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SU(n)× Z2 in F-theory on K3 surfaces

without section as double covers of

Halphen surfaces
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We investigate F-theory models with a discrete Z2 gauge symmetry
and SU(n) gauge symmetries. We utilize a class of rational elliptic
surfaces lacking a global section, known as Halphen surfaces of in-
dex 2, to yield genus-one fibered K3 surfaces with a bisection, but
lacking a global section. We consider F-theory compactifications
on these K3 surfaces times a K3 surface to build such models. We
construct Halphen surfaces of index 2 with type In fibers, and we
take double covers of these surfaces to obtain K3 surfaces without
a section with two type In fibers, and K3 surfaces without a section
with a type I2n fiber. We study these models to advance the under-
standing of gauge groups that form in F-theory compactifications
on the moduli of bisection geometries.

Our results also show that the Halphen surfaces of index 2 can
have type In fibers up to I9. We construct an example of such a
surface and determine the complex structure of the Jacobian of
this surface. This allows us to precisely determine the non-Abelian
gauge groups that arise in F-theory compactifications on genus-
one fibered K3 surfaces obtained as double covers of this Halphen
surface of index 2, with a type I9 fiber times a K3 surface. We also
determine the U(1) gauge symmetries for compactifications when
K3 surfaces as double covers of Halphen surfaces with type I9 fiber
are ramified over a smooth fiber.
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1. Introduction

Building models in particle physics using the F-theory [1–3] approach has
several advantages; in this approach, the SU(5) GUT model is naturally re-
alized with matter fields in SO(10) spinor representation. Additionally, the
F-theory approach can avoid the problem of weakly coupled heterotic string
theory, addressed in [4]. Furthermore, up-type Yukawa couplings can be
generated in this approach without difficulty. Local models [5–8] have been
mainly considered in recent studies of F-theory. Gravity, however, decouples
when the local models are considered. Therefore, global models need to be
investigated to discuss the problems related to gravity, such as the inflation.
In this note, we analyze the global geometric structures of the compactifi-
cation spaces in F-theory.

Compactification spaces in F-theory have the structure of a genus-one
fibration. The complex structure of a torus as a fiber of a genus-one fibra-
tion of a compactification space is identified with the axio-dilaton, enabling
the axio-dilaton to possess SL(2,Z) monodromy. 7-branes in F-theory are
wrapped on the components of the locus in the base space of a genus-one
fibration, over which the fiber degenerates and becomes singular, namely the
discriminant locus. The gauge symmetries and matter that arise are deter-
mined from the structure of the genus-one fibration of the compactification
space. [9, 10] classified the types of singular fibers of elliptic surfaces 1. The
types of the singular fibers of a genus-one fibration correspond to the non-
Abelian gauge groups that arise on the 7-branes in F-theory compactification
[3, 13]. This relationship is summarized in Table 1 below as the correspon-
dence of the singularity types of the compactification space and the types of
the singular fibers of a genus-one fibration that the compactification space
admits.

Some genus-one fibrations admit a global section, while the others do
not. Elliptic fibrations with a global section have been studied in F-theory

1[11, 12] discussed techniques to determine the type of singular fibers of elliptic
surfaces.
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Type of

singular fiber
Singularity type

In (n ≥ 2) An−1

I∗m (m ≥ 0) D4+m

III A1

IV A2

IV ∗ E6

III∗ E7

II∗ E8

I1 none.

II none.

Table 1: The types of the singular fibers and the corresponding singularity
types of the compactification space.

compactifications [14–26]. In recent studies, F-theory compactifications on
genus-one fibrations without a global section were analyzed. See, for exam-
ple, [27–40] for studies on F-theory compactifications on genus-one fibrations
without a section. One of the reasons that the models that lack a section are
considered is that a discrete gauge symmetry 2 arises in these models. The
mechanism which accounts for the origin of discrete gauge symmetry in the
moduli of F-theory on genus-one fibrations is discussed in [28]. The Tate–
Shafarevich group of (the Jacobian fibration of) a genus-one fibration and
the discrete gauge symmetry that arises in the model on the genus-one fibra-
tion are identified [56]. When a genus-one fibered Calabi–Yau manifold M is
given, the Jacobian fibration J(M) of it is considered. A genus-one fibered
Calabi–Yau manifold M and the Jacobian fibration J(M) have the identical
τ functions. The Calabi–Yau genus-one fibrations, the Jacobian fibrations
of which are isomorphic to J(M), form a group. This group is referred to as
the Tate–Shafarevich group X(J(M)). A discrete gauge group that arises
in F-theory compactification on the Calabi–Yau genus-one fibration M is
given by the Tate–Shafarevich group X(J(M)).

2See, e.g., [41–55] for recent studies of discrete gauge symmetries.
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In general, a discrete Zn symmetry arises in F-theory compactification on
a genus-one fibration which possesses an n-section. F-theory models with dis-
crete gauge symmetries are discussed, for example, in [28, 30–35, 39, 40, 52].
Discrete Z2,Z3,Z4,Z5 symmetries are mainly studied in these constructions.

The structure of the genus-one fibration, including a multisection that
it contains, needs to be analyzed to deduce gauge groups and matters that
arise in F-theory compactifications. The demonstration of the existence of
a model in F-theory with a discrete gauge symmetry with a specific gauge
group is non-trivial. We show the existence of some models with a discrete
Z2 symmetry with specific gauge groups in the moduli of F-theory.

In this note, we construct several models of F-theory compactifications
with a discrete Z2 symmetry with type In fibers. We advance the understand-
ing of models with type In fibers in the moduli of F-theory compactified on
bisection geometries. Concretely, we first construct surfaces that belong to a
class of rational elliptic surfaces without a global section, known as Halphen
surfaces of index 2. We explicitly construct examples of these surfaces with
type I4, I7, I8, and I9 fibers. By utilizing these surfaces, we yield K3 surfaces
that lack a global section but have a bisection. F-theory compactification on
the resulting K3 surfaces times a K3 surface show the existence of models
with SU(n)2 × Z2 and SU(2n)× Z2 gauge groups, n = 4, 7, 8, 9. This re-
sult can advance the understanding of the non-Abelian gauge symmetries
that arise in the moduli of F-theory with a discrete Z2 gauge symmetry on
bisection geometries.

Rational elliptic surfaces admit a genus-one fibration, but do not nec-
essarily have a global section. Halphen surfaces 3 are examples of rational
elliptic surfaces that lack a global section. Halphen surfaces of index 2 can
be constructed by blowing up P

1 × P
1 at 8 points of the specific configura-

tion: We consider a bi-degree (4,4) curve in P
1 × P

1, k = 0, with eight simple
singularities (the curve k = 0 may have more singularities, other than the
eight singularities). We choose a smooth bi-degree (2,2) curve, l = 0, which
passes through these eight simple singularities. The process of blowing up
these eight singular points yields a Halphen surface. The projection onto
P
1 induced by taking the ratio [k : l2] yields a genus-one fibration. The ex-

ceptional divisors that arise when the eight singularities are blown up yield
bisections to the fibration. The structure of the Halphen surfaces of index
2 is reviewed in Section 2.1. It is explained there that Halphen surfaces do
not have a global section.

3Discussions on the structure of Halphen surfaces can be found in [57, 58]. An
application of Halphen surfaces of index 2 to string theory is discussed in [40].
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In this study, we construct several examples of Halphen surfaces of index
2 with type In fibers. We mainly consider the blow-ups of P1 × P

1 at 8 points
to construct Halphen surfaces of index 2. These constructions yield Halphen
surfaces of index 2 with I4, I7, and I8 fibers. We also consider a blow-up of
P
2 at 9 points to yield a Halphen surface of index 2 with an I9 fiber. We

consider the case in which the polynomial k = 0 is reducible into lines or
curves to construct these surfaces. Specific configurations of these lines and
curves yield type In fibers 4 after blow-ups, n = 4, 7, 8, 9.

Taking double covers of the examples of the Halphen surfaces of index 2
that we construct in this study yields genus-one fibered K3 surfaces 5 which
lack a global section 6. The resulting K3 surfaces are bisection geometries.
F-theory compactifications on these K3 surfaces times a K3 surface reveal
the existence of models in which a discrete Z2 symmetry and SU(N) gauge
group arise.

We will show in Section 2.4 that when a Halphen surface of index 2 pos-
sesses a type In fiber, the upper bound on the degree n is 9. The Halphen
surface of index 2 with a type I9 fiber that we construct in this study pro-
vides such an example. This fact imposes some constraints on the non-
Abelian gauge symmetries that arise in F-theory compactification on genus-
one fibered K3 surfaces constructed as double covers of Halphen surfaces
with type In fibers times a K3 surface.

This study is structured as follows: In Section 2, after we briefly review
the structure of Halphen surfaces of index 2, we construct Halphen surfaces
of index 2 with type In fibers, n = 4, 7, 8, 9. The constructions of these sur-
faces are discussed in Section 2.2 and Section 2.3. We also show in Section
2.4 that when a Halphen surface of index 2 has an An singularity, the highest
is A8. Thus, a Halphen surface of index 2 can have a type Im fiber up to an I9
fiber. The Tate–Shafarevich groups of the Jacobian fibrations of the Halphen
surfaces of index 2 are trivial. For the Halphen surfaces, the information of
the multisections that they possess is contained in the Weil–Châtelet groups
of their Jacobians. We discuss this in Section 2.5.

In Section 3, we construct genus-one fibered K3 surfaces lacking a section
using examples of Halphen surfaces of index 2 as described in Section 2.
There are two types of constructions of K3 surfaces. These two types of

4Halphen surfaces of index 2 with type Im fibers, m = 2, 3, 5, 6, are constructed
in [40].

5The K3 surfaces with involution are considered in [59]. These K3 surfaces belong
to this class.

6Similar constructions obtained by considering double covers of Halphen surfaces
of index 2, realized as blow-ups of P2 at nine points can be found in [40].
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constructions consider taking double covers of Halphen surfaces that are
obtained in Section 2.2 and Section 2.3, ramified over either a smooth fiber,
or a singular fiber. Consequently, we obtain two types of K3 surfaces without
a section. The two constructions yield K3 surfaces with type In fibers, and
K3 surfaces with type I2n fibers. These are bisection geometries. The two
constructions are presented in Section 3.1. In Section 3.2 and Section 3.3,
we discuss F-theory compactifications on the genus-one fibered K3 surfaces
lacking a section as described in Section 3.1 times a K3 surface. This yields
a four-dimensional theory. We study the gauge symmetries that arise in
these compactifications. Because the constructed K3 surfaces are bisection
geometries, discrete Z2 gauge symmetries arise in these models.

We discuss the Jacobian fibrations 7 of Halphen surfaces of index 2,
and the constructed K3 surfaces as described in Section 3 in Section 4.
These surfaces have bisection geometries, therefore, as discussed in [27], the
Jacobian fibrations of these surfaces always exist. By taking the Jacobian
fibration, the double fiber of a Halphen surface of index 2 becomes a smooth
fiber. In Section 4.2, we determine the Weierstrass equation of the Jacobian
fibration of a K3 surface obtained as a double cover of the Halphen surface
with a type I9 fiber ramified over a smooth fiber. We also determine the
Mordell–Weil rank of this Jacobian fibration. Using this result, we deduce
that there is no U(1) gauge symmetry in F-theory compactification on the
direct product of a K3 surface obtained as a double cover of the Halphen
surface with a type I9 fiber, ramified over a smooth fiber, times a K3 surface.
We state our concluding remarks in Section 5.

2. Halphen surfaces of index 2 with type I4, I7, I8, I9 fibers

2.1. Review of Halphen surfaces of index 2 constructed as
blow-ups of P1

× P
1

We review the structure of Halphen surfaces of index 2 that are constructed
as a blow-up of P1 × P

1 at eight points. These surfaces are genus-one fibered
and have a bisection, but they lack a global section.

We take a curve, k = 0, of bi-degree (4,4) in P
1 × P

1 that has 8 simple
singularities. (The curve k = 0 can have more singularities, other than the 8
singularities.) We choose a smooth bi-degree (2,2) curve, l = 0, which passes
through the 8 singularities of the curve k = 0. The (2,2) curve in P

1 × P
1

7Discussion of the Jacobian fibrations of elliptic curves can be found in [60].
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has 9 monomials, therefore, a smooth (2,2) curve that passes through the
fixed 8 points always exists.

The blow-up of P1 × P
1 at the 8 simple singularities of the (4,4) curve

k = 0 gives a rational surface. The ratio of the (4,4) curve k = 0 to the
square of the (2,2) curve l = 0, [k : l2], gives a projection onto P

1. This map
endows the rational surface obtained as the blow-up of P

1 × P
1 at the 8

simple singularities of the curve k = 0 with a fibration structure. The ratio-
nal surface obtained as the blow-up of P1 × P

1 at the 8 simple singularities
together with the fibration structure induced from the map [k : l2], is called
a Halphen surface of index 2 8. The curve k = 0 yields a divisor belonging
to the following complete linear system:

(1) |4H1 + 4H2 − 2Σ8
i=1Pi|,

where we have used H1 to denote the line class that the first P
1 in the

product P1 × P
1 defines, and H2 to denote the line class that the second P

1

in P
1 × P

1 defines. We used Pi to denote the exceptional divisors that arise
when the 8 simple singularities are blown up. The bi-degree (2,2) curve l = 0
defines a divisor which belongs to the following complete linear system:

(2) |2H1 + 2H2 − Σ8
i=1Pi|.

A fiber F of the projection [k : l2] onto P
1 is given by

(3) k + λ l2 = 0,

where λ denotes a constant. This is a (4,4) curve with eight simple singular-
ities. Therefore, by the genus formula, the genus g(F ) of a fiber (3) is given
by:

(4) g(F ) = (4− 1)(4− 1)− δ = 9− 8 = 1.

δ = 8 is the number of singularities of a fiber (3). This shows that a generic
fiber of the projection [k : l2] is a genus-one curve, namely, the projection
[k : l2] is a genus-one fibration.

8Halphen surfaces of index 2, constructed as blow-ups of P2 at nine singularities
are reviewed in [40].
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The following equation describes the fiber over the point [a : b] in the
base P

1:

(5) a · l2 − b · k = 0.

The class [k = 0] represents the fiber at the origin [0 : 1] of the base P1, and
the class [l2 = 0] ∼ 2 · [l = 0] represents the fiber at the infinity [1 : 0]. Fibers
of a rational surface are linearly equivalent. Thus we obtain the following
linear equivalence relations:

(6) [k = 0] ∼ 2 · [l = 0] ∼ F.

F in (6) denotes the fiber class. The linear equivalence relations (6) means
that the intersection number of any divisor with the fiber F is a multiple of
2. A global section and the fiber F have the intersection number 1. Thus, it
follows that a Halphen surface of index 2 does not have a global section.

Blowing up the 8 singularities of the curve k = 0 yields bisections to the
genus-one fibration of a Halphen surface of index 2. The fiber at the infinity
[1 : 0] of the base P

1 is a unique double fiber.
In Section 2.2 and Section 2.3, we particularly consider the cases in which

the (4,4) curve k = 0 is reducible into curves of bi-degree (1,0), (0,1), or (1,1)
to construct Halphen surfaces of index 2 with type In fibers, n = 4, 7, 8, 9.

2.2. Construction of Halphen surfaces with type I4, I7, I8 fibers

We construct Halphen surfaces of index 2 with type I4, I7, and I8 fibers.
We consider a blow-up of P1 × P

1 at 8 points, and we choose specific curves
k = 0 to realize these constructions.

2.2.1. Halphen surface with I4 fiber. We choose the bi-degree (4,4)
polynomial k as the product of four irreducible (1,1) curves k1, k2, k3, and
k4:

(7) k = k1 k2 k3 k4.

Each pair of distinct (1,1) curves, ki and kj , i ̸= j, intersect at 2 points in
P
1 × P

1 9. We have
(

4
2

)

= 6 pairs of bi-degree (1,1) curves. Therefore, we
have 12 intersection points in total. These are the simple singularities of the

9Curves of bi-degrees (a, b) and (c, d) in P
1 × P

1 have the number of intersections
as ad+ bc.
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(4,4) curve k = 0. We choose four points among these 12 intersection points
so that the bi-degree (1,1) curves passing through these four points form a
quadrangle. We show the image of four chosen points and the bi-degree (1,1)
curves ki = 0, i = 1, 2, 3, 4 in Figure 1. The four chosen points are not blown
up, and we consider the blow-up of the remaining eight points. Because each
bi-degree (1,1) curve ki = 0, i = 1, 2, 3, 4, has the genus 10 (1− 1)(1− 1) = 0,
bi-degree (1,1) curve ki = 0 is rational, i.e, it is isomorphic to P

1. Therefore,
this construction yields a Halphen surface of index 2 with type I4 fiber at
the origin of the base P

1 under the projection [Π4
i=1ki : l

2].

K1 k2

K3

K4

Figure 1: Configuration of the four (1,1) curves, k1, k2, k3, k4, and twelve
intersection points. The blue dots represent the four points which are left
un-blown up. The four (1,1) curves passing through the four points form a
quadrangle. The remaining eight intersections are blown up.

10A bi-degree (a, b) smooth curve in P
1 × P

1 has the genus (a− 1)(b− 1).
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2.2.2. Halphen surface with I7 fiber. We choose the bi-degree (4,4)
curve k as the product of three bi-degree (1,0) curves, k1, k2, k3, three bi-
degree (0,1) curves, k4, k5, k6, and a bi-degree (1,1) curve k7:

(8) k = Π7
i=1ki.

We assume that these seven curves, k1, . . . , k7, are in a general position.
A distinct pair of two bi-degree (1,0) curves do not intersect. Similarly, a
distinct pair of two bi-degree (0,1) curves do not meet. A pair consisting of
a (1,0) curve and a (0,1) curve meet at 1 point. There are 9 pairs of a (1,0)
curve, ki, i = 1, 2, 3, and a (0,1) curve, kj , j = 4, 5, 6. The bi-degree (1,1)
curve k7 and a bi-degree (1,0) curve or (0,1) curve, ki, i = 1, . . . , 6, intersect
at 1 point. Therefore, we have 9 + 6 = 15 intersection points in total. We
choose seven points among these 15 intersection points, so that the curves
ki passing through the seven chosen points form a 7-gon. The chosen seven
points are not blown up, and we blow up the remaining 8 points. The image
of the seven points and the seven irreducible curves, k1, . . . , k7, are shown
in Figure 2. Each of the seven irreducible curves, k1, . . . , k7, has the genus
0. Therefore, they are each isomorphic to P

1. This construction yields a
Halphen surface of index 2, with a type I7 fiber at the origin under the
projection [Π7

i=1ki : l
2].

2.2.3. Halphen surface with I8 fiber. There are at least two ways to
construct a Halphen surface of index 2 with a type I8 fiber. One construction
is given as follows: we choose the bi-degree (4,4) curve k as the product
of four bi-degree (1,0) curves, k1, . . . , k4, and four bi-degree (0,1) curves,
k5, . . . , k8. These curves have 4× 4 = 16 intersection points. We choose eight
points among these 16 intersection points, so that the irreducible curves ki,
i = 1, . . . , 8, passing through the chosen eight points form an octagon. The
chosen eight points are not blown up, and we blow up the remaining eight
points. The image of the chosen eight points that were not blown up, and the
eight irreducible curves k1, . . . , k8, are shown in Figure 3. This construction
yields a Halphen surface of index 2, with an I8 fiber at the origin of the base
P
1 under the projection [Π8

i=1ki : l
2].

Another construction of a Halphen surface of index 2 with a type I8
fiber arises from the consideration of a special configuration of the seven
irreducible curves k1, . . . , k7, as described previously in Section 2.2.2, to
construct a Halphen surface of index 2 with a type I7 fiber. We considered
a general configuration of the seven curves k1, . . . , k7, so that the bi-degree
(1,1) curve meet with the six curves k1, . . . , k6 at six points in the previous
Section 2.2.2. Here, we consider a special configuration in which the (1,1)
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K1

K2

K3

K4 K5 K6

K7

Figure 2: Configuration of the lines and the (1,1) curve, k1, . . . , k7, and their
fifteen intersections. The seven blue dots represent the seven points which
are chosen to not undergo blowning up. The lines and the (1,1) curve passing
through these chosen points form a 7-gon as indicated by the blue lines and
the blue curve in the image.

curve k7 passes through the intersection point of the line k1 and the line
k6. We refer to this intersection point of the curves k1, k6, and k7 as p. We
then consider the blow-up of the intersection point p. This operation yields
an exceptional divisor Ep

∼= P
1 at the point p, and this separates the three

curves k1, k6, and k7. Each of these curves intersects the exceptional divisor
Ep at 1 point. These three points together with the other 12 intersections of
the curves give 15 intersection points in total. Eight specific points among
these are chosen so that the curves passing through the chosen eight points
form an octagon. The exceptional divisor Ep was utilized as an edge of this
octagon. The chosen eight points were not blown up, and we blew up the
remaining seven points 11. The image of the configuration of the curves
forming an octagon is shown in Figure 4. This yields a Halphen surface of

11We once blew up the point p. Therefore, the remaining number of blow-ups
required to yield a Halphen surface is eight minus one, i.e., 7.
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K1

K2

K3

K4

K5 K6 K7 K8

Figure 3: Configuration of the eight lines, k1, . . . , k8. These lines have sixteen
points of intersection in total. The eight blue dots represent the eight points
which are chosen to remain un-blown up. As the blue lines in the image
show, the lines passing through the chosen eight points form an octagon.

index 2 with a type I8 fiber at the origin of the base P1 under the projection
[Π7

i=1ki : l
2].

2.3. Construction of Halphen surface with type I9 fiber

As described in [40], a Halphen surface of index 2 can also be constructed by
taking a sextic curve k in P

2 with 9 simple singularities 12, and by blowing
up P

2 at these 9 simple singularities. We choose a smooth cubic curve l

that passes through the 9 simple singularities of the curve k, and a genus-
one fibration of the constructed Halphen surface is given by the projection
[k : l2] onto P

1. Using this type of construction of a Halphen surface of index
2, we yield a Halphen surface of index 2 with a type I9 fiber 13.

12As explained in [40], the sextic curve k can have more singularities, other than
the 9 singularities.

13By considering the construction of a Halphen surface as the blow-up of P2 at
nine simple singularities of a sextic curve, Halphen surfaces of index 2 with type
I1, I2, I3, I5, I6 fibers are constructed in [40].
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1

2

3

4
5

6

7

8

K1

K2

K3

K4 K5 K6

K7

P

Figure 4: The blue circle in the image numbered 3 represents the excep-
tional divisors Ep. We use the exceptional divisors Ep as an edge to form
an octagon. The curves used as the edges of the octagon are numbered with
the blue numbers. We choose the two points, the intersections of Ep with
the curves k1 and k7, to not undergo blowning up. The six blue dots in the
image represent the remaining six points that are chosen to remain un-blown
up.

We consider the situation in which the sextic curve k is reducible into
six lines ki, i = 1, . . . , 6:

(9) k = Π6
i=1ki.

We consider a specific configuration of the six lines ki, i = 1, . . . , 6, as shown
in Figure 5. At each of the three points P,Q,R in Figure 5, three lines
intersect at 1 point. Blowing up each of these points, P,Q,R, yields the
exceptional divisors EP , EQ, and ER, each of which is isomorphic to P1. This
operation separates three lines that meet at 1 point. Each of these three lines
meets an exceptional divisor at 1 point. We show the configuration of the
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three lines and the exceptional divisor EP when the blow-up is performed at
the point P in Figure 6. The situations are identical for the pointsQ,R. After
the three points P,Q,R are blown up, there are 9 points for the intersections
of the separated lines and the three exceptional divisors, EP , EQ, and ER.
Together with the other six intersections of the lines, there are 15 intersection
points in total after the three points P,Q,R are blown up. We chose nine
specific points among the 15 intersection points so that the lines and the
exceptional divisors passing through these chosen points form a 9-gon. The
exceptional divisors EP , EQ, and ER were used as three edges among the
nine edges forming this 9-gon. We show the configuration of the nine chosen
points and lines forming the 9-gon in Figure 7. The chosen nine points were
not blown up, and we blew up the remaining six points. This yields a Halphen
surface of index 2 14 with a type I9 fiber at the origin of the base P

1 under
the projection [Π6

i=1ki : l
2].

P

Q R

Figure 5: Configuration of the six lines, k1, . . . , k6. Three lines meet at one
point at each of the three points P,Q,R.

14We blew up P
2 at the three points, P,Q,R, therefore, the number of blow-ups

remaining to yield a Halphen surface is nine minus three, i.e., six.
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EP

Figure 6: Blow-up at P separates the three lines that meet at one point at
P . The vertical line represents the exceptional divisor EP that arises after
blow-up. The horizontal three lines are the separated three lines. Each of
these lines intersects the exceptional divisor at one point.

2.4. Upper bound on the degree of An singularity of a Halphen
surface of index 2, and the determination of the complex

structure of the Jacobian fibration of a
Halphen surface with I9 fiber

We constructed Halphen surfaces of index 2 with An type singularities. By
considering the Jacobian fibration, we show that a Halphen surface of index 2
with the singularity type A9 or with An type singularity of higher degree does
not exist. Halphen surfaces of index 2 are bisection geometries. Therefore,
as discussed in [27], the Jacobian fibration of a Halphen surface of index
2 always exists. The Jacobian fibration of a Halphen surface is a rational
elliptic surface with a global section. By the Shioda–Tate formula [61–63],
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P

Q

R

1

2

3 4

5

6
7

8

9

Figure 7: The blue lines in the image are the edges of the 9-gon. Each of
these edges are numbered, using the blue numbers. Blue circles numbered
2, 4, and 9 in the image represent the exceptional divisors EP , EQ, and ER,
respectively. These exceptional divisors are used as three edges, a part of
the nine edges, to form the 9-gon.

the following equality 15 holds for the rank of the Mordell–Weil group 16

and the rank of the singularity type of the Jacobian fibration of a Halphen
surface:

(10) rkMW+ rk ADE = 8,

where rk ADE denotes the rank of the singularity type of the Jacobian
fibration of a Halphen surface. Particularly, the following inequality holds

(11) rk ADE ≤ 8.

15This equality is used to yield several families of rational elliptic surfaces with
a section with various Mordell–Weil ranks in [25]. Identical pairs of these surfaces
are glued to obtain elliptic K3 surfaces, on which U(1) gauge symmetries of various
ranks arise in F-theory compactifications, in [25].

16[64] classified the Mordell–Weil groups of rational elliptic surfaces that admit
a global section.
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The singularity types of the original Halphen surface and the Jacobian fi-
bration are identical. Therefore, the inequality (11) shows that a Halphen
surface of index 2 can have an An type singularity up to A8. This proves
that a Halphen surface of index 2 can have a type In fiber up to type I9.

A Halphen surface with a type I9 fiber has the singularity type A8, thus
the Jacobian fibration of this Halphen surface is an extremal 17 rational
elliptic surface 18. The complex structures of the extremal rational elliptic
surfaces were classified in [69]. The complex structure of an extremal ra-
tional elliptic surface with A8 singularity is uniquely determined [69]. The
extremal rational elliptic surface with A8 singularity has 1 type I9 fiber,
and 3 type I1 fibers [69]. This extremal rational elliptic surface is denoted
as X[9,1,1,1] in [68]. From the aforementioned argument, we deduce that the
Jacobian fibration of the Halphen surface of index 2 with a type I9 fiber con-
structed in Section 2.3 is isomorphic to the extremal rational elliptic surface
X[9,1,1,1]. Utilizing this result, we precisely determine the non-Abelian gauge
symmetry that arises in F-theory compactification on K3 surface obtained
as a double cover of the Halphen surface of index 2 with a type I9 fiber in
Section 3.3.

2.5. The Tate-Shafarevich groups and the Weil-Châtelet groups
of the Jacobians of the Halphen surfaces

The Jacobian fibrations of the Halphen surfaces generally have trivial Tate–
Shafarevich groups. The Weil–Châtelet group instead contains the informa-
tion of the multisections for the Halphen surfaces. We discuss the structures
of these groups of the Jacobian fibrations of the Halphen surfaces.

The Tate–Shafarevich group is a subgroup of the Weil–Châtelet group.
Among genus-one fibrations as elements of the Weil–Châtelet group, those
which locally admit a section form a subgroup, and this subgroup is the
Tate–Shafarevich group [60].

A Halphen surface X of index n 19 does not have a global section, but it
admits an n-section, therefore, the element X generates a Zn group in the

17Extremal rational elliptic surfaces are the rational elliptic surfaces with a sec-
tion with the Mordell–Weil rank 0. They have the singularity types of rank 8.

18Applications of extremal rational elliptic surfaces that appear in the stable
degeneration [65, 66] of F-theory/heterotic duality [1–3, 65, 67] to string theory are
discussed in [68].

19Halphen surface of index n is obtained by blowing up P
2 at nine singularities

of multiplicities n of a degree 3n curve. The exceptional divisors yield n-sections.
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Weil–Châtelet group of the Jacobian fibration J(X), WC(J(X)):

(12) < X >∼= Zn ⊂ WC(J(X)).

In this note, we constructed several examples of Halphen surfaces of index
2. These surfaces are bisection geometries, therefore, it follows from the
aforementioned argument that the Weil–Châtelet groups of the Jacobian
fibrations of these surfaces contain Z2 groups.

We determined in Section 2.4 that the Jacobian fibration of the Halphen
surface of index 2 with a type I9 fiber as we constructed in Section 2.3
is isomorphic to the extremal rational elliptic surface X[9,1,1,1]. Thus, we
find that the Weil–Châtelet group WC(X[9,1,1,1]) of the extremal rational
elliptic surfaceX[9,1,1,1] contains a Z2 group, and the Tate–Shafarevich group
X(X[9,1,1,1]) is trivial:

(13) WC(X[9,1,1,1]) ⊃ Z2, X(X[9,1,1,1]) ∼= 0.

3. K3 surfaces without a section as double covers of Halphen
surfaces, and gauge groups in F-theory compactifications

We utilize the Halphen surfaces of index 2 with type In fibers that we con-
structed in Section 2.2 and Section 2.3 to yield a genus-one fibered K3 sur-
face without a global section. As previously seen, the constructed Halphen
surfaces have type I4, I7, I8, I9 fibers at the origin of the base P

1. We con-
sider two constructions of a genus-one fibered K3 surface without a section:
double covers of Halphen surfaces ramified over a smooth fiber, and double
covers of Halphen surfaces ramified over the singular fiber at the origin of
the base P1. We consider F-theory compactifications on the resulting K3 sur-
faces without a global section times a K3 surface, and deduce gauge groups
that arise. We also precisely determine the non-Abelian gauge symmetries
for K3 surfaces obtained as double covers of Halphen surfaces of index 2
with type I9 fibers.

3.1. Constructions of K3 surfaces lacking a section as double
covers of Halphen surfaces of index 2

3.1.1. Construction of K3 surfaces without a section as double
covers of Halphen surfaces ramified along a smooth fiber. A fiber
of a Halphen surface of index 2 constructed as a blow-up of P1 × P

1 at eight
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points is given by the following equation

(14) k + a l2 = 0,

where k is a bi-degree (4,4) polynomial, so that the curve k = 0 has eight
simple singularities, and l = 0 is a bi-degree (2,2) smooth curve that passes
through these eight singularities, as described in Section 2.1. a is a constant.

We consider a double cover of a Halphen surface of index 2 ramified over
a fiber

(15) τ2 = k + a l2.

The equation (15) describes a double cover of a Halphen surface constructed
as a blow-up of P1 × P

1 at eight points, ramified over a bi-degree (4,4) curve.
Thus, it gives a K3 surface.

Blowing up the simple singularities of the curve k = 0 yields bisections
to a Halphen surface of index 2. Using an argument similar to that presented
in [40], we deduce that the resulting K3 surface (15) does not have a global
section, and the pullback of a bisection to an original Halphen surface of
index 2 yields a bisection to the resulting K3 surface (15).

We assume that

(16) a ̸= 0

in equation (15). For generic values of a ̸= 0, the equation (14) yields a
smooth fiber. When a takes the value 0, a fiber becomes singular, and the
equation (14) describes a type In fiber at the origin of the base P1. The case
a = 0 will be discussed in Section 3.1.2.

We find that the K3 surface (15) that results as a double cover of a
Halphen surface of index 2 is identical to the quadratic base change of the
Halphen surface using an argument similar to that given in [40]. Therefore,
the singular fibers that the K3 surface (15) has are twice the number of the
original Halphen surface, when the ramification locus of the double cover is
a smooth fiber, namely a ̸= 0. We discuss the case where the ramification
locus of the double cover becomes a singular fiber, which occurs when a = 0,
in Section 3.1.2.

When a = ∞, the equation (15) can be expressed as follows:

(17) τ2 = l2.
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This equation splits into the following two equations:

τ = l(18)

τ = −l.

This is the situation where a K3 surface degenerates into two rational elliptic
surfaces as discussed in [68]. We assume that a ̸= ∞ in this study.

A double cover of a Halphen surface of index 2 constructed as a blow-up
of P2 at nine points, given by an equation of the same form as (15), also gives
a K3 surface without a section. This construction of a genus-one fibered K3
surface without a section is discussed in [40].

The aforementioned argument shows that the K3 surface (15) obtained
as a double cover of a Halphen surface ramified along a smooth fiber has
two type In fibers when an original Halphen surface has a type In fiber,
n = 4, 7, 8, 9, as constructed in Section 2.2 and Section 2.3.

3.1.2. Construction of K3 surfaces without a section as double
covers of Halphen surfaces ramified along a singular fiber. We
discuss the case where a in the equation (15) takes the value 0, and a K3
surface as a double cover of a Halphen surface of index 2 is given by the
following equation:

(19) τ2 = k.

For this case, the ramification locus of a K3 surface as a double cover (19)
occurs along the singular fiber

(20) k = 0.

The singular fiber (20) describes the type In fiber of a Halphen surface at
the origin of the base P

1.
An argument similar to that given in [40] proves that the K3 surface

(19) generically lacks a global section, but it has a bisection.
The quadratic base change that corresponds to the double cover (19)

ramifies over type In fiber at the origin of the base P
1, and the resulting

K3 surface as a double cover (19) has a type I2n fiber 20, instead of two In
fibers as described in Section 3.1.1.

20When the quadratic base change is ramified over a type In fiber, two type In
fibers collide, instead of simply yielding two copies of type In fiber, and they are
enhanced to a singular fiber of type I2n [70].
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When the simple singularities of the bi-degree (4,4) polynomial k include
a cusp, the pullback of the bisection which arises when the cusp is blown
up splits into two sections 21. This is because a bisection that arises as an
exceptional divisor when a cusp is blown up is tangent to the branching
locus. The K3 surface (19) admits a global section for this special situation.
We do not consider this situation in this study, and we assume that the
singularities of the polynomial k do not have a cusp.

The aforementioned argument shows that the K3 surface (19) obtained
as a double cover of a Halphen surface of index 2 ramified over a singular
fiber k = 0 has a type I2n fiber, n = 4, 7, 8, 9, when an original Halphen
surface has a type In fiber as constructed in Section 2.2 and Section 2.3.

3.2. Gauge groups in F-theory compactifications on K3 surfaces
without a section as double covers of Halphen surfaces with

I4, I7, I8 fibers

We discuss the gauge symmetries that arise in F-theory compactifications
on the K3 surfaces without a global section that were constructed in Sec-
tion 3.1 as double covers of Halphen surfaces of index 2 with type I4, I7, I8
fibers times a K3 surface. We discuss F-theory compactifications on the K3
surfaces obtained as double covers of Halphen surfaces with a type I9 fiber
in Section 3.3 separately.

As described in Section 3.1.1, K3 surfaces constructed as double covers
of Halphen surfaces with a type In fiber ramified over a smooth fiber has two
type In fibers, n = 4, 7, 8, and the K3 surfaces have a bisection. Therefore,
the gauge symmetries that arise in F-theory compactifications on the K3
surfaces times a K3 surface include a factor as follows:

(21) SU(n)2 × Z2,

n = 4, 7, 8.
As described in Section 3.1.2, K3 surfaces without a global section as

double covers of Halphen surfaces with a type In fiber, n = 4, 7, 8, ramified
over a singular fiber at the origin of the base has a type I2n fiber, and the
K3 surfaces have a bisection. Therefore, the gauge symmetries arising in
F-theory compactifications on the resulting K3 surfaces times a K3 surface

21The curve k + a l2 does not generally have a cusp for nonzero a.
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have a factor:

(22) SU(m)× Z2,

m = 8, 14, 16.

3.3. Gauge groups in F-theory compactifications on K3 surfaces
without a section as double covers of Halphen surfaces

with I9 fiber

We saw in Section 2.4 that the Jacobian fibration of the Halphen surface of
index 2 with a type I9 fiber as constructed in Section 2.3 has 1 type I9 fiber
and 3 type I1 fibers. Therefore, the Halphen surface with a type I9 fiber as
constructed in Section 2.3 has 1 type I9 fiber, 3 type I1 fibers, as well as a
double fiber at infinity 22. Thus, a K3 surface obtained as a double cover of
the Halphen surface with type I9 fiber has 2 type I9 fibers and 6 type I1
fibers. We deduce that the non-Abelian gauge group that arises in F-theory
compactification on this K3 surface times a K3 surface is precisely

(23) SU(9)2.

As discussed in [36], F-theory compactification on a space constructed as the
direct product of K3 surfaces yields a four-dimensional theory with N = 2
supersymmetry, and the anomaly cancellation condition requires that 24 7-
branes should be present. Type In fiber corresponds to n 7-branes 23. The
number of 7-branes associated with 2 type I9 fibers and 6 type I1 fibers is 24.
Therefore, we confirm that the anomaly cancellation condition is satisfied for
F-theory compactification on the K3 surface obtained as a double cover of
the Halphen surface with a type I9 fiber ramified along a smooth fiber times
a K3 surface. A K3 surface obtained as a double cover of the Halphen surface
with a type I9 fiber ramified along a smooth fiber has a bisection, therefore

22As explained in Section 4.1, the types of the singular fibers of a Halphen surface
of index 2 and the types of the singular fibers of the Jacobian fibration are identical,
except the double fiber that a Halphen surface of index 2 possesses.

23The number of 7-branes wrapped on a discriminant component is given by the
Euler number of the fiber type over that component. The Euler numbers of the
types of the singular fibers of an elliptic surface are given in [10].
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the gauge group in F-theory compactification includes the following factor

(24) SU(9)2 × Z2.

Next, we discuss the K3 surface obtained as a double cover of the
Halphen surface with a type I9 fiber ramified along a singular fiber. The
corresponding quadratic base change ramifies over the type I9 fiber; there-
fore, the resulting K3 surface has 1 type I18 fiber and 6 type I1 fibers.
We confirm that this agrees with the anomaly cancellation condition. The
non-Abelian gauge group that arises in F-theory compactification on the
resulting K3 surface times a K3 surface is precisely given by

(25) SU(18).

The resulting K3 surface has a bisection, thus the arising gauge group con-
tains a factor as follows:

(26) SU(18)× Z2.

4. Jacobian fibrations of K3 surfaces as double covers of
Halphen surfaces of index 2 and U(1) gauge symmetries

4.1. General theory of the Jacobian of Halphen surfaces of index
2 and K3 surfaces as double covers of Halphen surfaces

Halphen surface of index 2 always has the Jacobian fibration. The types of
the singular fibers and their locations over the base of a Halphen surface
and those of the Jacobian fibration are identical, except the multiple fiber
of a Halphen surface. By taking the Jacobian fibration, the double fiber of
a Halphen surface becomes a smooth fiber, as mentioned in [40].

Halphen surfaces of index 2 and genus-one fibered K3 surfaces without
a section as constructed in Section 3.1 are bisection geometries. Therefore,
as discussed in [27], double covers of quartic polynomials describe these
surfaces. Taking the resolvent cubic of quartic polynomials and equating
with the term y2 yield the Weierstrass equations of their Jacobian fibrations
[27].
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4.2. Jacobian fibrations of K3 surfaces as double covers of
Halphen surface with a type I9 fiber, and U(1) gauge

symmetries in F-theory compactifications

Taking double covers of the Halphen surface with a type I9 fiber as con-
structed in Section 2.3 yields genus-one fibered K3 surfaces without a sec-
tion as obtained in Section 3.1. We deduce the Weierstrass equations of the
Jacobians of these K3 surfaces when the ramifications occur along a smooth
fiber. We also determine the Mordell–Weil rank of the Jacobians. Using this,
we find that F-theory compactifications on generic members of the genus-
one fibered K3 surfaces constructed as double covers of the Halphen surface
with a type I9 fiber ramified over a smooth fiber do not have a U(1) gauge
symmetry.

First, we briefly review the quadratic base change 24. The quadratic base
change of an elliptic fibration is an operation in which the coordinate of the
base curve P1 is replaced by homogeneous quadratic polynomial. We denote
the coordinate of the base P

1 by [u : v]. The quadratic base change of a
rational elliptic surface yields an elliptic K3 surface. The process of gluing
a pair of identical rational elliptic surfaces with a section to yield an elliptic
K3 surface is described by the quadratic base change of the rational elliptic
surface, and this can be seen as the reverse of the stable degeneration in
which a K3 surface splits into a pair of identical rational elliptic surfaces, as
discussed in [68].

When the Weierstrass equation of a rational elliptic surface with a sec-
tion is given as follows:

(27) y2 = x3 + f(u, v)x+ g(u, v),

we consider the following replacements of the coordinates:

u → α1u
2 + α2uv + α3v

2(28)

v → α4u
2 + α5uv + α6v

2.

Constants αi, i = 1, . . . , 6, in (28) give the parameters. These replacements
transform the homogeneous polynomial f of degree 4 and the homogeneous
polynomial g of degree 6. We denote the resulting homogeneous polynomi-
als by f̃ and g̃ which have degrees 8 and 12, respectively. The Weierstrass

24A mathematical discussion of the quadratic base change can be found in [70].
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equation

(29) y2 = x3 + f̃ x+ g̃

gives an elliptic K3 surface that the quadratic base change of the original
rational elliptic surface (27) yields.

As discussed previously in Section 3.1.1, a K3 surface constructed as a
double cover of the Halphen surface with a type I9 fiber is described by
the quadratic base change of that Halphen surface. Therefore, the Jacobian
fibration of the K3 surface constructed as a double cover of the Halphen
surface with a type I9 fiber is given as the quadratic base change of the
Jacobian fibration of the Halphen surface with a type I9 fiber, X[9,1,1,1]. The
Weierstrass equation of the Jacobian fibration of the Halphen surface with
a type I9 fiber, X[9,1,1,1], is given as follows [69]:

(30) y2 = x3 − 3u(u3 + 24v3)x+ 2(u6 + 36u3v3 + 216v6).

The type I9 fiber of the extremal rational elliptic surface X[9,1,1,1] (30) is
located over [u : v] = [1 : 0] in the base P

1 [69]. Utilizing the quadratic base
change (28), we find that the Jacobian fibration of a K3 surface constructed
as a double cover of the Halphen surface with a type I9 fiber is described by
the following Weierstrass equation:

y2 =x3 − 3(α1u
2 + α2uv + α3v

2) · [(α1u
2 + α2uv + α3v

2)3(31)

+ 24(α4u
2 + α5uv + α6v

2)3]x

+ 2[(α1u
2 + α2uv + α3v

2)6

+ 36(α1u
2 + α2uv + α3v

2)3 (α4u
2 + α5uv + α6v

2)3

+ 216(α4u
2 + α5uv + α6v

2)6].

The Jacobian fibration of a K3 surface constructed as a double cover
of the Halphen surface with a type I9 fiber (31) can be seen as obtained
by gluing a pair of identical rational elliptic surfaces (30) [68]. Thus, as
shown in [25], the Mordell–Weil rank of the Jacobian K3 (31) is equal to the
Mordell–Weil rank of the original rational elliptic surface (30) for generic
values of the parameters αi, i = 1, . . . , 6. The rational elliptic surface (30) is
an extremal rational elliptic surface with the singularity type A8. Therefore,
it has the Mordell–Weil rank 0. Thus, it follows that the resulting Jacobian
K3 (31) has the Mordell–Weil rank 0 for generic values of the parameters
αi, i = 1, . . . , 6.
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From this, we conclude that F-theory compactification on a K3 surface
constructed as a double cover of the Halphen surface with a type I9 fiber
ramified along a smooth fiber times a K3 surface, generically does not have
a U(1) gauge symmetry.

We also discuss the Jacobian fibration of a K3 surface constructed as
a double cover of the Halphen surface with a type I9 fiber ramified along
a singular fiber at the origin of the base. We saw in Section 3.3 that a K3
surface constructed as a double cover of the Halphen surface with a type I9
fiber ramified along a singular fiber has 1 type I18 fiber and 6 type I1 fibers.
Thus, this K3 surface without a section has the singularity type

(32) A17.

The Jacobian fibration has the identical singularity type A17. The com-
plex structure moduli of the elliptic K3 surfaces with a section with the
singularity type A17 is constructed in [24] by considering a special limit of
the quadratic base change of the extremal rational elliptic surface X[9,1,1,1].
The Jacobian fibration of the K3 surface obtained as a double cover of the
Halphen surface with a type I9 fiber ramified along a singular fiber belongs
to this moduli. The members of this moduli, namely elliptic K3 surfaces
with a section with the singularity type A17, the Weierstrass equations of
which are deduced in [24], correspond to special limits of the base change
(28) in which the parameters αi take special values as follows:

(33) α4 = α5 = 0, α1 ̸= 0, α6 ̸= 0.

5. Conclusions

We constructed several Halphen surfaces of index 2 with type In fibers
(n = 4, 7, 8, 9) in this study. We obtained genus-one fibered K3 surfaces lack-
ing a section by taking double covers of the constructed Halphen surfaces.
Two types of K3 surfaces were obtained, depending on whether the ramifi-
cation locus of a double cover is a smooth fiber, or a singular fiber. These
constructions yielded K3 surfaces singular fibers of which include two type
In fibers, and K3 surfaces singular fibers of which include a type I2n fiber.

We analyzed F-theory compactifications on these K3 surfaces lacking
a section times a K3 surface. These K3 surfaces have bisection geometries.
Gauge group that arises contains a factor SU(n)2 × Z2 in F-theory compact-
ification on a K3 surface obtained as a double cover of a Halphen surface
with a type In fiber ramified along a smooth fiber times a K3 surface. Gauge
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group has a factor SU(2n)× Z2 in F-theory compactification on a K3 sur-
face obtained as a double cover of a Halphen surface with a type In fiber
ramified over a singular fiber times a K3 surface.

We showed that a Halphen surface of index 2 can have a type In fiber up
to I9 fiber. We constructed a Halphen surface of index 2 with a type I9 fiber,
that saturates this upper bound. We determined the complex structure of
the Jacobian fibration of this Halphen surface. We precisely obtained the
non-Abelian gauge symmetries that arise in F-theory compactifications on
K3 surfaces obtained as double covers of the constructed Halphen surface of
index 2 with a type I9 fiber times a K3 surface.

Fibering K3 surfaces obtained in this note over a base complex sur-
face can yield genus-one fibered Calabi–Yau 4-folds. An investigation of this
construction, and the effect of F-theory compactification on the resulting
Calabi–Yau geometries is a likely direction of future studies.
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[21] S. Krippendorf, S. Schäfer-Nameki, and J.-M. Wong, Froggatt-Nielsen
meets Mordell-Weil: A phenomenological survey of global F-theory
GUTs with U(1)s, JHEP 11 (2015) 008.



✐

✐

“5-Kimura” — 2020/7/9 — 18:09 — page 487 — #29
✐

✐

✐

✐

✐

✐

SU(n)× Z2 in F-theory 487

[22] D. R. Morrison and D. S. Park, Tall sections from non-minimal trans-
formations, JHEP 10 (2016) 033.

[23] M. Bies, C. Mayrhofer, and T. Weigand, Gauge backgrounds and zero-
mode counting in F-theory, JHEP 11 (2017) 081.

[24] Y. Kimura and S. Mizoguchi, Enhancements in F-theory models on mod-
uli spaces of K3 surfaces with ADE rank 17, PTEP 2018 (2018), no. 4,
043B05.

[25] Y. Kimura, F-theory models on K3 surfaces with various Mordell-Weil
ranks — constructions that use quadratic base change of rational elliptic
surfaces, JHEP 05 (2018) 048.

[26] S.-J. Lee, D. Regalado, and T. Weigand, 6d SCFTs and U(1) flavour
symmetries, JHEP 11 (2018) 147.

[27] V. Braun and D. R. Morrison, F-theory on genus-one fibrations, JHEP
08 (2014) 132.

[28] D. R. Morrison and W. Taylor, Sections, multisections, and U(1) fields
in F-theory, J. Singularities 15 (2016), 126–149.

[29] L. B. Anderson, I. Garcia-Etxebarria, T. W. Grimm, and J. Keitel,
Physics of F-theory compactifications without section, JHEP 12 (2014)
156.

[30] D. Klevers, D. K. Mayorga Pena, P. K. Oehlmann, H. Piragua, and
J. Reuter, F-theory on all toric hypersurface fibrations and its Higgs
branches, JHEP 01 (2015) 142.

[31] I. Garcia-Etxebarria, T. W. Grimm, and J. Keitel, Yukawas and dis-
crete symmetries in F-theory compactifications without section, JHEP
11 (2014) 125.

[32] C. Mayrhofer, E. Palti, O. Till, and T. Weigand, Discrete gauge symme-
tries by Higgsing in four-dimensional F-theory compactifications, JHEP
12 (2014) 068.

[33] C. Mayrhofer, E. Palti, O. Till, and T. Weigand, On discrete symmetries
and torsion homology in F-theory, JHEP 06 (2015) 029.
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