
✐

✐

“4-Mayr” — 2020/7/9 — 18:07 — page 327 — #1
✐

✐

✐

✐

✐

✐

ADV. THEOR. MATH. PHYS.
Volume 24, Number 2, 327–457, 2020
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The 2d gauged linear sigma model (GLSM) gives a UV model for
quantum cohomology on a Kähler manifoldX, which is reproduced
in the IR limit. We propose and explore a 3d lift of this correspon-
dence, where the UV model is the N = 2 supersymmetric 3d gauge
theory and the IR limit is given by Givental’s permutation equiv-
ariant quantum K-theory on X. This gives a one-parameter defor-
mation of the 2d GLSM/quantum cohomology correspondence and
recovers it in a small radius limit. We study some novelties of the
3d case regarding integral BPS invariants, chiral rings, deformation
spaces and mirror symmetry.

1 Introduction and summary 328

2 q-difference systems for 3d N = 2 GLSMs 332

3 Deformations 349

4 Geometric indices and three-dimensional E-branes 358

5 Mirror symmetry 379

6 Computation of quantum K-theory invariants 384

7 Factorization properties and ring structures 397

8 Applications to Calabi–Yau manifolds 415

9 Outlook and open questions 427

Appendix A Appendix 429

Appendix B More invariants 438

References 448

327



✐

✐

“4-Mayr” — 2020/7/9 — 18:07 — page 328 — #2
✐

✐

✐

✐

✐

✐

328 Hans Jockers and Peter Mayr

1. Introduction and summary

The quantum product of certain chiral operators in the 2d topological A-
model [1] defines a deformation of the classical intersection ring

Φα · Φβ = C γ
αβ(Q)Φγ = ωα ∧ ωβ +O(Q) ,

where Φα is an operator corresponding to the element ωα ∈ H2∗(X) and Q
are the exponentiated Kähler parameters. The structure constants C γ

αβ(Q) of
the quantum cohomology ring, which is related by a topological twist to the
chiral ring [2] of the underlying N = 2 theory, encodes the Gromov–Witten
invariants of a Kähler manifold X and connects many beautiful results in
mathematics and physics, such as mirror symmetry, 2d tt∗ equations and
topological strings [3, 4]. For X the quintic 3-fold, the Gromov–Witten in-
variants NGW

d at low degree d, computed from mirror symmetry in ref. [5],
are

NGW
1 = 2875, NGW

2 =
4876 875

8
, NGW

3 =
8564 575 000

27
, . . .

These fractional numbers can be related to integral numbers nd that “count”
the number of rational curves of degree d in X [5, 6]:

n1 = 2875, n2 = 609 250, n3 = 317 206 375, . . . .

A physics way to define the numbers nd is to consider an M-theory compact-
ification on X, where membranes wrapped on curves represent BPS states in
5d. The integral degeneracies of these BPS states in the target space theory
are the Gopakumar–Vafa invariants [7].

The purpose of this note is to describe and explore a similar corre-
spondence between the quantum product of operators in 3d gauge theory
and quantum deformations of the tensor product ⊗ on vector bundles E,F
over X

Φα ∗ Φβ = eα ⊗ eβ +O(Q) ,

where Φα is an operator in the 3d theory related to an element eα ∈ K(X).
A simple physical UV model for quantum cohomology is the gauged linear
sigma model (GLSM) [8, 9], a N = (2, 2) supersymmetric 2d gauge theory,
which flows in certain phases to the non-linear sigma model at low energies.
We consider 3d N = 2 supersymmetric lifts of the GLSM and study the ring
structure associated to them. A natural question is, whether this 3d UV
gauge theory also computes a topological theory in the IR, which replaces
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the side of quantum cohomology in the 2d correspondence. We show that the
answer is yes and the IR theory in question is the permutation equivariant
quantum K-theory constructed by Givental in ref. [10]. The K-theoretic
Gromov–Witten theory studies holomorphic Euler numbers of bundles over
the moduli space M of stable maps to X, instead of the intersection theory
computed by the cohomological theory. The product ∗ satisfies the WDVV
equation [10, 11] (see also ref. [12]), and it is a commutative, associative
Frobenius algebra as expected from the TFT point of view.

A novelty of the 3d theory is that the associated invariants have an
interpretation in terms of degeneracies of BPS objects on the 3d world-
volume and are thus integral from the start. More precisely there are (at
least) two different integral expansions, one associated with the UV phase
and another one with the IR phase.1 The two are related by a K-theoretic
mirror map that preserves integrality. The integrality of these BPS indices
on the world-volume holds for any target space X, implying, e.g., integral
expansions for Calabi–Yau n-folds of any dimension n. As an illustration of
how the 3d theory modifies the non-integral 2d expansion, consider certain
invariants in the quantum K-theory of [10] computed by the 1-point function.
In Sect. 6 we find for the quintic, in the IR variables

NQK
1 = 2875 ·

(
3

1− q
−

2

(1− q)2

)
= 2875 +O(q) ,

NQK
2 = −

4 876 875

4(1− q)2
+

77 625

8(q + 1)
+

2 875

(q + 1)2
−

2 875

2(q + 1)3
+

14 630 625

8(1− q)

= 620 750 +O(q) .

The 3d integral invariants are obtained by an expansion in small q, which is
a new parameter in the 3d theory; it enters as a twisting parameter for the
3d GLSM on 3d world-volumes of the form S1 ×q C. The small radius limit
of the 3d theory compactified on S1 corresponds to q → 1 and it connects the
correlators of quantum-K-theory continuously to the cohomological theory.
In this sense, quantum K-theory can be viewed as a q-deformation of quan-
tum cohomology. The leading poles for q = 1 in the above expressions give
back the fractional Gromov–Witten invariant at degree d (up to a combina-
torical factor from the insertion). The subleading terms, which make the 3d
invariants integral, arise from contributions of orbifold strata in the moduli
space of stable maps [11, 14]. There is also a permutation equivariant version
of 3d (integral) invariants labeled by Young tableaux of size d [10]. These

1In the mathematical framework of refs. [10, 13] these phases are related to the
theory of quasi-maps and stable maps, respectively.
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invariants provide a refinement of the counting at fixed degree d, and we
compute these invariants for the quintic and other examples. Empirically,
we find for Calabi–Yau target spaces at low degrees universal refinement
formulas as functions of the Gopakumar–Vafa invariants nd spelled out in
App. B. This suggests a permutation equivariant K-theoretic multicovering
formula for the Gopakumar–Vafa invariants.

Another important difference compared to 2d is the deformation depen-
dence of the 3d theory and the flat connections associated to them. There
are two types of deformations, Kähler parameters Q and mass parameters
t. The central object in 2d governing these deformations is a GKZ system of
differential equations, representing 2d tt∗ structure [15], or the Picard–Fuchs
equations for X a Calabi–Yau manifold.2 In 3d there is a new type of equa-
tions, which represents Ward identities satisfied by the partition function
with insertions of line operators [16, 17]. These shift the Kähler moduli Q
by finite amounts. We derive the system of q-difference equations from the
3d partition function for X that replaces, and in the 2d limit reduces to, the
differential GKZ system of the 2d theory. At the same time the 3d partition
function satisfies differential equations in the mass parameters t, which also
reduce to the differential GKZ system of the 2d theory. Mirror symmetry of
3d gauge theories acts on these 3d families in an interesting way.

The idea that the algebra of line operators in the 3dN = 2 theory should
compute the quantum K-theory on the Higgs branch manifold was formu-
lated in ref. [17], in the context of a generalization of the relation between
the Verlinde algebra and the quantum cohomology of Grassmannians. The
present paper can be viewed as a realization of this idea for toric hypersur-
faces. The connection between quantum K-theory and q-difference equations
is central to the works [13, 18, 19],3 which study target spaces related to the-
ories with twice the number of supersymmetries considered in this paper.
The general differential equations for 3d tt∗ have been derived in ref. [23].

Summary

In Sect. 2 we consider the UV partition functions on S1 × S2 and S1 ×D2

of 3d theories with a geometric Higgs phase corresponding to a Kähler man-
ifold X defined as a complete intersection hypersurface in a toric variety.
We determine a system of q-difference operators annihilating these func-
tions. These are 3d analogues of the GKZ (or Picard–Fuchs) differential

2We refer to refs. [3, 4] for background and references.
3See also refs. [20–22].
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operators prominent in 2d mirror symmetry and they reduce to them in the
small radius limit. For a special choice of Chern–Simons terms, this system
of difference equations matches those of the symmetrized version of Given-
tal’s permutation equivariant quantum K-theory [10]. We propose that this
theory gives the correct IR description for the 3d GLSM. In the small ra-
dius limit this 3d GLSM/quantum K-theory correspondence reduces to the
well-known 2d GLSM/quantum cohomology correspondence.

Section 3 describes families of 3d theories obtained by integrating in
massive 3d particles. These depend on the new mass parameters, in addi-
tion to the FI parameters of the original theory. Insertions of massive field
operators in the path integral are related to operator insertions of the per-
mutation equivariant [10] and ordinary [11, 24] quantum K-theory (and to
the operator insertions in quantum cohomology in the small radius limit).
We observe that the 3d partition function deformed by a large number of
massive particles reproduces the topological string vertex of ref. [25] for X
a point. Remarkably these point vertices shared with the topological string
can be glued in quantum K-theory for any dimension of X and, moreover,
applied to compact hypersurfaces by studying super-bundles [10].

In Sect. 4 we study the geometric content of the partition function. In
the large volume limit we obtain an interesting 3d generalization of the 2d
central charge of a D-brane, related to an index on the loop space LX of
X. The 3d branes associated with the boundary conditions of the 3d theory
carry charges in some (generalized) elliptic cohomology, related to K-theory
on LX. In the large volume limit we obtain integral q-series associated to a
Kähler manifoldX with modular properties, which include the Witten genus
under special conditions. We describe a basis of 3d branes in terms 3d matrix
factorizations which give rise to a set of linearly independent solutions to
the difference equations via a q-version of Mellin–Barnes type integrals.

In Sect. 5 we consider the action of mirror symmetry for 3d gauge the-
ories on the GLSM. The partition function for the gauge theoretic mirror
theory Y of X generates a 3d version for a LG period integral, which recon-
structs the Lagrangian cycles of the mirror geometry Y within the Coulomb
branch of the gauge theory Y . We show that these gauge theoretic mirrors
include the K-theoretic mirrors presented in ref. [10].

In Sect. 6 we study the proposed IR theory, by computing explicitly
the equivariant quantum K-theory invariants defined in ref. [10] at genus
zero for a number of interesting examples. The GL(N) equivariant quantum
K-theory invariants are associated with Young tableaux and give a refine-
ment of the ordinary quantum K-theory invariants, to which they reduce if
representations are replaced by their dimensions in the symmetric group.
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In Sect. 7 we discuss the factorization properties of the 3d theory viewed
as a topological field theory and propose a relation of the disk partition func-
tions with insertions and the flat sections of 3d tt∗ equations of ref. [23]. By
the 3d/quantum K-theory correspondence these satisfy a combined system
of a differential connection in the mass parameters and a difference connec-
tion in the Kähler parameters. The connection matrices of the difference
connection compute integral invariants associated with the entropy of de-
fects created by line operators.

In Sect. 8 we study in some detail the case of Calabi–Yau n-folds with one
Kähler parameter. We determine the general form of the q-period vector and
the ring structure constants. We observe a universal relation between per-
mutation equivariant quantum K-theory invariants and Gopakumar–Vafa
invariants. We show that the 3d mirror map connecting the UV and the IR
phases is integral and determined by the 3d BPS degeneracies. Taking the
small radius limit gives a new proof of the integrality of the coefficients of
the 2d mirror map.

In Sect. 9 we discuss some open questions. Some details are collected in
the appendices.

2. q-difference systems for 3d N = 2 GLSMs

In this section we study certain quantities of a particular class of 3d N = 2
supersymmetric gauge theories, which will turn out to contain the informa-
tion about the quantum product of the ring of 3d operators associated with
the K-theory group K(X) on a Kähler manifold X.4 These theories are 3d
versions of the 2d N = (2, 2) supersymmetric gauged linear sigma model
(GLSM) on the type II string world-volume [8, 9], which has played a cen-
tral role for 2d mirror symmetry. In the last years much progress has been
made on the computation of N = 2 supersymmetric partition functions on
curved spaces by localization.5 In the 2d case the partition function of the
gauged linear sigma model (GLSM) on S2 has been shown to compute the
Kähler potential of the A-model [27, 28]. This gave a new way to compute
the genus zero Gromov–Witten invariants for the manifold X described by
the GLSM. Since the computation of the partition function works also in
higher dimension, it is then natural to follow a similar path for the lift to
3d.

4In this work K(X) denotes the free part of the topological K-theory group
K0(X), i.e., K(X) = K0(X)/K0

tor(X) where K0
tor(X) is the torsion subgroup of

K0(X).
5See ref. [26] for a review and references.
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In an attempt to set up a similar structure in one dimension higher, our
starting point will be the 3d N = 2 supersymmetric gauge theory with the
same field content as the 2d GLSM with Kähler target X. Additional data,
such as 3d Chern–Simons terms, will be specified along the way. To follow
the idea of a 3d lift of the GLSM/quantum cohomology correspondence, we
study the 3d partition functions on a 3d membrane world-volume of topology
S1 × C, where C is a disk or a sphere. In the small radius limit of S1 the
3d theory reduces to a 2d theory on a Riemann surface C and we expect to
recover the results from quantum cohomology.

Our starting point will be the works [23, 29] and in particular [30] on
disk partition functions on S1 ×q D

2.6 The geometry is twisted, such that a
loop around S1 generates a U(1) rotation corresponding to the combination
j3 +∆/2 of the R-charge ∆ and spin j3 on D2. q is the weight for the
twisting. For gauge group U(1), the general form obtained by localization
on the Coulomb branch is

(2.1) Z(yr, q) =

∫

|z|=1

dz

2πiz
e−Sclass

∏

α

Zα ,

Here z = eih is the U(1) Wilson line on S1 and Sclass the classical action.
Zα are the 1-loop determinants for matter fields of charge qα and R-charge
∆α [30, 32]:

(2.2) ZN
ϕα ∼

1

(zqαq∆α/2yfαrr , q)∞
, ZD

ϕα ∼ (z−qαq1−∆α/2y−fαr
r , q)∞ .

Here N (D) stands for a 3d chiral multiplet with Neumann (Dirichlet)
boundary conditions and (x, q)∞ denotes the q-Pochhammer symbol.7 For a
given 3d field content, the partition function depends in addition on a choice
of Chern–Simons couplings in the classical action Sclass and boundary con-
ditions on T 2 = ∂(D2 × S1). The ∼ denotes that an overall factor q(...) has
been omitted for simplicity. The variables yr introduced above are chemical
potentials for the global (flavor) symmetries, withmr = − ln |y| representing
real mass terms in 3d. We will often consider the case yr = 1 in the following
and restore the yr dependence only when needed.

With the appropriate normalization, the twisted partition function (2.1)
has an interpretation as an index of gauge invariant BPS states [29, 30, 32,

6See also ref. [31].
7For |q| < 1, (x, q)∞ =

∏∞
n=0(1− xqn); see App. A.2 for more details.
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33]

(2.3) ZS1×qD2 ∼ tr
(
(−1)F eβHq∆/2+j3yqrr

)
.

It is natural to ask, how degeneracies of BPS states encode geometric in-
formation of the Kähler manifold X, such as the “number” of holomorphic
curves. As mentioned above, both the UV phase with gauge fields included
and the IR phases with gauge fields integrated out enjoy their own integral
expansions. As will be discussed, these match Euler numbers on two differ-
ent compactifications of the moduli space of maps adapted to the UV/IR
regime. It is the IR phase, related to the quantum K-theory of ref. [10],
which is directly related to curve counting. These integral BPS sums in the
3d world-volume theory should be contrasted to the 2d case, where integral-
ity properties of the genus zero Gromov–Witten invariants are related to
BPS counting in target space [7].

2.1. Projective space PN−1 and degree ℓ hypersurfaces of PN−1

To illustrate the general structure, we first discuss the projective space PN−1

and degree ℓ hypersurfaces X therein. In our context, we can formally think
of the projective space PN−1 as a degree zero hypersurface, such that we
can uniformly treat both classes of examples as degree ℓ hypersurface X
in PN−1, where ℓ can be zero.8 The generalization to toric hypersurfaces is
given in the following section. The gauge group is U(1), and the charges of
the N + 1 matter fields are

(2.4) q0 = −ℓ , qα = 1 , α = 1, . . . , N .

A convergent series for Z is obtained by summing the residues in- or outside
the unit circle, depending on the value of the parameters in the action Sclass.
The details of the computation are collected in App. A.1. The partition
function depends on the complex FI parameter

(2.5) Q̃ = e−2πξ+iθ ,

which is the weight for the topological U(1)J symmetry dual to the gauge
U(1). For a special choice of Chern–Simons couplings, the sum over the

8As discussed in Sect. 3.4, the cases with and without a constraint are related by
integrating in a 3d matter field.
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residues z = q−(k−ϵ) for k ≥ 0 takes the form

(2.6) Z = ln(q)

∫
dϵ

2πi
fD2(q, ϵ) · I(Q, q, ϵ) ,

The Q dependence is captured by the holomorphic series

(2.7) I(Q, q, ϵ) =

∞∑

k=0

Qk−ϵak(q, ϵ) , Q =
Q̃

(1− q)c1
,

with c1 = N − ℓ the numerical coefficient of the first Chern class of X and

(2.8) ak(q, e) =
(−)c1k

(q − 1)c1ϵ
Γq(1− ϵ)N

Γq(1− ℓϵ)

Γq(1 + ℓ(k − ϵ))

Γq(1 + k − ϵ)N
.

The Q-independent function is

(2.9) fD2(q, ϵ) =
qR(q − 1)c1ϵ

(−η(q))N−1+δℓ,0

1− q−ℓϵ

(1− q−ϵ)N
Γq(1 + ϵ)N

Γq(1 + ℓϵ)
,

where η(q) is the Dedekind eta-function, Γq the q-Gamma function9 and the
exponent R is determined by a choice of R charges and the Chern classes
of X.

Since Q is the weight of the topological U(1)J , which is carried by vor-
tices, the term ∼ Qk in the sum I(Q, q, ϵ) can be associated with the contri-
bution of a vortex of charge k. The connection between theD2 × S1 partition
function and vortex partition functions has been explored in refs. [29, 34]
for massive supersymmetric Higgs vacua. In this paper the main focus will
be on massless case with a higher-dimensional Higgs branch corresponding
to the n-dimensional Kähler manifold X.

The 2d limit, or small radius limit, is defined by writing

(2.10) q = e−βℏ ,

where β is the radius of S1 and ℏ is the parameter for the U(1) twist of
the geometry. Then β → 0 defines the 2d limit q → 1. The 2d limit of the

9See App. A.2 for definitions and properties of Γq and related functions.
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holomorphic series is

(2.11) lim
β→0

I(Q, q, ϵ) = Q−ϵ
∑

Q̂kΓ(1− ϵ)N

Γ(1− ℓϵ)

Γ(1 + ℓ(k − ϵ))

Γ(1 + k − ϵ)N
,

were we have used limβ→0 Γq(x) = Γ(x). Moreover Q̂ is the renormalized FI
parameter

(2.12) Q̂ = Qe−c1 ln(ℏβ) ,

of the 2d theory. The generalized hypergeometric series (2.11) is familiar
from 2d mirror symmetry: for the Calabi–Yau case, i.e. ℓ = N , the coeffi-
cients of an expansion in ϵ are linear combinations of the periods of the
mirror manifold of X. To keep this parallel, we refer to the (coefficients of
the) 3d vortex sum I(Q, q, ϵ) also as the ”q-periods”.

Difference equations

In the 2d theory, a concise way to describe the dependence of the series
(2.11) on the variable Q is in terms of a system of differential equations.
For X a Calabi–Yau manifold, these are the well-known Picard–Fuchs equa-
tions, and their solutions are the periods of the mirror manifold [3, 4]. More
generally, these equations reflect the flatness of the Gauss–Manin connec-
tion on the deformation space. We will now determine a system that is
the 3d counterpart of the Picard–Fuchs operators. This system involves fi-
nite difference operators and has the q-periods as solutions. As explained in
refs. [17, 29, 35], difference equations arise in the 3d gauge theory as Ward
identities of line operators.

The difference equations for the q-periods arise from the recursion re-
lation of the coefficients ak(q, ϵ) going back to the basic identity of the q-
Gamma function

(2.13) Γq(x+ 1) =
1− qx

1− q
Γq(x) .

It implies

(2.14) ak+1 = (−(1− q))c1
∏ℓ

i=1(1− qℓ(k−ϵ)+i)

(1− qk+1−ϵ)N
ak .
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Noting that the action of the difference operator qθ = qQ
d

dQ on the summands
produces factors

(2.15) (1− qaθ+b)Qk−ϵ = (1− qa(k−ϵ)+b)Qk−ϵ ,

we obtain the difference equation

(2.16) L I(Q, q, ϵ) = 0 , L = (1− qθ)N − (−)c1Q

ℓ∏

j=1

(1− qℓθ+j) .

For ℓ = 0, 1, L agrees with the Ward identity of ref. [17] in the massless
limit.10

In the above a term (1− q−ϵ)N ∼ O(ϵN ) has been dropped for the fol-
lowing reason. The integral (2.6) picks out the residue of the product of the
two factors. In the example, fD2(q, ϵ) has a pole of at most order N (for
ℓ = 0) and only the first N terms in the expansion

(2.17) I(Q, q, ϵ) = ω0(Q, q) + · · ·+ ϵN−1ωN−1(Q, q) + · · ·

of the holomorphic series contribute to residue.11 The coefficients
ωi≤N−1(Q, q) then give N independent solutions to the difference equation
(2.16), see App. A.3.

Similarly as in the 2d case, the set of difference equations can be inter-
preted as a set of equations, which expresses the flatness of a connection on
the space parametrized by Q. The flat sections of this system will be iden-
tified with D-brane overlap functions of ref. [23] in Sect. 7. The flat sections
are linear combinations of the q-periods ωi≤N−1(Q, q) with coefficients in
(Q, q)-dependent functions f(Q, q) that are left invariant by the shift oper-
ator Q→ Qq, e.g. elliptic functions e(x, τ) with x = 1

2πi ln(Q), τ = 1
2πi ln(q).

One can also consider the 2d limit on the difference operator to obtain
a differential operator. Using

(2.18) lim
β→0

1− qθ

1− q
= θ .

10The generalization to non-zero mass terms corresponds to the TN-equivariant
version with yr ̸= 1 and is straightforward; see eq. (2.49).

11Alternatively, with the replacement (4.7) this represents the classical relation
HN = 0 for the hyperplane class.
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the leading term in the operator L becomes

(2.19) L = lim
β→0

L = θN − (−)c1Q̂

ℓ∏

j=1

(ℓθ + j) .

L is the quantum differential operator of quantum cohomology.12 For
c1(X) = 0 it is the well-known GKZ operator, which annihilates the pe-
riods of the mirror manifold of X [36, 37]. It reduces to the Picard–Fuchs
operator upon an additional factorization. The factorization is necessary,
since the order of L and L is to high and they have too many solutions for
ℓ > 0. In the example, they are of order N = dim(H2∗(PN−1)), while the re-
duced operators have order N − 1 = dim(H2∗(X)). This factorization works
similarly in 2d and 3d, see App. A.3.

Operator algebra

A new aspect of the 3d theory is, that the chiral ring is generated by line
operators [23, 29]. The simplest line operator is a Wilson line wrapping the
extra S1. In the localized path integral (2.1), the insertion of a Wilson line
operator of charge m yields an extra factor of zm. Passing to the vortex sum
(2.6) at the residues z−1 = qk−ϵ, the insertion of a factor z−m = qm(k−ϵ) can
be expressed on the series as

(2.20) z−m : I(Q, q, ϵ) → I(Qqm, q, ϵ) = qmθI(Q, q, ϵ) .

Thus the charge minus one Wilson line in the U(1)g theory acts on the
vortex partition function as the shift operator p̂ = qθ. The operators defined
above satisfy the commutation relations

(2.21) p̂Q̂− Q̂p̂ = (q − 1)Q̂p̂ , [ℏθ,Q] = ℏQ ,

where the second equation again represents the 2d limit defined as in (2.18).
In the 2d theory it is known, that the small quantum cohomology algebra
of PN−1 is obtained as the quasi-classical limit of the differential operator L
(2.19), after the replacement ℏθ → H [38, 39]

(2.22) L
ℏ→0
−−−→ HN = Q .

12See chapter 10 of ref. [3] for background material.
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A similar replacement of the operators (p̂, Q̂) by commuting variables (p,Q)
in the classical limit yields

(2.23) (1− p)N = Q ,

which is the small quantum K-theory ring of X = PN−1 [40]. This is a first
hint that the 3d partition function on the Higgs branch X with Wilson line
insertions computes more generally a certain quantum K-theory ring on X,
and the classical limit of the difference operator characterizes this ring at
special moduli. Similarly, we obtain

(2.24) (1− p)N = (−)c1Q(1− pℓ)ℓ ,

as a prediction for the small quantum K-theory ring of a degree ℓ hypersur-
face X in PN−1.

The commutation relations (2.21) and the relation (2.22) have been ob-
tained in 1994 from a heuristic construction of S1 equivariant Floer co-
homology on the universal cover L̃X of the free loop space LX of X [38] .
It was also noticed that the results following from this ansatz take a form
which can be interpreted as some sort of path integral. The above obser-
vations indicate, that the relevant path integral is that of the 3d gauge
theory considered in this paper. Relations between 3d vortex sums and or-
dinary quantum K-theory have been noticed for special examples before,
e.g. in refs. [17, 29, 41, 42]. As will be explained below, the 3d path inte-
gral really computes the permutation invariant version of quantum K-theory
constructed more recently in ref. [10].

2.2. Difference systems for toric hypersurfaces

The previous discussion can be generalized to other gauge groups and matter
content. Here we discuss the case of toric complete intersections. For abelian
gauge group G = U(1)k, the Kähler manifold X is defined as an intersection
of hypersurfaces in a toric variety

(2.25) W = CN//(C∗)k .

A phase of the model determines a fixed basis {qa} of charge vectors in the
Kähler cone. The entries

(2.26) qaα ∈ Z , a = 1, . . . , k ,
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are the charges of the chiral matter fields φα under the a-th U(1) factor.
The target space X is a Calabi–Yau manifold if

∑
α q

a
α = 0 for all a [8].

It will be useful to know the 3d partition function for the sphere and
a disk times the circle. The two partition functions are expected to be re-
lated by a factorization, which reflects the insertion of a complete basis of
3d branes, as in [23, 29].

Partition function on S1 ×q S
2

The 3d partition function on S1 ×q S
2 has been studied in refs. [35,

43, 44]. Consider a U(1) theory with N + 1 charged matter fields φα of
general charges. The fields with index α > 0 parameterize the toric variety
W , a weighted projective space, and the index α = 0 is reserved for the field
that imposes the hypersurface condition. The details of the computation are
relegated to App. A.1, where the following expression is derived:

(2.27) ZS2×qS1 = ln(q)

∮

0

dϵ

2πi
I(Q̄, q̄, ϵ)fS2(q, ϵ)I(Q, q, ϵ) .

Here q̄ = q−1 and the bar on Q means ordinary complex conjugation. The
Q-dependence of the partition function is again captured by a holomor-
phic function I(Q, q, ϵ) and its conjugate. It is given by a generalized q-
hypergeometric series

I(Q, q, ϵ) =
∑

n≥0

(−)n(c1+q0)qd(n,ϵ)
(

Q

(1− q)c1

)n−ϵ

(2.28)

×
Γq(1− q0(n− ϵ))

Γq(1 + q0ϵ)

∏

α>0

Γq(1− qαϵ)

Γq(1 + qα(n− ϵ))
.

Here c1 =
∑N

α=0 qα is again the numerical coefficient of the first Chern class
of X. For simplicity we show the expression for canonical choice of R-
charges, ∆0 = 2 and ∆α>0 = 0. The exponent d(n, ϵ) depends on the 3d
Chern–Simons (CS) couplings. It is shown in the appendix, that it can be
set to zero by a judicious choice of CS terms in the classical action. The
”folding factor” for the square |I(Q, q, ϵ)|2 in the residue integral is

(2.29) fS2(q, ϵ) =
(1− qq0ϵ)∏

α>0(1− q−qαϵ)

∏
α>0 Γq(1 + qαϵ)

Γq(1− q0ϵ)

Γq(1 + q0ϵ)∏
α>0 Γq(1− qαϵ)

.

Partition function on S1 ×q D
2



✐

✐

“4-Mayr” — 2020/7/9 — 18:07 — page 341 — #15
✐

✐

✐

✐

✐

✐

A 3d gauge theory/quantum K-theory correspondence 341

Instead of factorizing the partition function on S1 ×q S
2 into a holo-

morphic and anti-holomorphic series in Q consider the partition function on
S1 ×q D

2. This computation fixes a normalization factor which can not be
obtained unambiguously from the factorization and is needed to determine
the 3d analogue of the D-brane central charge. The general computation is
given in App. A.1; for the U(1) theory the result is

(2.30) ZS1×qD2 = ln(q)

∮

0

dϵ

2πi
fD2(q, ϵ) · I(Q, q, ϵ) ,

with

I(Q, q, ϵ) =
∑

n≥0

(
Q

(1− q)c1

)n−ϵ

qd(n,ϵ)(−)c1n(2.31)

×
∏

α∈D

Γq(1− qα(n− ϵ))

Γq(1 + qαϵ)

∏

α∈N

Γq(1− qαϵ)

Γq(1 + qα(n− ϵ))
.

Here N(D) refers to 3d chirals with Neumann (Dirichlet) conditions at the
boundary. The D fields will be taken to represent the sections for the hy-
persurface constraints. The result above is shown for the canonical choice of
R-charges ∆α = 0(2) for N (D). For the example of a degree ℓ hypersurface
in PN−1 we have N fields with Neumann conditions of charge 1 and one field
with Dirichlet conditions of charge −ℓ. The folding factor in (2.30) is
(2.32)

fD2(q, ϵ) = (−η(q))D̃−ÑqR(1− q)S
∏

D(1− qqαϵ)∏
N (1− q−qαϵ)

∏
N Γq(1 + qαϵ)∏
D Γq(1− qαϵ)

,

where η(q) = q
1

24

∏∞
n=1(1− qn) and D̃(Ñ) is the number of Dirichlet (Neu-

mann) fields, respectively. For the canonical choice of R-charges, the expo-
nents are S = 0 and R = − ch2 ϵ

2 − 1
2c1ϵ, where ch2 and c1 are the numerical

coefficients of the second and first Chern characters of X, respectively.

Comparison and 2d limit

The holomorphic data I(Q, q, ϵ) appearing in the two partition functions
agree up to a minus sign that can be absorbed in the definition of the clas-
sical action. The form of the S2 partition function then indicates that it
can be factorized into two S1 ×q D

2 partition functions, similarly as in [45].
The factorizability of the N = 2 supersymmetric 3d partition function is ex-
pected on general grounds [23, 35]. For c1 = 0 one can again take the naive
2d limit q → 1 in (2.28) and replace the q-Gamma with ordinary Gamma
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functions. In this limit, the series I(Q, q, ϵ) reduces to the generalized hy-
pergeometric series prominent in 2d mirror symmetry [36, 37]. It represents
the building blocks of the periods of the toric Calabi–Yau complete inter-
section X.

Systems of difference equations

The residue formulas for the partition functions have a straightforward
generalization to the U(1)n gauge theory with matter fields of charges qiα,
α = 0, . . . , N , i = 1, . . . , n. To describe a complete intersection X in a toric
variety, we consider Ñ chiral fields with Neumann boundary conditions and
D̃ chiral fields with Dirichlet boundary condition, as defined in ref. [30]. A
field φα with Dirichlet boundary conditions and negative U(1)n charges qiα
implements a hypersurface constraint of degree |qiα|. The charge vectors qa

are defined up to linear transformations. To obtain a vortex expansion at
large values of the FI parameters, we choose a basis {qa} that corresponds
to a large volume phase.13

The general expressions for the partition function, the vortex sum and
the folding factor are given in eqs. (A.19), (A.20), and (A.22) in App. A.1.
We allow for generic CS terms, contributing a factor

(2.33) qd(k,ϵ) , d(k, ϵ) =
1

2
Aij(ki − ϵi)(kj − ϵj) +Bi(ki − ϵi) ,

in the vortex sum. Here ki is the vortex number and ϵi the Wilson line
integration variable for U(1)i.

The derivation of the recursion relation for the coefficients of the vortex
sum I(Qa, q, ϵa) does not depend on the details of the integration contour,
assuming a convergent contour exists.14 Proceeding as before, one obtains
the following set of n difference operators annihilating the vortex sum (A.20)

La =
∏

α∈N
qaα>0

qaα−1∏

j=0

(1− qϑα−j)(2.34)

−Qaq
∑
i Aaiθi

∏

α∈D

|qaα|∏

j=1

(1− q−ϑα+j)
∏

α∈N
qaα<0

|qaα|−1∏

j=0

(1− qϑα−j) .

13See refs. [3, 8, 9] for a discussion of phases in the 2d GLSM.
14See ref. [46] for a discussion of integration contours in the 2d case.
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Here a = 1, . . . , n and

(2.35) ϑα =
∑

a

qaαθa , θa = Qa
∂

∂Qa
.

In the above we have absorbed some constants by the redefinition

(2.36) Qa → Qa(−)caq−
1

2
Aaa−Ba .

The difference operators La represent the Ward identities for the line
operators in the 3d theory with gauge group U(1)n and with general matter
charges. In the 2d limit, the Ward identities reduce to the familiar differential
operators central to 2d mirror symmetry. E.g. for a hypersurface one obtains

La =
∏

α,qaα>0

qaα−1∏

j=0

(ϑα − j)(2.37)

−
Qa

(βℏ)c1

|qa0 |∏

j=1

(−ϑ0 + j)
∏

α,qaα<0

|qaα|−1∏

j=0

(ϑα − j) ,

and these are for c1(X) = 0 again the well-known GKZ operators of refs. [36,
37] that annihilate the periods of the mirror manifold of X.

Comparison with equivariant quantum K-theory

So far, we have considered the UV phase of the 3d gauge theories with
a Higgs branch representing a Kähler manifold X. We have found that the
vortex sum of the 3d GLSM, and thus the partition function, is annihilated
by the system of difference operators (2.34). We are now ready to identify
the topological theory associated with the IR phase of the 3d gauge theory,
i.e., the theory that replaces quantum cohomology in the 3d generalization
of the 2d GLSM/quantum cohomology correspondence.

In ref. [10] Givental constructs a GL(N) equivariant quantum K-theory
with an action of the permutation symmetry Sn on a correlator with n
insertions. In the simplest case N = 1, the permutation symmetric theory,
only the totally symmetric representation of Sn appears. In ref. [10] the so-
called I-function is computed for the symmetric quantum K-theory for a
super-bundle ΠE over a toric space W . This I-function IΠE satisfies a set
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of difference equations, which are reproduced below for convenience:

(2.38)
∏

j:mij>0

mij−1∏

r=0

(1− q−rqmkjθk)IΠE

= Qi

∏

j:mij<0

−mij−1∏

r=0

(1− q−rqmkjθk)
∏

a

lia∏

r=1

(1− qrqlkaθk)IΠE .

Heremij are the defining vectors ofW and lia the degrees of the hypersurface
constraints generalizing the single hypersurface considered above; in our
notation qij = mij and qi0 = −li1. Eq. (2.38) contains minor corrections to
the formula in ref. [10] (4th on page 5 of p.VI), which, however, follow
straightforwardly from the derivation given there. After this modifications
and setting the effective Chern–Simons terms in (2.34) to zero the operators
defined by the equations (2.38) agree with the La. The general case with
non-zero Chern–Simons terms relates to the level structure of quantum K-
theory described in ref. [47].

In the large volume phase, i.e., small Qa, the (reduced) system of linear
difference equations (2.34) has dim(H2∗(X)) independent solutions, repro-
ducing the solutions of the differential equations (2.37) in the 2d limit. The
agreement of the equations (2.34) and (2.38) implies that the S1 ×q D

2 par-
tition function of the 3d GLSM computes, up to linear combination with
coefficients in q-shift invariant functions, (a certain value of) the I-function
of the symmetric quantum K-theory.15

2.3. Period matrix and monopole expansion

The difference operators (2.34) acting on the 3d partition function have the
general form LaI = 0 with

(2.39) La = L+
a −QaL

−
a ,

In this form the difference equations represent Ward identities for line op-
erators, that generalize those of ref. [17] to 3d theories associated with toric
complete intersection hypersurfaces.

15More details on the definitions of the permutation equivariant quantum K-
theory of ref. [10] will be given in Sect. 6, where we study the quintic and other
examples.
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On the other hand, defining L̃−
a = L−

a |θa→θa−1, the difference equations
can be rewritten as an eigenvalue problem

(2.40) VaI = QaI , Va = (L̃−
a )

−1L+
a .

More generally, we observe that the vortex sums I⃗
b
:= (

∏
i q

θbi ) I associated

with insertions of Wilson lines
∏

i z
−1
bi

in the Coulomb integral represent
eigenfunctions of Va with different eigenvalues

(2.41) VaI⃗b = ζ
a,⃗b
I⃗
b
, ζ

a,⃗b
= q

∑
i δa,biQa .

The linearly independent solutions to these equations are the building blocks
for the 3d generalization of what is called the period matrix in the context of
2d mirror symmetry. E.g., for X = PN−1 there are N independent solutions
for an eigenvalue Qqk, represented by the expansion of Ik as in (2.17), and
the Ik are linearly independent for k = 0, . . . , N − 1. This gives an N ×N
matrix T of solutions which comprises an operator/state correspondence
between chiral operators and boundary states in the 3d theory, as will be
discussed in Sect. 7.

We observe that the difference equations can be used to resum the vor-
tex sums as a partition function for monopole operators,16 which carry the
topological U(1)J charge with weight Qa. For illustration we take again
the example of the U(1) theory with N fundamentals, corresponding to the
target X = PN−1. The vortex sum (2.31) for Chern–Simons level κ is

(2.42) I(PN−1) =

∞∑

n=0

Qnqκ
n(n−1)

2∏n
r=1(1− Pqn)N

,

where we introduced the notation P = q−ϵ and dropped the overall factor
Q−ϵ. The omission of the leading term Q−ϵ requires the replacement qθ →
Pqθ in the difference operator (which is eq. (2.16) with an extra factor
qκθ in the second term as in eq. (2.34)). For zero Chern–Simons level κ =
0, the above expression agrees with the K-theoretic J-function for PN−1

at zero input [40], with P interpreted as the Chern character of the line
bundle O(−1), fulfilling the relation (1− P )N = 0. In the derivation of the
3d partition function this constraint arises from the residue integral on the
Coulomb branch, as explained below eq. (2.16).

On the other hand, viewing I as an index, which counts states of different
electric charges weighted by P , before taking the integral, we should not

16See refs. [48–51].
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impose the constraint (1− P )N = 0.17 The exact difference equation fulfilled
by this counting function is not eq. (2.16) but the inhomogeneous equation

(2.43) (1− Pqθ)N Ĩ = Q(Pqθ)κĨ + (1− P )N .

Here we use Ĩ to distinguish the counting function without the constraint
on P from I. This modified difference equation can be used to resum Ĩ as a
power series in P with exact coefficients in the U(1)J weight Q. Defining18

(2.44) I = (1− P )−N Ĩ =

∞∑

ℓ=0

P ℓIℓ(Q, q) ,

eq. (2.43) gives a recursion relation for the coefficients Iℓ(Q, q). For κ = 0
the solution has the form

(2.45) I(PN−1) =

∞∑

n=0

cNn (Q, q)Pn

∏n
r=0(1− qrQ)

=
1

(1−Q)
+O(P ) ,

where cNn (Q, q) is a polynomial of degree < n. The leading term ∼ P 0 is
independent of the target space X and is the partition function for the
electrically neutral monopole operator of U(1)J charge one and spin zero.
The subleading terms count charged operators composed of monopoles and
charged matter fields and these depend on the target X. E.g., for N = 1 one
obtains cN=1

n (Q, q) = 1 for all n, whereas for N = 2, i.e. X = P1,

(2.46) I(P1) =
1

1−Q
+ P

2

(Q, q)2
+ P 2 3 + qQ

(Q, q)3
+ P 3 4 + 2qQ(1 + q)

(Q, q)4
+ · · ·

with (Q, q)n =
∏n−1

r=0 (1−Qqr). In the sector of U(1) charge one, the mono-
pole operator comes with two spin states of weights ∼ q0, q1, and it is dressed
by a single mode of one of the two matter fields. In the higher charge sectors,
there are corrections to the naive counting from Q-dependent terms in the
polynomials cn>1, which would be interesting to understand from the field
theory point of view. A similar expansion as in eq. (2.45) exists for non-zero
κ > 0 with Q replaced by QP κ. This is the weight of the neutral operator

17The definition of the vortex sum as a character on the moduli space of vortices
along the lines of ref. [52] will be discussed in Sect. 7.3.

18The extra factor (1− P )N takes into account the contribution from spin zero
fields in the counting function, which had been included in the gluing factor f in
eq. (2.9) before.
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made from charged matter fields and the monopole operator of non-zero
charge induced by the Chern–Simons term [50].

Equations of the form (2.41) have appeared in the context of 3d N = 4
supersymmetric theories in ref. [53] and connected to the action of the
monopole operators [48–51] of the theory on the Higgs branch defined by
quantization of the theory on R2 × Rt and with N = (2, 2) boundary con-
ditions imposed on a plane R2 at fixed t. The present set up describes a
lift of the discussion of ref. [53] to the S1 compactification of a 4d theory.
That is to say the pair of a 3d N = 4 bulk theory with a 2d N = (2, 2)
boundary theory of ref. [53] is lifted to a pair of a 4d N = 2 bulk theory
with a 3d N = 2 boundary theory compactified on an additional S1. The
N = 2 3d partition functions discussed in this paper are the lifts of the
N = (2, 2) 2d partition functions of the boundary theory. The action of the
monopole operator of the 4d N = 2 theory on the vortex moduli spaces is
described by the K-theoretic lift of the cohomological operations in ref. [53].
The eigenvectors for the eigenvalue problem (2.40) should represent general-
ized Whittaker vectors of the S1-compactified 4d Coulomb branch algebra.
It would be interesting to apply the methods of ref. [53] to the present setup.
A connection between quasi-map moduli spaces and Whittaker functions for
glℓ+1 has been described in ref. [54].

2.4. Spectral manifolds

A certain phase of the 3d GLSM associates to a Kähler manifold X the
system of difference equations (2.34). The shift operators P̂a = qθa and the
Kähler moduli Qa satisfy the commutation relations P̂aQ̂b = qδabQ̂bP̂a gen-
eralizing (2.21). In the commuting limit q = 1, the equations obtained by
replacing operators (P̂a, Q̂a) with commuting variables (pa, Qa) in the dif-
ference operators assign to a hypersurface X ⊂W with n Kähler moduli a
spectral surface Σ(X) of dimC = n: 19

(2.47) X ⇝ La(X)⇝ Σ(X) : ∩a{fa(pb, Qb) = 0} ⊂ (C∗ × C∗)n .

19Despite of the notation, the difference operators La, and therefore Σ(X), de-
pend on the embedding of X as a hypersurface in W and on the phase for the 3d
GLSM.
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Even for the simplest theories with X = PN−1 one obtains an interesting
series of spectral curves, which is related to known type II string compacti-
fications of the form

(2.48) f = (1− p)N −Q+ xz , Σ(PN−1) = {f = 0} ∩ {z = 0} .

These geometries are mirror to a 3-fold fibration Y of an AN−1 singularity
and have been related in ref. [55] to M-theory compactifications on local
manifolds S3 ×R4/ZN . Moreover, the equation for Σ(X) was shown to be
equivalent to the condition dW = 0 for a supersymmetric vacuum in a dual
type IIA theory with D6 branes and disk superpotential W.20 The quantum
K-theory for PN−1 should thus be closely related to the topological string
on Y ; we come back to this issue in Sect. 3.3. Turning on real mass terms
yi, i = 1, . . . , N , for the fields, which corresponds to studying the TN−1

equivariant K-theory of PN−1, describes a blow up of the AN−1 singularity
with difference operator and the spectral surface

(2.49) L =

N∏

i=1

(1− yiq
θ)−Q ⇝ Σ :

N∏

i=1

(1− yip)−Q = 0 .

More generally, the M-theory compactifications with D and E groups of [55]
give the spectral curves for 3d theories related to weighted projective spaces
WP(ai), with ai the Dynkin numbers for the respective group.

The spectral manifold is related to the twisted superpotential W of the
S1 compactified 2d theory including the contribution from the Kaluza–Klein
modes [56–58]. In the q → 1 limit, the 3d partition function behaves as

(2.50) Z ∼

∫
dzi
2πizi

e
1

ln q
W(z,Q),

where W(z,Q) is regular. An expansion of the difference equation around
q = 1 yields the equation for the spectral curve Σ(X) with pa =
exp(Qa∂QaW). Moreover Σ(X) is Lagrangian w.r.t. to the holomorphic sym-

plectic form
∑

a
dQa
Qa

∧ dpa
pa

and describes the manifold of supersymmetric
vacua of the 3d theory coupled to a 4d bulk by gauging the global symme-
try [16].

20See also ref. [23] for a discussion in terms (p, q)-webs of fivebranes.
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In the above example X = PN−1, the integrand in the 3d partition func-
tion can be written as eW (z,Q,q) with

(2.51) W (z,Q, q) = N
∑

k>0

zk

k(1− qk)
− lnQ ln z/ ln q −A ln2 z/2 ln q ,

where we added a Chern–Simons term with coefficient A. The spectral curve
(2.49) arises in the limit q → 1, where W → W/ ln q + · · · . There are other
semi-classical limits of the integrand at qm = 1 for m ∈ N, as noticed before
in ref. [10]. In an expansion around qm = 1, the leading terms come from
the summands with k = m · n, and one obtains the spectral curves

(2.52) Σ(X)m : fm = (1− pm)N − (pAQ)m = 0 ,

which describe orbifolds of the spectral curve for m = 1.
In the context of open topological string, going back from the spectral

curve Σ to the difference operator L has been interpreted in ref. [59] as
a quantization of the mirror curve Σ with the Hamiltonian H = L. Upon
adding a hypersurface constraint, the operators depend explicitely on the
quantization parameter q as in (2.16). This is expected on general grounds
[60], and it would be interesting to study these operators from the point of
quantization.

3. Deformations

3.1. Integrating in massive bulk fields

We consider now the modification of a given 3d theory by integrating in
new massive matter fields. For concreteness we consider the U(1) partition
function for X = PM−1 as a starting point. We assume that the Chern–
Simons couplings are initially chosen to cancel exponentials in q that depend
on the vortex number k. We have seen that the sum over the poles z = q−k+ϵ

produces the vortex sum21

(3.1) I(Q, q) =

∞∑

k=0

IkQ
k , Ik =

1
∏k

ℓ=1(1− Pqℓ)M
.

21In this section we define the vortex sum without the overall factor Q−ϵ for
convenience. Dropping this factor has to be compensated by the replacement qθ →
qθ−ϵ = Pqθ in the difference operators.



✐

✐

“4-Mayr” — 2020/7/9 — 18:07 — page 350 — #24
✐

✐

✐

✐

✐

✐

350 Hans Jockers and Peter Mayr

Here we introduced the notation P = q−ϵ for later use. We now consider the
effect of integrating in a new massive matter field of U(1) charge a, R-charge
∆ and twisted mass parameter y = e−m. To keep the effective Chern–Simons
term of the theory fixed in the limit of infinite mass y → 0, and to cancel
potential 3d anomalies in the fermion measure, we define the integrating
in procedure to include compensating Chern–Simons background couplings
specified in the following table

(3.2) e−SCS = e
1

2 ln q
kij lnxi lnxj ,

ln z ln y 1
2 ln q

ln z a2

2
a
2 a∆−1

2

ln y ... 1
2

∆−1
2

1
2 ln q ... ... (∆−1)2

2

where xi ∈ {z, y, q1/2}. For a = 1, ∆ = 0 this reduces to the choice made in
ref. [29].

Integrating in a new massive particle with Neumann boundary condi-
tions, charge −a < 0 and mass y together with the specified CS couplings
gives a new factor22

(3.3)
1

(z−ay, q)∞

in the integrand. It does not contribute new poles inside the integration
contour chosen before. After passing to the sum over residues, the effect of
the new field is a multiplicative factor in the k-th vortex sector:

(3.4) Ik → Ik(y) =
1

(yP aqka, q)∞
· Ik .

On the vortex sum, this transformation can be represented by the action of
a difference operator, namely

(3.5) I(Q, q) → I(Q, q, y) =
1

(yP aqaθ, q)∞
I(Q, q) .

The partition function of the theory with massive deformations fulfills a
deformed difference equation. From the commutation relation (2.21), we

22This is for R-charge 0; the general case is obtained by the replacement y → yq
∆
2 .
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obtain the deformed Ward identity L′I(Q, q, y) = 0 with

(3.6) L′ = (1− Pqθ)M −Q

a−1∏

ℓ=0

(
1− y(Pqθ)aqℓ

)
.

The transformation of the vortex sum defined by the integrating in operation
is interesting in two ways: For large mass it defines a deformation family of
the original theory. Upon interpolation to zero mass one obtains a theory
with different target space X.

3.2. Perturbative expansion and quantum K-theory

For large mass, i.e., small y = e−m, we can view the result of the above
operation as a small deformation of the given theory with target X. Using
the relation (A.27), the difference operator (3.5) can be expanded as

(3.7)
1

(yP aqaθ, q)∞
= exp

(
∑

r>0

(yP aqaθ)r

r(1− qr)

)
.

Similarly, integrating in N fields with masses yi, i = 1, . . . , N , results in the
difference operator

(3.8) exp

(
∑

r>0

trV r(P aqaθ)r

r(1− qr)

)
,

where V = diag (y1, . . . , yN ). Recall that the operator (Pqθ)a was obtained
from the insertion of a charge a Wilson line za in the dynamical U(1) gauge
field, and the variables yi contain the Wilson line in the background gauge
field associated with the real mass deformation. Writing trU = za, the q0

term of the operator (3.8) takes the familar form

(3.9) ZMT(U, V ) = exp

(
∑

r

1

r
trU r trV r

)
.

This operator has played an important role in the duality between the topo-
logical string and 3d CS theory [61]. Adding this factor in the path integral
computes CS correlation functions with insertions of multi-traces (MT) of
Wilson line operators in the dynamical gauge field U and the background
gauge field V . The standard correlators with single-trace (ST) insertions
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coupled to a background fields are generated by the r = 1 term

(3.10) ZST(U, V ) = exp( trU trV
)
.

The 3d index (2.3) counts the number of gauge invariant BPS operators.
The deformed theory includes operators dressed by the massive modes. The
weights of theses modes are given by a “complexification” of the Wilson line
background V compared to eq. (3.9) and in addition there is an infinite tower
of modes with different spins for each field, weighted by the q-variable. For
an interesting interpretation of the multi-traces, V should be viewed as an
U(N) connection. The 3d indices with standard insertions of single-traces,
restricting to the r = 1 term of (3.8), are generated by the difference operator

(3.11) exp

(
y(P aqaθ)

(1− q)

)
.

Comparison to quantum K-theory

The difference operator (3.8) for the multi-trace insertions is identical
to the deformation operator of the GL(N)-equivariant quantum K-theory
defined in part I of ref. [10]. This theory computes quantum K-theory cor-
relators with n insertions, equivariant under the action of the permutation
group Sn on the n insertions. The operator for the single trace insertions
(3.11) is the deformation operator in the ordinary quantum K-theory [14, 62].
It is also possible to consider both types of insertions at the same time in
the mixed quantum K-theory of, see part VII of ref. [10].

The above agreement identifies the massive deformations of the UV
gauge theory with the deformations of mixed quantum K-theory, and more
precisely, insertions of massive field operators in the path integral with the
insertions in the correlators of the associated quantum K-theory.

Comparison to the 2d A-model

As will be discussed in detail in Sect. 4, the factor P in the 3d par-
tition function represents the Chern character of the bundle O(−1) over
PM−1 in the target space geometry. The integrating in of a massive particle
of charge −a has produced an operator involving the (classical) K-theory
element P a ∈ K(X). For X = PM−1, (1− P )M = 0 and there are M inde-
pendent directions. The vector space is spanned by, say, matter fields of
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charge −a = (0, 1, . . . , N − 1).23 In general, there will be dim(K(X)) pa-
rameters τℓ associated with a basis of K(X), times the number of species of
such sets.

In addition, the 3d GLSM with gauge group U(1)k depends on k =
dimH2(X) FI parameters, or vortex weights, Qa. The values of those can
be deformed with the help of the chiral Wilson line operators, see (2.20). In
total, the 3d PF depends on the twist q and the parameters

(3.12)
massive particles: τk, k = 0, . . . , dim(K(X))− 1 ,

Wilson lines: Qa, a = 1, . . . , dim(H2(X)) .

Here τk ≈ − ln(yk) is a complexified mass parameter for a single species.
How do the above operators and deformations match to the 2d A-model

in the small radius limit? In the A-model one has dimH2k(X) = dim(K(X))
independent cohomologial operators [1]. A cohomological basis is obtained
from the K-theory basis in the small radius limit β → 0 via the Chern iso-
morphism. For PM−1 one may choose

(3.13) Φk = (1− P )k → (βH)k , P = e−βH , k = 0, . . . , N − 1 .

The deformations of the A model in H2(X) are associated with the com-
plexified Kähler parameters ta, a = 1, . . . , dim(H2(X)). However, we have
obtained two types of parameters for each element of H2(X), the mass pa-
rameters τa and the Novikov variables Qa. This curious doubling of the
parameters for H2(X) exists already in quantum cohomology [39]. In 2d,
the parameters are redundant in the IR theory in the following sense: after
a reparametrization of the deformations, the partition function depends only
on the combinations Qae

ta , where ta = ta(τ,Q) are the flat coordinates on
the deformation space.

In the 3d theory, the parameters τa and Qa parametrize different direc-
tions in the deformation space, and there is no a priori reason to expect
them to lead to equivalent deformations. The 2d behavior of the deforma-
tions can be studied from the integrating in operator (3.7). After a linear
reparametrization of the parameters y adapted to the basis (3.13) for K(X),

23To express a deformation of the theory by a field outside this charge window
in terms of this basis, one has to use the Ward identity for the Wilson lines, i.e.,
the deformed difference equation (3.6), not the classical relation.
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it takes the form

(3.14) exp

(
N−1∑

a=0

∑

r>0

yra(1− (Pqk)r)a

r(1− qr)

)
.

For fixed a, the small radius limit of the exponent is, with P = e−βH and
q = e−βℏ,

(3.15)
∑

r

yra(1− (Pqk)r)a

r(1− qr)
=
∑

r

yraβ
a−1

r2−a

(H + kℏ)a

ℏ
= ta

(H + kℏ)a

ℏ
,

with ta = βa−1
∑

r y
r
a/r

2−a. The scalar term ∼ H0, multiplying the weight
Qk, is

(3.16) exp(ta(kℏ)
a/ℏ) .

Only in the 2d limit and only for a = 1 it can be absorbed in the vortex
weight by the redefinition Q→ Qet1 . The shift is

(3.17) MT: t1 = − ln(1− y1), ST: t′1 = y1,

for the multi-trace (3.8) and single-trace (3.11) perturbations, respectively.
In quantum cohomology, the dependence on the combinations Qae

ta(Q,τ)

follows from the divisor equation.24 There is no divisor equation in quantum
K-theory. The Q and τ deformations are still related in a more general way:
a change of parameters (Q, τ) → (Q′, τ) leads to a theory in the deformation
family of the original one, with deformation parameters (Q, τ ′(Q)) [14].

3.3. Equivariant quantum K-theory and topological string vertex

In p. II of ref. [10] Givental reconstructs the equivariant quantum K-theory
for toric X from Tn equivariant fixed point localization on X, by gluing the
vertices associated with fixed points along fixed curves. The point vertices
are obtained by assigning a special input V to the operator (3.8) for the
target X = pt. We first observe that these vertices are in fact equal to the

24See ref. [3] for a review and references.
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topological vertex

(3.18) I(pt) = exp

(
∑

r>0

trV r

r(1− qr)

)
=
∑

C00ν(q
−1)sν(x) = Ztop.vert.(C

3) ,

with xi = −q−
1

2 yi. The expression on the r.h.s. is the topological string ver-
tex in the Schur representation for a stack of branes on a single leg of the
toric Calabi–Yau 3-fold C3 [63].25 In this context, q = eigs , with gs the string
coupling constant, C00ν is the value of topological vertex for a holomorphic
disk with a boundary labeled by a 2d partition ν and sν(x) the associated
Schur function.

The coincidence of the GL(∞) equivariant quantum K-theory for a point
and the topological string vertex raises interesting questions. Firstly, the
relation q = eigs combined with the small radius limit to 2d/quantum coho-
mology shows, that the 3d theory gives a resumation of the expansion in the
string coupling; a simple illustration will be given in Sect. 9.

Secondly the gluing of the point vertices (3.18) along fixed curves in [10]
reminds of the gluing of topological string vertices to obtain the partition
function for a toric Calabi–Yau 3-fold X [25]. A noteworthy difference is
that the gluing formalism of ref. [10] works for any number of fixed curves
connected to the vertex (3.18) and can be applied to compact hypersurfaces
X by studying super-bundles. The gluing rule of ref. [10] sums up the contri-
butions from N fixed curves connected to a point vertex into a single input
V . As explained below, this amounts to using an effective vertex with global
SU(N) structure from the point of the topological string.

For the U(1) theory with N matter fields of charge one, corresponding
to X = PN−1, SU(N) is a global symmetry at zero mass. As noted around
(2.48), the spectral curve associated with the difference operator agrees with
the mirror curve for an AN−1 singularity studied in ref. [55]. For a single
chiral N = 1 one obtains X = pt, or more precisely the stack X = C//C∗,
including the degenerate orbit. The spectral curve Σ is the curve for the mir-
ror of C3 [25]. For N = 2, the curve is a singular version of the mirror curve
for O(−2)P1 ⊕O(0)P1 , at zero volume of the P1. Using results of ref. [64], it
has been already observed in refs. [29, 45], that the 3d vortex sum for N = 2
with non-zero real masses coincides with the open string partition function
for a brane moving on O(−2)P1 ⊕O(0)P1 .

25Relations between vortex sums and topological string vertex have been ex-
ploited earlier in ref. [34].
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The above generalizes to N > 2, where Σ describes the singular limit of
the mirror curve for a chain of N − 1 P1’s of zero size, with intersections
corresponding to the AN−1 Dynkin diagram. Non-zero volume corresponds
to introducing real masses, which represent equivariant parameters for the
TN−1 action, leading to the deformed equations (2.49). The vortex sum
solving the deformed difference operator coincides with the TN−1 equivariant
I-function of ref. [40]

(3.19) I = (1− q)
∑ Qd

∏d
k=1

∏N
i=1(1− qkyiP )

.

It is shown in part II of [10], how to rewrite the evaluation I(i) = I(y−1
i )

at the TN−1 fixed point P = y−1
i in terms of the point vertex (3.18), with

a special input V determined by a recursion relation summing up the pole
contributions from fixed curves connected to the fixed point. On the other
hand, I(i) coincides with the effective topological string vertex for the AN−1

geometry, called the half SU(N) vertex in ref. [64]. The representations at
the external legs are trivial, except for a fundamental at the i-th leg. The
precise match is, up to a reparametrization, parallel to the discussion in
ref. [45], where the half SU(N) vertex with these representations has been
discussed in detail in the context of factorization of the 3d partition function
on S3.

The above discussion generalizes further to a degree ℓ compact hypersur-
face in PN−1, with the spectral curve Σ associated to the commuting limit
of the difference operator (2.16) for ℓ ̸= 0 and a modified effective N -vertex
obtained by adding the weight factor from the hypersurface constraint as-
sociated with the field of charge −ℓ. We conclude that the sewing rules of
ref. [10] can be interpreted as gluing effective SU(N) vertices associated
with the topological string vertex. It will be interesting to compare the glu-
ing rules of ref. [10] and ref. [25] in more detail for toric 3-folds. A proposal
for the computation of the all genus topological string partition function
on compact Calabi–Yau 3-fold by gluing effective vertices has been made
recently in ref. [65].

3.4. Change of target space

Another rewriting of eq. (3.5) is

(3.20)
1

(yq∆/2P aqka, q)∞
=

∏ak−1
ℓ=0 (1− yPqℓ+∆/2)

(yq∆/2P a, q)∞
,
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where we have restored the R-charge. For ∆ = 2, the interpolation to zero
mass y = 1 gives the transformed vortex sum

(3.21) I ′(PM−1, Q, q, y = 1) =
1

(qP a, q)∞
·
∑

Qk−ϵ

∏ak
ℓ=1(1− P aqℓ)

∏k
ℓ=1(1− Pqℓ)M

,

which is the vortex sum for a degree |a| hypersurface X ⊂ PM−1, times the
k-independent factor. Accordingly the deformed difference equation (3.6)
reduces to (2.16) in the massless limit.

The pre-factor modifies the folding factor fD2 of the theory on the new
target X.26 For |a| = 1, i.e. a degree one hypersurface in PM−1, one expects
to obtain the integrand for PM−2, but one finds

fD2(PM−1)
1

(qP, q)∞
I ′(PM−1, Q, q, y = 1)(3.22)

=
1

θ(P−1)
·
(
fD2(PM−2)I(PM−2, Q, q)

)
.

The r.h.s. differs from the integrand for PM−2 because of the θ-function.
One can get rid of this factor by integrating in a Dirichlet field of opposite
charge

(3.23)
θ(yqz−a, q)

(yqz−a, q)∞
= (y−1za, q)∞ .

together with compensating CS terms. θ-functions arise as the one-loop de-
terminant of fields living on the T 2 boundary of D2 ×q S

1 [30, 32]. The need
of additional CS terms can be seen from the fact, that the θ-function is not
invariant under shifts x→ xq, i.e., it would change the difference equation.
An invariant combination is

(3.24) θ(x, q) · eln(−x)2/2 ln q−ln(−x)/2 .

More general factors of this type are used in Sect. 4.5 to construct a complete
basis of solutions to the difference equation.

Note that by similar steps but in the reverse direction, one can use mass
deformations and integrating in to move up in dimension from PM−1 to PM ,

26The inverse of the pre-factor has an interpretation as a twisting class interpo-
lating between untwisted quantum K-theory and the twisted version of quantum
K-theory described in ref. [66] and part XI of ref. [10].
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and more generally to create general toric spacesW starting from the trivial
vortex sum

(3.25) I(Q) =
∑

k

Qk =
1

1−Q
.

4. Geometric indices and three-dimensional E-branes

In this section we study the geometric content of the 3d partition functions,
starting from the expansion around the limit of large Kähler moduli. We
discuss some modifications that arise in the step from 2d to 3d related
to the 3d lift of D-brane boundary conditions, such as a new type of K-
theory charge and linearly independent bases of q-Mellin–Barnes integrals.
Moreover we discuss new genera associated to a Kähler manifold X by the
3d theory.

4.1. Large volume limits and index theorems

To obtain a better geometric understanding of the large volume limit, it
will be useful to discuss first the relation of the 2d disk partition function
to classical index formulas. The large volume limit of the 2d disk partition
reproduces the perturbative central charge of a D-brane [67, 68]

(4.1) ZLV
D2 (Eα) ∼

∫

X
e−JΓXch(Eα) .

Here Eα is a sheaf that defines a B-type boundary condition at S1 = ∂D1, J
is a Kähler class on X and ΓX the so-called Gamma class [69–71], a certain
square root of the Todd class

(4.2) ΓX =
√

td(X)eiΛX , ΓX
∗ΓX = Â(X) = e−c1/2td(X) .

ΓX
∗ denotes the dual of ΓX defined by the reflection xα → −xα on the Chern

roots xα. The expression without the factor eiΛX had been derived from
anomaly inflow arguments in refs. [72, 73]. The additive class ΛX governs
the perturbative corrections to the Kähler metric of the GLSM on X [74].
Explicit expressions in terms of the Chern classes of X will appear below.
The Gamma class intertwines between the tensor product of sheaves and
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the wedge product on the Chern characters

(4.3)
〈
ch(E∗

α)(ΓX)∗ec1(X)/2, ch(Eβ)ΓX

〉
X

=

∫

X
td(X)ch(E∗

α ⊗ Eβ) .

Here ⟨a, b⟩X =
∫
X a ∧ b for c1(X) = 0. The right hand side is the Witten

index for the open string stretched between the two D-branes defined by Eα

and Eβ [75]

(4.4) ind∂̄E =
∑

k

(−1)k dim Extk(Eα, Eβ)
HRR
=

∫

X
td(X)ch(E∗

α ⊗ Eβ) .

The Hirzebruch–Riemann–Roch index theorem used in the last step has
a simple derivation from supersymmetric quantum mechanics on S1 [76,
77]. The Todd class comes from the path integral over the bosons of the
sigma model, and the Chern character from fermions on S1 coupled to the
connection on E.

In the 2d partition function (4.1), the boundary S1 is filled by a disk.
Only half of the bosonic modes on S1 = ∂D2 can be extended smoothly to
the interior; one can choose coordinates such that these are positive modes
defined on a holomorphic disk. The bosonic determinant for these modes is
a certain square root ΓX of the full determinant td(X) on S1. The precise
form can be obtained as the S1 equivariant Euler class for the normal bundle
to the positive energy modes on the loop space LX of X [78, 79]:

(4.5)
1

eS1(N+)
∼ (ℏ/2π)nℏc1(X)/ℏΓX ,

where ℏ the generator of the S1 action rotating the loops. Schematically,
this ”half-index” on the boundary S1 = ∂D2 can be obtained by removing
the contribution from the negative modes in the full index

(4.6) Â(X) → Â(X) · eS1(N−) ∼ Â(X)/ΓX
∗ = ΓX .

Adding the contribution of the boundary fermions one obtains the J-
independent terms of the large volume limit (4.1) of the disk parition func-
tion. To summarize, the large volume limit of the 2d disk partition functions
is the half-index computed by the sigma model on the boundary S1 with
target space X.

We now turn to the 3d case, where the boundary is the 2d torus ∂(S1 ×q

D2) ≃ T 2. The indices computed by the 2d supersymmetric sigma models
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on T 2 have been first studied in refs. [80, 81] in the context of the super-
symmetric strings. The relevant differential operator is the Dirac–Ramond
operator associated with the loop space LX of X. Correspondingly, one ex-
pects that the large volume limit of the 3d partition functions computes
similar indices as the one discussed above in 2d, with X replaced by LX.

To this end we consider the large volume limit of (2.1) defined by taking
a generic direction in the Kähler class J where all Qa → 0. The leading term
comes from setting n = 0 in the series (2.31). For simplicity we describe the
one modulus case and write J = tH, with H the hyperplane class. After the
formal replacements

(4.7) ϵ→ −H/ℏ , qαϵ→ −Dα/ℏ , Dα = qαH ,

the integral (2.30) can be viewed as an integral over X

(4.8)

∫
dϵ

2πi

1

e(X, ϵ)
µ(ϵ) =

∫

X
µ(H) ,

where the integrand µ(H) is a class in rational cohomology on X and e(X)
is the rational function associated to the Euler class of X, see Table 4.1.

Using the expressions given in App. A.1, we find for the large volume
limit of the disk partition function (2.31), with a choice of CS terms that
sets d(k, ϵ) = 0:

(4.9) ZLV
S1×qD2(OLX) =

ln q

(−η)dim(X)

∫

X
e−Jec

β
1 (X)/2 ÂS1(X)

ΓX,q
∗ · e−chβ2 (X)/ ln q .

This expression corresponds to the trivial brane OLX with Neumann bound-
ary conditions. The Kähler class J is defined as

(4.10) J = βt̂iJi , t̂i = ln(Qi/(1− q)c1i)/ ln q +
1

2
c1i .

It is normalized with an extra factor of β relative to the Kähler classes on X.
Similarly, the superscript β on chβ2 (X) and cβ1 (X) denotes that these classes

are defined in the 3d normalization, e.g. cβ1 (X) =
∑

i c1iβJi = βc1(X).
The remaining cohomology classes in (4.9) are multiplicative and can be

characterized by a function f(x) in a single variable x with f(0) = 1. Given
f(x), we define the class C(f,X) for the 3d GLSM with target X using the
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2d xα = Dα 3d xα = βDα

e(X) f(x) = x e(X) f(x) = x
c(X) f(x) = 1 + x c(X) f(x) = 1 + x

td(X) f(x) = x
1−e−x ÂS1(X) f(x) = e−x/2 x(q)2

∞

θ(e−x,q)

ΓX f(x) = Γ(1− x/ℏ) ΓX,q f(x) = Γq(1 + x/ ln q)

Table 4.1: Displayed are the defining functions for the characteristic classes
appearing in the discussed 2d and 3d partition functions, where (q)∞ =
(q, q)∞ and θ(y, q) = (y, q)∞(q/y, q)∞. Upon evaluating with respect to the
Chern roots xα of the holomorphic tangent bundle T 1,0

X , we obtain the
corresponding characteristic classes of the space X. In this table only the
Euler class e(X) is not multiplicative, but nevertheless obeys e(E ⊕ F ) =
e(E)e(F ) because it is identified with the top Chern class cdim(X)(X) ≡ e(X)
of the total Chern class c(X), which is again multiplicative.

splitting principle as

(4.11) C(f,X) =

∏
N f(xα)∏

D f(−xα)
,

where N and D denote again fields with Neumann/Dirichlet boundary con-
ditions. The characteristic functions for the classes appearing in the above
formulas are listed in Table 4.1.

Comparing with the previously discussed 2d case, the large volume ex-
pression (4.9) has the expected form for the trivial brane with chS1(E) = 1.
The full index on the loop space LX can be informally written as27

(4.12) indD̄E
≃

∫

X
ÂS1(X)chS1(E) .

Here X represents the fixed locus X ⊂ LX of the S1 action rotating the
loops. The S1 equivariant characteristic classes ÂS1 and chS1 are defined on
the restriction of bundles to the fixed point set. The class ΓX,q satisfies an

27As discussed around eq. (4.20) below, this expression is SL(2,Z) invariant, and
thus well-defined as an index, only for ch2(E)− ch2(X) = 0.
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identity analogous to (4.2):

(4.13) ÂS1(X) = ΓX,q ΓX,q
∗ Âβ(X) .

The class ΓX,q , which we call the q-Gamma-class, represents the Chern
character of the K-theoretic Euler class for the normal bundle N+ of positive
loops (written for a simple factor in (4.11))

(4.14)
1

eKS1,α(N+)
=

1∏∞
k=1(1− qkexα)

=
(1− q)xα/ ln q

∏∞
k=1(1− qk)n

Γq

(
1 +

xα
ln q

)
.

The expression on the r.h.s. reduces in the 2d limit to (4.5) using zeta-
function regularization. The large volume limit (4.9) of the disk partition
function on S1 ×q D

2 is then related to the full index (4.12) by the loop
space analogue of eq. (4.6). The last factor in eq. (4.9) originates from the
Chern–Simons couplings of the theory.

Heuristically speaking, the Dirac operator on X is to K-theory what
the Dirac operator on LX is to elliptic cohomology [82]. We conclude that
3d-brane charges take their values in a certain generalization of elliptic co-
homology E(X). This suggests that 3d-branes are represented by objects in
a derived category associated with E(X). In the following we also refer to
these objects as elliptic branes or short “E-branes”. In lack of a better un-
derstanding of E(X), we view the E-branes as the analogues of D-branes in
S1-equivariant K-theory on the loop space LX. In Sect. 4.5 we will construct
a basis of linearly independent K-theory charges and show that eq. (4.9) has
the generalization
(4.15)

ZLV
S1×qD2(E) ∼

1

ηdim(X)

∫

X
e−Jec

β
1 (X)/2 ÂS1(X)

ΓX,q
∗ chS1(E)e−(chβ2 (X)−chβ2 (E))/ ln q .

We then tentatively assign the data displayed in Table 4.2 to the 3d GLSM.
In the small radius limit, the 3d quantities on the l.h.s. of Table 4.2 should
reduce in a well-defined sense to those on the r.h.s. In particular the 2d
boundary conditions with K-theory charge in K(X) corresponding to D-
branes descend from E-branes with K-theory charge in KS1(LX), associated
with the boundary conditions for the 3d world-volumes.

In the following we address some simple issues related to the l.h.s. of
Table 4.2. There are many interesting questions concerning the 3d lift to
which we do not know the answers, such as the emergence of a generalized
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3d theory
β→0

−−−−→ 2d theory

Full index indD̄E
=

∫

X
ÂS1(X)chS1(E) ind∂̄E =

∫

X
tdXch(E)

Gamma class ΓX,q ∼
1

eKS1(N+)
ΓX ∼

1

eS1(N+)

Half-index ZLV
S1×D2 ∼ eq.(4.15) ZLV

D2 ∼

∫

X
eJΓXch(E)

Boundary theory E-branes D-branes

Brane charge KS1(LX) K(X)

Table 4.2: Displayed are various indices and the boundary data of the 3d
GLSM together their dimensional reduction to the 2d GLSM given in terms
of the limit β → 0.

elliptic cohomology from the boundary SCFT,28 the anomaly inflow mecha-
nisms and an analysis of the category of boundary conditions along the lines
of ref. [83]. We hope to come back to these questions in the future.

4.2. Small radius limit and an SL(2,Z) anomaly

The 3d disk partition function (4.9) is naturally defined as an expansion in
small |q|. To obtain an expansion in the small radius limit |q| → 1, one needs
to use an SL(2,Z) transformation S : τ → −1/τ on the complex structure
of the boundary T 2. The relevant J-independent factor of the integrand
corresponds to the characteristic function

(4.16) f̃D2(x) = e−
x2

2 ln q · e−
x

2
x(q)2∞
θ(e−x, q)

·
1

Γq(1−
x
ln q )

.

The S-transform of f̃D2(x) is

e−
x2

2 ln q · e−
x

2
x(q)2∞
θ(e−x)

= e−
x2d
2

x2d(q
′)2∞

θ(e−x2d , q′)
=: t(x2d) ,(4.17)

τ ′ = −
1

τ
, x2d = −

x

τ
.

28See, however, ref. [18].
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Taking q′ → 0 on the r.h.s., with x2d = −x
τ fixed, gives

(4.18) e−x2d/2 x2d
1− e−x2d

,

which is minus the characteristic function for the Â-genus in the 2d frame.
Noting that the small radius of the q-Gamma function is

(4.19) Γq

(
1 +

x

ln q

)
q→1

−−−−→ Γ
(
1−

x2d
2πi

)
, q = e2πiτ ,

we recover the 2d result from refs. [67, 68].

Eq. (4.17) shows that the factor e−
ch
β
2
(X)

2 ln q in eq. (4.9) arises from the
failure of modular invariance of t(x). The latter has a series expansion in x
in terms of the Eisenstein functions [84, 85]

(4.20) t(x) = e−x/2 x(q)2∞
θ(e−x, q)

= exp

(
∑

k=1

2

2k!
G2k(τ)x

2k

)
.

t(x) is the characteristic function for the Witten genus, except for the term
from k = 1. This term is multiplied ch2(X) and the vanishing of this class
is the condition for the twisted Dirac operator on the loop space to be
well-defined [80]. For non-trivial Chern character the condition is chβ2 (X)−
chβ2 (E) = 0, which is the coefficient of the corresponding term in eq. (4.15).

We emphasize that the original index (2.3) is well-defined and gives
an integral series regardless of the condition chβ2 (X)− chβ2 (E) = 0. In the
following we assume that the SL(2,Z) anomaly can be tolerated, or canceled,
once the 2d boundary theory is coupled to the 3d bulk. The 2d formula (4.1)
was first obtained by an independent anomaly inflow argument on the D-
brane boundary of the string [72, 73], including the necessary correction
to make sense of the index on submanifolds without spin structure. Here
we would need some sort of anomaly inflow for a membrane ending on an
E-brane, that cancels an anomaly in the string structure.29

On a technical level, a standard way to achieve SL(2,Z) invariance is to
replace the Eisenstein function G2(τ) in eq. (4.20) by its SL(2,Z) covariant
cousin Ĝ2(τ) = G2(τ) +

1
8πτ2

. This amounts to the replacement of ÂS1(X)

29An anomaly cancellation for M-theory membranes was discussed in ref. [86].
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in eq. (4.13) by

(4.21) tdβ(X)ΓX,qΓX,q̄e
ϱ(q)chβ2 (X) with ϱ(q) = 1

ln q −
1

ln(q)−ln(q∗) ,

combined with a similar shift of chS1(E) to chS1(E)e−ϱ(q)chβ2 (E) for a non-
trivial E-brane E in eq. (4.12). It would be interesting to understand this
modification in terms of an obstruction to the holomorphic factorization of
the sphere partition function due to unpaired zero modes on the boundary.

4.3. BPS indices associated to Kähler manifolds

The S1 ×q D
2 partition function computes the index (2.3) and a similar re-

lation also holds for the S1 ×q S
2 partition functions [35, 43, 44, 87]. The

BPS indices have series expansion with integral coefficients in the fugacities
(q, yr), or more specifically (q,Qi) in the case of the unperturbed theory as-
sociated with a Kähler manifold X. For small |q| and |Q| one expects them
to be power series in q and Qi, starting with one in an appropriate normal-
ization. We obtain the prediction that the 3d UV partition functions assign
to the Kähler manifold X an integral power series IX(Q, q) with certain
modular transformation properties. In the large volume limit, it reduces to
an integral q-series IX(q)

(4.22) X
ZS1×C

−−−−−→ IX(Q, q)
LV limit
−−−−−−→ IX(q) ,

where C is either D2 or S2. As can be seen from eq. (4.20) and its relation
to the Witten genus for ch2(X) = 0, the integral series IX(q) are relatives
of known cobordism invariants associated with q-Gamma functions.

Sphere index for X

Let us first consider the sphere partition function, which is somewhat
simpler due to the absence of anomalous terms and boundary factors. Re-
peating steps similar to the one around eq. (4.9), one obtains for the large
volume limit of the sphere partition function

(4.23) ZLV
S1×qS2 ∼

∫

X
e−J−J̄tdβ(X)

ΓX,q

ΓX,q
∗ (1− q)2c1(x/ ln q) ,



✐

✐

“4-Mayr” — 2020/7/9 — 18:07 — page 366 — #40
✐

✐

✐

✐

✐

✐

366 Hans Jockers and Peter Mayr

with J = βJi lnQi/ ln q. The J-independent terms correspond to the char-
acteristic function

(4.24) fS2(x) =
x

1− e−x
·
(qe−x, q)∞
(qex, q)∞

.

For c1(X) = 0, the characteristic class CS2(X) ≡ C(fS2 , X) has the expan-
sion 30

CS2(X) = 1 +
1

12
c2 +

c3ψq(2, 1)

ln3(q)
+

1

720

(
3c22 − c4

)
(4.25)

+
(c5 − c2c3)ψq(4, 1) + c2c3 ln

2(q)ψq(2, 1)

12 ln5(q)
+ · · · .

By integrating this class overX we obtain the series IX(q) with an integral q-
expansion as can be seen by applying the Hirzebruch–Riemann–Roch index
theorem onX. The second factor in eq. (4.24) corresponds to a multiplicative
characteristic class, which can be rewritten with formula (A.27) as

(4.26)
(qe−x, q)∞
(qex, q)∞

= exp

[
−

+∞∑

k=1

qk(e−kx − ekx)

k(1− qk)

]
.

Applying now the splitting principle the class CS2(X) takes the form

CS2(X) = td(X) exp

[
−

+∞∑

k=1

qk

k(1− qk)

[
ch(Ψk(T

0,1
X ))− ch(Ψk(T

1,0
X ))

]]

= td(X)
∑

ν,µ

fν,µ(q)ch(Sν(T
0,1
X )⊗ Sµ(T

1,0
X )) ,(4.27)

with the Adams operator Ψk, k = 0, 1, 2, . . ., acting on the anti-holomorphic
and holomorphic tangent bundles T 0,1

X and T 1,0
X .31 In the second line the

bundles Sν(T
0,1
X ) (resp. Sµ(T

1,0
X )) denote the subbundles of T

0,1⊗|ν|
X (resp.

T
1,0⊗|µ|
X ) associated to the representation of the symmetric group S|ν| (resp.
S|µ|) of the Young tableau ν (resp. µ) with |ν| (resp. |µ|) boxes. With the

30 On the r.h.s. we drop the superscript β on the 3d normalized Chern classes,
c.f., Table 4.1.

31For a complex bundle E we have the isomorphism E ≃ E∗, which implies on the
level of Chern classes ck(E) = ck(E

∗) = (−1)kck(E). In particular we have T 0,1
X ≃

T 1,0 ∗
X , which allows us to write the characteristic class purely in terms of the Chern

classes ck(X) ≡ ck(T
1,0
X ).
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Schur representation of the topological vertex (3.18), we can explicitly spell
out the coefficient functions fν,µ(q) (labeled by a pair of Young tableaux)
according to32

(4.28) fν,µ(q) =
(
−q1/2

)|ν|+|µ|
C00ν(q)C00µ(q

−1) .

As a consequence of the algebraic properties of the vertex C00ν(q) (c.f.,
ref. [25]), the coefficient functions fν,µ are rational functions in q with inte-
gral power series expansions. Thus, the series

(4.29) IX(q) =
∑

fν,µ(q)χ(X,Sν(T
0,1
X )⊗ Sµ(T

1,0
X )) ,

becomes a sum of holomorphic Euler characteristics of the bundles Sν(T
0,1
X )⊗

Sµ(T
1,0
X ) on X with an integral q-expansion, as expected from the relation

of the 3d partition function to an index of BPS states.33

The 2d limit x/ ln q → −x2d/2πi of the class CS2(X) is

(4.30) C2d
S2(X) = 1− 2c3ζ(3) + 2(c2c3 − c5)ζ(5) + · · · .

This is the characteristic class that determines the perturbative corrections
to the Kähler potential of the 2d theory [74]. It is obviously non-integral
due to the irrational coefficients proportional to ζ(n). The first correction

term integrating to −2ζ(3) χ(X)
(2πi)3 is well-known from mirror symmetry and

represents a four-loop correction to the sigma model. The transcendental
ζ(3) is obtained in ref. [5] by analytic continuation of the periods over the
moduli space, or central charges of D-branes in modern language. Its 3d

32Here we apply the splitting principal by replacing a complex vector bundle
E in terms of a direct sum of line bundles L1 ⊕ · · · ⊕ Lrk(E), which is equiva-
lent to E on the level of characteristic classes. Using the identities ch(Ψk(E)) =
ch(Ψk(L1)) + · · ·+ ch(Ψk(Lrk(E))) and ch(Sν(E)) = sν(ch(L1), . . . , ch(Lrk(E))), we
arrive together with eq. (3.18) at the explicit form of the functions fν,µ(q).

33Alternatively, one would like to apply a suitable index theorem on the loop
space LX [82]. Following the approach of ref. [88], we can directly argue for integral-
ity by identifying the second factor in eq. (4.24) with the Chern character of the bun-
dle

⊗∞
n=1 Λ−qn(T

0,1
X )⊗

⊗∞
n=1 Sqn(T

1,0
X ), where Λt(T

0,1
X ) =

∑+∞
k=0 t

k(ΛkT 0,1
X ) and

St(T
1,0
X ) =

∑+∞
k=0 t

k(SkT 1,0
X ) are the generating functions of the skew-symmetric

and totally-symmetric tensor products of the bundles T 0,1
X and T 1,0

X , respectively.
Thus, IX(q) furnishes a generating function in q of particular sums of holomorphic
Euler characteristic of the above tensor products of bundles.
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ancestor is

(4.31) ψq(2, 1) = ln3(q) · q
d

dq
lnM(q)

2d limit
−−−−−−→ −2ζ(3) ,

where M(q) is the MacMahon function (A.38), the generating function of
3d partitions. This suggests that the irrational coeffcients in the connection
matrix for the analytic continuation of the periods of 2d mirror symmetry
arise as the limiting values of integral BPS counting functions of the 3d the-
ory, which appear in the connection matrix of the analytic continuation of
central charges of E-branes.

Disk index for X

Similarly, we can now analyze the multiplicative characteristic class
CD2(X) based on the function (4.16). Restricting to the J-independent
terms the disk partition function at degree zero yields the multiplicative
characteristic class based on the function

(4.32) f̂D2(x) =
x

1− e−x
·

(q)∞
(qex, q)∞

.

Here the hat ‘ ˆ ’ indicates that the anomalous contribution of the second
Chern class to the modular symmetry SL(2,Z) is removed. For c1(X) = 0,
the resulting multiplicative characteristic class CD2(X) ≡ C(f̂D2 , X) yields
the expansion34

CD2(X) = 1−
c2
(
12ψ1 − ln2(q)

)

12 ln2(q)
+

c3ψ2

2 ln3(q)
+

1

720 ln4(q)

(
360c22ψ

2
1(4.33)

+ 60(c22 − 2c4)ψ3 − 60c22 ln
2(q)ψ1

+ (3c22 − c4) ln
4(q)

)
+ · · · ,

where ψk = ψq(k, 1). It is again a multiplicative characteristic class with an
integral q-expansion. The integrality can again be argued for with the help
of the Hirzebruch–Riemann–Roch index theorem. Namely, CD2 becomes a
sum over Young tableaux ν of the form
(4.34)

CD2(X) = td(X)

(
η(q)

q1/24

)dim(X)∑

ν

(−q1/2)|ν|C00ν(q
−1)ch(Sν(T

1,0
X )) .

34See footnote 30.
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As the factors (−q1/2)|ν|C00ν(q
−1) enjoy an integral q-expansion, the large

volume limit of the disk partition function (4.9) yields the series IX(q) =
η(q)− dim(X)

∫
X CD2

(X), which realizes integral sums of holomorphic Euler
characteristics

(4.35) IX(q) =
∑

ν

(−q1/2)|ν|C00ν(q
−1)χ(Sν(T

1,0
X )) ,

with integral q-coefficients, where we removed a constant factor to normalize
the leading term to one.

4.4. BPS indices beyond the large volume limit

Analogously to the derivation of the large volume limit of the disk partition
function (4.15), the entire 3d disk partition function can be written with
eq. (4.8) in the geometric form
(4.36)

ZD2×qS1(E) ∼
∑

γ∈H2(X,Z)

e−t·γ

∫

X
e−Jec

β
1 (X)/2 ÂS1(X)

Γ̂∗(γ)
chS1(E)e−

ch
β
2
(X)−ch

β
2
(E)

ln q ,

where ti = t̂i −
ci
2 and t · γ =

∑
tiγi. The sum over γ runs over the non-

negative curve classes in X, which label the topological sectors of the dis-
cussed vortex configurations. The class Γ̂∗(γ) is defined in terms of the Chern
roots xα associated to the chiral fields with charges qα and with Neumann
and Dirichlet boundary conditions as

(4.37) Γ̂∗(γ) =

∏
α∈N Γq(1−

xα
ln q + qα · γ)

∏
α∈D Γq(1 +

xα
ln q − qα · γ)

.

For γ = 0 the class Γ̂∗ simplifies to the multiplicative characteristic class
ΓX,q

∗, and we recover the large volume disk partition function (4.15).
Using eq. (A.29) we can argue that the class (4.37) takes the general

form

(4.38) Γ̂∗(γ) = gγ(q, ch(Lα)) · ΓX,q
∗ ,

in terms of the line bundles Lα with c1(Lα) = xα. By construction the func-
tions gγ(q, ch(Lα)) have again an integral q-expansion. Therefore, repeating
the arguments of Sect. 4.3, we explicitly find that the 3d partition func-
tion (4.36) yields an integral q-series IX(Q, q) in all topological vortex sec-
tor labeled by Q. While the integrality property is again expected from the
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interpretation of IX(Q, q) as a generating function of BPS indexes, the ex-
pression (4.38) offers a geometric interpretation of the BPS indexes in terms
of holomorphic Euler characteristics of complex vector bundles built from
the line bundles Lα.

4.5. 3d brane factors and Mellin–Barnes integrals

The aim of this section is to describe integral bases of E-branes which gener-
ate a basis of K-theory charges and give rise to a set of linearly independent
partition functions with a large volume limit (4.15).

4.5.1. Integral solutions of Mellin–Barnes type. The reduced sys-
tem of q-difference operators (2.34) has k = dim(K(X)) linearly indepen-
dent solutions, the q-periods in eq. (2.17).35 The reduced difference equations
and the q-period vector for the degree N hypersurface in PN−1 are given in
App. A.3 and will serve as an example. The boundary condition considered
so far selects one particular linear combination of the q-periods. To obtain
more general solutions to the q-difference system we consider insertions of
extra ”brane factors” in the residue integral

(4.39) Z(E) = ln(q)

∫
dϵ

2πi
fD2(q, ϵ) · I(Q, q, ϵ) · fE(q, q

ϵ) .

So far fE(q, q
ϵ) = 1, which by eq. (4.7) corresponds to the brane on X with

chS1(E) = 1, i.e., full Neumann boundary conditions.
We seek a set {fEα} of brane factors, such that i) the partition functions

with insertions of fEα give a complete basis of solutions to the original q-
difference system and ii) the basis is integral in the sense that the the large
volume limit generalizes the index (4.9) to an S1-equivariant bundle E on
LX as in (4.15). More generally one may add the factor fE(z, q) in the
original Coulomb integral (2.1)

(4.40) Z(E) =

∫
dz

2πz

(
e−Sclass

∏

α

Zα

)
· fE(z, q) ,

such that it reduces to (4.39) upon evaluation at the poles. Eq. (4.40) may
serve as the starting point for an analytic continuation of Z(E) over the

35Here, linear dependence is defined with coefficients in q-dependent functions,
i.e., different elements in KS1(LX) are considered equivalent if they correspond to
the same local solution up to an overall q-dependent factor.
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deformation space by contour deformation. Integral solutions to differential
or difference equations of the above type are referred to as Mellin–Barnes
integrals.36

In order that the integral with an insertion of fE fulfills the same q-
difference equation as the original integrand with f = 1, the factor fE(z, q)
has to be invariant under shifts of z

(4.41) fE(z, q) = fE(zq, q) .

Indeed the derivation of the q-difference equation around (2.13) can be lifted
straightforwardly to the integrand before summing over poles, if one assumes
that the integration contour does not pass poles under a shift z → qz. Three
simple shift invariant functions that may serve as building blocks are
(4.42)

f1(z, q) = e
2πi ln z

ln q , f2(z, q) = θ(z, q)e
ln2(−zq−1/2)

2 ln q , f3(z, q) =
∏

i

θ(zxi, q)

θ(zyi, q)
,

recalling that θ(zq, q) = −z−1θ(z, q). The functions f1, f2 are invariant only
under z → qz, but not z → e2πiz, while f3 is invariant under both shifts, i.e.,
elliptic, if the arguments xi, yj satisfy

∏
i xi =

∏
i yi.

37 Factors of the type
f3 are rational in factors of type f2 and have been used in ref. [90] to define
q-analogues of Meijer functions.38 In addition to shift invariance, the factor
f has to have appropriate convergence properties on the integration contour
used in (4.40). The three factors have a simple physical interpretation in
the 3d partition function: f1 represents an integral mixed CS term for the
U(1)-R-symmetry and is generated by the monodromy in the FI term

(4.43) eln z lnQ/ln q Q→e2πiQ
−−−−−−−→ eln z lnQ/ln qe2πi ln z/ln q .

The choice f2 is related to integrating in N = (0, 2) boundary fermions and
will be discussed in detail below. An elliptic factor f3 describes an anomaly
free combination of boundary fields.

36See refs. [18, 19] for a discussion in the context of N = 4 supersymmetry and
ref. [89] for a recent discussion in the context of the 2d GLSM.

37More generally, one may replace z by powers of z in (4.42) with an appropriately
modified condition.

38Ref. [90] considers also non-elliptic factors f3, but these lead to functions satis-
fying different difference equations than the original solution. For a relation between
elliptic ratios and Chern–Simons interactions see ref. [29].
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Up to minor modifications, f2 is the 1-loop determinant of a N = (0, 2)
fermi multiplet on T 2 = ∂(S1 ×q D

2) computed in ref. [30]

(4.44) Zfermi(v) = e
1

2 ln q
ln2(vq−1/2)q−1/24θ(v) , v = zqαq∆α/2yfαrr ,

using the same notation as around (2.2). The 1-loop determinant of a fermi
multiplet on T 2 had been computed earlier in the context of string theory
[84, 91] and in the derivation of the loop space index theorems in ref. [80, 81].
The result differs in the prefactor of the theta function, which depends on
a choice of regularization for the infinite products in the determinants. The
regularization obtained from the S1 ×q D

2 partition function in ref. [30]
produces the shift invariant factor f2, up to the change of sign in the exponent
of f2, which is necessary for shift invariance.

4.5.2. Integrating in boundary fields and Dirichlet directions . We
now describe a simple basis of branes that can be obtained by a boundary
version of integrating in massive particles and relate it to Dirichlet boundary
conditions on X and LX. Let us again discuss the 2d case first.39 Integrating
in a periodic boundary fermion η on S1 charged with respect to a gauge
symmetry U(1) contributes a determinant factor

(4.45) f = det(1− e
iF

2π ) = 1− ye−xη ,

where 2πixη is the eigenvalue of the U(1) field strength F in the represen-
tation of η and y is a weight representing the non-zero mass for y ̸= 1; it
corresponds to the S1-equivariant version of the index theorem [76]. The
two-dimensional C module generated by the fermion zero mode is spaned
by |0⟩ and η|0⟩ = |1⟩, where |q⟩ has U(1) charge q. f is the Chern character of
the alternating bundle E =

∑1
i=0(−)i ∧i L, where L is the bundle associated

to the fermion η:

(4.46) ch(|0⟩
η
→ |1⟩) = 1− ye−xη .

Starting with the ordinary ∂̄ index on a weighted projective space X =
WPn−1 and integrating in η produces the integrand

(4.47) td(X) · ch(E) =

n∏

α=1

xα
1− e−xα

· (1− ye−xη) .

39Constructions of D-brane boundary conditions using 1d boundary fermions
have been discussed in refs. [83, 92–94].
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If xη = xα for some α, say α = 1, taking the massless limit y → 1 cancels a
bosonic determinant factor in td(X), giving

(4.48)

n∏

α=2

xα
1− e−xα

· x1 = td(H) · c1(NH) .

Here H ⊂ X is the hypersurface with normal bundle NH defined by setting
the bosonic field (homogeneous coordinate) in φ1 to zero. Integrating in η
has created a Dirichlet boundary condition φ1 = 0.

We will now use a similar idea to describe Dirichlet conditions on LX.
Consider integrating in boundary fermions in the 3d partition function with
determinant

(4.49) f2 = θ(ye−x)c(ye−x) , c(x) = exp

(
1

2 ln q
ln2(−xq−1/2)

)
.

Using an S-transformation as in (4.17) one may check that the 3d brane
factor f2 reduces to the 2d Chern character (4.45) in the small radius limit.
Repeating the argument around (4.48) gives, in the massless limit y → 1,40

(4.50) ÂS1(X) · f2 = ÂS1(H) · x1 · [iC
−3eiπx1/ ln qex

2
1/2 ln q(q)2∞] ,

where C = q−
1

24 q′
1

24 . The r.h.s. is related to the charge for a 3d brane asso-
ciated to the Dirichlet condition φ1 = 0. The factor in the square bracket
comes from the regularization of the bulk theory coupled to the 2d boundary
theory; thus the above manipulation should be considered on the integrand
of the half-index:

(4.51)
1

(−η)d
ÂS1(X)

ΓX,q
∗ e−chβ2 (X)/ ln q · f2

=
eiπx/ ln q

(−η)d−1

ÂS1(H)

Γ∗
H,q

e−(chβ2 (X)−chβ2 (E))/ ln q · cK1 (NH)

40Eq. (4.48) is a special case of the Grothendieck–Riemann–Roch formula for X.
The following equation should represent a special case of a Grothendieck–Riemann–
Roch formula for LX.
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where chβ2 (E) = x21/2 and the factor eiπx/ ln q is a half-integral contribution
to the FI term equal to f1(e

x/2). Moreover

cK1 (NH) = x1
iC−3q−1/24(q)∞
Γq(1− x1/ ln q)

(4.52)

= x1

∞∏

n=1

(1− e−xqn) · [−iC−3q−1/24(1− q)−x1/ ln q] ,

can be interpreted as an Euler class of the normal bundle including the
contribution from negative loops, cpw. (4.14).

The connection of the fermion determinant to the S1-equivariant Chern
character for a bundle on LX can be illustrated treating the 2d fermion η
on T 2 as a 1d fermion on S1 with infinitely many Fourier modes ηk, k ∈ Z,
weighted by qk. Restricting for the moment to the non-negative modes k ≥ 0,
the Fock space generated by these modes of the single 2d fermion is the
infinite sequence

(4.53) |0⟩ →
∑

0≤k1

ηk1
|0⟩ →

∑

0≤k1<k2

ηk1
ηk2

|0⟩ → · · ·

corresponding to an alternating bundle E+ =
∑∞

i=0(−)i ∧i L, where the sub-
script means restriction to k ≥ 0. The equivariant character generalizing the
2d expression (4.46) is

1−
∑

0≤k1

qk1ye−x +
∑

0≤k1<k2

qk1+k2y2e−2x(4.54)

−
∑

0≤k1<k2<k3

qk1+k2+k3y3e−3x + · · ·

= 1−
ye−x

1− q
+

y2e−2xq

(1− q)(1− q2)
−

y3e−3xq3

(1− q)(1− q2)(1− q3)
+ · · ·

=

∞∑

k=0

(−ye−x)kqk(k−1)/2

(q)k
= (ye−x, q)∞ ,

where (A.26) has been used in the last step. By an appropriate choice of the
vacuum |0⟩, the modes for negative k can be treated as another set of modes
with positive k but opposite U(1) charge. Multiplying the two contributions
gives for the total Chern character

(4.55) chS1(E) = (ye−x, q)∞(qy−1e+x, q)∞ = θ(ye−x, q) ,
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which is the brane factor f2, up to the prefactor from the regularization.

4.5.3. 3d matrix factorizations. The new boundary degrees of free-
dom added in the last step have to be coupled to the rest of the theory in
a supersymmetric way. Boundary conditions for the 2d theory with B-type
supersymmetry can be defined by matrix factorizations W = E · J of the
superpotential [95], and a similar description exists for boundaries of the 3d
theory with N = (0, 2) supersymmetry [30, 96]. The factors E and J deter-
mine the supersymmetric couplings of the boundary fermions in 1d or 2d,
respectively. The action of N = (0, 2) Fermi multiplets has been thoroughly
studied in the context of linear sigma models for heterotic strings, starting
with refs. [8, 97].

The Chern characters considered above are related to simple matrix
factorizations of Koszul type described as follows. In the 2d theory one
considers r fermionic annihilation and creation operators ηi and η̄i with
anti-commutators {ηi, η̄j} = δij and {ηi, ηj} = 0 = {η̄i, η̄j} acting on a vac-
uum |0⟩ with ηi|0⟩ = 0. The Fock space obtained by acting with the η̄i
on |0⟩ is a sum of graded vector spaces. The Koszul type complex is de-
fined by a fermionic map Q =

∑
xiηi connecting consecutive vector spaces⊕

i1<i2···<ik
η̄i1 · · · η̄ik |0⟩ and

⊕
i1<i2···<ik−1

η̄i1 · · · η̄ik−1
|0⟩ of fixed fermion

number. For r fermions and bosonic maps xi of equal charge q one obtains
a complex of vector bundles

O(q0)
∑

xiηi
−−−−→ O(q0 + q)⊕r

∑
xiηi

−−−−→ O(q0 + 2q)⊕(
r

2)(4.56)
∑

xiηi
−−−−→ · · ·

∑
xiηi

−−−−→ O(q0 + rq) ,

where q0 + rq is the charge of the vacuum. The constructions of 2d boundary
conditions using more general complexes of fermions has been given, e.g., in
refs. [92, 93]. These complexes can be associated to 2d matrix factorizations
by specifying in addition the action of the U(1) R-symmetry group on the
vector spaces [83].

For the degree N hypersurface in PN−1 one considers factorizations of
the superpotential41

(4.57) W = φ0gN (φi) .

The GLSM has two phases, a large volume phase where p = 0 and the equa-
tion gN (xi) = 0 cuts out a hypersurface in PN−1 parametrized by xi, and a

41In this section φi denotes a superfield and xi its lowest components; we use
also p = x0.
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Landau–Ginzburg phase where p ̸= 0 and xi parametrize CN/ZN [8]. Two
special Koszul complexes associated with the fields φ0 and φi>0 considered
in ref. [83] are
(4.58)

a) O(q0)
gN
⇄
p
O(q0 +N) , Q = gNη0 + pη̄0 ,

b) O(q0)
xi
⇄

Wi

O(q0 + 1)
xi
⇄

Wi

· · ·
xi
⇄

Wi

O(q0 +N) , Q =

N∑

i=1

xiηi +Wiη̄i ,

corresponding to factorizations W = p · gN (xi) and W =
∑

i xi ·Wi with
Wi = ∂xiW , respectively. The factorization a) represents a trivial configura-
tion near the LG point Q−1 = 0, where p ̸= 0 and the boundary potential is
strictly positive. Similarly the factorization b) is trivial near large volume,
where the set xi = 0 for all i is excluded.

We can use the same sequences to define the couplings of the 2d bound-
ary fermions for a 3d matrix factorization associated to the boundary ∂(S1 ×q

D2). The difference lies in the different contribution of the higher-dimensional
fields to the path integral. The fermion zero mode is replaced by a chiral
fermion ψ(z).

The simplest quantity to consider is the graded sum of cohomologies,
which computes the Chern character for a bundle onX and LX for boundary
fermions in 1d and Fermi multiplets in 2d, respectively. For the complexes in
(4.58) these are, up to normalization factors, the Chern characters computed
in Sect. 4.5.2

(4.59)
2d 3d

a) 1− e−Nx f2(e
−Nx)

b) (1− e−x)N f2(e
−x)N

By positivity of the boundary potential, the 3d matrix factorizations asso-
ciated with the sequences a) and b) should correspond to trivial E-branes
in the IR near the LG point and large volume point, respectively. This is
consistent with the fact that an insertion of the brane factor in the Mellin–
Barnes integral considered below makes the integrand of the residue integral
regular in the respective regime.

Similarly, the boundary conditions corresponding to k Dirichlet direc-
tions on LX considered in the previous sections represent another set of
simple 3d matrix factorizations with
(4.60)
c) Q = gNη0 + (x1η1 + · · ·+ xkηk) + η̄0p, chS1(E) ∼ f2(e

−Nx)f2(e
−x)k .
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To describe more general cases, one needs to understand the equivalence
relations between E-branes, i.e., the analogue of tachyon condensation for
D-branes studied in ref. [83, 95]. This an important open problem. In the
3d theory, the objects in the sequence (4.56) do not represent C-modules
associated with 1d fermionic zero modes, but the non-trivial Q̄+ cohomol-
ogy underlying the elliptic genus [82]. These spaces are modules of a chiral
algebra generated by 2d chiral fermions ψ(z) and these have to be matched
in a 3d generalization of subtracting ”trivial” branes.42

4.5.4. Bases of solutions via Mellin-Barnes integrals. The bound-
ary conditions described above allow to construct bases of linearly indepen-
dent integral solutions. Here we consider again the degree N hypersurface
in PN−1 for simplicity. The partition function with spectrum (2.4) can be
written as the Mellin–Barnes type integral

(4.61) Z(ELV
0 ) ∼

∫
Qσe−CS Γq(−σ)

N

Γq(−Nσ)
dσ .

Here σ = − ln z/ ln q and ELV
0 stands for the brane on X with Neumann

boundary conditions in the large volume phase.43 The contour is initially
chosen to sum up the poles σ = n for n ≥ 0 and gives (2.6).

In (4.61), the 3d chiral φ0 of charge −N has Dirichlet boundary condi-
tion, which sets the superpotential at the boundary to zero and is super-
symmetric without introduction of boundary terms. Using the identity of
the q-Gamma function

(4.62) Γ(σ)Γ(1− σ) =
(q)2∞(1− q)

θ(qσ)
,

the above integral can be rewritten as

(4.63) Z(ELV
0 ) ∼

∫
Qσe−CSΓq(−σ)

NΓq(1 +Nσ)f2(q
−Nσ)dσ .

42Modules of chiral algebras appear also in the context of triangulations of 4-
manifolds [98], where distinct triangulations are proposed to yield equivalence re-
lations among chiral algebras. It would be interesting to see, if such equivalences
are meaningful in the context of E-branes as well.

43We will not be careful about the normalization and the Chern–Simons terms
hidden in e−CS , which are fixed as in Sect. 2.1 such that the q-difference system is
given by eq. (2.16).
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This expression describes a φ0 field of charge +N with Neumann boundary
conditions. In this case there is a non-vanishing boundary variation for su-
persymmetry transformations, which needs to be cancelled by coupling to
a N = (0, 2) boundary Fermi multiplet via 3d matrix factorization [30, 96].
The Fermi multiplet contributes a factor f2(q

−Nσ) as in (4.59).
Starting from either (4.61) or (4.63), a basis of solutions is obtained by

integrating in boundary fermions with brane factors f2(z)

Z(ELV
a ) ∼

∫
Qσe−CS Γq(−σ)

N

Γq(−Nσ)
· f2(q

−σ)adσ, a = 0, . . . , N − 2 .

The above E-branes constitute a dim(K(X))-dimensional basis {ELV
a } of

linearly independent integral K-theory charges, and the Mellin–Barnes inte-
grals give a basis of linearly independent solutions to the q-difference system
(2.16) near small |Q|. However they do not give global solutions, as the inte-
grand does not have poles at σ < 0. The regularity of the integrand in this
regime is due to the factor f2(q

−Nσ) in eq. (4.63) and is consistent with the
claimed triviality of the factorization a) in the three-dimensional theory.

At the Landau–Ginzburg point |Q| is small and p ̸= 0 [8]. This excludes
Dirichlet boundary conditions for φ0. Imposing Dirichlet conditions on all
φi>0 and Neumann conditions on φ0, gives the integral

Z(ELG
a ) ∼

∫
Qσe−CS Γq(1 +Nσ)

Γq(1 + σ)N
f1(q

σ)adσ(4.64)

with a = 0. Summing over the poles at σ = −k/N one obtains the solu-
tion (A.48) as a series in Q−k/N . The complete basis of solutions (A.49)
is generated by phase rotations Q→ Qe2πi (4.43), adding powers of brane
factors f1. The integrand does not have poles in the regime σ > 0, as it is
obtained from the one in eq. (4.61) by multiplication with f2(z)

N/f2(z
N ).

This is proportional to the Chern character of the matrix factorization b)
and the regularity of the integrand for σ > 0 confirms the triviality of the
3d matrix factorization at large volume.

Due to the absence of poles in the opposite regime, neither of above
integrals defines a global solution to the q-difference equation. It is straight-
forward to introduce brane factors that reduce to the local solutions above
and have residues in both regimes. E.g., allowing for rational factors in f1
gives the integral

Z ∼

∫
Qσe−CS Γq(1 +Nσ)

Γq(1 + σ)N
1

1− e2πiσ
dσ .(4.65)
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which at large volume gives Z ∼ Z(ELV
0 ), while Z ∼ − 1

N

∑N−1
a=1 aZ(E

LG
a ) at

the Landau–Ginzburg point. Integrals of this type are expected to arise from
more general 3d matrix factorizations, which are obtained from the above
studied complexes of Koszul type by using equivalences between E-branes.

5. Mirror symmetry

N = 2 supersymmetric 3d gauge theories have a symmetry that is called
mirror symmetry [48, 99–101]. It maps the Higgs branch of one theory to the
Coulomb branch of the dual theory and vortices of the former to bound states
of electrons and monopoles in the latter. Since the 3d partition function
computes the vortex sum I(Q, q), one may expect a nice action of 3d mirror
symmetry on this quantity. It has been shown in ref. [56] that 3d mirror
symmetry may be related to the 2d Hori–Vafa mirrors [102] in the small
radius limit of an S1 compactification. Combining this with the IR flow to
equivariant quantum-K-theory and quantum cohomology, respectively, one
may hope to learn something new about certain aspects of 3d/2d mirror
symmetry.

In the following we relate the vortex sum of the original partition func-
tion for X to the partition function of the gauge theoretic mirror, called Y .
The latter takes the form of a 3d version of Landau–Ginzburg type overlap
integrals, giving a q-generalization of the 2d expressions derived in ref. [75].
The same type of integrals appears in the definition of K-theoretic mirrors of
ref. [10], showing that these are special cases of 3d gauge theoretic mirrors.

5.1. Partition functions for gauge theoretic mirrors

The N = 2 mirror pairs relevant to the class of 3d GLSM considered in
this paper have been described in refs. [56, 103]. For a theory X of the
type considered in the previous section, its Higgs branch is mirror-dual to
a theory Y in its Coulomb branch. Such a mirror pair (X,Y ) of N = 2
supersymmetric 3d theories is given by the gauge theory data displayed in
Table 5.1. The R charges can be chosen as in (A.17). The charges have to
fulfill the condition

(5.1)
∑

α

qaαq̂
r
α = 0 ,

a = 1, . . . , k ,
r = 1, . . . , N − k .
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3d theory X — Higgs branch: 3d theory Y — Coulomb branch:

gauge group U(1)k gauge group U(1)N−k

N chiral multiplets φα of charge qaα N chiral multiplets φ̂α of charge q̂rα
FI parameters ζa, masses mα FI parameters ζ̂a, masses m̂α

(α = 1, . . . , N ; a = 1, . . . , k) (α = 1, . . . , N ; r = 1, . . . , N − k)

Table 5.1: The table exhibits the gauge theory data of a pair of mirror dual
3d theories. Namely, the Higgs branch of the 3d theory X in the left column
and the Coulomb branch of the 3d theory Y in the right column are dual to
each other.

Moreover, the effective FI terms and masses on the two sides are related by

(5.2) ζa =
∑

α

qaαm̂α , ζ̂r =
∑

α

q̂rαmα .

For concreteness we consider an example from the previous section, the PM−1

theory perturbed by a massive particle of U(1) charge −ℓ (with ℓ ≤M). The
charges and masses of the theory are

(5.3) (qaα) = (−ℓ, 1, . . . , 1) , (mα) = (m0, 0, . . . , 0) , α = 0, . . . ,M ,

where the first entry is for the massive particle with fugacity y = e−m0 . The
mirror theory Y is an U(1)M -theory with M + 1 matter fields. A choice of
charges satisfying (5.1) is
(5.4)

(q̂rα) =




q̂10 0 0 0 · · · 0
q̂11 1 0 0 · · · 0
q̂12 0 1 0 · · · 0
...

...
...

...
. . .

...
q̂1M−1 0 0 0 · · · 1
q̂1M −1 −1 −1 · · · −1




,

q̂0α =

{
1 0 ≤ α ≤ ℓ ,

0 ℓ < α ≤M ,

r = 0, . . . ,M − 1 ,
α = 0, . . . ,M .

The constraints (5.2) read

(5.5) ζ1 =
∑

α>0

m̂α − ℓm̂0 , ζ̂r =

{
m0 r = 0 ,

0 else .



✐

✐

“4-Mayr” — 2020/7/9 — 18:07 — page 381 — #55
✐

✐

✐

✐

✐

✐

A 3d gauge theory/quantum K-theory correspondence 381

With Q = e−ζ1

, yα = e−m̂α , the first equation becomes

(5.6)
∏

α>0

yα = Qyℓ0 .

The difference operator for the theory X is (see eqs. (2.34),(3.6))

(5.7) L =
∏

α>0

(1− qϑα)−Q

ℓ∏

j=1

(1− yq−ϑ0+j) .

In view of the general mirror map Qa =
∏

α y
qaα
α and the definition ϑα =∑

a q
a
αθa (see eqs. (5.2),(2.35)), the shift operators act on the mirror side Y

by shifts of the mass parameters

(5.8) qϑαyβ = qδαβyβ .

To write down the disk partition function for Y one needs to know the
map between boundary conditions under mirror symmetry. This question
has been recently studied in ref. [104] for a class of examples on a case
by case basis, with the answers depending on the details. For the theories
consider here we will make some choices motivated below and then check
their consistency. A hint comes from the relevant composite operators for
theory Y , which are of the form [56]

(5.9) X(nα) =
∏

α∈I

φ̂nα
α

∏

α/∈I

(φ̂†
α)

−nα , I = {α : nα ≥ 0} .

Gauge invariance requires
∑

α nαq̂
r
α = 0, which is solved by nα =

∑
a paq

a
α.

These operators are dual to vortices with windings pa in U(1)k. In the above
example, positive winding p in U(1) gives positive nα>0 and negative n0, i.e.,
the BPS operators involve the modes of the chiral fields φ̂α>0 and the anti-
chiral field φ̂†

0. The vortices have bosonic zero modes for α ∈ I, but not for
α /∈ I [8], and fermionic zero modes for all fields of non-zero charge [50, 51].
These match the modes of bulk fields restricted to the boundary, if one takes
Neumann (Dirichlet) boundary conditions for α ∈ I (α /∈ I).
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Starting from eq. (2.2), the partition function with these boundary con-
ditions is

(5.10)

ZY ∼

∫ M−1∏

r=0

d ln zre
−m0 ln z0

ln q z0
(z0y0q, q)∞

∏M−1
α=1 (z

q̂0α
0 zαyα, q)∞

(
z
q̂0
M

0 yM∏M−1
r=1 zr

, q

)

∞

∼

∫ M−1∏

r=0

d lnxre
−
m0 ln x0

ln q x0
(x0q, q)∞∏M
α=1(xα, q)∞

,

where we neglect overall constants. The second expression is obtained by
a change of integration variables, with the xα satisfying the same equation
(5.6) as the yα. The non-trivial choices made in the above ansatz concern
the R charges and gauge charge for the α = 0 direction. The extra factor z0
in the integrand is generated by a shift m0 → m0 − ln q, which accounts for
the non-zero R-charge of the field φ0. The other modification is the weight
z0 in the determinant in the numerator, which is the weight of the anti-chiral
with gauge charge −1 appearing in (5.9). With this choice ZY is annihilated
by the difference operator (5.7) of the theory X, using eqs. (5.8),(A.28), as
should be the case for dual boundary conditions. Using the sum formula
(A.27) for the q-Pochhammer symbols, ZY can be rewritten as a LG type
of integral

(5.11) ZY (α) ∼

∫

Γα

∏ dxi
xi
eW , W =

ln(y) ln(x0)

ln(q)
+W (xi, q) ,

with

(5.12) W (xi, q) =
∑

k>0

w(xk, qk)

k(1− qk)
, w(xi, q) =

∑

α>0

xα − qx0 .

The linear function w(xi) = w(xi, q = 1) is the superpotential of the 2d mir-
ror derived in ref. [102]. The expression (5.11) has the form of the Landau–
Ginzburg period of the 2d theory, with w(xi) replaced byW (xi, q). Integrals
of the type (5.11) have been studied by Givental for the massless case in
ref. [10], where they were introduced from scratch as solutions to a given
system of difference equations for symmetric quantum K-theory and used to
define a concept of K-theoretic mirrors. This identifies Givental mirrors as
special cases of known 3d gauge theoretic mirrors.

In the 2d theory with c1 = 0, the Landau–Ginzburg period can be rewrit-
ten as an integral over a Lagrangian cycle of the mirror Calabi–Yau mani-
fold Y of X. In the 3d gauge theory, the integral (5.11) arises as the integral
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over zero modes of the gauge fields, i.e., Wilson line moduli of the 3d theory.
It would be interesting to understand in more detail, how the Calabi–Yau
geometry emerges from the gauge theory moduli space.

5.2. Direct integration of 3d Landau–Ginzburg integrals

The partition functions of two dual gauge theories X and Y should be equal
for a mirror pair of boundary conditions. In the following we identify integra-
tion contours Γα for the Landau–Ginzburg integrals ZY (α) which reproduce
the partition functions ZX(ELG

a ) in eq. (4.64) upon direct integration.
Convergent integration contours Γα for the Landau–Ginzburg integrals

can be constructed as gradient flows of the real part ReW of the superpo-
tential, starting from the critical points of W , see refs. [10, 23, 29, 75]. A
detailed analysis of gradient flows for the superpotential of basic 3d gauge
theories has been made for several examples in ref. [29]. The result is that
the flows depend on the values of the parameters (Q, q, y), but at the end,
the partition functions of a mirror pair match in all regimes of parameters
for dual boundary conditions , possibly up to monodromy.

We consider a class of integration cycles for small Q−1 and q which are
3d lifts of the integration cycles used in the direct integration of 2d LG
integrals [105]. To this end, we write W =W0(xα>0) + δW (x0), and treat
the second term as a perturbation, using the constraint (5.6):
(5.13)

δW (x0) =
ln(y) ln(x0)

ln(q)
−
∑

k>0

qkxk0
k(1− qk)

, x0 = ψ
∏

α>0

x1/ℓα , ψ = Q−1/ℓ.

Expanding the exponential for small ψ gives

(5.14) x0e
δW (x0) =

∞∑

k=1

ψk̂

(q̄)k−1

∏

α>0

xk̂/ℓα , k̂ = k + δ , δ =
ln y

ln q
.

Inserting this expansion in ZY , the integral factorizes as

(5.15) ZY =
∑

k>1

ψk̂

(q̄)k−1

∏

α>0

∫
dxα

x
k̂/ℓ−1
α

(xα, q)∞
.

The basic integrals evaluate to

(5.16)

∫

C

dy

y

y−ζ

(y, q)∞
=

(1− q)−ζ

Γq(1 + ζ)
,
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where C is a contour that sums up the poles of the denominator. This
integral is a 3d lift of the Hankel type integrals [106] for the ordinary Gamma
function and reduces to it in the 2d limit β → 0 after the variable change y =
ℏβŷ, q = e−ℏβ . Collecting all factors one obtains ZY = −(1− q)1+δωLG

0 (ψ)
with

(5.17) ωLG
0 (ψ) =

∑

k>1

(
ψ

(1− q)(ℓ−N)/ℓ

)k̂ (−)kqk(k−1)/2

Γq(k)Γq(1−
k̂
ℓ )

N
.

The series ωLG
0 (ψ) converges for small |ψ| and |q| and is annihilated by

the difference operator (5.7), as it should (cpw. App. A.3). For ℓ = N the
result agrees with the partition function ZX(ELG

0 ) in (4.64) describing the
E-brane with full Dirichlet conditions for the theory X. To obtain the mirror
of the other branes ELG

a>0 for X one notes that the solution of the constraint

(5.6) involved the choice of a root for the factors x
1/ℓ
α . Different roots can be

absorbed into redefinitions ψ → ηiψ with ηℓ = 1. These choices gives further
solutions

(5.18) ωLG
i (ψ) = ωLG

0 (ηiψ) ,

that match to the other boundary conditions in eq. (4.64).

6. Computation of quantum K-theory invariants

In this section we explicitly compute permutation equivariant quantum K-
theory invariants by using Givental’s reconstruction theorems applied to
three-dimensional partition functions.

The genus zero quantum K-theory invariants of a Kähler manifold X
are holomorphic Euler characteristics over the moduli space of stable maps
M0,m(X, β) with m marked points into the class β ∈ H2(X,Z) of the form

(6.1) ⟨t1(q), . . . , tm(q)⟩0,m,β

= χM0,n(X,β)(ev
∗
1 t1(L1)⊗ . . .⊗ ev∗m tn(Lm)⊗Ovir) .

Here the inputs ti(q) take values in

(6.2) ti(q) ∈ K(X)[q, q−1] ,

where the Laurent polynomials ti(q) in q with coefficients in K(X) get eval-
uated with the universal cotangent line bundles over (C, x1, . . . , xm, f) ∈
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M0,m(X, β) at the marked point xi, respectively, and evi : M0,m(X, β) → X
is the evaluation map at the marked point xi. Finally, O

vir is the virtual
structure sheaf of the moduli space M0,m(X, β) constructed in ref. [24].

Givental’s permutation equivariant quantum K-theory refines the ordi-
nary quantum K-theory invariants with respect to the symmetric group Sn
(for n ≤ m) acting as automorphisms on the moduli space of stable maps
M0,m(X, β) by permuting the last n marked points. Then the holomorphic
Euler characteristics with n identical inputs t(q) ≡ tm−n+1(q) = · · · = tm(q)
are equivariantly refined to

(6.3) ⟨t1(q), . . . , tm−n(q); t(q), . . . , t(q)⟩
Sn
0,m,β

=
∑

ν∈Irrep(Sn)

χSn,ν
β (t1(q), . . . , tm−n(q); t(q)) · ν .

The sum runs over all irreducible representations ν of the symmetric group
Sn, and χSn,ν

β are the equivariant Euler characteristics of the irreducible
representation ν of the symmetric group Sn.

In particular, the equivariant quantum K-theory invariants associated
to the one-dimensional symmetric representations sym = ··· read

(6.4) ⟨t1(q), . . . , tm−n(q); t(q), . . . , t(q)⟩
Sn,sym
0,m,β

= χSn,sym
β (t1(q), . . . , tm−n(q); t(q)) .

They are referred to as the symmetric quantum K-theory invariants. The
unrefined ordinary quantum K-theory invariants are recovered from equiv-
ariant invariants as

(6.5) ⟨t1(q), . . . , tm−n(q), t(q), . . . , t(q)⟩0,m,β

=
∑

ν∈Irrep(Sn)

χSn,ν
β (t1(q), . . . , tm−n(q); t(q)) · dim ν ,

in terms of the dimensions of the irreducible representations ν.
Analogously to the cohomological Gromov–Witten invariants, the quan-

tum K-theoretic invariants are conveniently encoded in the K-theoretic
Givental J-functions. They enjoy for the ordinary quantum K-theory, the
equivariant quantum K-theory and the symmetric quantum K-theory the
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expansions [10]
(6.6)

JK(t) = (1− q) + t(q) +
∑

β≥0

∑

n≥0

∑

i

Φi

n!

〈
Φi

1− qL
, t(q), . . . , t(q)

〉

0,n+1,β

Qβ ,

Jeq
K (t) = (1− q) + t(q) · s +

∑

β≥0

∑

n≥0

∑

i,ν

sν · Φ
i · χSn,ν

β

(
Φi

1− qL
; t(q)

)
Qβ ,

J sym
K (t) = (1− q) + t(q) +

∑

β≥0

∑

n≥0

∑

i

Φi · χSn,sym
β

(
Φi

1− qL
; t(q)

)
Qβ .

Here the first term is called the dilaton shift and the second term is referred
to as the input of the J-function. Φi and Φi denote a basis and a dual
basis of K(X), and sν are the Schur polynomials of the Young tableaus of
the irreducible representations ν in the Novikov ring Λ = Q[[N1, N2, . . .]] of
Newton polynomials Nr = xr1 + xr2 + · · · . In particular, we have s = N1.
These K-theoretic J-functions and their inputs respectively take values in
the formal rings

(6.7)

JK(t) ∈ K with t ∈ K+ ,

Jeq
K (t) ∈ K ⊗ Λ with t · s ∈ K+ ⊗ Λ ,

J sym
K (t) ∈ K with t ∈ K+ ,

with [62]

(6.8)

K = K(X)⊗ C(q, q−1)⊗ C[[Q]] ,

K+ = K(X)⊗ C[q, q−1]⊗ C[[Q]] ,

K− = K(X)⊗ {r(q) ∈ R(q) | r(0) ̸= ∞ and r(∞) = 0} ⊗ C[[Q]] ,

such that K = K+ ⊕K− and where R(q) denotes the field of rational func-
tions in the variable q.44 Note that the K-theoretic invariants of the or-
dinary/symmetric and permutation equivariant J-functions lie in the sub-
space K− ⊂ K and K− ⊗ Λ ⊂ K ⊗ Λ, respectively. All three K-theoretic J-
functions are canonically identified for vanishing input, namely

(6.9) JK(0) = Jeq
K (0) = J sym

K (0) = (1− q) +
∑

β≥0

∑

i

Φi

〈
Φi

1− qL

〉

0,1,β

Qβ .

44K± are Lagrangian subspaces of K with respect to the symplectic pair-
ing Ω(f, g) = (Resq=0 +Resq=∞)dq

q

(
f(q), g(q−1)

)
K

with the product (E ,F)K =
χ(X, E ⊗ F) on K(X) [62].
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For a detailed discussion on equivariant quantum K-theory, we refer the
reader to original refs. [10].

6.1. The point

As discussed in Sect. 3.3, the 3d vortex sum for the target X = pt coincides
with the topological vertex for a stack of branes on a single leg of C3. To
set the stage for the forthcoming computations, we briefly review the K-
theoretic Givental J-functions for this case (see p.I of [10]):

(6.10) Jeq
K (t) = (1− q)e

∑+∞

k=1

t·Nk
k(1−qk)

Here Nr = xr1 + xr2 + · · · are the Newton polynomials. Expressed in terms
of the topological vertex according to eq. (3.18), the J-function takes the
form

(6.11) Jeq
K (t) = (1− q)

[
∑

ν

(−q−1/2)|ν|
∑

ν

C00ν(q
−1)sν(x)

]t
.

For t = 1, it becomes (up to normalizations) the generating function of the
topological vertex C00ν(q

−1).45 Expanding in the Schur polynomials sν we
arrive for the first few leading orders in marked points at

(6.12)

〈
1

1− qL
; 1, 1

〉S2

0,3

=
1

(1− q2)
s +

q

(1− q2)
s ,

〈
1

1− qL
; 1, 1, 1

〉S3

0,4

=
1

(1− q2)(1− q3)
s +

q

(1− q)(1− q3)
s

+
q3

(1− q2)(1− q3)
s ,

45After the replacement C00ν → (−1)|ν|C00ν , the obtained expressions agree with
the topological vertex in the canonical framing as normalized in ref. [25].
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〈
1

1− qL
; 1, 1, 1, 1

〉S4

0,5

=
1

(1− q2)(1− q3)(1− q4)
s

+
q

(1− q)(1− q2)(1− q4)
s

+
q2

(1− q2)2(1− q3)
s

+
q3

(1− q)(1− q2)(1− q4)
s

+
q6

(1− q2)(1− q3)(1− q4)
s .

Here the Schur functions sν are labeled by the Young tableau of the irre-
ducible representation ν of the symmetric group,46 which they obey the ring
relations

(6.13) sν · sµ =
∑

ρ∈Irreps(ν⊗µ)

sρ .

In terms of the Newton polynomials they are for instance given by

(6.14)

s = N1 , s =
1

2
(N2

1 −N2) , s =
1

2
(N2

1 +N2) ,

s =
1

6
(N3

1 − 3N1N2 + 2N3) , s =
1

3
(N3

1 −N3) ,

s =
1

6
(N3

1 + 3N1N2 + 2N3) .

By projecting on the symmetric representations of the permutation
equivariant invariants (6.12), we readily obtain with eq. (A.27) the per-
mutation symmetric quantum K-invariants

〈
1

1− qL
; 1, . . . , 1

〉Sn,sym

0,n+1

= (1− q) Coeff(e
∑
k>0

xk

k(1−qk) , xn)(6.15)

=
1∏n

i=2(1− qi)
for n ≥ 2 ,

which are in agreement with the holomorphic Euler characteristics directly
obtained from the permutation symmetric J-function J sym

K . Furthermore, by

46The monomials of the Schur functions sν in Λ are given by the associated
semi-standard Young tableaus with entries in the positive integers.
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employing the relation (6.5) we recover from the invariants (6.12) together
with the dimensions of the representations of Sn

(6.16)
dim = dim = 1 , dim = dim = 1 , dim = 2 ,

dim = dim = 1 , dim = 2 , dim = dim = 3 ,

the ordinary quantum K-invariants

(6.17)

〈
1

1− qL
; 1, . . . , 1

〉

0,n+1

=
1

(1− q)n−1
for n ≥ 2 .

This is in agreement with the ordinary quantum K-theoretic J-function JK ,
as directly given by K-theoretic string equation [24].

6.2. The projective surface

The projective surface P2 is our next example. Its classical K-theory ring
K(P2) is generated by Φk = (1− P )k, k = 0, 1, 2, with the tautological line
bundle P ≡ O(−1) of P2, and its intersection pairing for these generators of
K(P2) reads

(6.18) (Φk,Φℓ) =

∫

P2

td(P2) ch(Φk ⊗ Φl) =




1 1 1
1 1 0
1 0 0


 .

The J-function JK with vanishing input [10](p. II)

(6.19) JK(0) = Jeq
K (0) = J sym

K (0) = (1− q)

+∞∑

d=0

1
∏d

i=1 (1− qiP )3
Qd ,

coincides with the vortex sum (3.1) obtained from the partition function,
up to the normalization factor (1− q).

Let us now focus on the permutation equivariant quantum K-theoretic J-
function with non-vanishing input. Using Givental’s reconstruction theorem
[10](p. VIII) for the permutation equivariant K-theoretic J-function, we can
generate a non-trivial input as follows

(6.20) Jeq
K (t(ϵ)) = e

∑+∞

r=1

∑
ℓ Ψr(ϵℓ)P

ℓrq
ℓrQ∂Q

r(1−qr) JK(0) .

The operator acting on JK(0) is of the form (3.8) obtained in Sect. 3.2
by integrating in new massive modes in the partition function. The mass



✐

✐

“4-Mayr” — 2020/7/9 — 18:07 — page 390 — #64
✐

✐

✐

✐

✐

✐

390 Hans Jockers and Peter Mayr

parameters are described by ϵ =
∑

ℓ ϵℓP
ℓ, which is a formal series in the

Newton polynomials Nr and the variable Q of the Novikov ring Λ⊗ C[[Q]]
with coefficients in the polynomial ring K(P2)⊗ C[q, q−1]. Furthermore, Ψr

denotes the Adams operator, which acts on variables Q, q, and the ring Λ
of Newton polynomials Nr as

(6.21) Ψr(Q) = Qr , Ψr(q) = qr , Ψr(Nk) = Nrk .

In order to generate with formula (6.20) the permutation equivariant J-
function Jeq

K (t(ϵ)) with input

(6.22) t(ϵ) = aΦ1 + bΦ2 ,

we arrive to leading order in Q and to leading order in the degree of the
Schur polynomials sν at

(6.23) ϵ = (aΦ1 + bΦ2) · s +
Q

2

(
b(1− b)(Φ0 − Φ1) · s

− b(1 + b)(Φ0 − Φ1) · s + · · ·
)
+ · · · .

Note that the coefficients of the elements of the Novikov ring Λ⊗ C[[Q]] are
in the polynomial ring K(P2)⊗ C[q, q−1].

From the J-function Jeq
K (t) with input (6.22) we for instance determine

the permutation equivariant invariants at degree Q for two marked points

(6.24)

2∑

k=0

Φk

〈
Φk

1−qL ; Φ1

〉
0,2,1

=
(
1−4q+6q2

(1−q)4 Φ0 +
1−3q
(1−q)3Φ1 +

1
(1−q)2Φ2

)
s ,

2∑

k=0

Φk

〈
Φk

1−qL ; Φ2

〉
0,2,1

=
(
1−3q+3q2

(1−q)3 Φ0 +
1−2q
(1−q)2Φ1 +

1
1−qΦ2

)
s ,

for three marked points

2∑

k=0

Φk

〈
Φk

1−qL ; Φ1,Φ1

〉S2

0,3,1
=
(
1−3q+3q2+3q3

(1−q)4(1+q) Φ0+
1−2q−2q2

(1−q)3(1+q)Φ1+
1

(1−q)2Φ2

)
s

(6.25)

+
(

q(1−3q)
(1−q)4(1+q)Φ0 +

q
(1−q)3(1+q)Φ1

)
s ,

2∑

k=0

Φk

〈
Φk

1−qL ; Φ2,Φ2

〉S2

0,3,1
=
(
1−2q+q2+2q3

(1−q)3(1+q) Φ0 +
1−2q
(1−q)2Φ1 +

1
1−qΦ2

)
s

+
(

q(1−2q−q2)
(1−q)3(1+q)Φ0 +

q
(1−q)2Φ1 +

(−1)
1−q Φ2

)
s ,
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and for four marked points

(6.26)

2∑

k=0

Φk

〈
Φk

1−qL ; Φ1,Φ1,Φ1

〉S3

0,4,1

=
(
1−2q+q2+4q3+4q4+q5

(1−q)4(1+q)(1+q+q2) Φ0 +
1−q−3q2−3q3−q4

(1−q)3(1+q)(1+q+q2)Φ1 +
1

(1−q)2Φ2

)
s

+
(

q(1−2q−2q2)
(1−q)4(1+q+q2)Φ0 +

q(1+q)
(1−q)3(1+q+q2)Φ1

)
s ,

+
(

3q3

(1−q)4(1+q)(1+q+q2)Φ0 +
q2

(1−q)3(1+q)(1+q+q2)Φ1

)
s ,

2∑

k=0

Φk

〈
Φk

1−qL ; Φ2,Φ2,Φ2

〉S3

0,4,1

=
(

1−q+2q3+4q4

(1−q)3(1+q)(1+q+q2)Φ0 +
1−2q
(1−q)2Φ1 +

1
1−qΦ2

)
s

+
(

(−3)q
(1−q)3(1+q+q2)Φ0 +

q
(1−q)2Φ1 +

(−1)
1−q Φ2

)
s ,

+
(

−1+q+4q3+2q4

(1−q)3(1+q)(1+q+q2)Φ0 +
(−1)
(1−q)2Φ1 +

1
1−qΦ2

)
s .

Furthermore, at degree Q2 we find for two marked points

(6.27)

2∑

k=0

Φk

〈
Φk

1−qL ; Φ1

〉
0,2,2

=
(
1−3q−q2+21q3+21q4

(1−q)7(1+q)4 Φ0

+ 1−3q−6q2

(1−q)6(1+q)3Φ1 +
1

(1−q)5(1+q)2Φ2

)
s ,

2∑

k=0

Φk

〈
Φk

1−qL ; Φ2

〉
0,2,2

=
(
1−3q+18q3+15q4

(1−q)6(1+q)3 Φ0

+ 1−3q−5q2

(1−q)5(1+q)2Φ1 +
1

(1−q)4(1+q)Φ2

)
s ,

and for three marked points

2∑

k=0

Φk

〈
Φk

1−qL ; Φ1,Φ1

〉S2

0,3,2

(6.28)

=
(
1−2q−3q2+18q3+39q4+33q5+15q6

(1−q)7(1+q)5 Φ0

+ 1−2q−8q2−8q3−5q4

(1−q)6(1+q)4 Φ1 +
1+q+q2

(1−q)5(1+q)3Φ2

)
s

+
(
q(1−2q−3q2+12q3+15q4)

(1−q)7(1+q)5 Φ0 +
q(1−2q−5q2)
(1−q)6(1+q)4Φ1 +

q
(1−q)5(1+q)3Φ2

)
s ,
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2∑

k=0

Φk

〈
Φk

1−qL ; Φ2,Φ2

〉S2

0,3,2

=
(
1−2q−2q2+16q3+31q4+22q5+2q6−6q7

(1−q)6(1+q)4 Φ0

+ 1−2q−7q2−7q3−2q4+3q5

(1−q)5(1+q)3 Φ1 +
1+q+q2−q3

(1−q)4(1+q)2Φ2

)
s

+
(
q(1−2q−8q2−14q3−23q4−16q5)

(1−q)6(1+q)4 Φ0 +
q(1+q+5q2+7q3)
(1−q)5(1+q)3 Φ1 +

(−2)q2

(1−q)4(1+q)2Φ2

)
s ,

For reference to more invariants, we have listed the first few terms of the
permutation equivariant J-function Jeq

K with input t = aΦ1 + bΦ2 in Ap-
pendix B.3.

Using the relationship (6.5) together with the dimensions (6.16) of the
representations of the symmetric groups, we can easily recover the ordi-
nary K-theoretic invariants encoded in the J-function JK , for instance from
eq. (6.26) at degree Q with four marked points we obtain the ordinary K-
theoretic invariants

(6.29)

2∑

k=0

Φk

〈
Φk

1−qL ; Φ1,Φ1,Φ1

〉
0,4,1

=
Φ0 +Φ1 +Φ2

(1− q)2
,

2∑

k=0

Φk

〈
Φk

1−qL ; Φ2,Φ2,Φ2

〉
0,4,1

= 0 ,

or from eq. (6.28) at degree Q2 with three marked points we get

(6.30)

2∑

k=0

Φk

〈
Φk

1−qL ; Φ1,Φ1

〉
0,3,2

= 1−3q+18q3+15q4

(1−q)7(1+q)3 Φ0 +
1−3q−5q2

(1−q)6(1+q)2Φ1

+ 1
(1−q)5(1+q)Φ2 ,

2∑

k=0

Φk

〈
Φk

1−qL ; Φ2,Φ2

〉
0,3,2

= 1−4q+6q2

(1−q)5 Φ0 +
1−3q
(1−q)4Φ1 +

1
(1−q)3Φ2 .

Upon setting q = 0 our results confirm the invariants listed in ref. [12], where
they have been computed by reconstruction techniques in ordinary quantum
K-theory. For instance, they are readily determined with Givental’s recon-
struction theorem for ordinary quantum K-theory [62], p.VIII of [10], i.e.,

(6.31) JK(t(ϵ)) = e

∑2
ℓ=0

ϵℓP
ℓq
ℓQ∂Q

(1−q) JK(0) .
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Here ϵ =
∑

ℓ ϵℓP
ℓ is now a formal series in Q of the Novikov ring C[[Q]] with

coefficients in the polynomial ring K(P2)⊗ C[q, q−1].47

6.3. The quintic Calabi–Yau 3-fold

As our next example we consider the quintic Calabi–Yau 3-fold X given as
the degree five hypersurface in the projective space P4. Its classical K-theory
ring K(X) is generated (over Q) by Φk = (1− P )k, k = 0, 1, 2, 3, where the
line bundle P is the restriction of the tautological line bundle O(−1) of P4 to
the hypersurface X.48 The intersection pairing for the generators Φk reads

(6.32) (Φk,Φℓ) =

∫

X
td(X) ch(Φk ⊗ Φl) =




0 5 −5 5
5 −5 5 0
−5 5 0 0
5 0 0 0


 .

The spectrum of the three-dimensional Abelian U(1) gauge theory asso-
ciated to the quintic 3-fold reads

(6.33)

N = 2 chiral multiplets U(1) charge R-charge

φi, i = 1, . . . , 5 +1 0
φ0 = p −5 +2

The disk partition function on S1 ×q D
2 of this gauge theory computes

the J-function J sym
K of the symmetric quantum K-theory of the quintic X

given in [10]

(6.34) J sym
K (tsym) = (1− q)

+∞∑

d=0

∏5d
i=1(1− qiP 5)

∏d
i=1 (1− qiP )5

Qd .

Note that the J-function has a complicated non-vanishing input tsym, which
is a formal power series in the Novikov variable Q with coefficient in the

47Convergence in the reconstruction fomula (6.31) is ensured if the function ϵ lies
in a proper ideal of the ring K(P2)⊗ C[q, q−1]⊗ C[[Q]].

48Note that integral generators of the K-group K(X) of the quintic Calabi–Yau
3-fold X are given by (Φ0,Φ1,

1
5Φ2,

1
5Φ3).
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K-theory ring K(X)⊗ C[q, q−1]. To leading order in Q, it takes the form

tsym = Q
[
(1 + q)2(1 + q2)(1 + q + q2)(1− q5)Φ0(6.35)

+ 5q2(1 + q)(1 + q + 2q2 + q3 + 2q4)

× (1 + 2q + 3q2 + 3q3 + 2q4)Φ1

+ 5(115 + 117q + · · ·+ 112q10 + 38q11)Φ2

+ 5(−230 + 2q + · · ·+ 228q11)Φ3

]
+ · · · .

We can again change the input (6.35) of the J-function (6.34) with
Givental’s reconstruction theorem according to ref. [10](p.VIII)

(6.36) J sym
K (t(ϵ)) = e

∑+∞

r=1

∑
ℓ Ψr(ϵℓ)P

ℓrq
ℓrQ∂Q

r(1−qr) J sym
K (tsym) ,

where ϵ =
∑

ℓ ϵℓP
ℓ is a formal power series in the Novikov variable Q with

coefficients in the polynomial ring K(X)⊗ C[q, q−1], and where the Adams
operator Ψr acts as

(6.37) ψr(Q) = Qr , Ψr(q) = qr .

In particular, we can use the formula (6.36) to obtain the J-function JK(0)
with vanishing input t(ϵ) = 0

JK(0) = (1− q) +
(
575Φ2

1−q + 1150(1−2q)Φ3

(1−q)2

)
Q(6.38)

+
(
25(9794+19496q+9725q2)Φ2

(1−q)(1+q)2

+ 50(7380+9748q−14760q2−29244q3−12139q4)Φ3

(1−q)2(1+q)3

)
Q2 + · · · .

Note that the J-function (6.38) can now be used to reconstruct J-functions
with non-vanishing inputs for both the permutation equivariant and the or-
dinary quantum K-theory of the quintic. In particular, for two, three and four
marked points we obtain the permutation equivariant quantum K-invariants
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at degree one in Q

3∑

k=0

Φk

〈
Φk

1−qL ; Φ1

〉
0,2,1

=
(

575
1−qΦ2 +

575(2−3q)
(1−q)2 Φ3

)
s ,(6.39)

3∑

k=0

Φk

〈
Φk

1−qL ; Φ1,Φ1

〉S2

0,3,1
=
(

575
1−qΦ2 +

575(2−q−2q2)
(1−q)2(1+q) Φ3

)
s

+ 575q
(1−q)2(1+q)Φ3s ,

3∑

k=0

Φk

〈
Φk

1−qL ; Φ1,Φ1,Φ1

〉S3

0,4,1
=
(

575
1−qΦ2 −

575(−2−q+q2+2q3+q4)
(−1+q)2(1+q)(1+q+q2)Φ3

)
s

+ 575q(1+q)
(1−q)2(1+q+q2)Φ3s

− 575q2

(1−q)2(1+q)(1+q+q2)Φ3s ,

and degree two in Q

(6.40)

3∑

k=0

Φk

〈
Φk

1−qL ; Φ1

〉
0,2,2

=
(
25(19519+19496q)

(1−q)(1+q) Φ2 +
25(29313+19496q−48832q2−38992q3)

(1−q)2(1+q)2 Φ3

)
s ,

3∑

k=0

Φk

〈
Φk

1−qL ; Φ1,Φ1

〉S2

0,3,2

=
(
25(29290+58511q+29244q2)

(1−q)(1+q)2 Φ2

+ 25(43981+78030q−19634q2−97526q3−43866q4)
(1−q)2(1+q)3 Φ3

)
s

+
(
25(9725+19519q+9771q2)

(1−q)(1+q)2 Φ2

+25(14553+39038q+19634q2−19542q3−14668q4)
(1−q)2(1+q)3 Φ3

)
s ,

3∑

k=0

Φk

〈
Φk

1−qL ; Φ1,Φ1,Φ1

〉S3

0,4,2

=
(
50(19519+19496q)

(1−q)(1+q) Φ2

+25(58603+107320q+48717q2−48809q3−87824q4−38992q5)
(1−q)2(1+q)2(1+q+q2) Φ3

)
s

+
(
25(19496+19519q)

(1−q)(1+q) Φ2

+25(29221+78030q+87824q2+39015q3−19496q4−19519q5)
(1−q)2(1+q)2(1+q+q2) Φ3

)
s

+ 25q(9725+9725q+9794q2+9771q3)
(1−q)2(1+q)2(1+q+q2) Φ3s ,
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and the vanishing invariants

(6.41)

3∑

k=0

Φk

〈
Φk

1−qL ; Φℓ, . . . ,Φℓ

〉Sn
0,n+1,d

= 0 for ℓ = 2, 3, n ≥ 1, d ≥ 1 .

These equivariant invariants furnish according to eq. (6.5) a refinement of
the ordinary quantum K-invariants at degree one in Q

(6.42)

3∑

k=0

Φk

〈
Φk

1−qL ; Φ1,Φ1

〉
0,3,1

=
575

1− q
Φ2 +

1150

1− q
Φ3 ,

3∑

k=0

Φk

〈
Φk

1−qL ; Φ1,Φ1,Φ1

〉
0,4,1

=
575

1− q
Φ2 +

575(2− q)

(1− q)2
Φ3 ,

and at degree two in Q

(6.43)

3∑

k=0

Φk

〈
Φk

1−qL ; Φ1,Φ1

〉
0,3,2

=
975375

1− q
Φ2 +

1463350

1− q
Φ3 ,

3∑

k=0

Φk

〈
Φk

1−qL ; Φ1,Φ1,Φ1

〉
0,4,2

=
1950750

1− q
Φ2 +

975375(3− 2q)

(1− q)2
Φ3 .

Table 6.1 below summarizes further quantum K-invariants together with
their equivariant refinements, where we employ the string equation of equiv-
ariant quantum K-theory [10](p.VII), which in particular implies

(6.44) ⟨1; Φk, . . . ,Φk⟩
Sn
0,n+1,d = ⟨Φk, . . . ,Φk⟩

Sn
0,n,d .

We observe that the (ordinary) quantum K-invariants with three and more
marked points at degree d in Q, are directly related to the (rational) coho-
mological Gromov–Witten invariants NGW

d of the moduli space M0,d(X) at
degree d in Q as

(6.45) NGW
d =

1

dk
⟨Φ1, . . . ,Φ1⟩0,k,d for k ≥ 3 ,

with

(6.46) NGW
1 = 2875 , NGW

2 =
4876 875

8
, NGW

3 =
8564 575 000

27
, . . . .

A general relation of the quantum K-theory invariants to Gopakumar–Vafa
invariants will be discussed in Sect. 8.1.
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Invariant Irrep. d = 1 d = 2 d = 3 d = 4 d = 5

⟨1⟩0,1,d — 2875 620 750 317 232 250 242 470 013 000 229 305 888 959 500

⟨Φ1⟩0,1,d — 2875 1 224 250 951 627 750 969 872 568 500 1 146 529 444 452 500

⟨Φ1,Φ1⟩
S2
0,2,d 2 875 1 836 375 1 903 246 875 2 424 679 579 125 3 439 588 333 328 750

0 603 500 951 613 375 1 454 803 340 750 2 293 058 888 864 750

⟨Φ1,Φ1⟩0,2,d — 2875 2 439 875 2 854 860 250 3 879 482 919 875 5 732 647 222 193 500

⟨Φ1,Φ1,Φ1⟩
S3
0,3,d 2 875 2 445 625 3 172 078 125 4 849 356 706 875 8 025 706 111 081 250

0 1 215 625 2 537 639 500 4 849 350 591 375 9 172 235 555 493 500

0 0 317 217 875 969 868 907 250 2 293 058 888 887 750

⟨Φ1,Φ1,Φ1⟩0,3,d — 2875 4 876 875 8 564 575 000 15 517 926 796 875 28 663 236 110 956 000

⟨Φ1, . . . ,Φ1⟩
S4
0,4,d 2 875 3 054 875 4 758 110 000 8 486 371 493 250 16 051 412 222 151 000

0 1 824 875 4 758 089 875 10 911 040 660 500 24 077 118 333 189 125

0 612 125 1 903 235 375 4 849 354 258 375 11 465 294 444 384 125

0 0 951 624 875 3 637 012 358 000 10 318 764 999 954 625

0 0 0 242 468 122 000 1 146 529 444 429 500

⟨Φ1, . . . ,Φ1⟩0,4,d — 2875 9 753 750 25 693 725 000 62 071 707 187 500 143 316 180 554 780 000

⟨Φ1, . . . ,Φ1⟩
S5
0,5,d 2 875 3 664 125 6 661 348 250 13 578 191 451 000 28 892 541 999 869 500

0 2 434 125 7 612 947 250 20 367 276 166 875 51 364 519 110 807 875

0 1 221 375 4 758 098 500 14 548 059 111 000 40 128 530 555 337 250

0 0 1 903 244 000 8 728 831 088 625 28 892 541 999 869 500

0 0 951 616 250 4 849 353 042 750 17 197 941 666 574 750

0 0 0 969 871 332 750 5 503 341 333 277 125

0 0 0 0 229 305 888 913 500

⟨Φ1, . . . ,Φ1⟩0,5,d — 2875 19 507 500 77 081 175 000 248 286 828 750 000 716 580 902 773 900 000

Table 6.1: Listed are the non-vanishing permutation equivariant quan-
tum K-invariants ⟨Φ1, . . . ,Φ1⟩

Sn
0,n,d and the ordinary quantum K-invariants

⟨Φ1, . . . ,Φ1⟩0,n,d up to degree d = 5 and up to five marked points n = 5 of
the quintic Calabi–Yau 3-fold.

7. Factorization properties and ring structures

The 2d A-model, which arises as the IR phase of the 2d limit of the theories
considered in this note, is a topological field theory (TFT) characterized by
the associative, commutative Frobenius algebra determined by the product
in quantum cohomology. It has been argued above that the IR limit of
the 3d gauge theory partition function computes the quantum K-theory of
ref. [10], which defines another associative, commutative Frobenius algebra
representing a quantum product of vector bundles. Moreover, since the 3d
sphere and disk partition functions are indices, which can be computed both
in the UV and in the IR, we expect an corresponding TFT structure already
for the indices of the parent gauge theory.
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7.1. Disks with insertions and tt∗ overlaps functions

In the following we study the factorization properties of the gauge theory
and the inner product defined on the boundary theory. For further reference
we recollect the result for the disk partition function with left boundary
from Sect. 4 in the geometric form

ZL,µ =

∫ ∏ dza
2πiza

e−Sclass

∏

α

Z1-loop
α · fµ(7.1)

=

∫

X
tdβ(X)

{
e−J−

ch
β
2
(X)

ln q
ΓX,q

ηdimX

}
I(Q, q)eµ =:

∫

X
tdβ(X)T0eµ .

The factor in the curly bracket is the perturbative contribution from tree
and one-loop. The non-perturbative contributions are collected in the vortex
sum

(7.2) I(Q, q) =
∑

γ∈H2(X,Z)

e−t·γ ΓX,q
∗

Γ̂∗
X(γ)

= 1 + · · · ,

with γ labelling the different topological sectors (see eq. (4.37)). For the
description of the boundary we introduce the following notations. Let Eµ

be a formal linear combination of left N = (0, 2) boundary theories and fµ
the brane factor for it, as introduced in Sect. 4.5. For each choice of fµ, the
partition function is a solution of the system of difference equations (2.34).
This system has d = dimK(X) linearly independent solutions at a regular
point in the space Λ parametrized by (y, q). The solution depends only on
the K-theory class of Eµ in H = K(X)⊗ Λ, represented by the cohomology
class eµ in eq. (7.1). We neglect algebraic subtleties and assume that we can
take Λ = Q(q, y). Then H is a complex vector space of dimension d over Λ.49

The d-dimensional vector of solutions represents the restriction to the
unit operator Φ0 = 1 of an operator-state correspondence. The disk parti-
tion function without insertions computes the overlap of the vacuum with
a boundary state associated with Eµ. Overlaps with insertions of operators
Φi>0 at the center of the disk can be generated by taking derivatives with

49A more careful treatment would involve the use of formal power series and
freely generated modules.
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respect to the mass parameter of a single trace operator (3.11):50

(7.3) (1− q)∂yi

(∫
dz

2πiz
exp

(
yiz

−i

1− q

)
e−Sclass

∏

α

Zα · fµ

)∣∣∣∣∣
yi=0

.

with i = 0, . . . , d− 1. This expression computes the vev of a Wilson line
operator wrapping S1

(7.4) ⟨Wi⟩µ =

∫
dz

2πiz
z−ie−Sclass

∏

α

Zα · fµ =:

∫

X
tdβ(X)Tieµ .

Upon evaluation at the poles z−1 = qn−ϵ = Pqn, an insertion is represented
by the operator (Pqθ)i acting on the integrand of eq. (7.1), as discussed in
Sect. 3.2. Alternatively, to make contact with the basis Φi = (1− P )i, we
can use shifted Wilson line operators W shifted

i defined by replacing yiz
−i →

ỹi(1− z−1)i in eq. (7.3). In the classical sector with vortex number n = 0,
successive derivatives then generate the classical K-theory ring

(7.5) ∂ỹi∂ỹjI|ỹk=0 = (1− Pqθ)i(1− Pqθ)jI
n=0
⇝ Φi · Φj .

The sectors with vortex number n > 0 induce the quantum corrections to
the product on the right hand side.

In virtue of the difference equations, there are only d independent in-
sertions Wi, i = 0, . . . , d− 1. These satisfy the related difference equations
(2.41) with eigenvalues Qqi. The d× d matrix of linearly independent eigen-
functions can be read as a map from bulk operators ϕi to K-theory classes
of left boundary states |Eµ⟩:

T : ϕi 7→ |Ei⟩ = T µ
i |Eµ⟩ , T µ

i = T µ
i (Q, y, q) .(7.6)

Here {|Eµ⟩} is a basis for H and T µ
i are the vortex sums of the partition

functions with insertions in a chosen basis {ϕi} for the bulk operators, where
we allow for a (Q, y, q)-dependent linear basis change compared to eq. (7.4).
The disk diagram with a right boundary defines a related map obtained by

50For simplicity we often restrict to the U(1) case in writing the following for-
mulas, i.e., to a single Kähler parameter. For the general case one needs to simply
restore indices running over a basis of H2(X,Z).
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sending q → q̄

(7.7) T̂ : ϕi 7→ ⟨Ei| = T̂ µ
i ⟨Eµ| , T̂ µ

i = T µ
i (Q, y, q̄) .

If we extend the coefficient ring to include the Q parameters, we can
view the maps T and T̂ as endomorphisms of H = K(X)⊗ ΛQ with ΛQ =
Q(q, y)[[Q]].51 More generally one can choose different coefficient rings ΛL/R

resulting in distinct families HL/R for the spaces of left/right boundaries.

The maps T and T̂ can be diagrammatically represented as

The extra S1 direction will be often omitted in the figures below.
In addition to the disk diagrams, one has inner products defined by

putting the theory on the sphere and the annulus. By the completeness of
the bases {ϕi} and {|Eµ⟩}, the inner products can be factorized into disk
diagrams as

(7.8)

ηij = η(ϕi, ϕj) = T̂ µ
i χµνT

ν
j ,

= ,

χµν = χ(Eµ, Eν) = (T̂ −1)iµηij(T
−1)jν ,

= .

The factorization structure holds for the 3d theory and its 2d limit, in the
UV and in the IR phase, but the explicit expressions will depend on the de-
tails. E.g. in the small radius limit we should recover the well-known struc-
ture of the 2d theory. A Wilson line insertion W shifted

1 ≃ (1− Pqθ) reduces

51The ring Q(q, v)[[Q]] denotes a formal power series in Q with coefficients in
Q(q, v).
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to the differential operators H + ℏθ, or simply ℏθ replacing I → IeH lnQ/ℏ

(cpw. fn. 21). The operators ϕi ∼ H i ∈ H2∗(X,Z) represent chiral ring op-
erators of the closed string sector, whereas the boundary states are labeled
by elements |Eµ⟩ ∈ K(X) associated with the Ramond charge of a D-brane.
The respective spaces for the bulk operators and the boundary charges are
isomorphic after tensoring with Q. In 2d mirror symmetry, the matrix T µ

i

comprise the integrals of the holomorphic forms θkΩ of the mirror manifold.
In the IR phase of the 2d theory, one may choose bases in which the

inner products (7.8) are independent of the parameters, namely

(7.9) η2dij =

∫

X
ϕi ∧ ϕj , χ2d

µν =

∫

X
td(X)ch(E∗

µ)ch(Eν) .

Here χ2d is the Witten index in the open string theory [75] (cf. eq. (4.4))
and η2d is the constant metric of refs. [15, 107]. Note that the arguments
in the last reference use special properties of the super–multiplets of the 2d
theory, which do not hold in 3d. Correspondingly one does not expect, that
there is a basis in which the 3d sphere metric is constant over the moduli
space parametrized by Q.

The tt∗ structure of refs. [15, 23] emerges if one considers in addition the
complex conjugated operators ϕı̄ = ϕ∗i . To connect the 3d sphere and disk
partition functions to tt∗ objects, we propose the relations

(7.10) ⟨µ|0⟩⇝ ZD2×qS1(Eµ) , ⟨0̄|0⟩⇝ ZS2×qS1 .

Here ⟨µ|i⟩ denotes the tt∗ correlator with left boundary µ and an insertion
of ϕi, and ⟨̄ı|j⟩ the tt∗ sphere correlator with insertions of ϕı̄ on the left
and and ϕj on the right. The tt∗ correlators, including ⟨µ|0⟩, have a non-
holomorphic dependence on the deformations in the general non-conformal
case. To compare them to the partition functions with a holomorphic de-
pendence, one has to take the holomorphic limit defined in ref. [23], and
this is meant by ⇝. The equations (7.10) represent 3d generalizations of
similar relations for 2d sphere and disk amplitudes proposed in ref. [27] and
refs. [67, 68], respectively.

7.1.1. Cohomological inner products. Let us now consider a general
inner product χΥ associated with an annulus diagram with left/right bound-
aries EL/R. The geometric interpretation (4.8) of the Coulomb branch in-
tegrals is defined on the level of cohomology. Accordingly, we represent in
the following the left/right boundaries EL/R of the Hilbert spaces HL/R in
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terms of suitable forms eL/R representing cohomology classes on X with
coefficients in ΛL/R. The general inner product is defined as

(7.11) χΥ(eR, eL) =

∫

X
tdβ(X)ΥeLeR ,

in terms of a cohomological integration kernel Υ. Note that χΥ takes values
in the combined coefficient ring ΛLR = ΛL ⊗ ΛR. Similarly, we express the
Coulomb integral for the disk diagram as

(7.12) ZL(eR) =

∫

X
tdβ(X)ωLeR ,

with the cohomological integration kernel ωL. The analogous formula is de-
fined with L/R exchanged. As linear maps acting on boundary elements
eL/R, the disk diagrams ZL/R are elements of the dual spaces (HR/L)

∗, and
we can compute the dual pairing52

(7.13) ZΥ(ωL, ωR) = χ−1
Υ (ZL, ZR) = χΥ

(ωL

Υ
,
ωR

Υ

)
=

∫

X
tdβ(X)

ωRωL

Υ
,

which yields a spherical partition function depending on the integration
kernels Υ and ωL/R. Eq. (7.13) is a generalized Riemann bi-linear identity
for the Coulomb integrals.

Identical partition functions, arising from distinct choices of Υ, describe
different factorizations of the spherical partition function into disk and an-
nulus amplitudes. We will now discuss two relevant examples. Let us first
determine the annulus metric χ⊚ in the basis chosen by the 3d Coulomb
integral. The holomorphic limit of the tt∗ type factorization (2.27) is of the
form

(7.14)

ZS2×qS1 = Z̄D2×q̄S1(E∗
µ)χ

µν
⊚ ZD2×qS1(Eν) ,

= .

52In order to define the dual paring χ−1
Υ , we extend the annulus diagram to a bi-

linear map χΥ : (HR ⊗ ΛL)× (HL ⊗ ΛR) → ΛLR over the common coefficient ring
ΛLR. Then we can view the dual pairing as a bi-linear map χ−1

Υ : ((HL)
∗ ⊗ ΛR)×

((HR)
∗ ⊗ ΛL) → ΛLR.
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For the tt∗ type factorization (7.14) we take

(7.15) ωL = T0(X) , ωR = ρ(T0(X)) ,

where

(7.16) T0(X) =

{
e−J−

ch
β
2
(X)

ln q
ΓX,q

η(q)dim(X)

}
I(Q, q) = T µ

0 eL,µ ,

is the integrand in eq. (7.1), and {eL/R,ν} furnish cohomological bases for the
left/right boundaries. The map ρ = ρ∗ ◦ ρ∨ ◦ ρq is the combined operation
of complex conjugation of parameter (Q, y), q → q̄ and duality x→ −x on
the Chern roots

(7.17) ρ∗ : (Q, y) → (Q̄, ȳ) , ρ∨ : x→ −x , ρq : q → q̄ .

This determines the q-dependent integration kernel Υ⊚ to be

(7.18) Υ⊚ =
ΓX,qΓX,q̄

(η(q)η(q̄))dim(X)
,

and the q-dependent annulus metric χ⊚ becomes in the bases {eL/R,µ}

(7.19) χ⊚,µν =

∫

X
tdβ(X)

ΓX,q

η(q)dim(X)

ΓX,q̄

η(q̄)dim(X)
eR,µeL,ν .

On the other hand, the holomorphic sphere metric η corresponds to taking

(7.20) ωL = T0(X) , ωR = eiπc
β
1 / ln qρq(T0(X)) ,

where the factor eiπc1/ ln q is the 3d lift of an analogous factor in the defini-
tion of the 2d holomorphic sphere metric discussed in refs. [70, 78]. Using
eqs. (7.8) and (7.19), we obtain

(7.21) η00(Q, q) =

∫

X
tdβ(X)I(Q, q)Î(Q, q)

where the hat on a function f is again short for ρq(f), i.e., Î(Q, q) := I(Q, q̄),
cpw. eq. (7.7).

To extend the inner product to insertions, we first note that the follow-
ing Q-independent change of basis simplifies the annulus metric χ⊚ to the
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constant one

(7.22)

e−J−
ch
β
2
(X)

ln q

ΓX,qe
R
µ

η(q)dim(X)
=:M r

µΦr ,

e−ρq(J)+iπcβ1 / ln q+
ch
β
2
(X)

ln q

ΓX,q̄e
L
µ

η(q̄)dim(X)
=: M̂ r

µΦr ,

where Φr = (1− P )r as before. The basis change transforms χ⊚,µν =
(MχM̂T )µν to the standard inner product with integration kernel Υ ≡ 1,
i.e.,

(7.23) χrs =

∫

X
tdβ(X)ΦrΦs .

Moreover, expanding I(Q, q) = IαΦα with Iα = (M̂T · T0)
α, we obtain

(7.24) ZL,µ =M r
µ

∫

X
tdβ(X)I(Q)Φr = (M · χ · I)µ = (χ⊚ · T0)µ ,

and a similar relation holds for ZR,µ. Combining this basis change with non-
trivial insertions in the 3d partition function, we arrive at the generalization
of the holomorphic sphere metric

(7.25) ηij(Q, q) = T̂ α
i χ⊚αβT

β
j = Îαi χαβI

β
j = (Îi, Ij)X ,

where (A,B)X is the standard inner product (7.23) and Iαi = (M̂T · Ti)
α.

The two expressions on the r.h.s. give two different representations of the
sphere factorization (7.8) into disk correlators represented by either the
Coulomb branch expressions T α

i , containing perturbative terms, or the vor-
tex sums Iαi with perturbative terms stripped off.

The above argument started from determining the kernel Υ for the annu-
lus metric χ⊚ on the Coulomb branch imposing the 3d factorization condi-
tion (7.14). As will be discussed below, eq. (7.25) matches the inner product
for the WDVV relation on quantum K-theory determined in ref. [11] for
a particular choice of basis, which confirms the proposed 3d/quantum K-
theory correspondence.

7.1.2. Towards a Mukai pairing on loop space. The cohomological
computation above should be related to a loop space generalization of the
Mukai pairing of ref. [108], which involves (on the level of K-theory)53 a

53In ref. [108] the Chern homomorphism is formulated for the bounded derived
category of coherent sheaves Db(X).
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modified Chern homomorphism µ : K(X) → H∗(X,Q) that assigns to a K-
theory element E ∈ K(X) a cohomology class µ(E), called the Mukai vector.
The compatibility of µ with the Grothendieck–Riemann–Roch formula for a
proper morphism π : X → Y requires π∗(µ(E)td(X)) = µ(π!E)td(Y ), where
π∗ and π! are the cohomological and K-theoretic push-forwards of π, respec-
tively. More specifically, µ can be chosen such that the K-theoretic inner
product χK(E,F ) equals the cohomological inner product

(7.26) χK(E,F ) =

∫

X
µR(E)µL(F ) .

Here µR is the dual of µL up to a correction factor [108], µR(E) =
τ(µL(E))ec1(X)/2, with τ(ωk) = (−)kωk for a 2k-form ωk.

54 The 2d Gamma
class is a particular solution to this problem, see eq. (4.3).

The cohomological expressions obtained above suggest the following gen-
eralization to the 3d case. Let H = K(X)⊗ Λq be the basic space of bound-
ary states over a suitable coefficient ring Λq. That is to say we view the
boundary K-theory elements as (q, y)-dependent classes on the S1 fixed
point set X, such that we tentatively set Λq = Q(q, y) or a suitable extension
thereof. We now define two maps µL/R : H → H2∗(X,Λq) as

(7.27)
µL :EL 7→ Ch(EL)ΓX,qΓX,βρL ,

µR :ER 7→ Ch(E∗
R)ΓX,q

∗Γ∗
X,βe

−chβ2 (X)/ ln qρR ,

where ΓX,β is the ordinary Gamma class (4.2), in 3d normalization. The
factor Ch(E) contains all the dependence on the argument and agrees with
chS1(E) for ch2(E) = 0. The factors ρL/R parametrize a universal ambiguity
in lifting the cohomological expressions to H. A bilinear inner product χK :
H×H → Λq is now given by

(7.28) χK(ER, EL) =

∫

X
µR(ER)µL(EL) .

In the special case Ch(EL/R) = 1, the integrand reduces to

(7.29) µL(1)µR(1) = tdβ(X)ΓX,qΓX,q̄(ρLρR) .

For the choice ρLρR = (η(q)η(q̄))−dim(X) one obtains the kernel Υ⊚.
To include left/right disk partition functions, the above structure needs

to be generalized, by allowing for distinct spaces HL/R for the left/right

54We restrict the discussion to even cohomology H2∗(X,Q).
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boundaries.55 Here HL/R = K(X)⊗ ΛL/R differ only by the coefficient ring.
This generalization is needed, as the disk partition functions define maps

(7.30) T : Hb
L → HL , T̂ : Hb

R → HR .

Here Hb
L/R = K(X)⊗ Λb

L/R is the space of bulk operators and HL/R =

K(X)⊗ ΛL/R, where ΛL/R is an extension of Λq by Λb
L/R. E.g., for the

holomorphic sphere metric we take Λb
L = Λb

R = Λq[[Q]], whereas for the tt∗

metric we consider Λb
L = Λq[[Q]] and Λb

R = Λq[[Q
∗]].

Extending by linearity, one obtains maps µL/R : HL/R → H2∗(X,ΛL/R)
and the inner product χ : HL ×HR → ΛLR with ΛLR = ΛL ⊗ ΛR, which can
be used to glue disk partition functions. In this way, the left disk partition
function with insertions can be written as the inner product

(7.31) ZL,i(ER) = χ(ER, Ti) ,

together with the assignment

(7.32) Ch(Ti) = e−J Ii(Q, q)

Γ∗
q

ec
β
1 /2 ,

for a K-theory class Ti ∈ H and eR = Ch(ER). Similarly, one can write the
holomorphic sphere and tt∗ sphere metric as

(7.33) ηij = χ(T̂j , Ti) , ηiȷ̄ = χ(T̄j , Ti) ,

by assigning

(7.34) Ch(T̂i) = ρq(Ch(Ti))e
+iπcβ1 / ln(q) , Ch(T̄i) = ρ(Ch(Ti)) .

with the maps defined in eq. (7.17).
The cohomological account provided by the 3d path integral is unsatis-

factory in two respects. First, the argument does not fix the ambiguity in
the factors ρL/R and the precise form of the modified Chern character. More
importantly one should show that the left hand side of eq. (7.28) is indeed
equal to the K-theoretic inner product on KS1(LX). To this end one needs
to generalize the argument of [108] to a derived category of sheaves on the
loop space of X.

55This amounts to consider more general Fourier–Mukai transforms.
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7.2. Flatness equations

Eq. (7.10) relates the 3d gauge theory partition function to the overlap
functions of ref. [23] in the holomorphic limit. Including insertions (7.3) one
obtains a more general relation between 3d disk correlators with insertions
and the holomorphic limit of the 3d tt∗ overlap functions ⟨µ|i⟩. In a special
flat basis of operators and deformations, these represent the flat sections
of a holomorphic Gauss–Manin connection on the bundle with fiber K(X)
varying over the parameter space (Q, y) [23]. The flat holomorphic sections
Πµ

i are thus related to the vortex sums T µ
i , or equivalently, the vortex sums

Iµi with the perturbative part stripped off, by an equation of the form

(7.35) Πµ
i (Q, t, q) = Uk

i (Q, y, q)I
µ
k (Q, y, q) .

Here the matrix U(Q, y, q) represents a linear change of basis for the oper-
ators and ti = ti(Q, y, q) is a reparametrization of the deformations yi, such
that the Πµ

i fulfill the flatness equations

(7.36)
(
(1− q)δjk∂ti − C k

ij

)
Πµ

k = 0 ,

with C k
ij the structure constants for the chiral ring

(7.37) Φi ∗ Φj = C k
ij Φk = Φi ⊗ Φj +O(Q) .

The variable change from yi to ti represents a reparametrization of the UV
quantities in terms of IR variables and is the 3d equivalent of the mirror
map. The matrix Πµ

k is the 3d equivalent of the period matrix of 2d mirror
symmetry in a flat basis.

By the 3d/quantum K-theory relation proposed in Sect. 2, the vortex
sums compute K-theory correlators, now expressed in the IR variables. The
problem of finding the flat coordinates t(Q, y, q) starting from the K-theory
correlators has been solved in refs. [10, 12, 62], and can be applied to the
gauge theory side after making the appropriate identifications. The basis
transformation (7.35) is obtained by a Birkhoff factorization of Iµk , and the
flat coordinates are determined by the expansion (6.6), which has been used
already to obtain the flat coordinates for the examples in Sect. 6. An ex-
plicit example for the computation of the q-period matrix Πµ

i and the flat
coordinates will be given for Calabi–Yau targets in Sect. 8. In the following
we review the results of of refs. [10, 12, 62] and connect them to the gauge
theory side.
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We restrict to a description of the simplest perturbations by single trace
operators (3.11); for the generalization to multi-traces one has to consider
the general theory treated in part VII of ref. [10]. The basic objects in
quantum K-theory are the correlators (cpw. eq. (6.6))

(7.38) Tµ
i = δµi + ⟨⟨

Φµ

1− qL
,Φi⟩⟩0,2 ,

where

(7.39) ⟨⟨. . .⟩⟩0,m =
∑

β≥0,n≥0

1

n!
⟨. . . , tn⟩0,m+n,βQ

β , t = tk(q)Φk ,

denotes a perturbed correlator. The correlators with i = 0 enter the J-
function computed in Sect. 6 as

(7.40) J = (1− q)Tµ
0 Φµ .

Indices on the basis elements Φ are raised and lowered with the constant
metric (7.23). Similarly to the T µ

i , the matrix Tµ
i of K-theory correlators

defines a map T (Q, t, q) ∈ End(H). It is shown in refs. [11, 24] that T is a
fundamental solution to the equations

(7.41) (1− q)∂ℓT = TΦℓ∗, (1− Paq
θa)T = TW shifted

a · .

Here ∗ denotes the K-theoretic quantum product in the t-directions and
similarly Wa stands for a multiplication induced by the difference operator,
which we already identified with the action of a (shifted) Wilson line operator
in the gauge theory.

The two types of deformations combine into a system of a differential
connection in the t-directions and a difference connection in the Q-directions
acting on sections of the bundle with fibre K(X)

(7.42)
∇t

ℓ = (1− q)∂ℓ − Cℓ , ℓ = 0, . . . , dim(K(X))− 1 ,

∇Q
a = 1− Paq

θa −Daq
θ , a = 1, . . . , dim(H2(X)) ,

with ∂ℓ =
∂
∂tℓ

and θa = Qa
∂

∂Qa
. Eq. (7.41) implies the flatness of the connec-

tion [12, 14]

(7.43) [∇t
ℓ,∇

t
k] = [∇t

ℓ,∇
Q
a ] = [∇Q

a ,∇
Q
b ] = 0 .

The K-theoretic product ∗ is identified with the product of field operators
in the IR limit of the 3d gauge theory. The matrix Tµ

i is the transpose of the
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period matrix Πµ
i of the vortex sums in the IR basis. This is the IR equivalent

of the UV correspondence between the 3d disk partition functions and the
K-theoretic I-function found in Sect. 2.56 Thus the full (Q, y) dependence of
the 3d partition functions deformed by massive and Wilson line insertions
is determined by the combined system of differential/difference equations
(7.42).

Note that the special insertion Φµ/(1− qL) in the first slot of the K-
theory correlator is the operator that creates the hole in the disk and deter-
mines the class of the boundary in the gauge theory:

(7.44) |Eµ⟩ ↔
ϕµ

1−qL ↔

∑
µ ϕµϕµ

1−N+N−

Moreover, factorization onto boundary states in the 3d gauge theory trans-
lates on the K-theory side to a factorization locus on the moduli space of
maps, representing a domain curve that splits at a node [14, 40]. The fac-
torization at the node involves the insertion Φµ × Φµ/(1−N+N−) in the
correlator, where the denominator is the contribution from the deformation
smoothing the node. N± are the classes of the duals of the tangent lines
on the two components connected by the node. Upon smoothing the node,
the insertions create left and right boundaries of the disks connected by a
cylinder metric (7.23).

With the above identifications, we obtain similar diagrams as in Sect. 7.1
with T replaced by T . Gluing a half-sphere with right boundary to the t-
derivative of a disk correlator with left boundary gives the inner product for
the Froebenius algebra

(1− q)−1(Cℓ)
m
i ηmk = (T̂k, ∂ℓTi)X(7.45)

= ϕk ∂ℓ ϕi = ϕk ϕℓϕi .

The WDVV equations [10, 11] ensure the existence of a K-theoretic potential
F (Q, t) = ⟨⟨1⟩⟩0,1 such that

(7.46) ηij = (T̂i, Tj)X = ∂i∂jF (Q, t), (Cℓ)
m
i = ηmk∂i∂ℓ∂kF (Q, t).

56On the level of maps, UV and IR in the gauge theory corresponds to quasi-
maps and stable maps in quantum K-theory, respectively. See refs. [8, 9] for the
discussion of the 2d case.
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Note that the q-dependence drops out of the sphere correlators in the flat
basis, but the metric is still Q-dependent. The power series expansions of η
and Cℓ in Q have integral coefficients which represent the degeneracies of
3d BPS states in the IR frame.

7.3. Defect entropies and vortex counting

The connection matrices Da for the finite shifts in the Q-directions can be
similarly associated with a sphere diagram

(7.47) (1−Da)
m
i ηmk = ϕk Pqθa ϕi = .

This correlator represents a defect that separates two regions with different
FI parameters Q and Q′, where Q′

a = Qbq
δab . More generally, we can define

defect entropies connecting two regions with FI parameters Q′/Q = qℓ as
(restricting again to the one modulus case to avoid cluttering of notation)

(7.48) Ei,j(ℓ) = (T̂j , (Pq
θ)ℓTi)X .

The connection matrices D correspond to ℓ = 1.

Example: X = PN−1

Let us first discuss the projective space as an example. In this case the
mirror map is trivial, i.e. Tk = Ik = (Pqθ)kI(Q, q). The sphere correlator
with trivial insertions i = j = 0 for this case has been studied in ref. [40]57

and has been related to a holomorphic Euler characteristic

(7.49) E0,0(ℓ) =
∞∑

d=0

χH(QMd,O(−ℓ)) ,

Let us explain and rederive this formula from a simple vortex counting [34],
using a 3d version of the arguments of ref. [52], where the instanton partition
function of a 5d gauge theory was studied. The relevant compactification for
the moduli space of the non-perturbative BPS configurations in the gauge
theory has been described in refs. [8, 9] for the 2d theory. The instantons of
the 2d theory, which become the vortices in the 3d theory, are degree d maps

57See also ref. [12] for an interpretation of the K-theory correlators with non-
trivial insertions.
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described by N holomorphic sections (f1(z), . . . , fN (z)) of OP1(d) without
common factor, modulo overall rescaling by C∗. The compactification of
the moduli space allows for point-like instantons represented by a N -tuple
fi = Q(z)f̃i(z) with common factor Q(z) of degree d′ ≤ d. This gives the
moduli space QMd of quasi-maps of degree d. The real mass parameters yi
and the rotations in the z-plane with weight q define a H = TN × S1 action
on the sections as

(7.50) fi(z) =

d∑

n=0

znain → yifi(zq) .

The N(d+ 1) coefficients ain serve as homogeneous coordinates of weight
yiq

−n on the moduli space. Applying the reasoning of ref. [52], the number
of holomorphic sections of degree d is given by the H equivariant character

(7.51) ChH(QMd(P
N−1)) =

1
∏N

i=1

∏d
n=0(1− Pyiq−n)

.

Here we introduced the weight P for the diagonal C∗ action on PN−1 by
redefining yi → Pyi and imposing

∏
i yi = 1. ForN = 1, there is only a single

function f1(z) = Q(z) representing point-like vortices, and one recovers the
result of ref. [34] for X =pt. For N > 1 there are instantons of finite size.
The generating function will be denoted by58

(7.52) Î(X) =

∞∑

d=0

QdChH(QMd(X)) .

In the GLSM, the diagonal U(1) corresponding to the homogeneous action
on PN−1 is gauged and one needs to project onto gauge invariants. More
generally, an observable associated with the insertion of a Wilson line of
charge ℓ is obtained by a projection onto the term ∼ P ℓ of Î(X) compen-
sating for the background charge.59 The projection can be implemented by

58The character Î is the counting function discussed in Sect. 2.3 and should not
be confused with Givental’s I-function for PN−1, which is formally obtained from
Î by replacing the weight P by the Chern character P = ch(O(−1)), which fulfills
the relation (1− P )N = 0.

59For general boundary conditions, the perturbative term in the 3d partition
function carries also a non-trivial representation, and gives another contribution to
the background charge.
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the contour integral

(7.53)
1

2πi

∮
dP

P
P−ℓÎ(X) ,

along the circle |P | = 1. The coefficient of Qd yields the equivariant char-
acter trH0(QMd,O(ℓ))h, where h takes into account the action of the group
H. For ℓ ≥ 0 this counting agrees with the equivariant holomorphic Euler
characteristic

(7.54) χH(h) =
∑

p

(−)p trHp(QMd,O(ℓ))h ,

because in this case all summands with p > 0 are zero. For ℓ < 0 the inte-
gral (7.53) represents the TN × S1 fixed point localization formula for the
equivariant holomorphic Euler characteristic (7.54) if the contour of integra-
tion encircles the poles of the integrand from the zeroes of the denominator
in Î(X) [40]. Deforming the contour to enclose instead the poles at P = 0
and P = ∞, we obtain for all ℓ a relation between the defect entropies and
the monopole expansion of the vortex sum discussed in Sect. 2.3, namely

(7.55) χH(QMd(X),O(ℓ)) = Î|QdP ℓ −
qNd(d+1)

∏
i(−Λi)d+1

Ĩ|QdP−ℓ−N(d+1) ,

with Ĩ = Î|Λi→Λ−1
i ,q→q−1 . For the generating function of the holomorphic

Euler characteristics (7.54) we find for all ℓ the relation

(7.56)

∞∑

d=0

QdχH(QMd(X),O(ℓ)) =
(
Î0 , (Pq

θ)−ℓI0)X = E0,0(−ℓ) .

For ℓ ≥ 0 it simplifies to

(7.57) Î =

∞∑

ℓ=0

P ℓE0,0(−ℓ) ,

due to a vanishing residue at infinity.
The above reasonings generalize to defect entropies for the sphere cor-

relator with non-trivial insertions. The result can be written as

(7.58) Ei,j(ℓ) = E0,0(i+ j + ℓ)|Q→Qq−j .
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Under a reflection in q, Ei,j(ℓ)(q
−1) = Ei,j(ℓ)(q)|Q→Qqj−i−ℓ . The quantities

Ei,j(ℓ) depend only on the K-theory charges of the insertions and on the
total background charge up to shifts of Q.

In the massless limit yi = 1, the defect entropies are closely related to
the index (4.4), counting massless open strings between D-branes with RR
charge in K(X). Since QM0 = X, this is the same as the leading term of
the Q-expansion of the entropy (7.58) for the difference bundle E∗

a ⊗ Eb =
P−(i+j+ℓ). Ref. [75] considers special bases of D-branes, so-called strong
exceptional collections of sheaves on X, for which most of the Ext groups in
eq. (4.4) vanish. Two such collections for PN−1 are given by

R = {R1, . . . , RN} with Ra = P 1−a

and S = {S1, . . . , SN} with Sa = (−)N−aΛa−1TX ⊗O(−N + 1− a).

These can be related to bosonic/fermionic maps of the 2d GLSM for X
[92, 93] and are dual in the sense that (Sa, Rb)X = δab . Moreover, one has

(7.59)
(χR)ab := (R∗

a, Rb)X =
1

(1− h)N
,

(χS)
ab := (Sa∗, Sb)X = (1− h)N = (χ−1

R )ab,

where h is an N ×N matrix with unit entries above the diagonal and zeroes
otherwise. E.g., for P2, one has

(7.60) χR =



1 3 6
0 1 3
0 0 1


 , χS =



1 −3 3
0 1 −3
0 0 1


 .

The entries count the number of bosonic/fermionic maps between the basis
elements of R and S with sign (−1)F . The subleading terms of the Q-
expansions of the defect entropies for the elements of R can be written in a
similar form. Defining (χ3d

R )ab = E0,−(b−1)(a− 1) = (χR)ab +O(Q) one finds

(χ3d
R )ab =

(
χR ·

1

1−Q∆ · χR

)

ab

P
2

−→




1
1−Q

3
(1−Q)(1−qQ)

6+3qQ
(1−Q)(1−qQ)(1−q2Q)

0 1
1−qQ

3
(1−qQ)(1−q2Q)

0 0 1
1−q2Q
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((χ3d
R )−1)ab = (χS · (1−QχR ·∆))ab

P
2

−→



1−Q −3 3

0 1−Qq −3
0 0 1−Qq2


 .

where ∆ = diag(1, q, . . . , qN−1). The extra factors compared to the 2d result
seem to be related to the modes of the monopole operator in the 3d theory.
Indeed the entries in the first line of χ3d

R coincide with the coefficients of the
sum I = Î|q→q−1 by (7.57). It would be interesting to derive these results
from lifting the discussion of ref. [75] from sheaves on X to sheaves on the
loop space LX.

Example: Quintic hypersurface in P4

The vortex counting can be generalized to hypersurfaces by introducing
constraints as in ref. [52]. A degree ℓ hypersurface Xℓ in PN−1 is defined by
the zero of a section of O(ℓ)PN−1 , which pulls back to a section of O(ℓd)P1

for a degree d map. Requiring that the section vanishes at dℓ+ 1 point as in
ref. [9] gives dℓ+ 1 constraints of weight qn, n = 0, . . . , ℓd, which contribute
a numerator

(7.61) ChH(QMd(Xℓ)) =

∏ℓd
n=0(1− P ℓq−n)

∏N
i=1

∏d
n=0(1− Pyiq−n)

.

The generating function Î(Xℓ) function satisfies again an equation of the
form (7.56). For ℓ2 ≥ N there are poles at P = ∞ and a non-trivial UV/IR
map. Flowing to the IR, the gauged vortices associated with quasi-maps
are replaced by the vortices of the non-linear sigma model [8, 9], which
correspond to the stable maps of ref. [109]. Correspondingly, there are now
two versions for the entropy, counting IR vortices as in eq. (7.48), or UV
vortices if one replaces Tk in this formula by Ik.

In Sect. 8 we study in detail the case of Calabi–Yau 3-folds and write
a closed formula for the connection matrix D in terms of Gopakumar–Vafa
and K-theoretic invariants. The entropies for ℓ ̸= 1 can be computed from
the J-function. For the quintic 3-fold, the leading series for some entropies
Ea := E0,−a(0) at t = 0 are

E−3 = −35− 609 250
(
3q2 + 4q + 3

)
Q2q−4(7.62)

− 750(2 537 651q5 + 4229 426q4 + 5075 302q3 + 5075 302q2

+ 4229 426q + 2537 651)Q3q−7 + · · · ,
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E−2 = −15− 612125Q2q−2

− 125
(
7612953q2 + 10150696q + 7612953

)
Q3q−4 + · · · ,

E−1 = −5− 242468139250Q4q−2 − 458611777775250(q + 1)Q5q−3 + · · · ,

E0 = F(Q, 0) = 2 875Q+ 620 750Q2 + 317 232 250Q3 + 242 470 013 000Q4

+ 229 305 888 959 500Q5 + · · · ,

E1 = 5 + 5 750(q + 1)Q+ 1000
(
1 845q2 + 2437q + 1845

)
Q2

+ 250
(
5 075 440q3 + 7612 953q2 + 7612 953q + 5075 440

)
Q3 + · · · ,

E2 = 15 + 2 875
(
3q2 + 4q + 3

)
Q

+ 125
(
24 554q4 + 38 992q3 + 44 073q2 + 38 992q + 24 554

)
Q2

+ 125
(
17 763 902q6 + 30 451 812q5 + 38 064 765q4 + 40 602 784q3

+38 064 765q2 + 30 451 812q + 17 763 902
)
Q3 + · · · .

The holomorphic sphere metric ηij is, in this language, the matrix for the
identity defect with non-trivial insertions. Differently to the 2d case, it de-
pends on the FI parameters Q and is given, up to order O(Q4), by




2 875Q+ 620 750Q2 + 317 232 250Q3 5 + 2 875Q+ 1224 250Q2 + 951 627 750Q3 −5 5
5 + 2 875Q+ 1224 250Q2 + 951 627 750Q3 −5 + 2 875Q+ 2439 875Q2 + 2854 860 250Q3 5 0

−5 5 0 0
5 0 0 0




8. Applications to Calabi–Yau manifolds

From the target point view of string theory and M-theory, the case where X
is a Calabi–Yau manifold is distinguished. In the following we study some
details of this situation, mainly for dimension dim(X) = 3, which is the
first case with an interesting IR theory. For dim(X) < 3, the IR theory is
the classical K-theory. The case of Calabi–Yau n-folds with n > 3 is also
interesting and can be treated similarly.

8.1. Quantum K-theory invariants and Gopakumar–Vafa
invariants

The integral quantum K-theory invariants for a Calabi–Yau 3-fold X count
degeneracies of BPS operators in the world-sheet 3d theory. On the other
hand the Gopakumar–Vafa invariants [7] count degeneracies of BPS states
in the 5d target space theory obtained by an M-theory compactification
on X. In this and the next section we observe universal relations between
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world-sheet and target-space invariants for a set of one moduli Calabi–Yau
manifolds.

That such a relation exists in principle, follows from the more general
results of refs. [10, 14, 110], where a relation between quantum K-theory
invariants and cohomological Gromov–Witten invariants has been described
for general target X in terms of a quantum Hirzebruch–Riemann–Roch for-
mula. The latter equates a single quantum K-theory correlation function
to a sum of correlation functions of the so-called fake quantum K-theory
computed on the orbifold strata of the moduli stack. This gives also a rela-
tion between Gopakumar–Vafa and quantum K-theory invariants, which is
however quite implicit and technical in practice.

For the special case of Calabi–Yau manifolds, we instead find a relatively
simply and explicit relation between integral world-volume and target space
invariants below. It would be interesting to understand this relation from
the point of world-sheet/target space duality.

As a simple class of examples, we consider the Calabi–Yau 3-fold hy-
persurfaces WP4

(k1,k2,k3,k4,k5)
[d] of degree d =

∑5
i=1 ki in the weighted pro-

jective spacesWP4
(k1,k2,k3,k4,k5)

and Calabi–Yau 3-fold complete intersections

Pk+3[d1, . . . , dk] of codimension k in projective spaces Pk+3, namely

(8.1)
P4[5] , WP4

(2,14)[6] , WP4
(4,14)[8] , WP4

(5,2,13)[10] ,

P5[2, 4] , P5[3, 3] , P6[2, 2, 3] , P7[2, 2, 2, 2] .

These are one-moduli cases, with the first case being the quintic considered in
Sect. 6. The Gromov–Witten potential and the Gopakumar–Vafa invariants
at genus zero for these manifolds have been computed in refs. [111, 112].

In the next section we will give a closed expression for the n>2-point
functions of ordinary quantum K-theory in terms of the Gromov–Witten
potential F for X, by studying the chiral ring equations in the t-directions.
In this section we consider the permutation equivariant case. We concentrate
on the dependence on a perturbation t1Φ1, since the dependence on the
parameters ta ̸=1 is the classical one for a > 2 (see eq. (8.17)), and for t0 it
is fixed by the K-theoretic string equation [24],[10](p.VII).

To display the general structure of the quantum K-theory correlators,
we write them as

(8.2)

〈
Φα

1− qL
; Φr

1

〉

0,r+1

=

{
1

1−q

∑
kQ

kf
(r)
α,k α = 0, 1 ,

0 α = 2, 3 .
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By explicit computation, we observe that the functions f
(r)
α,k at degree k can

be expressed for all 3-folds X in eq. (8.1) in terms of the Gopakumar–Vafa
invariants nn≤k of X. For r = 0 we find

f
(0)
0,1 =

n1(3q − 1)

q − 1
, f

(0)
0,2 =

n1
(
−3q4 + 9q2 − 4

)

(q − 1)(q + 1)3
+

n2(3q − 1)

q − 1
,

(8.3)

f
(0)
0,3 =

n1
(
−8q6 + 19q3 − 9

)

(q − 1) (q2 + q + 1)3
+

n3(3q − 1)

q − 1
,

f
(0)
0,4 =

n2
(
−3q4 + 9q2 − 4

)

(q − 1)(q + 1)3
+

n1
(
−15q8 + 33q4 − 16

)

(q − 1)(q + 1)3 (q2 + 1)3
+

n4(3q − 1)

q − 1
,

f
(0)
1,1 = n1 , f

(0)
1,2 = −

n1
(
q2 − 2

)

(q + 1)2
+ 2n2 , f

(0)
1,3 =

n1
(
3− 2q3

)

(q2 + q + 1)2
+ 3n3 ,

f
(0)
1,4 = −

2n2
(
q2 − 2

)

(q + 1)2
+

n1
(
4− 3q4

)

(q + 1)2 (q2 + 1)2
+ 4n4 .

Similar expressions for n-point functions with n > 1 are given in App. B.1.

The functions f
(r)
1,k for an insertion of Φ1 in the first slot are finite in the

small radius limit q → 1. For r = 0, they reproduce the multi-cover formula
of quantum cohomology [5, 6]. On the other hand we observe that for r > 0,
the information about the Sn representations of the permutation equivariant
quantum K-theory partially survives in the 2d limit

(8.4)
∑

k>0

Qkf
(r)
1,k |q=1 =

∑

k>0

QkNGW
k k

∑

µ(R)=r

dimR,k ·R .

Here NGW
k are the Gromov–Witten invariants, dimR,k is the dimension of

the representation R in SU(k) and R runs over the Young tableaux with r
boxes.

In the q → 0 limit, the 1-point function takes the simple form

(8.5) ⟨Φ1⟩0,1 = Q∂QFq=0, Fq=0 =
∑

k>0

nkQ
k

1−Qk
,

which is the expected form for the 5d theory.

Calabi–Yau r-folds

The computation of the 3d world-volume theory invariants for dimension
r > 3 is similar. We checked that the n ≤ 4-point functions for the degree N
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hypersurface in PN−1 for N = 6, 7, 8 can be expressed up to degree 3 by the
same formulas, i.e., eq. (8.2) and App. B.1, if we replace the Gopakumar–
Vafa invariants as

(8.6) nk → k−3nk .

Here nk are the numbers of rational curves defined and computed in ref. [113].

8.2. Flatness equations and chiral rings for Calabi–Yau 3-folds

In this section we study the flatness equations and ring structures discussed
in Sect. 7 for Calabi–Yau targets, with a focus on 3-folds.

8.2.1. t-directions. The J-function describes the action of T on the unit
Φ0 = 1 in K(X):

(8.7) J = (1− q)TΦ0 = JαΦα ,

where the r.h.s. is the expansion in a given basis {Φα} of K(X). The action
of T on the other elements Φℓ ∈ K(X) can be expressed through the t-
derivatives of J as

(8.8) (1− q)∂ℓJ = TΦℓ ∗ Φ0 = TΦℓ .

In the basis {Φα}, T can be viewed as a matrix, whose transpose Π = T T is
the 3d analogue of the “period matrix” well-known from 2d mirror symmetry

(8.9) Π =
(
Πα

ℓ

)
, Πα

ℓ = (TΦℓ)
α .

The chiral ring relations then take the familiar form

(8.10) (1− q)∂ℓΠ = Cℓ ·Π ,

In reverse, starting from the J-function of the quantum K-theory, the ring
structure constants can be obtained from the q-period matrix as

(8.11) Cℓ = (1− q)∂ℓΠ ·Π−1 .

The above equations hold in general. We now specialize to the Calabi–
Yau 3-fold hypersurfaces (8.1) for concreteness; the higher dimensional case
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works out similarly. The ring structure constants obtained from the J-
function for ℓ = 0, 2, 3 are the classical ones. In the basis Φℓ = (1− P )ℓ,
ℓ = 0, 1, 2, 3,
(8.12)

C0 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , C2 =




0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0


 , C3 =




0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0


 .

The only multiplication that is modified in the quantum theory is

(8.13) C1(Q, t) =




0 1 0 0
0 0 Cttt c

0 0 0 1
0 0 0 0


 =




0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0


+O(Q) ,

where t ≡ t1. The t-ring structure constants are independent of the twist-
ing parameter q, i.e. the t-ring does not depend on the S1 radius β of the
compactification.

Geometrically, the ring structure constants encode a quantum deforma-
tion of the tensor product of vector bundles. For the line bundle P , the
deformation of the classical tensor product ‘⊗’ to the quantum tensor prod-
uct ‘∗’ is

Φ1 ∗ Φ1 − Φ1 ⊗ Φ1 = P ∗ P − P ⊗ P(8.14)

= [Cttt(Q)− 1] (1− P )2 + c(1− P )3 .

Since the quantum corrections are order H2 and higher, they do not mod-
ify the lower degree terms in the tensor products. More generally, the upper
triangular form of the structure constants in the chosen K-theory basis {Φℓ}
is a peculiarity of the Calabi–Yau case and goes back to the ghost charge
conservation in the cohomological theory. As any vector bundle V can be
expanded as V = rk(V)Φ0 +O(Φ1), the quantum corrections preserve, e.g.,
the rank, but modify the higher Chern characters of the classical tensor
product. On the other hand the quantum tensor product does not preserve
the rank of the classical tensor product of vector bundles for targets with-
out ghost number conservation in the cohomological theory, as e.g. the Fano
varieties considered in ref. [12].

t-Differential equations and q-period vector
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Iterating the system of first order equations (8.10), one obtains dif-
ferential operators in the t-parameters that annihilate the period vector
Π0 = J(Q, t, q):

DaΠ0 = 0 ,

D1 = ∂1 [1 + (1− q)µ]−1∂1[Cttt]
−1∂21 , µ = ∂1(cC

−1
ttt ) ,(8.15)

Da>1 = {∂2∂
2
1 , ∂2∂2, ∂3∂1, ∂3∂2, ∂3∂3} .

Note that the q-dependence of the differential operators is only in the pref-
actor of the term (1− q)µ in D1, and it would vanish without the special
entry c. In the 2d limit q → 1, this term is subleading, and one obtains back
the ordinary Picard–Fuchs equation of the 3-fold X in flat coordinates. In
particular it follows from this limit that

(8.16) κCttt(Q, t) = ∂3tF(Qet) = κ+O(Q) ,

where F is the prepotential of the Gromov–Witten theory for X and κ =∫
X H3.60

In Sect. 2 we argued, that the difference equation annihilating the 3d
partition function reduces to the Picard–Fuchs equation of the 2d theory
in the small radius limit. In the above we obtained the same Picard–Fuchs
equation in the small radius limit of the t-flatness equation. This is another
illustration of the fact, that Q and t deformations become equivalent in the
2d limit, at least at the level of the holomorphic quantities considered in
this paper.

Differently to the 2d case, the t-differential equations alone do not de-
termine Π0. Any linear polynomial f = a0 + a1t1 with arbitrary integration
constants a0,1(Q, q) solves DaΠ0 = 0. These terms correspond to the 1- and
2-point functions and they are not fixed by the t-ring structure constants;
however, they appear in the multiplication rule of the Wilson line operators,
as discussed below. On the other hand a term f = a2t

2 generates a solution
only if a2 = Cttt(Q), times some q dependent function, which can be fixed

60The 2d prepotential for the above examples has been computed by mirror
symmetry in ref. [111, 112].
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from the classical terms. The vector of independent solutions for (8.15) is
(8.17)

(Π0)
α =




q

t1
t2 +

1
q
(12 t

2
1 + Fq

t (z)) + p1(Q, t, q)

t3 +
1
q
t1t2 +

1
q2 (

1
3! t

3
1 + (1− 3q)Fq(z) + (qt1 + q)Fq

t (z)) + p2(Q, t, q)


,

where we have used the large volume limit to fix the classical terms, q =
1− q, z = Qet, κFq is the quantum part of F , ft = ∂tf , and pk are degree
k polynomials in t = t1 determined by the n-point functions with n < 3.61

Using the explicit result for the J-function, the source term µ for the q-
dependence of D can be written, to the computed order in Q, as

(8.18) c = (1− t)Fq
ttt + Fq

tt +N1(ln(1−Q) +Q/(1−Q)) + δc(Q) ,

where N1 is the number of rational curves of degree one, and δc(Q) is a Q-
series of O(Q4) determined by the low n-point functions (8.2). In the small
radius limit, one obtains from (8.17) the period vector of the 2d theory,
which reads, after a rescaling of the basis (cpw. (3.13))

(8.19) ΠGW
0 ∼ (1, t/ℏ,Ft/ℏ

2,−F0/ℏ
3)T ,

with F0 = 2F − tFt. The special form of ΠGW
0 for the Calabi–Yau case was

imposed by N = 2 special geometry of the t-deformation space. It would be
interesting to find a similar interpretation for the q-period Π0 in ref. (8.17).

Eq.(8.17) gives a simple and explicit expression for the K-theoretic n-
point functions for n > 2 in terms of the Gromov–Witten prepotential F .
The polynomials p1,2 are determined by the n-point functions for low n
given in App. B.1. It was also proven in [12], that the correlation functions of
ordinary quantum K-theory are polynomials in t and et. The above formulas
suggest that substantial simplifications occur for Calabi–Yau targets.

8.2.2. Q-directions. The action of the difference connection gives an-
other first order system for the q-period matrix:62

(8.20) δaΠ = DaΠ , δa = 1− qθa .

61The term of p2 quadratic in t is also fixed by the lower order terms.
62To simplify the expressions, we use here the convention that Π contains the

factor P
lnQ
ln q , leading to the replacement 1− Pqθ → 1− qθ; see also fn. 21.
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The matrices Da = δaΠ ·Π−1 capture the multiplication of Wilson line op-
erators related to the defects discussed in Sect. 7.3. For the class of one mod-
ulus 3-folds, a = 1 and the matrix D = D1 computed from the J-function
has the form

(8.21) D(Q, t, q) =




0 1 a b
0 0 x c
0 0 0 1
0 0 0 0


 =




0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0


+O(Q) .

The non-zero entries x, a, b, c are functions of all parameters (Q, t, q).
One may iterate the first order system to obtain a difference equation

for the q-period vector

(8.22) LΠ0 = 0, L = δ[(1 + δν)]−1δ[(x+ δa)]−1δ2 ,

with

(8.23) ν =
c+ ã+ δb

x+ δa
, f̃(Q) := f(Qq) .

From (2.18), the leading behavior of the difference operator δ in the 2d limit
is

(8.24) δ → (1− q)θ , θ = Q
d

dQ
.

The entries x, a, b, c have a finite q → 1 limit. In the 2d limit one can drop the
terms with a factor of δ in the square brackets and obtains the differential
equation

(8.25) LΠ0 = 0 −→ θ2x−1
q=1θ

2ΠGW
0 = 0 .

This is just another time the Picard–Fuchs equation for the 3-fold in flat
coordinates, this time written in the Q-variable.63 In particular it follows
that xq=1 = Cttt(Qe

t).

63In the formalism with doubled number of parameters (Q, t) for H2(X), the mir-
ror map acts only on the t-parameters, but not on Q, with Qet(Q,τ) parametrizing
the 2d theory; see Sect. 8.3.
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More generally we can use the solution vector (8.17) to compute the
structure constants D in terms of F and the polynomials p1,2. We find

x = 1 + dQF
q
tt + δp1t ,

a = q−1(dQF
q
t −Fq

tt + δp1 − qp1t) ,

c = q−1((1− 2q)dQF
q
t + q(1− t)dQF

q
tt + F̃q

tt

+ qδp2t + qp̃1t − tδp1t) ,(8.26)

b = q−1(q−1(1− 3q)dQF
q + (1− t)dQF

q
t

+ q−1(F̃q
t − (1− 2q)Fq

t − q(1− t)Fq
tt)

+ δp2 + p̃1 − qp2t − q−1t(δp1 − qp1t) .

Here a subscript t denotes a t1-derivative and

(8.27) dQ =
1− qθ

1− q
.

To summarize, the Q- and t-multiplications in ordinary quantum K-theory
can be written in closed form in terms of the Gromov–Witten prepoten-
tial F and the 1- and 2-point functions for the class of Calabi–Yau targets
considered above.

8.3. K-theoretic mirror map and integrality

The change from the UV coordinates (τ,Q, q) to the flat coordinates (t, Q, q)
of the IR theory is often called the mirror map. Compared to the 2d the-
ory, the interesting novelty of the 3d case is, that this map connects two
integral expansions, the UV expansion related to the index (2.3) and the IR
expansion related to quantum K-theory. It should be emphasized that the
underlying indices of the 3d gauge theory are independent of the RG flow –
this is the reason, why mirror symmetry, regarded as a map from a UV to
the IR theory, works at all. The mirror map reformulates the UV index in
terms of variables and boundary conditions adapted to the IR regime. Gen-
erally, there can be a mixing of global U(1) currents and the U(1)R current
along the flow.

In the following we study the integrality of the mirror map and its rela-
tion to 3d BPS invariants. In 2d, the mirror map from the algebraic coor-
dinate z to the flat Kähler coordinates t near a large volume point has the
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simple form [4, 5]64

(8.28) t(z) =
ω1(z)

ω0(z)
= ln(z) + 770z + 717 825z2 +

3225 308 000z3

3
+ · · · ,

where ω1 ∼ ln(z) +O(z) is the period with single logarithmic behavior and
ω0 ∼ 1 +O(z) is the fundamental period. The mirror map (8.28) is written
in the formalism with a single set of parameters for H2(X), making use of
the dependence of the 2d theory on Qet. In the 3d theory, one needs to keep
both types of deformations (Q, τ); the algebraic coordinate z in (8.28) then
corresponds to eτ .

We now turn to the K-theoretic mirror map in the 3d theory. The flat
coordinates t are defined in symmetric quantum K-theory by the expansion
(6.6) as [10]

(8.29) t(τ,Q, q) = J(τ,Q, q)|K+
− (1− q) .

Despite of this simple definition, the actual transformation from (Q, τ) to
the flat parameters t is q-dependent and complicated. In Sect. 6 we divided
the computation of the K-theoretic J-functions into the steps:

ZX
3d(Q, q)

vortex sum
−−−−−−−−→ J sym

K (δt,Q, q)
mirror map

−−−−−−−−→ JK(0, Q, q) −→ Jord,sym,eq
K (t, Q, q)

The vortex sum I(Q, q) obtained from the 3d partition function gives a
J-function of the symmetric quantum K-theory at non-zero perturbation
δt(Q, q). Note that the starting point is the unperturbed 3d UV partition
function without extra massive modes, which nevertheless acquires a non-
zero input δt(Q, q) in the IR, see eq. (6.35). The non-zero input arises from
point-like solitons in the UV theory, which can be absorbed into a field
redefinition after flowing to the IR theory [8, 9, 114], both in 3d and 2d.
This field redefinition is described by the mirror map and corresponds to
the next step from J sym

K (δt) to JK(0). The last step indicates that starting
from the J-function with zero input JK(0) one may finally obtain the J-
functions of the ordinary, symmetric, or equivariant theory by perturbing
with the appropriate single- or multi-trace operators.

The 2d mirror map (8.28) involves two operations: the correct normaliza-
tion of the basis elements, such that they are constant over the deformation

64We restrict again to the one modulus case and use the example of the quintic
in explicit formulas below.
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space, and the choice of the flat coordiante t. The first is achieved by divison
by ω0 and the flat coordinate is encoded in the period ω1. It is helpful to
distinguish the two steps also in the K-theoretic mirror map

J sym
K (δt,Q, q)

normalization
−−−−−−−−−→ J sym,norm

K (δt,Q, q)(8.30)

flat coordinates
−−−−−−−−−−→ JK(0, Q, q) .

The necessary basis change from the non-constant basis element Φ̃0 =
ω0(Q, q)Φ0 + · · · to the constant unit Φ0 = 1 is easy to read off: it is the
first q-period in (2.17)

ω0 = I(Q, q, ϵ = 0) =

∞∑

k=0

Qk

∏5k
n=1(1− qn)

∏k
n=1(1− qn)5

(8.31)

=
∑

(k,r)≥0

NUV
n,r Q

kqr = 1 +
∑

k>0

Qkpk(q) .

The integral coefficients NUV
k,r of a term Qkqr in an expansion of ω0 in a series

in Q and q are the degeneracies of 3d BPS operators with vortex charge k
and spin r, in the sector with full Dirichlet boundary conditions. Note that
each term of ω0 for fixed vortex number k is a polynomial pk(q) in q, as
indicated in (8.31). From the point of the 3d field theory this means that
the input arises from a finite number of unpaired fermionic modes. Dividing
by ω0 to normalize the unit Φ0 is multiplication by a power series with
integral coefficients determined by the BPS degeneracies.

In the 2d limit q → 1, ω0 reduces to the fundamental period (c.f.,
eq. (2.11)). Its integral coefficients are given by the 3d BPS degeneracies,
summed over the spin quantum number r:

(8.32) ω2d
0 =

∑

k≥0

NUV
k Qk, NUV

k =
∑

r≥0

NUV
k,r .

E.g., the first terms for the q-period of the quintic are

ω0 = 1 +Q

4∏

ℓ=0

ℓ∑

r=0

qr +Q2
4∏

ℓ=0

(
ℓ∑

r=0

q2r

)(
2ℓ∑

r=0

qr

)
+ · · ·(8.33)

q→1
−−−−→ ω2d

0 = 1 + 120Q+ 113 400Q2 + · · · .

The full basis change Φ̃n = Uαn(Q, q)Φα for the other elements can be found
with the help of a Birkhoff factorization. This step has been described in de-
tail in ref. [12], where it has been used to normalize the operators in ordinary
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quantum K-theory. The same technique can be applied to the symmetric
quantum K-theory to obtain the J-function J sym,norm

K (δt) in the constant
basis {Φα}. As in the case of the coefficient of Φ0 spelled out above, the
normalization process involves multiplication by power series with integral
coefficients determined by the numbers of 3d BPS operators.

The second step in (8.30) describes the choice of flat coordinates. The
map between J sym,norm

K (δt) and JK(0) is given by the transformation (6.20),
restricted to the totally symmetric representations. To compare with (8.28),
we concentrate again on the dependence on the parameter t = t1 associ-
ated to the deformation Φ1 = (1− P ) = H +O(H2), withH the hyperplane
class. Since the correlator terms of the J-function at zero input start at or-
der H2, J(0) = (1− q) +O(H2), the mirror map for t1 is determined by the
action of the operator on the classical term

e
∑
k>0

∑3
a=0 ψ

k(ϵ̃a)(Pqθ)ka

k(1−qk)

(
(1− q) +O(H2)

)
(8.34)

= (1− q)e
∑
k>0

ψk(ϵ0)

k(1−qk) (1−∆t ·H) +O(H2) .

The exponential factor with argument ϵ0 =
∑

a ϵ̃a is fixed by the normaliza-
tion of Φ0, setting ϵ̃0 = 0. The coefficient of H is

(8.35) ∆t =
∑

k>0

ψk(ϵ1)

1− qk
, ϵ1 =

∑

a

aϵ̃a .

In quantum K-theory, the terms with k > 1 represent correlators, see
eqs. (6.6), (6.8). The shift δtK of t1 representing the 3d mirror map is there-
fore

(8.36) δtK = (1− q)∆t|k=1 = ϵ1 .

The shift δtK is fixed by requiring the H1 term on the r.h.s. of (8.34) to
match the one in J sym,norm

K (δt) obtained from the 3d vortex sum, going
backwards at the second arrow in (8.30). Since the normalization procedure
preserves integrality, this is an integral series

(8.37) ϵ1 = −
∑

r>0

nUV
r Qr .
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The explicit coefficients for the quintic are

nUV
1 = 770 , nUV

2 = 717 440 , nUV
3 = 1075 102 410 ,

nUV
4 = 1973 656 926 400 , nUV

5 = 4062 154 117 561 250 ,

nUV
6 = 8998 533 447 740 749 920 , . . . .

Now consider instead the small radius limit q → 1 of ∆t, which should re-
produce the 2d mirror map:

(8.38) δtGW = lim
q→1

(1− q)
∑

k

ψk(ϵ1)

1− qk
=
∑

r>0

nUV
r ln(1−Qr) .

The r.h.s. is the series part of the r.h.s. of eq. (8.28). Adding the log term
and exponentiating, the 2d mirror map is expressed in terms of the integers
nUV
r as

(8.39) et(Q) = Qe−δtGW = Q
∏

r>0

(1−Qr)−nUV
r ,

The fact that the exponentiated mirror map (8.39) has integral coefficients
was observed long time ago and proven for the quintic in ref. [115] using
p-adic methods. The new aspect of the 3d derivation of this fact is the
connection (8.39) of these integral coefficients to 3d BPS degeneracies. The
assumptions entering the above argument, and therefore BPS formula (8.39),
hold also for Calabi–Yau n-folds with n > 3.

9. Outlook and open questions

The correspondence between 3d gauge theory and permutation equivariant
quantum K-theory proposed in this note raises a number of interesting ques-
tions, some of which have already been mentioned, for instance, a comparison
of the gluing prescription for point vertices of ref. [10] with the gluing of the
topological vertex, the description of a derived category of E-branes and its
relation to elliptic cohomology, or the tt∗ geometry related to the q-period
vector.

Another important direction is the generalization of the correspondence
to higher genus. On the side of quantum K-theory, a higher genus definition
exist [10](p.IX). From the relation between the K-theoretic vertex and the
topological vertex we have already noted that the 3d theory resums the genus
expansion. For an illustration consider the case of a Calabi–Yau 3-fold X.
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The partition function in the large radius limit gives

(9.1) ZS1×qS2 ∼ κ
(t+ t̄)3

3!ℏ3
− χ ln(q)3q

d

dq
lnM(q) + β2

c2
12ℏ

(t+ t̄) ,

where κ =
∫
X H3, χ =

∫
X c3(X), and c2 =

∫
X c2(X)H. The first term is the

classical volume of the manifold. The second term reproduces in the 2d limit
the perturbative correction to the Kähler potential (4.31), i.e., we obtain
the large radius limit of the genus zero Kähler potential of topological string
theory on X.

Interestingly, the 3d corrections to the 2d limit are related to known
higher genus quantities of the topological string on X. The MacMahon func-
tion M(q) is known to compute the all genus contribution of the constant
maps to the topological string [7]

(9.2)

∞∑

g=0

Fggs
2g−2

∣∣
const maps

=
χ

2
lnM(q) = −

χ

2

ζ(3)

gs2
+O(gs

0) ,

where gs is the string coupling and q = eigs . Matching the q parameters of
the 3d theory and the topological string gives the identification

(9.3) gs = iβℏ
ℏ=−2πi

−−−−−−→ gs =
β

2π
.

The special choice for ℏ made in the second step is the natural value in the
A-model.65 With this identification the linear term in eq. (9.1) corresponds
to the string 1-loop term, which is indeed the only t-dependent term present
at large volume.

The particular combination of higher genus terms in eq. (9.1) can be
obtained in N = 2 4d supergravity from the standard relation

(9.4) − ie−K = XAF̄A − X̄AFA .

Here XA = (X0, X0t) are the homogeneous variables for the one modulus
case, FA = ∂F/∂XA. If one uses the all genus prepotential

(9.5) Ftop = (X0)2
(
κ
t3

3!
−
c2
24
t

)
+
χ

2
lnM(q) +

c2
24
t ,

for constant maps in (9.4), and identifies X0 = 1/gs, one obtains

(9.6) ZS2×S1 = e−K(β) .

65See Sect. 10 of ref. [3].
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The Kähler potential K(β) defined in this way depends on the radius, or
the string coupling. The identification (9.3) between the S1 radius and the
string coupling constant gs on the world-sheet is reminiscent of a similar
relation in M-theory in target space [116]. Prepotentials including higher
genus and non-perturbative corrections play an important role in the study
of black holes, see e.g. refs. [117, 118].
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Appendix A. Appendix

A.1. 3d partition functions for 3d GLSM

In this section we give some details on the computation of the 3d partition
functions used in Sect. 2.

U(1) partition function on S1 ×q S2. First consider the S1 ×q S
2 par-

tition function for a hypersurface in a weighted projective space WPN . This
is a U(1) theory with N + 1 fields φα of U(1) charges qα and R-charges
∆α. Here α = 0 refers to the field of negative charge equal to the degree
of the hypersurface constraint and with R-charge ∆0 = 2−

∑
α>0∆α. The

fields α > 0 represent the homogeneous coordinates on WPN of weights qα.
A canonical choice for the R-charges for the compact case is

(A.1) ∆0 = 2 , ∆α>0 = 0 .

The 1-loop determinant for a chiral field φα with charges (qα,∆α, fαr) under
gauge, R- and global symmetries is [35, 43, 44, 119]

(A.2) Zϕ = (q
1−∆α

2 z−qαy−fαr
r )−mqα/2 (z

−qαq−mqα/2+1−∆α/2y−fαr
r , q)∞

(zqαq−mqα/2+∆α/2yfαrr , q)∞
,

where z = eih a U(1) Wilson line on S1, m the magnetic flux on S2 and
(x, q)∞ the q-Pochhammer symbol. q is the chemical potential for combined
U(1)R and S2 rotations and yr are chemical potentials for the global sym-
metries.66 We mostly set yr = 1 in the following and restore the dependence

66Some of these correspond to the toric TN action of equivariant quantum K-
theory/quantum cohomology theory.
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on the yr by an appropriate shift of h when needed. Then the poles are at

zqα = qmqα/2−∆α/2−k+ϵ , k ≥ mqα .

There is always a field φ∗ of minimal U(1) charge one. The factor Zφα at
the poles from the field φ∗ with charges (q∗ = 1,∆∗) can be witten in terms
of q-Gamma functions as

(A.3) Zφα = qrα(1− q)sα
Γq(uα(k))

Γq(1− uα(n))
,

where n = k −m and the arguments and exponents are

uα(k) = µα − kqα , µα = qα

(
ϵ−

∆∗

2

)
+

∆α

2
,(A.4)

sα = uα(k) + uα(n)− 1 , rα =
1

4
sα (uα(n)− uα(k)) .(A.5)

Using the identity

Γq(x− k)Γq(1− x+ k) = (−)kq
k(k+1)

2
−kxΓq(x)Γq(1− x)

the product of the contributions of all fields can be recast in the form

∏

α

Zφα = Υ̃ · Ωk,q · Ωn,q̄

with

Ωk,q = (−)k(c1+q0)(1− q)−c1k̂q
1

4
a(k) Γq(u0(k))∏

α>0 Γq(1− uα(k))

a(k) =
∑

α>0

(uα(k)
2 − uα(k))− (u0(k)

2 − u0(k)) ,

Υ̃ =

∏
α>0 Γq(µα)Γq(1− µα)

Γq(µ0)Γq(1− µ0)
· (1− q)−N+1q−

1

2
a(0)(−)c1ϵ̂ .

Here q̄ = q−1, c1 =
∑

α qα, k̂ = k − ϵ̂, ϵ̂ = ϵ−∆∗/2.
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The classical action gets a contribution from FI-terms and CS terms

e−Sclass(z,m) = e4πξih/ ln q+imθeκgihmeκRmβℏ/2

= Qk̂Q̄n̂q−
κg

2
(k̂2−n̂2)q−

κR
2
(k̂−n̂) ,

where κg and κR are the CS coefficients for the gauged U(1) and mixed
gauge/U(1)R CS terms and

Q = e−2πξ+iθ .

Collecting the k-dependent terms and summing over k one gets
(A.6)

I(Q, q, ϵ) =

∞∑

k=0

( Q

(1− q)c1
)k̂(−)k(c1+q0)qd(k,ϵ)

Γq(u0(k))

Γq(µ0)

∏

α>0

Γq(1− µα)

Γq(1− uα(k))
,

where we have included a constant normalization factor such that
I(Q, q, 0) = 1 +O(Q). The exponent of the q factor is

d(k, ϵ) = k̂2
(
t2
2
−
κg
2

)
+ k̂

(
t1
4
−
κR
2

)
,

where

(A.7) t2 =
1

2

∑

α

σαq
2
α , t1 =

∑

α

σαqα(1−∆α) ,

and σα = +1 (-1) for α > 0 (α = 0). The coefficient t2 is the numerical co-
efficient of the second Chern character of X and moreover t1 agrees with
that of the first Chern class for the canonical choice of R charges (A.1). The
exponent vanishes for the special choice of CS terms

κg = t2 , κR = t1/2 ⇒ d(k, ϵ) = 0 .

Similarly the n-dependent terms give the series I(Q̄, q̄, ϵ). The remaining
k, n-independent terms can be collected into the folding factor

(A.8) fS2(q, ϵ) =
1− µ0∏
α>0 µα

tdβ(X)ΓX,q/ΓX,q ,

where

(A.9) ΓX,q =

∏
α>0 Γq(1 + µα)

Γq(1 + (1− µ0))
, ΓX,q =

∏
α>0 Γq(1− µα)

Γq(1− (1− µ0))
,
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and

(A.10) tdβ(X) =
1− q−(1−µ0)

1− µ0

∏

α>0

µα
1− q−µα

.

There is an involution symmetry ΓX,q ↔ ΓX,q generated by a sign flip of ϵ
and ∆α>0.

Collecting all the terms above, the partition functions is.

(A.11) ZS1×qS2 = ln(q)

∮

0

dϵ

2πi
I(Q̄, q̄, ϵ)fS2(q, ϵ)I(Q, q, ϵ) .

For the canonical choice of R charges,

(A.12) µα>0 = ϵqα , 1− µ0 = −q0ϵ ,

and we obtain the expressions (2.28),(2.29).

Partition function on S1 ×q D2. To describe a complete intersection
hypersurface X in a toric variety, we consider a U(1)n gauge theory with
Ñ chiral fields with Neumann boundary conditions and D̃ chiral fields with
Dirichlet boundary condition, as defined in [30]. The first and second Chern
characters of X are determined by the charges qiα of the fields as

c1(J) = ciJi , ci =
∑

α∈N,D

qiα , i = 1, . . . , n ,(A.13)

ch2(J) = cijJiJj , cij =
1

2

(
∑

α∈N

−
∑

α∈D

)
qiαq

j
α ,(A.14)

where Ji denotes a basis for H2(X,Z) in the Kähler cone. A field φα with
Dirichlet boundary conditions and negative U(1)n charges qiα, i = 1, . . . , n
implements a hypersurface constraint of degree |qiα|.

The 1-loop determinants for a field of charges (qα,∆α, fαr) with
N(eumann) boundary conditions are [30]

(A.15) ZN
φα =

q−
1

24
− 1

4
((u′

α)
2−u′

α)

(zqαq∆α/2yfαrr , q)∞
,

where zqαα =
∏n

i=1 z
qiα
iα and u′α is the q-exponent of the argument of the q-

Pochhammer symbol

qu
′

α = zqαq∆α/2yfαrr .
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For fields with D(irichlet) boundary67

ZD
φα = q

1

24
+ 1

4
((u′

α)
2−u′

α)(z−qαq1−∆α/2y−fαr
r , q)∞ ,

qu
′

α = z−qαq1−∆α/2y−fαr
r .(A.16)

The following computation is similar to the previous one up to small modi-
fications. To simplify the exposition, we set yr = 1 and assume a canonical
choice for the R-charges

(A.17) ∆α = 0(2) for N(D) .

In a large volume phase we pick an integration contour that sums up the
poles at

(A.18) zqα = q−k̂α , k̂α = kα − ϵα =
∑

i

qiα(ki − ϵi) , 0 ≤ ki ∈ Z .

The partition function then takes the form

(A.19) ZS1×qD2 = (ln q)n
∫ n∏

i=1

dϵi
2πi

fD2(q, ϵ) · I(Q, q, ϵ) .

The holomorphic series is

I(Q, q, ϵ) =

∞∑

ki=0

(
∏

i

(
Qi

(1− q)ci

)k̂i
)
(−)c1(k)qd(k,ϵ)(A.20)

×
∏

α∈D

Γq(1− k̂α)

Γq(1 + ϵα)

∏

α∈N

Γq(1− ϵα)

Γq(1 + k̂α)
.

Here

(A.21) d(k, ϵ) =
1

2
(k̂ik̂j(cij − κij) + k̂i(

1

2
ci − κi)) ,

where κij and κi are the CS couplings for U(1)i × U(1)j and U(1)i × U(1)R.
The folding factor is

(A.22) fD2(q, ϵ) = (−η(q))D̃−Ñq−ch2(ϵ)−
1

2
c1(ϵ)ΓX,qtdβX

∏
D(−βϵα)∏
N βϵα

,

67In the notation of [30], we have set 2β = 2β2 = (βℏ)here. In the anomalous term
in their eq. (4.13) there appears to be a typo: the terms ∼ a and ∼Ml should have
the reversed sign and this was used here.
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where η(q) = q1/24
∏∞

r=1(1− qr), the q-Gamma class of X is

(A.23) ΓX,q =

∏
N Γq(1 + ϵα)∏
D Γq(1− ϵα))

,

and the β-dependent Todd class is

(A.24) tdβ(X) =
∏

N

βϵα
1− q−ϵα

∏

D

1− qϵα

−ϵαβ
.

A.2. Some q-functions

For the convenience of the reader we collect in this appendix some defini-
tions and a few formulas on q-functions used in the computations. A good
reference for background material is ref. [120].

q-Pochhammer

Assuming |q| < 1, we have the identities among q-Pochhammer symbols

(x, q)k =

k−1∏

n=0

(1− xqn) , (q)k = (q, q)k =

k∏

n=1

(1− qn) ,(A.25)

(x, q)∞ =

∞∑

k=0

(−x)kqk(k−1)/2

(q)k
=

∞∏

l=0

(1− xql) ,(A.26)

1

(x, q)∞
= exp

(
+∞∑

k=1

xk

k(1− qk)

)
=

∞∑

k=0

xk

(q)k
=

1∏∞
l=0(1− xql)

.(A.27)

In terms of the logarithmic derivative θ = x∂x, we find

(A.28)
(1− yqθ−a)

[
y−

ln x

ln q xa

(x, q)∞

]
=
y−

ln x

ln q xa+1

(x, q)∞
,

(1− yq−θ+a)
[
y+

ln x

ln q xa(qx, q)∞

]
= y+

ln x

ln q xa+1(qx, q)∞ .

q-Gamma

For q < 1,

(A.29) Γq(x) =
(q, q)∞
(qx, q)∞

(1− q)1−x .
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and for q > 1

(A.30) Γq(x) = Γq̄(x)q
(x−2)(x−1)/2 ,

where q̄ = q−1. One has

Γq(x+ 1) =
1− qx

1− q
Γq(x) ,(A.31)

Γq(1 + x)Γq(1− x) =

∞∏

n=1

(1− qn)2

(1− qney)(1− qne−y)
(A.32)

= e2
∑

∞

k=1
y2k

2k!
G0

2k(q),

with y = x ln q.

Theta-functions

(A.33) θ(x, q) = (x, q)∞(q/x, q)∞

q-Polygamma function

The q-Polygamma function

(A.34) ψq(k, x) =
dk+1

dxk+1
ln Γq(x) ,

has for x = 1 the small q expansion

(A.35) ψq(k, 1) = ln(q)k+1dk(q)− δk,0 ln(1− q) ,

where

(A.36) dk(q) =

∞∑

n=1

σk(n)q
n, σk(n) =

∑

d|n

dk .

For all k one notices the infinite product formula

(A.37) dk(q) =

∞∑

n=1

nkqn

1− qn
= q

d

dq
ln

(
+∞∏

n=1

(1− qn)−nk−1

)
.
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For k = 1, 2, the argument of the logarithm on the r.h.s. is the counting
functions of 2d- and 3d-partitions

(A.38) k = 1 :

+∞∏

n=1

(1− qn)−1 =
q1/24

η(q)
, k = 2 :

+∞∏

n=1

(1− qn)−n =M(q) ,

where M(q) denotes the MacMahon function.

Eisenstein series

(A.39) G2k(τ) = γ2k +

∞∑

n=1

σ2k−1(n)q
n, γ2k = −

B2k

4k
.

Here q = e2πiτ and B2k are the Bernoulli numbers. The modular transfor-
mation of G2k is

(A.40) G2k

(
aτ + b

cτ + d

)
= (cτ + d)2kG2k(τ)− δk,1

c(cτ + d)

4πi
.

The q-Polygamma functions for odd k are almost modular:

(A.41) ψq(2k − 1, 1) = ln(q)2kG0
2k(τ) .

where G0
2k(τ) = G2k(τ)− γ2k are the Eisenstein series with constant term

γ2k removed. The constant terms are related to the characteristic function
of the A-roof genus as

(A.42) Â(x) =
(x/2)

sinh(x/2)
= exp

[
2

∞∑

k=1

x2k

2k!
γ2k

]
.

q-Gamma genus

The expansion of the logarithm of q-Gamma is, with y = x/ ln q:

ln Γq(1 + y) =

∞∑

k=1

yk

k!
ψq(k − 1, 1) = Le + Lo ,

Le =

∞∑

k=1

G0
2k

2k!
x2k ,(A.43)

Lo = −x
ln(1− q)

ln q
+

∞∑

k=0

d2k
(2k + 1)!

x2k+1 .
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A.3. Solutions to q-difference system

The difference equation (2.16) for the degree N hypersurface X in PN−1 can
be factorized as L = (1− qθ)LX with

(A.44) LX = (1− qθ)N−1 −Q

N−1∑

j=0

q(θ+1)j
N−1∏

j=1

(1− qNθ+j) .

Around the large volume point Q = 0, a basis of N − 1 solutions is given by
the first N − 1 coeffients ωi of the ϵ-expansion of the vortex sum

I(Q, q, ϵ) = c(ϵ)

∞∑

k=0

Qk−ϵΓq(1 +N(k − ϵ))

Γq(1 + k − ϵ)N
=

N−2∑

i=0

ωi(Q, q)(−ϵ)
i .

The leading terms in Q are

(ωLV
i )c(ϵ)=ΓX,q∗ =

1

i!
(lnQ)i

(A.45)

(ωLV
i )c(ϵ)=1 =




1
lnQ

1
2(lnQ)2 + c2ψ1

1
3!(lnQ)3 + lnQc2ψ1 −

1
2c3ψ2

1
4!(lnQ)4 + 1

2(lnQ)2c2ψ1 −
1
2 lnQc3ψ2 +

1
12(6c

2
2ψ

2
1 + (2c4 − c22))ψ3

· · ·



,

where it is understood that ωLV
i is set to zero if i > N − 2 = dimX. The

subleading terms in the last expansion arise from the series expansion of the
q-Gamma class 1/ΓX,q

∗(X). Here ck denotes the numerical coefficient of the
k-th Chern class of X and ψk = ψq(k, 1). The series expansion in z has the
general form

(A.46) (ωLV ) = s0




1
ℓ+ s1

1
2ℓ

2 + s2
1
3!ℓ

3 + s2ℓ+ s3
1
4!ℓ

4 + 1
2s2ℓ

2 + s3ℓ+ s4
...




ℓ = lnQ+ s1 ,
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where

(A.47) si(Q, q) = (ln q)is̃i(Q, q) ,

with s̃i(Q, q) a power series in both Q and q, starting at O(Q1) for i > 0.
Near the Landau–Ginzburg point 1/Q = 0, the natural variable is

ψ = Q−1/N . A series solution of eq. (A.44) is given by

(A.48) ωLG
0 (ψ) =

∞∑

k=1

ψk (−)kqk(k−1)/2

Γq(k)Γq(1−
k
N )N

.

A basis of N − 1 linearly dependent solutions is provided by the q-periods

(A.49) ωLG
k (ψ) = ωLG

0 (ψηk) , k = 0, . . . , N − 2 , η = e−2πik/N .

The series ωLG
N−1(ψ) is also a solution, but linearly dependent:

(A.50)

N−1∑

k=0

ωLG
k (ψ) = 0 .

Appendix B. More invariants

B.1. One modulus Calabi–Yau 3-folds

Below we give the results for the n-point functions at low n for the one mod-
uli Calabi–Yau 3-folds X in eq. (8.1). The computation has been described
in Sect. 6 for the quintic. To display the general structure of the quantum
K-theory invariants, and to save some space, we express these invariants in
terms of the integral Gopakumar–Vafa invariants nk of X.68 For the r + 1
point functions we write

(B.1)

〈
Φα

1− qL
; Φr

1

〉

0,r+1

=

{
0 α = 2, 3 ,
1

1−q

∑
kQ

kf
(r)
α,k α = 0, 1 ,

where the functions f
(r)
α,k at degree k depend on nn≤k.

68The explicit numbers nk can be found in the tables of ref. [111].
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For the 1-pt functions we find, supressing the superscript on f

f0,1 =
n1(3q − 1)

q − 1
, f0,2 =

n1
(
−3q4 + 9q2 − 4

)

(q − 1)(q + 1)3
+

n2(3q − 1)

q − 1
,

f0,3 =
n1
(
−8q6 + 19q3 − 9

)

(q − 1) (q2 + q + 1)3
+

n3(3q − 1)

q − 1
,

f0,4 =
n2
(
−3q4 + 9q2 − 4

)

(q − 1)(q + 1)3
+

n1
(
−15q8 + 33q4 − 16

)

(q − 1)(q + 1)3 (q2 + 1)3
+

n4(3q − 1)

q − 1
,

f1,1 = n1 , f1,2 =
n1
(
2− q2

)

(q + 1)2
+ 2n2 , f1,3 =

n1
(
3− 2q3

)

(q2 + q + 1)2
+ 3n3 ,

f1,4 = −
2n2

(
q2 − 2

)

(q + 1)2
+

n1
(
4− 3q4

)

(q + 1)2 (q2 + 1)2
+ 4n4 .

For the 2-pt functions

f0,1 =
n1(2q − 1)

q − 1
, f0,2 =

n1
(
3q2 − 2

)

(q − 1)(q + 1)2
+

2n2(2q − 1)

q − 1
,

f0,3 =
n1(q − 1)

(
4q3 − 3

)

(q3 − 1)2
+

3n3(2q − 1)

q − 1
,

f0,4 =
n1(q − 1)

(
5q4 − 4

)

(q4 − 1)2
+

2n2
(
3q2 − 2

)

(q − 1)(q + 1)2
+

4n4(2q − 1)

q − 1

f1,1 = n1 , f1,2 =
n1

q + 1
+ 4n2 , f1,3 =

n1

q2 + q + 1
+ 9n3 ,

f1,4 =
n1

q3 + q2 + q + 1
+

4n2
q + 1

+ 16n4 .

The functions for r = 2 are

f0,1 =
n1
((
q2 + q − 1

)
− q

)

q2 − 1
,

f0,2 =
n2
((
q2 − 2q − 1

)
+
(
3q2 + 2q − 3

) )

q2 − 1

+
n1
((
q4 + q3 − 4q2 − q + 2

)
+
(
q3 + 4q2 − q − 3

) )

(q − 1)(q + 1)3
,
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f0,3 =
3n3

((
q2 − q − 1

)
+
(
2q2 + q − 2

) )

q2 − 1

+
n1((q5+q4−3q3−q2−q+2) +(q6+q5+q4+3q3−q2−q−3) )

(q2−1)(q2+q+1)2
,

f0,4 =
2n4

((
3q2 − 2q − 3

)
+
(
5q2 + 2q − 5

) )

q2 − 1

+
n2
((
3q4 + 4q3 − 8q2 − 4q + 3

)
+
(
q4 + 4q3 + 8q2 − 4q − 7

) )

(q − 1)(q + 1)3

+
n1((q8+q7+q6+q5−6q4−q3−q2−q+4) +(q7+q6+q5+6q4−q3−q2−q−5) )

(q−1)(q+1)3(q2+1)2
,

f1,1 = n1 , f1,2 =
n1
((
q2 + q − 1

)
+ (q + 2)

)

(q + 1)2
+ 2n2( + 3 ),

f1,3 =
n1
(
q +

(
q2 + 1

) )

q2 + q + 1
+ 9n3( + 2 ),

f1,4 =
2n2

((
3q2 + 4q − 1

)
+
(
q2 + 4q + 5

) )

(q + 1)2

+
n1
((
q4 + q3 + q2 + q − 1

)
+
(
q3 + q2 + q + 2

) )

(q + 1)2 (q2 + 1)
+ 8n4(3 + 5 ) .

The functions for r = 3 are, restricting to the simpler case with insertion Φ1

in the first slot

f1,1 = n1 , f1,2 = n1

(
q

q + 1
+

2

q + 1

)
+ n2 (4 + 8 ) ,

f1,3 = n1

( (
2− q3

)

(q2 + q + 1)2
+

(
q4 + 3q3 + 3q2 + 2q − 1

)

(q2 + q + 1)2

+

(
q4 + q3 + 3q2 + 2q + 3

)

(q2 + q + 1)2

)

+ n3
(
24 + 3 + 30

)
,

f1,4 = n1

(
q3

q3 + q2 + q + 1
+

(
q3 + q2 + 2q + 1

)

q3 + q2 + q + 1
+

(
q3 + 2q2 + 2

)

q3 + q2 + q + 1

)

+ n2

(
(12q + 8)

q + 1
+

4q

q + 1
+

4(q + 4)

q + 1

)

+ n4
(
80 + 16 + 80

)
.
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The functions for r = 4 are

f1,1 = n1 ,

f1,2 = n1

(

(q + 1)2
+
q(q + 2)

(q + 1)2
+

(
q2 + 2q + 2

)

(q + 1)2

)

+ n2 (2 + 6 + 10 ) ,

f1,3 = n1

(
q(q + 1)

q2 + q + 1
+

(
2q2 + 2q + 1

)

q2 + q + 1
+
q2 + q + 1

+

(
q2 + q + 3

)

q2 + q + 1

)

+ n3
(
18 + 45 + 9 + 45

)
,

f1,4 = n2

(
8
(
q2 + 2q + 2

)

(q + 1)2
+

6
(
4q2 + 8q + 3

)

(q + 1)2
+

2
(
4q2 + 8q + 3

)

(q + 1)2

+
2

(q + 1)2
+

2
(
8q2 + 16q + 11

)

(q + 1)2




+ n1



(
q2 + 2q + 2

)

(q + 1)2
+

(
2q4 + q2 − 2

)

(q + 1)2 (q2 + 1)2

+
q
(
3q5 + 6q4 + 10q3 + 12q2 + 8q + 6

)

(q + 1)2 (q2 + 1)2

+

(
q6 + 2q5 + q4 + 4q3 + 2q2 + 2q + 3

)

(q + 1)2 (q2 + 1)2

+

(
2q6 + 4q5 + 5q4 + 8q3 + 7q2 + 4q + 5

)

(q + 1)2 (q2 + 1)2

)

+ n4

(
80 + 180 + 60 + 4 + 140

)

B.2. The projective line

Below we collect some permutation equivariant invariants for X = P1 and
the ordinary invariants to which they sum up by (6.5). The invariants for
the ordinary quantum K-theory have been computed before in [12]. Using
the standard basis Φα = (1− P )α, Φα = χαβΦβ , with the pairing χαβ =

(Φα,Φβ) =

(
1 1
0 1

)
, we abbreviate the correlators of degree k with r + 1
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marked points and r permutation symmetric insertions as

(B.2)

〈
Φα

1− qL
; Φr

1

〉Sr

0,r+1,k

= f
(r)
α,k , α = 0, 1 , k = 1, 2, 3, . . . .

• For r = 0:

f0,1 =
1

1− q
, f0,2 = −

1

(q − 1)3(q + 1)2
,

f0,3 = −
1

(q − 1)5(q + 1)2 (q2 + q + 1)2
,

f0,4 = −
1

(q − 1)7(q + 1)4 (q2 + 1)2 (q2 + q + 1)2
,

f0,5 = −
1

(q − 1)9(q + 1)4 (q2 + 1)2 (q2 + q + 1)2 (q4 + q3 + q2 + q + 1)2
,

f1,1 = −
2q

(q − 1)2
, f1,2 = −

2q(2q + 1)

(q − 1)4(q + 1)3
,

f1,3 = −
2q
(
3q3 + 4q2 + 3q + 1

)

(q − 1)6(q + 1)3 (q2 + q + 1)3
,

f1,4 = −
2q
(
4q5 + 5q4 + 7q3 + 5q2 + 3q + 1

)

(q − 1)8(q + 1)5 (q2 + 1)3 (q2 + q + 1)3
,

f1,5 = −
2q
(
5q9 + 11q8 + 19q7 + 24q6 + 26q5 + 22q4 + 16q3 + 9q2 + 4q + 1

)

(q − 1)10(q + 1)5 (q2 + 1)3 (q2 + q + 1)3 (q4 + q3 + q2 + q + 1)3
.

• For r = 1:

f0,1 = −
q − 1

, f0,2 = −
(q − 1)3(q + 1)

,

f0,3 = −
(q − 1)5(q + 1)2 (q2 + q + 1)

,

f0,4 = −
(q − 1)7(q + 1)3 (q2 + 1) (q2 + q + 1)2

,

f0,5 = −
(q − 1)9(q + 1)4 (q4 + q3 + q2 + q + 1) (q4 + q3 + 2q2 + q + 1)2

,

f1,0 = , f1,1 = −
q

(q − 1)2
, f1,2 = −

q(3q + 2)

(q − 1)4(q + 1)2
,
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f1,3 = −
q
(
5q3 + 7q2 + 6q + 2

)

(q − 1)6(q + 1)3 (q2 + q + 1)2
,

f1,4 = −
q
(
7q5 + 9q4 + 13q3 + 10q2 + 6q + 2

)

(q − 1)8(q + 1)4 (q2 + 1)2 (q2 + q + 1)3
,

f1,5 = −
q
(
9q9 + 20q8 + 35q7 + 45q6 + 50q5 + 43q4 + 32q3 + 18q2 + 8q + 2

)

(q − 1)10(q + 1)5 (q4 + q3 + q2 + q + 1)2 (q4 + q3 + 2q2 + q + 1)3
.

• For r = 2:

f0,1 =
1− q

, f0,2 = −
q +

(
q2 + q + 1

)

(q − 1)3(q + 1)2
,

f0,3 = −
q +

(
q2 + 1

)

(q − 1)5(q + 1)2 (q2 + q + 1)
,

f0,4 = −
q
(
q2 + q + 1

)
+
(
q4 + q3 + q2 + q + 1

)

(q − 1)7(q + 1)4 (q2 + 1) (q2 + q + 1)2
,

f0,5 = −
q
(
q2 + 1

)
+
(
q4 + q2 + 1

)

(q − 1)9(q + 1)4 (q4 + q3 + q2 + q + 1) (q4 + q3 + 2q2 + q + 1)2
,

f1,0 =
−

q + 1
, f1,1 =

q ( − )

(q − 1)2(q + 1)
,

f1,2 = −
q
(
q(2q + 1) +

(
2q3 + 4q2 + 5q + 2

) )

(q − 1)4(q + 1)3
,

f1,3 = −
q
(
q
(
4q3 + 6q2 + 5q + 2

)
+
(
4q5 + 6q4 + 10q3 + 9q2 + 6q + 2

) )

(q − 1)6(q + 1)3 (q2 + q + 1)2
,

• For r = 3:

f0,1 =
1− q

, f0,2 = −
q +

(
q2 + 1

)

(q − 1)3(q + 1)
,

f0,3 = −
q3 + (q + 1)2

(
q2 + 1

)
q +

(
q6 + q5 + 2q4 + 2q3 + 2q2 + q + 1

)

(q − 1)5(q + 1)2 (q2 + q + 1)2
,

f0,4 = −
q3 +

(
q4 + q3 + q2 + q + 1

)
q +

(
q6 + q4 + q3 + q2 + 1

)

(q − 1)7(q + 1)3 (q2 + 1) (q2 + q + 1)2
,

f1,0 =
− + +

q2 + q + 1
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• For r = 4:

f0,1 =
1− q

,

f0,2 = −
q
((
q2 + q + 1

)
+ q

)
+
(
q4 + q3 + q2 + q + 1

)

(q − 1)3(q + 1)2
,

f0,3 =−
q3 +(q3+q)q +(q4+q3+q2+q+1)q +(q6+q4+q3+q2+1)

(q−1)5(q+1)2(q2+q+1) ,

f1,0 =
− + −

q3 + q2 + q + 1

B.3. The projective surface

In this appendix we expand on Sect. 6.2 and collect for reference further per-
mutation equivariant quantum K-invariants, which arise from the J-function
Jeq
K of the projective surface P2 with the parameter dependent input

(B.3) t = aΦ1 + bΦ2 ,

which arises from the equivariant J-function (6.20) together with eq. (6.23).
The equivariant correlators in the expansion of the J-function with input
t can also be interpreted as linear combinations of Sn × Sm equivariant
correlators. Namely, the permutation equivariant correlators are not multi-
linear but instead obey for the given input the equivariant correlator identity
[10](p.I)

〈
Φα

1− qL
; (aΦ1 + bΦ2)

r

〉Sr

0,r+1,k

(B.4)

=

r∑

n=0

〈
Φα

1− qL
; (aΦ1)

n; (bΦ2)
r−n

〉Sn×Sr−n

0,r+1,k

,

in terms of the insertions of the elements aΦ1 ≡ Φ⊕a
1 and bΦ1 ≡ Φ⊕b

1 of
the K-group K(P2)⊗ C. Introducing the abbreviation for the equivariant
correlators

(B.5)

〈
Φα

1− qL
; (aΦ1 + bΦ2)

r

〉Sr

0,r+1,k

= f
(r)
α,k ,

we list the first few correlators in the following:
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For r = 0:

f
(0)
0,1 =

10q2 − 5q + 1

(q − 1)4
, f

(0)
0,2 = −

28q4 + 24q3 − 2q2 − 3q + 1

(q − 1)7(q + 1)5
,

f
(0)
0,3 =

55q8 + 143q7 + 193q6 + 154q5 + 68q4 + 10q3 − 5q2 − q + 1

(q − 1)10(q + 1)5 (q2 + q + 1)5
,

f
(0)
1,1 =

4q − 1

(q − 1)3
, f

(0)
1,2 = −

7q2 + 3q − 1

(q − 1)6(q + 1)4
,

f
(0)
1,3 =

10q4 + 13q3 + 9q2 + 2q − 1

(q − 1)9(q + 1)4 (q2 + q + 1)4
,

f
(0)
2,1 =

1

(q − 1)2
, f

(0)
2,2 = −

1

(q − 1)5(q + 1)3
,

f
(0)
2,3 =

1

(q − 1)8(q + 1)3 (q2 + q + 1)3
.

For r = 1:

f
(1)
0,1 =

(
6aq2 − 4aq + a− 3bq3 + 6bq2 − 4bq + b

)

(q − 1)4
,

f
(1)
0,2 =

(−21aq4−21aq3+aq2+3aq−a+15bq6+18bq5−15bq4−21bq3+bq2+3bq−b)
(q−1)7(q+1)4 ,

f
(1)
0,3 = −

(q − 1)10(q + 1)5 (q2 + q + 1)4
(
− 45aq8 − 120aq7 − 171aq6

− 143aq5 − 67aq4 − 11aq3 + 5aq2 + aq − a+ 36bq11 + 99bq10

+ 150bq9 + 96bq8 − 33bq7 − 138bq6 − 137bq5 − 67bq4

− 11bq3 + 5bq2 + bq − b
)
,

f
(1)
1,1 =

(
3aq − a− 2bq2 + 3bq − b

)

(q − 1)3
,

f
(1)
1,2 =

(
−6aq2 − 3aq + a+ 5bq4 + 3bq3 − 6bq2 − 3bq + b

)

(q − 1)6(q + 1)3
,

f
(1)
1,3 =

(9aq4+12aq3+9aq2+2aq−a−8bq7−11bq6−9bq5+6bq4+12bq3+9bq2+2bq−b)

(q−1)9(q+1)4(q2+q+1)3
,

f
(1)
2,1 = −

(−a+ bq − b)

(q − 1)2
, f

(1)
2,2 =

(
−a+ bq2 − b

)

(q − 1)5(q + 1)2
,

f
(1)
2,3 = −

(
−a+ bq3 − b

)

(q − 1)8(q + 1)3 (q2 + q + 1)2
.
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For r = 2:

f
(2)
0,1 =

2(q − 1)4(q + 1)

(
3a2q3 − 2a2q + a2 − 2abq4 + 4abq3 − 4abq + 2ab

− 3aq3 − 6aq2 + 4aq − a− b2q4 + 2b2q3

− 2b2q + b2 + 3bq4 − 6bq2 + 4bq − b
)

+
2(q − 1)4(q + 1)

(
3a2q3 − 2a2q + a2 − 2abq4 + 4abq3 − 4abq + 2ab

+ 3aq3 + 6aq2 − 4aq + a− b2q4 + 2b2q3 − 2b2q + b2

− 3bq4 + 6bq2 − 4bq + b
)
,

f
(2)
0,2 = −

2(q − 1)7(q + 1)5
(
15a2q6 + 48a2q5 + 51a2q4 + 15a2q3 − 5a2q2

− a2q + a2 − 20abq8 − 70abq7 − 62abq6 + 42abq5 + 90abq4 + 30abq3

− 10abq2 − 2abq + 2ab− 15aq6 − 18aq5 − 27aq4 − 21aq3 + aq2

+ 3aq − a+ 6b2q9 + 14b2q8 − 5b2q7 − 31b2q6 − 9b2q5 + 21b2q4

+ 9b2q3 − 5b2q2 − b2q + b2 − 6bq9 + 18bq8 + 51bq7 + 27bq6

− 21bq5 − 45bq4 − 27bq3 + bq2 + 3bq − b
)

−
2(q − 1)7(q + 1)5

(
15a2q6 + 48a2q5 + 51a2q4 + 15a2q3 − 5a2q2

− a2q + a2 − 20abq8 − 70abq7 − 62abq6 + 42abq5 + 90abq4 + 30abq3

− 10abq2 − 2abq + 2ab+ 15aq6 + 18aq5 + 27aq4 + 21aq3 − aq2

− 3aq + a+ 6b2q9 + 14b2q8 − 5b2q7 − 31b2q6 − 9b2q5 + 21b2q4

+ 9b2q3 − 5b2q2 − b2q + b2 + 6bq9 − 18bq8 − 51bq7 − 27bq6 + 21bq5

+ 45bq4 + 27bq3 − bq2 − 3bq + b
)
,

f
(2)
1,1 =

2(q − 1)3(q + 1)

(
2a2q2 + a2q − a2 − 2abq3 + 2abq2 + 2abq − 2ab

− 2aq2 − 3aq + a− b2q3 + b2q2 + b2q − b2 + 3bq3 − bq2 − 3bq + b
)

+
2(q − 1)3(q + 1)

(
2a2q2 + a2q − a2 − 2abq3 + 2abq2 + 2abq − 2ab

+ 2aq2 + 3aq − a− b2q3 + b2q2 + b2q − b2 − 3bq3 + bq2 + 3bq − b
)
,

f
(2)
1,2 = −

2(q − 1)6(q + 1)4
(
5a2q4 + 13a2q3 + 10a2q2 + a2q − a2 − 8abq6

− 22abq5 − 10abq4 + 20abq3 + 20abq2 + 2abq − 2ab− 5aq4 − 3aq3

− 6aq2 − 3aq + a+ 3b2q7 + 5b2q6 − 5b2q5 − 11b2q4 + b2q3 + 7b2q2

+ b2q − b2 − 3bq7 + 9bq6 + 15bq5 − bq4 − 9bq3 − 9bq2 − 3bq + b
)
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−
2(q − 1)6(q + 1)4

(
5a2q4 + 13a2q3 + 10a2q2 + a2q − a2 − 8abq6

− 22abq5 − 10abq4 + 20abq3 + 20abq2 + 2abq − 2ab+ 5aq4 + 3aq3

+ 6aq2 + 3aq − a+ 3b2q7 + 5b2q6 − 5b2q5 − 11b2q4 + b2q3 + 7b2q2

+ b2q − b2 + 3bq7 − 9bq6 − 15bq5 + bq4 + 9bq3 + 9bq2 + 3bq − b
)
,

f
(2)
2,1 = −

(a− 1)(−a+ 2bq − 2b)

2(q − 1)2
−

(a+ 1)(−a+ 2bq − 2b)

2(q − 1)2
,

f
(2)
2,2 = −

2(q − 1)5(q + 1)3
(
a2q2 + 2a2q + a2 − 2abq4 − 4abq3 + 4abq + 2ab

− aq2 − a+ b2q5 + b2q4 − 2b2q3 − 2b2q2 + b2q + b2 − bq5 + 3bq4

+ 2bq3 − 2bq2 − bq − b
)

−
2(q − 1)5(q + 1)3

(
a2q2 + 2a2q + a2 − 2abq4 − 4abq3 + 4abq + 2ab

+ aq2 + a+ b2q5 + b2q4 − 2b2q3 − 2b2q2 + b2q + b2 + bq5 − 3bq4

− 2bq3 + 2bq2 + bq + b
)
.

For r = 3:

f
(3)
0,1 =

3(q − 1)4 (q2 + q + 1)

(
a3q4 − a3q3 − a3q + a3 + 3a2bq4 − 3a2bq3

− 3a2bq + 3a2b+ 3ab2q4 − 3ab2q3 − 3ab2q + 3ab2 − aq4 − 5aq3

− 6aq2 + 4aq − a+ 9bq4 − 9bq3
)

+
6(q − 1)4(q + 1) (q2 + q + 1)

(
a3q5 − a3q3 − a3q2 + a3 + 3a2bq5

− 3a2bq3 − 3a2bq2 + 3a2b− 3a2q5 − 12a2q4 − 3a2q3 − 3a2q2

+ 6a2q − 3a2 + 3ab2q5 − 3ab2q3 − 3ab2q2 + 3ab2 + 6abq5 − 12abq4

+ 6abq3 − 6abq2 + 12abq − 6ab+ 2aq5 + 12aq4 + 22aq3 + 4aq2

− 6aq + 2a+ 6b2q5 − 12b2q4 + 6b2q3 − 6b2q2 + 12b2q − 6b2

− 18bq5 + 18bq3
)

+
6(q − 1)4(q + 1) (q2 + q + 1)

(
a3q5 − a3q3 − a3q2 + a3 + 3a2bq5

− 3a2bq3 − 3a2bq2 + 3a2b+ 3a2q5 + 12a2q4 + 3a2q3 + 3a2q2

− 6a2q + 3a2 + 3ab2q5 − 3ab2q3 − 3ab2q2 + 3ab2 − 6abq5 + 12abq4

− 6abq3 + 6abq2 − 12abq + 6ab+ 2aq5 + 12aq4 + 22aq3 + 4aq2

− 6aq + 2a− 6b2q5 + 12b2q4 − 6b2q3 + 6b2q2 − 12b2q + 6b2

− 18bq5 + 18bq3
)
,
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f
(3)
1,1 =

3(q − 1)3 (q2 + q + 1)

(
a3q3 − a3 + 3a2bq3 − 3a2b− 3ab2q4 + 3ab2q3

+ 3ab2q − 3ab2 − aq3 − 3aq2 − 3aq + a+ 3bq4 − 3bq
)

+
6(q − 1)3(q + 1) (q2 + q + 1)

(
a3q4 + a3q3 − a3q − a3 + 3a2bq4

+ 3a2bq3 − 3a2bq − 3a2b− 3a2q4 − 9a2q3 − 6a2q2 − 3a2q + 3a2

− 3ab2q5 + 3ab2q3 + 3ab2q2 − 3ab2 + 3abq5 + 3abq4 − 6abq3

− 3abq2 − 3abq + 6ab+ 2aq4 + 8aq3 + 12aq2 + 4aq − 2a+ 6b2q5

− 6b2q3 − 6b2q2 + 6b2 − 6bq5 − 6bq4 + 6bq2 + 6bq
)

+
6(q − 1)3(q + 1) (q2 + q + 1)

(
a3q4 + a3q3 − a3q − a3 + 3a2bq4

+ 3a2bq3 − 3a2bq − 3a2b+ 3a2q4 + 9a2q3 + 6a2q2 + 3a2q − 3a2

− 3ab2q5 + 3ab2q3 + 3ab2q2 − 3ab2 − 3abq5 − 3abq4 + 6abq3

+ 3abq2 + 3abq − 6ab+ 2aq4 + 8aq3 + 12aq2 + 4aq − 2a− 6b2q5

+ 6b2q3 + 6b2q2 − 6b2 − 6bq5 − 6bq4 + 6bq2 + 6bq
)
,

f
(3)
2,1 = −

(a− 1)(a+ 1)(−a+ 3bq − 3b)

3(q − 1)2
−

(a− 2)(a− 1)(−a+ 3bq − 3b)

6(q − 1)2

−
(a+ 1)(a+ 2)(−a+ 3bq − 3b)

6(q − 1)2
.

References

[1] E. Witten, Topological sigma models, Commun. Math. Phys. 118
(1988) 411.

[2] W. Lerche, C. Vafa, and N. P. Warner, Chiral rings in N = 2 super-
conformal theories, Nucl. Phys. B324 (1989), 427–474.

[3] D. A. Cox and S. Katz, Mirror Symmetry and Algebraic Geometry,
Vol. 68 of Mathematical Surveys and Monographs, American Mathe-
matical Society, Providence, RI, (1999).

[4] K. Hori, S. Katz, A. Klemm, R. Pandharipande, R. Thomas, C. Vafa
et al., Mirror Symmetry, Vol. 1 of Clay Mathematics Monographs,
American Mathematical Society, Providence, RI; Clay Mathematics
Institute, Cambridge, MA, (2003).

[5] P. Candelas, X. C. De La Ossa, P. S. Green and L. Parkes, A pair
of Calabi-Yau manifolds as an exactly soluble superconformal theory,
Nucl. Phys. B359 (1991), 21–74.



✐

✐

“4-Mayr” — 2020/7/9 — 18:07 — page 449 — #123
✐

✐

✐

✐

✐

✐

A 3d gauge theory/quantum K-theory correspondence 449

[6] P. S. Aspinwall and D. R. Morrison, Topological field theory and ratio-
nal curves, Commun. Math. Phys. 151 (1993), 245–262.

[7] R. Gopakumar and C. Vafa, M theory and topological strings I,
arXiv:hep-th/9809187.

[8] E. Witten, Phases of N = 2 theories in two-dimensions, Nucl. Phys.
B403 (1993), 159–222.

[9] D. R. Morrison and M. R. Plesser, Summing the instantons: Quantum
cohomology and mirror symmetry in toric varieties, Nucl. Phys. B440
(1995), 279–354.

[10] A. Givental, Permutation-equivariant quantum K-theory I–XI, [I
1508.02690], [II 1508.04374], [III 1508.06697], [IV 1509.00830], [V
1509.03903], [VI 1509.07852], [VII 1510.03076], [VIII 1510.06116],
[IX 1709.03180], [X 1710.02376], [XI 1711.04201], 2015–2017.
https://math.berkeley.edu/ giventh/perm/perm.html.

[11] A. Givental, On the WDVV equation in quantum K-theory, Michigan
Math. J. 48 (2000), 295–304.

[12] H. Iritani, T. Milanov, and V. Tonita, Reconstruction and convergence
in quantum K-theory via difference equations, Int. Math. Res. Not.
IMRN (2015), 2887–2937.

[13] A. Okounkov, Lectures on K-theoretic computations in enumerative
geometry, in: Geometry of Moduli Spaces and Representation Theory,
Vol. 24 of IAS/Park City Math. Ser., pp. 251–380. Amer. Math. Soc.,
Providence, RI, (2017).

[14] A. Givental and V. Tonita, The Hirzebruch-Riemann-Roch theorem in
true genus-0 quantum K-theory, in: Symplectic, Poisson, and Noncom-
mutative Geometry, Vol. 62 of Math. Sci. Res. Inst. Publ., pp. 43–91.
Cambridge Univ. Press, New York, (2014).

[15] S. Cecotti and C. Vafa, Topological antitopological fusion, Nucl. Phys.
B367 (1991), 359–461.

[16] T. Dimofte, D. Gaiotto, and S. Gukov, Gauge theories labelled by three-
manifolds, Commun. Math. Phys. 325 (2014), 367–419.

[17] A. Kapustin and B. Willett, Wilson loops in supersymmetric Chern-
Simons-matter theories and duality, arXiv:1302.2164.

https://math.berkeley.edu/~giventh/perm/perm.html


✐

✐

“4-Mayr” — 2020/7/9 — 18:07 — page 450 — #124
✐

✐

✐

✐

✐

✐

450 Hans Jockers and Peter Mayr

[18] M. Aganagic and A. Okounkov, Elliptic stable envelope, arXiv:

1604.00423.

[19] M. Aganagic and A. Okounkov, Quasimap counts and Bethe eigen-
functions, Mosc. Math. J. 17 (2017), 565–600.

[20] D. Gaiotto and P. Koroteev, On three dimensional quiver gauge theo-
ries and integrability, JHEP 05 (2013) 126.

[21] P. P. Pushkar, A. Smirnov, and A. M. Zeitlin, Baxter Q-operator from
quantum K-theory, arXiv:1612.08723.

[22] P. Koroteev, P. P. Pushkar, A. Smirnov, and A. M. Zeitlin, Quan-
tum K-theory of quiver varieties and many-body systems, arXiv:

1705.10419.

[23] S. Cecotti, D. Gaiotto, and C. Vafa, tt∗ geometry in 3 and 4 dimen-
sions, JHEP 05 (2014) 055.

[24] Y.-P. Lee, Quantum K-theory. I. Foundations, Duke Math. J. 121
(2004), 389–424.

[25] M. Aganagic, A. Klemm, M. Mariño, and C. Vafa, The topological
vertex, Commun. Math. Phys. 254 (2005), 425–478.

[26] V. Pestun et al., Localization techniques in quantum field theories, J.
Phys. A50 (2017) 440301.

[27] H. Jockers, V. Kumar, J. M. Lapan, D. R. Morrison, and M. Romo,
Two-sphere partition functions and Gromov-Witten invariants, Com-
mun. Math. Phys. 325 (2014), 1139–1170.

[28] J. Gomis and S. Lee, Exact Kahler potential from gauge theory and
mirror symmetry, JHEP 04 (2013) 019.

[29] C. Beem, T. Dimofte, and S. Pasquetti, Holomorphic blocks in three
dimensions, JHEP 12 (2014), 177.

[30] Y. Yoshida and K. Sugiyama, Localization of 3d N = 2 supersymmet-
ric theories on S1 ×D2, arXiv:1409.6713.

[31] S. Sugishita and S. Terashima, Exact results in supersymmetric field
theories on manifolds with boundaries, JHEP 11 (2013) 021.

[32] A. Gadde, S. Gukov, and P. Putrov, Walls, lines, and spectral dualities
in 3d gauge theories, JHEP 05 (2014) 047.



✐

✐

“4-Mayr” — 2020/7/9 — 18:07 — page 451 — #125
✐

✐

✐

✐

✐

✐

A 3d gauge theory/quantum K-theory correspondence 451

[33] A. Iqbal and C. Vafa, BPS degeneracies and superconformal index in
diverse dimensions, Phys. Rev. D90 (2014), 105031.

[34] T. Dimofte, S. Gukov, and L. Hollands, Vortex counting and La-
grangian 3-manifolds, Lett. Math. Phys. 98 (2011) 225–287.

[35] T. Dimofte, D. Gaiotto, and S. Gukov, 3-manifolds and 3d indices,
Adv. Theor. Math. Phys. 17 (2013), 975–1076.

[36] V. V. Batyrev, Dual polyhedra and mirror symmetry for Calabi-Yau
hypersurfaces in toric varieties, J. Alg. Geom. 3 (1994) 493–545.

[37] S. Hosono, A. Klemm, S. Theisen, and S.-T. Yau, Mirror symmetry,
mirror map and applications to Calabi-Yau hypersurfaces, Commun.
Math. Phys. 167 (1995), 301–350.

[38] A. Givental, Homological geometry I. Projective hypersurfaces, Selecta
Math. (N.S.) 1 (1995), 325–345.

[39] A. Givental, Equivariant Gromov-Witten invariants, Internat. Math.
Res. Notices (1996), 613–663.

[40] A. Givental and Y.-P. Lee, Quantum K-theory on flag manifolds,
finite-difference Toda lattices and quantum groups, Invent. Math. 151
(2003), 193–219.

[41] G. Bonelli, A. Sciarappa, A. Tanzini, and P. Vasko, Vortex partition
functions, wall crossing and equivariant Gromov-Witten invariants,
Commun. Math. Phys. 333 (2015), 717–760.

[42] M. Bullimore, H.-C. Kim, and P. Koroteev, Defects and quantum
Seiberg-Witten geometry, JHEP 05 (2015) 095.

[43] Y. Imamura and S. Yokoyama, Index for three dimensional super-
conformal field theories with general R-charge assignments, JHEP 04
(2011) 007.

[44] A. Kapustin and B. Willett,Generalized superconformal index for three
dimensional field theories, arXiv:1106.2484.

[45] S. Pasquetti, Factorisation of N = 2 theories on the squashed 3-sphere,
JHEP 04 (2012) 120.

[46] A. Gerhardus and H. Jockers, Dual pairs of gauged linear sigma models
and derived equivalences of Calabi-Yau threefolds, J. Geom. Phys. 114
(2017), 223–259.



✐

✐

“4-Mayr” — 2020/7/9 — 18:07 — page 452 — #126
✐

✐

✐

✐

✐

✐

452 Hans Jockers and Peter Mayr

[47] Y. Ruan and M. Zhang, The level structure in quantum K-theory and
mock theta functions, arXiv:1804.06552.

[48] O. Aharony, A. Hanany, K. A. Intriligator, N. Seiberg, and M. J.
Strassler, Aspects of N = 2 supersymmetric gauge theories in three-
dimensions, Nucl. Phys. B499 (1997), 67–99.

[49] V. Borokhov, A. Kapustin, and X. Wu, Topological disorder operators
in three-dimensional conformal field theory, Journal of High Energy
Physics 11 (Nov., 2002) 049.

[50] K. Intriligator and N. Seiberg, Aspects of 3d N = 2 Chern-Simons-
Matter theories, JHEP 07 (2013) 079.

[51] K. Intriligator, Matching 3d N =2 vortices and monopole operators,
JHEP 10 (2014) 52.

[52] N. Nekrasov and S. Shadchin, ABCD of instantons, Commun. Math.
Phys. 252 (2004), 359–391.

[53] M. Bullimore, T. Dimofte, D. Gaiotto, J. Hilburn, and H.-C. Kim,
Vortices and Vermas, Adv. Theor. Math. Phys. 22 (2018), 803–917.

[54] A. Gerasimov, D. Lebedev, and S. Oblezin, On q-Deformed glℓ+1 -
Whittaker function II, Communications in Mathematical Physics 294
(Feb., 2010) 97.

[55] M. Aganagic and C. Vafa, G(2) manifolds, mirror symmetry and geo-
metric engineering, arXiv:hep-th/0110171.

[56] M. Aganagic, K. Hori, A. Karch and D. Tong, Mirror symmetry in
(2 + 1)-dimensions and (1 + 1)-dimensions, JHEP 07 (2001) 022.

[57] N. A. Nekrasov and S. L. Shatashvili, Quantization of integrable sys-
tems and four dimensional gauge theories, in: Proceedings, 16th Inter-
national Congress on Mathematical Physics (ICMP09): Prague, Czech
Republic, August 3-8, 2009, pp. 265–289, (2009).

[58] N. A. Nekrasov and S. L. Shatashvili, Supersymmetric Vacua and
Bethe Ansatz, Nuclear Physics B Proceedings Supplements 192 (July,
2009), 91–112.

[59] M. Aganagic, R. Dijkgraaf, A. Klemm, M. Mariño, and C. Vafa, Topo-
logical strings and integrable hierarchies, Commun. Math. Phys. 261
(2006), 451–516.



✐

✐

“4-Mayr” — 2020/7/9 — 18:07 — page 453 — #127
✐

✐

✐

✐

✐

✐

A 3d gauge theory/quantum K-theory correspondence 453

[60] M. Aganagic, M. C. N. Cheng, R. Dijkgraaf, D. Krefl, and C. Vafa,
Quantum geometry of refined topological strings, JHEP 11 (2012) 019.

[61] J. M. F. Labastida, M. Mariño, and C. Vafa, Knots, links and branes
at large N , JHEP 11 (2000) 007.

[62] A. Givental, Explicit reconstruction in quantum cohomology and K-
theory, Ann. Fac. Sci. Toulouse Math. (6) 25 (2016), 419–432.

[63] A. Okounkov, N. Reshetikhin, and C. Vafa, Quantum Calabi-Yau and
classical crystals, Prog. Math. 244 (2006) 597.

[64] A. Iqbal and A.-K. Kashani-Poor, SU(N) geometries and topological
string amplitudes, Adv. Theor. Math. Phys. 10 (2006), 1–32.

[65] C. Vafa, Topological strings on compact CY and SCFT’s, in: Talk
at String Math 2018, Tohoku University, (2018). http://www.tfc.
tohoku.ac.jp/event/4200.html.

[66] V. Tonita, Twisted K-theoretic Gromov-Witten invariants, arXiv:

1508.05976.

[67] K. Hori and M. Romo, Exact results in two-dimensional (2, 2) super-
symmetric gauge theories with boundary, arXiv:1308.2438.

[68] D. Honda and T. Okuda, Exact results for boundaries and domain
walls in 2d supersymmetric theories, JHEP 09 (2015) 140.

[69] A. Libgober, Chern classes and the periods of mirrors, Math. Res.
Lett. 6 (1999), 141–149.

[70] H. Iritani, An integral structure in quantum cohomology and mirror
symmetry for toric orbifolds, Adv. Math. 222 (2009), 1016–1079.

[71] L. Katzarkov, M. Kontsevich, and T. Pantev, Hodge theoretic aspects of
mirror symmetry, in: From Hodge Theory to Integrability and TQFT
tt*-Geometry, Vol. 78 of Proc. Sympos. Pure Math., pp. 87–174. Amer.
Math. Soc., Providence, RI, (2008).

[72] Y.-K. E. Cheung and Z. Yin, Anomalies, branes, and currents, Nucl.
Phys. B517 (1998), 69–91.

[73] R. Minasian and G. W. Moore, K theory and Ramond-Ramond charge,
JHEP 11 (1997) 002.

[74] J. Halverson, H. Jockers, J. M. Lapan, and D. R. Morrison, Perturba-
tive corrections to Kaehler moduli spaces, Commun. Math. Phys. 333
(2015), 1563–1584.

http://www.tfc.tohoku.ac.jp/event/4200.html
http://www.tfc.tohoku.ac.jp/event/4200.html


✐

✐

“4-Mayr” — 2020/7/9 — 18:07 — page 454 — #128
✐

✐

✐

✐

✐

✐

454 Hans Jockers and Peter Mayr

[75] K. Hori, A. Iqbal, and C. Vafa, D-branes and mirror symmetry, arXiv:
hep-th/0005247.

[76] L. Alvarez-Gaume, Supersymmetry and the Atiyah-Singer index theo-
rem, Commun. Math. Phys. 90 (1983), 161.

[77] D. Friedan and P. Windey, Supersymmetric derivation of the Atiyah-
Singer index and the chiral anomaly, Nucl. Phys. B235 (1984), 395–
416.

[78] S. Galkin, V. Golyshev, and H. Iritani, Gamma classes and quantum
cohomology of Fano manifolds: Gamma conjectures, Duke Math. J.
165 (2016), 2005–2077.

[79] R. Lu, The Γ̂-genus and a regularization of an S1-equivariant Euler
class, J. Phys. A 41 (2008) 425204, 13.

[80] E. Witten, The index of the Dirac operator in loop space, in: Elliptic
Curves and Modular Forms in Algebraic Topology (Princeton, NJ,
1986), Vol. 1326 of Lecture Notes in Math., pp. 161–181. Springer,
Berlin, (1988).

[81] O. Alvarez, T. P. Killingback, M. L. Mangano and P. Windey, String
theory and loop space index theorems, Commun. Math. Phys. 111
(1987) 1.

[82] E. Witten, Elliptic genera and quantum field theory, Commun. Math.
Phys. 109 (1987) 525.

[83] M. Herbst, K. Hori, and D. Page, Phases of N = 2 theories in 1 + 1
dimensions with boundary, arXiv:0803.2045.

[84] A. N. Schellekens and N. P. Warner, Anomalies, characters and strings,
Nucl. Phys. B287 (1987) 317.

[85] D. Zagier, Note on the Landweber-Stong elliptic genus, in: Elliptic
Curves and Modular Forms in Algebraic Topology (Princeton, NJ,
1986), Vol. 1326 of Lecture Notes in Math., pp. 216–224. Springer,
Berlin, (1988).

[86] E. Witten, On flux quantization in M-theory and the effective action,
Journal of Geometry and Physics 22 (Apr., 1997), 1–13.

[87] C. Krattenthaler, V. P. Spiridonov, and G. S. Vartanov, Superconfor-
mal indices of three-dimensional theories related by mirror symmetry,
JHEP 06 (2011) 008.



✐

✐

“4-Mayr” — 2020/7/9 — 18:07 — page 455 — #129
✐

✐

✐

✐

✐

✐

A 3d gauge theory/quantum K-theory correspondence 455

[88] F. Hirzebruch, T. Berger, and R. Jung, Manifolds and Modular Forms,
Aspects of Mathematics, E20. Friedr. Vieweg & Sohn, Braunschweig,
(1992).

[89] J. Knapp, M. Romo, and E. Scheidegger, Hemisphere partition func-
tion and analytic continuation to the conifold point, Commun. Num.
Theor. Phys. 11 (2017), 73–164.

[90] R. K. Saxena, G. C. Modi, and S. L. Kalla, A basic analogue of Fox’s
H-function, Rev. Técn. Fac. Ingr. Univ. Zulia 6 (1983), 139–143.

[91] L. Alvarez-Gaume, G. W. Moore, and C. Vafa, Theta functions, mod-
ular invariance and strings, Commun. Math. Phys. 106 (1986), 1–40.

[92] P. Mayr, Phases of supersymmetric D-branes on Kähler manifolds and
the McKay correspondence, JHEP 01 (2001) 018.

[93] S. Govindarajan and T. Jayaraman, Boundary fermions, coherent
sheaves and D-branes on Calabi-Yau manifolds, Nucl. Phys. B618
(2001), 50–80.

[94] K. Hori, Linear models of supersymmetric D-branes, arXiv:hep-th/
0012179.

[95] A. Kapustin and Y. Li, Topological correlators in Landau-Ginzburg
models with boundaries, Adv. Theor. Math. Phys. 7 (2003), 727–749.

[96] A. Gadde, S. Gukov, and P. Putrov, Fivebranes and 4-manifolds, Prog.
Math. 319 (2016), 155–245.

[97] J. Distler and S. Kachru, (0, 2) Landau-Ginzburg theory, Nucl. Phys.
B413 (1994), 213–243.

[98] B. Feigin and S. Gukov, VOA[M4], arXiv:1806.02470.

[99] K. Intriligator and N. Seiberg, Mirror symmetry in three dimensional
gauge theories, Physics Letters B 387 (Feb., 1996), 513–519.

[100] J. de Boer, K. Hori, H. Ooguri, and Y. Oz, Mirror symmetry in three-
dimensional gauge theories, quivers and D-branes, Nucl. Phys. B493
(1997), 101–147.

[101] A. Kapustin and M. J. Strassler, On mirror symmetry in three-
dimensional Abelian gauge theories, JHEP 04 (1999) 021.

[102] K. Hori and C. Vafa, Mirror symmetry, arXiv:hep-th/0002222.



✐

✐

“4-Mayr” — 2020/7/9 — 18:07 — page 456 — #130
✐

✐

✐

✐

✐

✐

456 Hans Jockers and Peter Mayr

[103] N. Dorey and D. Tong, Mirror symmetry and toric geometry in three-
dimensional gauge theories, JHEP 05 (2000) 018.

[104] T. Dimofte, D. Gaiotto, and N. M. Paquette, Dual boundary conditions
in 3d SCFTs, JHEP 05 (2018) 060.

[105] P. Berglund, P. Candelas, X. De La Ossa, A. Font, T. Hübsch, D. Jan-
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