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Nilmanifolds and their associated

non local fields

Juan J. Villarreal

For a three dimensional nilmanifold together with a three form on
it, we build a module H of an affine Kac Moody vertex algebras.
Then, we associate logarithmic fields to the moduleH and we study
their singularities. We also present a physics motivation behind this
construction.

We study a particular case, we show that when the nilmanifold
N is a k degree S1–fibration over the two torus and a choice of
l ∈ Z ≃ H3(N,Z) the fields associated to the space H have tri-
logarithm singularities whenever kl ̸= 0.

1. Introduction

Vertex algebras appeared in the early days of string theory, in string the-
ory vertex algebras can be seen as a mathematical counterpart of chiral
symmetry algebras in conformal field theory (CFT). Working the CFT in-
terpretation in physics of sigma models, we can associate to some manifolds
a vertex algebra. This interpretation turns out to be very restrictive, in par-
ticular, the manifolds must be flat1. We can consider other interpretations
to associate vertex algebras to manifolds. In [4] the authors considered a
bracket for some fields that naturally leads to the Courant bracket or more
generally, considering additionally a closed three form, the twisted Courant
bracket. In this interpretation the bracket does not contain dynamical in-
formation. In this work, we use vertex algebras to describe this bracket, we
call this construction of vertex algebras the Hamiltonian formalism2.

1If we work with super vertex algebras then the manifolds could be Calabi–
Yau manifolds, these restrictions are given by the beta equations in the physics
literature, [17].

2If we consider super vertex algebras, there is a construction called Chiral de
Rham [18] which associate sheaves of super vertex algebras to any manifold. The
Courant bracket also appear in this construction. A Hamiltonian interpretation of
this construction in [16]
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1028 Juan J. Villarreal

In [1] the authors studied from this point of view the algebras associated
to the three dimensional Heisenberg nilmanifolds and , dually, to the three
dimensional torus with a closed three form. This informations is used to
build some 6 dimensional nilmanifolds, M(1, 0) and M(0, 1) respectively
wich will be defined in Section 3. The motivation behind the choice of these
manifolds and three forms is a phenomenon in physics called T-duality, the
6 dimensional nilmanifolds also have a motivation from a physical theory
called Double field theory [15].

In this work we consider a more general case, three dimensional Heisen-
berg nilmanifolds with closed three forms. In this case, we have more general
6 dimensional nilmanifolds M(k, j). We explain the construction of these
nilmanifolds in the Section 3, the construction of these nilmanifolds from a
physics point of view was given in [5]. Considering the Hamiltonian formal-
ism for these more general manifolds, we generalize the algebras found in [1]
as we explain below.

Our interest behind this construction is to understand, in the frame-
work of vertex algebras, the algebraic structure associated to some logarith-
mic fields on these nilmanifolds. These logarithmic fields describe infinite
dimensional Lie algebras that we express in terms of singularities, in partic-
ular these fields are not local.

Before we explain the algebraic construction associated to these six di-
mensional nilmanifolds, we set our notation for vertex algebras.

In vertex algebras theory, some of the first examples we study are Heisen-
berg vertex algebra and affine Kac Moody algebras. We can define these
vertex algebras from finite dimensional Lie algebras h endowed with a bi-
invariant pairing. The space of states of these vertex algebras is given by the
vector space3.

V 1(h) = Indĥ
h[[t]]⊕CK

|0⟩ = U(ĥ)⊗U(h[[t]]⊕CK) C|0⟩,

where K acts as K = 1Id. The fields are defined as linear maps

(1.1) Y (., z) : V 1(h) → End(V 1(h))[[z, z−1]],

such that Y (a, z)b ∈ V 1(h)((z)).
In this work we consider six dimensional Lie algebras h with basis {αi, βj}

for i, j ∈ {1, 2, 3} and bi-invariant pairing (αi, βj) = δij . The generating fields

3We used the notation in [11], where the loop algebra is defined as Lh := h⊗
C((t)) and the algebra ĥ ≈ Lh⊕KC as the central extension for the bi-invariant
pairing.
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Nilmanifolds and their associated non local fields 1029

are defined as

(1.2) αi(z) =
∑

n∈Z

αi
nz

−n−1, βi(z) =
∑

n∈Z

βi
nz

−n−1,

where we consider the basis αi
n = αi ⊗ tn and βi

n = βi ⊗ tn for i = 1, 2, 3 and
n ∈ Z.

1.1. Torus case

Consider a six dimensional torus, in our notation T6 = M(0, 0). Now T6 =
H/Λ where H is R6 endowed with the abelian group structure of the sum, Λ
is a discrete subgroup. We consider the abelian Lie algebra Lie(H) = h and
we construct out of this the Heisenberg vertex algebra V 1(h), we express
the algebraic relations between its generating fields (1.2) as follows: For
i, j ∈ {1, 2, 3} we have

[αi(z), βj(w)] = δij∂wδ(z − w).

Considering the action of the Lie algebra h on the function space of the
torus T6, we define the space

H = Indĥ
h[[t]]⊕CK

L2(T6) ≃ U(ĥ)⊗U(h[[t]]⊕CK) L
2(T6).

By definitionH is a module for the vertex algebra V 1(h). In some casesH has
the structure of vertex algebra the lattice vertex algebra. We are motivated
from the physical interpretation, to consider fields xi(z) and yj(z) associated
to coordinates xi and yi on the torus T6, these fields satisfy

(1.3) ∂zxi(z) = αi(z), ∂zyi(z) = βi(z).

Then we consider the logarithmic fields in End(H)[[z, z−1]][log z]

(1.4) xi(z) = wi log z +
∑

n∈Z

xinz
−n, yi(z) = pi log z +

∑

n∈Z

yinz
−n,

subject to the algebraic relation

(1.5) [∂zxi(z), ∂wyj(w)] = [αi(z), βj(w)] = δij∂wδ(z − w),

therefore

(1.6) [xi(z), yj(w)] = δij log(z − w)
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where the singularity is defined by

log(z − w) := iz,w log(z − w)− iw,z log(w − z)(1.7)

= log z + log
(

1−
w

z

)

− logw − log
(

1−
z

w

)

= log z −
∑

n>0

wnz−n

n
− logw +

∑

n>0

znw−n

n
,

the notations iz,w and iw,z denote the expansion for z > w and w > z re-
spectively. This is known as a logarithmic singularity. It is easy to see from
(1.5) that the modes {wi, pi, x

i
n, y

i
n}n∈Z for i ∈ {1, 2, 3} satisfy a Lie algebra.

1.2. Twisted torus case

In this case, we consider the six dimensional nilmanifold4 M(0, 1), this nil-
manifold is called the double twisted torus. Now M(0, 1) = H/Λ where H is
R6 endowed with a two step nilpotent structure, and Λ is a discrete sub-
group. The nilpotent Lie algebra Lie(H) = h0,1 is given by (i, j ∈ {1, 2, 3})

[βi, βj ] = ϵijkαk, [αi, βj ] = 0, [αi, αj ] = 0,

where ϵijk is the antisymmetric tensor. We associate to this Lie algebra an
affine Kac Moody vertex algebra V 1(h0,1), the algebraic relations between
its generating fields (1.2) are given by (i, j ∈ {1, 2, 3})

(1.8) [βi(z), βj(w)] = ϵijkδ(z − w) [αi(z), βj(w)] = δij∂wδ(z − w).

The nilpotent algebra h0,1 acts on the nilmanifold M(0, 1) and analo-
gously we define a module for our vertex algebra

H0,1 = Indĥ
h0,1[[t]]⊕CK

L2(M(0, 1)) ≃ U(ĥ)⊗U(h0,1[[t]]⊕CK) L
2(M(0, 1)).

We are motivated from the physical interpretation, to consider fields
xi(z) and yj(z) associated to coordinates xi and yi on the nilmanifold

4The case M(1, 0) is similar to the twisted torus case, the reason behind this is
the T-duality
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M(0, 1). The nilmanifold M(0, 1) comes with a global framing on its cotan-
gent bundle given by T ∗M(0, 1) ≈ h0,1 ×M(0, 1), then we express with co-
ordinates {xi, yi} on M(0, 1) a basis {αi, βj} of T ∗M(0, 1).

αi = dxi, βi = dyi −
1

2
εijkxjdxk.

Then, also, these are the relations between their fields

(1.9) ∂zxi(z) = αi(z), ∂zyi(z) = βi(z) +
1

2
εijk : xj(z)∂zxk(z):.

We can find the logarithmic fields End(H0,1)[[z, z
−1]][log z] associated to the

coordinates integrating the relations before5,

xi(z) = wi log z +
∑

n∈Z

xinz
−n,

yi(z) = pi log z +
∑

n∈Z

yinz
−n +

εijk
2

wjxk(z) log z.

The algebraic relations between these fields are restricted by their relations
with the fields {αi(z), βj(z)} in (1.9) and (1.8) in the same way that happens
in the torus case (1.5). We emphasize here that the logarithmic singularity
(1.7) is not enough to express the algebraic relations for these fields, for
example the relation between the fields yi(z) and yj(w) satisfy a relation
that has the following form

[yi(z), yj(w)] = (...) log(z − w) +
1

2
ϵijkwkrl(z, w).

Here the notation (...) means some expressions that involve fields, we express
the complete relations in (3.10). In this case the Roger’s dilogarithm rl(x) :=
Li2(x) +

1
2 log x log(1− x) appears naturally as a singularity

rl(z, w) = Li2

( z

w

)

+
1

2
log

( z

w

)

log
(

1−
z

w

)

(1.10)

+ Li2

(w

z

)

+
1

2
log

(w

z

)

log
(

1−
w

z

)

In this case also the modes {wi, pi, x
i
n, y

i
n}n∈Z for i ∈ {1, 2, 3} form a Lie

algebra, we can see this Lie algebra as a particular case of the algebra that
we describe in the Section 4.1.

5These fields have an interpretation related with the loop space LM(0, 1) follow-
ing the Hamiltonian interpretation
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The twisted torus case was studied in [1] with the Hamiltonian formal-
ism, and from a perturbative CFT point of view in [2]. In these works, the
authors also work around the interpretation of this singularity and its iden-
tities to explain properties in vertex algebras and CFT. We show in the
appendix the relation between these two formalism working their physical
interpretations, on the one hand we have the Hamiltonian point of view and
on the other hand we have an CFT perturbative point of view.

1.3. Twisted nilmanifolds case

In this work, we consider the more general case given by the six dimensional
nilmanifolds M(k, j). The natural appearance of the Roger’s dilogarithm on
the previous case motivated us to study the singularities of these logarithmic
fields in more general cases. Also in this case we do not have perturbative
CFT interpretation therefore we have only the Hamiltonian formalism.

We consider the six dimensional nilmanifold M(k, j), also known as the
twisted nilmanifold case. Now M(k, j) = H/Λ where H is R6 endowed with
a three step nilpotent structure, and Λ is a discrete subgroup. The nilpotent
Lie algebra Lie(H) = hk,j is given by

[β1, β2] = jα3, [β3, β1] = jα2 + kβ2, [β2, β3] = jα1,

[β1, α2] = kα3, [β2, α2] = 0, [α2, β3] = kα1.
(1.11)

We associate to this Lie algebra an affine Kac Moody vertex algebra V 1(h0,1),
we express the algebraic relations between its generating fields (1.2) as fol-
lows

[β1(z), β2(w)] = jα3(w)δ(z − w), [β2(z), β3(w)] = jα1(w)δ(z − w),

[β1(z), α2(w)] = kα3(w)δ(z − w), [α2(z), β3(w)] = kα1(w)δ(z − w),

[β3(z), β1(w)] = (jα2(w) + kβ2(w)) δ(z − w), [αi(z), βi(w)] = ∂wδ(z − w).

(1.12)

The nilpotent algebra hk,j acts on the nilmanifold M(k, j) and analogously
we define a module for our vertex algebra

Hk,j = Indĥ
hk,j [[t]]⊕CK

L2(M(k, j) ≃ U(ĥ)⊗U(hk,j [[t]]⊕CK) L
2(M(k, j)).

Following the same idea in (1.9) we express the fields {xi(z), yj(z)} in
term of the fields {αi(z), βj(z)}, see (4.4). We find a new singularity for the
fields {xi(z), yj(z)} which satisfy the restriction impose by their relations
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with the algebra (1.12) of the fields {αi(z), βj(z)}. For example the relation
between the fields y1(z) and y3(w) satisfy a relation that has the following
form

[y1(z), y3(w)] = (...) log(z − w) + (...)rl(z, w)− kjw3w1t(z, w),

here the notation (...) means some expressions that involve fields. We express
the complete relations in the Theorem 4.1. In this case the new singularity
is given by

t(z, w) = −2
(

Li3

( z

w

)

− Li3

(w

z

))

+ (log z − logw)
(

Li2

( z

w

)

+ Li2

(w

z

))

+
1

6
(log z − logw)3

−
1

6
(log z2 − 3 logw log z + logw2) log(z − w).(1.13)

In this case the modes {wi, pi, x
i
n, y

i
n}n∈Z for i ∈ {1, 2, 3} form a non-

linear Lie algebra, we give the definition of non-linear Lie algebras in the
Section 3.3 and we express the non-linear Lie algebra that we found in The-
orem 4.2.

Now we emphasize the main new results in this work. First, we found
a new example of logarithmic fields describing non local algebraic relations,
Theorem 4.1. Second, the algebra satisfied by these logarithmic fields shows a
new kind of polylogarithm singularity (1.13), in particular the tri-logarithm
function Li3(x) appears. This singularity is new compared to [1] where only
up to dilogarithmic functions appeared. Third, the Lie algebra of modes
defined by the logarithmic fields is a non linear Lie algebra, Theorem 4.2.

This work is organized as follows. In Section 2, we give short physics
motivation. In Section 3, we introduce and define the objects that we use.
In Section 4, we express the fields and the algebra that we have from studying
the general case k ̸= 0 and j ̸= 0.

2. Physics motivation

In this section we give a very short motivation to some constructions done
in this work. A more complete treatment of the concepts introduced here is
in the cited references.
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2.1. The current algebras

In the CFT formalism on the torus there is a symmetry called T-duality, for
a vertex algebraic approach see [3]. On the other hand, an analogous study
of symmetries as T-duality becomes more complicated in general cases. In
particular, we are interested in cases where instead of the torus we have
nilmanifolds. There is an interesting relation at the topological level of T-
duality between three dimensional Heisenberg nilmanifolds N(k) with Hj-
flux, [6]. The nilmanifolds N(k) is a S1-bundle

S1 → N(k) → T
2,

where k ∈ Z ≃ H2(T2,Z) is the Chern class. And the H-flux is given by a
three form Hj s.t [Hj ] = j ∈ Z ≃ H3(N(k),Z). For these nilmanifolds we
can try to develop a theory similar to the case of the torus. However, several
problems arise. In particular, only on the torus we have a CFT. Therefore,
we consider a different approach, the Hamiltonian formalism.

From this point of view, we have a relation between Poisson brackets
of certain fields called currents and Courant brackets [4]. We now describe
this relationship in vertex algebras for the nilmanifolds.6 We will restrict
ourselves to consider only the global sections of TN(k)⊕ T ∗N(k) given by

β1 = ∂x +
k

2
z∂y, β2 = ∂y, β3 = ∂z −

k

2
x∂y,

α1 = dx, α2 = dy +
k

2
xdz −

k

2
zdx, α3 = dz.

The Courant brackets between these sections are given by the Lie algebra
(1.11). We denoted this Lie algebra as hk,j , this Lie algebra comes with the
bi-invariant pairing given by (αi, βj) = δij . The current algebra in [4] can
be described in the vertex algebra formalism as the following Kac Moody
vertex algebra

V 1(hk,j) = Ind
ĥk,j

hk,j [[t]]⊕CK
|0⟩ = U(ĥk,j)⊗U(hk,j [[t]]⊕CK) C|0⟩

6The relation between between Courant brackets and T-duality, for example in
[7], can be associated to the Poisson brackets in [4]. This approach was considered
in [8].
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where K acts as K = 1Id. The generating fields satisfy the algebra given in
(1.12).7

2.2. The double

See [15] for a physics introduction to double field theory. In the Hamil-
tonain formalism on the torus T ∗T3, case k = j = 0, we have fields xi(z)
and pi(z) which are related to the current algebra by ∂zxi(z) = αi(z) and
pi(z) = βi(z). For these fields, T-duality leads to consider transformations
where pi(z) and ∂zxi(z) will change their roles, therefore one ends up consid-
ering fields yi(z) such that ∂zyi(z) = pi(z). Now, we could, instead of T ∗T3,
consider the double T6. In this space both fields (xi(z), yi(z)) are considered
at the same time. This space realized the T-duality and other properties
naturally.8 In particular, the double for nilmanifolds N(k) with Hj flux was
studied from this point of view in [5]. Mathematically, we can describe these
doubles as torus fibrations

T3 // M(k, j)

��

S1 // N(k)

��

T2

where k ∈ H2(T2,Z) ≃ Z and j ∈ H3(N(k),Z) ≃ Z.
The fields xi(z) and yi(z) on the double M(k, j) are given by logarithmic

fields as we explain in the Section 3. Algebraically, xi(z) and yi(z) are fields
in

End(H(k, j))[[z, z−1]][log z].

In this work we are interested in the singularities between these logarithmic
fields, these singularities are restricted by the relation between the logarith-
mic fields and the fields of the affine Kac Moody vertex algebra V 1(hk,j).

7Here the variable z is the standard notation in the vertex algebra language but
it is not related to the light cone coordinates in physics. The notation in physics
for Poisson brackets uses the variable σ that we interpreted as z = eiσ.

8The fields yi(z) have also an interpretation in CFT, for example the zero mode
of the field yi(z) gives us the operator that jumps between the windings lattice.
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3. The double and the logarithmic fields for nilmanifolds

In this section we introduce some definition and objects; we assume know-
dledge of vertex algebras. For a introduction to vertex algebras see [10], [11]
and [12].

3.1. The courant bracket and the double for nilmanifolds

For any smooth manifold N the tanget space TN forms a Lie algebra con-
sidering the commutator of the vector fields. In [13], it was shown how to
extend this algebraic structure to a bilinear bracket on TN ⊕ T ∗N which
does not quite satisfy the Lie algebra axioms. The Dorfman bracket and
more generally the twisted Dorfman bracket for a choice of H ∈ Γ(∧3

T
∗

N), a
closed three form, is defined as: For all X + ξ, Y + η ∈ Γ(TN ⊕ T ∗N)

(3.1) [X + ξ, Y + η]H = [X,Y ]Lie + LXη − iY dξ + iY iXH.

Whenever there exist global orthonormal framings for the symmetric pairing

(3.2) ⟨X + ξ, Y + η⟩ = η(X) + ξ(Y ),

in (TN ⊕ T ∗N)⊗ C and linearly closed under the bracket (3.1), we obtain
a global trivialization (TN ⊕ T ∗N) ≃ h×N and the bracket (3.1) endows
h with a Lie algebra structure.

We consider compact nilmanifolds N = G/Γ expressed as a quotient of
the nilpotent Lie group G by a co-compact lattice Γ ⊂ G. We choose a three
form H, called H-flux in physics literature, representing a class in H3(N,Z).
In this situation the tangent bundle of N is naturally trivialized as g×N ,
where g = Lie(G). There exist global framings, a basis of h, with the above
properties, and the Lie algebra h fits into a short exact sequence

(3.3) 0 → g∗ → h → g → 0.

The class of this extension is parametrized by H viewed as a map ∧2g → g∗.
The exact sequence (3.3) integrates, for H ∈ H3(N,Z), to Lie groups and
co-compact discrete subgroups Γ∗ ⊂ G∗, Λ ⊂ H and Γ ⊂ G as follows

(3.4) 0 → G∗ → H → G → 0, 0 → Γ∗ → Λ → Γ → 0.
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Then we define the double M as a torus bundle

TdimN = G∗/Γ∗ // M := H/Λ

��

N = G/Γ.

3.2. Logarithmic fields

The current algebra in [4] form by global sections of (TN ⊕ T ∗N) ≃ h×N
for a nilmanifold N = G/Γ is given by a affine Kac Moody vertex algebra

(3.5) V 1(h) = Indĥ
h[[t]]⊕CK

|0⟩ = U(ĥ)⊗U(h[[t]]⊕CK) C|0⟩,

where h is the Lie algebra (3.1) and the bi-invariant pairing is given by (3.2).
We are interested in considering more general fields than the fields of

the vertex algebra V 1(h). In order to introduce these fields we must work in
a larger space of states than (3.5). In particular, we consider

(3.6) H = Indĥ
h[[t]]⊕CK

L2(M) ≃ U(ĥ)⊗U(h[[t]]⊕CK) L
2(M).

Where we consider the induced action from the Lie group H (and therefore
its Lie algebra h) on L2(M) by right translations, hence it arises the infinite
dimensional ĥ-module. We notice that L2(M) is a completion of the group
algebra C[Λ] by Fourier expansion.

In this work we associate coordinates to logarithmic fields as follows.
First, the nilmanifoldM comes with a global framing on its cotangent bundle
given by T ∗M ≈ h∗ ×M . Then we express with coordinates (xi) on M a
basis (αi) of h

∗, and we assume that these are the relations satisfied by the
fields

(3.7) αi = f(xi)dxi ⇒ αi(z) = f(xi(z))∂zxi(z).

The motivation behind this comes from the Hamiltonian formalism, the
current algebra for N relates (ui, αi) ∈ TN ⊕ T ∗N with fields (ui(z)pi(z),
αi(z)∂zxi(z)). The elements that accompany ∂zxi(z) come from sections on
the cotangent bundle on N. On the double M this corresponds to (3.7).

Second, we express the fields xi(z) in modes such that they satisfy (3.7).
Therefore we must consider fields also expanded by log(z) terms and their
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modes will be operators on H. Then we will have fields on

(3.8) End(H)[[z, z−1]][log z].

Finally, the algebraic relations for xi(z) are not necessarily expressed by
singularities given by delta functions and their derivatives, because we are
working with logarithmic fields. In general, we do not know in advance what
kind of singularities we could have between the xi(z) fields. In this work we
study the singularities that we have for a particular class of nilmanifolds.
Note that the singularities for the logarithmic fields are restricted by (3.7)
given that this imposes relations with the affine Kac Moody algebra V 1(h).

Example 3.1 (The torus case, k = j = 0). In this case h is abelian, then
M = T6 and (3.7) gives us the simple relations

(3.9) αi = dxi, βi = dyi ⇒ ∂zxi(z) = αi(z), ∂zyi = βi(z).

The more general fields which satisfy the relation above can be expressed
by the logarithmic fields

xi(z) = wi log z +
∑

n∈Z

xinz
−n,

yi(z) = pi log z +
∑

n∈Z

yinz
−n.

These fields satisfy the logarithmic singularity

[xi(z), yj(w)] = log(z − w),

we defined this singularity in (1.7).

Example 3.2 (The double twisted torus case k = 0, j = 1). In this
case h is two step nilpotent, M is a T3-fibration over T3 and (3.7) gives us
the relations

αi =dxi, βi = dyi −
1

2
εijkxjdxk

⇒ ∂zxi(z) = αi(z), ∂zyi(z) = βi(z) +
1

2
εijk : xj(z)∂zxk(z):.
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The more general fields which satisfy the relation above can be expressed
by the logarithmic fields

xi(z) = wi log z +
∑

n∈Z

xinz
−n,

yi(z) = pi log z +
∑

n∈Z

yinz
−n +

εijk
2

wjxk(z) log z.

These fields satisfy the following algebraic relations

[xi(z), xj(w)] = 0, [xi(z), yj(w)] = δij log(z − w),

[yi(z), yj(w)] = εijkwkrl(z, w) +
1

2
εijk (x̂k(z)− x̂k(w)) log(z − w).

(3.10)

Where we used the singularity (1.10). The notation x̂i(z) means the pro-
jection onto fields without log z terms, that is .̂ : End(H)[[z, z−1]][log z] →
End(H)[[z, z−1]].

For the general case k ̸= 0 and j ̸= 0, we will express the algebraic rela-
tion between the modes {wi, pi, x

i
n, y

i
n} for n ∈ Z and i ∈ {1, 2, 3}. For the

particular examples before the algebra of these modes is a Lie algebra, but
for the general case the modes will form a nonlinear Lie algebra.

3.3. Non-linear Lie algebras

In this section we follow [14]. Let g a vector space, and let T (g) denote the
tensor algebra over g. If g is endowed with a linear map

[, ] : g⊗ g → T (g).

We extended it to T (g) by the Leibnitz rule, for A,B ∈ T (g)

[A⊗B,C] = [A,C]⊗B +A⊗ [B,C],

[A,B ⊗ C] = [A,B]⊗ C +B ⊗ [A,C].

We define

M(g) := span{A⊗ (b⊗ c− c⊗ b− [b, c])⊗D|b, c ∈ g, A,D ∈ T (g)}.

Note that M(g) is the two sided ideal of the tensor product T (g) generate
by elements (b⊗ c− c⊗ b− [b, c]), where a, b ∈ g.
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Definition 3.1. A non linear Lie algebra g is a vector space with a linear
map [, ] : g⊗ g → T (g) satisfying the following properties (a, b, c ∈ g)

• skewsymmetry: [a, b] = −[b, a].

• [a, [b, c]]− [b, [a, c]]− [[a, b], c] ∈ M(g).

The associative algebra U(g) = T (g)/M(g) is called the universal en-
veloping algebra of the non linear Lie algebra g.

4. Logarithmic fields and their singularities, case k ̸= 0 and

j ̸= 0

In this section we describe the double M(k, j) and their logarithmic fields.
We express the singularities between these fields, and the algebra that
emerges from their modes.

4.1. The double M(k, j) and their logarithmic fields xi(z) and
yi(z)

Let k ∈ Z and Gk be the 3–dimensional Heisenberg group. It is the manifold
Gk = R3 with multiplication:

(x, y, z)(x′, y′, z′) =

(

x+ x′, y + y′ −
k

2
xz′ +

k

2
x′z, z + z′

)

.

Let Γ ⊂ Gk be the subgroup generated by the standard basis of R3. It is a
co-compact lattice. We have the corresponding nilmanifold, usually referred
to as the Heisenberg nilmanifold N(k) := Gk/Γ. Notice that for all k the
groups Gk are isomorphic, but under these isomorphisms, the corresponding
Γ are not intertwined.

Let j ∈ Z ≃ H3(N,Z) and consider a three form Hj = −jdx ∧ dy ∧ dz
representing this class. In particular, sections of the bundle TN(k)⊕ T ∗N(k)
are endowed with a bilinear operation (the H-twisted Dorfman bracket
(3.1)). This bundle admits a global framing with their respective brack-
ets given in (1.11). Hence we obtain the 6 dimensional three step nilpotent
Lie algebra hk,j and the trivialization TN(k)⊕ T ∗N(k) ≃ hk,j ×N . Notice
that hk,j fits into a short exact sequence as in (3.3), and this extension is an
abelian extension but it is not a central extension if k ̸= 0.
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Let Hk,j be the nilpotent Lie group with Lie algebra hk,j . As a manifold
it is R6, its multiplication table can be found by the BCH formula:

(x1, x2, x3, y1, y2, y3)(x
∗

1, x
∗

2, x
∗

3, y
∗

1, y
∗

2, y
∗

3)=(x∗∗1 , x∗∗2 , x∗∗3 , y∗∗1 , y∗∗2 , y∗∗3 )

x∗∗1 = x1 + x∗1, x∗∗3 = x3 + x∗3, x∗∗2 = x2 + x∗2 +
k

2
(x3x

∗

1 − x1x
∗

3),

y∗∗1 = y1 + y∗1 +
k

2
(y2x

∗

3 − y∗2x3) +
j

2
(x2x

∗

3 − x∗2x3)

+
kj

6
(x∗3 − x3)(x3x

∗

1 − x1x
∗

3),

y∗∗2 = y2 + y∗2 +
j

2
(x3x

∗

1 − x∗1x3),

y∗∗3 = y3 + y∗3 +
k

2
(x1y

∗

2 − x∗1y2) +
j

2
(x1x

∗

2 − x∗1x2)

+
kj

6
(x1 − x∗1)(x3x

∗

1 − x1x
∗

3).

(4.1)

The canonical basis of R6 generates a co-compact lattice Λk,j ⊂ Hk,j . The
quotient M = M(k, j) = Hk,j/Λk,j is a compact 6-dimensional nilmanifold
and it is a T3 bundle on N(k) as we described in the introduction and in
the Section 3.1.

Remark 1. It turns out that M(k, j) = M(j, k), a phenomenon which can
be explained by topological T-duality. In [15] is given a physical interpreta-
tion of the double. In [6] a similar construction is given but instead of work
with M(k, j) they consider N(k)×T2 N(j). Finally, we consider nilmanifolds
and its nilpotent Lie algebras, a construction of the double for simple Lie
groups and algebras is given in [9].

M(k, j) is a nilmanifold therefore its cotangent bundle can be trivialized
with left invariant forms given by:

α1 = dx1, α2 = dx2 −
1

2
kx3dx1 +

1

2
kx1dx3, α3 = dx3,

β1 = dy1 −
kj

3
x23dx1 +

1

2
jx3dx2 −

1

2
(ky2 + jx2)dx3

+
kj

3
x1x3dx3 +

1

2
kx3dy2,

β2 = dy2 −
1

2
jx3dx1 +

1

2
jx1dx3,

β3 = dy3 +
kj

3
x3x1dx1 +

1

2
(ky2 + jx2)dx1 −

1

2
jx1dx2

−
kj

3
x21dx3 −

1

2
kx1dy2.

(4.2)
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And (3.7) gives us the relations

α1(z) = ∂x1(z),

α2(z) = ∂x2(z)−
1

2
kx3(z)∂x1(z) +

1

2
kx1(z)∂x3(z),

α3(z) = ∂x3(z),

β1(z) = ∂y1(z) +
1

2
j(x3(z)∂x2(z)− x2(z)∂x3(z))

+
1

2
k(x3(z)∂y2(z)− y2(z)∂x3(z))

−
kj

3
x23(z)∂x1(z) +

kj

3
x3(z)x1(z)∂x3(z),

β2(z) = ∂y2(z)−
1

2
jx3(z)∂x1(z) +

1

2
jx1(z)∂x3(z),

β3(z) = ∂y3(z) +
1

2
j(x2(z)∂x1(z)− x1(z)∂x2(z))

+
1

2
k(y2(z)∂x1(z)− x1(z)∂y2(z))

−
kj

3
x21(z)∂x3(z) +

kj

3
x3(z)x1(z)∂x1(z).

(4.3)

The more general fields which satisfy the relation above can be expressed
by the following logarithmic fields

x1(z) = w1 log z +
∑

x1nz
−n,

x3(z) = w3 log z +
∑

x3nz
−n,

x2(z) = w2 log z +
∑

x2nz
−n +

1

2
k log z(w3x1(z)− w1x3(z)),

y2(z) = p2 log z +
∑

y2nz
−n +

1

2
j log z(w3x1(z)− w1x3(z)),

y1(z) = p1 log z +
∑

y1nz
−n + 1/2k log z(p2x3(z)− w3y2(z))

+ j/2 log z(w2x3(z)− w3x2(z)) +
kj

6
w3(log z)

2(w3x1(z)− w1x3(z))

+
kj

6
x3(z) log z(w3x1(z)− w1x3(z)),

y3(z) = p3 log z +
∑

y3nz
−n + 1/2k log z(w1y2(z)− p2x1(z))

+ j/2 log z(w1x2(z)− w2x1(z))−
kj

6
w1(log z)

2(w3x1(z)− w1x3(z))

−
kj

6
x1(z) log z(w3x1(z)− w1x3(z)).

(4.4)
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4.2. Algebraic relations between the logarithmic fields
xi(z) and yi(z)

For arbitrary k and j the algebraic relations are substantially more compli-
cated than the previous cases, examples 3.1 and 3.2.

Theorem 4.1. The following commutation relations for the fields xi(z) and
yi(z) in (4.4) imply the commutation relations in (1.12), of the affine Kac
Moody vertex algebra V 1(hk,j), for the fields αi(z) and βi(z) in (4.3).

[xi(z), yj(w)] = δij log(z − w),

[y1(z), y2(w)] =
j

2
(x̂3(z)− x̂3(w)) log(z − w) + jw3rl(w, z),

[y1(z), x2(w)] =
k

2
(x̂3(z)− x̂3(w)) log(z − w) + kw3rl(w, z),

[y2(z), y3(w)] =
j

2
(x̂1(z)− x̂1(w)) log(z − w) + jw1rl(w, z),

[x2(z), y3(w)] =
k

2
(x̂1(z)− x̂1(w)) log(z − w) + kw1rl(w, z),

[y1(z), y1(w)] = −
kj

6

(

x̂3(z)
2 + x̂3(w)

2 − 3x̂3(z)x̂3(w)
)

log(z − w)

+
kj

6
w3 (x̂3(w) logw + x̂3(z) log z) log(z − w)

+ kjw3 (x̂3(w)− x̂3(z)) rl(z, w) + kjw3w3t(z, w),

[y1(z), y3(w)] =
k

2
(ŷ2(w)− ŷ2(z)) log(z − w) +

j

2
(x̂2(w)− x̂2(z)) log(z − w)

+
kj

6
(x̂3(z)x̂1(z) + x̂1(w)x̂3(w)− 3x̂3(z)x̂1(w)) log(z − w)

+
kj

6

(

w3x̂1(w) logw − 2w3x̂1(z) log z

+ w1x̂3(z) log z − 2w1x̂3(w) logw
)

log(z − w)

+ kj (w1x̂3(z)− w3x̂1(w)) rl(z, w)

− (jw2 + kp2)rl(z, w)− kjw3w1t(z, w),

[y3(z), y3(w)] = −
kj

6

(

x̂1(z)
2 + x̂1(w)

2 − 3x̂1(z)x̂1(w)
)

log(z − w)

+
kj

6
w1 (x̂1(w) logw + x̂1(z) log z) log(z − w)

+ kjw1 (x̂1(w)− x̂1(z)) rl(z, w) + kjw1w1t(z, w),

where the function t(z, w) is the function defined in (1.13).
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The computation to check this theorem is long but straightforward, we
record the most complicated part in the appendix B.

The modes, when expressed as operators acting on H(k, j), are not lin-
early closed under commutators. In fact, they form a non-linear Lie algebra,
see Section 3.3. The commutation relations between these modes, while not
a linear combination of themselves, is compatible with the Jacobi identity.

Theorem 4.2. For each pair of integer numbers k and j exists a non-
linear Lie algebra with basis

{

xin, y
i
n, wi, pi

}

, i = 1, 2, 3, n ∈ Z; the quadratic
commutation relations are given by

[xin, y
j
m] = δij

δn,−m

m
,

[y1n, y
2
m] =

j

2
x3n+m

(

1

n
+

1

m

)

+ jw3
δn,−m

m2
,

[y1n, x
2
m] =

k

2
x3n+m

(

1

n
+

1

m

)

+ kw3
δn,−m

m2
,

[y2n, y
3
m] =

j

2
x1n+m

(

1

n
+

1

m

)

+ jw1
δn,−m

m2
,

[x2n, y
3
m] =

k

2
x1n+m

(

1

n
+

1

m

)

+ kw1
δn,−m

m2
,

[y1n, y
1
m] = −2kjw3w3

δn,−m

m3
− kj

(

1

m2
−

1

n2

)

w3x
3
n+m

+
kj

2

∑

l

x3n+lx
3
m−l

l
−

kj

6

∑

l

x3l x
3
m+n−l

(

1

m
−

1

n

)

,

[y1n, y
3
m] = −

1

2

(

ky2n+m + jx2n+m

)

(

1

n
+

1

m

)

− (kp2 + jw2)
δn,−m

m2

+ 2kjw1w3
δn,−m

m3
+ kj

(

1

m2
w1x

3
n+m −

1

n2
w3x

1
n+m

)

−
kj

2

∑

l

x3n+lx
1
m−l

l
+

kj

6

∑

l

x1l x
3
m+n−l

(

1

m
−

1

n

)

,

[y3n, y
3
m] = −2kjw1w1

δn,−m

m3
− kj

(

1

m2
−

1

n2

)

w1x
1
n+m

+
kj

2

∑

l

x1n+lx
1
m−l

l
−

kj

6

∑

l

x1l x
1
m+n−l

(

1

m
−

1

n

)

,
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(4.5)

[wi, y
j
m] = δijδ0,m, [xin, pj ] = −δijδn,0,

[wi, pj ] = [p1, p1] = [p3, p3] = 0, [p1, y
2
m] =

j

2
x3m,

[y1n, p2] =
j

2
x3n, [p1, x

2
m] =

k

2
x3m, [y1n, w2] =

k

2
x3n,

[p2, y
3
m] =

j

2
x1m, [y2n, p3] =

j

2
x1n, [w2, y

3
m] =

k

2
x3m,

[x2n, p3] =
k

2
x1n, [p1, w2] = kw3, [p1, p2] = jw3, [w2, p3] = kw1,

[p2, p3] = jw1, [p1, p3] = +(jw2 + kp2),

[p1, y
1
m] = −

kj

6

∑

l

x3l x
3
m−l, [y1n, p1] =

kj

6

∑

l

x3l x
3
n−l,

[p1, y
3
m] =

kj

6

∑

l

x1l x
3
m−l +

1

2
(ky2m + jx2m),

[y1n, p3] = −
kj

6

∑

l

x1l x
3
n−l +

1

2
(ky2n + jx2n),

[p3, y
3
m] = −

kj

6

∑

l

x1l x
1
m−l, [y3n, p3] =

kj

6

∑

l

x1l x
1
n−l,

where we understand 0 whenever we have an expression 1/n for n = 0.

Proof. The commutation relations above follow from the fields definition
(4.4) and the algebraic relations given in the Theorem 4.1. The computation
to check the Jacobi identity is long but straightforward, here we record the
most complicated part:

[y1ℓ , [y
1
n, y

3
m]] = −

1

2

(

kjx3ℓ+n+m

(

1

ℓ
+

1

m+ n

)

+ kjw2
δℓ,−n−m

ℓ2

)(

1

n
+

1

m

)

− kjx3ℓ
δn,−m

m2
− 2kjw3δℓ,0

δn,−m

m3

+ kj

(

−
1

m2
δℓ,0x

3
n+m −

1

n2
w3

δℓ,−n−m

n+m

)

+
kj

2
x3n+ℓ+m

1

(ℓ+m) ℓ
+

kj

6

1

−ℓ
x3m+n+ℓ

(

1

m
−

1

n

)
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[y3m, [y1ℓ , y
1
n]] = 4kjw3δm,0

δℓ,−n

n3
− kj

(

1

n2
δm,0x

3
ℓ+n +

1

ℓ2
δm,0x

3
ℓ+n

)

− kjw3

(

1

n2
+

1

ℓ2

)

1

ℓ+ n
δm,−ℓ−n +

kj

2
x3n+m+ℓ

1

(ℓ+m) (m)

−
kj

2
x3ℓ+m+n

1

(n+m) (m)
−

kj

3

(

1

n
−

1

ℓ

)

x3n+m+ℓ

1

−m

[y1n, [y
3
m, y1ℓ ]] =

1

2

(

kjx3ℓ+n+m

(

1

n
+

1

m+ ℓ

)

+ kjw2
δn,−ℓ−m

n2

)(

1

m
+

1

ℓ

)

+ kjx3n
δℓ,−m

m2
+ 2kjw3δn,0

δℓ,−m

m3

− kj

(

−
1

m2
δn,0x

3
ℓ+m −

1

ℓ2
w3

δn,−ℓ−m

ℓ+m

)

−
kj

2
x3n+ℓ+m

1

(n+m)n
−

kj

6

1

−n
x3m+n+ℓ

(

1

m
−

1

ℓ

)

Therefore we have

[y1l , [y
1
n, y

3
m]] + [y3m, [y1l , y

1
n]] + [y1n, [y

3
m, y1l ]] = 0.

□

Appendix A. From the Hamiltonian formalism to CFT

Until now, we have only considered the Poisson brackets using the vertex
algebras formalism (1.12). Now we will also consider the Hamiltonian op-
erator. The Hamiltonian is given by a field h(z) =

∑

n∈Z hnz
−n−2, more

specifically, by its zero mode h0. The equations of motion for a field A(z) =
∑

n∈Z a(n)z
−n−1 are given by

(A.1)
d

dτ
A(z) = [h0, A(z)], A(z, τ) = eτh0A(z)e−τh0 =

∑

n∈Z

a(n)(τ)z
−n−1.

Because of A(z, 0) = A(z) and B(z, 0) = B(z), we know the algebraic
relations in τ = 0 of the fields A(z, τ) and B(z, τ). On the other hand, for
an arbitrary τ the algebra depends of the equations of motion that in general
could be hard to solve.

Now, it could happen that for some cases the theory satisfies extra prop-
erties. For example, the beta equations in a CFT. In this case, the fields
are described into two chiral parts9 which depend on ζ = eτ+iσ and ζ̄ =

9Physically this comes from the quantization of the conformal symmetry, that
gives us the two non-vanishing components of the energy momentum tensor.
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eτ−iσ. This means, we will have fields C(z) =
∑

n∈Z c(n)z
−n−1 and D(z) =

∑

n∈Z d(n)z
−n−1 such that

C(ζ) := C(z, τ) =
∑

n∈Z

c(n)(τ)z
−n−1 =

∑

n∈Z

c(n)ζ
−n−1

D(ζ) := D(z, τ) =
∑

n∈Z

d(n)(τ)z
−n−1 =

∑

n∈Z

d(−n)ζ̄
−n−1

(A.2)

and [C(ζ), D(ζ̄)] = 0. The modes of the fields are diagonal for the Hamil-
tonian. Note that we know the brackets between these fields because we
already know the algebra of their modes.

A.1. Torus case

On the T3 torus case, we can consider the Hamiltonian10 as the zero mode
of the field h(z) = ∂zxi(z)∂zxi(z) + ∂zyi(z)∂zyi(z). In this case, we have a
CFT. We are interested in the particular fields11 C(z) := ∂zyi(z) + ∂zxi(z)
and D(z) := ∂zyi(z)− ∂zxi(z), they satisfy the conditions in (A.2). In par-
ticular, we can use these fields to describe the fields x(z, τ) = x(ζ, ζ̄) =
x′(ζ) + x′′(ζ̄), such that ∂ζx

′ = C(ζ) and ∂ζ̄x
′′ = D(ζ̄) using the notation

in (1.5), we have

[x′i(ζ), x
′

j(ω)] = δij2log(ζ − ω),

[x′i(ζ), x
′′

j (ω̄)] = 0,

[x′′i (ζ̄), x
′′

j (ω̄)] = −δij2log(ζ̄ − ω̄),

[∂ζxi(ζ), ∂ωxi(ω)] = δij2∂ωδ(ζ − ω),

[∂ζxi(ζ), ∂ω̄xj(ω̄)] = 0,

[∂ζ̄xi(ζ̄), ∂ω̄xj(ω̄)] = −δij2∂ω̄δ(ζ̄ − ω̄).

And the fields T (ζ) := 1
4∂ζxi(ζ)∂ζxi(ζ) and T (ζ̄) := −1

4∂ζ̄xi(ζ̄)∂ζ̄xi(ζ̄) are
two copies of the Virasoro algebra with central charge dim T3 = 3.

A.2. Twisted torus case

Now for the twisted torus T3 with Hj flux, the Hamiltonian is given by the
zero mode of the field h(z) = ∂zxi(z)∂zxi(z) + ∂zyi(z)∂zyi(z). In this case,
we do not have a CFT. In [2] this case was studied as a perturbative CFT
up to first order because the beta equations are satisfied only for this order.

10The Hamiltonian could be more general considering a flat metric Gij , but here
we are considering the simplest case Gij = δij

11We used the fields yi(z) on the double torus, this matches with the standard
description by the relation ∂zyi(z) = pi(z).
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We are interested in the particular fields

C(z) := −βi(z) + αi(z) + jϵijkxj(z)(βk(z)− αk(z)),

D(z) := βi(z) + αi(z) + jϵijkxj(z)(βk(z) + αk(z)),

where ϵijk is the Levi Civita tensor. These fields satisfy the conditions in
(A.2) up to first order in j. Therefore, in this approach j loses its topological
meaning. We can use these fields to describe the field y(z, τ) = y(ζ, ζ̄) =
y′(ζ) + y′′(ζ̄) +O(j2) such that ∂ζy

′ = C(ζ) and ∂ζ̄y
′′ = D(ζ̄). In particular,

using the notation in (1.10), we have

[y′i(ζ), y
′

j(ω)] = −2δij log(ζ − ω)−
j

2
ϵijk(ŷ

′

k(ζ)− ŷ′k(ω))log(ζ − ω)

− jκ′krl(ζ, ω) +O(j2),

[y′i(ζ), y
′′

j (ω̄)] = 0 +O(j2),

[y′′i (ζ̄), y
′′

j (ω̄)] = 2δij log(ζ̄ − ω̄) +
j

2
ϵijk(ŷ

′′

k(ζ̄)− ŷ′′k(ω̄))log(ζ̄ − ω̄)

− jκ′′krl(ζ̄ , ω̄) +O(j2).

(A.3)

Then

[∂ζyi(ζ), ∂ωyj(ω)] = −2δij∂ωδ(ζ − ω)− jϵijk∂ωykδ(ζ − ω) +O(j2)

[∂ζyi(ζ), ∂ω̄yj(ω̄)] = 0 +O(j2)

[∂ζ̄yi(ζ̄), ∂ω̄yj(ω̄)] = 2δij∂ω̄δ(ζ̄ − ω̄)− jϵijk∂ω̄ykδ(ζ̄ − ω̄) +O(j2)

(A.4)

And the fields T (ζ) := −1
4∂ζyi(ζ)∂ζyi(ζ) and T (ζ̄) := 1

4∂ζ̄yi(ζ̄)∂ζ̄yi(ζ̄) are
two copies of the Virasoro algebra up to first order in j with central charge
dimT3 = 3.

The relations in (A.4) were found, from a different point of view, in [2].
We have arrived at this expression using the Hamiltonian interpretation of
vertex algebras. The equations in (A.3) are implicit in their work, where
they used the correlators language. Finally, for the general case k ̸= 0 and
j ̸= 0 the beta equations are not satisfied at any order therefore a similar
procedure is not possible in the general case.

Appendix B. Proof of the singularity

In this section we prove that the logarithmic singularities in the Theorem 4.1
imply the algebraic relations of the affine Kac Moody vertex algebra V 1(hk,j)
given in (1.12). First, we prove this result for the particular case, example
3.2, k = 0 and j = 1.
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B.1. The double twisted torus case k = 0, j = 1

First, we differentiate the identity12 [y1(z), y3(w)] in the Theorem (4.1)

[∂zyi(z), ∂wyj(w)]

= ∂z∂w

(

εijkw
krl(z, w) +

1

2
εijk(x̂k(z)− x̂k(w)) log(z − w)

)

= −
ϵijk
2

wk(logz − logw)∂wδ(z, w)−
1

2
(∂zx̂3(z) + ∂wx̂3(w))δ(z, w)

+
1

2
(x̂3(z)− x̂3(w))∂wδ(z, w).

Then we compute the same expression using the equations (4.3)

[∂zyi(z), ∂wyj(w)] =

[

β1(z) +
1

2
x2∂zx3(z)−

1

2
x3∂zx2(z),

β2(z) +
1

2
x3∂zx1(z)−

1

2
x1∂zx3(z)

]

= α3(w)δ(z, w) +
1

2
x3(w)∂wδ(z, w)−

1

2
δ(z, w)∂wx3(w)

−
1

2
δ(z, w)∂zx3(z)−

1

2
x3(z)∂wδ(z, w),

where we used that [x2(z), β2(w)] = [x2(z), ∂wy2(w)] = −δ(z, w) and
[β1(z), x1(w)] = δ(z, w). The fact that these two results are the same fol-
lows from the next theorem.

Theorem B.1. Let a(z) be a formal distribution and let N be a non-
negative integer. Then one has the following equality of formal distributions
in z and w:

∂N
w δ(z − w)a(z) = ∂N

w δ(z − w)

N
∑

j=0

∂ja(w)(z − w)j

See [10] for a proof of this theorem.

12Note that we have the identities

∂zlog(z − w) = −∂wlog(z − w) = δ(z, w),

∂w∂zrl(z, w) = −
1

2
(log z − logw)∂wδ(z, w).
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B.2. General case

First, we compute the expression differentiating the identity13 in the Theo-
rem 4.1

∂z∂w[y1(z), y3(w)]

= −
j

2
w2(−(log z − logw)∂wδ(z, w)) +

j

2
(∂zx̂2(z) + ∂wx̂2(w))δ(z, w)

+
j

2
(x̂2(w)− x̂2(z))∂wδ(z, w) +

k

2
(ŷ2(w)− ŷ2(z))∂wδ(z, w)

−
k

2
p2(−(log z − logw)∂wδ(z, w)) +

k

2
(∂z ŷ2(z) + ∂wŷ2(w))δ(z, w)

+
kj

6
(x3(z)x1(z) + x3(w)x1(w))∂wδ(z, w)

+
kj

6
(∂w(x3(w)x1(w))− ∂z(x3(z)x1(z)))δ(z, w)

−
kj

2
(x̂3(z)∂wx̂1(w)δ(z, w)− ∂zx̂3(z)x̂1(w)δ(z, w))

−
kj

2
(∂zx̂3(z)∂wx̂1(w) log(z − w) + x̂3(z)x̂1(w)∂wδ(z, w))

−
kj

2
(−w3∂z(x̂1(z) log z) + w1∂w(x̂3(w) logw))δ(z, w)

−
kj

2
(w3x̂1(z) log z + w1x̂3(w) logw)∂wδ(z, w)

+ kj(w1∂zx̂3(z))

(

−
1

2w
log(z − w) +

1

2
(log z − logw)δ(z, w)

)

− kj(w3∂wx̂1(w))

(

1

2z
log(z − w)−

1

2
(log z − logw)δ(z, w)

)

+ kj(w1x̂3(z)− w3x̂1(w))

(

−
1

2
(log z − logw)∂wδ(z, w)

)

− kjw3w1

(

−
1

2
(log z − logw)

1

z
δ(z, w) +

1

6

3

wz
log(z − w)

+
1

2
log z logw∂wδ(z, w)

)

13Note that we have the identities

∂zrl(z, w) =
1

2

1

z
log(z − w)−

1

2
(logz − logw)δ(z, w),

∂z∂wt(z, w) = −
1

6
(logz − logw)

(

1

z
δ(z, w)

)

+
1

6

{

3

wz
log(z − w)

}

−
1

6
(logz2 − 3logzlogw + logw2)∂wδ(z, w)
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Then we compute the same expression using the equations in (4.3)

[∂zy1(z), ∂wy3(w)]

= −(jα2(w) + kβ2(w))δ(z, w)

+
j

2
(∂wx2(w) + ∂zx2(z))δ(z, w) +

k

2
(x2(z)− x2(w)∂wδ(z, w))

+
j

2
(∂wx2(w)δ(z, w)− x2(w)∂wδ(z, w))

+
k

2
(∂wy2(w)δ(z, w)− y2(w)∂wδ(z, w))

+
kj

2
((x1(w)∂wx3(w)− x3(w)∂wx1(w))δ(z, w) + x1(w)x3(w)∂wδ(z, w))

+
j

2
(∂zx2(z)δ(z, w) + x2(z)∂wδ(z, w))

+
k

2
(∂zy2(z)δ(z, w) + y2(z)∂wδ(z, w))

+
kj

2
((x1(z)∂zx3(z)− x3(z)∂zx1(z))δ(z, w) + x1(z)x3(z)∂wδ(z, w))

+
kj

3
((2x1(w)∂x3(w)− x3(w)∂wx1(w))δ(z, w)− x3(w)x1(w)∂wδ(z, w))

+
kj

3
((−2x3(z)∂x1(z) + x1(z)∂x3(z))δ(z, w)− x3(z)x1(z)∂wδ(z, w))

+
kj

2
(−∂x3(z)x1(w)δ(z, w) + x3(z)∂wx1(w)δ(z, w))

−
kj

2
(x3(z)x1(w)∂wδ(z, w) + ∂x3(z)∂x1(w) log(z − w)) ,

where we used [β1(z), x2(w)]=
k
2x3(w)δ(z, w), [β1(z), y2(w)]=

j
2x3(w)δ(z, w)

and [x2(z), β3(w)] =
k
2x1(z)δ(z, w) and [y2(z), β3(w)] =

j
2x1(z)δ(z, w).

The fact that these two results are the same follows from Theorem B.1.
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