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Evaluating quasi-local angular momentum

and center-of-mass at null infinity

Jordan Keller, Ye-Kai Wang, and Shing-Tung Yau

We calculate the limits of the quasi-local angular momentum and
center-of-mass defined by Chen-Wang-Yau [11] for a family of space-
like two-spheres approaching future null infinity in an asymptoti-
cally flat spacetime admitting a Bondi-Sachs expansion. Our result
complements earlier work of Chen-Wang-Yau [12], where the au-
thors calculate the limits of the quasi-local energy and linear mo-
mentum at null infinity. Finiteness of the center-of-mass limit re-
quires that the spacetime be in the so-called center-of-mass frame,
a mild assumption on the mass aspect function amounting to van-
ishing of linear momentum at null infinity. With this condition and
the assumption that the Bondi mass is non-trivial, we obtain ex-
plicit expressions for the angular momentum and center-of-mass
at future null infinity in terms of the observables appearing in the
Bondi-Sachs expansion of the spacetime metric.
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1. Introduction

1.1.

In general relativity, the gravitational fields of isolated systems are modeled
by asymptotically flat spacetimes. Such systems emit gravitational waves [1]
which travel at the speed of light and eventually reach future null infinity
of the spacetime. In the study of gravitational waves, it is desirable to find
a suitable notion of conserved quantities defined at null infinity. While we
have the well-accepted Bondi-Sachs energy-momentum, there is no such con-
sensus for angular momentum or center-of-mass integral. To shed light on
this problem, we calculate the limits of the quasi-local angular momentum
and center-of-mass integral defined by Chen-Wang-Yau [11] for a family of
spacelike two-spheres approaching future null infinity in an asymptotically
flat spacetime N admitting a Bondi-Sachs coordinate system. We start this
introduction by briefly reviewing the Bondi-Sachs coordinates.

Concurrent work of Bondi, van der Burg, and Metzner [7] and Sachs
[28] introduced the Bondi-Sachs coordinates in order to clarify the nature
of gravitational radiation. The coordinate system is built on the geometry
of outgoing null hypersurfaces. In particular, the luminosity distance of null
geodesics r is taken as a coordinate function. Let N be a vacuum spacetime
with metric given in Bondi-Sachs coordinates (u, r, xA) by

−UV du2 − 2Ududr + σAB(dx
A +WAdu)(dxB +WBdu)
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where we demand

det
(σAB

r2

)

= det(̊σAB),

where σ̊AB is the round metric on the unit sphere. Denote the level sets of
u by Cu. Assuming that the metric coefficients can be expanded into power
series in 1

r
, the above determinant condition implies

σAB = r2σ̊AB + rCAB +O(1),

where CAB(u, x
D) is a symmetric traceless two-tensor on S2, referred to as

the shear tensor. Moreover, the null vacuum constraint equations enjoy a
remarkable hierarchy that allows us to solve the metric coefficients on Cu
order by order, with CAB being free data. In particular,

U = 1−
1

16r2
(

CDEC
DE
)

+O(r−3),

V = 1−
2m

r
+O(r−2),

WA =
1

2r2
∇̊DCA

D +
1

r3

(

2

3
NA −

1

16
∇̊A

(

CDEC
DE
)

−
1

2
CA
B∇̊

DCB
D

)

+O(r−4).

Here and hereafter, tensor contraction is performed with respect to σ̊AB,
unless otherwise noted. The function m(u, xA) and the spherical vector
NA(u, xD) are referred to as the mass aspect and the angular momentum
aspect, respectively. By comparison with static solutions, the Bondi-Sachs
energy-momentum 4-vector (e, p1, p2, p3) is defined by

e =
1

4π

∫

S2

m,(1.1)

pi =
1

4π

∫

S2

mX̃i,(1.2)

where X̃i are the first eigenfunctions on (S2, σ̊). The positive mass theorem
[21, 29] asserts that the Bondi-Sachs energy-momentum 4-vector is future-
directed timelike if there is a complete spacelike hypersurface intersecting
null infinity in the given cut such that the dominant energy condition is
satisfied and has nonflat domain of dependence. In particular, e > 0.
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1.2.

To put the Bondi-Sachs energy-momentum on physical grounds and to seek
the correct definitions of angular momentum, it is necessary to understand
the symmetries of null infinity I +: the BMS group and its Lie algebra the
BMS algebra. The BMS algebra consists of vector fields

(f + uY 1)
∂

∂u
+ Y A ∂

∂xA

on I + = (−∞,∞)× S2 where f is an arbitrary function on S2 and Y A ∂
∂xA

is a conformal Killing vector field on S2, ∇̊AY B + ∇̊BY A = 2Y 1σ̊AB. The
BMS algebra is similar to the Poincaré algebra but contains an infinite-
dimensional abelian subalgebra, the supertranslations f ∂

∂u
instead of the

4-dimensional translations where f is taken to be mode 0 and 1 spherical
harmonics. The quotient of the supertranslations is again isomorphic to the
Lorentz algebra. The fact that the Lorentz algebra sits in the BMS algebra in
infinitely dimensional ways by conjugation with supertranslations, referred
as supertranslation ambiguity in physics literature, is the major impediment
of defining angular momentum at null infinity that transforms covariantly
as in special relativity. For supertranslation ambiguity, we refer to [3, 23] for
an explanation.

The first definition of conserved quantities with respect to the full BMS
algebra was the Winicour-Tamburino [32] linkage. They consider a propaga-
tion law of the BMS vector fields and define the linkage as a modification of
Komar’s integral, see [32, Section V]. The expression in terms of Bondi-Sachs
data is given in [32, (8.16)]:

1

8π

∫

S2

Y A

(

NA −
1

4
CAB∇̊DC

BD −
1

16
∇̊A(CDEC

DE)

)

+ f

(

m+
1

4
∇̊A∇̊BCAB

)

.

Other early proposals are Bramson [8] and Prior [25].
The turning point of the story is Ashtekar-Strubel [2]. They showed

that the BMS group induced canonical transformations on the phase space
and the corresponding Hamiltonians can be interpreted as fluxes of con-
served quantities. This is the first definition that vanishes when there is
no gravitational radiations [4]. Next, by extending Penrose’s definition of
quasi-local angular momentum based on twistor method [24], Dray-Strubel
[18] defined a new set of conserved quantities for the full BMS algebra. The
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follow-up independent works Dray [17] and Shaw [30] showed that the flux
of Dray-Strubel conserved quantities is the Ashtekar-Streubel flux. Finally,
Wald-Zoupas [31] recovered the Dray-Strubel conserved quantities via the
Hamiltonian framework, thus providing them a physical interpretation. We
recommend Section III of Flanagan-Nichols [19] for an excellent exposition.
In particular, one finds in [19, (3.5)] the definition of Dray-Streubel con-
served quantities in terms of Bondi-Sachs data

1

8π

∫

S2

Y A

(

NA −
1

4
CAB∇̊DC

BD −
1

16
∇̊A(CDEC

DE)

)

+ (f + uY 1)(2m).

To close this subsection, we mention two important related works. First,
under the framework for stability of Minkowski spacetime introduced by
Christodoulou-Klainerman [13], Rizzi proposed a definition of angular mo-
mentum at null infinity [26, 27]. Second, Chrus̀ciel-Jezierski-Kijowski [15]
developed a Hamiltonian formalism for a description of field theories in ra-
diation regime and obtained a definition of angular momentum and center-
of-mass integral at null infinity. In terms of Bondi-Sachs data, they are given
by [15, (6.117)]

1

8π

∫

S2

Y A

(

NA −
1

4
CAB∇̊DC

BD −
1

16
∇̊A(CDEC

DE)

)

.

1.3.

In this work, we study the limits of Chen-Wang-Yau quasi-local angular mo-
mentum and center-of-mass integral [11]. The definition, reviewed in Section
2.2, applies to arbitrary spacelike 2-surface Σ with spacelike mean curvature
vector. It is based on the surface Hamiltonian extracted from the Hilbert-
Einstein gravitation action. The novelty of Chen-Wang-Yau definition is
that it involves a reference term whose value depends on the isometric em-
bedding of Σ into the Minkowski spacetime. Solving the optimal isometric
embedding equation requires the (Hodge) decomposition of the shear tensor
CAB = FAB + FAB where

FAB = ∇̊A∇̊Bc−
1

2
∆̊c̊σAB

FAB =
1

2
(̊ϵAD∇̊B∇̊

Dc+ ϵ̊BD∇̊A∇̊
Dc).

Our main results, Theorems 6.3 and 7.4, state the following:
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Figure 1: The null hypersurface {u = u0} and the spherical section Σr.

Theorem 1.1. Fix a null hypersurface {u = u0} and denote the level set of
r on {u = u0} by Σr. Assuming that {u = u0} has vanishing linear momen-
tum, then the limits of angular momentum Jk and center-of-mass integral
Ci of Σr are given by

Jk =
1

8π

∫

S2

ϵ̊AB∇̊BX̃
k

(

NA −
1

4
CAB∇̊DC

DB − c∇̊Am

)

.

and

Ci =
1

8πe

∫

S2

∇̊AX̃i

[

NA −
1

4
CAB∇̊DC

DB −
1

16
∇̊A

(

CDECDE

)

− c∇̊Am+ 2̊ϵAB(∇̊
Bc)m

]

+
1

8πe

∫

S2

3X̃icm−
1

4
X̃i∇̊AF

AB∇̊DFDB,

where ϵ̊AB denotes the area form with respect to σ̊AB.

Comparing with Dray-Streubel’s definition, Chen-Wang-Yau’s definition
contains correction terms that result from the optimal isometric embedding
equations. In subsequent work joint with Po-Ning Chen and Mu-Tao Wang
[10], we show that Chen-Wang-Yau’s angular momentum and center-of-mass
integral are distinguished by their supertranslation invariance of total flux.

The rest of the paper is organized as follows. In Section 2, we expand
the metric coefficients in Bondi-Sachs coordinates to the necessary order and
review the definition of Chen-Wang-Yau conserved quantities. In Sections 3
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and 4, we compute the physical data and the reference data in Chen-Wang-
Yau definitions respectively. In Section 5, we discuss the center-of-mass-
frame and solve the optimal isometric embedding equation. The angular
momentum and center-of-mass integral are evaluated in Sections 6 and 7
respectively. In Section 8, it is shown that in Kerr spacetime, we recover the
expected values of angular momentum and center-of-mass integral. There
are two appendices on useful identities and facts of symmetric traceless 2-
tensors on S2.

2. Preliminaries

2.1. Bondi-Sachs coordinates and asymptotic expansion

Let N be a spacetime with metric g given in Bondi-Sachs coordinates
(u, r, xA) by

(2.1) g = −UV du2 − 2Ududr + σAB(dx
A +WAdu)(dxB +WBdu)

and satisfy the determinant condition

(2.2) det
(σAB

r2

)

= det(̊σAB),

where σ̊AB is the round metric on the unit sphere. In this way, the spacetime
metric above has exactly six degrees of freedom. For future reference, we
denote the covariant derivatives associated with σAB and σ̊AB by ∇A and
∇̊A, respectively. We also note that, for vector fields XA on the sphere, we
have

(2.3) divσX
A = divσ̊X

A

owing to the determinant condition (2.2).
Assuming a Bondi-Sachs expansion from null infinity in powers of 1

r
, we

have
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U = 1−
1

16r2
(

CDEC
DE
)

+O(r−3),

V = 1−
2m

r
+O(r−2),

WA =
1

r2
W (−2)A +

1

r3
W (−3)A +O(r−4)

=
1

2r2
∇̊DCA

D +
1

r3

(

2

3
NA −

1

16
∇̊A

(

CDEC
DE
)

−
1

2
CA
B∇̊

DCB
D

)

+O(r−4).

(2.4)

The function m(u, xA) and the spherical vector NA(u, xD) are referred to
as the mass aspect and the angular momentum aspect, respectively. The
symmetric traceless spherical two-tensor CAB(u, x

D) is referred to as the
shear tensor.

The expansion above is derived from the Einstein equations expressed
in the Bondi-Sachs variables. In particular, there are a hierarchy of initial
data equations which can be systematically integrated to yield higher terms
in the metric expansion, assuming expressions in powers of 1

r
as mentioned

at the outset. See Mädler-Winicour [22] for details.
Moreover, we need a further term in the expansion of V in calculating the

quasi-local quantities. The result is well-known. See [14, (3.5)] for example.
For completeness, we give a derivation in the appendix.

Proposition 2.1. The metric function V expands as

V = 1−
2m

r
+

1

r2
V (−2) +O(r−3)(2.5)

where

V (−2) =
1

4
∇̊AC

AB∇̊DCBD +
1

16
CDEC

DE +
1

3
∇̊ANA.(2.6)

Remark 1. We compare different conventions on angular momentum as-
pect in Hawking-Perry-Strominger [20, (2.2)], Chrusicel-Jezierski-Kijowski
[15, (5.99)], Barnich-Troessaert [5, (4.37)] and Mädler-Winicour [22, (56)].
Note that these authors use UA = −WA in their papers. Our choice features
that limr→∞RArru = NA.

1) NA
(HPS) = NA − u∇̊Am

2) NA
(CJK) = −1

3N
A
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3) NA
(BT ) = NA − 3

16CBD∇̊
ACBD − 1

4C
AB∇̊DCDB

4) NA
(MW ) = −1

3N
A
(BT )

2.2. Chen-Wang-Yau quasi-local conserved quantities

Next, we describe the quasi-local quantities to be considered, per Chen-
Wang-Yau [11]. Let (Σ, σ) be a closed embedded spacelike two-sphere in a
spacetime (N, g), with spacelike mean curvature vectorH. The physical data
used in the quasi-local definition consists of the triple (σ, |H|, αH), where σ

is the induced metric of Σ, |H| is the norm of its mean curvature vector,
and αH is the connection one-form of the normal bundle with respect to the
mean curvature vector; that is,

αH(·) = g

(

∇N
(·)

J

|H|
,
H

|H|

)

,

where J is the future-directed timelike vector obtain via reflection of H

through the incoming light cone in the normal bundle.
The reference data used in the quasi-local definition is specified with

respect to an isometric embedding X : (Σ, σ) →֒ (R3,1, η) of Σ into the
Minkowski spacetime. In terms of the image surface X(Σ) in R

3,1, we have
the reference data (|H0|, αH0

), analogous to the physical data.
Let (t, x1, x2, x3) be a Cartesian coordinate system on the Minkowski

spacetime (R3,1, η). We take T0 to be a future-directed, unit timelike vec-
tor field in the Minkowski spacetime, interpreted as an observer, and split
X = (X0, X1, X2, X3) into temporal and spatial components. We define the
height function

(2.7) τ := −⟨T0, X⟩

in terms of T0 and X. Further, we define the density function

(2.8) ρ :=

√

|H0|2 +
(∆τ)2

1+|∇τ |2 −
√

|H|2 + (∆τ)2

1+|∇τ |2
√

1 + |∇τ |2

and the current one-form

(2.9) j := ρ∇τ −∇

[

sinh−1

(

ρ∆τ

|H0||H|

)]

− αH0
+ αH
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on Σ. Note that we identify Σ and X(Σ) implicitly by the isometric em-
bedding X. In particular, |H0|, αH0

and τ stand for |H0| ◦X,X∗(αH0
) and

τ ◦X in the definitions (2.8) and (2.9).
There are many such choices of isometric embedding X and observer

T0 in the Minkowski spacetime. Per Chen-Wang-Yau [11], we consider only
those pairs (X,T0) with associated data satisfying the optimal isometric
embedding equation

(2.10) divσj = 0.

The quasi-local angular momentum and center-of-mass integral are de-
fined with respect to rotation and boost Killing fields in Minkowski space-
time, respectively the images of the Lorentz Killing vector fields

(2.11) Ki,j := xi∂j − xj∂i, i, j = 1, 2, 3; i < j

and

(2.12) Ki := xi∂t + t∂i, i = 1, 2, 3

under Lorentz transformations.
Per Chen-Wang-Yau [11], the quasi-local center-of-mass and angular mo-

mentum are defined as follows:

Definition 1. Given a surface (Σ, σ) in (N, g), suppose that the pair (X,T0)
provides an isometric embedding of Σ into Minkowski spacetime such that
the optimal isometric embedding equation (2.10) is satisfied. Writing T0 =
A(∂t) = A((1, 0, 0, 0)) for a Lorentz transformation A, we define the compo-
nents of the quasi-local angular momentum by

(2.13) Jk(Σ, X, T0) = −
ϵijk

8π

∫

Σ
[⟨A(Ki,j), T0⟩ρ+ (A(Ki,j))

T · j]dΣ

and the components of the quasi-local center-of-mass integral by

(2.14) Ci(Σ, X, T0) = −
1

8πe

∫

Σ
[⟨A(Ki), T0⟩ρ+ (A(Ki))

T · j]dΣ,

where ⟨·, ·⟩ denotes the Minkowskian inner product and KT denotes the
projection of a Lorentz Killing field K onto the tangent space of the image
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X(Σ), such that

(2.15) KT = ⟨K, ∂AX⟩σAC∂C .

In the angular momentum expression, we make use of the volume form
ϵijk of R

3 written with respect to the coordinates (x1, x2, x3), such that
k = 1, 2, 3; k ̸= i, j.

3. The physical data

We fix a null hypersurface {u = u0} and study the surfaces (Σr, σr) with
constant luminosity distance in the null hypersurface. Per Chen-Wang-Yau
[12] and the Bondi-Sachs expansion (2.4), the physical data is specified by

σAB,r = r2σ̊AB + rCAB +
1

4
(CDEC

DE )̊σAB +O(r−1),(3.1)

|Hr|
2 =

4

Ur

(

V

r
+ divσW

)

,(3.2)

g(∇N
∂A
Jr, Hr) = −

2

rU
∂A

(

V

r
+ divσW

)

(3.3)

+
2

rU2

(

V

r
+ divσW

)

σAC∂rW
C .

We rewrite (3.2) and (3.3) in terms of the Bondi-Sachs expansion (2.4)
in the following proposition:

Proposition 3.1. With respect to the Bondi-Sachs expansion (2.4), the
norm of the mean curvature (3.2) expands as

|Hr| =
1

r
|H|(−1) +

1

r2
|H|(−2) +

1

r3
|H|(−3) +O(r−4)(3.4)

=
2

r
−

2m

r2
+

1

2r2

(

∇̊D∇̊ECDE

)

+
1

4r3
∇̊AC

AB∇̊DCBD +
1

8r3
(CDEC

DE) +
1

r3
∇̊ENE

−
1

16r3
∆̊(CDEC

DE)−
1

2
∇̊A

(

CA
B∇̊

DCB
D

)

−
m2

r3
+

1

2r3
m
(

∇̊D∇̊ECDE

)

−
1

16r3

(

∇̊D∇̊ECDE

)2

+O(r−4),
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and the connection one-form (3.3) expands as

αH,r(∂B) =
1

r
α
(−1)
H (∂B) +

1

r2
α
(−2)
H (∂B) +O(r−3)(3.5)

=
1

r
∇̊Bm−

1

4r
∇̊B

(

∇̊D∇̊ECDE

)

−
1

2r
∇̊ACAB

+
1

4r2
CBD∇̊EC

DE −
1

r2
NB +

3

32r2
∇̊B(CDEC

DE)

+
1

r2
∇̊Bf+O(r−3).

Here the one-form ∇̊Bf comes from the 1
r2

order of −1
2∂B log

(

V
r
+ divσW

)

:

f = −
1

2
∇̊AN

A +
1

32
∆̊(CDEC

DE)−
1

8
∇̊AC

AB∇̊DCBD(3.6)

−
1

32
CDEC

DE +
1

4

(

2m−
1

2
∇̊D∇̊ECDE

)2

+
1

4
∇̊A(C

AD∇̊ECED).

Proof. From (3.2) and (2.4), we get

|Hr|
(−2) = −2m+ ∇̊AW

A(−2),

|Hr|
(−3) = V (−2) + ∇̊AW

A(−3) +
1

16
CDEC

DE −m2 +m∇̊AW
A(−2)

−
1

4
(∇̊AW

A(−2))2.

Plugging in (2.4), and (2.6), we obtain (3.4).
Regarding the connection one-form, we have from (2.4)

αH,r(∂B) = −
1

2
∂B log

(

V

r
+ divσW

)

+
1

2U
σBD∂rW

D

= −
1

2
∂B log

(

1−
2m

r
+

1

r
∇̊DW

D(−2) +
1

r2
V (−2) +

1

r2
∇̊DW

D(−3)

)

−
1

r
W

(−2)
B −

1

r2
CBDW

D(−2) −
3

2r2
σ̊BDW

D(−3).

Plugging in (2.4), and (2.6), we obtain (3.5). □
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4. The reference data

We consider isometric embeddings Xr : (Σr, σr) →֒ (R3,1, η), with compo-
nents Xr = (X0

r , X
1
r , X

2
r , X

3
r ) expanding according to the ansatz

X0
r = X0(0) +

1

r
X0(−1) +O(r−2),

Xi
r = rX̃i +Xi(0) +

1

r
Xi(−1) +O(r−2),

(4.1)

where X̃ = (X̃1, X̃2, X̃3) are the standard coordinate functions on the unit
sphere. The leading order of Xi

r is chosen according to the fact that Σr is
asymptotically a round sphere of radius r. The isometric embedding equation

(4.2) dXi
r,A · dXi

r,B = σAB,r + dX0
r,A · dX0

r,B,

and the metric expansion (3.1) imply the linearized equation

(4.3) dX̃i
A · dX

i(0)
B + dX

i(0)
A · dX̃i

B = CAB.

Recall from the introduction that the shear tensor CAB(u, x
D) is sym-

metric and traceless; it is well-known that CAB(u, x
D) admits the decompo-

sition

CAB(u, x
A) =

(

∇̊A∇̊B −
1

2
σ̊AB∆̊

)

c(u, xD)(4.4)

+
1

2

(

ϵ̊AD∇̊
D∇̊B + ϵ̊BD∇̊

D∇̊A

)

c(u, xD),

with scalar potentials c(u, xD) and c(u, xD) and ϵ̊AB the area form of the
standard unit sphere. See Appendix B for a proof. Without loss of gener-
ality, we can assume that the potentials c and c have spherical harmonic
expansions with support in ℓ ≥ 2.

As a shorthand, we write

FAB(u, x
A) :=

(

∇̊A∇̊B −
1

2
σ̊AB∆̊

)

c(u, xA),(4.5)

FAB(u, x
A) :=

1

2

(

ϵ̊AD∇̊
D∇̊B + ϵ̊BD∇̊

D∇̊A

)

c(u, xA).(4.6)

We respectively refer to FAB and FAB as the closed and co-closed com-
ponents of CAB, with closed and co-closed potentials c and c. In physics
literature, they are called polar and axial parts. Our denomination comes
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from the fact that the divergence operator is an isomorphism from the closed
(co-closed) symmetric traceless 2-tensors to closed (co-closed) 1-forms on S2.
See [10, Proposition 2.4].

With this notation in place, the equation (4.3) implies

Xi(0) =
1

2

(

∇̊Ac+ ϵ̊AB∇̊Bc
)

∇̊AX̃
i −

1

4
∆̊cX̃i,

∇̊DX
i(0) =

1

2
FB
D ∇̊BX̃

i −
1

2

(

∇̊AFAD

)

X̃i

+
1

2
ϵ̊AB∇̊D∇̊Bc∇̊AX̃

i −
1

2
ϵ̊DB∇̊

BcX̃i,

∆̊Xi(0) = −
1

2

(

∇̊D∇̊EFDE

)

X̃i +
1

2
ϵ̊AB∇̊B∆̊c∇̊AX̃

i.

(4.7)

Using these calculations, we proceed to expand the norm of the reference
mean curvature and the connection one-form, as in the previous section. We
present the norm of the mean curvature in the following proposition:

Proposition 4.1.

|H0,r| =
1

r
|H0|

(−1) +
1

r2
|H0|

(−2) +
1

r3
|H0|

(−3) +O(r−4)(4.8)

=
2

r
+

1

2r2
∇̊A∇̊BC

AB −
1

4r3

(

∆̊X0(0)
)2

−
1

r3
X̃i∆̊Xi(−1)

−
1

2r3
∇̊A

(

CAB∇̊DFDB

)

−
1

2r3
∇̊AC

AB∇̊DF
D
B

−
1

2r3
CABFAB +

1

16r3
∇̊A∆̊c∇̊A∆̊c+

1

4r3
∇̊AC

AB∇̊DC
D
B .

Proof. The reference mean curvature is given by H0,r = (∆X0
r ,∆Xi

r), with
associated expansions

∆X0
r =

1

r2
∆̊X0(0) +

1

r3
∆̊X0(−1) −

1

r3
∇̊B

(

CAB∇̊AX
0(0)
)

+O(r−4),

∆Xi
r = −

2

r
X̃i +

1

r2
∆̊Xi(0) −

1

r2

(

∇̊BC
AB
)

∇̊AX̃
i

+
1

r3
∆̊Xi(−1) −

1

r3
∇̊A

(

CAB∇̊BX
i(0)
)

+
1

4r3
∇̊A

(

CDEC
DE∇̊AX̃i

)

,

per the inverse metric expansion

(4.9) σAB =
1

r2
σ̊AB −

1

r3
CAB +O(r−4)
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and divergence relation (2.3). The norm of the mean curvature has expansion

|H0,r| =
2

r
+

1

2r2

(

∇̊D∇̊EFDE

)

−
1

r3
X̃j∆̊Xj(−1) −

1

4r3

(

∆̊X0(0)
)2

(4.10)

+
1

r3
X̃i∇̊A

(

CAB∇̊BX
i(0)
)

+
1

2r3
CABC

AB

+
1

4r3

(

∆̊Xi(0) − ∇̊AC
AB∇̊BX̃

i
)2

−
1

16r3

(

∇̊A∇̊BC
AB
)2

.

Substituting for Xi(0) per (4.7),

X̃i∇̊A

(

CAB∇̊BX
i(0)
)

= −
1

2
CABCAB −

1

2
∇̊A

(

CAB∇̊DFDB

)

−
1

2
∇̊A

(

CAB ϵ̊BD∇̊
Dc
)

and

1

4

(

∆̊Xi(0) − ∇̊AC
AB∇̊BX̃

i
)2

=
1

16

(

∇̊A∇̊BC
AB
)2

+
1

16
∇̊A∆̊c∇̊A∆̊c

+
1

4
∇̊AC

AB∇̊DC
D
B

−
1

4
∇̊AC

AB ϵ̊BD∇̊
D∆̊c.

Adding the last term in each of these relations, we further rewrite

−
1

4
∇̊AC

AB ϵ̊BD∇̊
D∆̊c−

1

2
∇̊A

(

CAB ϵ̊BD∇̊
Dc
)

= −
1

2
CABFAB −

1

2
∇̊AC

AB∇̊DF
D
B .

Substituting these reductions, we obtain (4.8). □

Turning to the reference connection one-form, we have the expansion:
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Proposition 4.2.

αH0,r(∂B) =
1

r
α
(−1)
H0

(∂B) +
1

r2
α
(−2)
H0

(∂B) +O(r−3)(4.11)

=
1

2r
∇̊B

(

∆̊ + 2
)

X0(0) +
1

2r2
∇̊B

(

∆̊ + 2
)

X0(−1)

−
1

2r2
∇̊B

(

∇̊AF
AD∇̊DX

0(0)
)

−
1

2r2

(

∇̊B∇̊EX
0(0)
)(

∇̊DF
DE
)

−
1

2r2

(

∇̊B∇̊EX
0(0)
)(

ϵ̊ED∇̊Dc
)

−
1

8r2
∇̊B

(

∇̊D∇̊ECDE∆̊X0(0)
)

−
1

2r2
∇̊B

(

CAD∇̊A∇̊DX
0(0)
)

−
1

2r2
CD
B ∇̊DX

0(0)

+
1

4r2
∇̊DX0(0)

(

ϵ̊BE∇̊D∇̊
Ec− ϵ̊DE∇̊B∇̊

Ec
)

+
1

2r2
∇̊B

(

∇̊DX0(0)ϵ̊DE∇̊
Ec
)

+O(r−3).

Proof. First, we expand

|H0,r|
−1 =

r

2
−

1

8
∇̊D∇̊ECDE +O(r−1),

and

H0,r

|H0,r|
=

(

1

2r
∆̊X0(0)

+
1

r2

(

1

2
∆̊X0(−1) −

1

2
∇̊D

(

CDE∇̊EX
0(0)
)

−
1

8
∇̊D∇̊ECDE∆̊X0(0)

)

,

− X̃i +
1

r

(

1

2
∆̊Xi(0) −

1

2
∇̊DC

DE∇̊EX̃
i +

1

4
∇̊D∇̊ECDEX̃

i

)

)

+
(

O(r−3), O(r−2)
)

.

Following the ideas of Chen-Wang-Yau [11], we note that the vector

(4.12) wr := (1 + σAB∂AX
0
r ∂BX

0
r , σ

AB∂AX
0
r ∂BX

i
r),
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is normal to the embedded surface, owing to the isometric embedding equa-
tion. Shifting by an appropriate factor, we find that

(4.13) vr := wr −

〈

wr,
H0,r

|H0,r|

〉

H0,r

|H0,r|

is parallel to J0,r, with length

√

−⟨vr, vr⟩ = 1 +O(r−2).

Hence we have

√

−⟨vr, vr⟩αH0,r(∂B) =

〈

∇R

Bvr,
H0,r

|H0,r|

〉

=

〈

∇R

Bwr,
H0,r

|H0,r|

〉

−∇R

B

〈

wr,
H0,r

|H0,r|

〉

.

Expanding

wr = (1 +O(r−2),
1

r
∇̊AX̃i∇̊AX

0(0)

+
1

r2

(

∇̊AX0(0)∇̊AX
i(0) + ∇̊AX0(−1)∇̊AX̃

i − CAB∇̊AX
0(0)∇̊BX̃

i
)

+O(r−3)),

we have

〈

wr,
H0,r

|H0,r|

〉

= −
1

2r
∆̊X0(0) +

1

r2

(

−
1

2
∆̊X0(−1)

+
1

2
∇̊A

(

CAB∇̊BX
0(0)
)

+
1

8
∇̊D∇̊ECDE∆̊X0(0)

− ∇̊AX0(0)∇̊AX
i(0)X̃i +

1

2
∆̊Xi(0)∇̊AX̃i∇̊AX

0(0)

−
1

2
∇̊AX

0(0)∇̊DC
DA

)

,
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and
〈

∇R

Bwr,
H0,r

|H0,r|

〉

=
1

r
∇̊BX

0(0)

+
1

r2
∇̊B

(

∇̊AX̃i∇̊AX
0(0)
)

×

(

1

2
∆̊Xi(0) −

1

2
∇̊DC

DE∇̊EX̃
i +

1

4
∇̊D∇̊ECDEX̃

i

)

+
1

r2

(

−CD
B ∇̊DX

0(0) + ∇̊BX
0(−1) − ∇̊B

(

∇̊DX
0(0)∇̊DXi(0)

)

X̃i
)

+O(r−3).

Substituting for Xi(0) via (4.7), we have

−∇̊AX0(0)∇̊AX
i(0)X̃i +

1

2
∆̊Xi(0)∇̊AX̃i∇̊AX

0(0) =
1

2
∇̊AX

0(0)∇̊DC
DA,

such that
〈

wr,
H0,r

|H0,r|

〉

= −
1

2r
∆̊X0(0)

+
1

r2

(

−
1

2
∆̊X0(−1) +

1

2
∇̊A

(

CAB∇̊BX
0(0)
)

+
1

8
∇̊D∇̊ECDE∆̊X0(0)

)

.

Per (4.7), we have moreover

1

2
∆̊Xi(0) −

1

2
∇̊DC

DE∇̊EX̃
i +

1

4
∇̊D∇̊ECDEX̃

i

= −
1

2
∇̊DF

DE∇̊EX̃
i −

1

2
ϵ̊ED∇̊Dc∇̊EX̃

i,

and

− ∇̊B

(

∇̊DX
0(0)∇̊DXi(0)

)

X̃i

= −∇̊B

(

∇̊DX
0(0)∇̊DXi(0)X̃i

)

+ ∇̊DX
0(0)∇̊DXi(0)∇̊BX̃

i

=
1

2
∇̊B

(

∇̊DX0(0)∇̊AFAD

)

+
1

2
∇̊B

(

∇̊DX0(0)ϵ̊DE∇̊
Ec
)

+
1

2
CD
B ∇̊DX

0(0) +
1

4
∇̊DX0(0)

(

ϵ̊BE∇̊D∇̊
Ec− ϵ̊DE∇̊B∇̊

Ec
)

,
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such that
〈

∇R

Bwr,
H0,r

|H0,r|

〉

=
1

r
∇̊BX

0(0)

+
1

r2

(

−
1

2
∇̊B∇̊AX

0(0)
(

∇̊DF
DA + ϵ̊AD∇̊Dc

)

−
1

2
CD
B ∇̊DX

0(0)

+
1

4
∇̊DX0(0)

(

ϵ̊BE∇̊D∇̊
Ec− ϵ̊DE∇̊B∇̊

Ec
)

+ ∇̊BX
0(−1) +

1

2
∇̊B

(

∇̊DX0(0)∇̊AFAD

)

+
1

2
∇̊B

(

∇̊DX0(0)ϵ̊DE∇̊
Ec
)

)

+O(r−3).

Collecting terms, we have the connection one-form expansion (4.11). □

5. The center-of-mass frame

We assume that the isometric embeddings Xr = (X0
r , X

i
r) expanding as (4.1)

satisfy the optimal isometric embedding equation (2.10) to second order with
respect to the observers

(5.1) T0,r = (1, 0, 0, 0) +
1

r
(0, b1, b2, b3) +O(r−2).

That is, given

τr := −⟨T0,r, Xr⟩ = τ (0) +
1

r
τ (−1) +O(r−2),(5.2)

= (X0(0) − biX̃
i) +

1

r
(X0(−1) − biX

i(0)) +O(r−2),

together with the data (3.4, 3.5, 4.8, 4.11), we assume that τr satisfies the
equation

divσj = divσ

(

ρr∇τr −∇

[

sinh−1

(

ρr∆τr

|H0,r||Hr|

)]

− αH0,r + αH,r

)

= 0

up to second order. As we shall see, the embedding and observer ansatze
(4.1, 5.1) are justified assuming two simple conditions on the mass aspect
function m in the metric expansion (2.4).
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Using the mean curvature formulae (3.4) and (4.8) together with the
fact that τr is O(1), the density (2.8) expands as

ρr =
1

r2
ρ(−2) +

1

r3
ρ(−3) +O(r−4),(5.3)

=
2m

r2
+

1

r3

(

|H0|
(−3) − |H|(−3)

)

+O(r−4).

Substituting the expansions (3.4, 3.5, 4.8, 4.11, 5.2, 5.3), the current
(2.9) takes the form

jA,r =
1

r
j
(−1)
A +

1

r2
j
(−2)
A +O(r−3)(5.4)

=
1

r

(

α
(−1)
H (∂A)− α

(−1)
H0

(∂A)
)

+
1

r2

(

2m∇̊Aτ
(0) −

1

2
∇̊A(m∆̊τ (0))

− α
(−2)
H0

(∂A) + α
(−2)
H (∂A)

)

+O(r−3)

=
1

r

(

∇̊A

(

m−
1

4

(

∇̊D∇̊ECDE

)

−
1

2
(∆̊ + 2)X0(0)

)

−
1

2
∇̊BCAB

)

+
1

r2

(

2m∇̊Aτ
(0) −

1

2
∇̊A(m∆̊τ (0))− α

(−2)
H0

(∂A) + α
(−2)
H (∂A)

)

+O(r−3).

Observation that the optimal isometric embedding equation implies that

j
(−1)
A is a co-closed one-form:

j
(−1)
A = ∇̊Am−

1

4
∇̊A

(

∇̊D∇̊ECDE

)

(5.5)

−
1

2
∇̊DCDA −

1

2
∇̊A(∆̊ + 2)X0(0),

= −
1

2
∇̊DFDA

= −
1

4
ϵ̊AB∇̊

B(∆̊ + 2)c.

Finally, we note that the observers T0,r have the form T0,r = Ar((1, 0, 0, 0)),
where Ar are Lorentz transformations expanding as

(5.6) Ar = Id+
1

r
A(−1) +O(r−2),
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with

A(−1) =









0 b1 b2 b3
b1 0 a12 a13
b2 a21 0 a23
b3 a31 a32 0









, aij = −aji.

According to (5.4), we use only the connection one-form expansions (3.5)
and (4.11), along with the divergence relation (2.3), to calculate the linear
term of the optimal isometric embedding equation:

∆̊(∆̊ + 2)X0(0) − ∆̊(2m) +
1

2
(∆̊ + 2)(∇̊D∇̊ECDE) = 0,

∆̊

[

(∆̊ + 2)X0(0) − 2m+
1

4
(∆̊ + 2)(∆̊ + 2)c

]

= 0.
(5.7)

We solve (5.7) for X0(0), complementing our earlier calculation of the
Xi(0) (4.7) per the linearized isometric embedding equations. Integrating
against the eigenfunctions X̃i, we deduce that the equation is solvable for
X0(0) if and only if the mass aspect satisfies

(5.8)

∫

S2

m(u, xA)X̃i = 0.

That is, solvability is guaranteed by vanishing of linear momentum (1.2)
at future null infinity, placing the spacetime into what is often referred to
as the center-of-mass frame. The center-of-mass frame will turn out to be
essential in the calculation of center-of-mass integral. On the other hand, the
calculation for angular momentum can be modified to accommodate other
linear momenta profiles at future null infinity by means of different choices
of observer T0,r.

We remark that it is possible to solve the isometric embedding equation
(4.2) at the next order, obtaining the embedding term Xi(−1).

Raising indices of the current (5.4) via (4.9) and applying the divergence
relation (2.3), we calculate the next order term of the optimal isometric
embedding equation (2.10):

(5.9) −
1

2
∆̊
(

∆̊ + 2
)

X0(−1) − 2bi∇̊
A(m∇̊AX̃

i)− bi∆̊(mX̃i) + S = 0,

where we have used the connection one-form expansions (3.5) and (4.11) in
addition to that for τ (5.2). Here S is a shorthand for terms expressible in
terms of the physical observables in the metric expansion (2.4) and X0(0).
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We solve (5.9) for X0(−1), with integration against the eigenfunctions
X̃j yielding necessary and sufficient conditions for solvability:

∫

S2

[

SX̃j − 2bi∇̊
A(m∇̊AX̃

i)X̃j − bi∆̊(mX̃i)X̃j
]

= 0,
∫

S2

[

SX̃j + 2bim∇̊AX̃
i∇̊AX̃j + 2bimX̃iX̃j

]

= 0,
∫

S2

SX̃j + 2bj

∫

S2

m = 0,

where we have used the pointwise relation

∇̊AX̃i∇̊AX̃
j = δij − X̃iX̃j .

Assuming positivity of the Bondi mass (1.1), such that
∫

S2 m > 0, and
any S, solvability follows from an appropriate choice of bj , which we leave
implicit. In generating X0(0), X0(−1), and the bj , the analysis of (5.7) and
(5.9) allows us to solve for τ (0) and τ (−1) in (5.2). In principle, we could also
solve the isometric embedding equation (4.2) to the next order, obtaining
the embedding term Xi(−2).

Determination of the bi is necessary in proper calculation of the terms
appearing in the angular momentum calculation, though it turns out that
such terms vanish after integration by parts. On the other hand, the calcu-
lation for quasi-local center-of-mass integral relies only upon the condition
(5.8) allowing solvability and application of the linearized equation (5.7).

Solvability of higher-order terms appearing in the optimal isometric
embedding equation (2.10) and the isometric embedding equation (4.2) is
accomplished in the work of Chen-Wang-Yau [12, Theorem 3]. The au-
thors show that, given the assumption

∫

S2 m > 0, it is possible to solve
(2.10) and (4.2) inductively with respect to embeddings Xr and observers
T0,r = Ar((1, 0, 0, 0)) expanding according to (4.1), (5.1), and (5.6), adding
lower order terms to the Lorentz transformations Ar as necessary.

To summarize the section above, given our family of surfaces Σr in a
spacetime (N, g) with mass aspect function m satisfying

∫

S2

m > 0,
∫

S2

mX̃i = 0,
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the pairs (Xr, T0,r), with embeddings Xr and observers T0,r expanding as
(4.1) and (5.1), respectively, satisfy the optimal isometric embedding equa-
tion (2.10) and isometric embedding equation (4.2) at all orders.

6. Limit of quasi-local angular momentum

We evaluate the quasi-local angular momentum formula (2.13) with respect
to the surfaces (Σr, σr) in a spacetime (N, g) with vanishing linear momen-
tum at null infinity (5.8) and with positive Bondi mass, such that the pairs
(Xr, T0,r) described above satisfy both the isometric embedding equation
(4.2) and optimal isometric embedding equation (2.10) to all orders. In par-
ticular, we can make appropriate choices of bi in the observer expansion of
T0,r (5.1) guaranteeing solvability of the optimal isometric embedding equa-
tion at first order (5.7) and second order (5.9). Taking limits as r approaches
infinity, we recover the components of the angular momentum at future null
infinity. In doing so, we make use of the data (3.4, 3.5, 4.8, 4.11), the derived
expansions (5.2, 5.3, 5.4, 5.6), the linearized optimal isometric embedding
equation (5.7).

We begin by considering the case where the observer T0 = (1, 0, 0, 0);
in particular, bi = 0 in its expansion (5.1). According to Definition 1, we
consider the angular momentum vector fields

(6.1) Ki,j,r = xi∂j − xj∂i,

associated with T0 = (1, 0, 0, 0). Here Ki,j,r denotes the restriction of the
Lorentz boost to the embedded surface Xr(Σr).

Evaluating on Xr(Σr), we have

(6.2) ⟨Ki,j,r, T0⟩ = 0.

Considering the projection on the embedded surface Xr(Σr), we calcu-
late

(KT
i,j,r)

B =

(

1

r2
σ̊AB −

1

r3
CAB +O(r−4)

)

·

〈

(

(

∇̊AX
0(0) +

1

r
∇̊AX

0(−1) +O(r−2)
)

∂t

+
(

r∇̊AX̃
k + ∇̊AX

k(0) +O(r−1)
)

∂k

)

,

(

rX̃i∂j +Xi(0)∂j − rX̃j∂i −Xj(0)∂i +O(r−1)
)

〉
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= X̃i∇̊BX̃j − X̃j∇̊BX̃i −
1

r
CB
A (X̃i∇̊AX̃j − X̃j∇̊AX̃i)

+
1

r
∇̊B

(

X̃jXi(0) − X̃iXj(0)
)

+
2

r

(

X̃i∇̊BXj(0) − X̃j∇̊BXi(0)
)

+O(r−2),

which simplifies to

(KT
i,j,r)

B = Y B
i,j −

1

r
FB

DY
D
i,j +

1

r
ϵ̊AD∇̊

B∇̊DcY A
i,j(6.3)

+
1

r
∇̊B

(

X̃jXi(0) − X̃iXj(0)
)

+O(r−2),

where

(6.4) Y A
i,j := X̃i∇̊AX̃j − X̃j∇̊AX̃i = ϵijq ϵ̊

AB∇̊BX̃
q,

and we have substituted for the Xi(0) in the last term via (4.7).
Note that Y A

i,j satisfies the Killing equation

(6.5) ∇̊AY B
i,j = −∇̊BY A

i,j ,

which implies the further identities

∇̊AY
A
i,j = 0,(6.6)

∆̊Y A
i,j = −Y A

i,j .(6.7)

With the above calculations, the quasi-local angular momentum (2.13)
expands as

Jk(Σr, Xr, T0) =
rϵijk

16π

∫

S2

Y A
i,j∇̊

DFDA +O(1),(6.8)

with worrisome, possibly divergent behavior arising from the top-order term
of jA (5.5). This top-order term vanishes via integration by parts and appli-
cation of the Killing equation (6.5).

Expanding (2.13) to the next order, we have vanishing of integrals of ex-

act terms in the current j
(−2)
A (5.4) contracted with Y A

i,j , owing to integration
by parts and application of (6.6). We observe
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Lemma 6.1.
∫

S2

(

KT
i,j,r

)(−1)A
j
(−1)
A = 0.

Proof. Recall (5.5), j
(−1)
A = −1

2∇̊
BFAB, and we have vanishing of the term

∫

S2

∇̊B
(

X̃jXi(0) − X̃iXj(0)
)

j
(−1)
B

= −
1

2

∫

S2

∇̊B
(

X̃jXi(0) − X̃iXj(0)
)

∇̊DFDB,

owing to integration by parts and

∇̊B∇̊DFBD = 0.

Hence,

∫

S2

(

KT
i,j,r

)(−1)A
j
(−1)
A =

1

2

∫

S2

(

Y D
i,jF

A
D − ϵ̊ED∇̊

A∇̊DcY E
i,j

)

∇̊BFAB.

To show the right-hand side vanishes, we compute

∫

S2

ϵ̊AE∇̊EX̃
kFB

A∇̊
DFDB =

∫

S2

1

2
ϵ̊AE∇̊EX̃

kFB
A ϵ̊BD∇̊

D(∆̊ + 2)c

=

∫

S2

1

2
ϵ̊AE∇̊EX̃

k ϵ̊BD∇̊
BFD

A (∆̊ + 2)c

=

∫

S2

−
1

4
ϵ̊AE∇̊EX̃

k∇̊A(∆̊ + 2)c (∆̊ + 2)c

= 0,

where we have applied (A.2), and

∫

S2

∇̊DX̃
k∇̊B∇̊Dc∇̊EFEB =

∫

S2

1

2
∇̊DX̃

k ϵ̊BE∇̊
B∇̊Dc∇̊E(∆̊ + 2)c

=

∫

S2

1

2
X̃k ϵ̊BE∇̊

Bc∇̊E(∆̊ + 2)c

=

∫

S2

−
1

2
∇̊EX̃k ϵ̊BE∇̊

Bc∆̊c

=

∫

S2

1

4
∇̊EX̃k ϵ̊BE∇̊

B(∇̊Ac∇̊
Ac)

= 0.
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Per (6.4), Y A
i,j = εijq ϵ̊AB∇̊

BX̃q, and the relations above imply

∫

S2

Y A
i,jF

B
A∇̊

DFDB = 0,(6.9)

and

∫

S2

Y A
i,j ϵ̊AD∇̊

B∇̊Dc∇̊EFEB = 0.

This completes the proof. □

Remark 2. For future reference, we note the vanishing

∫

S2

Y A
i,jF

B
A ∇̊DFDB =

∫

S2

1

2
Y A
i,jF

B
A ∇̊B

(

∆̊ + 2
)

c(6.10)

=

∫

S2

−
1

2
Y A
i,j∇̊BF

B
A

(

∆̊ + 2
)

c

=

∫

S2

−
1

8
Y A
i,j∇̊A

((

∆̊ + 2
)

c
)2

= 0,

using the properties of Y A
i,j (6.5) and (6.6).

Applying these reductions and taking the limit as r tends to infinity, we
calculate the components of the angular momentum at future null infinity:

Jk = −
ϵijk

8π

∫

S2

[

− Y A
i,jNA + 2mY A

i,j∇̊AX
0(0) +

1

4
Y A
i,jC

B
A ∇̊DCDB(6.11)

+
1

2
Y A
i,jC

D
A ∇̊DX

0(0) +
1

2
Y A
i,j

(

∇̊A∇̊EX
0(0)
)(

∇̊DF
DE
)

+
1

2
Y A
i,j∇̊A∇̊DX

0(0)ϵ̊DE∇̊Ec

−
1

4
Y A
i,j∇̊

DX0(0)
(

ϵ̊AE∇̊D∇̊
Ec− ϵ̊DE∇̊A∇̊

Ec
)

]

.

We simplify the terms involving X0(0) in the following lemma:
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Lemma 6.2.

∫

S2

[

− 2mY A
i,j∇̊AX

0(0) −
1

2
Y A
i,jC

D
A ∇̊DX

0(0)

−
1

2
Y A
i,j

(

∇̊A∇̊EX
0(0)
)(

∇̊DF
DE
)

−
1

2
Y A
i,j∇̊A∇̊DX

0(0)ϵ̊DE∇̊Ec

+
1

4
Y A
i,j∇̊

DX0(0)
(

ϵ̊AE∇̊D∇̊
Ec− ϵ̊DE∇̊A∇̊

Ec
)

]

=

∫

S2

−cY A
i,j∇̊Am

Proof. We will use the following identities obtained by integration by parts
and (6.5, 6.6, 6.7): For any functions f on S2,

∫

S2

Y A
i,j∇̊Af(∆̊ + 2)f = 0;(6.12)

for any functions f and g on S2,

∫

S2

Y A
i,j(∆̊ + 2)f∇̊Ag =

∫

S2

Y A
i,jf∇̊A(∆̊ + 2)g.(6.13)

With repeated integration by parts and application of the properties of
Y A
i,j (6.5, 6.6, 6.7), we calculate

∫

S2

−
1

2
Y A
i,j

(

∇̊A∇̊EX
0(0)
)(

∇̊DF
DE
)

=

∫

S2

[

1

4

(

∇̊EY A
i,j

)

∇̊AX
0(0)∇̊E

(

∆̊ + 2
)

c+
1

2
Y A
i,j∇̊AX

0(0)
(

∇̊D∇̊EFDE

)

]

=

∫

S2

[

−
1

4
∆̊Y A

i,j∇̊AX
0(0)

(

∆̊ + 2
)

c+
1

2
Y A
i,j∇̊AX

0(0)
(

∇̊D∇̊ECDE

)

]

=

∫

S2

[

−
1

2
Y A
i,jX

0(0)∇̊DFDA +
1

2
Y A
i,j∇̊AX

0(0)
(

∇̊D∇̊ECDE

)

]

=

∫

S2

[

1

2
Y A
i,j∇̊DX

0(0)FD
A +

1

2
Y A
i,j∇̊AX

0(0)
(

∇̊D∇̊ECDE

)

]



✐

✐

“3-Wang” — 2021/7/5 — 20:01 — page 1450 — #28
✐

✐

✐

✐

✐

✐

1450 J. Keller, Y.-K. Wang, and S.-T. Yau

and

1

4

∫

S2

Y A
i,j∇̊

DX0(0)
(

ϵ̊AE∇̊D∇̊
Ec− ϵ̊DE∇̊A∇̊

Ec
)

=
1

4

∫

S2

−Y A
i,j∆̊X0(0)ϵ̊AE∇̊

Ec+ ∇̊AY D
i,j ∇̊DX

0(0)ϵ̊AE∇̊
Ec

+ Y A
i,j∇̊

D∇̊AX
0(0)ϵ̊DE∇̊

Ec

= −
1

4

∫

S2

Y A
i,j∆̊X0(0)ϵ̊AE∇̊

Ec.

Hence, the original integral reduces to

∫

S2

[

− 2mY A
i,j∇̊AX

0(0) +
1

2
Y A
i,j∇̊AX

0(0)
(

∇̊D∇̊ECDE

)

−
1

2
Y A
i,jF

D
A∇̊DX

0(0) −
1

2
Y A
i,j∇̊A∇̊DX

0(0)ϵ̊DE∇̊Ec

−
1

4
Y A
i,j∆̊X0(0)ϵ̊AE∇̊

Ec

]

.

Substituting the linearized equation (5.7) into the first line, we calculate

∫

S2

[

−2mY A
i,j∇̊AX

0(0) +
1

2
Y A
i,j∇̊AX

0(0)
(

∇̊D∇̊ECDE

)

]

=

∫

S2

[

−(∆̊ + 2)X0(0)Y A
i,j∇̊AX

0(0) −
1

2
(∆̊ + 2)cY A

i,j∇̊AX
0(0)

]

=

∫

S2

−cY A
i,j∇̊Am,

where we used (6.12), (6.13) and linearized equation (5.7) again in the last
equality.
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For the second line, using the properties (6.5) and (6.7), we note

∫

S2

Y A
i,jF

D
A∇̊DX

0(0) =

∫

S2

−
1

2
Y A
i,jX

0(0)ϵ̊AD∇̊
D
(

∆̊ + 2
)

c

=

∫

S2

[

−Y A
i,jX

0(0)ϵ̊AD∇̊
Dc−

1

2
Y A
i,jX

0(0)ϵ̊AD∇̊
D∆̊c

]

=

∫

S2

[

−
1

2
Y A
i,jX

0(0)ϵ̊AD∇̊
Dc−

1

2
∆̊
(

Y A
i,jX

0(0)
)

ϵ̊AD∇̊
Dc

]

=

∫

S2

[

−
1

2
Y A
i,j∆̊X0(0)ϵ̊AD∇̊

Dc− ∇̊BY A
i,j∇̊BX

0(0)ϵ̊AD∇̊
Dc

]

=

∫

S2

[

−
1

2
Y A
i,j∆̊X0(0)ϵ̊AD∇̊

Dc− Y B
i,j∇̊

A∇̊BX
0(0)ϵ̊AD∇̊

Dc

]

.

Hence, the second line vanishes. Putting the two reductions together, we
obtain Lemma 6.2. □

Applying these reductions, we have a simplified formula for the angular
momentum at future null infinity:

Theorem 6.3. Suppose (N, g) is a spacetime with Bondi-Sachs expan-
sion (2.4). Further assuming that (N, g) has vanishing linear momentum
at null infinity (5.8) and positive Bondi mass, the angular momentum at
null infinity has the components

Jk =
ϵijk

8π

∫

S2

Y A
i,j

(

NA −
1

4
CAB∇̊DC

DB − c∇̊Am

)

.(6.14)

In particular, if CAB is closed, then

Jk =
ϵijk

8π

∫

S2

Y A
i,j

(

NA − c∇̊Am
)

,

thanks to (6.10). In addition, if CAB is closed and m is angular independent,
then

Jk =
ϵijk

8π

∫

S2

Y A
i,jNA.

Proof. We have calculated (6.14) with respect to an observer T0 = (1, 0, 0, 0),
assuming that (5.7) and (5.9) are solvable. More generally, we have solvabil-
ity of the two for appropriate choice of bi in the observer expansion (5.1),
assuming vanishing of linear momentum at null infinity (5.8) and positivity
of the Bondi mass. Following Definition 1, we write T0,r = Ar((1, 0, 0, 0)),
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with SO(3, 1) transformations Ar, and measure the quasi-local angular mo-
mentum with respect to the Lorentz rotation Ar(Ki,j,r).

Owing to preservation under SO(3, 1) transformations, vanishing of the
inner product (6.2) still holds. Let ε(ij) denote the 3× 3 skew-symmetric
matrix with ij entry 1, ji entry −1 and other entries 0. Using the expansion
of the Lorentz transformations Ar (5.6), we have

Ar(Ki,j,r) = xi∂j − xj∂i +
1

r



(xibj − xjbi)∂t +

3
∑

k,l=1

aklε
(ij)
lp xp∂k



+O(r−2),

from which application of the projection formula (2.15) gives the projection
expansion

(

Ar(K
T
i,j,r)

)B
= Y B

i,j −
1

r
FB

DY
D
i,j +

1

r
ϵ̊AD∇̊

B∇̊DcY A
i,j

+
1

r
∇̊B(X̃jXi(0) − X̃iXj(0))

+
1

r





3
∑

k,l=1

aklε
(ij)
lp X̃p∇̊BX̃k



+O(r−2),

differing from the earlier expansion (6.3) by an exact term. The contribution
to the quasi-local formula amounts to

1

16π

∑

k,l

aklε
(ij)
pl

∫

S2

X̃p∇̊BX̃kj
(−1)
B = 0,

by (5.5) and Lemma 7.5.

There are also changes in j
(−2)
A , via the definition of jA (5.4) and the

expansion of τ (5.2). The modifications to the quasi-local formula vanish, as

1

8π

∫

S2

[

2mY A
i,j∇̊AbnX̃

n + Y A
i,j∇̊A

(

mbnX̃
n
)]

=
bn

8π

∫

S2

2mϵijq

(

ϵ̊AB∇̊BX̃
q∇̊AX̃

n
)

=
bn

8π

∫

S2

2mϵijqϵ
nq

lX̃
l = 0,

where we have used the definition of Y A
i,j (6.4), its divergence-free property

(6.6), and the assumption of vanishing linear momentum (5.8).
With the vanishing of these terms and taking limits, we see that the

earlier formula (6.14) is preserved. □
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7. Limit of quasi-local center-of-mass integral

We evaluate the quasi-local center-of-mass formula (2.14) with respect to
the surfaces (Σr, σr) in a spacetime (N, g) with vanishing linear momentum
at null infinity (5.8) and with positive Bondi mass, such that the pairs
(Xr, T0,r) described above satisfy both the isometric embedding equation
(4.2) and optimal isometric embedding equation (2.10) to all orders. Taking
limits as r approaches infinity, we recover the components of the center-of-
mass integral at future null infinity. In doing so, we make use of the data
(3.4, 3.5, 4.8, 4.11), the derived expansions (5.2, 5.3, 5.4, 5.6), the linearized
optimal isometric embedding equation (5.7).

For simplicity, we begin by considering the case where the observers
T0,r = (1, 0, 0, 0), such that bi = 0 in its expansion (5.1). According to Defi-
nition 1, we consider the boosts

(7.1) Ki,r := xi∂t + t∂i

associated with T0 = (1, 0, 0, 0). Here Ki,r denotes the restriction of the
Lorentz boost to the embedded surface Xr(Σr).

On the embedded surfaces Xr(Σr), the Ki,r satisfy

⟨Ki,r, T0⟩ = −rX̃i −Xi(0) +O(r−1),(7.2)

(KT
i,r)

B =

(

1

r2
σ̊AB −

1

r3
CAB +O(r−4)

)

(7.3)

〈

(

rX̃i +Xi(0)
)

∂t +X0(0)∂i +O(r−1),

∇̊AX
0(0)∂t +

(

r∇̊AX̃
j + ∇̊AX

j(0)
)

∂j +O(r−1)

〉

=
1

r

(

−∇̊B
(

X̃iX0(0)
)

+ 2∇̊BX̃iX0(0)
)

+O(r−2),

where in the second expression we apply the projection formula (2.15).
Expanding the center-of-mass formula (2.14), we find

(7.4) Ci(Σr, Xr, T0) =
r

4πe

∫

S2

mX̃i +O(1),

with the seemingly divergent top-order term annihilated by our assumption
of vanishing linear momentum at null infinity (5.8).
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Expanding (2.14) to the next order and taking the limit as r approaches
infinity, the center-of-mass integral at future null infinity is given by com-
ponents

Ci =
1

8πe

∫

S2

[

X̃i
(

|H0|
(−3) − |H|(−3)

)

(7.5)

+ 2mXi(0) − 2∇̊AX̃iX0(0)j
(−1)
A

]

,

where we have applied the linearized optimal isometric embedding equation

(5.7), amounting to a divergence-free condition on j
(−1)
A , to integrate away

its contraction with the first term in the expansion (7.3).
As mentioned in the previous section, owing to the form of the compo-

nents of (7.5), calculation of the center-of-mass does not rely upon appli-
cation of the second order term (5.9) in the optimal isometric embedding
equation.

We begin our simplification of (7.5) by rewriting terms in the integral
of the reference mean curvature norm (4.8):

Lemma 7.1.

∫

S2

X̃i

(

−X̃j∆̊Xj(−1) −
1

4

(

∆̊X0(0)
)2
)

=

∫

S2

X̃i

(

1

4
(CDEC

DE) +
1

4
(FDEF

DE)

−
1

4
∇̊A∇̊Bc∇̊

A∇̊Bc−
1

2
∇̊BFBD ϵ̊

DA∇̊Ac

)

+

∫

S2

X̃i

(

−
1

4
∇̊Ac∇̊

Ac−
1

16

(

∇̊A∇̊BCAB

)2

−m2 +
1

2
m(∆̊ + 2)c+

1

2
m∇̊A∇̊BCAB

)

.

Proof. Suppose Xj(−1) = αA∇̊AX̃
j + βX̃j . With this notation and the sur-

face metric expansion (3.1), the second order term of the isometric embed-
ding equation (4.2) takes the form

∇̊AαB + ∇̊BαA + 2βσ̊AB =
1

4
(CDEC

DE )̊σAB − ∇̊AX
j(0)∇̊BX

j(0)

+ ∇̊AX
0(0)∇̊BX

0(0)

=: δσAB.
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We compute

−X̃j∆̊Xj(−1) = σ̊ABδσAB − (∆̊ + 2)β.

Substituting for Xi(0) (4.7), we get

σ̊ABδσAB =
1

2
(CABC

AB)−
1

4
(FABF

AB)−
1

4
∇̊AFAD∇̊

BFD
B

−
1

2
(FABF

AB)−
1

4
∇̊A∇̊Bc∇̊

A∇̊Bc−
1

2
∇̊BFBD ϵ̊

DA∇̊Ac

−
1

4
∇̊Ac∇̊

Ac+ |∇̊X0(0)|2.

Noting that

∫

S2

X̃i

(

|∇̊X0(0)|2 −
1

4
(∆̊X0(0))2

)

=

∫

S2

−
1

4
X̃i
(

(∆̊ + 2)X0(0)
)2

,

we substitute linearized optimal isometric embedding equation (5.7) for
(∆̊ + 2)X0(0) to obtain

∫

S2

X̃i

(

−X̃j∆̊Xj(−1) −
1

4

(

∆̊X0(0)
)2
)

=

∫

S2

X̃i

(

1

4
(CDEC

DE) +
1

4
(FDEF

DE)

−
1

4
∇̊A∇̊Bc∇̊

A∇̊Bc−
1

2
∇̊BFBD ϵ̊

DA∇̊Ac

)

+

∫

S2

X̃i

(

−
1

4
∇̊Ac∇̊

Ac−
1

16

(

∇̊A∇̊BCAB

)2

−m2 +
1

2
m(∆̊ + 2)c+

1

2
m∇̊A∇̊BCAB

)

−

∫

S2

X̃i

(

1

4
∇̊AFAD∇̊

BFD
B +

1

16

(

(∆̊ + 2)c
)2

+
1

8
∇̊A∇̊BCAB(∆̊ + 2)c

)

.
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Recall ∇̊BFD
B = 1

2∇̊
D(∆̊ + 2)c and the last integral vanishes via integration

by parts:

∫

S2

X̃i

(

1

4
∇̊AFAD∇̊

BFD
B +

1

16

(

(∆̊ + 2)c
)2

+
1

8
∇̊A∇̊BCAB(∆̊ + 2)c

)

=

∫

S2

−
1

8
∇̊DX̃i∇̊AFAD(∆̊ + 2)c+

1

16
X̃i
(

(∆̊ + 2)c
)2

=

∫

S2

−
1

32
∇̊DX̃i∇̊D

(

(∆̊ + 2)c
)2

+
1

16
X̃i
(

(∆̊ + 2)c
)2

= 0.

This completes the proof. □

Applying the mean curvature expansions (3.4) and (4.8) together with
Lemma 7.1, we find

∫

S2

X̃i
(

|H0|
(−3) − |H|(−3)

)

=

∫

S2

[

∇̊AX̃iNA +
1

2
X̃im(∆̊ + 2)c+

1

8
X̃i(∆̊ + 2)(CDEC

DE)

]

+

∫

S2

X̃i

(

1

4
(FDEF

DE)−
1

4
(∇̊A∇̊Bc∇̊

A∇̊Bc)

−
1

2
∇̊BFBD ϵ̊

DA∇̊Ac−
1

4
∇̊Ac∇̊Ac

)

+

∫

S2

X̃i

(

−
1

2
∇̊AC

AB∇̊DF
D
B +

1

2
∇̊A

(

CAB∇̊DFDB

)

−
1

2
CABFAB +

1

16
∇̊A∆̊c∇̊A∆̊c

)

.

Note that

∫

S2

−
1

4
X̃i(∇̊A∇̊Bc∇̊

A∇̊Bc)

=

∫

S2

[

1

4
∇̊AX̃

i∇̊Bc∇̊
A∇̊Bc+

1

4
X̃i∇̊Bc∆̊∇̊Bc

]

=

∫

S2

[

1

2
X̃i∇̊Ac∇̊

Ac+
1

4
X̃i∇̊Bc∇̊

B∆̊c

]
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and hence

∫

S2

X̃i

[

−
1

4
∇̊A∇̊Bc∇̊

A∇̊Bc−
1

4
∇̊Ac∇̊Ac+

1

16
∇̊A∆̊c∇̊A∆̊c

]

=

∫

S2

1

16
X̃i∇̊A(∆̊ + 2)c∇̊A(∆̊ + 2)c

=

∫

S2

1

4
X̃i∇̊AF

AB∇̊DFBD.

Moreover, by (A.2), we have

∫

S2

X̃i
(

∇̊BFBD ϵ̊
DA∇̊Ac+ FABFAB

)

=

∫

S2

−∇̊BX̃iFBD ϵ̊
DA∇̊Ac

=

∫

S2

−
1

2
c∇̊BX̃iϵ̊BA∇̊

A(∆̊ + 2)c

=

∫

S2

−
1

2
X̃i∇̊B(∆̊ + 2)c ϵ̊BA∇̊

Ac

=

∫

S2

−X̃i∇̊BFBD ϵ̊
DA∇̊Ac

and hence
∫

S2

−
1

2
X̃i∇̊BFBD ϵ̊

DA∇̊Ac =

∫

S2

1

4
X̃iFABFAB.

These two reductions imply

∫

S2

X̃i
(

|H0|
(−3) − |H|(−3)

)

=

∫

S2

[

∇̊AX̃iNA +
1

2
X̃im(∆̊ + 2)c

]

+

∫

S2

X̃i

(

1

4
∇̊AF

AB∇̊DFBD −
1

2
∇̊AC

AB∇̊DF
D
B

+
1

2
∇̊A

(

CAB∇̊DFDB

)

−
1

4
CABFAB

)

.

The next lemma evaluates the second part of the center-of-mass integral
(7.5).
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Lemma 7.2.
∫

S2

[

2mXi(0) − 2∇̊AX̃iX0(0)j
(−1)
A

]

=

∫

S2

[

1

2
X̃i∇̊DF

AD∇̊BFAB − ∇̊AX̃
ic∇̊Am+ 2X̃icm

−
1

2
X̃i(∆̊c)m+ 2̊ϵAB∇̊AX̃

i(∇̊Bc)m

]

.

Proof. Recall (5.5)

j
(−1)
A = −

1

2
∇̊BFAB = −

1

4
ϵ̊AB∇̊

B(∆̊ + 2)c

and note that for any functions f and g

∫

S2

∇̊AX̃if ϵ̊AB∇̊
B(∆̊ + 2)g =

∫

S2

∇̊AX̃i(∆̊ + 2)f ϵ̊AB∇̊
Bg.(7.6)

The assertion follows from the linearized optimal isometric embedding equa-
tion (5.7) and the expressions for Xi(0) (4.7). □

In summary, the center-of-mass integral is equal to (up to the factor 1
8πe)

∫

S2

∇̊AX̃i
(

NA − c∇̊Am+ 2̊ϵAB(∇̊
Bc)m

)

+ 3X̃icm(7.7)

+

∫

S2

X̃i

(

−
1

4
∇̊AF

AB∇̊DFBD

+
1

2
∇̊A

(

CAB∇̊DFDB

)

−
1

4
CABFAB

)

The last integral will be simplified by the next lemma.

Lemma 7.3. Per Proposition A.1, we have

∫

S2

X̃i∇̊A

(

FAB∇̊DFDB

)

=

∫

S2

1

2
X̃iFABF

AB,(7.8)
∫

S2

X̃i∇̊A

(

FAB∇̊DFDB

)

=

∫

S2

1

2
X̃iFABF

AB,(7.9)
∫

S2

X̃i∇̊A

(

FAB∇̊DFDB

)

=

∫

S2

X̃i∇̊A

(

FAB∇̊DFDB

)

= −

∫

S2

X̃i∇̊AF
AB∇̊DFDB.(7.10)
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Proof. Using (A.2), we have
∫

S2

X̃i∇̊A

(

FAB∇̊DFDB

)

=

∫

S2

−∇̊AX̃
iFAB∇̊DFDB

=

∫

S2

−
1

2
∇̊AX̃

iFAB ϵ̊BD∇̊
D(∆̊ + 2)c

=

∫

S2

1

2
∇̊AX̃

iϵ̊BD∇̊
DFBA(∆̊ + 2)c

=

∫

S2

1

4
∇̊AX̃

i∇̊A(∆̊ + 2)c(∆̊ + 2)c

=

∫

S2

1

4
X̃i
(

(∆̊ + 2)c
)2

,

and
∫

S2

X̃iFABFAB =

∫

S2

X̃iFAB ϵ̊AD∇̊B∇̊
Dc

=

∫

S2

[

−∇̊DX̃iϵ̊ADF
AB∇̊Bc−

1

2
X̃i∇̊B(∆̊ + 2)c∇̊Bc

]

=

∫

S2

1

2

[

∇̊DX̃i∇̊D(∆̊ + 2)c · c+ ∇̊BX̃i(∆̊ + 2)c∇̊Bc+ X̃i(∆̊ + 2)c∆̊c
]

=

∫

S2

1

2
X̃i
(

(∆̊ + 2)c
)2

.

This proves (7.9). Identity (7.8) is proved similarly using (A.2).
For (7.10), we have
∫

S2

X̃i∇̊A

(

FAB∇̊DFDB

)

=

∫

S2

−
1

2
∇̊AX̃

iFAB ϵ̊BD∇̊
D(∆̊ + 2)c

=

∫

S2

−
1

4
∇̊AX̃

iϵ̊AB∇̊B(∆̊ + 2)c(∆̊ + 2)c

=

∫

S2

−X̃i∇̊DFBD∇̊AF
AB,

using (A.2) and
∫

S2

X̃i∇̊A

(

FAB∇̊DFDB

)

=

∫

S2

−
1

2
∇̊AX̃

iFAB∇̊B(∆̊ + 2)c

=

∫

S2

1

2
∇̊AX̃

i∇̊BF
AB(∆̊ + 2)c

=

∫

S2

−X̃i∇̊DFBD∇̊AF
AB.

□
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Theorem 7.4. Suppose (N, g) is a spacetime with Bondi-Sachs expan-
sion (2.4). Further assuming that (N, g) has vanishing linear momentum
at null infinity (5.8) and positive Bondi mass, the center-of-mass integral at
future null infinity has components

Ci =
1

8πe

∫

S2

∇̊AX̃i

[

NA −
1

4
CAB∇̊DC

DB −
1

16
∇̊A

(

CDECDE

)

(7.11)

− c∇̊Am+ 2̊ϵAB(∇̊
Bc)m

]

+
1

8πe

∫

S2

3X̃icm−
1

4
X̃i∇̊AF

AB∇̊DFDB.

In particular, if CAB is closed, then

Ci =
1

8πe

∫

S2

∇̊AX̃i
(

NA − c∇̊Am
)

+ 3X̃icm,

thanks to (7.8). In addition, if CAB is closed and m is angular independent,
then

Ci =
1

8πe

∫

S2

∇̊AX̃iNA.

Proof. We simplify the last two terms in (7.7):

∫

S2

X̃i

(

1

2
∇̊A

(

CAB∇̊DFDB

)

−
1

4
CABFAB

)

=

∫

S2

X̃i ·
1

4
∇̊A

(

FAB∇̊DFDB + FAB∇̊DFDB + FAB∇̊DFDB

)

+

∫

S2

X̃i

(

−
1

4
FABFAB −

1

8
FABFAB

)

=

∫

S2

X̃i

(

1

4
∇̊A

(

CAB∇̊DCDB

)

−
1

8
CABCAB

)

=

∫

S2

∇̊AX̃i

(

−
1

4
CAB∇̊DC

DB −
1

16
∇̊A

(

CABCAB

)

)

where we used (7.10) and (7.9) in the first and (7.8) in the second equation.
We thus have calculated (7.11) assuming an observer T0 = (1, 0, 0, 0). More
generally, the condition (5.8) allows for observers T0,r expanding according
to (5.1). Following Definition 1, we write T0,r = Ar((1, 0, 0, 0)) for Lorentz
transformations Ar and measure the quasi-local center-of-mass (2.14) with
respect to the Lorentz boost Ar(Ki,r), taking limits as r goes to infinity to
recover the components of the center-of-mass integral at future null infinity.
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Owing to preservation under Lorentz transformations, the inner prod-
uct expansion (7.2) remains the same. Likewise, the density terms in the

expansion (5.3) and the current term j
(−1)
A (5.5) are unchanged. Using the

expansion of the Lorentz transformations Ar (5.6), we have

Ar(Ki,r) = xi∂t + t∂i +
1

r



xi
3
∑

j=1

bj∂j + tbi∂t + t

3
∑

j=1

aij∂j



+O(r−2),

from which application of the projection formula (2.15) gives the expansion

(Ar(Ki,r))
T,B =

1

r

(

−∇̊B
(

X̃iX0(0)
)

+ 2∇̊BX̃iX0(0) + X̃ibj∇̊
BX̃j

)

+O(r−2),

differing from the earlier (7.3) in its final term. The new terms in the center-
of-mass component amount to

1

16πe

∫

S2

X̃ibj∇̊
BX̃j∇̊DFDB = 0,

by (5.5) and Lemma 7.5 below. In this way, the earlier calculation of (7.11)
is preserved. □

Lemma 7.5. For any co-closed symmetric traceless two-tensor FAB, we
have

∫

S2

X̃i∇̊BX̃j∇̊DFDB = 0.

Proof. Since closed and co-closed symmetric traceless two-tensors are or-
thogonal, we have

0 =
1

2

∫

S2

(

∇̊D∇̊B(X̃iX̃j)− ∆̊(X̃iX̃j )̊σDB
)

FDB

=

∫

S2

∇̊DX̃i∇̊BX̃jFDB

= −

∫

S2

X̃i∇̊BX̃j∇̊DFDB.

□
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8. Example: Kerr spacetime

8.1. Singular Bondi-Sachs coordinates

Barnich-Troessaert [6] provide a BMS coordinate system (u, r, θ, ϕ) for the
Kerr spacetime, such that

grr = grθ = grθ = 0,

and the spherical part of the metric satisfies the determinant condition (2.2)

det gAB = r4 sin2 θ.

The remaining components expand as

guu = −1 + 2Mr−1 +O(r−2),

gur = −1 + a2
(

1

2
− cos2 θ

)

r−2 +O(r−3),

guθ =
a cos θ

2 sin2 θ
+

a cos θ

4

(

8M +
a

sin3 θ

)

r−1 +O(r−2),

guφ = −2aM sin2 θr−1 +O(r−2),

gθθ = r2 +
a

sin θ
r +

a2

2 sin2 θ
+O(r−1),

gθφ = O(r−1),

gφφ = r2 sin2 θ − a sin θr +
a2

2
+O(r−1),

(8.1)

where M is the mass and a is the angular velocity.
Regarding the quantities appearing in the expansion (2.4), the mass

aspect m = M is constant, while the shear tensor CAB has closed form,
with components

Cθθ =
a

sin θ
,

Cθφ = 0,

Cφφ = −a sin θ,

(8.2)

and potentials

c = −2a sin θ,

c = 0.
(8.3)
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In addition, the angular momentum aspect NA has components

Nθ = 3Ma cos θ,

Nφ = −3Ma sin2 θ.
(8.4)

We note that certain metric components above are singular. The singular
nature of the coordinate system is also apparent in the Bondi-Sachs data;
in particular, the shear tensor CAB is singular.

As the mass aspect is constant, the condition (5.8) holds, yielding van-
ishing of the linear momentum at future null infinity. That is, the spacetime
is in center-of-mass frame, and solvability of the linearized optimal isometric
embedding equation (5.7) is ensured. In particular, we find

X0(0) = −
1

4
(∆̊ + 2)c.

Considering the next order in the optimal isometric embedding equation,
we can directly compute vanishing of the term S in the discussion following
(5.9), using the mass aspect, the angular momentum aspect (8.4), the shear
tensor (8.2), and the form of X0(0) obtained by solving the linearized equa-
tion (5.7). As a consequence, we consider the observer T0 = (1, 0, 0, 0), such
that the bi = 0 in the observer expansion (5.1).

In calculating the angular momentum and center-of-mass integral at
future null infinity, it is helpful to express the first eigenfunctions in spherical
coordinates:

X̃1 = sin θ cosϕ,

X̃2 = sin θ sinϕ,

X̃3 = cos θ.

(8.5)

Owing to the simplicity of the Kerr spacetime, with constant mass aspect
and closed shear tensor, we apply the special case appearing below our
general formula for the quasi-local center-of-mass integral at null infinity
(7.11) to deduce

Ci =
1

8π

∫

S2

∇̊AX̃iNA = 0.
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On the other hand, the special case appearing below our general formula
for the angular momentum (6.14) yields

J1 =
1

8π

∫

S2

ϵ̊AB∇̊BX̃
1NA = 0,

J2 =
1

8π

∫

S2

ϵ̊AB∇̊BX̃
2NA = 0,

J3 =
1

8π

∫

S2

ϵ̊AB∇̊BX̃
3NA = −Ma,

(8.6)

where

ϵ̊AB∇̊BX̃
3 = ∂φ

in spherical coordinates. In this way, the calculations are precisely what we
expect from the usual presentation of the Kerr spacetime.

8.2. Approximate Bondi-Sachs coordinates

An approximate Bondi-Sachs coordinate system (ū, x̄, θ̄, ϕ̄) is constructed in
Chrus̀ciel-Jezierski-Kijowski [15] with Bondi-Sachs data

m = M,

CAB = 0,

N θ̄ = 0,

N φ̄ = −3Ma.

(8.7)

For more details on the authors’ construction, see Appendix C.7 of [15].
The discussion in the previous subsection carries through largely un-

changed; in particular, we have vanishing of linear momentum and solvabil-
ity of the optimal isometric embedding equation, with X0(0) = 0 and the
observer T0 = (1, 0, 0, 0).

The center-of-mass calculation is even simpler than in the previous co-
ordinate system, since the present coordinate system has a divergence-free
angular momentum aspect. As before, we find

Ci =
1

8π

∫

S2

∇̊AX̃iNA = 0.
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Likewise, the angular momentum components are the same:

J1 =
1

8π

∫

S2

ϵ̊AB∇̊BX̃
1NA = 0,

J2 =
1

8π

∫

S2

ϵ̊AB∇̊BX̃
2NA = 0,

J3 =
1

8π

∫

S2

ϵ̊AB∇̊BX̃
3NA = −Ma.

(8.8)

Appendix A. Two tensor identities and expansion of V

In the appendix, we first derive some identities concerning the derivatives of
closed and co-closed traceless symmetric two-tensors on S2. Then we prove
the expansion of metric coefficient V claimed in Proposition 2.1.

Proposition A.1. Let CAB be a symmetric traceless 2-tensor on (S2, σ̊).
Then

∇̊ACBD − ∇̊BCAD = ∇̊ECBE σ̊AD − ∇̊ECAE σ̊BD(A.1)

ϵ̊AB∇̊ACBD = ϵ̊DA∇̊BC
AB(A.2)

Proof. The second identity follows by contracting the first one by ϵ̊AB. It
suffices to verify the first identity for an orthornomal frame e1, e2. For A =
e1, B = e2, D = e1, we have

∇̊1C21 − ∇̊2C11 = ∇̊1C12 + ∇̊2C22 = ∇̊ECE2;

for A = e1, B = e2, D = e2, we have

∇̊1C22 − ∇̊2C12 = −∇̊1C11 − ∇̊2C21 = −∇̊ECE1.

This proves the assertion. □

Proposition A.2. Let CAB be a traceless symmetric two-tensor on S2.
Then we have

∇̊D∇̊ACBD + ∇̊D∇̊BCAD − ∆̊CAB = σ̊AB∇̊
D∇̊ECDE + 2CAB,(A.3)



✐

✐

“3-Wang” — 2021/7/5 — 20:01 — page 1466 — #44
✐

✐

✐

✐

✐

✐

1466 J. Keller, Y.-K. Wang, and S.-T. Yau

Proof. We work at the potential level and compute

∇̊D∇̊ACBD = ∇̊A∇̊
DCBD −RD E

A BCED −RD E
A DCBE

=
1

2
∇̊A∇̊B(∆̊ + 2)c+

1

2
ϵ D
B ∇̊A∇̊D(∆ + 2)c+ 2CAB.

For a function f , we have

∆̊∇̊A∇̊Bf = ∇̊A∇̊B(∆̊ + 2)f + 2∇̊A∇̊Bf − 2∆̊fσ̊AB.

Hence,

∆̊CAB = ∇̊A∇̊B(∆̊ + 2)c−
1

2
∆̊(∆̊ + 2)c̊σAB

+
1

2

(

ϵ̊ D
A ∇̊D∇̊B(∆̊ + 2)c+ ϵ̊ D

B ∇̊D∇̊A(∆̊ + 2)c
)

+ 2CAB.

Putting these together, we obtain

∇̊D∇̊ACBD + ∇̊D∇̊BCAD − ∆̊CAB =
1

2
∆̊(∆̊ + 2)c̊σAB + 2CAB

= σ̊AB∇̊
D∇̊ECDE + 2CAB □

Lemma A.3. We have the following identity:

(A.4)
1

2
R(2) +

1

4
∇̊A

(

CAB∇̊DCBD

)

+
1

16
∆̊(CDEC

DE) = 0,

where

R(2) :=
1

2

(

CDEC
DE
)

+
1

2
∇̊ACBD∇̊

BCAD +
1

4
∆̊
(

CDEC
DE
)

(A.5)

− ∇̊A

(

CAB∇̊DCBD + CBD∇̊BC
A
D

)

−
1

4

(

∇̊ACBD∇̊
ACBD

)

.

Proof. By Proposition A.1, we have

∇̊ACBD∇̊
ACBD = ∇̊ACBD∇̊

BCAD + ∇̊BCAB∇̊DC
AD.(A.6)
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Indeed,

∇̊ACBD∇̊
ACBD

= ∇̊ACBD

(

∇̊BCAD −
1

2
ϵ̊AB∆̊∇̊Dc+

1

2
ϵ̊DA∇̊Bc+ ∇̊EFBE σ̊AD

)

= ∇̊ACBD∇̊
BCAD +

1

4

(

∇̊D(∆̊ + 2)c− ϵ̊DB∇̊
B(∆̊ + 2)c

)

∆̊∇̊Dc

+
1

4

(

∇̊B(∆̊ + 2)c − ϵ̊BD∇̊
D(∆̊ + 2)c

)

∇̊Bc

+
1

2
∇̊EFBE

(

∇̊B(∆̊ + 2)c+ ϵ̊BD∇̊D(∆̊ + 2)c
)

= ∇̊ACBD∇̊
BCAD +

1

4
∇̊A(∆̊ + 2)c∇̊A(∆̊ + 2)c

+
1

2
ϵ̊BD∇̊B(∆̊ + 2)c∇̊D(∆̊ + 2)c+

1

4
∇̊A(∆̊ + 2)c∇̊A(∆̊ + 2)c

= ∇̊ACBD∇̊
BCAD + ∇̊BCAB∇̊DC

AD.

Moreover, contracting (A.3) with CAB, we obtain

CAB∆̊CAB = 2CAB∇̊D∇̊ACBD − 2(CDEC
DE).

We deduce

R(2) +
1

2
∇̊A

(

CAB∇̊DCBD

)

+
1

8
∆̊(CDEC

DE)

=
1

2
(CDEC

DE) +
3

4

(

∆̊CABC
AB + ∇̊ACBD∇̊

ACBD
)

+
1

4
∇̊ACBD∇̊

BCAD −
1

4
∇̊BCAB∇̊DC

AD

−
1

2
∇̊A

(

CAB∇̊DCBD

)

− ∇̊A

(

CBD∇̊BC
A
D

)

=
1

2
(CDEC

DE) +
3

2
CAB∇̊D∇̊ACBD −

3

2
(CDEC

DE)

+ ∇̊ACBD∇̊
BCAD +

1

2
∇̊BCAB∇̊DC

AD

−
1

2
∇̊A

(

CAB∇̊DCBD

)

− ∇̊A

(

CBD∇̊BC
A
D

)

= −(CDEC
DE) +

1

2
CAB∇̊D∇̊ACBD −

1

2
CAB∇̊A∇̊

DCBD

= 0.

□

We are ready to simplify the expansion of V .
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Proof of Proposition 2.1. Per Mädler-Winicour [22], we have the initial data
equation

∂r(rV ) =
r2

2
UR(σ)−

r2

2
∆U +

r2

4U
∇AU∇AU(A.7)

−
1

2r2
∇A

(

∂r(r
4WA)

)

−
r2

4U
σAB

(

∂rW
A
) (

∂rW
B
)

,

with R(σ) the scalar curvature of σ.
It is well-known that the scalar curvature expands as

R(σ) =
2

r2
+

1

r3
∇̊D∇̊ECDE +

1

r4
R(2) +O(r−5).

See [9, Proposition 4] for example.
Recall (2.4)

WA =
1

r2
W (−2)A +

1

r3
W (−3)A +O(r−4)

=
1

2r2
∇̊DCA

D +
1

r3

(

2

3
NA −

1

16
∇̊A

(

CDEC
DE
)

−
1

2
CA
B∇̊

DCB
D

)

+O(r−4)

and we get

V = 1−
2m

r
−

1

2r2
R(2) +

1

16r2
(

CDEC
DE
)

−
1

32r2
∆̊
(

CDEC
DE
)

+
1

4r2

(

4

3
∇̊ANA −

1

8
∆̊
(

CDEC
DE
)

− CAB∇̊
A∇̊DCB

D

)

+O(r−3).

By Lemma A.3, we get

V = 1−
2m

r
+

1

4r2
∇̊AC

AB∇̊DCBD

+
1

16r2
CDEC

DE +
1

3r2
∇̊ANA +O(r−3).

□

Appendix B. Decomposition of symmetric traceless

2-tensors on S
2

Theorem B.1. Let CAB be a symmetric traceless 2-tensor on (S2, σ̊) that
is divergence-free, ∇̊ACAB = 0. Then CAB = 0.
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Proof. The assertion actually holds for any metric on S2, based on the fact
that S2 has no nontrivial holomorphic 1-form. For standard metric σ̊, we
present an elementary proof following Mädler-Winicour [22, page 13-14].

Let Y A = ϵ̊AB∇̊Bg where g is a −2 eigenfunction of (S2, σ̊). By the
identity ∇̊A∇̊Bg = −gσ̊AB, we have ∇̊

B(Y ACAB) = 0 and hence there exists
a function f such that Y ACAB = ϵ̊BD∇̊

Df. We compute
∫

S2

(Y ACAB)(Y
DCB

D) =

∫

S2

ϵ̊AE∇̊EgCAB ϵ̊
BD∇̊Df

= −

∫

S2

ϵ̊AE∇̊Eg∇̊DCAB ϵ̊
BDf

= −

∫

S2

(̊σABσ̊DE − σ̊ADσ̊BE)∇̊Eg∇̊DCABf

= 0

where we used the identity ϵ̊AB ϵ̊BD = −δAD in the second equality. Thus
Y ACAB = 0. Since for every point p on S2 and tangent vector v ∈ TpS

2,

there exists g such that Y A = v, we conclude that CAB = 0. □

Theorem B.2. Let CAB be a symmetric traceless 2-tensor on (S2, σ̊). Then

CAB(u, x
A) =

(

∇̊A∇̊B −
1

2
σ̊AB∆̊

)

c(u, xD)

+
1

2

(

ϵ̊AD∇̊
D∇̊B + ϵ̊BD∇̊

D∇̊A

)

c(u, xD),

with scalar potentials c(u, xD) and c(u, xD) and ϵ̊AB the area form of the
standard unit sphere.

Proof. Let

∇̊ACAB = ∇̊Bf + ϵ̊BD∇̊
Dg

be the Hodge decomposition of 1-form ∇̊ACAB. We decompose f and g into
spherical harmonics f = fl=1 + fl≥2 and g = gl=1 + gl≥2. We first show that
fl=1 = gl=1 = 0. Indeed, using ∇̊A∇̊Bfl=1 = −fl=1σ̊AB, we integration by
parts to get

0 =

∫

S2

∇̊ACAB∇̊
Bfl=1 =

∫

S2

|∇̊fl=1|
2.

Similarly, we have

0 =

∫

S2

∇̊ACAB ϵ̊
BD∇̊Dgl=1 =

∫

S2

|∇̊gl=1|
2,
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where we used the identity ϵ̊BD ϵ̊
BE = δ E

D .

Since f and g both support in the l ≥ 2 modes, there exist potentials
c and c such that 1

2(∆̊ + 2)c = f and 1
2(∆̊ + 2)c = g. Direct computation

shows that the symmetric traceless 2-tensor

ĈAB =

(

∇̊A∇̊B −
1

2
σ̊AB∆̊

)

c

+
1

2

(

ϵ̊AD∇̊
D∇̊B + ϵ̊BD∇̊

D∇̊A

)

c.

satisfies ∇̊AĈAB = ∇̊Bf + ϵ̊BD∇̊
Dg = ∇̊ACAB. By the previous theorem, we

get CAB = ĈAB. □
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