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We derive a system of equations governing the coupled gravita-
tional and electromagnetic perturbations of Reissner-Nordström
spacetime. The equations are derived in the context of global non-
linear stability of Reissner-Nordström under axially symmetric po-
larized perturbations, as a generalization of the recent work on
non-linear stability of Schwarzschild spacetime of Klainerman-
Szeftel ([9]). The main result consists in deriving, through a
Chandrasekhar-type transformation, a gauge invariant quantity
associated to the electromagnetic tensor that verifies a Regge-
Wheeler equation. In this paper, we present the derivation of the
main equations.
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Introduction

One of the fundamental open problems in General Relativity is the one
concerning the stability of the exterior of black holes under gravitational
perturbations. The stability conjecture says that the class of metrics of the
Kerr family is stable under small perturbations of initial data as solutions
to the vacuum Einstein equation:

(0.1) Ric(g) = 0,

where Ric(g) is the Ricci curvature tensor of the metric g. The conjecture is
also formulated for charged black holes, and states that the Kerr-Newman
family of spacetimes is stable under small perturbation of initial data as
solutions to the Einstein-Maxwell equation:

(0.2) Ric(g)µν = T (F )µν := 2FµλF
λ
ν −

1

2
gµν |F |2

where F is a 2-form satisfying Maxwell’s equations

∇[αFβγ] = 0, ∇αFαβ = 0.(0.3)

In the case of Einstein-Maxwell equation, coupled gravitational and electro-
magnetic perturbations of initial data are considered, i.e. the Weyl curvature
and the electromagnetic tensor F of the spacetime are both perturbed with
respect to the initial spacetime.

The only known result concerning the full non-linear stability of a vac-
uum spacetime without symmetries is the celebrated stability of Minkowski
space by Christodoulou-Klainerman ([5]). The result was generalized by
Zipser to the non-linear stability of Minkowski space under gravitational
and electromagnetic perturbations in [2]. The first linear stability of a black
hole spacetime has been proved by Dafermos-Holzegel-Rodnianski in [7],
in the case of Schwarzschild spacetime. The full non-linear stability of the
Schwarzschild solution is still open, and would require a formulation of the
stability not just for Schwarzschild, but for slowly rotating Kerr solutions.
Indeed, even if one restricts to small perturbations of Schwarzschild, one
should expect that generically the spacetime would evolve to a slowly rotat-
ing Kerr spacetime, with small but non-zero angular momentum.

A recent work by Klainerman-Szeftel ([9]) addresses the global non-linear
stability of Schwarzschild black hole as solution to the Einstein vacuum equa-
tion (0.1). The authors in [9] consider a particular class of gravitational per-
turbations of Schwarzschild, namely axially symmetric polarized spacetimes.
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Coupled gravitational and electromagnetic perturbations 981

This choice of perturbations forces the final state of the evolution to have
zero angular momentum, therefore ruling out the general Kerr spacetime.
They can therefore prove the global non-linear stability of Schwarzschild
space, meaning that the axially symmetric polarized perturbed spacetime
close to the initial Schwarzschild evolves to another Schwarzschild solution,
with mass close to initial one.

In [9], the authors consider the celebrated Teukolsky equation (first de-
rived in [13]) verified by the extreme null component of the Riemann cur-
vature α, and apply a Chandrasekhar-type transformation to obtain a new
quantity q, at the level of second derivative of α, that verifies a Regge-
Wheeler equation. This transformation was first introduced in the physics
literature in the cotext of mode stability by Chandrasekhar (see [4]), and
it first appeared as a spacetime version in the context of linear stability
of Schwarzschild in [7] to derive decay estimates for solution of Teukolsky
equation. In [9], the decay estimates for q are the starting point to derive
decays for the curvature components and the connection coefficients, using
the null structure equations and the Bianchi identities. The dynamical con-
struction of the spacetime follows, along with many subtleties related to the
non-linearity of the problem.

In the present paper, we address the problem of stability of charged
black holes subject to coupled gravitational and electromagnetic perturba-
tions. A particular class of these spacetimes are the spherically symmetric
charged black holes, namely the Reissner-Nordström solution, corresponding
to Kerr-Newman spacetime with zero angular momentum. In local coordi-
nates (t, r, θ, φ) the metric is expressed as

gRN = −

(
1−

2m

r
+

Q2

r2

)
dt2 +

(
1−

2m

r
+

Q2

r2

)−1

dr2

+ r2(dθ2 + sin2 θdφ2)

where m is the mass and Q is the charge of the black hole.
Gravitational and electromagnetic perturbations of Reissner-Nordström

black holes have been extensively considered in the setting of metric per-
turbations. Moncrief ([11]) reduced the governing equations to pair of de-
coupled one dimensional wave equations both for odd and for the even par-
ity perturbations. This approach corresponds to the description of gravita-
tional perturbations of Schwarzschild spacetime via Regge-Wheeler and Zer-
illi equations for metric perturbations (as in [8]), as opposed to the Teukolsky
equations for curvature perturbations (as in [7]). Chandrasekhar ([3]), us-
ing the Newman-Penrose formalism, derived a pair of decoupled equations
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for perturbations of Reissner-Nordström which can be transformed to one
dimensional wave equations for both parity perturbations. In order to de-
couple the equations, Chandrasekhar chooses a gauge (the phantom gauge,
as discussed in Remark 4.7) and separates them in radial and angular parts.
Our approach instead is based on the use of a gauge invariant quantity, and
no separation of variables is needed to decouple the equations.

As for the vacuum Einstein equation, the general problem of stability of
charged black holes would have to be solved in the context of global non-
linear stability of the Kerr-Newman spacetime as solution to the Einstein-
Maxwell equation (0.2). However, as in the case of axially symmetric polar-
ized perturbations of Schwarzschild in [9], restricting to axially symmetric
polarized perturbations of Reissner-Nordström will force the final state of the
evolution to a non-rotating black hole, excluding the general Kerr-Newman
spacetime.

The present work is meant to be the initial step in order to extend the
stability result of [9] to the case of electrovacuum perturbations of charged
black holes. The main gauge-invariant quantities and the equations verified
by them were unknown up to this point.

The equations governing the evolution of the curvature and the elec-
tromagnetic tensor in the case of electrovacuum spacetime are coupled. In
particular, the Teukolsky equation verified by the extreme component of
the Weyl curvature α is coupled with the electromagnetic components com-
ing from the non-vanishing Ricci curvature. Applying a Chandrasekhar-type
transformation we derive the corresponding new quantity q veryfing a Regge-
Wheeler type equation, coupled with electromagnetic terms. However, these
additional terms are multiplied by the charge of the spacetime, so, provided
that we have control on the electromagnetic part, they could in principle be
absorbed as error terms for small enough charge.

The main new insight is the control of the electromagnetic part making
use of a gauge invariant quantity depending on the electromagnetic compo-
nents, whose null derivative appears in the Teukolsky equation for α. Apply-
ing a new Chandrasekhar-type transformation, at the level of one derivative
only (as opposed to two derivatives as in the case of curvature), we are able
to find a new quantity qF verifying another Regge-Wheeler type equation,
coupled with the curvature term q. Therefore, we have a coupled system
of wave equations for the term encoding the curvature q and for the term
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encoding the electromagnetic part qF which at the linear level looks like1

(0.4)

{
□gq = V1q+ e · M(∂≤2qF) + e(l.o.t.(qF)) + e2(l.o.t.(q))

□gq
F = V2q

F + e · M(q) + e2(l.o.t.(qF))

where the operator □g = DαDα is the wave operator associated to the per-
turbed metric g, e is the charge of the perturbed spacetime, and M is an
expression of the arguments. We denote l.o.t.(q) and l.o.t.(qF) lower order
terms with respect to q and qF respectively.

The two wave equations are coupled: on the right hand side of the equa-
tion for the curvature term q we find an expression of the electromagnetic
term qF, and similarly on the right hand side of the equation for qF we
find the curvature term q. Notice that those coupled terms are multiplied
by the charge of the spacetime. The coupling is not symmetric in terms of
dependence on derivatives: the presence of two derivatives of qF on the right
hand side of the first equation is a consequence of the Teukolsky equation
for α, in which the derivative of the electromagnetic term appears. However,
this asymmetry is good in terms of deriving estimates for such a system. In-
deed, taking one derivative of the second equation and deriving Morawetz
estimates for it, we would have a term for second derivative of q and one
term for first derivative of q, the latter multiplied by the charge. Those are
exactly the kind of terms appearing in the Morawetz estimates obtained
for the first equation (because of the presence of ∂≤2qF), with the term for
second derivative of qF multiplied by the charge. Summing those estimates,
the terms on the right hand side multiplied by the charge could be absorbed
on the right hand side for small enough charge. In addition to the coupling,
there is the presence of lower order terms, which will have to be treated
either in the spirit of [10] in the case of slowly rotating Kerr (i.e. considering
a system of equations for the lower order terms), or as in [6] (i.e. deriving
decay for the lower order terms using transport equations).

In this paper, we derive the main equations leading to the system (0.4),
as a first step towards the proof of non-linear stability of Reissner-Nordström
spacetime under polarized perturbations. We remark that the structure of
the system (0.4) does not depend on the polarization of the metric nor
on the assumption of axial symmetry. We present the general result in the
Appendix. The system can therefore be used to prove linear stability of
Reissner-Nordström spacetime.

1The explicit form of the final system is (6.5).
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1. Electrovacuum axially symmetric polarized spacetimes

We consider electrovacuum spacetimes (M,g), namely solution to the
Einstein-Maxwell equation (0.2). We denote D the Levi-Civita connection
of the spacetime (M,g).

An axially symmetric spacetime (M,g,Z) is a four dimensional simply
connected manifold M with a Lorentzian metric g and an axial Killing
vectorfield Z on M that preserves F, i.e. LZF = 0.

The Ernst potential of the spacetime is given by

σµ := Dµ(−ZαZα)− i ∈µβγδ Z
βDγZδ.

The 1-form σµdx
µ is closed and thus there exists a function σ : M → C,

called the Z- Ernst potential, such that σµ = Dµσ. Note also that
Dµg(Z,Z) = 2GµλZ

λ = −Re(σµ) whereGµν = DµZν . Hence we can choose
the potential σ such that Re(σ) = −X, where X = g(Z,Z).

Definition 1.1. An axially symmetric Lorentzian manifold (M,g,Z) is
said to be polarized if the Ernst potential σ is real, i.e. σ = −X. In this
case, we can find coordinates (φ, xa) such that Z = ∂φ, and the metric g
can be written in the form

(1.1) g = Xdφ2 + gabdx
adxb = e2Φdφ2 + gabdx

adxb

where gab is a 1 + 2 Lorentzian metric, and Φ = 1
2 log(X). The axial sym-

metry implies that X and g are independent of φ.

Following [5], we define the null decomposition of the curvature and
the electromagnetic tensor on a given Z-invariant polarized S-foliation of
an electrovacuum spacetime. We assume we have a fixed adapted null pair
e3, e4, i.e. future directed Z-invariant null vectors orthogonal to the leaves S
of the foliation, such as g(e3, e4) = −2, while on S we have an orthonormal
frame e1, e2.
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We define the spacetime Ricci coefficients, where the indices A,B take
values 1, 2

(1+3)χAB : = g(DAe4, eB),
(1+3)ξA :=

1

2
g(D4e4, eA),

(1+3)ηA :=
1

2
g(D3e4, eA),

(1+3)ζA :=
1

2
g(DAe4, e3),

(1+3)ω :=
1

4
g(D4e4, e3)

(1.2)

and interchanging e3, e4,

(1+3)χ
AB

: = g(DAe3, eB),
(1+3)ξ

A
:=

1

2
g(D3e3, eA),

(1+3)η
A
:=

1

2
g(D4e3, eA),

(1+3)ζA := −
1

2
g(DAe3, e4),

(1+3)ω :=
1

4
g(D3e3, e4)

(1.3)

We define the spacetime null curvature components of the Weyl curvature
W,

(1+3)αAB : = WA4B4,
(1+3)βA :=

1

2
WA434,

(1+3)ρ :=
1

4
W3434,

(1+3)αAB := WA3B3,

(1+3)β
A
:=

1

2
WA334,

(1+3)⋆ρ :=
1

4
*W3434

(1.4)

We define the spacetime null electromagnetic components of the electromag-
netic tensor F in the following way2:

(1.5) (F )βA := FA4,
(F )β

A
:= FA3,

(F )ρ :=
1

2
F34,

(F )⋆ρ :=
1

2
*F34

The Ricci tensor can be expressed in terms of the electromagnetic null de-
composition according to Einstein equation 0.2, and using the decomposition

2Note that we define the extreme components of the electromagnetic tensor using
the (F )β notation, as opposed to the standard (F )α for the spin ±1 Teukolsky
equation. This choice is meant to stress the fact that in electrovacuum background
under gravitational and electromagnetic perturbation, the extreme components FA4

and FA3 are not gauge invariant (as the β component of the curvature is not
invariant, as opposed to the extreme component α). See Remark 4.5.
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of the Riemann curvature in Weyl curvature and Ricci tensor,

Rαβγδ = Wαβγδ +
1

2
(gβδRαγ + gαγRβδ − gβγRαδ − gαδRβγ),

we can express the full Riemann tensor of the perturbed spacetime in terms
of the above decompositions.

Suppose now that the orthonormal frame on S is adapted to the axial
symmetry as follows: e1 = eφ = X−1/2Z with X := g(Z,Z), and e2 = eθ.
We define e3, e4, eθ to be the reduced null frame, associated to the reduced
metric g.

We can define the reduced Ricci coefficients as follows:

χ := (1+3)χθθ, χ := (1+3)χ
θθ
, η := (1+3)ηθ, η := (1+3)η

θ
,

ξ := (1+3)ξθ, ξ := (1+3)ξ
θ
, ζ := (1+3)ζθ,

ω := (1+3)ω, ω := (1+3)ω

(1.6)

We define the reduced curvature and electromagnetic tensor as

α : = (1+3)αθθ, α := (1+3)αθθ, β := (1+3)βθ, β := − (1+3)β
θ

ρ : = (1+3)ρ (F )β := (F )βθ,
(F )β := (F )β

θ

(1.7)

Notice that the polarization implies that every Z-invariant and Z-
polarized spacetime tensor U is such that its contraction with an odd number
of eφ = X− 1

2Z vanishes identically. Therefore, the polarization of the metric
and the Z-invariance of F imply that the remaining components of the Ricci
coefficients, the curvature and the electromagnetic tensor are determined in
the following way:

(1+3)χθφ = (1+3)χ
θφ

= (1+3)ηφ = (1+3)η
φ
= (1+3)ξφ = (1+3)ξ

φ
= (1+3)ζφ = 0,

(1+3)χφφ = e4(Φ),
(1+3)χ

φφ
= e3(Φ),

(1+3)αθφ = (1+3)αθφ = (1+3)βφ = (1+3)β
φ
= 0,

(1+3)αφφ = −α, (1+3)αφφ = −α

and

(1.8) ⋆ρ = 0, (F )βφ = (F )β
φ
= (F )⋆ρ = 0

Remark 1.2. Since in Kerr-Newman spacetime, the components ρ and
(F )⋆ρ are different from zero for non-zero angular momentum, we see from
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(1.8) that the hypothesis of polarization of the metric forces the final state
of the evolution to be a non-rotating charged black hole.

Following the notation in [9], we define

ϑ : = χ− e4(Φ), κ := (1+3)trχ = χ+ e4(Φ)

ϑ : = χ− e3(Φ), κ := (1+3)trχ = χ+ e3(Φ)

Thus,

(1+3)χ̂θθ = − (1+3)χ̂φφ =
1

2
ϑ, (1+3)χ̂

θθ
= − (1+3)χ̂

φφ
=

1

2
ϑ

where (1+3)̂χ and (1+3)̂χ are the traceless part of (1+3)χ and (1+3)χ respec-
tively.

1.1. Reissner-Nordström spacetime

The Reissner-Nordström metric has the axial symmetric vector field Z = ∂φ
and the polarized form (1.1) of the metric in standard coordinates is given
by

g = X2dφ2 −Υdt2 +Υ−1dr2 + r2dθ2,

Υ := 1−
2m

r
+

Q2

r2
, X = r2 sin2 θ

The electromagnetic tensor is given by

F = −
Q

r2
dr ∧ dt.

Proposition 1.3. All curvature and electromagnetic components of the
Reissner-Nordström spacetime vanish identically except

(1+3)ρ = −
2m

r3
+

2Q2

r4
, (F )ρ =

Q

r2

2. Main equations in electrovacuum

Following [5] and [9], we derive the main equations in electrovacuum space-
times and then obtain their reduction, i.e. their evaluation along eθ, for
axially symmetric polarized spacetimes.
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2.1. Null structure equations

The spacetime3 null structure equations are

∇/ 3χAB
= 2∇/BξA − 2ωχ

AB
− χC

A
χCB + 2ηBξA + 2η

A
ξ
B

− 4ζBξA +RA33B,

∇/ 4χAB
= 2∇/BηA + 2ωχ

AB
− χC

BχAC
+ 2(ξBξA + η

B
η
A
)

+RA34B,

∇/ 3ζA = −2∇/Aω − χB
A
(ζB + ηB) + 2ω(ζA − ηA) + χB

AξB

+ 2ωξ
A
−

1

2
RA334,

∇/ 4ξ −∇/ 3η = 4ωξ + χ̂ · (η − η) +
1

2
trχ(η − η)−

1

2
RA334,

∇/ 4ω +∇/ 3ω = 4ωω + ξ · ξ + ζ · (η − η)− η · η +
1

4
R3434,

∇/ CχAB
+ ζBχAC

= ∇/BχAC
+ ζCχAB

+RA3CB,

g/ACg/BDRADCB = 2K +
1

2
trχtrχ− χ̂ · χ̂

The symmetric traceless part of the first equation in the reduced picture
becomes

e3(ϑ) + κϑ = −2 d*/2ξ − 2ω ϑ+ 2(η + η − 2ζ) ξ − 2α

where d*/2ξ = −eθξ + eθΦξ, while its trace gives

e3(κ) +
1

2
κ2 + 2ω κ = 2 d/1ξ + 2(η + η − 2ζ)ξ −

1

2
ϑϑ− 2 (F )β2

where d/1ξ = eθξ + eθ(Φ)ξ .
The symmetric traceless part of the second equation gives the reduced

equation

e4ϑ+
1

2
κϑ− 2ωϑ = −2 d*/2η −

1

2
κϑ+ 2(ξ ξ + η2)− (F )β (F )β

and its trace gives

e4(κ) +
1

2
κκ− 2ωκ = 2 d/1η −

1

2
ϑϑ+ 2(ξ ξ + η η) + 2ρ

3For convenience we drop the (1+3) labels in what follows.
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The reduction of the third, fourth and fifth spacetime equation become

e3ζ +
1

2
κ(ζ + η)− 2ω(ζ − η) = β − 2eθ(ω) + 2ωξ +

1

2
κ ξ −

1

2
ϑ(ζ + η)

+
1

2
ϑ ξ − (F )ρ (F )β,

e4(ξ)− e3(η) = β + 4ωξ +
1

2
κ(η − η)

+
1

2
ϑ(η − η)− (F )ρ (F )β,

e4ω + e3ω = ρ+ (F )ρ2 + 4ωω + ξ ξ + ζ(η − η)− η η

The last two equations are Codazzi and Gauss equations, which in the re-
duction become

d/2ϑ = eθ(κ)− κζ + ϑζ − 2β − 2 (F )ρ (F )β,

K = −
1

4
κκ+

1

4
ϑϑ− ρ+ (F )ρ2

where d/2ϑ = eθ(ϑ) + 2eθ(Φ)ϑ. By the symmetry e3 − e4 we derive the spec-
ular equations.

2.2. Bianchi identities

In electrovacuum spacetimes, the Bianchi identities for the Weyl curvature
have non-homogeneous terms, in particular, using the notations in [5], we
have

DαWαβγδ =
1

2
(DγRβδ −DδRβγ) =: Jβγδ

D[σWγδ]αβ = gδβJαγσ + gγαJβδσ + gσβJαδγ + gδαJβσγ

+ gγβJασδ + gσαJβγδ

:= J̃σγδαβ

The non-homogeneous terms Jβγδ and J̃σγδαβ can be expressed in terms of
the electromagnetic components (F )β, (F )β, (F )ρ and their derivative.



✐

✐

“4-Giorgi” — 2020/8/25 — 11:45 — page 990 — #12
✐

✐

✐

✐

✐

✐

990 Elena Giorgi

The spacetime4 Bianchi identities equations are

∇/ 3αAB +
1

2
trχαAB = −2(D*/2 β)AB + 4ωαAB − 3(χ̂ABρ+ * χ̂AB

⋆ρ)

+ ((ζ + 4η)⊗ β)AB +
1

2
(J̃3A4B4 + J̃3B4A4 + J434δAB),

∇/ 4βA + 2trχβA = div/ αA − 2ωβA + ((2ζ + η) · α)A + 3(ξAρ

+ *ξA
⋆ρ)− J4A4,

∇/ 3βA + trχβA = D*/1(−ρ, ⋆ρ)A + 2(χ̂ · β)A + 2ω βA + (ξ · α)A

+ 3(ηAρ+ *ηA
⋆ρ) + J3A4,

D4ρ+
3

2
trχρ = div/ β −

1

2
χ̂ · α+ ζ · β + 2(η · β − ξ · β)−

1

2
J434

These equations in the reduction are

e3(α) +

(
1

2
κ− 4ω

)
α = − d*/2β −

3

2
ϑρ+ (ζ + 4η)β

+ (2ζ + 3η + 2η) (F )ρ (F )βθ − ξ (F )ρ (F )β
θ

+ eθ(2
(F )ρ (F )β) + e4(

(F )β (F )β) + χ (F )β (F )β

− (χ+ 2ω) (F )β2 −
1

2
e3(

(F )β2)

−
1

2
e4(

(F )ρ2)− 2χ (F )ρ2,

e4(β) + 2 (κ+ ω)β = d/2α+ (2ζ + η)α+ 3ξρ− eθ(
(F )β2)

+ e4(
(F )ρ (F )β)− (2ζ + η)( (F )β2)

+ 2(ω + χ) (F )ρ (F )β − 2ξ (F )ρ2 + ξ (F )β (F )β,

e3(β) + (κ− 2ω)β = eθ(ρ) + 3ηρ− ϑβ + ξα+ eθ(
(F )ρ2)

+ e4(
(F )ρ (F )β) + 2η (F )ρ2 + (χ− 2ω) (F )ρ (F )β

− 2ω (F )β2 − χ (F )ρ (F )β − η (F )β (F )β + ξ (F )β2,

e4ρ+
3

2
κρ = d/1β −

1

2
ϑα+ ζ β + 2(η β + ξ β)−

1

2
e3(

(F )β2)

+
1

2
e4(

(F )ρ2) + 2ω (F )β2 + (2η − η) (F )ρ (F )β

+ ξ (F )ρ (F )β

(2.1)

All other equations can be obtained by symmetry e3 − e4.

4For convenience we drop the (1+3) labels in what follows.
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2.3. Maxwell’s equations

We write Maxwell’s equations (0.3) in null decomposition. The spacetime
Maxwell’s equations DαFβγ +DβFγα +DγFαβ = 0 read

∇/ 3
(F )βA +

1

2
trχ (F )βA = ∇/ 4

(F )β
A
+

1

2
trχ (F )β

A
+ 2ω (F )βA − 2ω (F )β

A

+ 2D*/1
(F )ρ+ 2(ηA + η

A
) (F )ρ

The spacetime Maxwell equations DαFαβ = 0 in null decomposition are

∇/ 3
(F )βA +∇/ 4

(F )β
A
= −

(
1

2
trχ− 2ω

)
(F )β

A
− (χ̂ · (F )β)A

−

(
1

2
trχ− 2ω

)
(F )βA

− (χ̂ · (F )β)A + (ηA − η
A
) (F )ρ,

∇/ 3
(F )ρ+ trχ (F )ρ = −div/ (F )β + (ζ − η) · (F )β + ξ · (F )β,

∇/ 4
(F )ρ+ trχ (F )ρ = div/ (F )β + (ζ + η) · (F )β − ξ · (F )β

The reduced equations are therefore

e4
(F )β = −eθ

(F )ρ− 2η (F )ρ+

(
−
1

2
κ+ 2ω

)
(F )β +

1

2
ϑ (F )β,

e3
(F )β = eθ

(F )ρ+ 2η (F )ρ+

(
−
1

2
κ+ 2ω

)
(F )β +

1

2
ϑ (F )β,

e3
(F )ρ+ d/1

(F )β = −κ (F )ρ+ (ζ − η) (F )β + ξ (F )β,

−e4
(F )ρ+ d/1

(F )β = κ (F )ρ+ (−ζ − η) (F )β + ξ (F )β

(2.2)

3. Quasi-local mass and charge

Given a Z-invariant polarized surface S we define its volume radius by the
formula

|S| = 4πr2

where |S| is the volume of the surface using the volume form of the metric g/ .

Definition 3.1. We define the quasi-local charge e = e(S) of the foliated
spacetime as

e =
1

4π

∫

S

(F )ρ
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Recall that the standard Hawking mass mH = mH(S) is defined by

2mH

r
= 1 +

1

16π

∫

S
κκ

In Reissner-Nordström we have

e =
1

4π

∫

S

(F )ρ =
1

4π

∫

S

Q

r2
= Q,

2mH

r
= 1 +

1

16π

∫

S
κκ = 1−

(
1−

2m

r
+

Q2

r2

)
=

2m

r
−

Q2

r2

We see that the Hawking mass does not correspond to the usual mass. We
need therefore a definition of a modified quasi-local mass.

Definition 3.2. We define5 the modified Hawking mass ϖ = ϖ(S) of the
foliated spacetime as

ϖ = mH +
e2

2r
,

Observe that in Reissner-Nordström we have

2ϖ

r
=

2m

r
−

Q2

r2
+

Q2

r2
=

2m

r

as desired.
Following [9], we define average quantities and the difference between a

quantity and its average in the following way. Given a function f on S we
denote

(3.1) f̄ :=
1

|S|

∫

S
f, f̌ := f − f̄ .

Observe that, by Definition 3.1 of the quasi-local charge e,

(3.2) (F )ρ =
e

r2
, (F )ρ =

e

r2
+ ˇ(F )ρ,

5Observe that this corresponds to the standard definition of modified Hawking
mass ϖ in spherical symmetry.
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4. Perturbations of Reissner-Nordström spacetime and
invariant quantities

We recall that by Proposition 1.3, in Reissner-Nordström spacetime the Ricci
coefficients ξ, ξ, ϑ, ϑ, η, η, ζ, the curvature components α, α, β, β and the elec-

tromagnetic components (F )β, (F )β vanish identically. Thus, roughly, we ex-
pect that in perturbations of Reissner-Nordström these quantities stay small,
i.e. of order O(ϵ) for a sufficiently small ϵ. Moreover, recall that under axially
symmetric polarized perturbations, we know that ⋆ρ, (F )βφ,

(F )β
φ
, (F )⋆ρ = 0,

as derived in (1.8).

Definition 4.1. We say that a smooth, electrovacuum, Z-invariant, polar-
ized spacetime is an O(ϵ)-perturbation of Reissner-Nordström if the follow-
ing are true:

(4.1) ξ, ξ, ϑ, ϑ, η, η, ζ, α, α, β, β, (F )β, (F )β = O(ϵ),

Also,

(4.2) κ− κ, κ− κ, ω − ω, ω − ω, ρ− ρ, (F )ρ− (F )ρ = O(ϵ)

where κ, κ, ω, ω, ρ denote spacetime averages as defined in equation (3.1).
Moreover the modified Hawking mass and the quasi-local charge are nearly
constant, i.e.

(4.3) dϖ = O(ϵ2), de = O(ϵ2)

Finally,

e3(r) =
r

2
κ+O(ϵ), e4(r) =

r

2
κ+O(ϵ), eθ(r) = 0.

We summarize the linear terms of the null structure equations, the
Bianchi identities and the Maxwell equations for perturbations of Reissner-
Nordström in the following proposition. Remark that we used Maxwell equa-
tions to simplify the Bianchi identities.
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Proposition 4.2. Modulo O(ϵ2), the null structure equations, Bianchi iden-
tities (2.1) and Maxwell’s equations (2.2) are

e3(ϑ) + κϑ = 2(eθ(ξ)− eθ(Φ)ξ)− 2ω ϑ− 2α

e3(κ) +
1

2
κ2 + 2ω κ = 2(eθξ + eθ(Φ)ξ)

e4ϑ+
1

2
κϑ− 2ωϑ = 2(eθη − eθ(Φ)η)−

1

2
κϑ

e4(κ) +
1

2
κκ− 2ωκ = 2(eθη + eθ(Φ)η) + 2ρ

e3ζ +
1

2
κ(ζ + η)− 2ω(ζ − η) = β − 2eθ(ω) + 2ωξ +

1

2
κ ξ − (F )ρ (F )β

e4(ξ)− e3(η) = β + 4ωξ +
1

2
κ(η − η)− (F )ρ (F )β

e4ω + e3ω = ρ+ (F )ρ2 + 4ωω

eθ(ϑ) + 2eθ(Φ)ϑ = −2β + (eθ(κ)− ζκ)− 2 (F )ρ (F )β

K = −ρ−
1

4
κκ+ (F )ρ2

e3(α) +
1

2
κ(α) = (eθ(β)− (eθΦ)β) + 4ω(α)−

3

2
ϑρ

+ (F )ρ(eθ
(F )β − eθΦ

(F )β − ϑ (F )ρ)

e4(β) + 2κβ = (eθα+ 2eθΦα)− 2ωβ + 3ξρ

+ (F )ρ(e4
(F )β + 2ω (F )β − 2ξ (F )ρ)

e3(β) + κβ = eθ(ρ) + 2ωβ + 3ηρ

+ (F )ρ(eθ
(F )ρ− κ (F )β −

κ

2
(F )β)

e4ρ+
3

2
κρ = (eθ(β) + (eθΦ)β)

+ (F )ρ(−κ (F )ρ+ eθ
(F )β + eθ(Φ)

(F )β)

e4
(F )β = −eθ

(F )ρ− 2η (F )ρ+

(
−
1

2
κ+ 2ω

)
(F )β

e3
(F )β = eθ

(F )ρ+ 2η (F )ρ+

(
−
1

2
κ+ 2ω

)
(F )β,

e3
(F )ρ = −κ (F )ρ− d/1

(F )β,

e4
(F )ρ = −κ (F )ρ+ d/1

(F )β

and the other equations are obtained through the symmetry e3 − e4.
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The definition of O(ϵ)-Reissner-Nordström perturbations does not spec-
ify a particular frame. In what follows we investigate how the main Ricci
and curvature quantities change relative to frame transformations, i.e linear
transformations of the form e′α = Ωα

βeβ which take null frames into null
frames. We will use the fact that a general frame transformation can be
decomposed into the following three elementary types:

• Transformations which fix e3,

(4.4) e′3 = e3, e′θ = eθ +
1

2
fe3, e′4 = e4 + feθ +

1

4
f2e3

• Transformations which fix e4,

(4.5) e′3 =

(
e3 + feθ +

1

4
f2e4

)
, e′θ = eθ +

1

2
fe4, e′4 = e4

• Transformation which preserve the directions of e3, e4, i.e confomal
transformations of the form e′3 = λe3, e

′
4 = λ−1e4.

where f, f are reduced 1-forms and λ is a reduced scalar. A transformation
consistent with O(ϵ)-perturbations of Reissner-Nordstrom spacetimes must
have f, f = O(ϵ) and a := log λ = O(ϵ).

Lemma 4.3 (Lemma 2.3.1. of [9]). A general composite transformation
type(3) ◦ type(1) ◦ type(2) has the form,

e′3 = λ

(
e3 + feθ +

1

4
f2e4

)

e′θ =

(
1 +

1

2
ff

)
eθ +

1

2
fe3 +

1

2

(
f +

1

4
ff2

)
e4

e′4 = λ−1

((
1 +

1

2
ff +

1

16
f2f2

)
e4 +

(
f +

1

4
f2f

)
eθ +

1

4
f2e3

)
(4.6)

Proposition 4.4. Under a general transformation of type (4.6) the curva-
ture and electromagnetic components transform as follows:

α′ = α+O(ϵ2), α′ = α+O(ϵ2)

β′ = λ−1

(
β +

3

2
ρf

)
+O(ϵ2), β′ = λ

(
β +

3

2
ρf

)
+O(ϵ2),

(F )β′ = λ−1
(

(F )β + f (F )ρ
)
+O(ϵ2), (F )β′ = λ

(
(F )β − f (F )ρ

)
+O(ϵ2),

ρ′ = ρ+O(ϵ2), (F )ρ′ = (F )ρ+O(ϵ2)
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Proof. Straighforward calculations using the definitions (1.7) and Lemma
4.3. See also Proposition 2.3.4 of [9]. □

Notice that the only quantities which vanish in the background and which
are O(ϵ2) invariant are the extreme curvature components α, α. These com-
ponents verify the Teukolsky equation, which is the first step in the deriving
the Regge-Wheeler type equation for the curvature term q.

Remark 4.5. As a consequence of Proposition 4.4, the extreme compo-
nents of the electromagnetic tensor (F )β, (F )β are not O(ϵ2) invariant. More-
over, they transform under change of frame similarly to the β, β component
of the curvature. This motivates the notation.

4.1. The new invariant quantity f

To consider the non-linear electromagnetic perturbation of Reissner-
Nordström we need an equation for a O(ϵ2)-invariant quantity. By Re-
mark 4.5, we can’t make direct use of the spin ±1 Teukolsky equation verified
by (F )β and (F )β (see for example [12]), as compared to the electromagnetic
perturbation of Schwarzschild, treated in Section 6.5. We will make use in-
stead of a new quantity for the electromagnetic part of the curvature. From
the Bianchi identity for e3α, we identify the following quantity f defined by

f := d*/2
(F )β + ϑ (F )ρ = −eθ

(F )β + eθΦ
(F )β + ϑ (F )ρ

This new quantity turns out to play a fundamental role in the equations gov-
erning the coupled gravitational and electromagnetic perturbations. Indeed,
it appears in the Teukolsky equation for the extreme curvature component
α in electrovacuum. Moreover, there exists a Chandrasekhar-type transfor-
mation which transforms f into qF, and qF verifies a Regge-Wheeler type
equation coupled with the curvature as in (0.4). And most importantly, f is
a O(ϵ2) invariant quantity.

Lemma 4.6. The quantity f is O(ϵ2) invariant.

Proof. Using Lemma 4.3 together with the definition of ϑ, we have that ϑ′ =
ϑ+ eθ(f)− feθ(Φ) +O(ϵ2). Using Proposition 4.4 and that eθ

(F )ρ = O(ϵ)
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as a consequence of Maxwell equations, we have

f′ = −e′θ
(F )β′ + e′θΦ

(F )β′ + ϑ′ (F )ρ′

= −eθ(
(F )β + f (F )ρ) + eθΦ(

(F )β + f (F )ρ) + (ϑ+ eθ(f)

− feθ(Φ))
(F )ρ+O(ϵ2)

= f− eθ(f)
(F )ρ+ eθΦ(f

(F )ρ) + (eθ(f)− feθ(Φ))
(F )ρ+O(ϵ2) = f+O(ϵ2)

therefore f is O(ϵ2) invariant. □

Remark 4.7. To the knowledge of the author, the quantity f seems to not
have been noticed or used so far in the literature. One main reason could be
found in the choice of gauge of Chandrasekhar in [4]. In treating the gravita-
tional and electromagnetic perturbation of Reissner-Nordström, the author
picks the phantom gauge ϕ0 = 0, corresponding to (F )β = (F )β = 0. From

Proposition 4.4, we can see that the choice of gauge with f = − (F )ρ−1 (F )β
and f̄ = − (F )ρ−1 (F )β gives (F )β, (F )β = O(ϵ2) in the non-linear setting. This

choice of gauge would reduce f to ϑ (F )ρ.

Applying Maxwell’s equations and null structure equations, and using
that [eθ, e3] =

1
2κeθ +O(ϵ) and [eθ, e4] =

1
2κeθ +O(ϵ) we write

e3(f) = −(eθe3
(F )β − eθΦe3

(F )β) +
1

2
κ(eθ

(F )β − eθΦ
(F )β)

− (F )ρ

((
3

2
κ− 2ω

)
ϑ− 2(eθη − eθ(Φ)η) +

1

2
κϑ

)
,

e4(f) = −(eθe4
(F )β − eθΦe4

(F )β) +
1

2
κ(eθ

(F )β − eθΦ
(F )β)

− (F )ρ
(
2κϑ− 2(eθ(ξ)− eθ(Φ)ξ) + 2ω ϑ+ 2α

)

(4.7)

to be used later.

5. Teukolsky equations for the O(ϵ2)-invariant quantities
α and f

Let f be a Z-invariant scalar function. Then, by definition □g for a polarized
metric g, we have

□gf = −e4(e3(f)) + eθ(eθ(f))−
1

2
κe4(f) +

(
−
1

2
κ+ 2ω

)
e3(f)(5.1)

+ eθ(Φ)eθ(f) + 2ηeθ(f).
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as in Lemma 2.4.1. of [9]. Using this formula, we derive the wave equations
for the invariant quantities α and f.

Proposition 5.1. [Teukolsky equation for α] The O(ϵ2) invariant quantity
α verifies the following wave equation:

□gα = −4ωe4(α) + (2κ+ 4ω)e3(α)

+

(
1

2
κκ+ 2ωκ− 4ρ+ 4 (F )ρ2 − 4e4ω − 10κω − 8ωω + 4eθ(Φ)

2

)
α

+ (F )ρ (2e4(f) + (2κ+ 4ω)f) +O(ϵ2)

Proof. Using the Bianchi identity

e3(α) +
1

2
κ(α) = (eθ(β)− (eθΦ)β) + 4ω(α)−

3

2
ϑρ− (F )ρf

and applying Bianchi identities, null structure equations and Maxwell’s
equations as in Proposition 4.2 and formulas (4.7), we have

e4(e3(α)) = e4(eθ(β))− eθ(Φ)e4(β)− e4(eθ(Φ))β −
(κ
2

)
e4(α)−

(
e4(κ)

2

)
α

−
3

2
ϑe4(ρ)−

3

2
e4(ϑ)ρ+ 4e4ωα+ 4ωe4α− e4

(F )ρf− (F )ρe4f

= e4(eθ(β))− eθ(Φ)
(
eθ(α) + 2eθ(Φ)α− 2(κ+ ω)β + 3ξρ

+ (F )ρ(e4
(F )β + 2ω (F )β − 2ξ (F )ρ)

)
−
(
−
κ

2
eθΦ

)
β −

(κ
2

)
e4(α)

−

(
e4(κ)

2

)
α−

3

2
ϑe4(ρ)−

3

2
e4(ϑ)ρ+ 4e4ωα+ 4ωe4α+

+ (F )ρ

(
κf+ (eθe4

(F )β − eθΦe4
(F )β)−

1

2
κ(eθ

(F )β − eθΦ
(F )β)

+ (F )ρ(2κϑ− 2(eθ(ξ)− eθ(Φ)ξ) + 2ω ϑ+ 2α)

)

= e4(eθ(β))− eθ(Φ)(eθ(α) + 2eθ(Φ)α) + 2eθ(Φ)(κ+ ω)β

− 3eθ(Φ)ξρ+
κ

2
eθ(Φ)β −

(κ
2

)
e4(α)−

(
e4(κ)

2

)
α−

3

2
ϑe4(ρ)

−
3

2
e4(ϑ)ρ+ 4e4ωα+ 4ωe4α+ (F )ρ

(
(eθe4

(F )β − 2eθΦe4
(F )β)

−
3

2
κeθ

(F )β +

(
3

2
κ− 2ω

)
eθΦ

(F )β

+ (F )ρ(3κϑ− 2(eθ(ξ)− 2eθ(Φ)ξ) + 2ω ϑ+ 2α)

)
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Using that eθ(κ), eθ(ω), eθ(ρ), eθ(
(F )ρ) = O(ϵ), we have

eθ(eθ(α)) = eθ
(
e4(β) + 2(κ+ ω)β − 2eθ(Φ)α− 3ξρ− (F )ρe4

(F )β

− 2ω (F )ρ (F )β + 2ξ (F )ρ2
)

= eθ(e4(β)) + 2(κ+ ω)eθ(β)− 2eθ(Φ)eθ(α)− 2eθ(eθ(Φ))α

− 3eθ(ξ)ρ+
(F )ρ(−eθe4

(F )β − 2ωeθ
(F )β + 2eθξ

(F )ρ)

= eθ(e4(β)) + 2(κ+ ω)

(
eθ(Φ)β + e3(α) +

(κ
2

)
α+

3

2
ϑ ρ− 4ωα

)

− 2eθ(Φ)eθ(α)− 2

(
ρ− (F )ρ2 − (eθΦ)

2 +
1

4
κκ

)
α− 3eθ(ξ)ρ

+ (F )ρ

(
− eθe4

(F )β + (−2κ− 4ω)eθ
(F )β + (2κ+ 2ω)eθΦ

(F )β

+ (F )ρ(2κϑ+ 2ωϑ+ 2eθξ)

)

Using (5.1), we have

□gα = −e4(e3(α)) + eθ(eθ(α))−
1

2
κe4(α) +

(
−
1

2
κ+ 2ω

)
e3(α)

+ eθ(Φ)eθ(α)

= [eθ, e4](β) + 2eθ(Φ)
2α+ 3eθ(Φ)ξρ−

κ

2
eθ(Φ)β +

(κ
2

)
e4(α)

+

(
e4(κ)

2

)
α+

3

2
ϑe4(ρ) +

3

2
e4(ϑ)ρ− 4e4ωα− 4ωe4α

+ 2(κ+ ω)e3(α) + 2(κ+ ω)
(κ
2

)
α

+ 3(κ+ ω)ϑ ρ− 8(κω + ωω)α− 2

(
ρ− (F )ρ2 − (eθΦ)

2 +
1

4
κκ

)
α

− 3eθ(ξ)ρ−
1

2
κe4(α) +

(
−
1

2
κ+ 2ω

)
e3(α)

+ (F )ρ

(
− 2(eθe4

(F )β − eθΦe4
(F )β)

−

(
1

2
κ+ 4ω

)
(eθ

(F )β − eθΦ
(F )β)

− (F )ρ(κϑ− 2(2eθ(ξ)− 2eθ(Φ)ξ) + 2α)

)



✐

✐

“4-Giorgi” — 2020/8/25 — 11:45 — page 1000 — #22
✐

✐

✐

✐

✐

✐

1000 Elena Giorgi

Using that modulo O(ϵ2),

[eθ, e4](β) =
κ

2
eθ(β)

=
κ

2

(
eθ(Φ)β + e3(α) +

(κ
2

)
α− 4ωα+

3

2
ϑ ρ

+ (F )ρ(ϑ (F )ρ− eθ
(F )β + eθΦ

(F )β)

)

we have

□gα = 3eθ(Φ)ξρ− 3eθ(ξ)ρ+
3

2
ϑe4(ρ) +

3

2
e4(ϑ)ρ+ 3(κ+ ω)ϑ ρ+

3

4
κϑρ

+ (−4ω) e4(α) + (2κ+ 4ω)e3(α) +

(
e4(κ)

2
+ 4eθ(Φ)

2 − 4e4ω

+
3

4
κκ+ ωκ− 10κω − 8ωω − 2ρ+ 2 (F )ρ2

)
α

+ (F )ρ

(
− 2(eθe4

(F )β − eθΦe4
(F )β)− (κ+ 4ω)(eθ

(F )β − eθΦ
(F )β)

− (F )ρ(
1

2
κϑ− 2(2eθ(ξ)− 2eθ(Φ)ξ) + 2α)

)

Using equations for e4(ϑ), e4ρ, e4(κ) we infer

□gα = −4ωe4(α) + (2κ+ 4ω)e3(α)

+

(
4eθ(Φ)

2 − 4e4ω +
1

2
κκ+ 2ωκ− 10κω − 8ωω − 4ρ

)
α

+ (F )ρ

(
− 2(eθe4

(F )β − eθΦe4
(F )β)− (κ+ 4ω)(eθ

(F )β − eθΦ
(F )β)

− (F )ρ(2κϑ− 2(2eθ(ξ)− 2eθ(Φ)ξ)

)

Using (4.7), we can write the term multiplying (F )ρ on the right hand side
as (2κ+ 4ω)f+ 2e4f+ 4 (F )ρα giving therefore the desired expression. □

It is remarkable that the new quantity f also verifies a Teukolsky equa-
tion.
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Proposition 5.2 (Teukolsky equation for f). The O(ϵ2)-invariant quan-
tity f verifies the following wave equation:

□gf =

(
3

2
κ+ 2ω

)
e3f

+

(
1

2
κ− 2ω

)
e4f+

(
1

2
κκ+ 2ωκ− 2ρ− 4κω − 2e4ω + 4eθΦ

2

)
f

+ (F )ρ
(
− 2e3(α)− (2κ− 8ω)α

)
+O(ϵ2)

Proof. We derive the Teukolsky equation verified by (F )β. Consider the
Maxwell’s equations:

e3
(F )β − eθ

(F )ρ− 2η (F )ρ+

(
1

2
κ− 2ω

)
(F )β = 0,

e4
(F )ρ+ κ (F )ρ− eθ

(F )β − eθ(Φ)
(F )β = 0

and apply the operator (e4 +
3
2κ) to the first equation and the operator

(eθ + 2η) to the second and add them, keeping only the linear terms. We
are left with:

0 = −

(
− e4e3

(F )β + eθeθ
(F )β + eθ(Φ)eθ

(F )β −
1

2
κe4

(F )β

+

(
−

1

2
κ+ 2ω

)
e3

(F )β

)

+

(
1

2
κκ+ ωκ+ ρ− 3κω − 2e4ω − eθeθ(Φ)

)
(F )αθ − 2ωe4

(F )β

+ (κ+ 2ω)e3
(F )β + [eθ, e4]

(F )ρ−
1

2
κeθ

(F )ρ+ (−κη + eθκ− 2e4η)
(F )ρ

= −□g
(F )β +

(
1

4
κκ+ ωκ− 3κω − 2e4ω + (F )ρ2 + (eθΦ)

2

)
(F )β

− 2ωe4
(F )β + (κ+ 2ω)e3

(F )β + (eθ(ϑ) + 2eθ(Φ)ϑ

− 2e3(ξ) + ξκ+ 8ωξ + 4β) (F )ρ

which gives an expression for □g
(F )β. Recall that f = −eθ

(F )β + eθΦ
(F )β +

ϑ (F )ρ. Using that
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[□g, eθ]f =
1

2
κe3eθ(f) +

1

2
κe4eθf +

(
(F )ρ2 + (eθΦ)

2 +
1

4
κκ

)
eθ(f),

□(eθΦ) = eθΦ

(
(F )ρ2 + (eθΦ)

2 −
1

4
κκ

)
,

□(ϑ) = eθeθϑ+ eθΦeθϑ+

(
−
1

4
κκ+ ρ+ ωκ+ 8ωω − 2e4ω

)
ϑ

+

(
−
1

4
κ2 − ωκ

)
ϑ− 2(eθe3(ξ)− eθ(Φ)e3(ξ)) + 4ω(eθξ − eθΦξ)

+ (κ+ 4ω)(eθη − eθ(Φ)η) + 4ωα+ 2(eθβ − eθ(Φ)β)

+ 2 (F )ρ(eθ
(F )αθ − eθ(Φ)

(F )αθ),

□g
(F )ρ = (F )ρ

(
−
1

2
κκ+ 2ρ

)
+O(ϵ)

we have

□(eθ
(F )β) = eθ(□

(F )β) + [□, eθ]
(F )β

=

(
1

4
κκ− 3κω + ωκ+ (F )ρ2 + eθΦ

2 − 2e4ω

)
eθ

(F )β

+ 2eθΦeθeθΦ
(F )β + (κ+ 2ω) eθe3(

(F )β)− 2ωeθe4
(F )β

+
(
eθeθ(ϑ) + 2eθ(Φ)eθϑ+ 2eθeθ(Φ)ϑ+ eθξκ− 2eθe3(ξ)

+ 8ωeθξ + 4eθβ
)

(F )ρ+
1

2
κe3eθ(

(F )β) +
1

2
κe4eθ

(F )β

+

(
(F )ρ2 + (eθΦ)

2 +
1

4
κκ

)
eθ(

(F )β)

=

(
3

2
κ+ 2ω

)
eθe3

(F )α+

(
1

2
κ− 2ω

)
eθe4

(F )α

+
(
−3κω + ωκ+ 2 (F )ρ2 + 2eθΦ

2 − 2e4ω
)
eθ

(F )αθ

+

(
2ρ− 2 (F )ρ2 − 2(eθΦ)

2 +
1

2
κκ

)
eθΦ

(F )αθ

+ (F )ρ

(
eθeθ(ϑ) + 2eθ(Φ)eθϑ+

(
2ρ− 2 (F )ρ2 − 2(eθΦ)

2 +
1

2
κκ

)
ϑ

+ eθξκ− 2eθe3(ξ) + 8ωeθξ + 4eθβ

)
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and

□(eθΦ
(F )β) = □g(eθΦ)

(F )β + eθΦ□g(
(F )β)

− e3eθΦe4
(F )β − e4eθΦe3

(F )β + 2eθeθΦeθ
(F )β

=

(
2ρ− 2 (F )ρ2 − 2eθΦ

2 +
1

2
κκ

)
eθ

(F )β

+ eθΦ

((
3

2
κ+ 2ω

)
e3(

(F )β) +

(
1

2
κ− 2ω

)
e4

(F )β

+
(
−3κω − 2e4ω + 2 (F )ρ2 + 2(eθΦ)

2 + ωκ
)

(F )β

+ (eθ(ϑ) + 2eθ(Φ)ϑ+ ξκ− 2e3(ξ) + 8ωξ + 4β) (F )ρ

)

Putting all this together we get

□g(f) = □g(−eθ
(F )β + eθΦ

(F )β + ϑ (F )ρ)

= □g(−eθ
(F )β + eθΦ

(F )β) +□(ϑ) (F )ρ+ ϑ□( (F )ρ)

− e3(ϑ)e4(
(F )ρ)− e4(ϑ)e3(

(F )ρ)

= −

(
3

2
κ+ 2ω

)
(eθe3

(F )β − eθΦe3
(F )β)

−

(
1

2
κ− 2ω

)
(eθe4

(F )β − eθΦe4
(F )β)

−

(
−
1

2
κκ− 3κω + ωκ− 2ρ+ 2 (F )ρ2 + 4eθΦ

2 − 2e4ω

)
(eθ

(F )β − eθΦ
(F )β)

− (F )ρ

((
11

4
κκ+ 2ωκ− ρ− 2 (F )ρ2 − 4(eθΦ)

2 − 3ωκ− 8ωω + 2e4ω

)
ϑ

+

(
3

4
κ2 + ωκ

)
ϑ+ (−κ+ 4ω)(eθξ − eθΦξ) + (−3κ− 4ω)(eθη − eθ(Φ)η)

+ 2(eθβ − eθΦβ) + (2κ− 4ω)α

)

Using once again (4.7) and

(eθ(β)− (eθΦ)β) = e3(α) +
1

2
κα− 4ωα+

3

2
ϑρ+ ϑ (F )ρ2

− (F )ρ(eθ
(F )β − eθΦ

(F )β)
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we obtain

□g(f) =

(
3

2
κ+ 2ω

)
e3f+

(
1

2
κ− 2ω

)
e4f

−

(
1

2
κκ− 4κω + 2ωκ− 2ρ+ 4eθΦ

2 − 2e4ω

)
(eθ

(F )β − eθΦ
(F )β)

− (F )ρ

((
−
1

2
κκ− 2ωκ+ 2ρ− 4(eθΦ)

2 + 4ωκ+ 2e4ω

)
ϑ

+ 2e3(α) + (2κ− 8ω)α

)

=

(
3

2
κ+ 2ω

)
e3f+

(
1

2
κ− 2ω

)
e4f

+

(
1

2
κκ+ 2ωκ− 2ρ− 4κω − 2e4ω + 4eθΦ

2

)
f

+ 2 (F )ρ
(
− e3(α)− (κ− 4ω)α

)

as desired. □

Remark 5.3. Observe that equations (5.1) and (5.2), respectively for the
Weyl curvature α and for the electromagnetic tensor f,

□gα = −4ωe4(α) + (2κ+ 4ω)e3(α)

+

(
1

2
κκ+ 2ωκ− 4ρ+ 4 (F )ρ2 − 4e4ω − 10κω − 8ωω + 4eθ(Φ)

2

)
α

+ (F )ρ
(
2e4(f) + (2κ+ 4ω)f

)
+O(ϵ2),

□gf =

(
1

2
κ− 2ω

)
e4f

+

(
3

2
κ+ 2ω

)
e3f+

(
1

2
κκ+ 2ωκ− 2ρ− 4κω − 2e4ω + 4eθΦ

2

)
f

+ (F )ρ
(
− 2e3(α)− (2κ− 8ω)α

)
+O(ϵ2)

are coupled. As in [5], signature arguments apply. The component α has
signature 2 and the quantity f has signature 1, therefore in the wave equation
for α, f has to appear with an e4 derivative. On the other hand, in the
wave equation for f the component α has to appear with an e3 derivative.
Moreover, this coupling comes with a multiplication for (F )ρ, and recall that
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from (3.2), (F )ρ can be interpreted as a weighted quasi-local charge of the
spacetime.

6. System of equations for the coupled gravitational and
electromagnetic perturbations

In Schwarzschild spacetime, the Chandrasekhar’s transformation applied to
the extreme curvature component α gives a quantity at the level of the
second derivative along the ingoing null direction of α that verifies a Regge-
Wheeler equation (see for example the quantity P in [7], or the quantity q

in [9]). In Reissner-Nordström spacetime, we will get a Regge-Wheeler type
equation, i.e. a wave equation with a good potential and no lower order
terms, but with additional terms giving the coupling with the electromag-
netic tensor. The new result is that there exists a transformation similar to
Chandrasekhar’s one, at the level of one derivative along the ingoing null di-
rection, that can be applied to the new quantity f to obtain a Regge-Wheeler
type equation for the electromagnetic term qF, with additional terms giving
the coupling with the curvature.

Inspired by the system of three equations for the extreme curvature
component and its two derivatives in slowly rotating Kerr as obtained in [10],
we write a system of five equations for suitably chosen rescaled quantities
depending on the curvature and on the electromagnetic components, from
the two quantities α and f.

• The first three equations are equations for the rescaled α, its first and
its second derivative in the ingoing null direction, respectively. The
third quantity corresponds to the q obtained by Chandrasekhar trans-
formation in [9] which verifies the Regge-Wheeler type equation with
a new right hand side depending on the electromagnetic components.

• The last two equations are equations for the rescaled f and its first
derivative in the ingoing null directions qF. This last quantity turns
out to verify a Regge-Wheeler type equation too, with a right hand
side depending on the curvature.

The first three equations correspond to the equations obtained by Ma
in [10] in the case of Kerr spacetime. On the right hand side, his equations
have lower order terms in the curvature multiplied by the angular momen-
tum. In the case of small angular moment, the author is able to absorb
the error terms coming from the lower error terms. In the case of coupled
gravitational and electromagnetic perturbations, the right hand side of the
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first three equations is not given by lower order terms, but from a non triv-
ial dependence on the electromagnetic parts, which are independent to the
curvature part.

6.1. Definition of rescaled quantities and operators

As suggested in [1], we introduce the following operators as a rescaled version
of the derivative in the ingoing and in the outgoing null directions6:

P (f) = rκ−1e3f +
1

2
rf,(6.1)

Q(f) = rκe4f +
1

2
rκκf(6.2)

The operator P is fundamentally used to define the various quantities in
(6.3), while Q is introduced to simplify the right hand side of the Teukolsky
equation for α. Observe that the operators P and Q, even if consist in
derivatives along the e3 and e4 directions, do not change the signature of
the quantity they are applied to.

We compute □g(P (f)) and e3(Qf), which will be useful in the derivation
of the main equations.

Lemma 6.1. We have, modulo O(ϵ2),

□g(Pf) =
1

r
(−κκ+ 2ρ)P (P (f)) +

(
1

2
κκ− 4ρ− 2 (F )ρ2

)
P (f)

+

(
1

2
ρ+ (F )ρ2

)
rf +

3

2
r□g(f) + κ−1re3(□g(f))

Proof. Writing Pf = rκ−1e3f + 1
2rf , we have

□g(Pf) =
1

2

(
□g(r)f + r□g(f)− e3(r)e4(f)− e4(r)e3(f)

)

+□g(κ
−1r)e3(f) + κ−1r□g(e3(f))− e3(κ

−1r)e4e3(f)

− e4(κ
−1r)e3e3(f)

6To be consistent with the previous definitions, we define the operator as P ,
since the bar quantities refer to e3. The operator Q differ from the operator P =
rκ−1e4f + 1

2rf which would be used in the treatment of the corresponding system
for the spin −2 quantity α. See Remark 6.11.
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Using that

□g(r) = r

(
−
1

2
κκ− ρ

)
,

e3(κ
−1) = −

1

κ2
e3(κ) = −

1

κ2

(
−
1

2
κ2 − 2ωκ

)
=

1

2
+ 2ωκ−1,

e4(κ
−1) = −

1

κ2
e4(κ) = −

1

κ2

(
−
1

2
κκ+ 2ωκ+ 2ρ

)

=
1

2
κκ−1 − 2ωκ−1 − 2ρκ−2,

□g(κ) = κρ+ 2κe4ω + 4ωρ,

□g(e3(f)) = e3(□g(f)) + [□g, e3]f

= e3(□g(f)) + κ□gf − 2ωe3(e3(f)) + (κ+ 2ω)e4(e3(f))

+

(
1

4
κκ− 3ωκ+ ωκ− 8ωω − ρ− 2 (F )ρ2 + 2e4(ω)

)
e3(f)

+
1

4
κ2e4(f)

we have

□g(Pf) = r

[
(−κκ−1 + 2ρκ−2)e3e3(f) +

(
−
1

4
κκ−

1

2
ρ

)
f +

3

2
□g(f)

+

(
−
3

2
κ− 2ωκκ−1 + 4ωρκ−2 − 2 (F )ρ2κ−1

)
e3(f)

+ κ−1e3(□g(f))

]

Writing

e3(f) =
1

r
κ(Pf)−

1

2
κf,

e3e3f =
1

r2
κ2P (P (f))−

2

r
(κ2 + ωκ)(Pf) +

(
1

2
κ2 + ωκ

)
f

then

□g(Pf) = r

(
1

r2
(−κκ+ 2ρ)P (P (f)) +

1

r

(
1

2
κκ− 4ρ− 2 (F )ρ2

)
P (f)

+

(
1

2
ρ+ (F )ρ2

)
f +

3

2
□g(f) + κ−1e3(□g(f))

)
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as desired. □

Lemma 6.2. We have, modulo O(ϵ2),

e3(Q(f)) =
1

r
κ(Q(P (f)))−

1

2
κQ(f) + (−κκ2 + 2ρκ)P (f)

Proof. We have

e3(Qf) = e3

(
κre4(f) +

1

2
κκrf

)

= e3(κ)re4(f) + κe3(r)e4(f) + κre3e4(f) +
1

2
e3(κ)κrf +

1

2
κe3(κ)rf

+
1

2
κκe3(r)f +

1

2
κκre3(f)

= κre4e3(f) +

(
1

2
κκ− 2ωκ

)
re3(f) +

(
−
1

4
κκ2 + ρκ

)
rf

Writing e3(f) =
1
rκ P (f)− 1

2κf , we have

e3(Qf) = κre4

(
1

r
κ Pf −

1

2
κf

)
+

(
1

2
κκ2 − 2ωκ2

)
P (f)

+

(
−
1

2
κκ2 + ωκ2 + ρκ

)
rf

= κr

(
−

1

2r
κκPf +

1

r

(
−
1

2
κκ+ 2ωκ+ 2ρ

)
Pf +

1

r
κe4(Pf)

−
1

2

(
−
1

2
κκ+ 2ωκ+ 2ρ

)
f −

1

2
κe4(f)

)

+

(
1

2
κκ2 − 2ωκ2

)
Pf +

(
−
1

2
κκ2 + ωκ2 + ρκ

)
rf

which gives

e3(Qf) = κ2e4(Pf)−
1

2
κ2re4(f) +

(
−
1

2
κκ2 + 2ρκ

)
P (f) +

(
−
1

4
κκ2
)
rf

and writing e4(f) =
1
rκ

−1Qf − 1
2κf , and e4(Pf) = 1

rκ
−1QPf − 1

2κPf we
have the desired expression □

As suggested in [1], we define the following new scaling of the extreme
components of the curvature α and of the electromagnetic quantity f as the
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following:

Φ0 = r2κ2α,

Φ1 = P (Φ0),

Φ2 = P (Φ1) = P (P (Φ0)),

Φ3 = r2κf,

Φ4 = P (Φ3)

(6.3)

The quantities Φ0,Φ1,Φ2 contain information about the gravitational per-
turbation of the metric, i.e. about the Weyl curvature of the perturbed
spacetime. The first quantity Φ0 is a rescaled version of α, and being mul-
tiplied by κ2 it is of signature 0. Then, Φ1 and Φ2 are respectively the first
and the second derivative, through the operator P , of Φ0, giving other two
signature 0 quantities. Observe that the last quantity Φ2 defined as

Φ2 = P (P (Φ0)) = r2κ−2e3e3Φ0 + 2r2κ−1(1 + ωκ−1)e3Φ0 +
1

2
r2Φ0 =

= r4
(
e3e3α+ (2κ− 6ω)e3α+

(
1

2
κ2 − 8κω − 4e3ω + 8ω2

)
α

)
= q

coincides with the q obtained by Chandrasekhar transformation in [9].
The quantities Φ3,Φ4 contain information about the electromagnetic

perturbation of the metric, i.e. about the Ricci curvature (or electromagnetic
tensor) of the perturbed spacetime. The quantity Φ3 is a rescaled version
of f, and being multiplied by κ it is of signature 0. Then Φ4 is the first
derivative, through the same operator P , of Φ3, giving another signature 0
quantity. The last quantity Φ4, in analogy to Φ2, is called qF.

6.2. Wave equations for the curvature quantities Φ0,Φ1,Φ2

We will derive the wave equations for the quantities Φ0,Φ1,Φ2.

Proposition 6.3. Modulo O(ϵ2),

□gΦ0 =
1

r
(2κκ− 4ρ) Φ1 +

(
−
1

2
κκ− 4ρ+ 4 (F )ρ2 + 4eθ(Φ)

2

)
Φ0

+ (F )ρ

(
2

r
Q(Φ3)− 4ρΦ3

)
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Proof. We have

□gΦ0 = □g(r
2κ2α) = □g(r

2κ2)α+ r2κ2□gα

− e3(r
2κ2)e4(α)− e4(r

2κ2)e3(α)

and using that

e3(r
2κ2) = e3(r

2)κ2 + r2e3(κ
2) = r2κ3 + r2(−κ3 − 4ωκ2) = −4ωr2κ2,

e4(r
2κ2) = e4(r

2)κ2 + r2e4(κ
2) = (r2κ)κ2 + r2(−κκ2 + 4ωκ2 + 4ρκ)

= 4ωr2κ2 + 4ρr2κ,

e4(e3(r
2κ2)) = e4(−4ωr2κ2) = −4e4(ω)r

2κ2 − 4ωe4(r
2κ2)

= −4e4(ω)r
2κ2 − 16ωωr2κ2 − 16ωρr2κ

we have

□g(r
2κ2) = −e4(e3(r

2κ2)) + eθ(eθ(r
2κ2))−

1

2
κe4(r

2κ2)

+

(
−
1

2
κ+ 2ω

)
e3(r

2κ2) + eθ(Φ)eθ(r
2κ2)

= −(−4e4(ω)r
2κ2 − 16ωωr2κ2 − 16ωρr2κ)

−
1

2
κ(4ωr2κ2 + 4ρr2κ) +

(
−
1

2
κ+ 2ω

)
(−4ωr2κ2)

= (2ωκ− 2ωκ+ 4e4(ω) + 8ωω) r2κ2 + (16ω − 2κ)ρr2κ

Therefore,

□gΦ0 =
(
(2ωκ− 2ωκ+ 4e4(ω) + 8ωω) r2κ2 + (16ω − 2κ)ρr2κ

)
α

+ r2κ2
(
− 4ωe4(α) + (2κ+ 4ω) e3(α)

+ (−4e4(ω) +
1

2
κκ− 10κω + 2κω − 8ωω − 4ρ+ 4eθ(Φ)

2)α

)

−
(
−4ωr2κ2

)
e4(α)−

(
4ωr2κ2 + 4ρr2κ

)
e3(α)

+ 2r2κ2 (F )ρ (e4(f) + (κ+ 2ω)f)
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giving

□gΦ0 = r2

(
(
2κκ2 − 4ρκ

)
e3(α)

+

(
1

2
κκ3 − 6ρκ2 − 8ωκκ2 + 16ρκω + 4κ2 (F )ρ2 + 4κ2eθ(Φ)

2

)
α

+ 2κ2 (F )ρ (e4(f) + (κ+ 2ω)f)

)

Using the following relations

r2κ2α = Φ0,

e3α =
1

r2
κ−2e3(Φ0) + 4ωα,

e3Φ0 =
1

r
κΦ1 −

1

2
κΦ0,

r2κ2e4(f) + r2(κκ2 + 2ωκ2)f =
1

r
κe4(r

3κf)− 2ρκr2f =
1

r
Q(Φ3)− 2ρΦ3

we obtain the desired identity. □

Remark 6.4. Comparing Proposition 5.1 to Proposition 6.3, we can notice
that the rescaled quantity Φ0 verifies a wave equation independent of the
quantities ω, ω, one of which can be made small in the ingoing or outgoing
geodesic null frame. Therefore, the wave equation for Φ0 is more natural and
frame-independent compared to the one for α.

Proposition 6.5. We have modulo O(ϵ2),

□g(Φ1) =
1

r
(κκ− 2ρ)Φ2 + (−κκ+ 6 (F )ρ2 + 4eθΦ

2)Φ1 +

(
3

2
ρ+ (F )ρ2

)
rΦ0

+ (F )ρ

(
2

r
Q(Φ4)−Q(Φ3)− 2κκΦ4 + r

(
6ρ+ 4 (F )ρ2

)
Φ3

)
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Proof. We first compute e3(□gΦ0), using Proposition 6.3.

e3(□gΦ0) = e3

(
1

r
(2κκ− 4ρ) Φ1 +

(
−
1

2
κκ− 4ρ+ 4 (F )ρ2 + 4eθ(Φ)

2

)
Φ0

+ (F )ρ

(
2

r
Q(Φ3)− 4ρΦ3

))

= −
1

2
r−1κ (2κκ− 4ρ) Φ1 +

1

r

(
2

(
−
1

2
κκ+ 2ωκ+ 2ρ

)
κ

+ 2κ

(
−
1

2
κ2 − 2ωκ

)
− 4

(
−
3

2
κρ− κ (F )ρ2

))
Φ1

+
1

r
(2κκ− 4ρ) e3Φ1 + e3

(
−
1

2
κκ− 4ρ+ 4 (F )ρ2 + 4eθ(Φ)

2

)
Φ0

+

(
−
1

2
κκ− 4ρ+ 4 (F )ρ2 + 4eθ(Φ)

2

)
e3Φ0

+ (F )ρ

(
− κ

(
2

r
Q(Φ3)− 4ρΦ3

)
−

1

r
κQ(Φ3) +

2

r
e3(Q(Φ3))

− 4

(
−
3

2
κρ− κ (F )ρ2

)
Φ3 − 4ρe3Φ3

)

and since

e3

(
−
1

2
κκ− 4ρ+ 4 (F )ρ2 + 4eθ(Φ)

2

)
=

1

2
κκ2 + 5ρκ− 4κeθ(Φ)

2 − 4κ (F )ρ2

applying Lemma 6.2 and writing e3Φ0 =
1
rκΦ1 −

1
2κΦ0, e3Φ1 =

1
rκΦ2 −

1
2κΦ1

and e3Φ3 =
1
rκΦ4 −

1
2κΦ3 we have

e3(□gΦ0) =
1

r

(
−
9

2
κκ2 + 10ρκ+ 8κ (F )ρ2 + 4κeθΦ

2

)
Φ1

+
1

r2
(
2κκ2 − 4ρκ

)
Φ2 +

(
3

4
κκ2 + 7ρκ− 6κeθ(Φ)

2 − 6κ (F )ρ2
)
Φ0

+ (F )ρ

(
2

r2
κQ(Φ4)−

4

r
κQ(Φ3)−

2

r
κκ2Φ4 + (12ρκ+ 4κ (F )ρ2)Φ3

)
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We have for Φ1 = P (Φ0), applying Lemma 6.1 to f = Φ0, and using
Lemma 6.3 ,

□g(Φ1) =
1

r
(−κκ+ 2ρ)P (P (Φ0)) +

(
1

2
κκ− 4ρ− 2 (F )ρ2

)
P (Φ0)

+

(
1

2
ρ+ (F )ρ2

)
rΦ0 +

3

2
r□g(Φ0) + rκ−1e3(□g(Φ0))

=
1

r
(κκ− 2ρ)Φ2 + (−κκ+ 6 (F )ρ2 + 4eθΦ

2)Φ1 +

(
3

2
ρ+ (F )ρ2

)
rΦ0

+ (F )ρ

(
2

r
Q(Φ4)−Q(Φ3)− 2κκΦ4 + r

(
6ρ+ 4 (F )ρ2

)
Φ3

)

as desired. □

We derive the Regge-Wheeler type equation for the curvature term Φ2 = q

with right hand side coupled to the electromagnetic components Φ3 and Φ4,
multiplied by (F )ρ.

Proposition 6.6. We have modulo O(ϵ2),

□g(Φ2) =
(
− κκ+ 6 (F )ρ2 + 4eθΦ

2
)
Φ2

+ (F )ρ

(
2

r
(Q(P (Φ4)))− 2Q(Φ4) + (−4κκ+ 4ρ)P (Φ4)

+ r(3κκ+ 4 (F )ρ2)Φ4 + r2(−6ρ− 12 (F )ρ2)Φ3

)

+ (F )ρ2
(
−4rΦ1 − 2r2Φ0

)

Proof. We first compute e3(□gΦ1), using Proposition 6.5. We get

e3(□gΦ1) = e3

(
1

r
(κκ− 2ρ)Φ2

+ (−κκ+ 6 (F )ρ2 + 4eθΦ
2)Φ1 +

(
3

2
ρ+ (F )ρ2

)
rΦ0

+ (F )ρ

(
2

r
Q(Φ4)−Q(Φ3)− 2κκΦ4 + r

(
6ρ+ 4 (F )ρ2

)
Φ3

))
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which gives

e3(□gΦ1) =
1

r

(
−
3

2
κκ2 + 6ρκ+ 2κ (F )ρ2

)
Φ2 +

1

r
(κκ− 2ρ) e3Φ2

+
(
κκ2 − 2ρκ− 12κ (F )ρ2 − 4κeθΦ

2
)
Φ1

+
(
− κκ+ 6 (F )ρ2 + 4eθΦ

2
)
e3Φ1 + r

(
−
3

2
κρ− 3κ (F )ρ2

)
Φ0

+ r

(
3

2
ρ+ (F )ρ2

)
e3(Φ0) +

(F )ρ

[
−

3

r
κQ(Φ4) + κQ(Φ3)

+ (4κκ2 − 4ρκ)Φ4 + r(−12κρ− 16κ (F )ρ2)Φ3

+
2

r
e3Q(Φ4)− e3Q(Φ3)− 2κκ e3Φ4 + r

(
6ρ+ 4 (F )ρ2

)
e3Φ3

]

Using Lemma 6.2 and writing e3Φ0 =
1
rκΦ1 −

1
2κΦ0, e3Φ1 =

1
rκΦ2 −

1
2κΦ1,

e3Φ2 =
1
rκP (Φ2)−

1
2κΦ2, and e3Φ3 =

1
rκΦ4 −

1
2κΦ3, e3Φ4 =

1
rκP (Φ4)−

1
2κΦ4 we have

e3(□gΦ1) =
1

r2

(
κκ2 − 2ρκ

)
P (Φ2)

+
1

r

(
− 3κκ2 + 7ρκ+ 8κ (F )ρ2 + 4κeθΦ

2
)
Φ2

+

(
3

2
κκ2 −

1

2
ρκ− 14κ (F )ρ2 − 6κeθΦ

2

)
Φ1

+ r

(
−
9

4
κρ−

7

2
κ (F )ρ2

)
Φ0 +

(F )ρ

[
2

r2
κQPΦ4 −

5

r
κQΦ4

+
1

r
(−4κκ2 + 4ρκ)PΦ4 +

3

2
κQ(Φ3)

+ (6κκ2 + 4κ (F )ρ2)Φ4 + r(−15κρ− 18κ (F )ρ2)Φ3

]

Applying Lemma 6.1 to Φ2 = P (Φ1),

□g(Φ2) =
1

r
(−κκ+ 2ρ)P (P (Φ1)) +

(
1

2
κκ− 4ρ− 2 (F )ρ2

)
P (Φ1)

+

(
1

2
ρ+ (F )ρ2

)
rΦ1 +

3

2
r□g(Φ1) + rκ−1e3(□g(Φ1))
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which gives

□g(Φ2) =
(
− κκ+ 6 (F )ρ2 + 4eθΦ

2
)
Φ2

+ (F )ρ

(
2

r
(Q(P (Φ4)))− 2Q(Φ4) + (−4κκ+ 4ρ)P (Φ4)

+ r(3κκ+ 4 (F )ρ2)Φ4 + r2(−6ρ− 12 (F )ρ2)Φ3

)

+ (F )ρ2
(
−4rΦ1 − 2r2Φ0

)

as desired. □

Remark 6.7. Notice that the wave equation given by Proposition 6.6, for
Φ2 = q and Φ4 = qF has the form

□gq = V1q+ eM(qF, ∂qF, ∂∂qF) + e(l.o.t.(qF)) + e2(l.o.t.(q))

of the first equation of (0.4). Indeed, Φ3 is a lower order term with respect
to qF.

6.3. Wave equations for the electromagnetic quantities Φ3,Φ4

We compute the wave equations for the electromagnetic terms Φ3,Φ4.

Proposition 6.8. We have modulo O(ϵ2),

□gΦ3 =
1

r

(
κκ− 2ρ

)
Φ4 +

(
− κκ− 3ρ+ 4eθΦ

2
)
Φ3 +

(F )ρ

(
−
2

r
Φ1 − Φ0

)

Proof. We have for Φ3 = r2κf,

□gΦ3 = □g(r
2)κf+ r2(□(κ)f+ κ□(f)− e3(κ)e4(f)− e4(κ)e3(f))

− e3(r
2)(e4(κ)f+ κe4(f))− e4(r

2)(e3(κ)f+ κe3(f))

As in Proposition 6.3, using Proposition 5.2, we have

□gΦ3 =
(
− 5ρ− 2ωκ+ 4ρωκ−1 + 4eθΦ

2
)
Φ3 + r2

(
κκ− 2ρ

)
e3(f)

+ 2r2 (F )ρ
(
− κe3(α) + (−κ2 + 4ωκ)α

)
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Writing e3(f) =
1
r3Φ4 −

1
r2 (1− 2ωκ−1)Φ3 and e3α = 1

r2κ
−2e3(Φ0) + 4ωα, and

e3Φ0 =
1
rκΦ1 −

1
2κΦ0 we have

□gΦ3 =
1

r

(
κκ− 2ρ

)
PΦ3 +

(
− κκ− 3ρ+ 4eθΦ

2
)
Φ3

+ (F )ρ

(
−
2

r
Φ1 − Φ0

)

as desired. □

We derive the Regge-Wheleer type equation for the quantity Φ4 = qF, with
on the right hand side the curvature multiplied by (F )ρ.

Proposition 6.9. We have modulo O(ϵ2),

□g(Φ4) =
(
−κκ− 3ρ+ 4eθΦ

2
)
Φ4 +

(F )ρ

(
−
2

r
Φ2 +

(F )ρ (4rΦ3)

)

Proof. We first compute e3(□gΦ3), using Proposition 6.8,

e3(□gΦ3) = e3

(
1

r

(
κκ− 2ρ

)
Φ4 +

(
− κκ− 3ρ+ 4eθΦ

2
)
Φ3

+ (F )ρ

(
−
2

r
Φ1 − Φ0

))

= −
1

2
r−1κ (κκ− 2ρ) Φ4 +

1

r

((
−
1

2
κκ+ 2ωκ+ 2ρ

)
κ

+ κ

(
−
1

2
κ2 − 2ωκ

)
− 2

(
−
3

2
κρ− κ (F )ρ2

))
Φ4

+
1

r
(κκ− 2ρ) e3Φ4 + e3

(
− κκ− 3ρ+ 4eθ(Φ)

2
)
Φ3

+
(
− κκ− 3ρ+ 4eθ(Φ)

2
)
e3Φ3

+ (F )ρ

(
2

r
κΦ1 + κΦ0 − e3

(
2

r

)
Φ1 −

2

r
e3Φ1 − e3Φ0

)
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Since

e3

(
− κκ− 3ρ+ 4eθ(Φ)

2
)
= −e3κκ− κe3κ− 3e3ρ+ 8eθ(Φ)e3eθΦ

= −

(
−
1

2
κκ+ 2ωκ+ 2ρ

)
κ− κ

(
−
1

2
κ2 − 2ωκ

)

− 3

(
−
3

2
κρ− κ (F )ρ2

)
− 4κeθ(Φ)

2

= κκ2 +
5

2
ρκ+ 3κ (F )ρ2 − 4κeθ(Φ)

2

and writing e3Φ0 =
1
rκΦ1 −

1
2κΦ0, e3Φ1 =

1
rκΦ2 −

1
2κΦ1, e3Φ3 =

1
rκΦ4

− 1
2κΦ3, e3Φ4 =

1
rκPΦ4 −

1
2κΦ4 we have

e3(□gΦ3) =
1

r

(
−3κκ2 + 4ρκ+ 2κ (F )ρ2 + 4κeθΦ

2
)
Φ4

+
1

r2
(
κκ2 − 2ρκ

)
PΦ4

+

(
3

2
κκ2 + 4ρκ+ 3κ (F )ρ2 − 6κeθ(Φ)

2

)
Φ3

+ (F )ρ

(
−

2

r2
κΦ2 +

3

r
κΦ1 +

3

2
κΦ0

)

Applying Lemma 6.1, we have

□g(Φ4) =
1

r
(−κκ+ 2ρ)P (P (Φ3)) +

(
1

2
κκ− 4ρ− 2 (F )ρ2

)
P (Φ3)

+

(
1

2
ρ+ (F )ρ2

)
rΦ3 +

3

2
r□g(Φ3) + κ−1re3(□g(Φ3))

=
1

r
(−κκ+ 2ρ)P (Φ4) +

(
1

2
κκ− 4ρ− 2 (F )ρ2

)
Φ4

+

(
1

2
ρ+ (F )ρ2

)
rΦ3 +

3

2
r

(
1

r

(
κκ− 2ρ

)
Φ4

+
(
− κκ− 3ρ+ 4eθΦ

2
)
Φ3 +

(F )ρ

(
−
2

r
Φ1 − Φ0

))
+
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+ κ−1r

(
1

r

(
−3κκ2 + 4ρκ+ 2κ (F )ρ2 + 4κeθΦ

2
)
Φ4

+
1

r2
(
κκ2 − 2ρκ

)
PΦ4

+

(
3

2
κκ2 + 4ρκ+ 3κ (F )ρ2 − 6κeθ(Φ)

2

)
Φ3

+ (F )ρ

(
−

2

r2
κΦ2 +

3

r
κΦ1 +

3

2
κΦ0

))

which gives

□g(Φ4) = (−κκ− 3ρ+ 4eθΦ
2)Φ4 +

(F )ρ

(
−
2

r
Φ2 + 4r (F )ρΦ3

)

as desired. □

Remark 6.10. Notice that the wave equation given by Proposition 6.9, for
Φ2 = q and Φ4 = qF has the form

□gq
F = V2q

F + eM(q) + e2(l.o.t.(qF))

of the second equation of (0.4).

Using the wave equation for Φ4, we can simplify the wave equation for Φ2

in Proposition 6.6, since the derivative PP is related to □2 := □g − (2)2eθΦ
2

in the following way:

1

r2
Q(P (Φ4)) = −□2Φ4 +

1

r
(κκ− 2ρ)P (Φ4) +△/ 2Φ4 + ρΦ4,

where △/ 2 is the Laplacian on the spheres S of the foliation of the spacetime.
Using Proposition 6.9, we can write

Q(P (Φ4)) = r(κκ− 2ρ)P (Φ4) + r2△/ 2Φ4

+ r2(κκ+ 4ρ)Φ4 + 2r (F )ρΦ2 − 4r3 (F )ρ2Φ3



✐

✐

“4-Giorgi” — 2020/8/25 — 11:45 — page 1019 — #41
✐

✐

✐

✐

✐

✐

Coupled gravitational and electromagnetic perturbations 1019

giving

□gΦ2 =
(
− κκ+ 10 (F )ρ2 + 4eθΦ

2
)
Φ2

+ (F )ρ
(
2r△/ 2Φ4 − 2Q(Φ4)− 2κκP (Φ4)

+ r(5κκ+ 8ρ+ 4 (F )ρ2)Φ4 + r2(−6ρ− 20 (F )ρ2)Φ3

)

+ (F )ρ2
(
−4rΦ1 − 2r2Φ0

)

6.4. The system of coupled wave equations

Writing the five equations together, using (3.2) to write (F )ρ = e
r2 +O(ϵ)

in the coupling terms, we found the following system of equations modulo
O(ϵ2):

(
□2 +

1

2
κκ+ 4ρ− 4 (F )ρ2

)
Φ0 =

1

r
(2κκ− 4ρ) Φ1

+ e

(
2

r3
Q(Φ3)−

4

r2
ρΦ3

)

(
□2 + κκ− 6 (F )ρ2

)
Φ1 =

1

r
(κκ− 2ρ)Φ2 + r

(
3

2
ρ+ (F )ρ2

)
Φ0

+ e

(
2

r3
Q(Φ4)−

1

r2
Q(Φ3)−

2

r2
κκΦ4

+
1

r
(6ρ+ 4 (F )ρ2)Φ3

)
,

(
□2 + κκ− 10 (F )ρ2

)
Φ2 = e

(
2

r
△/ 2Φ4 −

2

r2
Q(Φ4)−

2

r2
κκP (Φ4)

+
1

r

(
5κκ+ 8ρ+ 4 (F )ρ2

)
Φ4 − 6ρΦ3

+ e

(
−

4

r3
Φ1 −

2

r2
Φ0

)
+ e2

(
−
20

r4
Φ3

))
,

(
□2 + κκ+ 3ρ

)
Φ3 =

1

r

(
κκ− 2ρ

)
Φ4 + e

(
−

2

r3
Φ1 −

1

r2
Φ0

)
,

(
□2 + κκ+ 3ρ

)
Φ4 = e

(
−

2

r3
Φ2 +

4e

r3
Φ3

)
(6.4)

where □2 = □g − (2)2eθΦ
2 is the wave operator applied to 2-reduced scalars.
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Remark 6.11. A complete analogous system holds for the spin −2 quan-
tities α. Defining the operator Pf = rκ−1e4f + 1

2rf and the O(ϵ2) invariant

quantity f = d*/2
(F )β + ϑ (F )ρ, then the quantities Φ̃0 = r2κ2α, Φ̃1 = P (Φ̃0),

Φ̃2 = P (Φ̃1), Φ̃3 = r2κf, Φ̃4 = P (Φ̃3) verify the same system above, with

Qf = rκe3f + 1
2rκκf .

Selecting the third and fifth equation we have the system of Regge-
Wheeler type equations for q = Φ2 and qF = Φ4 modulo O(ϵ2), as announced
in (0.4). We summarize it in the following theorem.

Theorem 6.12. Let (M,g,Z) be an axially symmetric polarized spacetime
solution of the Einstein-Maxwell equation (0.2), which is a O(ϵ)-perturbation
of Reissner-Nordström spacetime. Then there exist O(ϵ2)-invariant quanti-
ties q and qF related to the Weyl curvature and to the Ricci curvature re-
spectively that verify the following coupled system of wave equations, modulo
O(ϵ2) terms,

(6.5)





(
□2 + κκ− 10 (F )ρ2

)
q = e

(
2
r△/ 2q

F − 2
r2QqF − 2

r2κκPqF

+1
r

(
5κκ+ 8ρ+ 4 (F )ρ2

)
qF
)

(
□2 + κκ+ 3ρ

)
qF = e

(
− 2

r3 q
)

where P and Q are rescaled null derivatives, as defined in (6.1), and addi-
tional lower order terms with respect to q and qF appear to both, explicitely,

(l.o.t.)1 = −6ρΦ3 + e

(
−

4

r3
Φ1 −

2

r2
Φ0

)
+ e2

(
−
20

r4
Φ3

)
,

(l.o.t.)2 =
4

r3
Φ3

Remark 6.13. The structure of the coupling in (6.5) does not depend on
the polarization of the metric, as observed in [1]. See Appendix.

6.5. Case of perturbation of Schwarzschild spacetime

Coupled gravitational and electromagnetic perturbations of Reissner-
Nordström spacetime are clearly a generalization of gravitational perturba-
tions of Schwarzschild spacetime as solution to the vacuum Einstein equation
(0.1), as treated in [9]. In this case, the electromagnetic quantities and the
quasi-local charge in (6.4) vanish identically, and the system reduces to the
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first three equations:

(
□2 +

1

2
κκ+ 4ρ

)
Φ0 =

1

r
(2κκ− 4ρ) Φ1 +O(ϵ2),

(
□2 + κκ

)
Φ1 =

1

r
(κκ− 2ρ)Φ2 +

3

2
ρrΦ0 +O(ϵ2),

(
□2 + κκ

)
Φ2 = O(ϵ2)

which are the linear parts of the equations obtained in Appendix A.3.2 of
[9]. In particular, the last equation, for q = Φ2 is

□2q+ κκq = Err[□gq]

which is the main equation used in [9], to derive decay estimates for q,
and subsequently for α and all other curvature and connection coefficients
quantities.

In the case of coupled gravitational and electromagnetic perturbation of
Schwarzschild spacetime, namely perturbation of Schwarzschild as solution
to the Einstein-Maxwell equation (0.2), the system (6.5) simplifies. Per-
turbing the background Schwarzschild, being a vacuum spacetime, we have
(F )ρ = O(ϵ). Therefore, the main equation for the curvature q is unchanged,
but the right hand side is given by quadratic terms only, i.e.

□2q+ κκq = O(ϵ2)

Again since (F )ρ = O(ϵ), using Proposition 4.4, in the case of perturba-
tion of Schwarzschild the extreme components of the electromagnetic tensor
(F )β, (F )β are O(ϵ2)-invariant quantities, and verify the Teukolsky equation

□g
(F )β = −2ωe4

(F )β + (κ+ 2ω) e3(
(F )β)

+

(
1

4
κκ− 3κω + ωκ+ eθΦ

2 − 2e4ω

)
(F )β +O(ϵ2)

as derived in Proposition 5.2. As in [12], we can define a Chandrasekhar-type
transformation at the level of one derivative along the ingoing null direction
to obtain a Regge-Wheeler equation. Defining l = r2(e3

(F )αθ +
1
2κ

(F )αθ), in

the case of (F )ρ = O(ϵ) in a frame for which ω = O(ϵ), then l verifies the
equation

□1l = −
1

4
κκl+O(ϵ2)
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The system is therefore given by equations which are decoupled at the linear
level

{
□2q+ κκq = O(ϵ2),

□1l+
1
4κκl = O(ϵ2)

Remark 6.14. It is only in the case of gravitational and electromagnetic
perturbations of Reissner-Nordström spacetime that we find a non-trivial
coupling for the linear terms of the equations for q and qF as described in
system (6.5). If the coupled gravitational and electromagnetic perturbations
of Kerr-Newman spacetime would have a structure similar to the one here
presented is an open question to be addressed.

Appendix A. System of equations without polarization

In this appendix, we will not assume polarization of the metric or axial
symmetry. This appendix is based on computations done through computer
algebra by Steffen Aksteiner.

Consider a null pair e3, e4 on (M,g) and, at every point p ∈ M the
horizontal space S = {e3, e4}

⊥. Let γ the metric induced on S. By definition,
for all X,Y ∈ TSM, i.e. vectors in M tangent to S, γ(X,Y ) = g(X,Y ). For
any Y ∈ T (M) we define its horizontal projection by

(A.1) Y ⊥ = Y +
1

2
g(Y, e3)e4 +

1

2
g(Y, e3)e4

Definition A.1. A k-covariant tensor-field U is said to be S-horizontal,
U ∈ Tk

S(M), if for any X1, . . . Xk we have,

U(Y1, . . . Yk) = U(Y ⊥
1 , . . . Y ⊥

k )

Definition A.2. Given X ∈ T(M) and Y ∈ TS(M) we define,

ḊXY := (DXY )⊥

Remark A.3. In the particular case when S is integrable and both X,Y ∈
TSM then ḊXY is the standard induced covariant differentiation on S.
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Definition A.4. Given a general, covariant, S- horizontal tensor-field U
we define its horizontal covariant derivative according to the formula,

ḊXU(Y1, . . . Yk) = X(U(Y1, . . . Yk))− U(ḊXY1, . . . Yk)

− · · · − U(Y1, . . . ḊXYk).

where X ∈ TM and Y1, . . . Yk ∈ TSM.

Definition A.5. Given Ψ a 2 S-horizontal tensor, we define the wave op-
erator □̇g applied to Ψ by

□̇gΨAB := gµνḊµḊνΨAB

Recall the definition of spacetime Ricci coefficients and spacetime null
curvature components in (1.2), (1.3), (1.4). In particular recall

(1+3)αAB = WA4B4,

The tensorial version7 of the invariant quantity f introduced in Section 4.1
is given by

(1+3)fAB = 2D*/2
(F )βAB + 2 (F )ρχ̂AB

where D*/2
(F )βAB = −∇/ (A

(F )βB) + gABdiv/
(F )β, as introduced in [9].

We define the tensorial versions of the operators P and Q introduced in
Section 6.1 as

P (ΨAB) = rκ−1e3ΨAB +
1

2
rΨAB,(A.2)

Q(ΨAB) = rκe4ΨAB +
1

2
rκκΨAB(A.3)

where κ = trχ and κ = (1+3)trχ.
We finally define the main quantities that verify the system of wave

equations.

Definition A.6. The tensorial quantities qAB and qFAB are defined by

(1+3)qAB = P
(
P
(
r2κ2 (1+3)αAB

))
, (1+3)qFAB = P

(
r2κ (1+3)fAB

)

where κ = (1+3)trχ.

7Indeed, (1+3)fθθ = − (1+3)fϕϕ = f, (1+3)fθϕ = 0 in the case of polarized metric.
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We summarize in the following theorem the system of tensorial wave
equation that is verified by the two quantities qAB and qFAB.

Theorem A.7. Let (M,g) be a spacetime solution of the Einstein-Maxwell
equation (0.2), which is a O(ϵ)-perturbation of Reissner-Nordström space-
time. Then the tensorial quantities qAB and qFAB verify the following coupled
system of wave equations, for A,B = 1, 2, modulo O(ϵ2),

(
□̇g + κκ− 10 (F )ρ2

)
qAB = e

(
2

r
△/ 2q

F
AB −

2

r2
Q(qFAB)−

2

r2
κκP (qFAB)

+
1

r

(
5κκ+ 8ρ+ 4 (F )ρ2

)
qFAB

)
+ e(l.o.t.)1,

(
□̇g + κκ+ 3 (1+3)ρ

)
qFAB = e

(
−

2

r3
qAB

)
+ e2(l.o.t.)2

(A.4)

where P and P are tensorial null derivatives, as defined in (A.2), (△/ 2Ψ)AB =
γCD∇/ C∇/DΨAB and (l.o.t.)1 and (l.o.t.)2 are lower order terms with respect
to qAB and qFAB.

The system has the same structure as in the case of polarized metrics.
Since no symmetries are assumed in this case, the analysis of the system
(A.4) can be used to derive linear stability of Reissner-Nordström spacetime,
as a generalization to [7].
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