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Quasi-local mass near the singularity, the

event horizon and the null infinity of

black hole spacetimes

Nishanth Gudapati and Shing-Tung Yau

The behaviour of geometric quantities close to geometric patholo-
gies of a spacetime is relevant to deduce the physical behaviour of
the system. In this work, we compute the quasi-local mass quan-
tities - the Hawking mass, the Brown-York mass and the Liu-Yau
mass in the maximal extensions of the spherically symmetric solu-
tions of the Einstein equations inside the black hole region, at the
singularity, the event horizon, and the null infinity, in the limiting
sense of a geometric flow.

1. Quasi-local mass and black holes

The notion of gravitational mass-energy plays an important role in studying
the physical properties of a spacetime (M̄, ḡ). For instance, a linear wave
equation (□ḡu = 0) provides a useful tool to study the physically relevant
aspects of spacetimes such as stability, red-shift behaviour near black hole
spacetimes (e.g., Schwarzschild, Kerr black hole spacetimes). In contrast
with a linear wave equation, which has a well-defined notion of energy, e.g.,

E : =

∫

Σ
(|∂tu|2 + |∇u|2x)µ̄q̄(1.1)

and energy density e : = ∂tu
2+|∇u|2x on a spacelike hypersurface (Σ, q̄), M̄ =

Σ× R. In general relativity, an unambiguous notion of local mass-density is
not reasonable due to the equivalence principle. Therefore, a quasi-local no-
tion of mass is used for Einstein’s equations for general relativity, where the
mass-energy is captured in the inner boundary Σ of a spacelike hypersurface
Σ →֒ M̄, where M̄ is a 3 + 1 dimensional Lorentzian spacetime. Suppose,
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the metric q̄ on Σ is given by

ḡ = −N̄2dt2 + q̄ab(dx
i + N̄ idt)⊗ (dxj + N̄ jdt),(1.2)

where N̄ ̸= 0, so that (Σ, q̄) is a (spacelike) Riemannian hypersurface. Let
us first introduce the notion of ADM mass at spatial infinity. In an asymp-
totically flat spacetime, where Σ is such that, outside a compact set of Σ it
is diffeomorphic to R

3 \B1(0) and has the following asymptotic behaviour

q̄ij =

(

1 +
M

r

)

δij +O(r−1−α)(1.3a)

and

K̄ij =O(r−2−α).(1.3b)

It may be noted that the parameter M in (1.3a) is also the ADM mass
defined as

M : = lim
r→∞

∫

S2(r)
(∂kq̄iℓ − ∂iq̄ℓk)

|x|i
r

µ̄q̄.(1.4)

This (total) mass is computed at the outer boundary near the asymptotically
flat end. We have M ≥ 0, with the equality M = 0 iff Σ = R

3 (Euclidean
space), from the famous works of Schoen-Yau [17, 18] and Witten [22].

In this work, we shall be interested in various notions of quasi-local mass,
which are defined as functionals on the (boundary) 2-surface Σ such that
Σ →֒ Σ. Now suppose that the embedding Σ →֒ Σ, is such that A is the
second fundamental form and H is the mean curvature (H : = tr(A)). Let
us start with the notion of Hawking mass,

mH(Σ) :=
|Σ| 12

(16π)3/2

(

16π −
∫

Σ
H2

)

(1.5)

A further notion of quasi-local mass is given by the Brown-York mass [4]

mBY : =
1

8π

∫

Σ
(H0 −H), (Brown-York mass)(1.6)
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where H0 is the mean curvature of the isometric embedding of Σ in the
Euclidean space. The notion of the Brown-York mass was extended by Liu-
Yau [11, 12],

mLY : =
1

8π

∫

Σ
(H0 − |H|), (Liu-Yau mass)(1.7)

where H is the mean curvature vector, which follows from the first variation
of the area δ(|Σ|) and H0 is the mean curvature of the isometric embedding
of Σ into the Minkowski space. The definition of the Hawking mass (1.5)
can also be generalized as follows:

mH : =
|Σ| 12

(16π)3/2

(

16π −
∫

Σ
|H|2

)

(spacetime Hawking mass).(1.8)

A further notion of quasi-local mass is defined by Wang-Yau [21], which
is based on the optimal isometric embeddings of Σ into the Minkowski space.
Now consider a general flow of the hypersurfaces (Στ , q) →֒ (Σ, q̄). Suppose
we start with a general flow as follows

q̇ab = 2uAab(1.9)

where a dot signifies a derivative along the flow parameter τ, whose level
sets are the hypersurfaces Στ and A is the second fundamental form of the
embedding Στ →֒ Σ.

Theorem 1.1. Consider a geometric flow of 2−surfaces Σt →֒ Σ and sat-
isfies (1.9), then

1) The evolution of the mean curvature H is given by

Ḣ = −∇a∇au+
1

2
u (−H2 − ∥A∥2q −Rq̄ +Rq)(1.10)

where H and A are the mean curvature and extrinsic curvature of
Στ →֒ Σ respectively, Rq is the scalar curvature of Σ and Rq̄ is the
scalar curvature of Σ.
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2) The evolution of the Hawking mass mH is given by

ṁH =
1

2(16π)3/2
u|Σ|1/2H

(

16π −
∫

Σ
H2µ̄q

)

+
|Σ|1/2

(16π)3/2

∫

Σ

(

2Hµ̄q∇a∇au− 1

2
uHw̃

+ uHµ̄q

(

Aab − 1

2
Hqab

)(

Aab −
1

2
Hqab

)

+ uHµ̄q(Rq̄ −Rq)

)

(1.11)

3) There exists a choice of the function u of the form u = 1
H , such that

mH is monotonic with respect to the flow (1.9)

Proof. As we already remarked the mean curvature H closely related to the
first variation of area δ(|Σ|). It follows that

Ḣ = −∇a∇au− u∥A∥2q − u Ric(n, n)(1.12)

where Ric is the Ricci curvature of Σ and n is the unit normal of Σ in
Σ. This computation, in consistency with (1.9), is closely related to the
second variation formula of Schoen-Yau [17]. Then, using the Gauss-Kodazzi
relations between curvatures of (Σ, q̄) and (Σ, q), we have

Ric(n, n) =
1

2
(Rq̄ −Rq − ∥A∥2q +H2).(1.13)

Now then plugging in (1.13) in (1.12), we get the flow equation:

Ḣ = −∇a∇au+
1

2
u (−H2 − ∥A∥2q −Rq̄ +Rq).(1.14)

□

Consider the quantity:

w : = −H2µ̄q(1.15)

Now then, if we compute the evolution equation of w for the general flow
(1.9): we have

ẇ = 2µ̄qH

(

∇a∇au+
1

2
u(∥A∥2q +H2 +Rq̄ −Rq)

)

−H2(uµ̄qH).(1.16)
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Using the divergence identity,

∇a(H∇au) = ∇aH∇au+H∇a∇au(1.17)

then, under an integral over a compact manifold Σ

H∇a∇au = −∇aH∇au.(1.18)

we get

ẇ = −µ̄q∇aH∇au+ uµ̄qH∥A∥2q + uµ̄qH(Rq̄ −Rq)(1.19)

We have the following decomposition:

∥A∥2q −
1

2
H2 = AabAab −

1

2
H2 − 1

2
H2 +

1

2
H2

=

(

Aab − 1

2
Hqab

)(

Aab −
1

2
Hqab

)

(1.20)

which is a positive-definite quantity. Now let us find an expression for the
rate of change of w along the flow. We have

ẇ = 2µ̄qH∇a∇au− 1

2
uHw

+ uHµ̄q

(

Aab − 1

2
Hqab

)(

Aab −
1

2
Hqab

)

+ uHµ̄q(Rq̄ −Rq)(1.21)

equivalently

ẇ = −2µ̄q∇aH∇au− 1

2
uHw

+ uHµ̄q

(

Aab − 1

2
Hqab

)(

Aab −
1

2
Hqab

)

+ uHµ̄q(Rq̄ −Rq)(1.22)

If we define, w̃ = µ̄q(2Rq −H2),

ẇ = 2µ̄qH∇a∇au− 1

2
uHw̃

+ uHµ̄q

(

Aab − 1

2
Hqab

)(

Aab −
1

2
Hqab

)

+ uHµ̄qRq̄(1.23)
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or

ẇ = −2µ̄q∇aH∇au− 1

2
uHw̃

+ uHµ̄q

(

Aab − 1

2
Hqab

)(

Aab −
1

2
Hqab

)

+ uHµ̄qRq̄.(1.24)

It may be noted that the quantity u determines the velocity of the geometric
flow, a particular choice of which may provide the desired properties that
we need. It is evident that if we consider u = 1

H we get the inverse mean
curvature flow and it can be established that the Hawking mass mH

mH : =
|Σ|1/2

(16π)3/2

(

16π −
∫

Σ
H2µ̄q

)

(1.25)

is monotonic under this flow [7, 8]. In general, the evolution of mH as per
the flow (1.9) is as follows

ṁH =
1

2(16π)3/2
u|Σ|1/2H

(

16π −
∫

Σ
H2µ̄q

)

+
|Σ|1/2

(16π)3/2

∫

Σ

(

2Hµ̄q∇a∇au− 1

2
uHw̃

+ uHµ̄q

(

Aab − 1

2
Hqab

)(

Aab −
1

2
Hqab

)

+ uHµ̄q(Rq̄ −Rq)

)

(1.26)

ṁH =
1

2(16π)3/2
u|Σ|1/2H

(

16π −
∫

Σ
H2µ̄q

)

+
|Σ|1/2

(16π)3/2

∫

Σ

(

−∇aH∇au− 1

2
uHw̃

+ uHµ̄q

(

Aab − 1

2
Hqab

)(

Aab −
1

2
Hqab

)

+ uHµ̄q(Rq̄ −Rq)

)

.(1.27)

It follows that mH is nondecreasing for the choice of u = 1
H , Σ connected

and non-negative scalar curvature Rq̄ ≥ 0 of the ambient manifold (Σ, q).
However, from a geometric PDE perspective, establishing the regularity
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and monotonicity of the inverse mean curvature flow is quite delicate, espe-
cially in the presence of minimal surfaces. The regularity theory of inverse
mean curvature flow and Riemannian Penrose inequality was established by
Huisken-Ilmanen [8]. A separate proof of the Riemannian-Penrose inequality
was established by Bray [1], using conformal flow of metrics.

Now let us consider the Schwarzschild spacetimes. In our work, we are
interested in the limits of the geometric quantities such as the Hawking mass,
the Brown-York mass and the Liu-Yau mass close to geometric pathologies
such as the event horizon and the singularity. Since these quantities are
defined over a 2-surface Σ we need to interpret these limits in the sense of a
geometric flow.

Let us first start with the representation in the domain of outer com-
munications. Later, we shall consider the (Kruskal) maximally extended
versions of these spacetimes.

ḡ = −fdt2 + f−1dr2 + r2dωS2 , r > 2M(1.28)

where f = (1− 2M
r ). In the gauge (1.28) used for the Schwarzschild metric,

the black hole region is given by r < 2M , r = 2M is the event horizon and
r > 2M is the domain of outer communications. The intersection of a space-
like hypersurface Σ = {t = const.} with r = 2M is a minimal surface. The
Schwarzschild spacetime is also a conformally flat spacetime:

q̄ij =

(

1 +
M

2r∗

)4

δ̄ij(1.29)

We would like to point out that there is a coordinate singularity in the gauge
(1.28) at r = 2M but r = 0 is an actual geometric singularity. The function
r∗ in the isotropic coordinates is related to the form of the Schwarzschild as

r =
(

1 +
m

2r∗

)2
r∗, r∗ =

M

2
is the horizon(1.30)

Let us compute the mean curvature of the embedding formed by r = const.
hypersurfaces (Σ) →֒ Σ. Following Schoen-Yau [17], we have the following
relation between the mean curvature H and H0 under the conformal trans-
formation q = Ω4q0

H =
H0

Ω2
+ 4

ν0(Ω)

Ω3
(1.31)
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which, for the metric (1.29), turns out to be

H =
(2r∗ −M)

r∗2(1 + M
2r∗ )

3
, (isotropic coordinates)(1.32)

for H0 =
2
r∗ , in the Euclidean space. The function H is not a monotonic

function with respect to r∗ and it has a maximum at the photon sphere
of the Schwarzschild spacetime. In these coordinates, the Brown-York mass
can be computed as

mBY =
1

8π

∫

Σ
H0 −H

=M

(

1 +
M

2r∗

)

(1.33)

in view of (1.32). Likewise, in the maximal gauge, we have

H =
2

r

√

1− 2M

r
, r ≥ 2M(1.34)

As a consequence, the Hawking mass

mH =
r

2
(1− f)(1.35)

and the Brown-York mass,

mBY = r − r

√

1− 2M

r
, r ≥ 2M(1.36)

We would like to remark that, for the isometric embedding of Σ in the Eu-
clidean space, H0 =

2
r , therefore, we have

∫

ΣH0 = r. In the time-symmetric
gauge (1.28) of the Schwarzschild spcaetime, the Liu-Yau mass is the same
as the Brown-York mass:

mLY = mBY.(1.37)

The time-symmetric gauge used in (1.28) holds for the exterior region of
black hole spacetimes. To study the quasi-local mass quantities in the inte-
rior, we work in a geometric framework where the geometry can be smoothly
extended into the interior. In the case of Schwarzschild black holes, the max-
imal extension contains the region considered in (1.28) as a proper subset.
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1.1. The maximal extension and the interior of the

Schwarzschild solution

In order to prevent a coordinate singularity at the event horizon {r = 2M},
the Kruskal coordinates were introduced:

ḡ = g̊µνdx
µ ⊗ dxν + r2dωS2 ,(1.38)

on the maximally extended Schwarzschild spacetime

where

g̊ = −e2ZdUdV, is the metric on the quotient M̄/SO(3),(1.39)

which can be rewritten in (T,R) coordinates as

g̊ = e2Z(−dT 2 + dX2),(1.40)

where (T, R) coordinates are such that

T 2 −X2 =
(

1− r

2M

)

er/2M ,
T +X

−T +X
= et/2M , e2Z =

32M3e−
r

2M

r
.

(1.41)

The advantage of the ‘Kruskal extension’ is that it covers the domain of outer
communications r > 2M , the event horizon r = 2M as well as the interior
region 0 < r < 2M of maximally extended Schwarzschild spacetimes.

In this work we shall be interested in the exterior and the interior region
of the maximally extended Schwarzschild black hole spacetime. Constant
mean curvature hypersurfaces that admit smooth extensions into the maxi-
mal Schwarzschild are studied in [3, 10, 13, 14]. This construction is useful
to us because, this shall allow us to compute the quasi-local mass quantities
for 2-surfaces in the maximally extended spacetimes.

Let us start with the Schwarzschild spacetime in the usual time-symmetric
gauge:

ḡ = −fdt2 + f−1dr2 + r2dω2
S2 .(1.42)

In this work, we shall follow the mathematical construction of Lee-Lee [10].
We also refer the reader to the works of Brill-Cavallo-Isenberg[3] and Malec-
Murchadha [13, 14] for the background and previous works on this subject.
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A height function h is introduced such that t̂ = −t+ h and {t̂ = const.}
form ‘spacelike’ constant mean curvature hypersurfaces. As a consequence,
a priori we have the condition that

ḡµν∂µt̂∂ν t̂ < 0, (i.e., the unit normal n =
1

∥∇t̂∥ḡ
∇t̂ is timelike).(1.43)

As we shall see later, the advantage of a radial ‘height function’ h(r) is that
the geometry of Σ is not disturbed and this in turn simplifies the isometric
embeddings into the Euclidean and Minkowski space used in the construc-
tion of quasi-local mass quantities (e.g., Brown-York, Liu-Yau, Wang-Yau
etc). The sphere of symmetry metric (Σ) can be expressed in the orthonor-
mal frame:

e1 =
1

r
∂θ, e2 =

1

r sin θ
∂ϕ(1.44)

so that

q =e1 ⊗ e1 + e2 ⊗ e2, on (Σ)(1.45)

In the usual Schwarzschild time-symmetric gauge, we have for the Σ →֒
M embedding the second fundamental form K = 0 and the mean curvature
is also 0. Let us now compute these quantities for the Σt̂ →֒ M, for the height
function h. Now consider the quantity f−1 − h′2f, we have

(f−1 − h′2f) =

(

r

r − 2M
+ h′2

(r − 2M)

r

)

> 0 in the region r > 2M.

(1.46)

The remaining components of the Schwarzschild metric in the orthonormal
frame are given by:

e3 =
h′

(f−1 − h′2f)1/2
∂r, e4 =

1

(f−1 − h′2f)1/2

(

f−1∂t + fh′∂r
)

(1.47)

Firstly, we have the spacetime second fundamental form

K̂ij = ⟨∇ein, ej⟩, i, j = 1, 2, 3.(1.48)
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Now then, with the notation h′ = ∂rh and h′′ = ∂2
rh

K̂11 = K̂22 =
(r − 2M)h′

r2(f−1 − h′2f)
1

2

,(1.49)

K̂33 =
1

(f−1 − h′2f)3/2

(

h′′ +
3h′f ′

2f
− h′3ff ′

2

)

(1.50)

which is ‘diagonal’ in our orthonormal frame. In particular, the 2-surface
Σ is umbilical. We would like to point out that, in general, the conditions
on the function associated to a warped product space, for which a constant
mean curvature 2-surface Σ is umbilical, was established in [2] by Brendle.
This result is a generalization of the classic Alexandrov theorem. Now if we
compute the mean curvature Ĥ, we have

Ĥ =
1

3(f−1 − h′2f)1/2

×
(

h′′

f−1 − h′2f
+

(

2f

r
+

f ′

2

)

h′ +
f ′

f(f−1 − h′2f)
h′
)

(1.51)

explicitly

=
1

3(f−1 − h′2f)
1

2

×
(

h′′

f−1 − h′2f
+

2(r −M)

r
h′ +

2M

r(r − 2M)(f−1 − h′2f)
h′
)

(1.52)

This can be converted to a differential equation for h (cf. [9, 10])

h′′ + (f−1 − h′2f)

(

2f

r
+

f ′

2

)

h′ +
f ′

f
h− 3Ĥ(f−1 − h′2f)3/2 = 0(1.53)

explicitly

h′′ +
2M

r(r − 2M)
h′ +

2(f−1 − h′2f)(r −M)

r2
h′ − 3Ĥ(f−1 − h′2f)3/2 = 0.

(1.54)

In the context of the constant mean curvature hypersurfaces, the differential
equation (1.53) for the unknown function h is posed in such a way that Ĥ =
const. and we are interested in such solutions h that solve (1.53). Let us first
focus on the domain of outer communications (r > 2M). This equation h can
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be reduced to a separable form using the transformation sin η(r) = h′1
r−2M

r
for (−π

2 ,
π
2 ). Now then, noting that

h′′ =
r

r − 2M

(

cos η η′ +
2M

r2
h′
)

, η ∈
(

−π

2
,
π

2

)

,(1.55)

we get

(tan η)′ +
1

r

(

2 +
2M

(r − 2M)

)

tan η − 3Ĥ

(

r

r − 2M

) 1

2

= 0(1.56)

Now then,

tan η =
f ′(r − 2M)

√

r2 − h′(r − 2M)2
, η ∈

(

−π

2
,
π

2

)

=

(

r

r − 2M

) 1

2
(

Ĥr +
c1
r2

)

(1.57)

Therefore, we can solve for h as follows

h′ =
(tan η)r

r − 2M

√

1

1 + tan2 η
, η ∈

(

−π

2
,
π

2

)

(1.58)

where tan η is now a known function of r from (1.57). We have the following
structure of the second fundamental form,

K̂11 = K̂22 = Ĥ +
c1
r2

, K̂33 = Ĥ − 2c1
r3

(1.59)

where c1 is a constant of integration in (1.58). Therefore, in the special case
of c1 = 0 we have

K̂11 = K̂22 = K̂33 = H(1.60)

which corresponds to a spacetime umbilical slice. It may be noted that in
our analysis, we are interested in the constant mean curvature slicing, which
is convenient in solving (1.58). However, one can vary the constant mean
curvature Ĥ parameter so that one gets the desired properties. In particular,
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the following observation is relevant for our analysis: Consider the limit

lim
r→∞

(tan η)r

r − 2M

√

1

1 + tan2 η
(1.61)

after plugging in (1.57)

lim
r→∞

Hr
5

2

r − 2M
√
r − 2M +H2r2

(1.62)

which becomes 1 if H > 0 or −1 if H < 0. If we consider the norm of the
normal vector to the slice

ḡµν∂µt̂∂ν t̂ = − r

r − 2M
+

r − 2M

r
h′2(1.63)

=
−r

r − 2M + Ĥ2r2
(1.64)

Therefore, as long as Ĥ ̸= 0, we have

lim
r→∞

ḡµν∂µt̂∂ν t̂ = 0(1.65)

As a consequence, the normal n of the slices Σt̂ is asymptotically null-like as
r → ∞. However, we can relax this restriction i.e., we can construct asymp-
totically null-like slices that are not necessarily umbilical, using a different
choice of the constant c1( ̸= 0). Let us now summarize the facts that we
shall use for constant mean curvature hypersurfaces, based on the works
of Lee-Lee [9, 10] (see also Brill-Cavallo-Isenberg[3] and Malec-Murchadha
[13, 14]).

Theorem 1.2. Suppose (M̄, ḡ) is a spherically symmetric maximal
(Kruskal) extension of the Schwarzschild spacetime. Then there exist con-
stant mean curvature hypersurfaces, with the height function h, such that

1) The spacelike condition ḡµν∂µt̂∂ν t̂ < 0 for the CMC hypersurfaces is
preserved at the event horizon

2) The CMC hypersurfaces become null-like asymptotically, i.e., as r →
∞ where r is the area radius function, for Ĥ ̸= 0.
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2. Quasi-local mass

Let us return to the metric ḡ in the (t̂, r, θ, ϕ) coordinates:

dt =− dt̂+ f ′dr(2.1)

the metric ḡ

ḡ = −N̂dt̂2 + q̂ab(dx
a + N̂adt̂)⊗ (dxb + N̂ bdt̂)(2.2)

Now then consider the 2-surfaces Σ →֒ Σt̂ and let us compute the mean
curvature vector H in a coordinate form. Later we shall compute this in our
orthonormal frame. We have

H = Hν + trΣKn(2.3)

where ν and n are the (spatial) outward pointing and (timelike) future
pointing normals of Σ respectively. The mean curvature vector H can be
represented in the metric form as (compare with Section 3.2 in [20])

H =
2

r
e−2Z(∂Rr∂R − ∂T r∂T ).(2.4)

In this form it is also explicit that the null expansions are represented as the
null derivatives of the (area radius) function r. As a consequence, we can
now calculate the Hawking mass

mH =
|Σ|1/2

(16π)3/2

(

16π −
∫

Σ
H2

)

,

=
|Σ|1/2

(16π)1/2
(1− (f−1 − fh′2)−1)

=
r

2
(1− (f−1 − fh′2)−1)(2.5)

and likewise for the Brown-York mass, first note that there exists a unique
(up to rigid motions) isometric embedding of the 2-surface Σ (Gauss cur-
vature K > 0) into the Euclidean space R

3, from the classic embedding
theorems (see e.g., [15, 16]).
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As a consequence, the mean curvature of the image of the isometric
embedding of Σ into the Euclidean space is H0 =

2
r . Therefore, we have

1

8π

∫

Σ
H0 = r.(2.6)

As a consequence,

mBY =
1

8π

∫

Σ
(H0 −H)µ̄Σ

= r − 1

8π

∫

Σ

2

r
(f−1 − fh′2)−1/2µ̄Σ

= r(1− (f−1 − fh′2)−1/2)(2.7)

and the Liu-Yau mass. Firstly note that,

|H| =
√

H2 − trΣK̂2(2.8)

Therefore,

mLY =
1

8π

∫

(H0 − |H|)µ̄Σ

= r − 1

8π

∫

Σ

(

4

r2
(f−1 − fh′2)−1 − 4

(r − 2M)2h′2

r4p

)1/2

µ̄Σ

= r − r
(

1− fh′2
)1/2

(f−1 − fh′2)−1/2.(2.9)

We would like to remark that in these hypersurfaces, the distinction between
the Brown-York mass (2.7) and the Liu-Yau (2.9) mass becomes transparent.

Let us now make few remarks on the positivity and compare the prop-
erties of the quasi-local masses introduced above. The Hawking mass is not
necessarily positive. The positivity of the Hawking mass was established for
constant mean curvature 2-surfaces by Christodoulou-Yau. The positivity
of Brown-York mass for 2-surfaces with H > 0 (the mean curvature) and
K > 0 (Gauss curvature) was established by Shi-Tam [19]. Likewise, the
positivity of the Liu-Yau mass for K > 0 and H > trΣK was established in
[11, 12]. The Liu-Yau mass is not frame dependent in a space-time sense.
This aspect becomes especially transparent in the non-maximal hypersur-
faces considered in our work. The Liu-Yau mass is ’more positive’ than the
Brown-York mass, in fact we have the estimate mLY ≥ mBY. The Wang-
Yau mass is based on the optimal isometric embeddings of the surface Σ
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into the Minkowski space. The Wang-Yau mass of a sphere of symmetry
Σ in the exterior region of the Schwarzschild spacetime coincides with the
Liu-Yau mass, because one can first show that τ = 0 is a solution of the
optimal isometric embedding equation and the standard embedding into R

3

(which corresponds to τ = 0 ) is local quasilocal energy minimizing (see [5]
for notation and details). It would be interesting to compute and analyse
the Wang-Yau mass in our setting in the interior of Schwarzschild black hole
spacetime. We propose to understand this in a future work.

Let us now compute the Ricci and Scalar curvatures of the hypersurface
Σ. Note that, in view of the Gauss-Kodazzi relations we have:

R̄

(

∂

∂r
,
∂

∂r

)

=
2

r

∂r(f
−1 − h′2f)

f−1 − h′2f
(2.10a)

R̄

(

∂

∂θ
,
∂

∂θ

)

= R

(

∂

∂θ
,
∂

∂θ

)

+
r

(f−1 − h′2f)2
∂r(f

−1 − h′2f)

+
2

f−1 − h′2f
(2.10b)

R̄

(

∂

∂ϕ
,
∂

∂ϕ

)

= R

(

∂

∂ϕ
,
∂

∂ϕ

)

+
r sin2 θ

(f−1 − h′2f)2
∂r(f

−1 − h′2f)

+
2 sin2 θ

f−1 − h′2f
(2.10c)

for our spherically symmetric (warped product) spacetime. It may be noted
for the sphere of symmetry (Σ, q) we have the Ricci curvature Rab = Kqab.
The remaining (off-diagonal) components of the Ricci tensor R̄ij vanish for
our form of the metric. Likewise, we have the scalar curvature R̄ of Σ as
follows:

R̄ =
2

r2

(

1− 1

(f−1 − h′2f)2

)

+
4

r(f−1 − h′2f)5/2
∂r(f

−1 − h′2f).(2.11)

Lemma 2.1. Consider the constant mean curvature hypersurfaces Σ such
that the mean curvature Ĥ ∈ R, then the Hawking mass mH (eq. (2.5)),
Brown-York mass mBY (eq. (2.7)) and the Liu-Yau mass mLY (eq. (2.9))
tend to the ADM mass M as Σ(r) → ι0 (spatial infinity); and the (space-
time) Hawking mass (1.8) and Liu-Yau mass tend to M as Σ(r) → I (null
infinity).

Proof. Let us start with the case Ĥ = 0. In this case, the hypersurfaces Σ
intersect with spatial infinity in the outer asymptotic region (as r → ∞).
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We have,

mH =
|Σ|1/2

(16π)3/2

(

16π −
∫

|H|2
)

(2.12)

=
r

2
(1− (f−1 − fh′2)−1)

=
r

2
(1− f) = M(2.13)

Brown-York mass

mBY = r(1− (f−1 − fh′2)−1/2)

= r(1− f1/2) = M(2.14)

Liu-Yau mass

mLY = r(1− (f−1 − fh′2)−1/2(1− f2h′2)1/2)

= r(1− f1/2) = M(2.15)

as Σ(r) → I, Ĥ = 0. We would like to remind the reader that the Ĥ = 0 con-
dition corresponds to Σ being asymptotically spacelike at the outer bound-
ary. In case Ĥ ̸= 0, recall that lim

r→∞
h′ = −1 for Ĥ < 0 and lim

r→∞
h′ = 1 for

Ĥ > 0. We have,

mH =
|Σ|1/2

(16π)3/2

(

16π −
∫

|H|2
)

=
r

2

(

(1− (1− f2h′2)(f−1 − fh′2)−1)
)

now then as Σ(r) → I, we have

lim
Σ(r)→I

mH =
r

2

(

1− f

1− f2
· (1− f2)

)

= M.(2.16)

Liu-Yau mass

mLY = r(1− (f−1 − fh′2)−1/2(1− f2h′2)1/2)
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as Σ(r) → I we have

= r

(

1− (1− f2)1/2
(

f

1− f2

)1/2
)

= r(1− f1/2) = M.(2.17)

□

In general, for a sphere of symmetry Σ in a spherically symmetric spacetime,
the spacetime version of the Hawking mass and the Liu-Yau mass are related
as follows (see Section 3.2 in [20])

mH(Σ(r)) = mLY(Σ(r))−
m2

LY(Σ(r))

2r
.(2.18)

In particular, it follows that as long as the area radius r goes to infinity, the
spacetime Hawking mass and the Liu-Yau mass have the same limit. The
Wang-Yau quasi-local mass at null-infinity for the Vaidya spacetime was
established in [6]. We shall now focus our attention near the event horizon.
Let us use the following notation, Σ(r) → H+ denotes the limit as Σ(r)
approaches the event-horizon H from the domain of outer communications
i.e., in the region r ∈ (2M, 2M + δ), δ > 0. Likewise, Σ(r) → H− denotes the
limit as Σ(r) approaches the event horizon H from the black hole interior,
i.e., from the region r ∈ (2M − δ, 2M), δ > 0.

Lemma 2.2. Suppose we have a regular solution to the constant mean
curvature equation for c1 ∈ R in the domain of outer communications of the
maximally extended Schwarzschild black hole spacetimes, then the Hawking
mass mH (eq. (2.5)), Brown-York mass mBY (eq. (2.7)) and the Liu-Yau
mass mLY (eq. (2.9)) are well-defined and have the limits, as Σ(r) → H+,
as follows.

Proof. In the case c1 = −8M3Ĥ, it follows that the height function h′ =
O((r − 2M)−1/2) in the region r ∈ (2M, 2M + δ) (see [10]). In particular,
we have

h′ = Ĥ

(

r

r − 2M

) 1

2

(

r(r2 + 2Mr + 4M2)2

r3 + Ĥ2(r − 2M)(r2 + 2Mr + 4M2)2

)
1

2

(2.19)
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thus,

mH =
r

2
(1− (f−1 − fh′2)−1)

=
r

2



1− f

1− Ĥ2(r − 2M)
(

r(r2+2Mr+4M2)2

r3+Ĥ2(r−2M)(r2+2Mr+4M2)2

)





= M as Σ(r) → H+, c1 = −8M3Ĥ.(2.20)

Likewise, if c1 < −8M3Ĥ then h′ = O((r − 2M)−1) in the region r ∈
(2M, 2M + δ), δ > 0 is small. In particular, h′ is of the form

h′ = − 1

f
+

1

2

1
(

f + (Ĥr + c1
r2 )

2
) +

1

8

h
(

f + (Ĥr + c1
r2 )

2
)2 + · · ·(2.21)

in the region r ∈ (2M, 2M + δ), δ > 0. As a consequence,

mH =
r

2
(1− (f−1 − fh′2)−1)

plugging in h′ in the region r ∈ (2M, 2M + δ), δ > 0

=
r

2

(

1− f

(

1 +
1

f

(

Ĥr +
c1
r2

)2
))

= M

(

1− c21
16M4

− Ĥc1
M

− 4M2Ĥ2

)

,(2.22)

as Σ(r) → H+, c1 < −8M3Ĥ.

On the other hand, for c > −8M3Ĥ in the region r ∈ (2M, 2M + δ), δ >
0, we have h′ of the form

h′ =
1

f
− 1

2

1
(

f + (Ĥr + c1
r2 )

2
) − 1

8

f
(

f + (Ĥr + c1
r2 )

2
)2 + · · ·(2.23)
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therefore, we have

mH =
r

2

(

1− f

(

1 +
1

f

(

Ĥr +
c1
r2

)2
))

= M

(

1− c21
16M4

− Ĥc1
M

− 4M2Ĥ2

)

,(2.24)

as Σ(r) → H+, c1 > −8M3Ĥ

analogous to (2.22). Now then, for the Brown-York mass, for c1 = −8M3Ĥ,

mBY = r(1− (f−1 − fh′2)−1/2)

= r






1−





f

1− Ĥ2(r − 2M)
(

r(r2+2Mr+4M2)2

r3+Ĥ2(r−2M)(r2+2Mr+4M2)2

)





1

2







= 2M as Σ(r) → H+, c1 = −8M3Ĥ.(2.25)

Consider the case of constant mean curvature hypersurfaces with c1 < −8M3Ĥ,

mBY = r(1− (f−1 − fh′2)−1/2)

plugging in the behaviour of h′ for c1 < −8M3Ĥ

= r

(

1− f
1

2

(

1 +
1

f
(Ĥr +

c1
r2

)2
) 1

2

)

= 2M
(

1− 2MĤ − c1
4M2

)

, as Σ(r) → H+, c1 < −8M3Ĥ.(2.26)

On the other hand, for c1 > −8M3Ĥ, recall that h′ > 0 with the behaviour
given by (2.23). Therefore, we have

mBY = r(1− (f−1 − fh′2)−1/2)

= r

(

1− f
1

2

(

1 +
1

f
(Ĥr +

c1
r2

)2
) 1

2

)

= 2M
(

1− 2MĤ − c1
4M2

)

, as Σ(r) → H+, c1 > −8M3Ĥ.(2.27)
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Note that lim
Σ(r)→H+

f = 0 with f > 0 in the region r ∈ (2M, 2M + δ). Now

let us turn to the Liu-Yau mass. We have for c1 = −8M3Ĥ,

mLY = r
(

1− (f−1 − fh′2)−1/2)(1− f2h′2)1/2
)

= r

(

1−









f

1− Ĥ2(r − 2M)

(

r(r2+2Mr+4M2)2

r3+Ĥ2(r−2M)(r2+2Mr+4M2)2

)









1

2

×
(

1− Ĥ2 (r − 2M)(r2 + 2Mr + 4M2)2

r3 + Ĥ2(r − 2M)(r2 + 2Mr + 4M2)

))

from which it is evident that

mLY = 2M(2.28)

as Σ(r) → H+ for c1 = −8M3Ĥ. Next, let us turn to the case, c1 < −8M3Ĥ.
We have

mLY = r
(

1− (f−1 − fh′2)−1/2(1− f2h′2)1/2
)

= r



1− f1/2

(

1 +
1

f
(Ĥr +

c1
r2

)2
)1/2

(

1

1 + 1
f (Ĥr + c1

r2 )
2

)1/2




= r





(

1 + 2MĤ +
c1

8M2

)

(

1

1 + 1
f (Ĥr + c1

r2 )
2

)1/2




= 2M, as Σ(r) → H+, c1 < −8M3Ĥ.(2.29)

Analogously, for the case c1 > −8M3 in the region r ∈ (2M, 2M + δ), δ > 0
we have

mLY = r



1− f1/2

(

1 +
1

f
(Ĥr +

c1
r2

)2
)1/2

(

1

1 + 1
f (Ĥr + c1

r2 )
2

)1/2




= r





(

1− 2MĤ − c1
8M2

)

(

1

1 + 1
f (Ĥr + c1

r2 )
2

)1/2




which also gives the limit

= 2M, as Σ(r) → H+, c1 > −8M3Ĥ.(2.30) □
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In our analysis, we have made a choice of the constant mean curvature and
the integration constant in the equation for h (1.58), so that it has a desirable
behaviour at infinity. However, we can, in principle, make another choice of
these parameters and discuss the constant mean curvature hypersurfaces in
the interior of the black hole. We would like to remind the reader that, in the
usual interior Schwarzschild coordinates, the t = const. hypersurfaces are no
longer spacelike. Indeed, one can note that the r = const. hypersurfaces are
spacelike (∂r is a timelike vector) in the Schwarzschild interior. However,
we shall follow the work of Lee-Lee[10], and introduce a height function
to construct constant mean curvature hypersurfaces in the interior. In the
Schwarzschild interior, we consider two cases of the height function h.

2.1. Case I: h′ > 0

Consider a time function t such that t = h− t and we shall impose the
condition ḡµν∂νt∂µt = −f−1 + fh′2 < 0, for a timelike normal of Σ. Corre-
spondingly, the orthonormal frame is given by

(2.31)
e3 = (f−1 − h2f)−1(h′∂t + ∂r),

e4 = (f−1 − h2f)−1(f−1∂t + h′f∂r)

The CMC equation, in the black hole interior is given by

h′′ +

(

(f−1 − h′2f)

(

2f

r
+

f ′

2

)

+
h′

h

)

h′(2.32)

− 3Ĥ(f−1 − h′2f)3/2 = 0, h′ > 0.

Following [9, 10], to the this equation , introduce the variable η(r) such that
sec η = h′f where η ∈ (π/2, π). The equation (2.32) can be explicitly solved

as csc η = − 1
(−f)1/2

(

−Ĥr − c2
r2

)

then we get

h′ =
1

−f

(

csc2 η

csc2 η − 1

)

, η ∈ (π/2, π), h′ > 0.(2.33)

2.2. Case II: h′ < 0

Now Consider a time function t such that t = −h+ t and we shall impose
the condition ḡµν∂νt∂µt < 0, for a timelike normal of Σ. Correspondingly,
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the orthonormal frame is given by

(2.34)
e3 = −(f−1 − h2f)−1(h′∂t + ∂r),

e4 = −(f−1 − h2f)−1(f−1∂t + h′f∂r)

The CMC equation, analogous to the previous expression in the black
hole (interior) region, is given by

h′′ +

(

(f−1 − h′2f)

(

2f

r
+

f ′

2

)

+
f ′

f

)

h′ + 3Ĥ(f−1 − h′2f)3/2 = 0.(2.35)

In the interior this equation is solved by assigning

fh′ = sec(η(r)), η ∈ (0, π/2)(2.36)

where

csc η =
1

(−f)1/2

(

−Hr − c2
r2

)

, η ∈ (0, π/2)(2.37)

so that h′ =
1

f

√

csc2 η

csc2 η − 1
, h′ < 0,

where c2 is a constant of integration. In contrast with the exterior, we have
the following restriction on the existence of CMC in the interior:

csc η ≥ 1, so that kH ≥ c2, kH : = −Hr3 − r3/2(2M − r)1/2.(2.38)

In this region, if we choose c2 < −8M3H then h′ is O((r − 2M)−1) and
the spacelike CMC condition is preserved as r → 2M−. This case allows us
to consider smooth extensions of the constant mean curvature hypersurfaces
into the Schwarzschild interior.

Let us now find the quasi-local mass quantities in the Schwarzschild
interior. We would like to emphasize that in the standard coordinates in
the Schwarzschild interior, the t = const hypersurfaces are not necessarily
spacelike. In the interior, we can construct ‘cylindrical’ CMC hypersurfaces
from r = const hypersurfaces.

However, we shall follow the construction where the introduction of the
height function h makes t = const. hypersurfaces manifestly spacelike. As a
consequence, the previous formulas for quasi-local mass carry forward with
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appropriate modifications. Let us start with the Hawking mass:

mH =
|Σ|1/2

(16π)3/2

(

16π −
∫

Σ
H2

)

=
r

2
(1− (f−1 − fh2))−1, r < 2M(2.39)

and the Brown-York mass

mBY =

∫

Σ
(H0 −H)µ̄Σ

= r(1− (f−1 − fh′2)−1/2), r < 2M(2.40)

Let us establish the blow up dates of the quasi-local masses mH and
mBY at the singularity. Suppose c2 is such that h is well-defined in the
Schwarzschild interior then. We have

lim
Σ(r)→i+

mH = lim
Σ(r)→i+

r

2
(1− (f−1 − fh2))−1

= lim
r→0

rf

(

1 + f−1
(

Ĥf +
c2
r2

)2
)

(2.41)

= lim
r→0

(

rf + r
(

Ĥr +
c2
r2

)2
)

(2.42)

Therefore, it follows that near the singularity r ∈ (0, δ), δ > 0 the Hawk-
ing mass mH blows up like O(r−3) for c2 ̸= 0. Likewise, let us analyze the
behaviour of the Brown-York mass near the singularity. We have

lim
Σ(r)→i+

mBY = lim
Σ(r)→i+

r
(

1− (f−1 − fh′2)−1/2
)

= lim
r→0

r

(

1−
(

f −
(

Ĥr +
c2
r2

)2
)1/2

)

,(2.43)

from which it follows that the Brown-York mass mBY has O(r−1) blow up
behaviour for c2 ̸= 0 near the singularity.

Lemma 2.3. Suppose there exists solution of the CMC equation for c2 <
−8M3Ĥ, then the quasi-local mass quantities mH,mBY are continuous as
Σ(r) → H if the solutions of the constant mean curvature equations are such
that c2 = c1(< −8M3Ĥ). This condition for the continuity is consistent with
a necessary condition for the smooth gluing of the constant mean curvature
hypersurfaces in the interior and exterior of Schwarzschild spacetime [10]
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Proof. In the case where c2 < −8M3Ĥ, it may be noted that h is well-
defined in a left neighbourhood of the horizon H i.e., r ∈ (2M − δ, 2M).
Furthermore, h′ = O((2M − r)−1), r ∈ (2M − δ, δ), δ > 0. In particular, for
the case h′ > 0, we have

h′ = − 1

f
+

1

2f2
(

Hr + c22
r2

)2 + · · ·(2.44)

in the region r ∈ (2M − δ, 2M), δ > 0. Now let us consider the Hawking mass
as Σ(r) → H−.

mH =
r

2
(1− (f−1 − fh′2)−1)

=
r

2

(

1− f

(

1− f2

(

1

(−f)2
csc2 η

csc2 η − 1

))−1
)

, η ∈ (π/2, π)

=
r

2

(

1− f

(

1−
(

1

(−f)1/2

(

−Ĥr − c2
r2

)

)2
))

=
r

2

(

1 + f

(

− 1

f

(

Ĥr +
c2
r2

)2
− 1

))

,

= M

(

1− c22
16M2

− c2Ĥ

M
− 4M2Ĥ2

)

(2.45)

as Σ(r) → H−, c2 < −8M3Ĥ, h′ > 0. The behaviour of the Hawking mass
mH is quite similar for h′ < 0 :

mH =
r

2

(

1− f

(

1− f2

(

1

(−f)2
csc2 η

csc2 η − 1

))−1
)

, η ∈ (0, π/2)

=
r

2

(

1− f

(

1−
(

1

(−f)1/2

(

−Ĥr − c2
r2

)

)2
))

=
r

2

(

1 + f

(

− 1

f

(

Ĥr +
c2
r2

)2
− 1

))

,

= M

(

1− c22
16M2

− c2Ĥ

M
− 4M2Ĥ2

)

,(2.46)

Σ(r) → H−, c2 < −8M3Ĥ, h′ < 0.
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Analogously, consider the Brown-York mass mBY as Σ(r) → H−. We have,

mBY = r(1− (f−1 − fh′2)−1/2)

= r

(

1− (−f)1/2
(

f2

(

csc2 η

(−f)2(csc2 η − 1)

)

− 1

)−1/2
)

,

η ∈ (π/2, π)

= r



1−
(

f

(

1 +
1

f

(

Ĥr +
c22
r2

)2
))1/2





= 2M
(

1− 2MĤ − c2
4M2

)

,(2.47)

as Σ(r) → H−, c2 < −8M3Ĥ, h′ > 0.

Analogously,

mBY = r(1− (f−1 − fh′2)−1/2)

= r

(

1− (−f)1/2
(

f2

(

csc2 η

f2(csc2 η − 1)

)

− 1

)−1/2
)

,

η ∈ (0, π/2)

= r

(

1−
(

f

(

1 +
1

f

(

Ĥr + c2

)2
))1/2

)

= 2M
(

1− 2MĤ − c2
4M2

)

,(2.48)

as Σ(r) → H−, c2 < −8M3Ĥ, h′ < 0.

The result on the continuity follows. □
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