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BPS coherent states have gravity dual descriptions in terms of
semiclassical geometries. The half BPS coherent states have been
well studied, however less is known about quarter BPS coherent
states. Here we provide a construction of quarter BPS coherent
states. They are coherent states built with two matrix fields, gen-
eralizing the half BPS case. These states are both the eigenstates
of the annihilation operators and in the kernel of the anomalous
dimension dilatation operator. Another useful labeling of quarter
BPS states is by representations of Brauer algebras and their pro-
jection onto a subalgebra C[Sn × Sm]. Here, the Schur-Weyl dual-
ity for the Brauer algebra plays an important role in organizing the
operators. One interesting subclass of these Brauer states are la-
beled by representations involving two Young tableaux. We obtain
the overlap between quarter BPS Brauer states and quarter BPS
coherent states, where the Schur polynomials are used. We also
derive superposition formulas transforming quarter BPS coherent
states to quarter BPS Brauer states. The entanglement entropy
of Brauer states as well as the overlap between Brauer states and
squeezed states are also computed.

1 Introduction 1112

2 Construction of quarter BPS coherent states 1114

3 Brauer states and their relation to quarter BPS

coherent states 1133

4 Squeezed states and their relation to Brauer states 1154

5 Discussion 1156

arXiv:1709.10093, (2017)

1111

https://arxiv.org/abs/1709.10093


✐

✐

“3-Lin” — 2021/7/5 — 19:45 — page 1112 — #2
✐

✐

✐

✐

✐

✐

1112 H. Lin and K. Zeng

Appendix A Orthogonality relation of Brauer states 1159

Appendix B Characters of Brauer algebra 1160

References 1164

1. Introduction

The gauge/gravity correspondence [1–3] has provided a remarkable way to
describe quantum gravity by quantum field theory on the boundary of the
spacetime. It nontrivially relates a quantum system without gravity to a
quantum theory with gravity. This correspondence reveals the emergence
of spacetime geometry from the degrees of freedom on the boundary. The
bulk spacetime dynamically emerges from the boundary quantum mechani-
cal system [4–7]. This duality further provides us a way to explore interesting
quantitative features of non-perturbative effects in string theory and quan-
tum gravity, since it allows us to perform calculations pertaining to the
gravity side by working in the quantum field theory side.

Based on very general arguments involving the supersymmetry algebra,
one can calculate exactly the correlation functions of certain class of oper-
ators in N = 4 SYM, namely the BPS operators. The properties of being
protected from quantum correction make these quantities valuable in the
study of the field theory and their relation with the dual gravity side. Peo-
ple now have a rather clear understanding of the dynamics of the half BPS
operators and the dual gravity picture. In the gravity dual, there are back-
reacted geometries that correspond to these BPS states in the field theory
side [8–10].

Coherent state [11, 12] is a very important concept in quantum mechan-
ics, often describing a state that most closely resembles the behavior of a
semiclassical state. Coherent states arise in a wide range of physical systems
and have applications in different fields such as quantum optics. It was real-
ized previously [13] that coherent states also play an important role in the
context of gauge/gravity duality. The half BPS coherent states have been
constructed, and their various properties have been studied. And in [14], the
half BPS coherent states in N = 4 SYM are related with the phenomenon
of topology change in quantum gravity.

However, the analog of the half BPS coherent states for the quarter
BPS generalization has not been completely known in the literature. In this
paper, we will extend the previous definition of half BPS coherent states to
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give a construction of quarter BPS coherent states, and study its relation
with other operators in the quarter BPS sector, such as the Brauer operators
[15, 16]. Then it is natural to consider more complicated quarter BPS states.
However, a systematic understanding of quarter BPS operators is not an easy
task. In this paper, we will consider the large N limit where the analysis
gets simplified since the dilation operator [16, 17] can be simplified. And the
construction of quarter BPS operators provides us necessary ingredients to
construct quarter BPS coherent states, which is a main topic in this paper.

The quarter BPS states [18, 19] play important roles in gauge/gravity
duality. Apart from the multi-trace basis, the quarter BPS states have rep-
resentation bases, including the Brauer basis, the restricted Schur basis, and
the flavor symmetry basis. These important aspects have been overviewed
in for example [7, 20]. In addition to these labelings, the quarter BPS co-
herent states serve as another labeling of the operators or states in the
Hilbert space. These states live in the same Hilbert space, hence one can
superpose them and compute transition probabilities between states, and
such operations have been performed in [14, 21–23]. Different states can be
distinguished from each other, by carefully observing correlation functions
[24–27].

Schur-Weyl duality and its generalizations provide us a powerful set of
tools to organize the gauge theory operators and to relate them with inter-
esting configurations in the dual gravity theory. In many previous examples,
the representation of the symmetric group is used to construct gauge invari-
ant operators that have interesting gravity interpretation [8–10, 14, 23]. In
this paper, we make use of the generalization of Schur-Weyl duality involv-
ing Brauer algebras, see [15, 20]. The Brauer algebras and Walled Brauer
algebras [28–30] can be regarded as a generalization of the group algebra
of symmetric group and play a similar role in constructing gauge invariant
operators. We will call the operators labeled by representations of Brauer
algebra, Brauer operators, and the corresponding states in the Hilbert space,
Brauer states. A subclass of Brauer operators gives us useful examples of
quarter BPS operators. Brauer states share many features that are similar
to Young tableau states in [8, 14, 23].

We will consider three sets of labelings of the states: the trace product
basis, the coherent states, and the Brauer states. Their relations will be
studied. We will calculate the overlap of these different states. It is inter-
esting that we obtain many results involving the Brauer states which are
very similar with respect to our previous results of Young tableau states
in [23]. Besides, we can write superposition formulas transforming between
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quarter BPS Brauer states and quarter BPS coherent states that resemble
our previous superposition formulas that describe topology change [14, 23].

The organization of this paper is as follows. In Section 2, we describe
quarter BPS operators of the N = 4 SYM in the large N limit, and based
on these results, we construct the quarter BPS coherent states. Then in
Section 3, we analyze the Brauer states and their relation to other states
including quarter BPS coherent states. Afterwards in Section 4, we analyze
the squeezed states that generalize the above coherent states. In Section 5,
we discuss our results and draw conclusions. Finally, we include Appendices
A and B for more details on Brauer algebras.

2. Construction of quarter BPS coherent states

2.1. Trace product basis

To begin with, we describe the general form of a multi-trace operator built
from two complex scalar fields. We can make use of symmetric group, since
the trace structure can be captured by a permutation α ∈ Sn+m. We consider
operators of the form

(2.1) tr(αZ⊗n ⊗ Y ⊗m) = Zi1
iα(1)

Zi2
iα(2)

· · ·Zin
iα(n)

Y
in+1

iα(n+1)
Y

in+m

iα(n+m)
, α ∈ Sn+m.

For example, for the case n = m = 2, α = 1 corresponds to (trZ)2(trY )2, α =
(1234) corresponds to tr(Z2Y 2), and α = (1324) corresponds to tr(ZY ZY ).
Note that if two permutations α, α′ are conjugate to each other by an ele-
ment h ∈ Sn × Sm, they correspond to the same state tr(αZ⊗n ⊗ Y ⊗m) =
tr(α′Z⊗n ⊗ Y ⊗m). Therefore we make use of Sn × Sm equivalence class of
Sn+m: Two elements α, α′ ∈ Sn+m are in the same Sn × Sm equivalence class
[α] = [α′] if and only if α = hαh−1 for some h ∈ Sn × Sm. As a special case,
we note that for m = 0, this basis gives us all multi-trace operators, and is a
basis of the half BPS operators, see [14]. More precisely, the basis is labeled
by conjugacy class of Sn, which is just given by a sequence (w1, w2, . . . )
where ws means that there are ws cycles of length s in the conjugacy class.
The Brauer operators, which we will introduce later, can be expanded by
the above basis. See Appendix A of [15] for some examples. Therefore in the
following, we will consider all states labeled by Sn × Sm equivalence class
of Sn+m.

The Hilbert space of all two-matrix multi-trace operators has a tensor
product structure. For the case of half BPS operators, the Hilbert space
has a tensor product structure given by the momentum number k and H =
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⊗

k Hk, where each Hk is created by a†k ↔ tr( Z√
N
)k corresponding to a single

trace operator. Write the operator by a permutation, then a single trace
corresponds to a permutation that has only one cycle. For the more general
two-matrix case, we also expect that a factor of the tensor product is created
by a single trace operator. A general single trace operator can be written as

(2.2) tr




∏

j

ZnjY mj



 .

Note that since tr(Zk1Y k2 · · ·Zkn) = tr(Zk1+knY k2 · · · ), we can always take
a state into the standard form tr(

∏

j Z
njY mj ) where nj ,mj ≥ 1. To label

these states, we define the following sets

K0 = {k⃗ = (k1, 0) or (0, k2) | k1, k2 ≥ 1},(2.3)

K2 = {k⃗ = (k1, k2) | k1, k2 ≥ 1},(2.4)

K4 = {k⃗ = (k1, k2, k3, k4) | k1, k2, k3, k4 ≥ 1},(2.5)

· · ·
K2p = {k⃗ = (k1, . . . , k2p) | ki ≥ 1, i = 1, . . . , 2p}, . . .(2.6)

However, there is some redundancy in the above labeling since the traces
have cyclic invariant property. For example, consider k⃗ = (1, 1, 3, 1) and k⃗′ =
(3, 1, 1, 1), they are different as vectors in K4. However

(2.7) tr(ZY Z3Y ) = tr(Z3Y ZY ),

by cyclic property of trace. More generally, if two k⃗ are related by a cyclic
permutation, they actually define the same multi-trace operator. Consider
a group action of the abelian group Zp on K2p for p ≥ 1. Write λ for the
generator of Zp, or in other words Zp = ⟨λ⟩ with λp = id. Then define the
action of λ on K2p

(2.8) λ · (k1, k2, . . . , k2p−1, k2p) = (k2p−1, k2p, k1, k2, . . . , k2p−3, k2p−2).

And we define the quotient K̃2p = K2p/Zp where two k⃗, k⃗′ are equivalent to

each other if and only if k⃗ = λl · k⃗′ for some l. Then we define the equivalence
class [⃗k], where from the above [⃗k′] = [⃗k]. Note that Z1 = {id} is trivial,
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therefore K2 = K̃2, and also K0 = K̃0. Then we define the set

(2.9) K̃ = K0 ∪K2 ∪ K̃4 ∪ K̃6 ∪ · · ·

Then the Hilbert space can be written as

(2.10) H =
⊗

[⃗k]∈K̃

H
[⃗k]
,

whereH
[⃗k]

is spanned by

[

tr
(

Z√
N

)k1
(

Y√
N

)k2 · · ·
]w[k⃗]

, w
[⃗k]

= 0, 1, 2, . . . . Now

we identify the operator:

(2.11) a†
[⃗k]

↔ O
[⃗k]

= tr

[(
Z√
N

)k1
(

Y√
N

)k2

· · ·
]

.

A complete trace product basis is then provided by

(2.12)
∏

[⃗k]∈K̃

a
†w[k⃗]

[⃗k]
|0⟩.

Using this notation, the half BPS case corresponds to
⊗

[⃗k]∈K0
H

[⃗k]
. In

the half BPS case, states
∏

k a
†wk

k |0⟩ with∑k kwk = n correspond to multi-
trace operators labeled by an equivalence class of Sn. In the two matrix case,

states
∏

[⃗k]∈K̃ a
†w[k⃗]

[⃗k]
|0⟩ with

∑

[⃗k]
((
∑

i k2i+1)w[⃗k]
) = n,

∑

[⃗k]
((
∑

i k2i)w[⃗k]
) =

m correspond to multi-trace operators labeled by an Sn × Sm equivalence
class of Sn+m. That is, a sequence

(2.13) w = (w
[⃗k]
)
[⃗k]∈K̃

with
∑

[⃗k]
((
∑

i k2i+1)w[⃗k]
)=n,

∑

[⃗k]
((
∑

i k2i)w[⃗k]
)=m uniquely corresponds

to an Sn × Sm equivalence class of Sn+m. And each w
[⃗k]

is the number of

cycles of type [⃗k] in the permutation. We use notation w to distinguish our
previous notation w⃗ = (w1, w2, . . . ) in the half BPS case, see for example
[14, 23].
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The inner product is a very important structure for the Hilbert space.
Let α, β ∈ Sn+m, with n,m ≥ 1. we consider the inner product

⟨tr(αZ⊗n ⊗ Y ⊗m)†tr(βZ⊗n ⊗ Y ⊗m)⟩(2.14)

=
∑

σ∈Sn×Sm

n∏

k=1

δikiβ(σ(k))
δ
iσ(k)

iα−1(k)

n+m∏

h=n+1

δihiβ(σ(h))
δ
iσ(h)

iα−1(h)

=
∑

σ∈Sn×Sm

tr(α−1σ−1βσ)

=
∑

σ∈Sn×Sm

NC(α−1σ−1βσ),

where in the second line, we sum over σ ∈ Sn × Sm. And in the last line
we use C(α) to represent the number of cycles in the permutation α. Note
that this expression contains all orders of N , and highest order of N ap-
pears only when α−1σ−1βσ = 1, C(1) = n+m. Therefore Nm+n appear
only when α, β are in the same equivalence class, that is [α] = [β]. Using
appropriate normalization:

⟨tr(αZ⊗n ⊗ Y ⊗m)†tr(βZ⊗n ⊗ Y ⊗m)⟩(2.15)

=
∑

σ∈Sn×Sm

NC(α−1σ−1βσ)

= Nm+n(δ[α],[β]






∑

σ∈Sn×Sm

α=σ−1ασ

1




+O(1/N)).

And in the last line, δ[α],[β] equals 1 only when α, β are in the same Sn × Sm

equivalence class of Sn+m, which is also when tr(αZ⊗nY ⊗m)=tr(βZ⊗nY ⊗m).
The coefficient

∑

σ∈Sn×Sm

α=σ−1ασ
1 is determined by the Sn × Sm equivalence

class of α. The equivalence class [α] can be represented by the sequence w,
then we have

(2.16)
∑

σ∈Sn×Sm

α=σ−1ασ

1 =
∏

[⃗k]∈K

N([⃗k], w
[⃗k]
),

where

(2.17) N([⃗k], w
[⃗k]
) =

{

kwkwk! [⃗k] ∈ K0, k⃗ = (k, 0) or k⃗ = (0, k)

w
[⃗k]
! [⃗k] /∈ K0.
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Therefore we have

〈

tr

(

α

(
Z√
N

)⊗n

⊗
(

Y√
N

)⊗m
)†

tr

(

β

(
Z

N

)⊗n

⊗
(

Y√
N

)⊗m
)〉

(2.18)

= δ[α],[β]
∏

[⃗k]∈K̃

N([⃗k], w
[⃗k]
) +O(1/N),

where we have worked in the large N limit. The above formula completely
determines the inner product in the Hilbert space of quarter BPS operators.
Using our notation (2.12), the inner product can be written as

(2.19) ⟨0|aw[k⃗]

[⃗k]
a
†w[k⃗]

[⃗k]
|0⟩ = N([⃗k], w

[⃗k]
) +O(1/N),

and we get the commutation relation for the operators

(2.20) [a
[⃗k]
, a†

[⃗k]′
] = N([⃗k], 1)δ

[⃗k],[⃗k′]
+O(1/N).

The trace product basis is very useful for the computation of inner prod-
ucts of other operators, since we can expand other operators in terms of trace
product basis.

2.2. Coherent states in a general form

In the rest of this Section, we work in the infinite N limit. With the notation
of Sec. 2.1, a general coherent state |Coh⟩ is

(2.21) exp




∑

[⃗k]∈K̃

c
[⃗k]
a†
[⃗k]



|0⟩.

The condition for coherent state is

(2.22) a
[⃗k]
|Coh⟩ = c

[⃗k]
|Coh⟩ for [⃗k] ∈ K̃,

and we need to check this. Using the commutation relations

(2.23) [a
[⃗k]
, a†

[⃗k′]
] =

{

kδ
[⃗k],[⃗k′]

[⃗k] ∈ K0, [⃗k] = (k, 0) or [⃗k] = (0, k)

δ
[⃗k],[⃗k′]

[⃗k] /∈ K0,

(2.24) [a
[⃗k]
, a

[⃗k′]
] = 0,
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we have that

a
[⃗k]
|Coh⟩ = a

[⃗k]

∏

[⃗l]∈K̃

exp(c
[⃗l]
a†
[⃗l]
)|0⟩

=
∏

[⃗l]∈K̃
[⃗l] ̸=[⃗k]

exp(c
[⃗l]
a†
[⃗l]
)



a
[⃗k]

∑

j

(c
[⃗k]
a†
[⃗k]
)j

j!



|0⟩

=
∏

[⃗l]∈K̃
[⃗l] ̸=[⃗k]

exp(c
[⃗l]
a†
[⃗l]
)



N([⃗k], 1)c
[⃗k]

∑

j

j(c
[⃗k]
a†
[⃗k]
)j−1

j!



|0⟩

= N([⃗k], 1)c
[⃗k]
|Coh⟩,(2.25)

where in the third line we have used [a
[⃗k]
, a†j

[⃗k]
] = N([⃗k], 1)ja†j−1

[⃗k]
. And thus

we have proved that the state exp(
∑

[⃗k]∈K̃ c
[⃗k]
a†
[⃗k]
)|0⟩ is a coherent state.

The coherent states have overlaps with the trace product states. Write
a general trace product state as

(2.26)
∏

[⃗k]∈K̃

a
†w[k⃗]

[⃗k]
|0⟩.

We consider overlap

⟨0|
∏

[⃗k]∈K̃

a
w[k⃗]

[⃗k]
|Coh⟩ = ⟨0|

∏

[⃗k]∈K̃

a
w[k⃗]

[⃗k]

∏

[⃗k]∈K

exp(c
[⃗k]
a†
[⃗k]
)|0⟩(2.27)

=
∏

[⃗k]∈K̃

∑

j

(c
[⃗k]
)j

j!
⟨0|aw[k⃗]

[⃗k]
a†j
[⃗k]
|0⟩

=
∏

[⃗k]∈K̃

(c
[⃗k]
)w[k⃗]

w
[⃗k]
!

N([⃗k], w
[⃗k]
),

where

(2.28) N([⃗k], w
[⃗k]
) =

{

kwkwk! [⃗k] ∈ K0, [⃗k] = (k, 0) or [⃗k] = (0, k)

w
[⃗k]
! [⃗k] /∈ K0.
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We will use notation k ↔ (k, 0), k̄ ↔ (0, k), and define

(2.29) ck =
Λk

k
, ck̄ =

Λk̄

k̄
.

We use this definition to make our results to be compatible with our previous
half BPS case [23]. Then the above results can be written as

(2.30)

〈

0|
∏

[⃗k]∈K̃

a
w[k⃗]

[⃗k]
|Coh

〉

=

∞∏

k=1

Λwk

k

∞∏

k̄=1

Λwk̄

k̄

∏

[⃗k]∈K̃−K0

(c
[⃗k]
)w[k⃗] .

We then consider inner product between coherent states. To simplify
notation, we define

(2.31)

|Coh1⟩ = exp




∑

[⃗k]∈K̃

α
[⃗k]
a†
[⃗k]



| 0⟩,

|Coh2⟩ = exp




∑

k⃗∈K̃

β
[⃗k]
a†
[⃗k]



| 0⟩.

And we also define

(2.32) αk =
Λk

k
, αk̄ =

Λk̄

k̄
, βk =

Bk

k
, βk̄ =

Bk̄

k̄
.

Then the overlap between two coherent states is

⟨Coh2|Coh1⟩ =
∑

{w[k⃗]}
⟨0|
∏

[⃗k]∈K̃

(β∗
[⃗k]
)w[k⃗]

w
[⃗k]
!

a
w[k⃗]

[⃗k]
|Coh1⟩

=
∑

{w[k⃗]}

∏

[⃗k]∈K̃

(β∗
[⃗k]
)w[k⃗]

w
[⃗k]
!

(α
[⃗k]
)w[k⃗]

w
[⃗k]
!

N([⃗k], w
[⃗k]
)

=
∑

{w[k⃗]}

∏

k

(B∗
kΛk)

wk

kwkwk!

∏

k̄

(B∗
k̄
Λk̄)

wk̄

k̄wk̄wk̄!

∏

[⃗k]∈K̃−K0

(β∗
[⃗k]
α
[⃗k]
)w[k⃗]

w
[⃗k]
!

= exp




∑

k

1

k
B∗

kΛk +
∑

k̄

1

k̄
B∗

k̄Λk̄ +
∑

[⃗k]∈K̃−K0

β∗
[⃗k]
α
[⃗k]



 .(2.33)
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We can consider the case when

(2.34)
Λk = xk1 + xk2 + · · · , Bk = yk1 + yk2 + · · · ,
Λk̄ = xk̄1̄ + xk̄2̄ + · · · , Bk̄ = yk̄1̄ + yk̄2̄ + · · · .

Then

exp

(
∑

k

1

k
B∗

kΛk

)

= exp

(
∑

k

1

k
(y∗k1 + y∗k2 + · · · )(xk1 + xk2 + · · · )

)

=
∏

i,j

exp

(
∑

k

(xiy
∗
j )

k

k

)

=
∏

i,j

1

1− xiy∗j
.(2.35)

This result agrees perfectly with our previous results about half BPS
operators [23].

2.3. Quarter BPS coherent states and dilatation operator

In [18, 19], a systematic construction of quarter BPS operators is given, and
the construction is based on the following symmetrized trace operator

(2.36) Ar1···rp = tr(W(r1 · · ·Wrp))

where ri = 1, 2 and we assume that W1 = Z,W2 = Y . Since all the indices
are symmetrized, and the operator Ar1···rp only depends on how many ri are
1 and how many ri are 2, we write

(2.37) A(n,m) = A1, . . . , 1
︸ ︷︷ ︸

n

,2, . . . , 2
︸ ︷︷ ︸

m

with n+m = p.
By definition

(2.38) Ar1···rp =
∑

σ∈Sp

1

p!
tr(Wrσ(1)

· · ·Wrσ(p)
).
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Therefore A(n,m) is a linear combination of our previously defined operators
in Section 2.1:

(2.39) A(n,m) =
∑

[⃗k]∈K̃(n,m)

C([⃗k])tr(Zk1Y k2Zk3Y k4 . . . )

where C([⃗k]) is some constant to be determined, and

(2.40) K̃(n,m) =

{

[⃗k] ∈ K̃ |
∑

i

k2i−1 = n,
∑

i

k2i = m

}

.

However, the labeling K̃ is less convenient for our later study, since we
will consider the action of symmetric group on the operators, which takes a
complicated form using the labeling K̃. Therefore, we will introduce a new
but equivalent labeling of single trace operators. We see that the sequence
of matrices Wr = Z, Y resemble a 1d lattice, where each lattice site has spin
up and down. So we define the set

Vn,m = {f ∈ Map({1, . . . , n+m}, {↑, ↓}) |(2.41)

n = #{i | f(i) =↑}, m = #{i | f(i) =↓}}.

There is a left action of the group Sn+m on Vn,m:

(2.42) (σf)(i) = f(σ−1(i)), ∀σ ∈ Sn+m.

Here we use σ−1 to define this action to make the action compatible with
the group structure. We can check that

(2.43) ((σ1σ2)f)(i) = f(σ−1
2 σ−1

1 (i)) = (σ1(σ2f))(i).

The cyclic group Zn+m is a subgroup of Sn+m, therefore Zn+m ⊂ Sn+m acts
on Vn,m. Denote λ the generator of Zn+m, which satisfies λn+m = 1. We can
write the group action as

(2.44) (λkf)(i) = f(i− k).

The cyclic property of trace tells us that lattice configurations that differ
only by a cyclic permutation should be considered as equivalent. Hence we
define the quotient Ṽn,m = Vn,m/Zn+m, where we identify f ∼ λkf , and write
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[f ] for the corresponding equivalence class in Ṽn,m. For each [f ] ∈ Ṽn,m, we
have a corresponding operator

(2.45) O[f ] = tr

(
n+m∏

i=1

Wfi

)

where we identify W↑ = Z,W↓ = Y . By the cyclic property of the trace, the
definition of O[f ] does not depend on the choice of representative f . The

advantage of using Ṽ to label the single trace operator is that we can easily
write down the action of symmetric group Sn+m on the operators. First, the
action of Sn+m on Vn,m induces an action on the quotient Ṽn,m, and further
induces an action on the operator labeled by Ṽn,m:

(2.46) σO[f ] = O[σf ], ∀σ ∈ Sn+m.

Having shown the advantage of using Ṽ , we still need to show why this
labeling is equivalent to our previous one K̃. To see this, we establish a
bijection between the two sets: φ : K̃(n,m) ∼−→ Ṽn,m. On the one hand, for

a [⃗k] ∈ K̃(n,m), and write k⃗ = (k1, k2, . . . , k2j), we define the corresponding

φ([⃗k]) = [f ] = [↑k1↓k2↑k3↓k4 · · · ]. The f =↑k1↓k2↑k3↓k4 · · · is defined by the
following:

(2.47)
f(1) = · · · f(k1) =↑, f(k1 + 1) = · · · f(k1 + k2) =↓,
f(k1 + k2 + 1) = · · · f(k1 + k2 + k3) =↑, . . . .

On the other hand, for every [f ] ∈ Ṽ(n,m), we can define the corresponding

[⃗k] = φ−1([f ]) ∈ K̃(n,m) by the following:

φ−1([f ]) ∈ K̃(n,m) =







[(n, 0)], if [f ] = [↑n] ∈ Ṽn,0

[(0,m)], if [f ] = [↓m] ∈ Ṽ0,m

[(k1, k2, k3, k4, . . . )], if [f ] = [↑k1↓k2↑k3↓k4 · · · ]
∈ ⋃n,m≥1 Ṽn,m.

(2.48)

The above formula is complete since [↑n] is the only element in Ṽn,0, and
[↓m] is the only element in Ṽ0,m, while every element in

⋃

n,m≥1 Ṽn,m can be

written in the form [↑k1↓k2 · · · ].
Then we can move on to consider the dilatation operator, it will turn

out that our above notation will give a simple expression for the operator.
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According to [16, 17], the dilatation operator can be expanded in power
series of the coupling constant as

(2.49) D̂ =
∑

l=0

(
g2YM

16π2

)l

D̂2l,

where D̂2l is the l loop dilatation operator. We also consider the N → ∞
limit. Since the coupling constants are related by g2YMN = λ, where λ is
the ’t Hooft coupling, we can write

(2.50) D̂ = D̂0 +
λ

16π2N
D̂2.

Therefore, for one loop dilatation operator acting on some operator, we will
consider:

(2.51)
λ

16π2N
D̂2O(Z, Y ).

The zero loop operator can be written as D̂0 = tr(Z d
dZ + Y d

dY ). And one
can easily calculate that the action of the zero loop dilation operator on a
general multi-trace operator tr(αZ⊗n ⊗ Y ⊗m) for α ∈ Sn+m is:

(2.52) D̂0tr(αZ
⊗n ⊗ Y ⊗m) = (n+m)tr(αZ⊗n ⊗ Y ⊗m).

We can write the above formula in our previous notation

(2.53) D̂0

∏

[⃗k]∈K̃

a
†w[k⃗]

[⃗k]
|0⟩ =




∑

[⃗k]∈K̃

w
[⃗k]

(
∑

i

ki

)


∏

[⃗k]∈K̃

c
†w[k⃗]

[⃗k]
|0⟩,

or we can write

(2.54) [D̂0, a
†
[⃗k]
] =

∑

i

ki.

Now for the one loop operator:

(2.55) D̂2 = −2tr

(

[Z, Y ]

[
d

dZ
,
d

dY

])

,

our aim is to calculate

(2.56)
λ

16π2N
D̂2O[f ] =

λ

16π2N
D̂2tr

(
n+m∏

i=1

Wfi

)

.



✐

✐

“3-Lin” — 2021/7/5 — 19:45 — page 1125 — #15
✐

✐

✐

✐

✐

✐

Quarter BPS coherent states and Brauer algebras 1125

In the N → ∞ limit, we write D̂′
2 =

1
N D̂2, which can be shown to satisfy

the Leibniz rule. To write down the D̂′
2 we first need to introduce some

special permutation operators that will be useful, namely the swap operator
Pi,i+1 ∈ Sn+m, which is defined by:

(2.57) Pi,i+1(i) = i+ 1, Pi,i+1(i+ 1) = i, Pi,i+1(j) = j, for j ̸= i, i+ 1,

where we identify the indices n+m+ 1 ∼ 1. Then using the notations (2.45)–
(2.57), the one loop dilatation operator can be easily written as

(2.58)
1

2
D̂′

2 =

n+m∑

i=1

(I− Pi,i+1).

Another advantage of using Ṽ for the labeling is that the symmetrized
trace operator A(n,m) can be written in a simple form:

(2.59) A(n,m) =
1

(n+m)!

∑

σ∈Sn+m

σO[f0],

where [f0] ∈ Ṽn,m can be given by

f0(1) = · · · = f0(n) =↑, f0(n+ 1) = · · · = f0(n+m) =↓ .

Here as before, we use a† to represent the corresponding creation oper-
ator, for example

(2.60) a†[f ] ↔ O[f ], a†(n,m) ↔ A(n,m).

These are analogous to the relation (2.11).

Proposition 2.1. The following operator defined by

(2.61) O(n,m) =
∑

li≥0
l1+l2+···+lm=n

tr(Z l1Y Z l2Y · · ·Z lmY )

for m > 0, and O(n,0) = tr(Zn) for m = 0, is proportional to the symmetrized
operator A(n,m).



✐

✐

“3-Lin” — 2021/7/5 — 19:45 — page 1126 — #16
✐

✐

✐

✐

✐

✐

1126 H. Lin and K. Zeng

Proof. For m > 0, we can write O(n,m) as

(2.62) O(n,m) =
∑

[f ]∈Ṽn,m

c[f ]O[f ]

and we need to find the coefficient c[f ].

First, we see that for any [f ] ∈ Ṽ(n,m), c[f ] ≥ 1. This is because we can

describe a [f ] ∈ Ṽ(n.,m) by saying that there are first l1 Zs followed by a Y
and then l2 Zs followed by a Y and so on.

Second, for a generic sequence l1, l2, . . . , lm, the new sequence l′1 =
lλ(1), l

′
2 = lλ(2), . . . , l

′
m = lλ(m) for a λ ∈ Zm corresponds to the same opera-

tor. For each λ ∈ Zm we have a new but equivalent sequence, thus if we forget
the over counting, a generic operator O[f ] is counted m times in the summa-
tion. However, there is possibility of over counting since it is possible that for
some l1, l2, . . . , lm and some λ we have l1 = lλ(1), l2 = lλ(2), . . . , lm = lλ(m).
Therefore for general cases, the results should be m divided by the number
of group elements in Zm that keeps the sequence l1, . . . , lm unchanged. Re-
member that we use [f ] ∈ Ṽ(n,m) to label the operator, and if the sequence
l1, . . . , lm corresponds to [f ], then the number of group elements in Zm that
fixes the sequence l1, . . . , lm is the same as |Stabf (Zn+m)|, where

(2.63) Stabf (Zn+m) = {σ ∈ Zn+m | σf = f}.

Therefore, for any [f ] ∈ Ṽn,m, the coefficient c[f ] can be written as

(2.64) c[f ] =
m

|Stabf (Zn+m)| .

And we can write O(n,m) as

(2.65) O(n,m) =
∑

[f ]∈Ṽ(n,m)

m

|Stabf (Zn+m)|O[f ].

For the case m = 0, O(n,0) = tr(Zn) by definition.
Now we consider the symmetrized operator A(n,m), which can be written

in the form

(2.66) A(n,m) =
∑

[f ]∈Ṽn,m

c′[f ]O[f ].
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We can also write the definition of A(n,m)

(2.67) A(n,m) =
1

(n+m)!

∑

σ∈Sn+m

σO[f0].

For any f , we can always find a σf such that σff0 = f . Define I ⊂ {1, 2, . . . ,
n+m} by

(2.68) I = {i | f(i) =↑}.

And similarly define J ⊂ {1, 2, . . . , n+m} by

(2.69) J = {j | f(j) =↓}.

Then we define SI ⊂ Sn+m to be the group of permutation of indices in I
and similarly for SJ . Then for any π ∈ SI × SJ , we have

(2.70) πf = f, ⇒ (πσf )f0 = f.

Therefore each f is counted |SI | × |SJ | times. Then consider the equivalence
class [f ]. We need to count the number of elements in the equivalence class,
which is given by (n+m)/|Stabf (Zn+m)|. The coefficient c′[f ] is then the

product of the overall 1
(n+m)! with the above two factors, which is

c′[f ] =
1

(n+m)!
|SI | × |SJ |

n+m

|Stabf (Zn+m)|(2.71)

=
n!m!

(n+m)!

(n+m)

|Stabf (Zn+m)| .

And we have

(2.72) A(n,m) =
∑

[f ]∈Ṽn,m

n!m!

(n+m)!

(n+m)

|Stabf (Zn+m)|O[f ].

Therefore, for m > 0, we have

(2.73) A(n,m) =
n!m!

(n+m)!

(n+m)

m
O(n,m).

Here, the formula is not symmetric in n and m since the definition of O(n,m)

is not symmetric in n and m.
And for m = 0, A(n,0) = tr(Zn) = O(n,0). □
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From the calculation in the above proof, or specifically from the equa-
tion (2.72), we can easily express a†(n,m) by linear combination of a†[f ] as
follows:

(2.74) a†(n,m) =
∑

[f ]∈Ṽn,m

n!m!

(n+m)!

(n+m)

|Stabf (Zn+m)|a
†
[f ].

Then we can also write down the commutation relations

[a(n,m), a
†
(n′,m′)] = δnn′δmm′

∑

[f ]∈Ṽn,m

(
n!m!

(n+m)!

(n+m)

|Stabf (Zn+m)|

)2

(2.75)

for n,m ≥ 1

and

(2.76) [a(n,0), a
†
(n′,0)] = nδnn′ , [a(0,m), a

†
(0,m′)] = mδmm′ .

It’s also easy to see that the symmetrized trace operator A(n,m) is in the

kernel of 1
2D̂

′
2. Note that

(I− Pi,i+1)
∑

σ∈Sn+m

σ =
∑

σ∈Sn+m

σ −
∑

σ∈Sn+m

Pi,i+1σ(2.77)

=
∑

σ∈Sn+m

σ −
∑

σ∈Sn+m

σ = 0.

Therefore (I− Pi,i+1)A(n,m) = 0 and we have

(2.78)
1

2
D̂′

2A(n,m) = 0.

Proposition 2.2. The quarter BPS coherent states

(2.79) |Coh
1

4 ⟩ = exp




∑

n,m≥0

c(n,m)a
†
(n,m)



|0⟩

where c(n,m) are complex coefficients, are annihilated by D̂′
2 and are eigen-

states of the annihilation operators a(n,m).
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Proof. The quarter BPS coherent states are

(2.80) |Coh
1

4 ⟩ = exp




∑

n,m≥0

c(n,m)a
†
(n,m)



|0⟩

where c(n,m) are complex coefficients. We can then easily prove that expo-

nential of the symmetrized operator is still in the kernel of D̂′
2

1

2
D̂′

2 exp




∑

n,m≥0

c(n,m)a
†
(n,m)



|0⟩(2.81)

=
1

2
D̂′

2

∏

n,m≥0

∑

l≥0

1

l!
(c(n,m)a

†
(n,m))

l|0⟩

=
1

2
D̂′

2

∑

l(n,m)

∏

n,m≥0

1

l(n,m)!
(c(n,m)a

†
(n,m))

l(n,m) |0⟩

=
∑

l(n,m)

1

2
D̂′

2

∏

n,m≥0

1

l(n,m)!
(c(n,m)a

†
(n,m))

l(n,m) |0⟩ = 0,

where in the last line we have used the fact that 1
2D̂

′
2a

†
(n,m) = 0 and the

action of 1
2D̂

′
2 satisfies Leibniz rule.

Now we show that the state defined above is the eigenstate of the anni-
hilation operators. First, consider the case when n,m ≥ 1

a(n,m) exp




∑

n,m≥0

c(n,m)a
†
(n,m)



| 0⟩(2.82)

=




∑

[f ]∈Ṽn,m

n!m!

(n+m)!

(n+m)

|Stabf (Zn+m)|a[f ]





× exp




∑

n,m≥0

c(n,m)a
†
(n,m)



|0⟩.
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And for [f ] ∈ Ṽ(n,m)

a[f ] exp




∑

n,m≥0

c(n,m)a
†
(n,m)



|0⟩(2.83)

= a[f ] exp




∑

n,m≥0

∑

[f ]∈Ṽn,m

c(n,m)
n!m!

(n+m)!

(n+m)

|Stabf (Zn+m)|a
†
[f ]



|0⟩(2.84)

=
n!m!

(n+m)!

(n+m)

|Stabf (Zn+m)|c(n,m) exp




∑

n,m≥0

c(n,m)a
†
(n,m)



|0⟩.

Combining the above two formulas, we have

a(n,m) exp




∑

n,m≥0

c(n,m)a
†
(n,m)



| 0⟩(2.85)

= c(n,m)

∑

[f ]∈Ṽn,m

(
n!m!

(n+m)!

(n+m)

|Stabf (Zn+m)|

)2

× exp




∑

n,m≥0

c(n,m)a
†
(n,m)



| 0⟩.

Then we consider the case m = 0. In this situation, Vn,0 contains only

one element f =↑n, and |Stab↑n(Zn)| = n. Then we have a†(n,0) = a†n which
corresponds to our previous half BPS operator. The derivation is formally
the same.

a(n,0) exp




∑

n,m≥0

c(n,m)a
†
(n,m)



| 0⟩(2.86)

= exp




∑

n≥1,m≥0

c(n,m)a
†
(n,m)



 an exp

(
∑

k

c(k,0)a
†
k

)

| 0⟩

= exp




∑

n≥1,m≥0

c(n,m)a
†
(n,m)



nc(n,0) exp

(
∑

k

c(k,0)a
†
k

)

| 0⟩

= nc(n,0) exp




∑

n,m≥0

c(n,m)a
†
(n,m)



| 0⟩.
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Similarly, for n = 0, we have

a(0,m) exp




∑

n,m≥0

c(n,m)a
†
(n,m)



| 0⟩(2.87)

= mc(0,m) exp




∑

n,m≥0

c(n,m)a
†
(n,m)



| 0⟩.

□

The stabilizer subgroup Stabf (Zn+m) plays an important role in our
above results. Basically, it determines the normalization of the symmetrized
operator A(n,m). It’s easy to see that they satisfy the following formula

(2.88)
∑

[f ]∈Ṽn,m

n!m!

(n+m)!

(n+m)

|Stabf (Zn+m)| = 1.

2.4. Inner products with quarter BPS coherent states

The truncated coherent state is

(2.89) |Coh
1

4 (x, y, c)⟩ = exp

(
∑

n

Λn

n
a†(n,0) +

∑

m

Λ′
m

m
a†(0,m) + ca†(1,1)

)

|0⟩,

with

(2.90) Λn = xn1 + xn2 + · · · , Λ′
m = ym1 + ym2 + · · · .

Using equation (2.33) for the overlap of coherent states in a general form,
we can directly write the overlap between two truncated coherent states as
follows:

(2.91) ⟨Coh
1

4 (x, y, c)|Coh
1

4 (x′, y′, c′)⟩ =
∏

i,j

1

1− x′ix
∗
j

∏

i,j

1

1− y′iy
∗
j

exp(c′c∗).

Then for the special case where x′ = x, y′ = y, c′ = c, we get the norm-
squared of a truncated coherent state:

(2.92) ⟨Coh
1

4 (x, y, c)|Coh
1

4 (x, y, c)⟩ =
∏

i,j

1

1− xix∗j

∏

i,j

1

1− yiy∗j
exp(|c|2).



✐

✐

“3-Lin” — 2021/7/5 — 19:45 — page 1132 — #22
✐

✐

✐

✐

✐

✐

1132 H. Lin and K. Zeng

We consider the overlap of the coherent states with trace product basis.
Using notation a†[f ] in this section, then a general basis can be written as

(2.93)
∏

[f ]∈Ṽ

a
†w[f]

[f ] |0⟩,

where Ṽ =
⋃

n,m Ṽn,m.
Then we consider

(2.94) ⟨0 |
∏

[f ]∈Ṽ

a
w[f]

[f ] |Coh
1

4 ⟩,

where |Coh
1

4 ⟩ = exp(
∑

n,m c(n,m)a
†
(n,m))|0⟩. Since |Coh

1

4 ⟩ is just a special

case of our previous |Coh⟩ = exp(
∑

[f ]∈Ṽ c[f ]a
†
[f ])|0⟩, we still use the equation

(2.30). And we have that

(2.95) ⟨0 |
∏

[f ]∈Ṽ

a
w[f]

[f ] |Coh⟩

=
∏

n

(nc[↑n])
w[↑n]

∏

m

(mc[↓m])
w[↓m]

∏

[f ]∈∪n,m≥1Ṽn,m

(c[f ])
w[f] ,

where ↑n is defined to map every i ∈ {1, . . . , n} to ↑, and similarly for ↓m.
We can write |Coh

1

4 ⟩ as

(2.96) |Coh
1

4 ⟩ = exp




∑

n,m≥0

∑

[f ]∈Ṽn,m

c(n,m)
n!m!

(n+m)!

(n+m)

|Stabf (Zn+m)|a
†
[f ]



| 0⟩.

Therefore, replacing c[f ] by c(n,m)
n!m!

(n+m)!
(n+m)

|Stabf (Zn+m)| in (2.95), we have

⟨0 |
∏

[f ]∈Ṽ

a
w[f]

[f ] |Coh
1

4 ⟩ =
∏

n

(nc(n,0))
w[↑n]

∏

m

(mc(0,m))
w[↓m]

×
∏

[f ]∈∪n,m≥1Ṽn,m

(

c(n,m)
n!m!

(n+m)!

(n+m)

|Stabf (Zn+m)|

)w[f]

.(2.97)

In some situations, the above formula will give zero, and whether the above
overlap equals zero depends on which c(n,m) equals zero.
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For the special case of half BPS states, we have

(2.98) w[f ] = 0 for [f ] /∈ Ṽn,0,

and the coherent state is

(2.99) |Coh
1

2 ⟩ = exp

(
∑

n

c(n,0)a
†
[↑n]

)

| 0⟩.

We have the overlap

(2.100) ⟨0 |
∏

n

a
w[↑n]

[↑n] |Coh
1

2 ⟩ =
∏

n

(nc(n,0))
w[↑n] .

Using notation in [23]

(2.101) a†[↑n] = a†n, w[↑n] = wn, c(n,0) =
Λn

n
,

this reduces to our previous results in [23],

(2.102) ⟨0 |
∏

n

awn

n |Coh
1

2 ⟩ =
∏

n

(Λn)
wn .

Till now, we have established the basic ingredients related to the quarter
BPS coherent states and studied their properties including inner product.
In the following section we will consider other interesting operators and look
at their relations.

3. Brauer states and their relation to quarter

BPS coherent states

3.1. Brauer operators and trace product basis

The Brauer algebra [28] is a natural generalization of the symmetric group
algebra. The Walled Brauer algebra [29, 31, 32] is a subalgebra of Brauer
algebra. Kimura and Ramgoolam constructed basis of gauge invariant op-
erators of two matrix fields, labelled by representations of Brauer algebras
[15, 16]. The Walled Brauer algebra BN (n,m) is very natural to multi-matrix
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case. The Schur-Weyl duality for Walled Brauer algebra is

(3.1) V ⊗n
⊗

V̄ ⊗m =
⊕

γ

V U(N)
γ

⊗

V BN (n,m)
γ

with V and V̄ corresponding to the two matrices. In the above formula, γ
runs over the set of all staircases. A staircase is defined to be a sequence
of integers (γ1, γ2, . . . , γr) such that γ1 ≥ γ2 ≥ · · · ≥ γr. The sets of positive
integers and negative integers determine two partitions respectively, hence
we can equivalently write a staircase as γ = (l, γ+, γ−) where l is lying in
between 0 and min(n,m). And γ+, γ− are two Young tableaux. For more
detail of the Walled Brauer algebra, see [15, 16].

We will consider b to be an element of a basis of the Brauer algebra
BN (n,m). Although the basis can be more general in our following defini-
tions, we will consider the basis to be the set of (n,m) diagrams Dn,m defined
in Appendix B. The dimension of the U(N) irreducible representation asso-
ciated with the label γ, is denoted as tγ = dim γ. And the dual element b∗

is defined and computed in [15], which is as follows

(3.2) b∗ =
1

Nn+m
Σ−1(Ω−1

n+m(Σ(b))−1)

where the map Σ : BN (n,m) → C[Sn+m] is defined in (3.19) in [15]. The op-
erator Ωn+m is defined by Ωn+m =

∑

σ∈Sn+m
NC(σ)−(n+m)σ. And its inverse

is

(3.3) Ω−1
n+m =

Nn+m

(n+m)!

∑

T

d2T
dimT

∑

σ∈Sn+m

χT (σ)σ.

There are projection operators P γ which can be expressed as

(3.4) P γ = tγ
∑

b

χγ(b)b∗ = tγ
∑

b

χγ(b
∗)b,

where χγ is the irreducible representation labeled by staircase γ.

The irreducible representation V
BN (n,m)
γ of BN (n,m) can be further de-

composed into a number of representations of the subalgebra C[Sn × Sm].
We can introduce the operators Qγ

A,i,j as follows:

(3.5) Qγ
A,ij = tγ

∑

b

χγ
A,ij(b

∗)b.
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Here A labels irreducible representations of C[Sn × Sm] and i, j run over
the multiplicity of the relevant decomposition. The χγ

A,ij is the restricted

character. For more detail, see [16, 35]. We see that P γ =
∑

A,iQ
γ
A,ii. The

operators P γ , Qγ
A,ij have the property

(3.6) hP γh−1 = P γ , hQγ
A,ijh

−1 = Qγ
A,ij , for all h ∈ Sn × Sm ⊂ BN (n,m).

By the equation (3.37) in [15], we have

hΣ(P γ)h−1 = Σ(P γ), hΣ(Qγ
A,ij)h

−1 = Σ(Qγ
A,ij),(3.7)

for all h ∈ Sn × Sm ⊂ BN (n,m).

Here, the inclusion Sn × Sm ⊂ BN (n,m) means that we can take from the
algebra BN (n,m) a subset Sn × Sm which is also a group. The Brauer op-
erators take the form

(3.8) Oγ
A,ij(Z, Y ) = tr(Qγ

A,ijZ
⊗nY T⊗m).

There are also operators

(3.9) Oγ(Z, Y ) = tr(P γZ⊗nY T⊗m).

The inner products of the Brauer operators are described in Appendix A.
Properties of the map Σ is needed to compute various quantities, and

an important formula is (3.36) in [15], which is

(3.10) tr(Σ(b)Z⊗nY ⊗m) = tr(bZ⊗nY T⊗m).

We will consider the inner product between Oγ
A,ij(Z, Y ) and our previous

trace product basis. Using (3.4–3.10), the inner product can be computed

⟨(tr(αZ⊗n ⊗ Y ⊗m))†Oγ
A,ij(Z, Y )⟩(3.11)

= ⟨(tr(αZ⊗n ⊗ Y ⊗m))†tr(Qγ
A,ijZ

⊗nY T⊗m)⟩
= tγ

∑

b

χγ(Q
γ
A,ijb

∗)⟨(tr(αZ⊗n ⊗ Y ⊗m))†tr(bZ⊗nY T⊗m)⟩

= tγ
∑

b

χγ(Q
γ
A,ijb

∗)⟨(tr(αZ⊗n ⊗ Y ⊗m))†tr(Σ(b)Z⊗nY ⊗m)⟩

= tγ
∑

b

χγ(Q
γ
A,ijb

∗)
∑

h∈Sn×Sm

tr(α−1h−1Σ(b)h)

=
∑

h∈Sn×Sm

tr(α−1h−1Σ(Qγ
A,ij)h)

= n!m!tr(α−1Σ(Qγ
A,ij)).
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Similarly, we have formula for the operators Oγ(Z, Y )

(3.12) ⟨(tr(αZ⊗n ⊗ Y ⊗m))†Oγ(Z, Y )⟩ = n!m!tr(α−1Σ(P γ)).

Our next goal is to find more explicit expressions of our above results.
However, tγ , χγ , b

∗ all depend on N , therefore we need more formulas for
the N dependence of these quantities.

The tγ = dim γ is the dimension of the U(N) irreducible representation
associated with the label γ. The dimension can be computed as follows. First
γ = (l, γ+, γ−) can always be represented as a sequence (γ1, γ2, . . . , γN ) with
γ1 ≥ γ2 ≥ · · · ≥ γN . We define λ(γ) = (λ1, . . . , λN ) with λi = γi − γN + 1.
By definition, λ(γ) is a partition, therefore it corresponds to an irreducible
representation of U(N) and we know the dimension formula for this repre-
sentation, and we define

(3.13) dim γ = dimλ(γ) =
∏

(i,j)∈λ(γ)

N − i+ j

hij
.

We have that dim γ = O(Nn+m−2l). It’s interesting to know the leading
order behavior of tγ . Therefore we define t̃γ as

(3.14) t̃γ = lim
N→∞

1

Nn+m−2l
tγ ,

where γ = (l, γ+, γ−). We will give an explicit expression for the coefficient
t̃γ .

From the above definition, we see that dim γ does not explicitly depend
on l. The dim γ only depends on l through its dependence on γ+, γ−, or in
other words, dim γ is a function f(N, γ+, γ−) of variables N, γ+, γ−. Then
we rewrite the expression of t̃γ :

(3.15) t̃γ = lim
N→∞

1

N |γ+|+|γ−| f(N, γ+, γ−).

We find that t̃γ only depends on γ+, γ−,

(3.16) t̃γ = t̃(γ+, γ−).

We find a formula to calculate the coefficient t̃γ explicitly in the case γ =
(0, γ+, γ−). First, using equation (4.18) in [15]:

(3.17)
d2Rd

2
S

dimRS̄
=

m!2n!2

(m+ n)!

∑

T⊢(m+n)

d2T
dimT

g(R,S;T )
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where in this notation, γ = (0, R, S), and dimRS̄ = dim γ. The dR for a
Young tableau R ⊢ n is the dimension of the irreducible representation of Sn

labeled by R. The dimT for T ⊢ (n+m) is the dimension of the irreducible
representation of U(N) labeled by T . In our notation, we have

(3.18)
d2γ+d2γ−

dim γ
=

m!2n!2

(m+ n)!2

∑

T⊢(m+n)

d2T
dimT

g(γ+, γ−;T ).

And we use formulas

(3.19) dimT =
∏

(i,j)∈T

N − i+ j

hij
, dT = (n+m)!

∏

(i,j)∈T

1

hij
.

This gives us

d2γ+d2γ− =
m!2n!2

(m+ n)!

∑

T⊢(m+n)

dim γ
d2T

dimT
g(γ+, γ−;T )

=
m!2n!2

(m+ n)!2

∑

T⊢(m+n)

dim γdT
(n+m)!

∏

(i,j)∈T (N − i+ j)
g(γ+, γ−;T )

= lim
N→∞

m!2n!2

(m+ n)!2

×
∑

T⊢(m+n)

dT dim γ
(n+m)!

Nn+m
(1 +O(1/N))g(γ+, γ−;T )

=
m!2n!2

(m+ n)!
t̃γ

∑

T⊢(m+n)

dT g(γ
+, γ−;T ).(3.20)

Then we use equation (4.10) in [15]:

(3.21)
(m+ n)!

m!n!
dRdS =

∑

T

g(R,S;T )dT .

We find that

(3.22) t̃(0,γ+,γ−) =
dγ+dγ−

n!m!
=

dγ+dγ−

|γ+|!|γ−|! .

From this we have

(3.23) t̃γ = t̃(γ+, γ−) =
dγ+dγ−

|γ+|!|γ−|! .
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For γ = (l, γ+, γ−), |γ+| = n− l, |γ−| = m− l, therefore

(3.24) t̃γ = t̃(l,γ+,γ−) =
dγ+dγ−

(n− l)!(m− l)!
.

3.2. Results for l = 0 Brauer states

As a warm up, we first consider the case l = 0. However, many results ob-
tained in this subsection can be useful for the analysis of more general l ̸= 0
case. The trace product operator is normalized as N−(n+m)/2tr(αZ⊗n ⊗
Y ⊗m)), and the Brauer basis is normalized as N−(n+m)/2Oγ(Z, Y ). There-
fore we should consider

(3.25)
1

Nn+m
⟨(tr(αZ⊗n ⊗ Y ⊗m))†Oγ(Z, Y )⟩.

The projection operator has an expression

(3.26) P γ = tγ
1

Nn+m

∑

b

χγ(Σ−1(Ω−1
n+m(Σ(b))−1))b.

In the above expression, tγ , χ
γ ,Ωn+m all depend on N . And we will analyze

the N dependence of each term. The Ω−1
n+m has the expression

(3.27) Ω−1
n+m =

Nn+m

(n+m)!2

∑

T⊢(n+m)

d2T
dimT

∑

σ∈Sn+m

χT (σ)σ,

where the dimT , dT are

(3.28) dimT =
∏

(i,j)∈T

N − i+ j

hij
, dT = (n+m)!

∏

(i,j)∈T

1

hij
.

Therefore

(3.29)
dT

dimT
=

(n+m)!
∏

(i,j)∈T (N − i+ j)
=

(n+m)!

Nn+m
(1 +O(1/N)).

Hence we have for Ω−1
n+m

(3.30) Ω−1
n+m =

1

(n+m)!

∑

σ∈Sn+m

∑

T⊢(n+m)

dTχT (σ)(1 +O(1/N))σ.
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If we assume that N ≥ (n+m), then the above summation is over all
Young tableaux with T ⊢ (n+m). From the representation theory of sym-
metric groups [33, 34], we know that

∑

T⊢(n+m) dTχT is just the character
of the regular representation

∑

T⊢(n+m) dTχT (σ) = χreg(σ) = (n+m)!δ(σ),
where δ(σ) = 1 if and only if σ = 1 and δ(σ) = 0 otherwise. Therefore we
have

(3.31) Ω−1
n+m = (1 +O(1/N)).

According to Theorem 7.20 in [30], the character χγ has expression

(3.32) χγ(ζ) = Nh
∑

λ⊢m′

π⊢n′




∑

δ⊢(l−h)

g(δ, γ+;λ)g(δ, γ−;π)



χλ
Sn′

(ζ+)χπ
Sm′

(ζ−)

where γ = (l, γ+, γ−), with γ+ ⊢ n− l, γ− ⊢ m− l. And ζ = (h, ζ+, ζ−), with
ζ+ ⊢ n′ = n− h, ζ− ⊢ m′ = m− h. The ζ is a staircase that represents a
character class of BN (n,m). The character classes of Brauer algebra are
reviewed in Appendix B. The coefficient g(δ, γ−;π) is the Littlewood-
Richardson coefficient. The above formula tells us that χγ(ζ) ̸= 0 only if
h ≤ l.

For l = 0, the character χγ can be further simplified. In this case, χγ(ζ) ̸=
0 only if h = 0, which means that ζ represents an element b ∈ Sn × Sm,
where C[Sn × Sm] ⊂ BN (n,m), therefore we have

(3.33) χγ(b) =

{

0, b /∈ Sn × Sm

χγ+

Sn
(b1)χ

γ−

Sm
(b2), b = b1 ⊗ b2 ∈ Sn × Sm.

Putting these together, we have

1

Nn+m
⟨tr(αZ⊗n ⊗ Y ⊗m)†Oγ(Z, Y )⟩(3.34)

= t̃γn!m!
∑

b∈Sn×Sm

χγ(Σ−1(Σ(b)−1))

× 1

Nn+m
tr(α−1Σ(b))(1 +O(1/N))

= t̃γn!m!
∑

b1∈Sn

∑

b2∈Sm

χγ(b−1
1 ⊗ b−1

2 )

× 1

Nn+m
tr(α−1b1 ⊗ b−1

2 )(1 +O(1/N))
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= t̃γn!m!
∑

b1∈Sn

χγ+

(b−1
1 )

×
∑

b2∈Sm

χγ−

(b−1
2 )NC(α−1b1⊗b−1

2 )−(n+m)(1 +O(1/N)).

In the above formula, we have used the properties of Σ that

(3.35) Σ(σ ⊗ τ) = σ ⊗ τ−1, for σ ⊗ τ ∈ Sn × Sm.

This gives us:

1

Nn+m
⟨tr(αZ⊗n ⊗ Y ⊗m)†Oγ(Z, Y )⟩

(3.36)

=

{

O(1/N), α /∈ Sn × Sm

t̃γn!m!χγ+

(α1)χ
γ−

(α2)(1 +O(1/N)), α = α1 ⊗ α2 ∈ Sn × Sm

where we have used the fact that for the symmetric group Sn a permutation
σ and its inverse σ−1 are in the same conjugacy class, or in other words,
χγ+

(α1) = χγ+

(α−1
1 ).

We can write the Brauer state by

(3.37) | γ⟩ ↔ Oγ

(
Z√
N

,
Y√
N

)

| 0⟩.

Using our previous notation, the trace product state is

(3.38) |[α]⟩ ↔ tr

(

α

(
Z√
N

)⊗n

⊗
(

Y√
N

)⊗m
)

.

Hence we can equivalently write our above results as

⟨[α]|(0, γ+, γ−)⟩ =
{

O(1/N), α ̸= α1 ⊗ α2

dγ+dγ−χγ+

(α1)χ
γ−

(α2)(1 +O(1/N)), α = α1 ⊗ α2

(3.39)

|(0, γ+, γ−)⟩ = dγ+dγ− |γ+⟩⊗|γ−⟩+O(1/N).(3.40)

Our above derivation is performed for l = 0, but the analysis of tγ and
Ωn+m is useful for general case. To consider the situation for l ̸= 0, we only
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need to figure out the behavior of χγ , which is analyzed in the next subsec-
tion.

3.3. Results for l ̸= 0 Brauer states

In the l ̸= 0 case, we need to consider a normalization for the Brauer state.
We take |(l, γ+, γ−)⟩ ↔ N lOγ( Z√

N
, Y√

N
). The meaning of the factor N l will

be clear when we later discuss the character of Brauer algebra. Then we
consider the overlap

(3.41)
1

Nn+m
⟨tr(αZ⊗n ⊗ Y ⊗m)†N lOγ(Z, Y )⟩.

And we already have the expression (3.12)

(3.42) ⟨tr(αZ⊗n ⊗ Y ⊗m)†Oγ(Z, Y )⟩ = n!m!tr(α−1Σ(P γ)),

where P γ = tγ
1

Nn+m

∑

b χ
γ(Σ−1(Ω−1

n+m(Σ(b))−1))b. We have leading order re-
sults for Ω−1

n+m and tγ ,

(3.43) Ω−1
n+m = 1 +O(1/N), tγ = t̃γN

n+m−2l(1 +O(1/N)).

Therefore we have

1

Nn+m
⟨tr(αZ⊗n ⊗ Y ⊗m)†N lOγ(Z, Y )⟩(3.44)

= n!m!t̃γ
∑

b

1

N l
χγ(Σ−1(Σ(b)−1))

tr(α−1Σ(b))

Nn+m
(1 +O(1/N))

= n!m!t̃γ
1

N l
χγ(Σ−1(α−1))(1 +O(1/N))

where in the third line we have used that tr(α−1Σ(b)) = Nn+m only for
Σ(b) = α. Write bα = Σ−1(α−1), we need to find the orderN l value of χγ(bα).

In Appendix B, we give a rather detailed introduction to the characters
of representations of Brauer algebra. The main idea is that although we
don’t have the notion of conjugacy class, we can define a notion of character
class which plays a similar role as conjugacy class. We summarize some main
results here. A character class is represented by a staircase ζ = (h, ζ+, ζ−).
And for an element d, its character class is determined by its cycle type.
The characters of elements in the same character class have the same value
up to a factor of exponent of N . In the equation (B.11) of the character, we
have a sum over δ ⊢ (l − h), which tells us that the character χγ(ζ) = 0 for
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h > l. Besides, the character is of order N z(d), where z(d) by definition is
the number of zero cycles in d. And we must have z(d) ≤ h(d). Therefore we
have an inequality z(d) ≤ h ≤ l. So we have 1

N lχγ(d) ≥ O(N0) if and only
if z(d) = h = l. Furthermore, this condition z(d) = h = l would mean that
d has exactly l zero cycles, when each zero cycle only contains one vertex in
each side of the wall, and all other cycles that is not a zero cycle must be
completely contained in only one side of the wall. Take the diagram (B.1)
as an example, it does not satisfy this condition since it has a cycle 6, 4′, 3′,
which is not a zero cycle and contains vertices from both side of the wall.

From our previous discussion, we know that

1

Nn+m
⟨tr(αZ⊗n ⊗ Y ⊗m)†N lOγ⟩ ≥ O(N0)

if and only if bα = Σ−1(α−1) has l zero cycles, with each zero cycle only
containing one vertex in each side of the wall, and each non zero cycle is
contained completely in one side of the wall. On the other hand, tr(αZ⊗n ⊗
Y ⊗m) is determined by the Sn × Sm equivalence class of α which we denoted
by [α]. Therefore we need to know how to start from the class [α] to obtain
the cycle type of bα.

We know that the class [α] is described by a sequence {w
[⃗k]
}
[⃗k]∈K̃ . And

we will describe a general procedure to construct the cycle type of bα from
the sequence {w

[⃗k]
}
[⃗k]∈K̃ . We need to translate the above condition on bα

into a set of conditions on the sequence {w
[⃗k]
}.

We obtain the following lemma and give its proof.

Lemma 3.1. The condition that bα has l zero cycles, and each zero cycle
only contains one vertex in each side of the wall, while each non zero cycle
is contained completely in one side of the wall, can be equivalently described
by the condition on the sequence {w

[⃗k]
}
[⃗k]∈K̃ (or on {w[f ]}[f ]∈Ṽ ) associated

to the class [α]. The condition is

(1) w(1,1) = l

(2) w
[⃗k]

= 0 for [⃗k] /∈ K̃0
⋃{(1, 1)}

or equivalently

(1’) w[↑↓] = l

(2’) w[f ] = 0 for [f ] /∈ ⋃n Ṽn,0
⋃

m Ṽ0,m
⋃

Ṽ1,1 where ↑↓ is defined to be the
map in V1,1 that takes 1 to ↑ and 2 to ↓.
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Proof. Just as d ∈ Dn,m can be drawn as a diagram, elements of Sn+m can
also be drawn as diagrams. For example
(3.45)

α =

1 2 3 4 5 6 7 8 9 10 11 12

We follow the procedure

(1) Start with vertex tL1 (α) if it exists.

(2) Follow the edge connected to this vertex. Upon reaching the other side
of the edge, jump to the vertex directly above it if we are in b(α) or to
the vertex below it if we are in t(d), and continue following the edge
connected to that vertex.

(3) Following the above procedure, we will end by returning to the starting
vertex and complete a cycle in α. We denote such a cycle c1.

(4) We start from another vertex that has not been visited and repeat
the above process. Each time we finish the above process we will get
a cycle ci in α. And we end the process if we visited all vertices of α.

In this way, we decompose α into disjoint cycles. For example in the
above diagram (3.45), we have 4 disjoint cycles. The first is on vertices
1, 7, 8, 3, the second on vertices 2, 4, 5, the third on 6, 10, 9 and the fourth on
11, 12. Note that this decomposition is just the cycle decomposition of α. In
the example, the permutation is just α = (3, 1, 7, 8)(2, 4, 5)(6, 10, 9)(11, 12).

In each cycle, there are vertex on the left hand side of the wall and vertex
on the right hand side of the wall, depend on i ≤ n or i > n. We label a cycle
(i1, i2, i3, . . . ) by a sequence (k1, k2, k3, k4, . . . ) in such a way that there are
first k1 vertex i1, i2, . . . , ik1

on the left hand side of the wall and followed by
k2 vertex on the right hand side of the wall ik1+1, . . . , ik1+k2

and so on. For
example, cycle (3, 1, 7, 8) is labeled by (k1, k2) = (2, 2) and (2, 4, 5) is labeled
by k1 = 3. In this way, each cycle is labeled by a [⃗k] ∈ K̃. Also, we can label
a cycle (i1, i2, i3, . . . ) by a [f ] ∈ Ṽ , where the corresponding [f ] is defined in
the following way. We let f(j) =↑ if ij is on the left hand side of the wall
and f(j) =↓ if ij is on the right hand side of the wall. If a permutation α has

the properties that it has w
[⃗k]

cycles labeled by [⃗k] ∈ K̃ or has w[f ] cycles
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labeled by [f ], then the operator satisfies

(3.46) tr(αZ⊗n
⊗

Y ⊗m) =
∏

[⃗k]∈K̃

tr(Zk1Y k2Zk3Y k4 · · · )w[k⃗] =
∏

[f ]∈Ṽ

O
w[f]

[f ] .

In the above example

(3.47) tr(αZ⊗n
⊗

Y ⊗m) = tr(Z2Y 2)tr(Z3)tr(ZY 2)tr(Y 2).

Recall that we defined bα = Σ−1(α−1). We first describe the α−1. In
diagram representation, the diagram of α−1 is obtained from the diagram
by interchange t(α) and b(α) and keep the edge. In our example (3.45), the
inverse is
(3.48)

α−1 =

1 2 3 4 5 6 7 8 9 10 11 12

After the inverse, a cycle of type [⃗k] = (k1, k2, . . . , k2r−1, k2r) becomes a
cycle of type [⃗k′] = (k1, k2r, k2r−1, k2r−2, . . . , k3, k2). We thus define a map
ϕ : K → K by

(3.49) ϕ(k1, k2, . . . , k2r−1, k2r) = (k1, k2r, k2r−1, k2r−2, . . . , k3, k2).

That is, a cycle of α labeled by [⃗k] becomes a cycle of α−1 labeled by
[ϕ(k⃗)]. Or using the notation of [f ], we define a map ϕ′ :

⋃

n,m≥0 Vn,m →
⋃

n,m≥0 Vn,m by

(3.50) ϕ′(f)(i) = f(m+ n+ 1− i).

Then a cycle of α labeled by [f ] becomes a cycle of α−1 labeled by [ϕ′(f)].
Note that ϕ(k1, 0) = (k1, 0), ϕ(0, k2) = (0, k2), ϕ(k1, k2) = (k1, k2). And
ϕ′(↑n) =↑n, ϕ′(↓m) =↓m, [ϕ′(↑↓)] = [↑↓].
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Now we describe Σ−1. By definition, Σ−1 interchange tR(α) and bR(α)
and keep the edge. In our example
(3.51)

Σ−1(α) =

1 2 3 4 5 6 7 8 9 10 11 12

Since Σ−1 keeps every edge, each cycle c in α is still a cycle c in Σ−1(α).
And for a cycle c labeled by (k1, k2, . . . ), the corresponding type(c) can be
calculated as

(3.52) type(c) =
∑

i≥1

k2i−1 −
∑

i≥1

k2i.

For the same reason, the type for a cycle c labeled by [f ] ∈ Ṽn,m is just
n−m.

Therefore if a cycle in Σ(α) is a zero cycle, then
∑

i≥1 k2i−1 −
∑

i≥1 k2i =
0 (or n = m). And if a cycle c in Σ(α) only contains one vertex in each side
of the wall, then this cycle is labeled by [⃗k] = [(1, 1)] (or [↑↓]).

Therefore the condition that bα = Σ−1(α−1) has l zero cycles, and each
zero cycle only contains one vertex in each side of the wall, while each non
zero cycle is contained completely in one side of the wall, is equivalent to

(3.53) wϕ(1,1) = w(1,1) = l, w
[⃗k]

= 0 for [⃗k] /∈ K̃0

⋃

{(1, 1)},

or equivalently as

(3.54) w[ϕ′(↑↓)] = w[↑↓] = l, w[f ] = 0 for [f ] /∈
⋃

n

Ṽn,0

⋃

m

Ṽ0,m

⋃

Ṽ1,1.

This is just the condition in the statement of the lemma. □

Therefore we know that a trace product basis state
∏

[⃗k]∈K a
†w[k⃗]

[⃗k]
|0⟩ has

nonzero overlap with Brauer state |(l, γ+, γ−)⟩ if and only if the trace prod-
uct basis state is of the form

(3.55)
∏

k≥1

a†wk

k

∏

k̄≥1

a†wk̄

k̄
a†l(1,1)|0⟩,
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with the constraints

(3.56)
∑

k

kwk = n− l,
∑

k̄

k̄wk̄ = m− l.

The above two constraints define two partitions of n− l,m− l respec-
tively, and we let [α1], [α2] to represent the two partitions respectively, then
we have

⟨0|
∏

k≥1

awk

k

∏

k̄≥1

awk̄

k̄
al(1,1)|(l, γ+, γ−)⟩(3.57)

= n!m!t̃γχ
γ+

([α1])χ
γ−

([α2])(1 +O(1/N)).

Using this results, we can write the Brauer state as

(3.58) |(l, γ+, γ−)⟩ = n!m!dγ+dγ−

l!(n− l)!(m− l)!
|γ+⟩⊗|γ−⟩ ⊗ a†l(1,1)|0⟩+O(1/N),

where |γ+⟩ is the Young tableau state associated with a†k, and |γ−⟩ is the

Young tableau state associated with a†
k̄
. Our analysis in the large N limit

shows that to leading order, the Brauer operators can be expressed as the
product of Young tableau operators with an extra operator mixing two ma-
trices.

We can equivalently write

⟨[α]|(l, γ+, γ−)⟩(3.59)

=

{

O(1/N), α ̸= α1 ⊗ α2
n!m!dγ+dγ−

l!(n−l)!(m−l)!χ
γ+

(α1)χ
γ−

(α2)(1 +O(1/N)), α = α1 ⊗ α2.

From equation (3.58), we see that the Brauer states |(l, γ+, γ−)⟩ lie in
the kernel of dilatation operator (2.58) in the infinite N limit. In this case
a†(n,0), a

†
(0,m) and a†(1,1) all commute with the dilatation operator. For non-

planar correction of the action of dilatation operator on more general Brauer
operators Oγ

A;i,j , see [16, 36].

3.4. Coherent states and their overlaps with Brauer states

In the rest of this Section, we work in the infinite N limit. We now consider
the overlap between coherent states and Brauer states. We first consider
general coherent states and then quarter BPS coherent states.
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First, the Brauer state |γ⟩ takes the form

(3.60) |(l, γ+, γ−)⟩ = n!m!dγ+dγ−

l!(n− l)!(m− l)!
|γ+⟩⊗|γ−⟩ ⊗ a†l(1,1)|0⟩.

On the other hand, we consider a general coherent state which takes the
form

(3.61) |Coh⟩ = exp




∑

[⃗k]∈K̃

c
[⃗k]
a†
[⃗k]



|0⟩.

As in Section 2, we denote

(3.62) ck = c(k,0), ck̄ = c(0,k).

Then the coherent state can be factorized into different modes and we
mainly separate the following three parts

exp

(
∑

k

cka
†
k

)

=

(
∑

w⃗

∏

k

(cka
†
k)

wk

wk!

)

,(3.63)

exp




∑

k̄

ck̄a
†
k̄



 =




∑

w⃗

∏

k̄

(ck̄a
†
k̄
)wk̄

wk̄!



 ,(3.64)

and exp(c(1,1)a
†
(1,1)) =

∑

l

(c(1,1)a
†

(1,1))
l

l! .
In the following, we take a specific class of coherent states by letting

(3.65) ck =
Λk

k
=

xk1 + xk2 + · · ·
k

, ck̄ =
Λk̄

k̄
=

yk̄1 + yk̄2 + · · ·
k̄

.

Then the overlap between the coherent state and Brauer state can be cal-
culated as follows:

⟨(l, γ+, γ−)|Coh⟩ = n!m!dγ+dγ−

l!(n− l)!(m− l)!
(⟨γ+|⊗⟨γ−|⊗⟨0|al(1,1))|Coh⟩

=
n!m!dγ+dγ−

l!(n− l)!(m− l)!
⟨γ+|

∑

w⃗

∏

k

1

wk!

(

Λka
†
k

k

)wk

|0⟩

× ⟨γ−|
∑

u⃗

∏

k̄

1

uk̄!

(

Λk̄a
†
k̄

k̄

)uk̄

|0⟩

× ⟨0|al(1,1)
∑

j

(c(1,1)a
†
(1,1))

j

j!
|0⟩.(3.66)
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In the above derivation, we only need to consider the three parts since we
have

(3.67) ⟨(l, γ+, γ−)|a†l[k⃗]

[⃗k]
|0⟩ = 0, for [⃗k] /∈ K0

⋃

K2.

This means that the value of the overlap between the coherent state and an
l = 0 Brauer state only depends on the value of c

[⃗k]
for [⃗k] ∈ K0.

To further simplify the above formula, we can use results from our pre-
vious paper [23] that

(3.68) ⟨γ+|
∑

w⃗

∏

k

1

wk!

(
Λk

k

)wk

| twk

k ⟩ = sγ+(x1, x2, . . . ),

where |twk

k ⟩ = a†wk

k |0⟩ and sγ+ is the Schur function corresponding to the
Young tableau γ+. For more about Schur functions, see [34]. Similarly, we
denote |suk̄

k̄
⟩ = a†uk̄

k̄
|0⟩ and we have

(3.69) ⟨γ−|
∑

u⃗

∏

k̄

1

uk̄!

(
Λk̄

k̄

)uk̄

|suk̄

k̄
⟩ = sγ−(y1, y2, . . . ).

Therefore we have

(3.70) ⟨(l, γ+, γ−)|Coh⟩ = n!m!dγ+dγ−

l!(n− l)!(m− l)!
cl(1,1)sγ+(x1, . . . )sγ−(y1, . . . ).

The above results may be regarded as a generalization of our previous results
for the overlap between Young tableau states and half BPS coherent states.

As a special case, we consider γ = (0, γ+, ∅). In this case, we are consid-
ering the Brauer algebra BN (n, 0) = C[Sn]. The character of Brauer algebra
just becomes the character of symmetric group. The Brauer state then be-
comes:

(3.71) |(0, γ+, ∅)⟩ = dγ+ |γ+⟩,

which is just the Young tableau state. The overlap between the coherent
state and the Brauer state becomes

(3.72) ⟨(0, γ+, ∅)|Coh⟩ = dγ+sγ+(x1, x2, . . . ).

This is just our previous result for the half BPS case [23].
We consider another special case with l ̸= 0, γ+ = ∅, γ− = ∅. In this

special case, we first give a different derivation of the form of the Brauer
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state |(l, ∅, ∅)⟩. We see that in this case, l = n = m. We have expression for
the projector P γ(see (28) in [16]):

(3.73) P γ =
1

N l
Ω−1
l C(l),

where C(l) is defined to be

(3.74) C(l) =
∑

σ∈Sl

Cσ(1)1̄Cσ(2)2̄ · · ·Cσ(l)l̄.

And we have

(3.75) tr(Cσ(1)1̄Cσ(2)2̄ · · ·Cσ(l)l̄Z
⊗n ⊗ Y ⊗m) = tr(ZY )l.

From our previous results, Ω−1
l = 1 +O(1/N), we have that N lOγ(Z, Y ) =

l!tr(ZY )l +O(1/N). Then in the infinite N limit,

(3.76) |(l, ∅, ∅)⟩ = l!a†l(1,1)|0⟩.

This coincides with our equation (3.60) after taking γ+ = γ− = ∅. And the
overlap with coherent state is

(3.77) ⟨0|al(1,1)|Coh⟩ = l!cl(1,1).

Another special case is provided for l ̸= 0, γ− = ∅. In this case, m− l =
0, we have

(3.78) |(l, γ+, ∅)⟩ = n!dγ+

(n− l)!
|γ+⟩ ⊗ a†l(1,1)|0⟩.

And the overlap with coherent state is

(3.79) ⟨(l, γ+, ∅)|Coh⟩ = n!dγ+

(n− l)!
cl(1,1)sγ+(x1, . . . ).

Now we move on to consider the quarter BPS coherent states |Coh
1

4 ⟩,
which can be written as

(3.80) |Coh
1

4 ⟩ = exp




∑

n,m≥0

c(n,m)a
†
(n,m)



| 0⟩.

The symmetrized operator a†(1,1) is the same as the operator a†
[⃗k]

for [⃗k] =

(1, 1). Therefore the overlap between a Brauer state |γ⟩ and a quarter BPS
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coherent state still takes the form:

⟨(l, γ+, γ−)|Coh
1

4 ⟩(3.81)

=
n!m!dγ+dγ−

l!(n− l)!(m− l)!
cl(1,1)sγ+(x1, x2, . . . )sγ−(y1, y2, . . . ),

where

(3.82) c(n,0) =
Λn

n
=

xn1 + xn2 + · · ·
n

, c(0,m) =
Λ′
m

m
=

ym1 + ym2 + · · ·
m

.

We have considered the inner products ⟨γ|Coh
1

4 ⟩ and ⟨Coh
1

4 |Coh
1

4 ⟩. We
considered similar quantity in our previous work since their quotient gives
us normalized value of the overlap. And we find

|⟨γ|Coh
1

4 ⟩|2
⟨γ|γ⟩⟨Coh

1

4 |Coh
1

4 ⟩
=

1

l!

∏

i,j

(1− xix
∗
j )
∏

i,j

(1− yiy
∗
j )(3.83)

× exp(−|c|2)|c|2l
∣
∣sγ+(x1, . . . )sγ−(y1, . . . )

∣
∣2 .

In the half BPS case, l = 0 and γ− = ∅, we have the normalized overlap

(3.84)
∏

i,j

(1− xix
∗
j )
∣
∣sγ+(x1, . . . )

∣
∣2 ,

which is the same as our previous results in [23], where we further analyzed
the case with rectangular tableaux γ+ = □LM .

Although Brauer state of the form |(l, γ+, γ−)⟩ does not span the whole
Hilbert space, we can consider the truncated subspace spanned by a†(n,0),

a†(0,m), a
†
(1,1). For this reason, we can also consider a subclass of coherent

states defined by

(3.85) |Coh
1

4 ⟩ = exp

(
∑

n

Λn

n
a†(n,0) +

∑

m

Λ′
m

m
a†(0,m) + ca†(1,1)

)

| 0⟩.

And we use notation |Coh
1

4 (x, y, c)⟩ by requiring that

(3.86) Λn = xn1 + xn2 + · · · , Λ′
m = ym1 + ym2 + · · · .

The advantage of considering the truncated quarter BPS coherent state
can be seen from the following proposition.
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Proposition 3.1. The Brauer state |γ⟩ =|(l, γ+, γ−)⟩ and the coherent
state |Coh

1

4 (x, y, c)⟩ can be transformed into each other by the following
formulas

(3.87) |Coh
1

4 (x, y, c)⟩ =
∑

γ

(n− l)!(m− l)!

n!m!dγ+dγ−

clsγ+(x)sγ−(y)|(l, γ+, γ−)⟩

and

|(l, γ+, γ−)⟩ = n!m!dγ+dγ−

(n− l)!(m− l)!

1

M+!M−!

∮
dc

2πic

M+∏

j=1

dxj
2πixj

M−∏

j=1

dyj
2πiyj

× c−l
∏

1≤i<j≤M+

∣
∣
∣
∣
1− xi

xj

∣
∣
∣
∣

2 ∏

1≤i<j≤M−

∣
∣
∣
∣
1− yi

yj

∣
∣
∣
∣

2

× sγ+(x−1)sγ−(y−1)|Coh
1

4 (x, y, c)⟩(3.88)

where M+ is the number of rows of γ+ and M− is the number of rows of
γ−. The x−1 here is a short hand for (x−1

1 , x−1
2 , . . . ). And the integration

∮

is alone the circular paths which are equivalently defined by |c| = 1, |xj | =
1, |yj | = 1.

Proof. For the first formula, we need to note that Brauer states of the form
|γ⟩ form an orthogonal basis of the truncated subspace. This is because
Young tableau states |γ+⟩ for all possible Young tableaux γ+ form an or-
thonormal basis of the subspace

⋃

nH(n,0). And similarly for |γ−⟩. Also,
{a†l(1,1)|0⟩}l≥0 form an orthogonal basis of the subspace H(1,1). So we have

(3.89) |Coh
1

4 (x, y, c)⟩ =
∑

γ

⟨γ|Coh
1

4 (x, y, c)⟩
⟨γ|γ⟩ |γ⟩.

Then, using the formula (3.81) for the overlap, we can derive equation (3.87).
The derivation of the second formula can be considered as performing

inverse Fourier transform to the first one. We need to use the following
results:

∮
dc

2πic
c−lcl

′

= δll′ ,(3.90)

1

M !

∮ M∏

j=1

dxj
2πixj

∏

1≤i<j≤M

∣
∣
∣
∣
1− xi

xj

∣
∣
∣
∣

2

sλ(x
−1)sµ(x) = δλµ.(3.91)
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The first formula is obvious by calculating the residue, and the second one
is from [38], see also [23]. We then multiply the three factors

dc

2πic
cl

′

,

M∏

j=1

dxj
2πixj

∏

1≤i<j≤M

∣
∣
∣
∣
1− xi

xj

∣
∣
∣
∣

2

sγ+′(x−1)

and

M∏

j=1

dyj
2πiyj

∏

1≤i<j≤M

∣
∣
∣
∣
1− yi

yj

∣
∣
∣
∣

2

sγ−′(y−1)

to both sides of equation (3.87). After integration of c, xi, yi over the contour,
we can find equation (3.88). □

3.5. Entanglement entropy of Brauer states

From our above results, we see that the Brauer states |γ⟩ span a subspace
of the Hilbert space:
(3.92)

HBrauer{γ} =




⊗

[k]∈K0

H
[⃗k]



⊗H(1,1) =




⊗

k≥1

H(k,0) ⊗H(0,k)



⊗H(1,1).

In the following, we always assume that γ = (l, γ+, γ−). And to simplify
the notation, we write Hk = H(k,0), Hk̄ = H(0,k). The subspaces Hk,Hk̄ are
generated by tk and sk respectively, where we identify

(3.93) tk ↔ tr

(
Z√
N

)k

, sk ↔ tr

(
Y√
N

)k

.

Similar to the previous work of [14, 23], we define traces

(3.94)

trj = tr⊗k ̸=jHk

⊗⊗k̄Hk̄⊗H(1,1)
,

trj̄ = tr⊗kHk

⊗⊗k̄ ̸=j̄Hk̄⊗H(1,1)
,

tr(1,1) = tr⊗kHk

⊗⊗k̄Hk̄
.

The above notation should be distinguished from the traces trHj
, trHj̄

. We
then consider the entanglement spectrum and entanglement entropy of the
Brauer state. After normalization, the Brauer state is

1√
l!
|γ+⟩⊗|γ−⟩ ⊗ a†l(1,1)|0⟩.
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And we write |l⟩(1,1) = 1√
l!
a†l(1,1)|0⟩. Then we can calculate the density oper-

ator of a mode of a Brauer state as

ρ̂j(γ) = trj(|γ+⟩⊗|γ−⟩⊗|l⟩(1,1)⟨γ+|⊗⟨γ−|⊗⟨l|(1,1)),
ρ̂j̄(γ) = trj̄(|γ+⟩⊗|γ−⟩⊗|l⟩(1,1)⟨γ+|⊗⟨γ−|⊗⟨l|(1,1)),(3.95)

ρ̂(1,1)(γ) = tr(1,1)(|γ+⟩⊗|γ−⟩⊗|l⟩(1,1)⟨γ+|⊗⟨γ−|⊗⟨l|(1,1)).

Then we have

ρ̂j(γ) = trj(|γ+⟩⊗|γ−⟩⊗|l⟩(1,1)⟨γ+|⊗⟨γ−|⊗⟨l|(1,1))(3.96)

= trj(|γ+⟩⟨γ+|)⟨γ−|γ−⟩⟨l|l⟩(1,1)
= trj(|γ+⟩⟨γ+|)
= ρ̂j(γ

+),

where ρ̂j(γ
+) is the density matrix for the Young tableau state |γ+⟩. Simi-

larly

(3.97) ρ̂j̄(γ) = ρ̂j̄(γ
−).

And for the (1, 1) mode, we have ρ̂(1,1)(γ) =|l⟩(1,1)⟨l|(1,1), which is a pure
state density matrix.

Then the calculation of entanglement entropy [37] is straightforward:

(3.98)

sj(γ) = −trHj
(ρ̂j log(ρ̂j)),

sj̄(γ) = −trHj̄
(ρ̂j̄ log(ρ̂j̄)),

s(1,1)(γ) = −trH((1,1))
(ρ̂(1,1) log(ρ̂(1,1))).

We have

(3.99) sj(γ) = sj(γ
+), sj̄(γ) = sj̄(γ

−), s(1,1)(γ) = 0,

where sj(γ
+) is the entanglement entropy of the Young tableau state γ+ for

mode j and sj̄(γ
−) is the entanglement entropy of the Young tableau state

γ− for mode j̄. Detailed analysis of the entanglement entropy sj(γ
+) has

been given in [14, 23]. And since ρ̂(1,1)(γ) is a pure state density matrix, the
entanglement entropy for the mode (1, 1) is zero.
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4. Squeezed states and their relation to Brauer states

Motivated by our previous work [23], we define the squeezed state as follows

(4.1) |Squn,m;n′,m′⟩ = exp(µ(a†(n,m)a
†
(n′m′) − a(n,m)a(n′m′)))|0⟩.

In the special case where m = 0 and m′ = 0, we can write a(n,0) =

an, a
†
(n,0) = a†n. And the above definition gives the half BPS squeezed state

(6.1) defined in our previous work [23],

(4.2) |Squnn′⟩ = exp(µ(a†na
†
n′ − anan′))|0⟩.

Since the case for m = m′ = 0 has been discussed in our previous work,
here we only consider the case m,m′, n, n′ ≥ 1. In this case, we use the
commutation relation

(4.3) [a(n,m), a
†
(n′,m′)] = δnn′δmm′

∑

[f ]∈Ṽn,m

(
n!m!

(n+m)!

(n+m)

|Stabf (Zn+m)|

)2

.

To simplify the calculation, we write the above formula as

(4.4)

[
1

κ(n,m)
a(n,m),

1

κ(n′,m′)
a†(n′,m′)

]

= δnn′δmm′ ,

where

(4.5) κ(n,m) =

√
√
√
√

∑

[f ]∈Ṽn,m

(
n!m!

(n+m)!

(n+m)

|Stabf (Zn+m)|

)2

.

Then for (n,m) ̸= (n′,m′), the squeezed state can be expanded as follows:

|Squ⟩ =
(
1− tanh2(µκ(n,m)κ(n′,m′))

) 1

2(4.6)

×
∞∑

j=0

1

j!

(
tanh(µκ(n,m)κ(n′m′))

κ(n,m)κ(n′,m′)

)j

a†j(n,m)a
†j
(n′,m′)|0⟩.

As a remark, we mention that the above formula also applies to the case
when some of n,m, n′,m′ equal to zero. In some special cases, we would only
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need to have

(4.7) κ(n,0) =
√
n, κ(0,m) =

√
m.

And for the case m = m′ = 0, the above results give the expansion of the
half BPS squeezed state (4.2). It’s also easy to see from the above expansion
that squeezed states have inner products given by

⟨Squn1,m1;n2,m2
|Squn3,m3;n4,m4

⟩ = δn1n3
δn2n4

δm1m3
δm2m4

(4.8)

+ δn1n4
δn2n3

δm1m4
δm2m3

.

One of the motivations for us to consider the squeezed state is that we
can take a limit of the squeezed states to obtain EPR states. First define a
new parameter

(4.9) q = tanh(µκ(n,m)κ(n′,m′)).

Then the squeezed state can be written as:

(4.10) |Squn,m;n′,m′⟩ =
(
1− q2

) 1

2

∞∑

j=0

1

j!

(
q

κ(n,m)κ(n′,m′)

)j

a†j(n,m)a
†j
(n′,m′)|0⟩.

And we can write the corresponding EPR limit as follows:

|EPRn,m;n′,m′⟩ = lim
q→1

|Squn,m;n′,m′⟩(4.11)

= N− 1

2

∞∑

j=0

1

j!

(
1

κ(n,m)κ(n′,m′)

)j

a†j(n,m)a
†j
(n′,m′)|0⟩,

where N− 1

2 is a normalization factor that tends to infinity as q → 1. One can
take an infinitesimal positive cutoff ϵ → 0, such that 1− q = ϵ and N = 1

2ϵ .
It is interesting to consider the overlap between a squeezed state and a

Brauer state. We can see from the expansion (4.6) that the overlap is zero
when n,m, n′,m′ > 1. And it is not zero only for the following situations:

1. (n,m) = (1, 1), m′ = 0 and γ = (l, γ+, ∅) with γ+ ⊢ ln′.
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In this situation,

⟨(l, γ+, ∅)|Squ1,1;n′,0⟩ =
(

1− tanh2(µ
√
n′)
) 1

2

(

tanh(µ
√
n′)√

n′

)l

(4.12)

× (n′l + l)!

(n′l)!
dγ+χγ+(w⃗)|wk=0 except

wn′=l

Similarly we can consider (n,m) = (1, 1), n′ = 0 and γ = (l, ∅, γ−) with
γ− ⊢ lm′.

2. m = 0, m′ = 0, and γ = (0, γ+, ∅) with γ+ ⊢ j(n+ n′).
In this situation, we have that,

⟨(0, γ+, ∅)|Squn,0;n′,0⟩ =
(

1− tanh2(µ
√
nn′)

) 1

2 1

j!
(4.13)

×
(

tanh(µ
√
nn′)√

nn′

)j

dγ+χγ+(w⃗)|wk=0 except
wn=wn′=j

This situation is the same as (6.7) in [23] except that the normalization
of the Brauer state is different.

Similarly we can consider n = 0, n′ = 0, and γ = (0, ∅, γ−).
3. m = 0, n′ = 0, and γ = (0, γ+, γ−) with γ+ ⊢ jn, γ− ⊢ jm′.

We have that,

⟨(0, γ+, ∅)|Squn,0;0,m′⟩ =
(

1− tanh2(µ
√
nm′)

) 1

2 1

j!

(

tanh(µ
√
nm′)√

nm′

)j

× dγ+dγ−χγ+(w⃗)|wk=0 except
wn=j

χγ−(w⃗)|wk=0 except
wm′=j

(4.14)

5. Discussion

In this paper, we constructed quarter BPS coherent states. The construction
starts with a general construction of the Hilbert space of two-matrix gauge
invariant operators. Then we consider the anomalous dimension dilation op-
erator. In our case, we care about the kernel of the anomalous dimension
dilatation operator, and this gives us the quarter BPS operators. Then the
construction of quarter BPS coherent states generalize the construction of
half BPS coherent states by taking exponential of the creation operators.
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These quarter BPS coherent states are also the eigenstates of the annihila-
tion operators. We also computed the inner products involving the quarter
BPS coherent states.

The Brauer operators are also explored in this paper. The construc-
tion of Brauer operators involves characters of irreducible representations
of Brauer algebra [15, 35]. And we calculated the inner product between
Brauer operators and trace product operators. The construction of Brauer
operators and the analysis of them have been carried out in many previous
works, see [15, 35], and the explicit form of these operators are known in
special cases, see for example [16, 39, 40]. We see that the Brauer operators
are in some sense the generalization of Young tableau operators in quarter
BPS case. This observation is also closely related to the dual gravity inter-
pretation [40], where the droplet configuration of the dual gravity solution
is described by the two Young tableaux in the Brauer basis. We also cal-
culated the entanglement entropy of the Brauer states, and the results are
very similar to the Young tableau states.

One of the motivations of constructing the coherent states is that they
are important ingredients in the study of superposition-induced topology
change in quantum gravity [14, 41]. With our previous work of a superpo-
sition formula that gives a Young tableau state by superposing half BPS
coherent states, we considered here similar superposition formulas involv-
ing Brauer states and quarter BPS coherent states. We show that one can
superpose quarter BPS coherent states to obtain Brauer states. Conversely,
our superposition formulas show that one can also superpose Brauer states
to obtain quarter BPS coherent states. The ideas of superposition of states
on the gravity side have also been considered in [14, 23, 43–45]. It is useful to
explore these ideas with the setup of this paper. Also, inspired by previous
works [14, 23], it is very interesting to further study the relation between
entanglement and the dual spacetime geometry.

We also generalized the squeezed states from our previous half BPS case
[23] to quarter BPS case. The squeezed states itself can be regarded as a
generalization of the coherent states, since they both satisfy the property
that they can saturate the uncertainty principle. Moreover, taking certain
limit of the squeezed state can give us a EPR pair state, which is important
in the quantum information theory and quantum optics. And in our setup, it
is interesting to study their entanglement properties and the dual geometric
picture.

In the context of gauge/gravity correspondence, coherent states have
gravity dual descriptions in terms of semiclassical geometries, and this has
been studied in details in the half BPS case. These coherent states, in the
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dual gravity side, correspond to creating deformations [13, 24, 46–48] on
the vacuum geometry. Some classes of these geometries can be reduced to
lower dimensions and viewed as geometries in lower dimensional gravity [10,
49–51]. Geometries in lower dimensional gravity that are dual to coherent
states have also been considered in [52]. As similar to the half BPS case,
there are smooth spacetime geometries dual to quarter BPS states, see e.g.
[49, 50, 53–55] and related discussions. These quarter BPS states include the
quarter BPS coherent states that we describe in this paper. It would also be
interesting to explore the gravity dual of the BPS coherent states further.

Our results may provide further insights into emergent spacetime geom-
etry and other interesting related phenomena in gauge/gravity correspon-
dence. Various other similar spacetime geometries in the context of string
theory and quantum gravity have been analyzed, see for example [56]−[62]
and their related discussions. Our methods and discussions may also be re-
lated to 2d Yang-Mills [63] and to fuzzball proposal [56]. It would also be
good to understand more the relation to proposals of emergent spacetime
geometries.

We know that the dynamics of half BPS sector of N = 4 SYM is de-
scribed by a matrix quantum mechanical model with harmonic oscillator
potential, which itself is equivalent to the dynamics of N free fermions. And
the dynamics of quarter and eighth BPS sector are investigated in, for ex-
ample [13]. Therefore, our discussions are also related to the matrix model
approach and other approaches for several matrix fields [13, 64–69].

We take the approach that first includes both BPS states and non-BPS
states. Although we mainly studied the BPS states, it is also very interesting
to consider other non-BPS states in this system, such as [70–72]. There are
restricted Schur basis and flavor symmetry basis for example [73], which
have their own distinct properties and can be transformed into each other.
Therefore we can also study their relation to our setup.
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Appendix A. Orthogonality relation of Brauer states

For general l ≥ 0, we take a normalization of Brauer state

|γ⟩ ↔ N lOγ

(
Z√
N

,
Y√
N

)

,

where γ = (l, γ+, γ−). We can write down the orthogonality relation. Ac-
cording to formula (7.15) in [15]

(A.1) ⟨Oγ1(Y, Z)†Oγ2(Z, Y )⟩ = m!n!δγ1,γ2
dγ1

dim γ1.

We write the above formula in terms of notation |γ1⟩ =|(l1, γ+1 , γ−1 )⟩, |γ2⟩ =
|(l2, γ+2 , γ−2 )⟩,

⟨γ1|γ2⟩ =
1

Nn+m
⟨N l1Oγ1(Y, Z)†N l2Oγ2(Z, Y )⟩(A.2)

=
1

Nn+m−l1−l2
m!n!δγ1,γ2

dγ1
dim γ1

= m!n!δγ1,γ2
dγ1

dim γ1
Nn+m−2l1

,

where δγ1,γ2
= δγ+

1 ,γ+
2
δγ−

1 ,γ−
2
δl1,l2 . We can use the formula for calculating dγ

in equation (3.12) in [15]

(A.3) dγ =
m!n!

l!(m− l)!(n− l)!
dγ+dγ− , for γ = (l, γ+, γ−).

And we use the definition

(A.4) t̃γ = lim
N→∞

dim γ

Nn+m−2l
.

For general l, we also have an expression for t̃γ derived in Sec. 3.1, which is

(A.5) t̃γ =
dγ+dγ−

(n− l)!(m− l)!
.

Then we have

(A.6) ⟨γ1|γ2⟩ = δγ1,γ2

m!2n!2

l1!(m− l1)!(n− l1)!
dγ+

1
dγ−

1
t̃γ1

(1 +O(1/N)).
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As a special case, for l1 = 0, we have t̃γ1
=

d
γ
+
1
d
γ
−
1

n!m! . Using this in the above
formula we have

(A.7) ⟨γ1|γ2⟩ = δγ1,γ2
d2
γ+
1
d2
γ−
1
(1 +O(1/N)).

More generally, we have more Brauer states Oγ
A,ij(Z, Y ) which defined

previously. We may identify

(A.8) |γ;A, ij⟩ ↔ N lOγ
A,ij

(
Z√
N

,
Y√
N

)

.

According to (7.12) in [15]

(A.9) ⟨Oγ1

A1,i1j1
(Z, Y )†Oγ2

A2,i2j2
(Z, Y )⟩ = δγ1,γ2

δA1A2
δi1i2δj1j2dA1

dim γ1.

Therefore we have

⟨γ1;A1, i1j1|γ2;A2, i2j2⟩ =
1

Nn+m−l1−l2
δγ1,γ2

δA1A2
δi1i2δj1j2dA1

dim γ1

= δγ1,γ2
δA1A2

δi1i2δj1j2dA1

dim γ1
Nn+m−2l1

.(A.10)

Appendix B. Characters of Brauer algebra

In this section, we present some results about the characters of Brauer al-
gebra that will be useful in the study of Brauer states. We mainly refer
to [30] in this section. Brauer algebras are extensively explored also in e.g.
[15, 74–78].

Remember that the Brauer algebra BN (n,m) is not a group, therefore
some familiar results in group representation theory may not hold in this
case. For example, there is no notion of conjugacy class, since there is no
inverse for every element in the algebra. For this reason, we cannot say
that the character takes the same value on a conjugacy class for the Brauer
algebra. However, we have an analogous notion of conjugacy class which [30]
calls character class that shares similar feature of conjugacy class in group
representation theory.

First we introduce some basic results and fix some notations related to
the Brauer algebra. The Brauer algebra BN (n,m) has a basis given by (n,m)
diagrams d. We write Dn,m for the set of all (n,m) diagrams. A d ∈ Dn,m is
defined to be a diagram with a vertical wall between the nth and (n+ 1)th
vertices such that vertical edges never cross the wall and horizontal edges
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always begin and end on opposite side of the wall. For example, the diagram
below is a (6, 6) diagram

(B.1)

d =

1 2 3 4 5 6 1′ 2′ 3′ 4′ 5′ 6′

We let tLi (d), t
R
j (d) denote the ith and jth vertices in the top on the right

and left side of the wall respectively, as denoted in the above diagram. And
we let bLi (d), b

R
j (d) denote the ith and jth vertices in the bottom on the

right and left side of the wall respectively. We denote t(d) the set of vertices
in the top of the diagram, and b(d) the set of vertices in the bottom of the
diagram.

We then define a cycle type of a diagram d through traversing the dia-
gram d as follows:

(1) Start with vertex tL1 (d) if it exists; otherwise start with bR1 (d).

(2) Follow the edge connected to this vertex. Upon reaching the other side
of the edge, jump to the vertex directly above it if we are in b(d) or to
the vertex below it if we are in t(d), and continue following the edge
connected to that vertex.

(3) Following the above procedure, we will end by returning to the starting
vertex and complete a cycle in d. We denote such a cycle c1.

(4) We start from another vertex that has not been visited and repeat
the above process. Each time we finish the above process we will get
a cycle ci in d. And we end the process if we visited all vertices of d.

In this way, we decompose d into disjoint cycles. For example in the above
diagram (B.1), we have 4 disjoint cycles. The first is on vertices 1, 1′, 2′, 3,
the second on vertices 2, 4, 5, the third on 6, 4′, 3′, and the fourth on 5′, 6′.

For each cycle c in d, we define type(c) to be the the number of vertical
edges in c on the left side of the wall minus the the number of vertical edges
in c on the right side of the wall. The integer type(c) is called the cycle type
of c. We can always reorder all cycles in d in such a way that

(B.2) type(c1) ≥ type(c2) ≥ · · · ≥ type(cs).
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For example, in the above case (B.1), the cycle type of each cycle in d is

type(2, 4, 5) = 3 ≥ type(1, 1′, 2′, 3) = 0(B.3)

≥ type(6, 4′, 3′) = −1 ≥ type(5′, 6′) = −2.

We then associate with d ∈ Dn,m a (n+m)-staircase ζ(d) obtained from
(B.2) by inserting (n+m− s) zeros between the positive values and negative
values. That is to say that ζ(d) = (k, ζ+, ζ−) with ζ+ the same as the positive
part of type(ci) and ζ− the same as the negative part of type(ci). And we
call ζ(d) the cycle type of d. For example, in the above example, ζ(d) =
(3, 09,−1,−2). Zero cycles contain the same number of vertices on each side
of the wall. Thus there exists an integer h(d) satisfying ζ(d)+ ⊢ (n− h(d))
and ζ(d)− ⊢ (m− h(d)). In our above example, n = m = 6, and h(d) = 3.

The above procedure gives us a way to assign each d ∈ Dn,m a (n,m)-
staircase ζ(d). We then describe a way to assign each (n,m)-staircase ζ a
element dζ ∈ Dn,m. First for each k ∈ Z− {0}, we define an element

(B.4)

dk =

1 2 k − 1 k

if k > 0,

dk =

1′ 2′ k′ − 1 k′

if k′ = −k > 0.

And we also define element e:

(B.5)
e =

Now for a (n,m)-staircase ζ = (ζ1, ζ2, . . . , ζn+m), which could also be writ-
ten as ζ = (k, ζ+, ζ−). There exist a integer h(ζ) that ζ+ ⊢ (n− h(ζ)), ζ− ⊢
(m− h(ζ)). And assume that the length of positive and negative part of ζ
are l(ζ+) = i and l(ζ−) = j. Then we define

(B.6)
dζ+ = dζ1 ⊗ dζ2 ⊗ · · · ⊗ dζi ,

dζ+ = dζm+n−j
⊗ · · · ⊗ dζm+n−1

⊗ dζm+n
.

And we define dζ ∈ BN (n,m) to be

(B.7) dζ = dζ+ ⊗ e⊗h(ζ) ⊗ dζ− .
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As an example, let ζ = (3, 09,−1,−2) as a (6, 6) staircase. h(ζ) = 3, ζ+ = (3)
and ζ− = (2, 1). In this case, we have
(B.8)

dζ =

1 2 3 4 5 6 1′ 2′ 3′ 4′ 5′ 6′

Then the following results tells us that the character of a d ∈ Dn,m of a
certain type ζ is related to the character of the standard diagram dζ .

Theorem B.1. [30] Let d ∈ Dn,m with ζ = ζ(d) and h = h(d). Then for
any character χB of the Brauer algebra BN (n,m), we have:

(B.9) χB(d) = N z(d)−h(d)χB(dζ),

where z(d) is the number of zero-cycles in d.

The above formula tells us that if two d, d′ ∈ Dn,m have the same cycle
type ζ(d) = ζ(d′) = ζ. Then any character of Brauer algebra evaluated on
the two elements are the same up to a constant that depends on N . For this
reason we call the class labeled by (n,m)-staircase ζ character class.

Now we come to the irreducible representations of Brauer algebra. The ir-
reducible representation of Brauer algebra is also labeled by (n,m)-staircase.
We have the following formula:
(B.10)

χγ(dζ) = Nh(ζ)
∑

λ⊢n′

π⊢m′




∑

δ⊢(l−h)

g(δ, γ+;λ)g(δ, γ−;π)



χλ
Sn′

(ζ+)χπ
Sm′

(ζ−),

where γ = (l, γ+, γ−), ζ = (h, ζ+, ζ−). And g in the above formula is the
Littlewood-Richardson coefficient. Therefore, for arbitrary d ∈ Dn,m, we have
(B.11)

χγ(d) = N z(d)
∑

λ⊢n′

π⊢m′




∑

δ⊢(l−h)

g(δ, γ+;λ)g(δ, γ−;π)



χλ
Sn′

(ζ+)χπ
Sm′

(ζ−),

where ζ = ζ(d).
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