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1. Introduction

Recall that the Korteweg–de Vries (KdV) equation

(1.1) ut = uux +
ϵ2

12
uxxx

†Deceased on March 19, 2019.
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and the modified KdV (mKdV) equation

(1.2) wt =
w2

2
wx +

ϵ2

12
wxxx

are related via a Miura transformation [28]

(1.3) u =
1

2
w2 +

√
−1

ϵ

2
wx.

This means that, substituting (1.3) and its unique formal inverse

(1.4) w = (2u)
1

2 −
√
−1

ϵ

4

(2u)x
2u

+ ϵ2
(

5

32

(2u)2x
(2u)5/2

− 1

8

(2u)xx

(2u)3/2

)
+O(ϵ3)

in (1.1), one gets (1.2); vice versa.
The KdV and mKdV equations are examples of scalar evolutionary

PDEs of the form [15]:

ut = f(u)ux + ϵ
[
a1(u)uxx + a2(u)u

2
x

]
(1.5a)

+ ϵ2
[
a3(u)uxxx + a4(u)uxxux + a5(u)u

3
x

]
+ · · · ,

f(u) ̸≡ 0.(1.5b)

Here, ϵ is a parameter, and f(u), a1(u), a2(u), · · · are given smooth functions
of u. Following [15, 26], we say that a change of the dependent variable of
the form

(1.6) w =W (u) +
∑

k≥1

ϵkW [k](u;ux, . . . , uk)

is a Miura type transformation, if W ′(u) ̸≡ 0 and each W [k] is a degree k
homogeneous differential polynomial of u. Here, uj := ∂jx(u) is assigned the
degree: deg uj = j, j ≥ 0. All Miura type transformations form the Miura
group.

The ϵ→ 0 limit of equation (1.5)

(1.7) vt = f(v)vx, f(v) ̸≡ 0

is an evolutionary PDE of hydrodynamic type [13]. The simplest non-trivial
example is the dispersionless KdV equation (aka the Riemann–Hopf equa-
tion or the inviscid Burgers equation):

(1.8) vt = vvx.
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This equation is NOT equivalent to the KdV equation (1.1) with ϵ ̸= 0
under the Miura group action. However, there exists a remarkable invertible
transformation [3, 15, 26]

u = v + ϵ2∂2x

(
1

24
log vx

)
(1.9)

+ ϵ4∂2x

(
vxxxx
1152v2x

− 7vxxvxxx
1920v3x

+
v3xx

360v4x

)
+O

(
ϵ6
)

transforming (1.1) to (1.8). Such a transformation is called a quasi-Miura
transformation [15, 26]. We mention that the difference between Miura type
and quasi-Miura transformations is simply that the latter allows rational and
logarithmic dependence in vx. We also mention that ∂x =

∑
j≥0 vj+1∂vj

=∑
j≥0 uj+1∂uj

.
A scalar evolutionary PDE (1.5) is called quasi-trivial or say possessing

quasi-triviality, if it can be transformed to its ϵ→ 0 limit via a quasi-Miura
transformation.

Liu–Zhang’s Theorem ([26]). For an evolutionary PDE of the form (1.5)
with f ′(u) ̸≡ 0, there exists a unique (under some homogeneity condition;
see Theorem 4.3 of [26]) quasi-Miura transformation reducing (1.5) to its
dispersionless limit.

In this article we consider the following problem.

Problem A. Give an explicit expression of quasi-triviality of the KdV equa-
tion (1.1).

This problem is algebraic, but the solution turns out to be topological.
Before presenting a solution to Problem A, we recall some standard nota-

tions. For j ≥ 0, denote v(j) = vj := ∂jx(v). By a partition λ, we mean a non-
increasing sequence of non-negative integers (λ1, . . . , λℓ(λ), 0, . . . ), where ℓ(λ)
denotes the length of λ, and λ1 ≥ λ2 ≥ · · · ≥ λℓ(λ) are the nonzero compo-

nents of λ. The set of all partitions is denoted by Y. Denote by |λ| :=
∑ℓ(λ)

j=1 λj
the weight of λ, by Yk the set of partitions of weight k, and by mi(λ) the
multiplicity of i in λ, i ≥ 1. Denote also

(1.10) m(λ)! =
∏

i≥1

mi(λ)!, zλ = m(λ)!
∏

i≥1

imi(λ).

The partition of 0 is denoted by (0), with ℓ((0)) := 0 and |(0)| := 0. For any
λ, µ ∈ Y, define λ+ µ := (λ1 + µ1, λ2 + µ2, . . . ). Define λ+ 1 := λ+

(
1ℓ(λ)

)

if λ ̸= (0), and (0) + 1 := (0). For an arbitrary sequence of indeterminates
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q1, q2, . . . , denote qλ := qλ1
· · · qλℓ(λ)

if λ ̸= (0), and q(0) := 1. Introduce also
some integers: For any λ, µ ∈ Y, define

(1.11) Qλµ := (−1)ℓ(λ)
∑

µ1∈Yλ1
,...,µℓ(λ)∈Yλℓ(λ)

∪
ℓ(λ)
q=1µ

q=µ

ℓ(λ)∏

q=1

(λq + ℓ(µq))! (−1)ℓ(µ
q)

m(µq)!
∏∞

j=1(j + 1)!mj(µq)
.

We note that Qλµ = 0 unless |λ| = |µ|, and call
(
Qλµ

)
|λ|=|µ|

the Q-matrices.

Theorem 1.1. The quasi-triviality of the KdV equation (1.1) has the fol-
lowing expression:

u = v + ϵ2∂2x

(
M1(vx) +

∞∑

g=2

ϵ2g−2Mg(vx, vxx, . . . , v3g−2)

)
,(1.12)

M1(vx) =
1

24
log vx,(1.13)

Mg(vx, vxx, . . . , v3g−2) =
∑

λ,µ∈Y3g−3

⟨τλ+1⟩
m(λ)!

Qλµ vµ+1

v
ℓ(µ)+g−1
1

, g ≥ 2.(1.14)

Here, ⟨τλ+1⟩ are the intersection numbers of ψ-classes on the Deligne–
Mumford moduli spaces (for the definitions of these numbers see Eq. (3.2)).

The proof is in Section 4.
The following three more problems will also be considered.

Problem B. Give an explicit quasi-triviality of the intermediate Long wave
(ILW) equation

(1.15) ut = uux +
∑

g≥1

ϵ2gsg−1 |B2g|
(2g)!

u2g+1.

Here B2g denote the Bernoulli numbers, defined by x
ex−1 =:

∑∞
k=0

Bk

k! x
k.

Problem C. Give an explicit quasi-triviality of the discrete KdV equation
(aka the Volterra lattice equation)

(1.16) ut =
1

ϵ

(
eu(x+ϵ) − eu(x−ϵ)

)
.

Problem D. Give an explicit quasi-triviality of the Burgers equation

(1.17) ut = uux + ϵuxx.
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We remark that for an integrable PDE of the form (1.5) with f ′(u) ̸≡ 0,
the quasi-triviality of this PDE is the property of the whole corresponding
integrable hierarchy.

We will see from solutions to the above problems in Sections 4–5 that the
associated essential numbers to each problem (the primitive Hodge integrals
for the case of Problems A,B,C, and enumeration of graphs with valencies ≥
3 for the case of Problem D) are all contained in a simple nonlinear equation
(KdV, ILW, discrete KdV, Burgers, respectively); this is revealed by the
deep relationships started by Witten, by Liu–Zhang’s theorem and by the
so-called inverse Q-matrices (see Definition 2.7 below).

Organization of the paper. In Section 2 we review the topological so-
lution to the Riemann hierarchy. In Section 3 we review the construction of
Hodge hierarchy. In Sections 4–5 we give solutions to Problems A–D. Con-
cluding remarks are given in Section 6. A straightforward proof of a technical
lemma (Lemma 3.2) is given in Appendix A.

Acknowledgements. D.Y. is grateful to Youjin Zhang for his advising.
Part of the work of D.Y. was done while he was a post-doc at SISSA; he
thanks SISSA for excellent working conditions and financial supports.

2. Riemann hierarchy and Q-matrices

The goal of this section is to do some preparations for the later sections.
Recall that an evolutionary PDE of the form

us = g(u)ux + ϵ
[
b1(u)uxx + b2(u)u

2
x

]
(2.1)

+ ϵ2
[
b3(u)uxxx + b3(u)uxxux + b4(u)u

3
x

]
+ · · ·

is called an infinitesimal symmetry of (1.5) if

∂s∂tu = ∂t∂su.

Following [9], we say equation (1.5) with f ′(u) ̸≡ 0 is called integrable, if it
possesses an infinite family of infinitesimal symmetries parameterized by a
smooth function of one variable.

The Riemann–Hopf equation (1.8) is integrable: for any smooth function
g(v), the PDE

(2.2) vs = g(v)vx
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gives an infinitesimal symmetry of (1.8). Let us look at a particular sub-
family in these infinitesimal symmetries

(2.3) vtk =
vk

k!
vx, k ≥ 0.

Observe that equations (2.3) commute pairwise, i.e.,

(2.4) ∂ti∂tjv = ∂tj∂tiv, ∀ i, j ≥ 0.

Thus (2.3) can be solved together. They are called the Riemann hierarchy.
The k = 1 equation in (2.3) is the Riemann–Hopf equation (1.8). The k = 0
equation reads ut0 = ux, so we identify t0 with x.

We will be interested in solutions of (2.3) in the formal power series
ring C[[t]]. Indeed, consider the initial value problem of (2.3) along with the
initial condition:

(2.5) v(x, 0, 0, . . . ) = f0(x) ∈ C[[x]], f ′0(0) ̸= 0, f0(0) = 0.

Here, the conditions f ′0(0) ̸= 0, f0(0) = 0 imply that f0(x) has a compo-
sitional inverse in C[[x]]. (The case f0(0) ̸= 0 can also be considered via
performing a shift in v; we leave this discussion to the interested readers.)
Denote by cp, p ≥ 0 the Taylor coefficients of f−1

0 (x), i.e.,

(2.6)
∑

p≥0

cp
p!
xp = f−1

0 (x), c1 ̸= 0.

As explained above, equations (2.3) have a unique solution v(t) in C[[t]]
with the initial value v(x, 0, 0, . . . ) = f0(x).

Lemma 2.1 ([15]). The unique solution v(t) satisfies the following equa-
tion:

(2.7) t̃0 +
∑

p≥1

t̃p
v(t)p

p!
= 0,

where t̃p := tp − cp (c1 ̸= 0). Moreover, solution to (2.7) in C[[t]] is unique.

Equation (2.7) is called the genus zero Euler–Lagrange equation for the
KdV hierarchy [8, 15].

We now focus on a particular solution to the Riemann hierarchy (2.3),
denoted by vtop(t), that is specified by the initial data f0(x) = x. In other
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words, cp = δp,1 is under consideration. The vtop(t) is often called the topo-
logical solution.

Lemma 2.2. The vtop(t) has the explicit expression

(2.8) vtop(t) =
∑

k≥1

1

k

∑

p1,...,pk≥0

p1+···+pk=k−1

tp1

p1!
· · · tpk

pk!
.

Proof. For any solution v(t) in C[[t]] to the Riemann hierarchy (2.3), we
have

vtk1
= ∂x

(
vk1+1

k1! (k1 + 1)

)
,(2.9)

vtk1
tk2

= ∂2x

(
vk1+k2+1

k1! k2! (k1 + k2 + 1)

)
,(2.10)

vtk1
...tkN

= ∂Nx

(
vk1+···+kN+1

k1! · · · kN ! (k1 + · · ·+ kN + 1)

)
, ∀N ≥ 3.(2.11)

Here k1, k2, . . .≥ 0. The lemma is then proved by noticing vtopm (0) = δm,1.
□

Proceed with a simplification of (2.8). Applying ∂mx on the both sides
of (2.8) we obtain

vtopm (t) =
∑

k≥1

∑

p1,...,pk≥0

p1+···+pk=k+m−1

(k + 1) · · · (k +m− 1)
tp1

p1!
· · · tpk

pk!
,(2.12)

m ≥ 1,

where we recall that vtopm (t) := ∂mx
(
vtop(t)

)
. The following shorthand nota-

tions will be used:

(i) Denote v(t) = vtop(t) unless otherwise specified.

(ii) Denote vs = vs(t1, t2, . . . ) := v(t)|t0=0, and denote vsj = vsj (t1, t2, . . . )
:= vj(t)|t0=0, j ≥ 1.

Obviously vs = 0. The Taylor expansion of v(t) with respect to x then reads

(2.13) v(t) = vs +
∑

j≥1

vsj
xj

j!
=
∑

j≥1

vsj
xj

j!
.
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Lemma 2.3. For m ≥ 1, the following formula holds true:

vsm =
∑

µ∈Ym−1

(m− 1 + ℓ(µ))!∏
j≥1(j + 1)!mj(µ)

tµ+1

m(µ)! (1− t1)m+ℓ(µ)
.(2.14)

Proof. For m = 1, we know from (2.12) that vs1 = 1/(1− t1). For m ≥ 2,

vsm =
∑

k≥1

∑

λ∈Yk+m−1
ℓ(λ)=k

(k +m− 1)!

k!

(
k

m1(λ),m2(λ), · · ·

)
tλ∏

i≥1 i!
mi(λ)

=
∑

m1,m2,···≥0
∑

j≥1(j−1)mj=m−1

(
m1 +

∑

j≥2

jmj

)
!
∏

j≥1

t
mj

j

j!mjmj !

=
∑

m2,m3,···≥0
∑

j≥2(j−1)mj=m−1

(
∑

j≥2

jmj

)
!
∏

j≥2

t
mj

j

j!mjmj !

1

(1− t1)
1+

∑
j≥2 jmj

,

where the last equality uses Newton’s binomial identity: (1− x)−1−k =∑
s≥0

(
s+k
k

)
xs. □

For each partition µ ∈ Y, we call the integer

(2.15) L(µ) :=

(
|µ|+ ℓ(µ)

)
! (−1)ℓ(µ)

m(µ)!
∏

j≥1(j + 1)!mj(µ)
= (−1)ℓ(µ)

|µ+ 1|!
zµ+1

the Lagrange number associated to µ. The first few Lagrange numbers are

L((0)) = 1, L((1)) = −1, L((2)) = −1, L
((
12
))

= 3, L((3)) = −6,

L((2, 1)) = 10, L
((
13
))

= −15, L((n)) = −1, L
((
1n
))

= (−1)n(2n− 1)!!.

Using the Lagrange number we can write formula (2.14) as

(2.16) vsn =
∑

µ∈Yn−1

(−1)ℓ(µ) L(µ)
tµ+1

(1− t1)n+ℓ(µ)
, n ≥ 1.

Lemma 2.4 (Zhou [30]). The following formulae hold true:

1− t1 =
1

vs1
,(2.17)

−tk =
∑

µ∈Yk−1

L(µ)
vsµ+1

(vs1)
1+|µ+1|

, k ≥ 2.(2.18)
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We remark that both (2.16) and Lemma 2.4 can also be proved straight-
forwardly by using the Lagrange inversion (cf. e.g. [22, 25]).

Definition 2.5. For any two partitions λ, µ, define Q(0)(0) := 1, and define

(2.19) Qλµ := (−1)ℓ(λ)
∑

µ1∈Yλ1 ,...,µ
ℓ(λ)∈Yλℓ(λ)

µ1∪µ2∪···∪µℓ(λ)=µ

ℓ(λ)∏

q=1

L(µq).

For k ≥ 0, we call
(
Qλµ

)
|λ|=|µ|=k

the Q-matrices.

Lemma 2.6. The following formula holds true:

(2.20) tλ+1 =
∑

µ∈Y|λ|

Qλµ
vsµ+1

(vsx)
l(µ)+|λ+1|

, ∀λ ∈ Y.

Proof. For any partition λ ∈ Y, we have

tλ+1 = (−1)ℓ(λ)
l(λ)∏

q=1

∑

µ∈Yλq

L(µ)
vsµ+1

(vsx)
1+|µ+1|

= (−1)ℓ(λ)
∑

µ1∈Yλ1
,...,µℓ(λ)∈Yλℓ(λ)

ℓ(λ)∏

q=1

L(µq)
vsµq+1

(vsx)
l(µq)+λq+1

=
∑

µ∈Y|λ|

vsµ+1

(vsx)
l(µ)+|λ+1|

(−1)ℓ(λ)
∑

µ1∈Yλ1 ,...,µ
l(λ)∈Yλl(λ)

µ1∪µ2∪···∪µℓ(λ)=µ

L(µq).

The lemma is proved. □

Definition 2.7. Define Q(0)(0) := 1, and define

(2.21) Qµρ :=
∑

ρ1∈Yµ1
,...,ρℓ(µ)∈Yµℓ(µ)

ρ1∪ρ2∪···∪ρℓ(µ)=ρ

ℓ(µ)∏

q=1

|L(ρq)|,

where µ, ρ are two arbitrary partitions. We call (Qµρ)|µ|=|ρ| the inverse Q-
matrices.
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Lemma 2.8. The following formula holds true:

(2.22) vsµ+1 =
∑

ρ∈Y|µ|

Qµρ
tρ+1

(1− t1)ℓ(ρ)+|µ+1|
, ∀µ ∈ Y.

Proof. For any partition µ ∈ Y, we have

vµ+1 =

l(µ)∏

q=1

∑

ρ∈Yµq

|L(ρ)| tρ+1

(1− t1)1+|ρ+1|

=
∑

ρ1∈Yµ1
,...,ρℓ(µ)∈Yµℓ(µ)

ℓ(µ)∏

q=1

|L(ρq)| tρq+1

(1− t1)l(ρ
q)+µq+1

=
∑

ρ∈Y|µ|

tρ+1

(1− t1)ℓ(ρ)+|µ+1|

∑

ρ1∈Yµ1
,...,ρℓ(µ)∈Yµℓ(µ)

ρ1∪ρ2∪···∪ρℓ(µ)=ρ

|L(ρq)|.

The lemma is proved. □

Lemma 2.9. We have

a) Qλµ = Qλµ = 0 if |λ| ̸= |µ|.
b) The Q-matrices

(
Qλµ

)
|λ|=|µ|

and the inverse Q-matrices (Qλµ)|λ|=|µ|

are upper triangular with respect to the reverse lexicographic ordering.

c) Qλµ are integers and Qλµ are positive integers.

d) Qλλ = 1, Qλλ = 1, ∀λ ∈ Y.

e) Q(n)µ = −L(µ), Q(n)µ = |L(µ)|, ∀µ ∈ Y.

f) ∀ k ≥ 0, (Qλµ)|λ|=|µ|=k

(
Qλµ

)
|λ|=|µ|=k

= I, where I denotes the iden-
tity matrix.

Proof. a)–e) are easy consequences of Definition 2.5 and (2.15). Note that
∀λ, ρ ∈ Y,

tλ+1 =
∑

µ∈Y|λ|

Qλµ
vsµ+1

(vsx)
l(µ)+|λ|+1

(2.23)

=
∑

µ,ρ∈Y|λ|

QλµQµρ
1

(vsx)
l(µ)+|λ+1|

tρ+1

(1− t1)l(ρ)+|µ+1|
.

The assertion f) is then proved by noticing that 1− t1 =
1
vs
1
. □
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The first several Q-matrices and inverse Q-matrices are given by

(Qλµ) = (1), (Qλµ) = (1), |λ| = |µ| = 0;

(Qλµ) = (1), (Qλµ) = (1), |λ| = |µ| = 1;

(Qλµ) =

(
1 −3
0 1

)
, (Qλµ) =

(
1 3
0 1

)
, |λ| = |µ| = 2;

(Qλµ) =



1 −10 15
0 1 −3
0 0 1


 , (Qλµ) =



1 10 15
0 1 3
0 0 1


 , |λ| = |µ| = 3;

(Qλµ) =




1 −15 −10 105 −105
0 1 0 −10 15
0 0 1 −6 9
0 0 0 1 −3
0 0 0 0 1



,

(Qλµ) =




1 15 10 105 105
0 1 0 10 15
0 0 1 6 9
0 0 0 1 3
0 0 0 0 1



, |λ| = |µ| = 4;

(Qλµ) =




1 −21 −35 210 280 −1260 945
0 1 0 −15 −10 105 −105
0 0 1 −3 −10 45 −45
0 0 0 1 0 −10 15
0 0 0 0 1 −6 9
0 0 0 0 0 1 −3
0 0 0 0 0 0 1




,

(Qλµ) =




1 21 35 210 280 1260 945
0 1 0 15 10 105 105
0 0 1 3 10 45 45
0 0 0 1 0 10 15
0 0 0 0 1 6 9
0 0 0 0 0 1 3
0 0 0 0 0 0 1




, |λ| = |µ| = 5.

3. Hodge integrals and integrable hierarchies: a short review

Let Mg,n be the Deligne–Mumford moduli space of stable algebraic curves
of genus g with n distinct marked points. Here the non-negative integers g, n
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should satisfy the stability condition

(3.1) 2g − 2 + n > 0.

Denote by Li, i = 1, . . . , n the ith tautological line bundle on Mg,n, by
Eg,n the Hodge bundle on Mg,n, by ψi := c1(Li) the ψ-class, and by λj :=
cj(Eg,n), j = 1, . . . , g the jth Chern class of Eg,n. The following integrals

(3.2)

∫

Mg,n

ψk1

1 · · ·ψkn

n λj1 · · ·λjm =: ⟨λj1 · · ·λjmτk1
· · · τkn

⟩g

are some rational numbers, called Hodge integrals of a point. Here n,m ≥ 0,
k1, . . . , kn ≥ 0, j1, . . . , jm ≥ 1. From the degree-dimension counting, these
rational numbers vanish unless

(3.3) j1 + · · ·+ jm + k1 + · · ·+ kn = 3g − 3 + n.

The case m = 0 in (3.2) gives the Gromov–Witten (GW) invariants of a
point. For this case, the degree-dimension counting reads k1 + · · ·+ kn =
3g − 3 + n. So one could simply write ⟨τk1

· · · τkn
⟩g as ⟨τk1

· · · τkn
⟩, which are

the numbers used in (1.14).
It is appropriate to collect Hodge integrals into generating series. The

genus g Hodge potential associated to λi1 · · ·λim is defined as the following
generating series of Hodge integrals:

(3.4) Hg(λi1 · · ·λim ; t) :=
∞∑

n=0

1

n!

∑

k1,...,kn≥0

〈
λi1 · · ·λimτk1

· · · τkn

〉
g
tk1

· · · tkn
,

where t = (t0, t1, t2, . . . ). Denote by chr := chr(Eg,n), r ≥ 0 components of
the Chern character of Eg,n. We call the generating series

(3.5) Hg(t; s) :=

∞∑

m,n=0

1

m!n!

×
∑

j1,...,jm≥1

k1,...,kn≥0

⟨ch2j1−1 · · · ch2jm−1τk1
· · · τkn

⟩g sj1 · · · sjm tk1
· · · tkn

the genus g Hodge potential. Here s = (s1, s2, . . . ). The restriction
Hg(t;0) =: Fg(t) is called the genus g GW potential. We also define the
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Hodge potential H and the GW potential F by

H = H(t; s; ϵ) :=
∑

g≥0

ϵ2g−2Hg(t; ϵ), F = F(t; s; ϵ) :=
∑

g≥0

ϵ2g−2Fg(t; ϵ).

Their exponentials

ZE = ZE(t; s; ϵ) := exp (H(t; s; ϵ)) , Z = Z(t; ϵ) := exp (F(t; ϵ))

are called the partition functions of Hodge integrals and of GW invariants,
respectively.

It was conjectured by Witten [29] and proved by Kontsevich [24] that Z
is a particular tau-function of the KdV hierarchy (the Witten–Kontsevich
(WK) theorem). Z is now also known as the WK tau-function. Define Dk

as the following linear differential operators [18]:

(3.6) Dk :=
∑

p≥0

tp
∂

∂tp+2k−1
− ϵ2

2

2k−2∑

j=0

(−1)j
∂2

∂tj∂t2k−2−j
, k ≥ 1.

Faber–Pandharipande [18] proved that the partition function of Hodge in-
tegrals ZE(t; s; ϵ) is the unique power series solution to the following linear
equations

(3.7)
∂ZE

∂sk
= − B2k

(2k)!
Dk

(
ZE

)
, k ≥ 1

along with the initial condition

(3.8) ZE(t;0; ϵ) = Z(t; ϵ).

This unique solution has the form

(3.9) ZE(t; s; ϵ) = exp

(
−
∑

k≥1

B2k

(2k)!
skDk

)(
Z(t; ϵ)

)
.

Lemma 3.1. The power series ZE satisfies the following two linear equa-
tions:

(string equation)
∑

p≥0

tp+1
∂ZE

∂tp
+

t20
2ϵ2

ZE +
s1
24
ZE =

∂ZE

∂t0
,(3.10)

(dilaton equation)
∑

p≥0

tp
∂ZE

∂tp
+ ϵ

∂ZE

∂ϵ
+

1

24
ZE =

∂ZE

∂t0
.(3.11)
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Proof. We have

(3.12) ⟨γτk1
· · · τkn

τ0⟩g =

n∑

j=1

〈
γ τk1−δ1j · · · τkn−δnj

〉
g
,

where γ = λi1 · · ·λiℓ , i1, . . . , iℓ ≥ 1 (γ := 1 if ℓ = 0), and ⟨γ τj1 · · · τjn⟩g := 0
if {j1, . . . , jn} contain negative integers. It should be noted that there are
two exceptional cases:

(a) g = 0, n = 2, γ = 1. We have ⟨τ30 ⟩0 = 1.

(b) g = 1, n = 0, γ = s λ1. We have

(3.13) ⟨λ1τ0⟩1 =
s

24
.

They correspond to the terms t20
2ϵ2ZE,

s1
24ZE in (3.10), respectively. This proves

the string equation. Similarly, one can show that

(3.14) ⟨γτk1
· · · τkn

τ1⟩g = (2g − 2 + n)⟨γτk1
· · · τkn

⟩g.

There is one exceptional case: g = n = 1, γ = 1. We have ⟨τ1⟩1 = 1
24 . This

proves (3.11). □

Following [20] (cf. also [21, 30]), we call ⟨γτk1
· · · τkn

⟩g a primitive Hodge
integral of a point, if k1, . . . , kn ≥ 2.

In [15] Dubrovin–Zhang (DZ) introduced the quasi-triviality approach
to construct the integrable hierarchy for Gromov–Witten invariants of an
arbitrary smooth projective variety X with semisimple quantum cohomol-
ogy. For the case X = a point, the DZ hierarchy coincides with the KdV
hierarchy. The interesting fact is that one particular solution can contain
the full information of the unique integrable system [6, 10–12, 15]. Recently,
the integrable hierarchy for Hodge integrals called the Hodge hierarchy (aka
the DZ hierarchy for Hodge integrals) was constructed in [11] (see also [6])
by using the quasi-triviality approach. Let us review the construction. The
genus 0 and genus 1 Hodge potentials have the form

H0(t; s) = F0(t) =
∑

n≥3

1

n(n− 1)(n− 2)

∑

k1+···+kn=n−3

tk1

k1!
· · · tkn

kn!
,(3.15)

H1(t; s) = H1

(
vtop(t), vtopx (t)

)
,(3.16)

where H1(v, vx) :=
1
24 log vx +

1
24v. For higher genera, the following lemma

is useful.
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Lemma 3.2 (Theorem 1.3 of [11]). For each g ≥ 2, there exist a unique
element

Hg = Hg(v, v1, . . . , v3g−2; s1, . . . , sg)

in C∞(v)
[
v1, v

−1
1 ; v2, . . . , v3g−2; s1, . . . , sg

]
satisfying

Hg(t; s) = Hg

(
v(t), vx(t), v2(t), . . . , v3g−2(t); s1, . . . , sg

)
,(3.17)

degHg = 2g − 2,(3.18)

where v(t) := vtop(t). Moreover, define deg vk := k − 1 and deg sk := 2k −
1, k ≥ 1, then

(3.19) degHg ≤ 3g − 3.

A straightforward proof of this lemma by using the string and dilaton equa-
tions (cf. Lemma 3.1) is given in Appendix A.

By Lemma 3.2 we know that the change of the dependent variable

(3.20) v 7→ w = v +
∑

g≥1

ϵ2g∂2x
(
Hg

)

is a quasi-Miura transformation. Here ∂x =
∑

k≥0 vk+1∂vk
. The Hodge hi-

erarchy is defined as the PDE system obtained from the Riemann hierar-
chy (2.3) under the quasi-Miura transformation (3.20). Each member of the
Hodge hierarchy is proven to have the form (1.5), and so is integrable [6, 11].
We note that the uniqueness part of Lemma 3.2 was implicit in Theorem 1.3
of [11]. (It can be deduced from the statement in Theorem 1.3 of [11] that
Hg is independent from the choice of a solution; or, it can be directly proved
by using an argument similar to that appears in the proof of Theorem 4.2.4
in the first arXiv preprint version of [12], which uses the “transcendental
property” of vtop(t).)

Theorem ([11]). ZE is a particular tau-function of the Hodge hierarchy.

Lemma 3.3. The following formulae hold true:

(3.21)
∂Hg

∂v
= 0, ∀ g ≥ 2.

Proof. Take v = v(t) = vtop(t). Equation (3.10) implies that for g ≥ 2,∑
p≥0 tp+1

∂Hg

∂tp
= ∂Hg

∂t0
. Substituting (3.17) in this equation and using the
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Riemann hierarchy we obtain

(3.22)

3g−2∑

k=0

∂Hg

∂vk
∂k+1
x

(
∑

p≥0

tp+1
vp+1

(p+ 1)!

)
=

3g−2∑

k=0

∂Hg

∂vk
∂k+1
x (v).

Substituting equation (2.7) with cp = δp,1 in the above equation we arrive
at (3.21). □

We now formulate a theorem providing more accurate expressions for
Hg, g ≥ 2.

Theorem 3.4. The genus g Hodge potentials have the following expres-
sions:

H0(t; s) = F0(t),(3.23)

H1(t; s) =M1(vx(t)) +
s1
24
v(t),(3.24)

Hg(t; s) =Mg(vx(t), . . . , v3g−2(t))(3.25)

+

∞∑

m=1

1

m!

∑

1≤j1,...,jm≤g

sj1 · · · sjmvx(t)−g+1+2
∑

m
a=1 ja−m

×
∑

λ,µ∈Y3g−3+m−2
∑m

a=1
ja

⟨ch2j1−1 · · · ch2jm−1 τλ+1⟩g
m(λ)!

×Qλµ vµ+1(t)

vx(t)l(µ)
, g ≥ 2.

Here, Mg, g ≥ 1, are defined in (1.13)–(1.14), and

v(t) =
∑

k≥1

1

k

∑

p1+···+pk=k−1

tp1

p1!
· · · tpk

pk!
.

Proof. The g = 0, 1 cases are already known (cf. (3.15) and (3.16)). For
g ≥ 2, we have

(3.26) Hg(γ; t) =

∞∑

n=0

1

n!

∑

k1,...,kn≥0

k1+···+kn+deg γ=3g−3+n

⟨γ τk1
· · · τkn

⟩g,n tk1
· · · tkn

.
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Here, γ := ch2i1−1 · · · ch2im−1, i1, . . . , im ≥ 1 (γ := 1, ifm = 0). By definition
we know that

(3.27) Hg(t; s) =

∞∑

m=0

1

m!

∑

1≤i1,...,im≤g

Hg(ch2i1−1 · · · ch2im−1; t) si1 · · · sim .

According to Lemma 3.2 there exist functions Hg(γ; vx, . . . , v3g−2) such that

(3.28) Hg(γ; t) = Hg

(
γ; vx(t), . . . , v3g−2(t)

)
, g ≥ 2,

where Hg(γ; vx, . . . , v3g−2) ∈ C∞(v)
[
v1, v

−1
1 ; v2, . . . , v3g−2

]
. Taking t0 = 0 in

equation (3.26) we find

Hg(γ; 0, t1, t2, . . . ) =

∞∑

n=0

1

n!

∑

k1,...,kn≥1

k1+···+kn+deg γ=3g−3+n

⟨γ τk1
· · · τkn

⟩g,n tk1
· · · tkn

=
∑

m1,m2,m3,···≥0
∑

(i−1)mi=3g−3−deg γ

〈
γ τm1

1 τm2

2 · · ·
〉
g

∞∏

i=1

tmi

i

mi!
.(3.29)

Substituting the dilaton equation (3.11) into (3.29) we obtain

Hg(γ; 0, t1, t2, . . . ) =
∑

m1,m2,m3,···≥0
∑

(i−1)mi=3g−3−deg γ

(
∑
mi + 2g − 3)!

(
∑
mi + 2g − 3−m1)!

× ⟨γ τm2

2 τm3

3 · · · ⟩g
∞∏

i=1

tmi

i

mi!

=
∑

m2,m3,m4,···≥0
∑∞

i=2
(i−1)mi=3g−3−deg γ

⟨γ τm2

2 τm3

3 · · · ⟩g
(1− t1)

∑∞
i=2 mi+2g−2

∞∏

i=2

tmi

i

mi!

=
∑

λ∈Y3g−3−deg γ

⟨γ τλ+1⟩g
(1− t1)ℓ(λ)+2g−2

tλ+1

m(λ)!
.(3.30)

Here we have used Newton’s binomial identity (1− x)−1−k =
∑∞

s=0

(
s+k
k

)
xs.

Substituting formula (2.20) and (2.17) into (3.30) we obtain



✐

✐

“1-Yang” — 2021/6/7 — 17:35 — page 1072 — #18
✐

✐

✐

✐

✐

✐

1072 B. Dubrovin and D. Yang

Hg(γ; 0, t1, t2, . . . ) =
∑

γ∈Y3g−3−deg γ

⟨γ τλ+1⟩g (vsx)2g−2+ℓ(γ) (−1)ℓ(λ)

m(λ)!

×
∑

µ∈Y|λ|

Qλµ
vsµ+1

(vsx)
l(µ)+|λ+1|

= (vsx)
−g+1+deg γ

∑

λ,µ∈Y3g−3−deg γ

⟨γ τλ+1⟩g
m(λ)!

Qλµ
vsµ+1

(vsx)
l(µ)

.(3.31)

Finally, due to Lemma 3.2 and Lemma 3.3, Hg(γ; t) must have the form

(3.32) Hg(γ; t) =
∑

q≥0

v−g+1+deg γ+q
x

∑

µ∈Y3g−3−deg γ−q

cg,qµ

vµ+1

v
l(µ)
x

.

Taking t0 = 0 we have

(3.33) Hg(γ; 0, t1, t2, . . . ) =
∑

q≥0

(vsx)
−g+1+deg γ+q

∑

µ∈Y3g−3−deg γ−q

cg,qµ

vsµ+1

(vsx)
l(µ)

.

Comparing equations (3.31) and (3.33) we find

(3.34) cg,qµ = 0, if q ≥ 1; cg,qµ =
∑

λ∈Y3g−3−deg γ

⟨γ τλ+1⟩g
m(λ)!

Qλµ, if q = 0.

The theorem is proved. □

Corollary 3.5. For g ≥ 2, Hg(vx, . . . , v3g−2; s1, . . . , sg) is homogenous of
degree 3g − 3 with respect to deg.

It follows from Mumford’s relation

(3.35) Λ∨
g (s)Λ

∨
g (−s) = (−1)gs2g

as well as from the relationship between Schur basis and power sum basis
of symmetric functions that the infinite set {λj1 · · ·λjn} and the infinite set
{ch2i1−1 · · · ch2im−1} span the same infinite dimensional vector space. Here
Λ∨
g (s) :=

∑g
i=0(−s)iλg−i, λ0 := 1. Therefore, for any linear combination γ =∑

n

∑
j1,...,jn

Aj1,...,jnλj1 · · ·λjn =
∑

m

∑
i1,...,im

Bi1,...,imch2i1−1 · · · ch2im−1,
the function Hg(γ; v, vx, . . . , v3g−2; s1, . . . , sg) is also defined (via linear com-
bination).
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Example 3.6. γ = λgλg−1λg−2. Noting that

⟨λgλg−1λg−2⟩g =
1

2(2g − 2)!

|B2g−2|
2g − 2

|B2g|
2g

,

we have

Hg(λgλg−1λg−2; v1, . . . , v3g−2) =
1

2(2g − 2)!

|B2g−2|
2g − 2

|B2g|
2g

v2g−2
x , g ≥ 2.

Example 3.7. γ = λg. The λg-conjecture proven for example in [18] tells
that

⟨λg τk1
· · · τkn

⟩g =
22g−1 − 1

22g−1

|B2g|
(2g)!

(2g − 3 + n)!

k1! · · · kn!
.

Therefore,

Hg(γ; v1, . . . , v3g−2)

=
22g−1 − 1

22g−1

|B2g|
(2g)!

vx
∑

λ,µ∈Y2g−3

(2g − 3 + ℓ(λ))!

zλ+1

vµ+1

v
ℓ(µ)
x

Qλµ

=
22g−1 − 1

22g−1

|B2g|
(2g)!

∑

λ,µ∈Y2g−3

(−1)ℓ(λ)L(λ)Qλµ vµ+1

v
ℓ(µ)−1
x

.

Noting that due to e) and f) of Lemma 2.9, Qλµ satisfy the following prop-
erty:

∑

λ∈Y2g−3

(−1)ℓ(λ)L(λ)Qλµ = δµ,(2g−3), g ≥ 2.

Hence we obtain

Hg

(
λg; v1, . . . , v3g−2

)
=

22g−1 − 1

22g−1

|B2g|
(2g)!

v2g−2, g ≥ 2.

Example 3.8. γ = λgλg−1. Getzler–Pandharipande [19] proved that for
k1, . . . , kn ≥ 1,

⟨λgλg−1 τk1
· · · τkn

⟩g =
(2g + n− 3)!

(2k1 − 1)!! · · · (2kn − 1)!!

|B2g|
22g−1(2g)!

.
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Therefore we have

Hg(λgλg−1; v1, . . . , v3g−2)

=
|B2g|

22g−1(2g)!
vgx

∑

λ,µ∈Yg−2

(2g − 3 + ℓ(λ))!∏
i≥1(2i+ 1)!!mi(λ)m(λ)!

Qλµ vµ+1

v
ℓ(µ)
x

.

4. Solutions to Problems A,B,C

In this section we provide solutions to Problems A,B,C using the Witten–
Kontsevich theorem, Buryak’s theorem [5], and results of [12], respectively.

A solution to Problem A – Proof of Theorem 1.1. Using Theorem 3.4
it is easy to verify that H1(vx;0) =M1(vx) =

1
24 log vx, and

Hg(vx, . . . , v3g−2;0) =Mg(vx, vxx, . . . , v3g−2), g ≥ 2.

By using the Witten–Kontsevich theorem and Lemma 3.2, we know that

(4.1) utop(t; ϵ) := vtop(t) +

∞∑

g=1

ϵ2g∂2xHg

(
vtopx (t), . . . , vtop3g−2(t);0

)

satisfies the KdV hierarchy. In particular it satisfies the KdV equation (1.1).
We then deduce from the transcendental property of vtop(t) that for any
solution v(t) to the Riemann hierarchy in C[[t]] satisfying vx(t) ̸= 0, the
function u(t; ϵ) defined by (4.1) with vtop being replaced by v also satisfies
the KdV hierarchy. Theorem 1.1 is proved. □

For ℓ(λ) = 1, it is well known (see for example [17]) that

(4.2) ⟨τ3g−2⟩ =
1

24g g!
, g ≥ 1.

For ℓ(λ) ≥ 2, a recently formula [4] gives

⟨τλ+1⟩ = (−1)ℓ(λ)+1

ℓ(λ)∏

i=1

res
zi=∞

dzi z
2λi+3
i

×



∑

r∈Sℓ(λ)

Tr
(
R(zr1) · · ·R(zrℓ(λ)

)
)

ℓ(λ)
∏ℓ(λ)

j=1(z
2
rj − z2rj+1

)
+ δℓ(λ),2

z21 + z22
(z21 − z22)

2


 .



✐

✐

“1-Yang” — 2021/6/7 — 17:35 — page 1075 — #21
✐

✐

✐

✐

✐

✐

Quasi-triviality 1075

Here for a permutation r = [r1, . . . , rℓ] in Sℓ, rℓ+1 := r1, and

(4.3) R(z) =
1

2




−
∑∞

g=1
(6g−5)!!

24g−1 (g−1)!z
−6g+4 −2

∑∞
g=0

(6g−1)!!
24g g! z

−6g

2
∑∞

g=0
6g+1
6g−1

(6g−1)!!
24g g! z

−6g+2
∑∞

g=1
(6g−5)!!

24g−1 (g−1)!z
−6g+4


 .

A solution to Problem B. Let Λg(s) :=
∑g

i=0 s
iλi be the Chern poly-

nomial of the Hodge bundle. By using Buryak’s theorem [5] and Lemma 3.2
we know that

w(t; ϵ) :=

∞∑

g=0

ϵ2g∂2x

(
Hg

(
Λ(s); t

))

= vtop(t) +

∞∑

g=1

ϵ2g∂2x

(
Hg

(
Λ(s); vtop(t), vtopx (t), . . . , vtop3g−2(t)

))
(4.4)

is a particular solution to an explicit deformation of the intermediate long
wave (ILW) hierarchy. We deduce from the transcendental property of vtop(t)
that for any solution v(t) to the Riemann hierarchy in C[[t]] satisfying
vx(t) ̸= 0, the function w(t; ϵ) defined by (4.4) with vtop being replaced
by v is a solution to the explicit deformation of the ILW hierarchy. In other
words, the composition of the quasi-Miura transformation

w = v +

∞∑

g=1

ϵ2g∂2xHg(Λ(s); vx, . . . , v3g−2),(4.5)

H1(Λ(s); v, vx) =
1

24
log vx +

s

24
v,(4.6)

Hg(Λ(s); v1, . . . , v3g−2) =

g∑

k=0

sg v−g+1+k
x(4.7)

×
∑

λ,µ∈Y3g−3−k

⟨λgτλ+1⟩g
m(λ)!

Qλµ vµ+1

v
ℓ(µ)
x

, g ≥ 2

with the Miura type transformation

(4.8) u = w +
∑

g≥1

(−1)g

22g(2g + 1)!
ϵ2gsgw2g
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gives the quasi-triviality of the ILW equation (equivalently of the whole ILW
hierarchy)

(4.9) ut = uux +
∑

g≥1

ϵ2gsg−1 |B2g|
(2g)!

u2g+1.

Here t = t1. In the derivation of (4.7) we used Theorem 3.4 and the rela-
tionship

Hg(v, vx, . . . , v3g−2; s) |sk=(2k−2)!s2k−1,k≥1(4.10)

= Hg(Λ(s); v(t), vx(t), v2(t), . . . ), g ≥ 1.

We conclude that the above (4.4)–(4.8) give a solution to Problem B in terms
of composition of an explicit quasi-Miura transformation with an explicit
Miura type transformation.

A solution to Problem C. It was conjectured in [11] that the quasi-
Miura map

(4.11) w = v +

∞∑

g=1

ϵ2g∂2xHg

(
Λ(s)Λ(−2s)2; vx, vxx, . . .

)

with s = 1 gives rise to an explicit deformation of the discrete KdV hierarchy.
This conjecture was proven in [12]. It says, more precisely, that for s = 1 the
composition of the following three transformations

w = v +

∞∑

g=1

ϵ2g∂2xHg(Λ(s)Λ(−2s)2; vx, vxx, . . . ),(4.12)

H1

(
Λ(s)Λ(−2s)2; vx

)
=

1

24
log vx −

s

8
v,

Hg

(
Λ(s)Λ(−2s)2; v1, . . . , v3g−2

)
(4.13)

=

3g−3∑

k=0

sk v−g+1+k
x

∑

k1+k2+k3=k

0≤k1,k2,k3≤g

(−2)k2+k3

×
∑

ρ,µ∈Y3g−3−k

⟨λk1
λk2

λk3
τρ+1⟩g

m(ρ)!
Qρµ vµ+1

v
l(µ)
x

, g ≥ 2,

w̃ =
w

2
, and u = w̃ +

∞∑

k=1

ϵ2k
32k+2 − 1

(2k + 2)!4k+1
w̃2k(4.14)
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gives the quasi-triviality of the discrete KdV equation

(4.15) ut =
1

ϵ

(
eu(x+ϵ) − eu(x−ϵ)

)
.

In the derivation of (4.13) we have used Theorem 3.4 and the relationship

Hg(vx, . . . , v3g−2; s)|sk=−(4k−1)(2k−2)!s2k−1(4.16)

= Hg

(
Λ(s)Λ(−2s)2; vx, . . . , v3g−2

)
, g ≥ 1.

5. Quasi-triviality of the Burgers hierarchy

The Burgers hierarchy

(5.1) utn =
1

(n+ 1)!
∂x ◦ (ϵ ∂x + u)n(u), n ≥ 0

is an integrable deformation of the Riemann hierarchy, whose first member
coincides with the Burgers equation (5). Here, as before we identify t0 with x.
We call a function τ = τ(t; ϵ) a viscous tau-function for the Burgers hierarchy
if τ satisfies

(5.2) τtn =
ϵn

(n+ 1)!
τ (n+1), n ≥ 0.

For τ(t; ϵ) being a viscous tau-function for the Burgers hierarchy, one can
check that the function u = u(t; ϵ) := ϵ ∂x log τ(t; ϵ) satisfies (5.1). So we also
call τ the tau-function of u. On the other hand, for any fixed solution u =
u(t; ϵ) ∈ C[[t; ϵ]] to the Burgers hierarchy, the tau-function τ ∈ C((ϵ))[[t]]
of u exists, and is unique up to multiplying by a non-zero constant (which
can depend on ϵ).

The partition function Z1D(t; ϵ) of 1D gravity (toy model of quantum
field theory)

(5.3) Z1D(t; ϵ) :=
1√
2πϵ

∫

R

e
1

ϵ

(
− s2

2
+
∑∞

n=0
tn

(n+1)!
sn+1
)
ds
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is known to be a particular viscous tau-function1 of the Burgers hierarchy.
The logarithm of Z1D(t; ϵ) admits the expansion

(5.4) logZ1D(t; ϵ) =:

∞∑

g=0

ϵg−1F1D
g (t).

By a direct computation of the Gaussian-type integral one obtains

(5.5) Z1D(x, 0, 0, · · · ; ϵ) = e
x2

2ϵ .

It follows that the initial value of the solution u1D corresponding to Z1D(t; ϵ)
is given by

(5.6) u1D(x, 0, 0, · · · ; ϵ) = x.

The series v1D(t) := ∂xF1D
0 (t) satisfies the inviscid Burgers hierarchy

(coinciding with the Riemann hierarchy), whose initial value reads

(5.7) v1D(x, 0, 0, · · · ) = x.

Therefore v1D(t) = vtop(t). For g ≥ 1, the following expressions for F1D
g are

known [30]:

F1D
1 (t)

∣∣
t0=0

=
1

2
log(1− t1),(5.8)

F1D
g (t)

∣∣
t0=0

=
∑

Γ∈Gc
g,val≥3

tλ(Γ)+1

|Aut(Γ)| (1− t1)E(Γ)
, g ≥ 2.(5.9)

Here the summation is taken over all g-loop connected graphs whose vertices
all have valences ≥ 3, and λ(Γ) :=

(
val(vertex1)− 2, . . . , val(vertexV (Γ))−

2
)
.
Introduce

F 1D
1 (vx) := −1

2
log vx,(5.10)

F 1D
g (v1, . . . , v2g−2) :=

∑

µ∈Y2g−2

∑

Γ∈Gc
g,val≥3

Qλ(Γ)µ

|Aut(Γ)|
vµ+1

v
l(µ)+g−1
1

, g ≥ 2.(5.11)

1Z1D(t; ϵ) is also a tau-function of the KP hierarchy, where the KP times T1 = t0,
T2 = t1, T3 = t2, . . . .
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Clearly, we have for g ≥ 2 that degF 1D
g = g − 1, degF 1D

g = 2g − 2. Apply-
ing Lemma 2.6 we obtain that

F1D
1 (t)

∣∣
t0=0

= F 1D
1

(
vsx
)
,(5.12)

F1D
g (t)

∣∣
t0=0

= F 1D
g

(
vs1, . . . , v

s
2g−2

)
, g ≥ 2,(5.13)

where vsk = vk(t)|t0=0, and we have used the Euler’s formula V (Γ)− E(Γ) =
1− g. Using (181)–(183) of [30] one can derive from (5.12)–(5.13) the fol-
lowing identities:

F1D
g (t) = F 1D

1

(
v1D1 (t)

)
,(5.14)

F1D
g (t) = F 1D

g

(
v1D1 (t), . . . , v1D2g−2(t)

)
, g ≥ 2.(5.15)

Using the transcendental property of v1D(t), we arrive at the following so-
lution to Problem D.

Theorem 5.1. Quasi-triviality of the Burgers hierarchy (5.1) has the ex-
pression

(5.16) u = v +

∞∑

g=1

ϵg∂xF
1D
g (v1, v2, . . . ) = v − ϵ

(
vxx
2vx

)
+O(ϵ2),

where F 1D
g are defined explicitly in (5.10)–(5.11).

6. Conclusion

Quasi-triviality of the Hodge hierarchy of a point and primitive Hodge in-
tegrals of a point are related via Q-matrices. The relation consists of two
parts.

Part a). From Hodge integrals to quasi-triviality of the Hodge hierarchy. I.e.,
one can use primitive Hodge integrals to represent quasi-triviality of the
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Hodge hierarchy:

w = v +
∑

g≥1

ϵ2g∂2xHg,

H1(v, vx; s) =
1

24
log(vx) +

s1
24
v,

Hg(v1, . . . , v3g−2; s)

=
∑

ϕ∈Y

1≤ϕ1,...,ϕℓ(ϕ)≤g

sϕ
m(ϕ)!

v−g+1+2|ϕ|−ℓ(ϕ)
x

×
∑

λ,µ∈Y3g−3+ℓ(ϕ)−2|ϕ|

⟨ch2ϕ−1 τλ+1⟩g
m(λ)!

Qλµ vµ+1

v
l(µ)
x

, g ≥ 2,

where ch2ϕ−1 := ch2ϕ1−1 · · · ch2ϕℓ(ϕ)−1; ch2ϕ−1 := 1 if ℓ(ϕ) = 0.

Part b). From quasi-triviality of the Hodge hierarchy to Hodge integrals. I.e.,
one can use quasi-triviality of the Hodge hierarchy to represent primitive
Hodge integrals. Write for g ≥ 2,

Hg(v1, . . . , v3g−2; s) =
∑

ϕ∈Y

1≤ϕ1,...,ϕℓ(ϕ)≤g

sϕ
m(ϕ)!

v−g+1+2|ϕ|−ℓ(ϕ)
x(6.1)

×
∑

µ∈Y3g−3+ℓ(ϕ)−2|ϕ|

cµg (ch2ϕ−1)
vµ+1

v
l(µ)
x

.

Then we have ∀λ, µ, ϕ ∈ Y,

(6.2)
〈
ch2ϕ−1τλ+1

〉
g
= m(λ)!

∑

λ∈Y3g−3+ℓ(ϕ)−2|ϕ|

Qλµ c
µ
g (ch2ϕ−1),

where g ≥ 2. We could also express Part a) as

(6.3) cµg (ch2ϕ−1) =
∑

λ∈Y3g−3+ℓ(ϕ)−2|ϕ|

Qλµ
〈
ch2ϕ−1τλ+1

〉
g
.

Appendix A. A straightforward proof of Lemma 3.2

In Theorem 3.4 we express the genus g Hodge potential Hg (g ≥ 1) in terms
of vm, m ≥ 0 with coefficients given by intersection numbers. Here v = v(t)
is the topological solution (2.8) to the dispersionless KdV hierarchy, and
vm = vm(t) := ∂mx (v(t)), x = t0. Recall that our proof in Section 3 uses
Lemma 3.2 on the existence of jet-variables representation of Hg; this lemma
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was proved in [11] based on the known existence of jet-variables representa-
tion [15, 16, 30] of the genus g Gromov-Witten potential of a point as well as
on the uniqueness of the Faber-Pandharipande equations (3.7)–(3.8). In this
appendix, to make the results of this paper self-contained, we give a straight-
forward proof of Lemma 3.2. Recall that [16, 20, 21, 30] Itzykson-Zuber’s
formal power series are defined by

(A.1) I0 = I0(t) := v(t), Ik = Ik(t) :=
∑

n≥0

tn+k
In0
n!

(k ≥ 1).

Observing that Ik = tk + · · · , we know that (A.1) gives an invertible map
between the t-variables t0, t1, t2, . . . and the I-variables I0, I1, I2, . . . . The
inverse map is given explicitly by [30]

(A.2) tk =

∞∑

n=0

(−1)nIn0
n!

In+k.

The following formula, which generalizes Lemma 2.4, was derived in [30]:

(A.3) I0 = v, Ik = δk,1 −
∑

µ∈Yk−1

L(µ)
vµ+1

v
1+|µ+1|
1

(k ≥ 1).

Formula (A.3) can also be obtained by the (generalized) Lagrange inversion
(cf. e.g. [22, 25]). Combining (A.3) with (A.2) gives

tk = δk,1 −
∞∑

n=0

(−1)nvn

n!

∑

µ∈Yn+k−1

L(µ)
vµ+1

v
1+|µ+1|
1

.(A.4)

Proof of Lemma 3.2. For γ = ch2i1−1 · · · ch2im−1 with i1, . . . , im ≥ 1, m ≥ 0
we have

Hg(γ; t) =
∑

m0,m1,m2,m3,···≥0
∑∞

i=0
(i−1)mi=3g−3−deg γ

〈
γ τm0

0 τm1

1 τm2

2 · · ·
〉
g

∞∏

i=0

tmi

i

mi!
.(A.5)
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(γ is defined as 1, ifm = 0.) Substituting the dilaton equation (3.14) in (A.5)
we find

Hg(γ; t) =
∑

m0,m1,m2,m3,···≥0
∑∞

i=0
(i−1)mi=3g−3−deg γ

(
∑∞

i=0mi + 2g − 3)!

(
∑∞

i=0mi + 2g − 3−m1)!

(A.6)

× ⟨γ τm0

0 τm2

2 τm3

3 · · · ⟩g
∞∏

i=0

tmi

i

mi!

=

∞∑

n=0

xn

n!

∑

m2,m3,m4,···≥0
∑∞

i=2
(i−1)mi=3g−3−deg γ+n

⟨γ τn0 τm2

2 τm3

3 · · · ⟩g
(1− t1)

∑∞
i=2 mi+2g−2+n

∞∏

i=2

tmi

i

mi!
.

Substituting (A.4) in (A.6) and noticing that the dependence of t1 inHg(γ; t)

is always through 1− t1, we find that there exists H̃g(v, v1, v2, v3, . . . ) ∈
C[[v, v1, v2, v3, · · · , v−1

1 ]] such that

Hg(γ; t) = H̃g

(
v(t), v1(t), v2(t), . . .

)
.

Then similarly to the proof of Lemma 3.3 we find that ∂H̃g/∂v = 0. Since

the dependence on v of H̃g(v, v1, v2, v3, . . . ) is a priori a power series, we can
take v = 0 when substituting (A.4) in (A.6). So, if we associate to vm degree
m− 1 for m ≥ 1, then H̃g has the degree 3g − 3− deg γ. Alternatively, if

we assign vm another degree m for m ≥ 1, then H̃g has degree 2g − 2. The
lemma is proved. □
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