,h · σg,h · [etHW,gh(∂θIgh )]

is an immediate consequence of (4.27). That σg,h is given by the formula
(3.6) is a consequence of the formula for ∪ from Proposition 4.15 since
(3.6) is nothing but the class in M(W gh) of the coefficient at tdg,h∂θIgh in
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e−tHW,gh

(
etHW,g(∂θIg ) ∪ etHW,h(∂θIh )

)
. (Note that according to the formu-

las in Proposition 4.15 we should be using HW (x, g(x), gh(x)) instead of
HW (x, g(x), x) in (3.6). But, obviously, after applying ⌊ ⌋gh the result is the
same. Note also that HW,gh does not appear in (3.6) because for any k ∈ G
the element ∂θIk is not contained in the image of HW,k; see (3.8).)

Furthermore, by Proposition 4.15 the elements σg,h determine the prod-
ucts on the entire cohomology groups, namely

⌊f1⌋g · [etHW,g(∂θIg )] ∪ ⌊f2⌋h · [e
tHW,h(∂θIh )]

= tdg,h · ⌊f1g(f2)⌋gh · σg,h · [etHW,gh(∂θIgh )].

for all f1, f2 ∈ K[X]. (We implicitly use the obvious fact that the operator
⌊ ⌋g commutes with the G-actions on K[X] and M(W g).) Note the differ-
ence between the right-hand side of the latter formula and that of (3.11): In
(3.11) f2 is not twisted by g. We claim that the twist by g is not needed, i.e.
⌊f1g(f2)⌋gh · σg,h = ⌊f1f2⌋gh · σg,h as elements of M(W gh). This is a con-
sequence of the braided super-commutativity (2.13) of the cup product.
Indeed, by the braided super-commutativity

tdg,h · σg,h · [etHW,gh(∂θIgh )] = [etHW,g(∂θIg )] ∪ [etHW,h(∂θIh )](4.30)

= (−1)dgdh · [etHW,h(∂θIh )] ∪ h
−1
(
[etHW,g(∂θIg )]

)

= α · (−1)dgdh · tdg,h · σh,g · [etHW,gh(∂θIgh )]

where the constant α is defined by h−1(∂θIg ) = α · ∂θIg . Hence

tdg,h · ⌊f1g(f2)⌋gh · σg,h · [etHW,gh(∂θIgh )]

= ⌊f1⌋g · [etHW,g(∂θIg )] ∪ ⌊f2⌋h · [e
tHW,h(∂θIh )]

= (−1)dgdh · ⌊f2⌋h · [etHW,h(∂θIh )] ∪ h
−1 (⌊f1⌋g) · h−1

(
[etHW,g(∂θIg )]

)

= (−1)dgdh · ⌊f2⌋h · [etHW,h(∂θIh )] ∪ ⌊h
−1 (f1)⌋g · h−1

(
[etHW,g(∂θIg )]

)

= α · (−1)dgdh · ⌊f2⌋h · [etHW,h(∂θIh )] ∪ ⌊h
−1 (f1)⌋g · [etHW,g(∂θIg )]

= α · (−1)dgdh · tdg,h · ⌊f2f1⌋gh · σh,g · [etHW,gh(∂θIgh )]

(4.30)
= tdg,h · ⌊f1f2⌋gh · σg,h · [etHW,gh(∂θIgh )].

This completes the proof of the first half of Theorem 3.1. The second
half is proved similarly, so we only sketch the argument.
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It follows from (4.28) that there exist elements σ̃g,h ∈M(W gh) such that

[etH
†
W,g(θIg)] ∩ [etHW,h(∂θIh )] = tdg,h · σ̃g,h · [etH

†
W,gh(θIgh)]

We claim that σ̃g,h = (−1)N(dg+dgh)+||Ig||+||Igh|| σg,h (cf. (4.29)). Indeed, one
can show, using (4.14), that σ̃e,g = (−1)Ndg+||Ig||. Hence

[etH
†
W,g(θIg)] ∩ [etHW,h(∂θIh )]

= (−1)Ndg+||Ig||
(
[θIe ] ∩ [etHW,g(∂θIg )]

)
∩ [etHW,h(∂θIh )]

= (−1)Ndg+||Ig|| · [θIe ] ∩
(
[etHW,g(∂θIg )] ∪ [etHW,h(∂θIh )]

)

= (−1)Ndg+||Ig|| · tdg,h · σg,h · [θIe ] ∩ [etHW,gh(∂θIgh )]

= (−1)Ndg+||Ig|| · (−1)Ndgh+||Igh|| · tdg,h · σg,h · [etH
†
W,gh(θIgh)].

Thus,

(−1)Ndg+||Ig|| · [etH
†
W,g(θIg)] ∩ [etHW,h(∂θIh )]

= tdg,h · σg,h · (−1)Ndgh+||Igh|| · [etH
†
W,gh(θIgh)]

which proves that the second map in (4.29) respects the cap products on the
generators. The extension to the entire (co)homology groups is completely
parallel to the case of the cup product and is left to the reader.

Finally, the claims that ξe is the unit of tM
∗
(X,W,G) and ωe is a free

generator of tΩ
∗
(X,W,G) both follow from the obvious fact that σe,g = 1

for any g ∈ G.

4.4. Proof of Theorem 3.4

The proof will be outlined very schematically since it involves notions and
results of the theory of curved dg categories and their Hochschild invariants
[36] which are far beyond the scope of the present work. (Unfortunately, we
have to assume familiarity with the subject.) Also, we only sketch the proof
of the isomorphism

(4.31) (HH∗(MFG(X,W )),∪ ) ≃
(
HH

II,∗(K[X]⋊G,W ),∪
)
.

The proof of the other half is just a straightforward extension of the argu-
ment given below (for the homology all the arrows below should be reversed).
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To start with, we want to replace the ordinary Hochschild cohomology
of the matrix factorizations with their Hochschild cohomology of the second
kind. More precisely, there is a natural algebra homomorphism [36, Sect.2.4,
(24)]

(4.32) HH
II,∗(MFG(X,W ))→ HH

∗(MFG(X,W ))

which is an isomorphism in our case. It is this point where the absence of
critical points outside of W−1(0) is needed; see [36, Sect.4.8,4.10]. (Formally
speaking, this is spelled out in loc.cit. only in the non-equivariant setting
but the same argument, when combined with the discussion in [37, Sect.2.5],
applies in the equivariant case.)

Furthermore, there is a diagram of morphisms

(4.33) HH
II,∗(MFG(X,W ))

I1←− HH
II,∗(A)

I2−→ HH
II,∗(K[X]⋊G,W )

where
(1) A is the curved dg category whose objects are the Z/2Z-graded finitely
generated projective (K[X]⋊G)-modules E = Eeven ⊕ Eodd, the curvature
of every object E is W · idE , and HomA(E1, E2) is the Z/2Z-graded space
of all (K[X]⋊G)-linear maps from E1 to E2; we endow this space with the
trivial differential.

(2) I2 is induced by the embedding of curved dg categories (K[X]⋊G,W )→
A (we view the former as a curved dg category with a single object) send-
ing the unique object of (K[X]⋊G,W ) to the object with Eeven = A and
Eodd = 0.

(3) I1 is the dual to the map I∨1 from the bar resolution of the second kind
of MFG(X,W ) to the bar resolution of the second kind of A given by the
following explicit formula (see [36, Sect.2.4, (18)] and [39, Sect.2.3]):

I∨1 = exp (“insert δ”)

where

“insert δ” : ϕE0E1
[ ϕE1E2

| · · · | ϕEn−1En
] ϕEnEn+1

7→
n∑

i=1

ϕE0E1
[ · · · | ϕEi−1Ei

| δEi
| ϕEiEi+1

| · · · ] ϕEnEn+1
.

On the left-hand side, (Ei, δEi
) are matrix factorizations and ϕEiEi+1

are
morphisms in the category MFG(X,W ); on the right-hand side, Ei, ϕEiEi+1

,
and δEi

are viewed as objects/morphisms in A.
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The proof of (4.31) is completed by noticing that, firstly, both I1 and I2 are
isomorphisms (this is obvious for I1 and follows from [36, Sect.2.6,(45)] for
I2) and, secondly, both I1 and I2 are morphisms of algebras (this is obvious
for I2; for I1 this follows the fact that “insert δ” is a coderivation with
respect to the coproduct ∆bar (2.5)).

Appendix A. Examples and applications
(by A. Basalaev and D. Shklyarov)

In Appendix A, the ground field is C.

A.1. Example: Invertible polynomials

The aim of this section is to discuss in more detail the (isomorphism class
of the) algebra M∗(X,W,G) from Corollary 3.3 in the case when X = CN

and W ∈ C[X] is an invertible polynomial [32, 33].
Instead of giving a formal definition of invertible polynomials, we recall

the only fact that matters to us, namely, the classification of such poly-
nomials obtained in [33] which says that up to a natural equivalence, any
invertible polynomial is the Thom-Sebastiani sum of polynomials of the fol-
lowing atomic types:

Ferma type: xa1

1 ,

Chain type: xa1

1 x2 + xa2

2 x3 + · · ·+ x
aN−1

N−1xN + xaN

N ,

Loop type: xa1

1 x2 + xa2

2 x3 + · · ·+ x
aN−1

N−1xN + xaN

N x1

where ak ∈ N≥2 and N ≥ 2. (The Thom-Sebastiani sum of two functions
(X1,W1) and (X2,W2) is the function (X1 ×X2,W1 ⊞W2) with (W1 ⊞

W2)(x1, x2) :=W1(x1) +W2(x2).)
Note that every invertible polynomial has an isolated critical point at

the origin and, due to its quasi-homogeneity, no other critical points. Thus,
the main results of the present work are applicable and yield a description
of the Hochschild cohomology, i.e. of the “closed string algebra” of any in-
vertible LG model. But, as was already mentioned in the Introduction, there
already exists [6] a good candidate for this role which, like M∗(CN ,W,G)G,
is constructed as the subalgebra of G-invariants of a (Z/2Z×G)-graded,
G-equivariant, and braided super-commutative algebra. This latter algebra
is called the G-twisted Jacobian algebra of W and denoted by Jac′(W,G).
Let us recall its description.



✐

✐

“6-Shklyarov” — 2020/5/19 — 21:39 — page 230 — #42
✐

✐

✐

✐

✐

✐

230 Dmytro Shklyarov

It suffices to describe Jac′(W,G) for each atomic polynomial since the
algebra has the following “Künneth property”: IfW =W1 ⊞ · · ·⊞Wl, where
eachWi is a polynomial of one of the three atomic types, and G = G1 × · · · ×
Gl, where Gi is an abelian group of symmetries of Wi, then

(A.1) Jac′(W,G) = Jac′(W1, G1)⊗ · · · ⊗ Jac′(Wl, Gl).

Let W be an atomic polynomial and G be its abelian symmetry group.
The algebra Jac′(W,G) looks exactly the same as M∗(CN ,W,G) — that
is, it is isomorphic to M∗(CN ,W,G) as a (Z/2Z×G)-graded G-equivariant
M(W )-module — but it has different “structure constants” σ′g,h in the prod-
ucts (3.11), namely

σ′e,g = σ′g,e = 1, σ′g,g−1 = e−π
√
−1 age(g)⌊det(∂xi

∂xj
W )i,j∈Ig⌋e, ∀g ∈ G

and σ′g,h = 0 otherwise. In the above formula ⌊ ⌋e, we recall, denotes the

class of an element in M(W =W e) and age(g) :=
∑N

i=1 qi with qi being the

rational numbers satisfying 0 ≤ qi < 1 and g = diag(e2π
√
−1qi). (The actual

structure constants of Jac′(W,G), as defined in [6], differ from σ′g,h by com-
plex factors which we ignore here since they do not affect the isomorphism
class.) As explained in [6, Sect.4], the map ξg ⊗ ξh 7→ σ′g,hξgh does extend
by M(W )-linearity to a well-defined associative braided super-commutative
product on the whole of Jac′(W,G).

We propose the following conjecture:

Conjecture. For any invertible W and any abelian symmetry group G
there is an isomorphism of (Z/2Z×G)-graded G-equivariant algebras
M∗(CN ,W,G) ≃ Jac′(W,G).

Remark A.1. (1) Note that Proposition 2.6 implies that M∗(CN ,W,G)
has the property (A.1) as well. Thus, it would suffice to prove the conjecture
for polynomials of the three atomic types. The Ferma case is an easy exercise,
the conjecture is interesting only for the other two types.
(2) There is also an analog of Ω∗(CN ,W,G) in [6] which the authors denote
by Ω′

W,G. Its structure is completely analogous to that of Ω∗(CN ,W,G): it
is a free rank 1 Jac′(W,G)-module spanned by a generator of degree −N . It
is not included in the conjecture for the simple reason that it is defined in
loc. cit. as a left module.
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In the remainder of this section we check the conjecture for a generic
chain type polynomial in two variables and its maximal (hence any) sym-
metry group:

W = xa1

1 x2 + xa2

2 (a2 ≥ 3), G := {(ζ1, ζ2) ∈ (C∗)2 | ζa1

1 ζ2 = 1, ζa2

2 = 1}

Our strategy is as follows: we are going to show that

A: σg,h = 0 provided neither of g, h, gh is the unit of G.

B: σg,g−1 = αg · σ′g,g−1 for some αg ∈ C∗.

(It is worthwhile noting that σ′g,g−1 ∈M(W ) is always non-zero; see [6,
Prop.30].) Let us explain why checking these conditions suffices to verify the
claim of the conjecture. It follows from the braided super-commutativity of
both M∗(C2,W,G) and Jac′(W,G) that

σg−1,g = det(g)σg,g−1 , σ′g−1,g = det(g)σ′g,g−1 .

Together with B this implies that αg = αg−1 which, in turn, implies that the
assignment

ξM
∗

g 7→
√
αg · ξJac

′

g

— for any choice of the square root of the functionG→ C∗, g 7→ αg satisfying√
αg =

√
αg−1 — extends by M(W )-linearity to an algebra isomorphism

M∗(C2,W,G)→ Jac′(W,G).
Let us calculate all the ingredients for the formula (3.6) in our case. One

has

HW (x, y, z) =

(
xa1

1 − ya1

1

x1 − y1
− xa1

1 − za1

1

x1 − z1

)
x2

y1 − z1
θ1 ⊗ θ1

+

(
xa2

2 − ya2

2

x2 − y2
− xa2

2 − za2

2

x2 − z2

)
1

y2 − z2
θ2 ⊗ θ2

+
ya1

1 − za1

1

y1 − z1
θ2 ⊗ θ1

which implies that for g = (ζ1, ζ2) ̸= e (⇔ ζ1 ̸= 1)

HW (x, g(x), x) =

(
a1

1− ζ1
− 1− ζa1

1

(1− ζ1)2
)
xa1−2
1 x2 θ1 ⊗ θ1(A.2)

+
a2

1− ζ2
xa2−2
2 θ2 ⊗ θ2 +

1− ζa1

1

1− ζ1
xa1−1
1 θ2 ⊗ θ1,
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if ζ2 ̸= 1 (⇔ dg = 2), and

HW (x, g(x), x) =
a1

1− ζ1
xa1−2
1 x2 θ1 ⊗ θ1(A.3)

+
a2(a2 − 1)

2
xa2−2
2 θ2 ⊗ θ2 +

1− ζa1

1

1− ζ1
xa1−1
1 θ2 ⊗ θ1,

if ζ2 = 1 (⇔ dg = 1). Also,

HW,g(x) =
ζa1

1

1− ζ1
xa1−1
1 θ1θ2 if ζ2 ̸= 1(A.4)

and HW,g(x) = 0 if ζ2 = 1.

We are in a position now to check the above conditions A and B.

A: Let us fix g, h ∈ G such that neither of g, h, gh is the unit. We have to
consider the following possibilities:

1) dg = dh = dgh = 1;

2) dg = 1, dh = dgh = 2 or dh = 1, dg = dgh = 2;

3) dg = dh = dgh = 2.

However, because of (3.9), only the last possibility is non-trivial, so we as-
sume dg = dh = dgh = 2 (consequently, dg,h = 1).

By Theorem 3.1 σg,h is the coefficient at ∂θ1∂θ2 in the expression

Υ
(
(⌊HW (x, g(x), x)⌋gh + ⌊HW,g(x)⌋gh ⊗ 1 + 1⊗ ⌊HW,h(g(x))⌋gh)

⊗ ∂θ1∂θ2 ⊗ ∂θ1∂θ2
)
.

Since dgh = 2, the operator ⌊ ⌋gh sets both x1 and x2 equal to 0. Thus, by
(A.2) and (A.4) the above expression is 0.

B: We fix now g = (ζ1, ζ2) ̸= e and consider two cases:

ζ2 ̸= 1 (⇔ dg = 2): In this case σg,g−1 is the constant coefficient in the ex-
pression

1

2
Υ
( (
⌊HW (x, g(x), x)⌋e + ⌊HW,g(x)⌋e ⊗ 1 + 1⊗ ⌊HW,g−1(g(x))⌋e

)2

⊗ ∂θ1∂θ2 ⊗ ∂θ1∂θ2
)
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for HW (x, g(x), x) given by (A.2). Denoting

HW (x, g(x), x) = A1 θ1 ⊗ θ1 +A2 θ2 ⊗ θ2 +A3 θ2 ⊗ θ1,(A.5)

HW,g(x) = B θ1θ2, HW,g−1(g(x)) = C θ1θ2,(A.6)

one easily checks that σg,g−1 = ⌊B · C −A1 ·A2⌋e, that is

σg,g−1 =

⌊
− ζa1

1

(1− ζ1)2
x2a1−2
1 −

(
a1

1− ζ1
− 1− ζa1

1

(1− ζ1)2
)

a2
1− ζ2

xa1−2
1 xa2−1

2

⌋

e

or, taking account of the facts that

ζa1

1 = ζ−1
2 and ⌊x2a1−2

1 ⌋e = ⌊−a2xa1−2
1 xa2−1

2 ⌋e,

σg,g−1 = − a1a2
(1− ζ1)(1− ζ2)

⌊
xa1−2
1 xa2−1

2

⌋
e
.

The reader is invited to check that the class of the Hessian of W in M(W )
is proportional to the above element which completes the verification of B
in the present case.

ζ2 = 1 (⇔ dg = 1): This time σg,g−1 is the constant coefficient in the ex-
pression

Υ (⌊HW (x, g(x), x)⌋e ⊗ ∂θ1 ⊗ ∂θ1)

for HW (x, g(x), x) given by (A.3). Using the notation (A.5), one sees that

σg,g−1 = ⌊−A1⌋e = −
a1

1− ζ1
⌊xa1−2

1 x2⌋e.

On the other hand, ∂2x1
W = a1(a1 − 1)xa1−2

1 x2, so B holds in this case as
well.

A.2. Application: Hochschild cohomology of Fukaya categories of
surfaces

Let us fix an integer g ≥ 2 and a symplectic compact connected oriented
surface S of genus g. Let F(S) denote the (Z/2Z-graded C-linear) Fukaya
A∞ category of S as defined in [40]. Our aim in this section is to combine
Corollary 3.4 with the homological mirror symmetry theorem for surfaces
established in [40] (g = 2) and [13] (g ≥ 3) in order to prove the following
claim:
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Theorem A.2. There is an isomorphism of Z/2Z-graded algebras
HH

∗(F(S)) ≃ H∗(S,C).

We should emphasize that the theorem itself is not new; we only present a
new proof. The claim can also be deduced — again in combination with the
theorems of [13, 40] which imply that F(S) is homologically smooth — from
results of [16–18] (see, in particular, Corollary 7 in [16, Sect.1.2]). In fact, the
latter approach yields more than the mere existence of an isomorphism of
algebras. It shows that a specific map H∗(S,C)→ HH

∗(F(S)), the so-called
closed-open map, is an isomorphism.

Let us proceed to the proof. Of course, the first step is to apply the
mirror symmetry theorem of [13, 40] and thereby convert Theorem A.2 into
a claim about Hochschild invariants of specific LG models. Namely, the
category F(S) is shown in [13, 40] to be derived Morita equivalent to the dg
category MFG(C

3,W ) of equivariant matrix factorizations associated with
the pair

(A.7)
W := x

2g+1
1 + x

2g+1
2 + x

2g+1
3 − x1x2x3,

G := {(ζ, ζ, ζ−2) ∈ (C∗)3 | ζ2g+1 = 1}.

It follows, according to [28], that HH
∗(F(S)) ≃ HH

∗(MFG(C
3,W )) and so

proving the theorem reduces to showing the existence of an algebra isomor-
phism HH

∗(MFG(C
3,W )) ≃ H∗(S,C).

The problem now is that the above W does not satisfy the condition
of Corollary 3.4. In addition to the origin 0 ∈ C3, W has (2g+ 1)2 (2g− 2)
other isolated critical points where the critical values are different from 0.
To apply Corollary 3.4, we need to replace C3 by an open affine subset
X ⊂ C3 containing 0 but none of those extra critical points. (Note that upon
restricting the domain in this way we do not alter the Hochschild homology
of the matrix factorizations since the natural dg functor MFG(C

3,W )→
MFG(X,W ) is known to be a dg Morita equivalence.)

The subtlety is that our new domain X has to be as specified in Sec-
tion 3.1, i.e. within the range of applicability of the main results of this
paper. That is, X should be of the form C3 \

⋃
i,j{xi = λji} for some λji ̸= 0.

The union of hyperplanes that we remove should be G-stable and contain
all the critical points we want to get rid of. Such a configuration is easy
to construct: we take as λji all the non-zero coordinates of all those redun-
dant critical points. The G-invariance of W implies that this configuration
is G-stable.
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Corollary 3.4 is applicable now and reduces the theorem to the following
claim:

Proposition A.3. There is an isomorphism of Z/2Z-graded algebras
M∗(X,W,G)G ≃ H∗(S,C).

The remainder of this appendix is devoted to the proof of the proposition.

M∗(X,W,G)G as a Z/2Z-graded space: Let ζ̂ = (ζ, ζ, ζ−2) be any cyclic gen-
erator of G. Let us rename the generators ξg of the “twisted sectors” in
M∗(X,W,G) as follows:

ξ+k := ξ
ζ̂ k , ξ−k := ξ

ζ̂ −k , k = 1, . . . , g.

Since the g-fixed locus of any e ̸= g ∈ G is the origin 0, dg = 3 andM(W g) =
C in this case, so

Meven(X,W,G) =M(W )ξe Modd(X,W,G) =

g⊕

k=1

(
Cξ+k ⊕ Cξ−k

)
.

It is easy to see that all the ξ±k are G-invariant (see (3.5) for the definition
of the G-action), hence

Meven(X,W,G)G =M(W )Gξe Modd(X,W,G)G =

g⊕

k=1

(
Cξ+k ⊕ Cξ−k

)
.

Let us compute M(W )G. An important technical aspect is that we can now
treatW as a local germ at 0 rather than a global function, since 0 is the only
critical point ofW in X. One can show thatM(W ) is spanned by the classes
of 1, x1x2x3, and x

l
i for i = 1, 2, 3, l = 1, . . . , 2g. Hence M(W )G = C⊕ Cφ

where φ is the class of x1x2x3. Thus, finally,

Meven(X,W,G)G = Cξe ⊕ Cφξe Modd(X,W,G)G =

g⊕

k=1

(
Cξ+k ⊕ Cξ−k

)
.

M∗(X,W,G)G as an algebra: Being the Hochschild cohomology of some-

thing, M∗(X,W,G)G is automatically super-commutative (Corollary 2.9).
Furthermore, φ2 = 0 since φ2 is G-invariant and so lies in C⊕ C · φ but it
has to be nilpotent (recall that we are dealing with the Milnor algebra of an
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isolated local singularity). Hence

(A.8) φξe ∪ φξe = 0.

Also, the class of x1x2x3 vanishes in M(W g) = C for g ̸= e, hence

(A.9) φξe ∪ ξ±k = 0 ∀k.

Next, since dg = 3 for all g ̸= e, (3.9) implies that

(A.10) ξ+k ∪ ξ+l = ξ−k ∪ ξ−l = 0 ∀k, l; ξ+k ∪ ξ−l = 0 k ̸= l.

Hence the only interesting products are

(A.11) ξ+k ∪ ξ−k = σ
ζ̂ k,ζ̂ −k · ξe, σ

ζ̂ k,ζ̂ −k ∈M(W )G.

The shape of the formula (3.6) — namely, the fact that the formula contains
only the second partial difference derivatives of W — suggests that σ

ζ̂ k,ζ̂ −k

will have no constant term, i.e.

σ
ζ̂ k,ζ̂ −k = ckφ, ck ∈ C.

We compute σ
ζ̂ k,ζ̂ −k below and, in particular, show that ck ̸= 0 for all k.

This suffices to conclude the proof of the proposition. Indeed, as an abstract
super-commutative algebra, H∗(S,C) has the form:

Heven(S,C) = C⊕ Cγ, Hodd(S,C) =

g⊕

k=1

(C · αk ⊕ C · βk)

with

γ · γ = 0, γ · αk = γ · βk = 0 ∀k
αk · αl = βk · βl = 0 ∀k, l; αk · βl = 0 ∀k ̸= l; αk · βk = γ ∀k.

Thus, by (A.8), (A.9), (A.10), and (A.11) the assignment

ξe 7→ 1, ξ+k 7→ αk, ξ−k 7→ ckβk, φξe 7→ γ

extends to an isomorphism M∗(X,W,G)G → H∗(S,C).
So the last step is to prove

Lemma A.4. σ
ζ̂ k,ζ̂ −k = 1

(1−ζk)2·(1−ζ−2k) φ.
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We have

HW (x, y, z) =

(
x
2g+1
1 − y2g+1

1

x1 − y1
− x

2g+1
1 − z2g+1

1

x1 − z1

)
1

y1 − z1
θ1 ⊗ θ1

+

(
x
2g+1
2 − y2g+1

2

x2 − y2
− x

2g+1
2 − z2g+1

2

x2 − z2

)
1

y2 − z2
θ2 ⊗ θ2

+

(
x
2g+1
3 − y2g+1

3

x3 − y3
− x

2g+1
3 − z2g+1

3

x3 − z3

)
1

y3 − z3
θ3 ⊗ θ3

− x3 θ2 ⊗ θ1 − y2 θ3 ⊗ θ1 − z1θ3 ⊗ θ2

and hence

HW (x, ζ̂ k(x), x) =
2g+ 1

1− ζk x
2g−1
1 θ1 ⊗ θ1 +

2g+ 1

1− ζk x
2g−1
2 θ2 ⊗ θ2

+
2g+ 1

1− ζ−2k
x
2g−1
3 θ3 ⊗ θ3 − x3 θ2 ⊗ θ1

− ζkx2 θ3 ⊗ θ1 − x1θ3 ⊗ θ2.

Also

H
W,ζ̂ k(x) = −

ζk

1− ζk x3 θ1θ2 −
ζ2k

1− ζk x2 θ1θ3,

H
W,ζ̂− k(ζ̂

k(x)) =
ζ−2k

1− ζk x3 θ1θ2 +
1

1− ζk x2 θ1θ3.

We are looking for σ
ζ̂ k,ζ̂ −k which is the constant coefficient in the ex-

pression

1

6
Υ

((
⌊HW (x, ζ̂ k(x), x)⌋e + ⌊HW,ζ̂ k(x)⌋e ⊗ 1 + 1⊗ ⌊H

W,ζ̂− k(ζ̂
k(x))⌋e

)3

⊗ ∂θ1∂θ2∂θ3 ⊗ ∂θ1∂θ2∂θ3
)
.

Denoting

HW (x, ζ̂ k(x), x) = A11 θ1 ⊗ θ1 +A22 θ2 ⊗ θ2 +A33 θ3 ⊗ θ3
+A21 θ2 ⊗ θ1 +A31 θ3 ⊗ θ1 +A32 θ3 ⊗ θ2,

and

H
W,ζ̂ k(x) = B12 θ1θ2 +B13 θ1θ3, H

W,ζ̂− k(ζ̂
k(x)) = C12 θ1θ2 + C13 θ1θ3,
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one checks that

σ
ζ̂ k,ζ̂ −k = ⌊A11A22A33 −A22B13C13 −A33B12C12 +A32B12C13⌋e

=
(2g+ 1)3

(1− ζk)2(1− ζ−2k)
⌊x2g−1

1 x
2g−1
2 x

2g−1
3 ⌋e +

(2g+ 1)ζ2k

(1− ζk)3 ⌊x
2g+1
2 ⌋e

+
(2g+ 1)ζ−k

(1− ζk)2(1− ζ−2k)
⌊x2g+1

3 ⌋e +
ζk

(1− ζk)2 ⌊x1x2x3⌋e.

The first term equals φ2g−1 and hence vanishes. Also,

(2g+ 1)⌊x2g1 ⌋e = ⌊x2x3⌋e, (2g+ 1)⌊x2g2 ⌋e = ⌊x1x3⌋e,
(2g+ 1)⌊x2g3 ⌋e = ⌊x1x2⌋e

imply ⌊(2g+ 1)x
2g+1
i ⌋e = φ. Thus,

σ
ζ̂ k,ζ̂ −k =

ζ2k

(1− ζk)3φ+
ζ−k

(1− ζk)2(1− ζ−2k)
φ+

ζk

(1− ζk)2φ

=
1

(1− ζk)2(1− ζ−2k)
φ.

Appendix B. Proofs of intermediate results

Proof of Proposition 2.6. Consider the Z-graded (A⊗A′)-bimodule

D∗(A⊗A′) := B∗(A)⊗ B∗(A′)

and denote by δDbar and δ
D
curv the differentials δbar ⊗ 1 + 1⊗ δbar and δcurv ⊗

1 + 1⊗ δcurv thereon. Repeating the definitions from Section 2.1.3 for the
triple (D∗(A⊗A′), δDbar, δ

D
curv) instead of (B∗(A⊗A′), δbar, δcurv), one ob-

tains functors

t
HD

∗(A⊗A′,W ⊗ 1 + 1⊗W ′;−), t
HD∗(A⊗A′,W ⊗ 1 + 1⊗W ′;−)

on the category of (A⊗A′,W ⊗ 1 + 1⊗W ′)-bimodules which share all the
properties of the Hochschild (co)homology. In particular, the new functors
come with their cup and cap products defined just as ∪Hoch and ∩Hoch using
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the coproduct

∆D : D∗(A⊗A′)→ D∗(A⊗A′)⊗D∗(A⊗A′),

∆D(a
′ ⊗ a′′) = (−1)|a′

(2)||a′′
(1)|(a′(1) ⊗ a′′(1))⊗ (a′(2) ⊗ a′′(2))

where a′ ∈ B∗(A), a′′ ∈ B∗(A′), and a′(1) ⊗ a′(2) := ∆bar(a
′), a′′(1) ⊗ a′′(2) :=

∆bar(a
′′).

One can formulate a version of Proposition 2.6 with tHD
∗(A⊗A′,W ⊗

1 + 1⊗W ′;−) and tHD∗(A⊗A′,W ⊗ 1 + 1⊗W ′;−) on the right-hand
sides of (2.9) instead of the Hochschild (co)homology. We claim that this
version of the assertion does hold: The isomorphisms in this case are in-
duced by the obvious maps

HomA⊗Aop(B∗(A),M)⊗HomA′⊗A′op(B∗(A′),M ′)

→ Hom(A⊗A′)⊗(A⊗A′)op(D∗(A⊗A′),M ⊗M ′),

(M ⊗A⊗Aop B∗(A))⊗ (M ′ ⊗A′⊗A′op B∗(A′))(B.1)

→ (M ⊗M ′)⊗(A⊗A′)⊗(A⊗A′)op D∗(A⊗A′).

Despite the seeming simplicity of the claim, there are two subtleties that
require clarification. (In fact, it is this part of the proof that relies on the
smoothness assumption.)

Firstly, we need to explain why (B.1) induce quasi-isomorphisms of the
corresponding mixed complexes. For the second map it is straightforward:
the map is an isomorphism even on the cochain level. The first map, on
the other hand, is in general only an inclusion. However, as explained in
the proof of Theorem 3.1 on page 210 in [11], the assumption that A and
A′ admit resolutions by finitely generated projective bimodules suffices to
claim that the induced map is still a quasi-isomorphism.

Secondly, we should explain why the quasi-isomorphisms of the mixed
complexes induced by (B.1) yield isomorphisms of K[t±1]-modules

t
HH

∗(A,W ;M)⊗K[t±1]
t
HH

∗(A′,W ′;M ′)

≃ t
HD

∗(A⊗A′,W ⊗ 1 + 1⊗W ′;M ⊗M ′),
t
HH∗(A,W ;M)⊗K[t±1]

t
HH∗(A

′,W ′;M ′)(B.2)

≃ t
HD∗(A⊗A′,W ⊗ 1 + 1⊗W ′;M ⊗M ′).
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In general, the functor (C, b, B) 7→ H∗(C((t)), b+ tB) is only lax monoidal,
i. e. for generic mixed complexes (C, b, B) and (C′, b′, B′) the natural map

H∗(C((t)), b+ tB)⊗K[t±1] H
∗(C′((t)), b′ + tB′)(B.3)

→ H∗((C ⊗ C′)((t)), (b+ tB)⊗ 1 + 1⊗ (b′ + tB′))

need not to be an isomorphism.

Lemma. If Hn(C, b) = 0 and Hn(C′, b′) = 0 for n≪ 0 then (B.3) is an iso-
morphism.

To prove the lemma, we pick n0 so that Hn(C, b) = 0 and Hn(C′, b′) = 0
vanish in degrees < n0 and consider the corresponding truncated mixed
complexes (τC, b, B) and (τC′, b′, B′) where

τCn :=





0 n < n0

Coker(b : Cn0−1 → Cn0
) n = n0

Cn n > n0

and the same for τC′. Since the canonical projections

p : (C, b, B)→ (τC, b, B), p′ : (C′, b′, B′)→ (τC′, b′, B′)

are quasi-isomorphisms, their tensor product

p⊗ p′ : (C, b, B)⊗ (C′, b′, B′)→ (τC, b, B)⊗ (τC′, b′, B′)

is a quasi-isomorphism as well. Consider the commutative diagram

H∗(C((t)), b+ tB)⊗K[t±1] H
∗(C′((t)), b′ + tB′) −−−−→ H∗((C ⊗ C′)((t)), (b+ tB)⊗ 1 + 1⊗ (b′ + tB′))

y
y

H∗(τC((t)), b+ tB)⊗K[t±1] H
∗(τC′((t)), b′ + tB′) −−−−→ H∗((τC ⊗ τC′)((t)), (b+ tB)⊗ 1 + 1⊗ (b′ + tB′))

where the vertical maps are the isomorphisms induced by the above canon-
ical projections and the horizontal maps come from the monoidal structure
of the periodic cohomology functor. The claim of the lemma follows imme-
diately from the observation that the lower horizontal map in the diagram
is also an isomorphism — this is a consequence of the isomorphisms

τC((t)) ≃ τC ⊗K[t±1], τC′((t)) ≃ τC′ ⊗K[t±1],

(τC ⊗ τC′)((t)) ≃ (τC ⊗ τC′)⊗K[t±1]
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which themselves follow from the fact that all the complexes involved are
bounded below; see (2.1).

Note that the mixed complex HH∗(A,W ;M) always satisfies the con-
dition of the lemma and the mixed complex HH∗(A,W ;M) satisfies this
condition provided A is smooth. Thus, (B.2) are isomorphisms.

To conclude the proof of Proposition 2.6 it remains to establish a product-
preserving equivalence between the (co)homology functors tHD

∗(A⊗A′,W⊗
1 + 1⊗W ′;−) and tHD∗(A⊗A′,W ⊗ 1 + 1⊗W ′;−) and the ordinary
Hochschild (co)homology functors tHH

∗(A⊗A′,W ⊗ 1 + 1⊗W ′;−) and
tHH∗(A⊗A′,W ⊗ 1 + 1⊗W ′;−)

Consider the map of A⊗A′-bimodules Sh : D∗(A⊗A′) = B∗(A)⊗
B∗(A′)→ B∗(A⊗A′) determined by

Sh : (1[a1| · · · |an]1)⊗ (1[a′1| · · · |a′m]1)
7→ (1⊗ 1)sh[a1 ⊗ 1| · · · |an ⊗ 1|1⊗ a′1| · · · |1⊗ a′m](1⊗ 1)

where sh stands for the sum over all the permutations that shuffle the a’s
with the a′’s while preserving the order within the two groups, and each
summand is multiplied by the sign of the corresponding permutation. It is
a classical fact (cf. Section 6, Chapter XI in [11]) that Sh is compatible with
the differential δbar on the bar resolutions and induces a quasi-isomorphism
of complexes. It also turns out to be compatible with δcurv; this is a more
straightforward observation and we leave the proof to the reader. Thus, Sh
gives rise to isomorphisms of functors

Sh
∗ : tHH∗(A⊗A′,W ⊗ 1 + 1⊗W ′;−)
→ t

HD
∗(A⊗A′,W ⊗ 1 + 1⊗W ′;−),

Sh∗ :
t
HD∗(A⊗A′,W ⊗ 1 + 1⊗W ′;−)
→ t

HH∗(A⊗A′,W ⊗ 1 + 1⊗W ′;−).

To show the compatibility of the isomorphisms with the products, it suffices
to show that the diagram

D∗(A⊗A′)
∆D−−−−→ D∗(A⊗A′)⊗D∗(A⊗A′)

ySh

ySh⊗Sh

B∗(A⊗A′)
∆bar−−−−→ B∗(A⊗A′)⊗ B∗(A⊗A′)
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is commutative or, denoting xi := ai ⊗ 1, yj := 1⊗ a′j , that

∆bar (sh[x1| · · · |xn|y1| · · · |ym])

=

n∑

i=0

m∑

j=0

(−1)j(n−i)sh[x1| · · · |xi|y1| · · · |yj ]⊗ sh[xi+1| · · · |xn|yj+1| · · · |ym].

The latter is an easy combinatorial exercise.

Proof of Proposition 2.7.. The claim is a straightforward generalization
of well-known results in the non-curved setting, so we will only sketch the
proof.

Consider the following two maps of graded spaces:

(1) Ξ∗ : B∗(A,A⋊G)G → B∗(A⋊G,A⋊G) defined as the restriction to the
G-invariants of the map B∗(A,A⋊G)→ B∗(A⋊G,A⋊G) that sends the
element 1[a1|a2| · · · |an]1 7→ D̃(a1|a2| · · · |an)⊗ g of B∗(A,A⋊G) to

1[a1 ⊗ g1|a2 ⊗ g2| · · · |an ⊗ gn]1
7→ D̃(a1|g1(a2)| · · · |g1g2 · · · gn−1(an))⊗ gg1g2 · · · gn

(2) Ξ∗ : B∗(A⋊G,A⋊G)→ B∗(A,A⋊G)G induced by the map B∗(A⋊

G,A⋊G)→ B∗(A,A⋊G) given by

(a⊗ g)⊗ (1[a1 ⊗ g1|a2 ⊗ g2| · · · |an ⊗ gn]1)
7→ (a⊗ gg1g2 · · · gn)⊗

(
1[g−1

n · · · g−1
1 (a1)|g−1

n · · · g−1
2 (a2)| · · · |g−1

n (an)]1
)

The maps Ξ∗ and Ξ∗ can be shown to define morphisms of mixed complexes

Ξ∗ : HH∗(A,W ;A⋊G)G → HH∗(A⋊G,W ),

Ξ∗ : HH∗(A⋊G,W )→ HH∗(A,W ;A⋊G)G,

and the key observation is that they are quasi-isomorphisms; see [9, Thm.5.4]
and [5, Prop.8]. Finally, Ξ∗ and Ξ∗ are easily seen to be compatible with the
cup and cap products in the following sense:

Ξ∗(D1 ∪D2) = Ξ∗(D1) ∪ Ξ∗(D2), ∀Di ∈ B∗(A,A⋊G)G,

Ξ∗(ω) ∩D = Ξ∗(ω ∩ Ξ∗(D)) ∀ω ∈ B∗(A⋊G,A⋊G), D ∈ B∗(A,A⋊G)G.
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Proof of Proposition 2.8.. The idea is to show that the diagram of
K[t±1]-linear complexes

B∗(A,A⊗ g)((t))⊗K[t±1] B∗(A,A⊗ h)((t))
∪

,,

(id⊗h−1)·σ
��

B∗(A,A⊗ h)((t))⊗K[t±1] B∗(A,A⊗ h−1gh)((t))
∪

// B∗(A,A⊗ gh)((t)),

where σ denote the (graded) transposition of the terms, commutes up to
homotopy or, in other words, that there exists a series

∑∞
i=i0

χit
i, where

χi is a degree −2i− 1 linear operator from B∗(A,A⊗ g)⊗ B∗(A,A⊗ h) to
B∗(A,A⊗ gh), such that

∪ − ∪ · (id⊗ h−1) · σ = (∂Hoch + t∂curv)
∑

i

χit
i

+
∑

i

χit
i((∂Hoch + t∂curv)⊗ 1

+ 1⊗ (∂Hoch + t∂curv)).

In fact, we will show that there exists such a series
∑

i χit
i with χi = 0 for

i ̸= 0, i.e. we will construct a degree −1 operator χ = χ0 : B∗(A,A⊗ g)⊗
B∗(A,A⊗ h)→ B∗(A,A⊗ gh) such that

∪ − ∪ · (id⊗ h−1) · σ = ∂Hoch · χ+ χ · (∂Hoch ⊗ 1 + 1⊗ ∂Hoch),

0 = ∂curv · χ+ χ · (∂curv ⊗ 1 + 1⊗ ∂curv).(B.4)

The homotopy χ is given by a slight modification of M. Gerstenhaber’s
well-known formula in the non-equivariant setting [19, Thm.3]. Namely, let
us fix D1 ∈ Bl(A,A⊗ g) and D2 ∈ Bm(A,A⊗ h). So,

D1(a0[a1| · · · |an]an+1) =

{
a0 · D̃1(a1| · · · |al) · g(al+1)⊗ g, n = l

0, otherwise
,

(B.5)

D2(a0[a1| · · · |an]an+1) =

{
a0 · D̃2(a1| · · · |am) · h(am+1)⊗ h, n = m

0, otherwise

for some linear maps D̃1 : A
⊗l → A and D̃2 : A

⊗m → A. (This notation will
be used throughout the proof: D̃ will stand for the map A⊗∗ → A associated
with a Hochschild cochain D ∈ B∗(A,A⊗−) by the above rule.) We define
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χ(D1, D2) ∈ Bl+m−1(A,A⊗ gh) by

˜χ(D1, D2)(a1| · · · |al+m−1)

=

l∑

i=1

(−1)(i−1)(m−1)+l

× D̃1(a1| · · · |ai−1|D̃2(ai| · · · |ai+m−1)|h(ai+m)| · · · |h(al+m−1)).

Let us compute ∂χ(D1, D2) + χ(∂D1, D2) + (−1)lχ(D1, ∂D2) for ∂ := ∂Hoch.
We have

˜∂χ(D1, D2)(a1| · · · |al+m)
= (−1)l+m−1a1 · ˜χ(D1, D2)(a2| · · · |al+m)
− ˜χ(D1, D2)(a1| · · · |al+m−1) · gh(al+m)

+

l+m−1∑

j=1

(−1)j+l+m−1 ˜χ(D1, D2)(a1| · · · |ajaj+1| · · · |al+m).

Unfolding the definitions,

(−1)l+m−1a1 · ˜χ(D1, D2)(a2| · · · |al+m)

=

l∑

i=1

(−1)i(m−1)a1

× D̃1(a2| · · · |ai|D̃2(ai+1| · · · |ai+m)|h(ai+m+1)| · · · |h(al+m)),

− ˜χ(D1, D2)(a1| · · · |al+m−1) · gh(al+m)

= −
l∑

i=1

(−1)(i−1)(m−1)+l

× D̃1(a1| · · · |ai−1|D̃2(ai| · · · |ai+m−1)|h(ai+m)| · · · |h(al+m−1)) · gh(al+m)

and

l+m−1∑

j=1

(−1)j+l+m−1 ˜χ(D1, D2)(a1| · · · |ajaj+1| · · · |al+m) =
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=

l+m−1∑

j=m+1

j−m∑

i=1

(−1)i(m−1)+j

× D̃1(a1| · · · |ai−1|D̃2(ai| · · · |ai+m−1)| · · · |h(ajaj+1)| · · · |h(al+m))

+

l+m−1∑

j=m

j∑

i=j−m+1

(−1)i(m−1)+j

× D̃1(a1| · · · |ai−1|D̃2(ai| · · · |ajaj+1| · · · |ai+m)|h(ai+m+1)| · · · |h(al+m))

+

l−2∑

j=1

l∑

i=j+2

(−1)(i−1)(m−1)+j

× D̃1(a1| · · · |ajaj+1| · · · |ai−1|D̃2(ai| · · · |ai+m−1)|h(ai+m)| · · · |h(al+m)).

Furthermore,

˜χ(∂D1, D2)(a1| · · · |al+m)

=

l+1∑

i=1

(−1)(i−1)(m−1)+l+1

× ∂̃D1(a1| · · · |ai−1|D̃2(ai| · · · |ai+m−1)|h(ai+m)| · · · |h(al+m))
= −D̃2(a1| · · · |am) · D̃1(h(a1+m)| · · · |h(al+m)) + (−1)lmD̃1(a1| · · · |al)
× g

(
D̃2(al+1| · · · |al+m)

)

−
l+1∑

i=2

(−1)(i−1)(m−1)a1

× D̃1(a2| · · · |ai−1|D̃2(ai| · · · |ai+m−1)|h(ai+m)| · · · |h(al+m))

+

l∑

i=1

(−1)(i−1)(m−1)+l

× D̃1(a1| · · · |ai−1|D̃2(ai| · · · |ai+m−1)|h(ai+m)| · · · |h(al+m−1)) · gh(al+m)

−
l+1∑

i=3

i−2∑

j=1

(−1)(i−1)(m−1)+j(−1)j

× D̃1(a1| · · · |ajaj+1| · · · |ai−1|D̃2(ai| · · · |ai+m−1)|h(ai+m)| · · · |h(al+m))

−
l+1∑

i=2

(−1)(i−1)mD̃1(a1| · · · |ai−1 · D̃2(ai| · · · |ai+m−1)|h(ai+m)| · · · |h(al+m))
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+

l∑

i=1

(−1)(i−1)mD̃1(a1| · · · |ai−1|D̃2(ai| · · · |ai+m−1) · h(ai+m)| · · · |h(al+m))

−
l−1∑

i=1

l+m−1∑

j=i+m

(−1)i(m−1)+j

× D̃1(a1| · · · |ai−1|D̃2(ai| · · · |ai+m−1)|h(ai+m)| · · · |h(ajaj+1)| · · · |h(al+m)).

Finally,

(−1)l ˜χ(D1, ∂D2)(a1| · · · |al+m)

=

l∑

i=1

(−1)(i−1)mD̃1(a1| · · · |ai−1|∂̃D2(ai| · · · |ai+m)|h(ai+m+1)| · · · |h(al+m))

=

l∑

i=1

(−1)imD̃1(a1| · · · |ai−1|ai · D̃2(ai+1| · · · |ai+m)|h(ai+m+1)| · · · |h(al+m))

−
l∑

i=1

(−1)(i−1)m

× D̃1(a1| · · · |ai−1|D̃2(ai| · · · |ai+m−1) · h(ai+m)|h(ai+m+1)| · · · |h(al+m))

−
l∑

i=1

i+m−1∑

j=i

(−1)i(m−1)+j

× D̃1(a1| · · · |ai−1|D̃2(ai| · · · |ajaj+1| · · · |ai+m)|h(ai+m+1)| · · · |h(al+m))

Summing all the above equalities results in

˜∂χ(D1, D2)(a1| · · · |al+m) + ˜χ(∂D1, D2)(a1| · · · |al+m)
+ (−1)l ˜χ(D1, ∂D2)(a1| · · · |al+m)

= −D̃2(a1| · · · |am) · D̃1(h(a1+m)| · · · |h(al+m))
+ (−1)lmD̃1(a1| · · · |al) · g

(
D̃2(al+1| · · · |al+m)

)

which is equivalent to the first equality in (B.4). The proof of the second
equality is easier and is left to the reader.

Proof of Proposition 4.1.. Both equalities in (4.2) are proven by a direct
calculation. To avoid too long formulas, we are including calculations in a
special case, hoping that the reader will see the patterns.
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Let us calculate δKos(Ψ(f0[f1|f2|f3]f4)). To begin with, since θ2i = 0 for
all i, we can replace the strict inequalities in the index set in the right-hand
side of (4.1) by the non-strict ones, that is

δKos(Ψ(f0[f1|f2|f3]f4))

=
∑

1≤j1≤j2≤j3≤N
l1(f0) δKos (∇j1(f1)θj1 ∇j2(f2)θj2 ∇j3(f3)θj3) lN+1(f4)

The commutation relations in ClN imply

δKos(Ψ(f0[f1|f2|f3]f4))

=
∑

1≤j1≤j2≤j3≤N
l1(f0)∇j1(f1)(xj1 − yj1)∇j2(f2)θj2 ∇j3(f3)θj3 lN+1(f4)

−
∑

1≤j1≤j2≤j3≤N
l1(f0)∇j1(f1)θj1 ∇j2(f2)(xj2 − yj2)∇j3(f3)θj3 lN+1(f4)

+
∑

1≤j1≤j2≤j3≤N
l1(f0)∇j1(f1)θj1 ∇j2(f2)θj2 ∇j3(f3)(xj3 − yj3)lN+1(f4)

which by (3.2) equals

∑

1≤j1≤j2≤j3≤N
l1(f0)(lj1(f1)− lj1+1(f1))∇j2(f2)θj2 ∇j3(f3)θj3 lN+1(f4)

−
∑

1≤j1≤j2≤j3≤N
l1(f0)∇j1(f1)θj1 (lj2(f2)− lj2+1(f2))∇j3(f3)θj3 lN+1(f4)

+
∑

1≤j1≤j2≤j3≤N
l1(f0)∇j1(f1)θj1 ∇j2(f2)θj2 (lj3(f3)− lj3+1(f3))lN+1(f4).

Observe that

β∑

j=α

(lj(f)− lj+1(f)) = lα(f)− lβ+1(f),(B.6)
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so the previous expression equals

∑

1≤j2≤j3≤N
l1(f0)(l1(f1)− lj2+1(f1))∇j2(f2)θj2 ∇j3(f3)θj3 lN+1(f4)

−
∑

1≤j1≤j3≤N
l1(f0)∇j1(f1)θj1 (lj1(f2)− lj3+1(f2))∇j3(f3)θj3 lN+1(f4)

+
∑

1≤j1≤j2≤N
l1(f0)∇j1(f1)θj1 ∇j2(f2)θj2 (lj2(f3)− lN+1(f3))lN+1(f4)

or, renaming the indices,

∑

1≤α≤β≤N
l1(f0)(l1(f1)− lα+1(f1))∇α(f2)θα∇β(f3)θβlN+1(f4)

−
∑

1≤α≤β≤N
l1(f0)∇α(f1)θα (lα(f2)− lβ+1(f2))∇β(f3)θβlN+1(f4)

+
∑

1≤α≤β≤N
l1(f0)∇α(f1)θα∇β(f2)θβ (lβ(f3)− lN+1(f3))lN+1(f4).

The latter can be simplified by regrouping the summands

=
∑

1≤α≤β≤N
l1(f0)l1(f1)∇α(f2)θα∇β(f3)θβlN+1(f4)

−
∑

1≤α≤β≤N
l1(f0)(lα+1(f1)∇α(f2) +∇α(f1) lα(f2))θα∇β(f3)θβlN+1(f4)

+
∑

1≤α≤β≤N
l1(f0)∇α(f1)θα (lβ+1(f2)∇β(f3) +∇β(f2) lβ(f3))θβlN+1(f4)

−
∑

1≤α≤β≤N
l1(f0)∇α(f1)θα∇β(f2)θβ lN+1(f3)lN+1(f4)

and employing the obvious equality

∇i(fg) = ∇i(f)li(g) + li+1(f)∇i(g)(B.7)
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which yields

=
∑

1≤α≤β≤N
l1(f0f1)∇α(f2)θα∇β(f3)θβlN+1(f4)

−
∑

1≤α≤β≤N
l1(f0)∇α(f1f2)θα∇β(f3)θβlN+1(f4)

+
∑

1≤α≤β≤N
l1(f0)∇α(f1)θα∇β(f2f3)θβlN+1(f4)

−
∑

1≤α≤β≤N
l1(f0)∇α(f1)θα∇β(f2)θβ lN+1(f3f4)

which is precisely Ψ(δbar(f0[f1|f2|f3]f4)).
The second equality in (4.2) is easier to prove. Let us again demonstrate

it in a special case:

δcurv(Ψ(f0[f1|f2|f3]f4))

=
∑

1≤j1<j2<j3≤N
l1(f0)δcurv (∇j1(f1)θj1 ∇j2(f2)θj2 ∇j3(f3)θj3) lN+1(f4)

=
∑

1≤j1<j2<j3≤N

N∑

j=1

l1(f0)∇j(W )θj∇j1(f1)θj1 ∇j2(f2)θj2 ∇j3(f3)θj3 lN+1(f4).

The sum over j splits into
∑

1≤j<j1 +
∑

j1<j<j2
+
∑

j2<j<j3
+
∑

j3<j≤N and
we get

∑

1≤j<j1<j2<j3≤N
l1(f0)∇j(W )θj∇j1(f1)θj1 ∇j2(f2)θj2 ∇j3(f3)θj3 lN+1(f4)

−
∑

1≤j1<j<j2<j3≤N
l1(f0)∇j1(f1)θj1 ∇j(W )θj∇j2(f2)θj2 ∇j3(f3)θj3 lN+1(f4)

+
∑

1≤j1<j2<j<j3≤N
l1(f0)∇j1(f1)θj1 ∇j2(f2)θj2 ∇j(W )θj∇j3(f3)θj3 lN+1(f4)

−
∑

1≤j1<j2<j3<j≤N
l1(f0)∇j1(f1)θj1 ∇j2(f2)θj2 ∇j3(f3)θj3∇j(W )θjlN+1(f4)

which is precisely Ψ(δcurv(f0[f1|f2|f3]f4)).
Finally, to prove the last claim in the proposition, we recall that there

is the following well-known quasi-isomorphism of complexes of bimodules
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i : (K∗(K[X]), δKos)→ (B∗(K[X]), δbar)

(B.8) i : f0(x)f1(y)θk1 · · · θkn 7→
∑

σ∈Sn

sgn(σ) · f0[xkσ(1)
| · · · |xkσ(n)

]f1.

It remains to notice that Ψ · i = idK∗(K[X]).

Proof of Proposition 4.4.. To shorten formulas, we will identify Cl⊗2
N

with Cl2N = K⟨θi, ηi, ∂θi , ∂ηi⟩ via θi ⊗ 1 7→ θi, 1⊗ θi 7→ ηi, etc. In the com-
putation below we use the fact that

HW (x, y, z) =

N∑

i,j=1

∇y→(y,z)
j ∇x→(x,y)

i (W ) θiηj

because ∇y→(y,z)
j ∇x→(x,y)

i = 0 for i ≤ j.
Abbreviating (δ ⊗ 1 + 1⊗ δ) ·∆−∆ · δ to [δ,∆], the claim is that

(B.9) [δKos,∆0] = 0, [δcurv,∆−2l] + [δKos,∆−2l−2] = 0, ∀ l

According to our notation, δKos =
∑N

i=1(xi − zi)∂θi and

δKos ⊗ 1 + 1⊗ δKos =

N∑

i=1

((xi − yi)∂θi + (yi − zi)∂ηi) .

The first equality in (B.9) follows from these formulas and the following
obvious relation:

((xi − yi)∂θi + (yi − zi)∂ηi) ·∆0 = ∆0 · (xi − zi)∂θi ∀ i.

Furthermore, δcurv =
∑N

i=1∇
x→(x,z)
i (W ) · θi and therefore ∆0 · δcurv =

(δ′curv ⊗ 1 + 1⊗ δ′curv) ·∆0 where

δ′curv ⊗ 1 + 1⊗ δ′curv =

N∑

i=1

(
∇x→(x,z)
i (W ) · θi +∇x→(x,z)

i (W )ηi

)
.

This observation, together with the first equality in (B.9) and the fact that
HW is even (hence central in K[X]⊗3[θ, η]), reduces the proof of the remain-
ing relations in (B.9) to proving the following equality:

(δcurv ⊗ 1 + 1⊗ δcurv)− (δ′curv ⊗ 1 + 1⊗ δ′curv)
= −(δKos ⊗ 1 + 1⊗ δKos)(HW )
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or, in our new notation,

N∑

i=1

(
(∇x→(x,y)

i (W )−∇x→(x,z)
i (W ))θi + (∇y→(y,z)

i (W )−∇x→(x,z)
i (W ))ηi

)
(B.10)

= −
N∑

j=1

(
(xj − yj)∂θj + (yj − zj)∂ηj

)
(HW ).

Obviously, for any collection of polynomials {Wαβ}

N∑

j=1

(
(xj − yj)∂θj + (yj − zj)∂ηj

) N∑

α,β=1

Wαβθαηβ

=

N∑

j,β=1

(xj − yj)Wjβηβ −
N∑

j,α=1

(yj − zj)Wαjθα.

Thus, setting Wαβ = ∇y→(y,z)
β ∇x→(x,y)

α (W ), (B.10) amounts to

∇x→(x,y)
i (W )−∇x→(x,z)

i (W ) =

N∑

j=1

(yj − zj)∇y→(y,z)
j ∇x→(x,y)

i (W ),

∇x→(x,z)
i (W )−∇y→(y,z)

i (W ) =

N∑

j=1

(xj − yj)∇y→(y,z)
i ∇x→(x,y)

j (W ).

The first equality follows from (3.3). The second one will also be a conse-
quence of (3.3) once we use the formula

∇y→(y,z)
i ∇x→(x,y)

j = ∇x→(x,y)
j ∇x→(x,z)

i

which is easy to check by applying both hand sides to monomials in x.

Proof of Proposition 4.7.. The left-hand side of (4.5) is a series (in fact,
a polynomial) in t. Let us denote the coefficients of this series by ψi:

(Ψ⊗Ψ) ·∆bar −∆Kos ·Ψ =:

∞∑

i=0

ψit
i, |ψi| = −2i.



✐

✐

“6-Shklyarov” — 2020/5/19 — 21:39 — page 252 — #64
✐

✐

✐

✐

✐

✐

252 Dmytro Shklyarov

We will view the ψis as elements of the complex of morphisms of complexes
of K[X]-bimodules:
(B.11)
Hom∗ ( (B∗(K[X]), δbar) , (K∗(K[X])⊗K[X] K∗(K[X]), δKos ⊗ 1 + 1⊗ δKos)

)
.

Since H∗(K∗(K[X])⊗K[X] K∗(K[X]), δKos ⊗ 1 + 1⊗ δKos) ≃ K[X], the com-
plex (B.11) is quasi-isomorphic to the complex

Hom∗ ((B∗(K[X]), δbar),K[X] ) ,

i. e. to the Hochschild cochain complex of K[X]. Thus, (B.11) has non-trivial
cohomology groups only in non-negative degrees. This observation and the
fact that the degress of the ψis are non-positive imply that in order to prove
the existence of the his in (4.5), it would suffice to show that the “constant
term” ψ0 defines a trivial class in the cohomology of (B.11). Let us explain
why this would be enough.

Let us denote the differential in (4.5) by δ̂

δ̂(ψ) = (δKos ⊗ 1 + 1⊗ δKos) · ψ − (−1)|ψ|ψ · δbar.

and the second — associated with δcurv — differential (of degree −1) on this
complex by δ̂curv:

δ̂curv(ψ) = (δcurv ⊗ 1 + 1⊗ δcurv) · ψ − (−1)|ψ|ψ · δcurv.

Note that the two differential anti-commute, so δ̂ + tδ̂curv squares to 0.
By Propositions 4.1 and 4.4

(δ̂ + tδ̂curv)

( ∞∑

i=0

ψit
i

)
= 0.

We are looking for a series
∑∞

i=0 hit
i such that

∞∑

i=0

ψit
i = (δ̂ + tδ̂curv)

( ∞∑

i=0

hit
i

)
.

Assume we can find a degree −1 bimodule map h0 such that ψ0 = δ̂(h0) and
consider the series

∞∑

i=1

ψ′
i t
i :=

∞∑

i=0

ψit
i − (δ̂ + tδ̂curv)(h0).
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It also satisfies (δ̂ + tδ̂curv)(
∑

i ψ
′
i t
i) = 0 but |ψ′

1| = −2 so, by the above
observation, ψ′

1 defines a trivial class in the cohomology of (B.11), i. e. there

exists a degree −3 bimodule map h′1 such that ψ′
1 = δ̂(h′1), etc.

So, to finish the proof of the proposition, it remains to prove that the
class of ψ0 is trivial, i. e. that there exists an h0 as above. By Proposi-
tion 4.1 Ψ : (B∗(K[X]), δbar)→ (K∗(K[X]), δKos) is a quasi-isomorphism of
complexes of K[X]-bimodules. Since both complexes are K-projective, Ψ
is a homotopy equivalence. Moreover, we already know its right homotopy
inverse: it is the quasi-isomorphism i : (K∗(K[X]), δKos)→ (B∗(K[X]), δbar)
defined in (B.8). By a standard general argument, i is also a left homotopy
inverse of Ψ, i. e. i ·Ψ = idB∗(K[X]) − δbar · h− h · δbar for some degree −1
K[X]-bimodule map h : B∗(K[X])→ B∗(K[X]).

It is easy to show that ∆bar · i = (i⊗ i) ·∆0 where ∆0 is the morphism
defined in (4.3). Since ψ0 = (Ψ⊗Ψ) ·∆bar −∆0 ·Ψ, we get

ψ0 · i = (Ψ⊗Ψ) ·∆bar · i−∆0 ·Ψ · i = (Ψ⊗Ψ) · (i⊗ i) ·∆0 −∆0 = 0.

Then

ψ0 = ψ0 · idB∗(K[X]) = ψ0 · (i ·Ψ+ δbar · h+ h · δbar)
= (ψ0 · i) ·Ψ+ ψ0 · δbar · h+ ψ0 · h · δbar
= (δbar ⊗ 1 + 1⊗ δbar) · (ψ0 · h) + (ψ0 · h) · δbar
= δ̂(ψ0 · h).

Proof of Lemma 4.9.. The condition (4.17) is equivalent to

∂Kos(g) + t∂curv(g)
′ = etHW,g · ∂Kos(g) · e−t·HW,g

which, in turn, is easily seen to be equivalent to

(B.12)
∑

i∈Ig
(1− gi)xi ∂θi(HW,g) =

∑

i∈Ig
∇x→(x,g(x))
i (W ) θi

where both hand sides are viewed as elements of K[X][θ]. Let us show that
the element (3.8) satisfies the latter condition.
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In the following calculation Wi := ∇x→(x,g(x))
i (W ), the indices α, i, j be-

long to Ig, and li, ∇i stand for l
x→(x,xg)
i , ∇x→(x,xg)

i , respectively. We have:

∑

α

(1− gα)xα ∂θα(HW,g) =
∑

α

∑

j<i

1− gα
1− gj

xα∇j(Wi)∂θα(θj θi)

=
∑

j<i

xj∇j(Wi)θi −
∑

j<i

1− gi
1− gj

xi∇j(Wi)θj .

Note that

∑

j<i

xj∇j(Wi)θi =
∑

j<i

(lj(Wi)− lj+1(Wi))θi =
∑

i

(Wi − li(Wi))θi

where we have used the fact that l
x→(x,xg)
j+1 = l

x→(x,xg)
j′ for any pair j < j′ of

consecutive elements of Ig. Thus,

∑

α

(1− gα)xα ∂θα(HW,g) =
∑

i

Wiθi −
∑

i

li(Wi)θi(B.13)

−
∑

j<i

1− gi
1− gj

xi∇j(Wi)θj .

Furthermore,

(B.14) lj(xi) =

{
xi j ≤ i
0 otherwise

and by (B.7)

∑

j<i

1− gi
1− gj

xi∇j(Wi)θj =
∑

j<i

1− gi
1− gj

lj+1(xi)∇j(Wi)θj

=
∑

j<i

1− gi
1− gj

∇j(xiWi)θj −
∑

j<i

1− gi
1− gj

∇j(xi)lj(Wi)θj

=
∑

j<i

1− gi
1− gj

∇j(xiWi)θj = −
∑

j≥i

1− gi
1− gj

∇j(xiWi)θj .

where the last equality follows from
∑

i(1− gi)xiWi = 0. Because of (B.14)
∇j(xiWi) = 0 for j > i. Using this fact, together with (B.7) and (B.14), we
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obtain:

∑

j<i

1− gi
1− gj

xi∇j(Wi)θj = −
∑

i

∇i(xiWi)θi

= −
∑

i

(∇i(xi)li(Wi) + li+1(xi)∇i(Wi)) θi = −
∑

i

li(Wi)θi.

Substituting this result into (B.13) we get

∑

α

(1− gα)xα ∂θα(HW,g) =
∑

i

Wiθi.

References

[1] R. Anno, Multiplicative structure on the Hochschild cohomology of
crossed product algebras, arXiv:math.QA/0511396.

[2] S. K. Ashok, E. Dell’Aquila, and D.-E. Diaconescu, Fractional branes
in Landau-Ginzburg orbifolds, Adv. Theor. Math. Phys. 8 (2004), no. 3,
461–513.

[3] S. K. Ashok, E. Dell’Aquila, D.-E. Diaconescu, and B. Florea, Ob-
structed D-branes in Landau-Ginzburg orbifolds, Adv. Theor. Math.
Phys. 8 (2004), no. 3, 515–563.

[4] M. Ballard, D. Favero, and L. Katzarkov, A category of kernels for
equivariant factorizations and its implications for Hodge theory, Pub.
Math. l’IHES. 120 (2014), no. 1, 1–111.

[5] V. Baranovsky, Orbifold cohomology as periodic cyclic homology, Inter-
nat. J. Math. 14 (2003), no. 8, 791–812.

[6] A. Basalaev, A. Takahashi, and E. Werner, Orbifold Jacobian algebras
for invertible polynomials, arXiv:1608.08962.
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