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We develop further quaternionic analysis introducing left and right

doubly regular functions. We derive Cauchy-Fueter type formulas

for these doubly regular functions that can be regarded as another

counterpart of Cauchy’s integral formula for the second order pole,

in addition to the one studied in the first paper with the same

title. We also realize the doubly regular functions as a subspace of

the quaternionic-valued functions satisfying a Euclidean version of

Maxwell’s equations for the electromagnetic field.

Then we return to the study of the original quaternionic ana-

logue of Cauchy’s second order pole formula and its relation to the

polarization of vacuum. We find the decomposition of the space

of quaternionic-valued functions into irreducible components that

include the spaces of doubly left and right regular functions. Using

this decomposition, we show that a regularization of the vacuum

polarization diagram is achieved by subtracting the component cor-

responding to the one-dimensional subrepresentation of the confor-

mal group. After the regularization, the vacuum polarization dia-

gram is identified with a certain second order differential operator

which yields a quaternionic version of Maxwell equations.

Next, we introduce two types of quaternionic algebras consist-

ing of spaces of scalar-valued and quaternionic-valued functions.

We emphasize that these algebra structures are invariant under

the action of the conformal Lie algebra. This is done using tech-

niques that appear in the study of the vacuum polarization dia-

gram. These algebras are not associative, but we can define an in-

finite family of n-multiplications, and we conjecture that they have

the structures of weak cyclic A∞-algebras. We also conjecture the

relation between the multiplication operations of the scalar and

non-scalar quaternionic algebras with the n-photon Feynman dia-

grams in the scalar and ordinary conformal QED.

We conclude the article with a discussion of relations between

quaternionic analysis, representation theory of the conformal group,

massless quantum electrodynamics and perspectives of further de-

velopment of these subjects.
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1. Introduction

The starting point in the development of quaternionic analysis by Fueter
and others was an exact analogue of Cauchy’s integral formula for complex
holomorphic functions

(1) f(w) =
1

2πi

∮
f(z)

z − w
dz

involving the first order pole. This counterpart of (1) is usually referred to
as the Cauchy-Fueter formulas for the quaternionic analogues of holomor-
phic functions known as left and right regular functions. Thus there are two
versions:

f(W ) =
1

2π2

∫

S
k(Z −W ) ·Dz · f(Z),(2)

g(W ) =
1

2π2

∫

S
g(Z) ·Dz · k(Z −W ),(3)
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where

(4) k(Z −W ) =
(Z −W )−1

det(Z −W )
,

Dz is a certain quaternionic valued 3-from, the contour of integration S is
homotopic to a 3-sphere S3 around W in H, f : H→ S is left regular, and
g : H→ S′ is right regular. Here, S and S′ are two dimensional left and right
modules over H. (Usually people consider H-valued functions.) The quater-
nionic conformal group SL(2,H) and its Lie algebra sl(2,H) have natural
actions on the spaces of left and right regular functions, which are analogous
to the actions of the (global) conformal group SL(2,C) and its Lie algebra
sl(2,C) on the space of holomorphic functions. In spite of this indisputable
parallel between complex and quaternionic analysis, further attempts to ex-
tend the analogy between the two theories have been met with substan-
tial difficulties. In particular, neither left nor right regular functions form
a ring and, therefore, cannot be regarded as a full counterpart of the ring
of holomorphic functions. Additionally, generalizations of the Cauchy-Fueter
formulas (2)–(3) to higher order poles are not at all straightforward.

In our first paper with the same title [FL1] we proposed to approach
quaternionic analysis from the point of view of representation theory of the
conformal group SL(2,H) and its Lie algebra sl(2,H). In particular, we ex-
plored the parallel between quaternionic and complex analysis from this rep-
resentation theoretic point of view. This approach allowed us to discover a
quaternionic counterpart of Cauchy’s integral formula for the second order
pole

(5)
df

dw
(w) =

1

2πi

∮
f(z) dz

(z − w)2

by interpreting the square of the Cauchy-Fueter kernel (4) as a kernel of an
intertwining operator for sl(2,H). As explained in Introduction of [FL1], the
derivative operator d

dz can be interpreted as an intertwining operator between
certain representations of SL(2,C). We show in [FL1] that the quaternionic
counterpart of (5) dictated by representation theory of the quaternionic con-
formal group has the form

(6) (MxF )(W ) =
12i

π3

∫

Z∈U(2)
k(Z −W ) · F (Z) · k(Z −W ) dV,
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where the operator d
dz in Cauchy’s formula (5) is replaced by a certain second

order differential operator that we call “Maxwell operator”

MxF =
−→∇F
←−∇ −□F+.

The operator Mx is an intertwining operator between certain actions of
sl(2,H) on the space of quaternionic valued polynomials (or its analytic
completion).

In complex analysis, Cauchy’s formulas for the first and second order
poles (1), (5) admit immediate generalizations to holomorphic functions on
the punctured complex plane C× = C \ {0} by choosing the contour of in-
tegration to be the difference of loops around zero and infinity. In quater-
nionic analysis, there is a similar generalization of the Cauchy-Fueter for-
mulas (2)–(3) to regular functions on H× = H \ {0} by choosing the contour
of integration to be the difference of two 3-cycles around zero and infinity
(as well as more general domains). However, a generalization of the quater-
nionic analogue of the second order pole formula (5) to functions on H×

presents substantial difficulties and is directly related to the divergence of
the Feynman diagram for vacuum polarization, as was indicated in [FL1].
In the present paper we resolve this problem similarly to our derivation of
the quaternionic second order pole formula for the scalar valued functions
in [FL3]. Recall that D+ and D− are certain open domains in H⊗ C, both
having U(2) as Shilov boundary. The idea is to separate the singularities in
the second order pole by considering maps Jε1ε2 , where ε1, ε2 = ±, from a
space of quaternionic valued functions W ′ to (a completion of) the tensor
product of left and right regular functions

(Jε1ε2F )(Z1, Z2) =
12i

π3

∫

W∈U(2)
k(W − Z1) · F (W ) · k(W − Z2) dV,

with Z1 ∈ Dε1 , Z2 ∈ Dε2 ,

and then taking the limits as Z1, Z2 approach the common boundary U(2) of
D±. While the maps J++ and J−− are well defined on the diagonal Z1 = Z2

(as in [FL1]), the maps J+− and J−+ have singularities which cancel each
other in the sum (as in [FL3]). Setting Z1 = Z2 in the total map

J = J++ + J−− − J+− − J−+

yields an extension of our second order pole formula to functions on H×

(7) (JF )(Z,Z) = (MxF )(Z).
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The appearance of singularity in J+−, J−+ is related to the presence
of the one-dimensional representation in the subquotient of W ′. For this
reason, the generalization of our second order pole formula from [FL1] to
the “quaternionic Laurent polynomials” – i.e. polynomial functions defined
on H× – requires a detailed study of the sl(2,H)-module structures of the
spacesW ′ andW of quaternionic valued functions (now defined on H×) and
the homomorphism Mx :W ′ →W. It turns out that each of these modules
contains 13 composition factors, and they can be studied using a larger
complex originally considered as equation (57) in [FL1]:

(8) F̂
$$

C // X
′ //W ′

::

Mx //

$$

W // X // C,

Ĝ

;;

where X
′ is the space of scalar valued functions on H× and X is its dual

space. We show that both X and X
′ have six irreducible components, five

of which reappear in W and W ′, and the trivial one-dimensional subrepre-
sentation C of X′ is annihilated by ∇+.

The spaces F̂ and Ĝ are

F̂ = {f : H× → S⊗ S} and Ĝ = {g : H× → S′ ⊗ S′}.

They contain subspaces F and G of “doubly left and right regular functions”
respectively that share many similarities with the usual left and right regular
functions. They are preserved by the actions of the conformal group and can
be defined as kernels of certain linear differential operators. Besides, they also
satisfy a quaternionic analogue of Cauchy’s integral formula for the second
order pole (5) as follows:

∇(W · f)(W ) =
1

π2

∫

S
k1(Z −W ) ·Dz · Z · f(Z),(9)

(g(W ) ·W )
←−∇ =

1

π2

∫

S
g(Z) · Z ·Dz · k1(Z −W ),(10)

where

k1(Z −W ) =
1

2
∇k(Z −W ),
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f : H→ S⊗ S is a doubly left regular function and g : H→ S′ ⊗ S′ is a dou-
bly right regular function. Like the Cauchy-Fueter formulas (2)–(3), formulas
(9)–(10) extend to functions on H× and more general domains.

We emphasize that in quaternionic analysis there are two analogues of
Cauchy’s integral formula for the second order pole (5). On the one hand,
the kernel (z − w)−2 in (5) can be viewed as a square of (z − w)−1 with
the quaternionic counterpart having form (6). On the other hand, the kernel
(z − w)−2 can also be regarded as a derivative of (z − w)−1, in which case the
quaternionic counterpart is given by (9)–(10). Although the two quaternionic
analogues (6) and (9)–(10) of Cauchy’s integral formula for the second order
pole appear to be quite different, they turn out to be complementary to each
other. In fact, one can identify the doubly left and right regular functions with
self-dual and anti-self-dual solutions of the Maxwell equations (in Euclidean
signature). Moreover, (9)–(10) can be combined into a single formula valid
for any quaternionic functions A(Z) annihilated by the Maxwell operator:

(11) MxA(Z) = 0, A : H× → H.

Comparing (6) and (11) clearly demonstrates the complementary nature of
the two quaternionic analogues (6) and (9)–(10) of the second order pole
formula and that the Maxwell equations play a key role in both versions!

Our study of the quaternionic complex and the decomposition of the rep-
resentations involved in (8) uses extensively the basis of K-types of (g,K)-
modules with g = gl(2,H)⊗ C ≃ gl(4,C) and K = U(2)× U(2). Therefore,
the algebra generated by the matrix coefficients of GL(2,C) in finite di-
mensional representations (tlnm(Z)’s and N(Z)k’s) plays a key role in our
approach. This algebra can be viewed as a counterpart of the algebra of
Laurent polynomials in complex analysis, which is the algebra of the matrix
coefficients of GL(1,C). The algebra of matrix coefficients of GL(2,C) tech-
nically is more complicated than the familiar algebra of Laurent polynomials,
but conceptually various results and formulas in many aspects are similar.
The bases of K-types that we are using have certain advantages over the
equivalent picture in the Minkowski space, where simpler continuous bases
are natural (see e.g. [FL3], Section 8, for the relation between the two types
of bases). In particular, the K-bases allow us to conveniently isolate the one-
dimensional irreducible component in representationsW andW ′, which plays
crucial role in regularization of the vacuum polarization. This component is
less transparent in the Minkowski picture and is hidden in the traditional
physics approach to this regularization. The K-type approach is extensively
used in analysis of various representations of real semisimple groups, see e.g.
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[Le] and especially Section 8 dedicated to the K-types of representations of
SU(2, 2).

We saw in our first paper [FL1] that in order to introduce unitary struc-
tures on the spaces of harmonic as well as (left and right) regular functions,
one must replace the quaternionic conformal group SL(2,H) with SU(2, 2),
which is another real form of SL(4,C). The group SU(2, 2) in turn can be
identified with the conformal group of the Minkowski space M. Similarly,
the unitarity of the spaces of doubly (left and right) regular functions and,
equivalently, the space of solutions of the Maxwell equations (11) modulo
the image of X′ require the same Minkowski space M.

Moreover, the quaternionic complex (8) in Minkowski space realization
can be identified with the complex of differential forms on the Minkowski
space with the zero light cone removed. The program of study of vector
bundles on the covering space of the compactified Minkowski space and rep-
resentations of the conformal group in the spaces of sections was suggested by
I. Segal as a mathematical approach to studying of four-dimensional field the-
ory. In particular, the irreducible components of the complex of differential
forms were identified by his student S. Paneitz [P]. Thus quaternionic analy-
sis and representation theory of the conformal group associated to Minkowski
space are deeply intertwined and mutually beneficial. Another example of
this link is provided by the realization of irreducible representations of the
most degenerate series (depending on n ∈ Z) as solutions of certain differen-
tial operators on M [JV1]. For n = ±1, these spaces are exactly the spaces
of left/right regular functions. And for n = ±2, they can be identified with
the doubly left/right regular functions. One can also define n-regular func-
tions for any n ∈ N, then the Cauchy-Fueter type integral formulas for these
functions can be interpreted as a quaternionic analogue of Cauchy’s integral
formula for the n-th order pole, where the Cauchy kernel is treated as the
(n− 1)-st derivative of (z − w)−1.

The quaternionic second order pole formulas described above show that
the analogy with the complex case is not straightforward. So, it is not surpris-
ing that the quaternionic counterpart of the algebra of complex holomorphic
functions is far from obvious. In this paper we suggest a certain candidate for
a quaternionic algebra, again, based on representation theory of the confor-
mal group. We already noted that tensor products of representations of the
most degenerate series of SU(2, 2) (and its Lie algebra) depending on n ∈ Z

do not contain representations of the same class. For n = ±1, these rep-
resentations are exactly the spaces of left/right regular functions. And for
n = ±2, these representations can be identified with the doubly left/right
regular functions. Therefore, one cannot expect a group-invariant algebra
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structure on these function spaces. Thus we have to consider the class of
representations that comes next after the most degenerate series of SU(2, 2)
– the middle series. Such representations appear in the complex of quater-
nionic spaces (8), and one can consider other similar representations, for
example, the space of C-valued functions Ж studied in [FL3]. Clearly, the
space X

′ provides a trivial example of a quaternionic algebra of C-valued
functions with pointwise multiplication. On the other hand, the best can-
didate for a quaternionic algebra of quaternionic-valued functions appears
to be a closely related space W ′. In order to understand the quaternionic
algebra structure, we start with the algebra of scalar-valued quaternionic
functions Ж. It is similar to, but in certain ways simpler than W ′. In both
cases we first embed our spaces into larger algebras

I : Ж→ completion ofH⊗H, J :W ′ → completion of V ⊗ V ′,

where I is described in [FL3] and J appears in our study of vacuum polar-
ization in this paper. Note that H is the space of harmonic functions on H×

and V , V ′ are the spaces of left and right regular functions on H×. Both H
and V , V ′ are representations of the most degenerate series corresponding
to n = 0 and n = ±1 respectively. The multiplication in the larger algebra
is defined using the invariant pairings on H and between V and V ′. Thus,
to finish our construction of quaternionic multiplication operation, we need
to find appropriate inverses of the maps I and J . This can be done in two
ways by considering certain subtle limits and, therefore, one can define a one-
parameter family of invariant multiplications by taking linear combinations
of those limits. The case of W ′ differs from Ж in that ker J is non-trivial
and, therefore, we actually define multiplication onW ′/ ker J . An additional
subtlety of theW ′ case is that in the construction of the inverse of J we lose
the one-dimensional irreducible component of the representation W ′/ ker J ;
this is the component containing the identity element. Thus we can only
define a one-parameter family of multiplication-like operations

(W ′/ ker J)⊗ (W ′/ ker J)→ (W ′/ ker J)/C ≃ W ′/ kerMx

that are invariant under the action of the conformal group. These maps can
be lifted to genuine multiplication operations

(W ′/ ker J)⊗ (W ′/ ker J)→W ′/ ker J

similarly to the procedure of adjoining of unit to algebras without units.
It is an interesting problem to find a way to define the multiplication on
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W ′/ ker J directly without the procedure of adjoining the unit. Both quater-
nionic algebras Ж and W ′/ ker J defined in this paper are not associative.
However, our construction allows immediate generalizations to invariant n-
multiplications (multiplications of n factors) with n = 1 corresponding to
the identity operator and n = 2 to the multiplication described above. We
conjecture that the resulting n-multiplications satisfy the quadratic relations
of weak cyclic A∞-algebras. Thus the quaternionic analogue of the algebra
of complex holomorphic functions might have a much richer structure than
its classical counterpart! Another interesting question is how to characterize
the n-multiplications as intertwining operators for the conformal group.

We see repeatedly in [FL1] and in this paper that the Minkowski space re-
formulation of various structures of quaternionic analysis leads to profound
relations with different structures of four-dimensional conformal field the-
ory, particularly with the conformal QED. One can ask about the physical
meaning of the two quaternionic algebras Ж and W ′/ ker J , including their
n-multiplications and possible relations between them. Our second conjec-
ture is that they are related to the n-photon diagrams in the scalar and
non-scalar conformal QED (Figure 1). We discuss this conjecture in more
detail in Subsection 7.5 at the end of the paper. For now, we only mention
the relation between our two conjectures. Namely, it was discovered rela-
tively recently (more than fifty years after creation of modern QED) that
n-photon diagrams (as well as n-gluon diagrams) satisfy certain quadratic
relations, known in physics literature as the BCFW relations (see [BCFW],
[BBBV] and references therein).

These relations provide strong evidence in support of and a link between
our two conjectures. In particular, if the second conjecture is correct, then the
BCFW relations yield the associativity-type relations for the quaternionic
algebras giving them the structures of weak cyclic A∞-algebras, thus making
the first conjecture valid as well. This way studying quaternionic algebras and
relating structures will produce further connections between quaternionic
analysis and four-dimensional quantum field theory that we predicted in
the first paper with the same title [FL1]. We expect that these connections
will be beneficial for both disciplines: quaternionic analysis will be enriched
by many beautiful structures and quantum field theory will find its purely
mathematical formulation.

For technical reasons the paper is organized differently from the order of
this discussion. In Section 2 we define and study left and right doubly reg-
ular functions. This is done in complete parallel with the theory of regular
functions reviewed in [FL1]: we prove analogues of the Cauchy-Fueter formu-
las, construct action of the conformal group, decompose the Cauchy-Fueter
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(a) Scalar case (b) Spinor case

Figure 1. n-photon Feynman diagrams.

kernel for these functions and study the invariant bilinear form. In the last
subsection we generalize the notion of doubly regular functions to n-regular
functions. The Cauchy-Fueter type formulas for these functions are proved
in a separate paper [FL4]. In Section 3 we describe the quaternionic chain
complex (8), which plays a central role in this paper. Then we decompose the
representations X and X

′ into irreducible components. In Section 4 we pro-
ceed to the study of representations W and W ′. First, we analyze the kernel
of Mx inW ′ which contains the image of X′ and the irreducible components
isomorphic to doubly left and right regular functions. We carefully iden-
tify the K-types and explicit forms of various intertwining functors related
to the quaternionic chain complex (8). Some of the intertwining functors
are expressed by quaternionic analogues of Cauchy’s integral formula (5).
In Section 5 we complete the decomposition of representations W and W ′.
Besides the five irreducible components coming from X and X

′ and four ir-
reducible components of doubly regular functions, we identify four additional
irreducible components, including the trivial one-dimensional representation.
These four components are crucial to understanding of polarization of vac-
uum and definition of quaternionic algebra that are subject of Section 6. In
Section 6 we generalize our result from [FL1] and extend the quaternionic
analogue of Cauchy’s integral formula for the second order pole from W ′+

to W ′. Our main technical tool is a certain operator

J :W ′ → completion of V ⊗ V ′.

The quotient space W ′/ ker J has four irreducible components, including
the trivial one-dimensional subrepresentation. In the subsequent section,
W ′/ ker J will be equipped with an algebra structure. In Section 7 we first
construct a scalar quaternionic algebra using previous results from [FL3].
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Then we proceed in a similar fashion to our main goal of constructing the
quaternionic algebra structure on the space W ′/ ker J . The latter version is
in many aspects similar to its scalar counterpart, but has a richer struc-
ture. In Subsection 7.5 we discuss relations between quaternionic algebras
and Feynman diagrams of massless QED as well as future problems and per-
spectives of our direction of quaternionic analysis. In Section 8 we provide
some comments about our earlier papers [FL1, FL3] that are relevant to the
present article.

Since this paper is a continuation of [FL1, FL3], we follow the same
notations and instead of introducing those notations again we direct the
reader to Section 2 of [FL3].

2. Doubly regular functions

2.1. Definitions

We continue to use notations established in [FL1]. In particular, e0, e1, e2,
e3 denote the units of the classical quaternions H corresponding to the more
familiar 1, i, j, k (we reserve the symbol i for

√
−1 ∈ C). Thus H is an

algebra over R generated by e0, e1, e2, e3, and the multiplicative structure
is determined by the rules

e0ei = eie0 = ei, (ei)
2 = e1e2e3 = −e0, eiej = −eiej , 1 ≤ i < j ≤ 3,

and the fact that H is a division ring. Next we consider the algebra of com-
plexified quaternions (also known as biquaternions) HC = C⊗R H and write
elements of HC as

Z = z0e0 + z1e1 + z2e2 + z3e3, z0, z1, z2, z3 ∈ C,

so that Z ∈ H if and only if z0, z1, z2, z3 ∈ R:

H = {X = x0e0 + x1e1 + x2e2 + x3e3; x
0, x1, x2, x3 ∈ R}.

Recall that we denote by S (respectively S′) the irreducible 2-dimensional
left (respectively right) HC-module, as described in Subsection 2.3 of [FL1].
The spaces S and S′ can be realized as respectively columns and rows of
complex numbers. Then

(12) S⊗ S′ ≃ HC.
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Note that S⊗ S and S′ ⊗ S′ are respectively left and right modules over
HC ⊗HC.

We introduce four first order differential operators

∇+ ⊗ 1 = (e0 ⊗ 1)
∂

∂x0
+ (e1 ⊗ 1)

∂

∂x1
+ (e2 ⊗ 1)

∂

∂x2
+ (e3 ⊗ 1)

∂

∂x3
,

1⊗∇+ = (1⊗ e0)
∂

∂x0
+ (1⊗ e1)

∂

∂x1
+ (1⊗ e2)

∂

∂x2
+ (1⊗ e3)

∂

∂x3
,

∇⊗ 1 = (e0 ⊗ 1)
∂

∂x0
− (e1 ⊗ 1)

∂

∂x1
− (e2 ⊗ 1)

∂

∂x2
− (e3 ⊗ 1)

∂

∂x3
,

1⊗∇ = (1⊗ e0)
∂

∂x0
− (1⊗ e1)

∂

∂x1
− (1⊗ e2)

∂

∂x2
− (1⊗ e3)

∂

∂x3
,

which can be applied to functions with values in S⊗ S or S′ ⊗ S′ as follows. If
U is an open subset of H or HC and f : U → S⊗ S is a differentiable function,
then these operators can be applied to f on the left. For example,

(∇+ ⊗ 1)f = (e0 ⊗ 1)
∂f

∂x0
+ (e1 ⊗ 1)

∂f

∂x1
+ (e2 ⊗ 1)

∂f

∂x2
+ (e3 ⊗ 1)

∂f

∂x3
.

Similarly, these operators can be applied on the right to differentiable func-
tions g : U → S′ ⊗ S′; we often indicate this with an arrow above the opera-
tor. For example,

g(
←−−−−
∇+ ⊗ 1) =

∂g

∂x0
(e0 ⊗ 1) +

∂g

∂x1
(e1 ⊗ 1) +

∂g

∂x2
(e2 ⊗ 1) +

∂g

∂x3
(e3 ⊗ 1).

The tensor product S⊗ S decomposes into a direct sum of its symmetric
part S⊙ S and antisymmetric part S ∧ S:

S⊗ S = (S⊙ S)⊕ (S ∧ S).

Similarly, S′ ⊗ S′ decomposes into a direct sum of its symmetric and anti-
symmetric parts:

S′ ⊗ S′ = (S′ ⊙ S′)⊕ (S′ ∧ S′).

Definition 1. Let U be an open subset of H. A C1-function f : U → S⊙ S

is doubly left regular if it satisfies

(∇+ ⊗ 1)f = 0 and (1⊗∇+)f = 0

for all points in U . Similarly, a C1-function g : U → S′ ⊙ S′ is doubly right
regular if

g(
←−−−−
∇+ ⊗ 1) = 0 and g(

←−−−−
1⊗∇+) = 0
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for all points in U .

Since

(∇⊗ 1)(∇+ ⊗ 1) = (∇+ ⊗ 1)(∇⊗ 1) = (1⊗∇)(1⊗∇+)

= (1⊗∇+)(1⊗∇) = □,

□ =
∂2

(∂x0)2
+

∂2

(∂x1)2
+

∂2

(∂x2)2
+

∂2

(∂x3)2
,

doubly left and right regular functions are harmonic.
One way to construct doubly left regular functions is to start with a har-

monic function φ : H→ S⊙ S, then (∇⊗∇)φ is doubly left regular. Simi-

larly, if φ : H→ S′ ⊙ S′ is harmonic, then φ(
←−−−−∇⊗∇) is doubly right regular.

We also can talk about doubly regular functions defined on open subsets
of HC. In this case we require such functions to be holomorphic.

Definition 2. Let U be an open subset of HC. A holomorphic function
f : U → S⊙ S is doubly left regular if it satisfies (∇+ ⊗ 1)f = 0 and (1⊗
∇+)f = 0 for all points in U .

Similarly, a holomorphic function g : U → S′ ⊙ S′ is doubly right regular

if g(
←−−−−
∇+ ⊗ 1) = 0 and g(

←−−−−
1⊗∇+) = 0 for all points in U .

Let DR and DR′ denote respectively the spaces of (holomorphic) doubly
left and right regular functions on HC, possibly with singularities.

Theorem 3. 1) The space DR of doubly left regular functions HC → S⊙
S (possibly with singularities) is invariant under the following action
of GL(2,HC):

πdl(h) : f(Z) 7→
(
πdl(h)f

)
(Z) =

(cZ + d)−1 ⊗ (cZ + d)−1

N(cZ + d)
(13)

× f
(
(aZ + b)(cZ + d)−1

)
,

h−1 =
(
a b
c d

)
∈ GL(2,HC).

2) The space DR′ of doubly right regular functions HC → S′ ⊙ S′ (possibly
with singularities) is invariant under the following action of GL(2,HC):

πdr(h) : g(Z) 7→
(
πdr(h)g

)
(Z) = g

(
(a′ − Zc′)−1(−b′ + Zd′)

)
(14)

× (a′ − Zc′)−1 ⊗ (a′ − Zc′)−1

N(a′ − Zc′)
,

h =
(
a′ b′

c′ d′

)
∈ GL(2,HC).
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Proof. It is easy to see that the formulas describing the actions πdl and
πdr also produce well-defined actions on the spaces of all functions on HC

(possibly with singularities) with values in S⊗ S and S′ ⊗ S′ respectively.
These actions preserve the subspaces of functions with values in S⊙ S and
S′ ⊙ S′. Differentiating πdl and πdr, we obtain actions of the Lie algebra
gl(2,HC), which we still denote by πdl and πdr respectively. Using notations

∂ =

(
∂11 ∂21
∂12 ∂22

)
=

1

2
∇, ∂+ =

(
∂22 −∂21
−∂12 ∂11

)
=

1

2
∇+, ∂ij =

∂

∂zij
,

we can describe these actions of the Lie algebra.

Lemma 4. The Lie algebra action πdl of gl(2,HC) on DR is given by

πdl
(
A 0
0 0

)
: f(Z) 7→ −Tr(AZ∂)f,

πdl
(
0 B
0 0

)
: f(Z) 7→ −Tr(B∂)f,

πdl
(

0 0
C 0

)
: f(Z) 7→ Tr(ZCZ∂ + CZ)f + (CZ ⊗ 1 + 1⊗ CZ)f,

πdl
(
0 0
0 D

)
: f(Z) 7→ Tr(ZD∂ +D)f + (D ⊗ 1 + 1⊗D)f.

Similarly, the Lie algebra action πdr of gl(2,HC) on DR′ is given by

πdr
(
A 0
0 0

)
: g(Z) 7→ −Tr(AZ∂ +A)g − g(A⊗ 1 + 1⊗A),

πdr
(
0 B
0 0

)
: g(Z) 7→ −Tr(B∂)g,

πdr
(

0 0
C 0

)
: g(Z) 7→ Tr(ZCZ∂ + ZC)g + g(ZC ⊗ 1 + 1⊗ ZC),

πdr
(
0 0
0 D

)
: g(Z) 7→ Tr(ZD∂)g.

Proof. These formulas are obtained by differentiating (13) and (14). □

We return to the proof of Theorem 3. Since the Lie group GL(2,HC) ≃
GL(4,C) is connected, it is sufficient to show that, if f ∈ DR, g ∈ DR′ and(
A B
C D

)
∈ gl(2,HC), then πdl

(
A B
C D

)
f ∈ DR and πdr

(
A B
C D

)
g ∈ DR′. Consider,

for example, the case of πdl
(

0 0
C 0

)
f , the other cases are similar. We have:

(∇+ ⊗ 1)πdl
(

0 0
C 0

)
f = (∇+ ⊗ 1)

(
Tr(ZCZ∂ + CZ)f + (CZ ⊗ 1)f

)

+ (1⊗ CZ)(∇+ ⊗ 1)f

+ (1⊗ C)(e0 ⊗ e0 + e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3)f,

the first summand is zero essentially because the space of left regular func-
tions is invariant under the action πl (equation (22) in [FL1]), the second
summand is zero because f satisfies (∇+ ⊗ 1)f = 0, and the third summand
is zero by Lemma 5. □
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Lemma 5. Let t ∈ S⊙ S and t′ ∈ S′ ⊙ S′, then

(e0 ⊗ e0 + e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3)t = 0 in S⊗ S

and

t′(e0 ⊗ e0 + e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3) = 0 in S′ ⊗ S′.

Proof. Under the standard realization of H as a subalgebra of C2×2, we have:

e0 =
(
1 0
0 1

)
, e1 =

(
0 −i
−i 0

)
, e2 =

(
0 −1
1 0

)
, e3 =

(
−i 0
0 i

)
.

Then by direct computation using Kronecker product (see also Subsection
2.3) we obtain

e0 ⊗ e0 + e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3 =

(
0 0 0 0
0 2 −2 0
0 −2 2 0
0 0 0 0

)
.

Since the elements of S⊙ S and S′ ⊙ S′, when realized as 4-tuples, have equal
second and third entries, they are annihilated by the above matrix, and the
result follows. □

2.2. Cauchy-Fueter formulas for doubly regular functions

In this section we derive Cauchy-Fueter type formulas for doubly regular
functions from the classical Cauchy-Fueter formulas for left and right regular
functions.

Lemma 6. Let f(Z) be a doubly left regular function, then the S⊗ S-valued
functions (1⊗ Z)f(Z) and (Z ⊗ 1)f(Z) are “left regular” in the sense that
they satisfy

(∇+ ⊗ 1)
[
(1⊗ Z)f(Z)

]
= 0, (1⊗∇+)

[
(Z ⊗ 1)f(Z)

]
= 0.

Similarly, if g(Z) is a doubly right regular function, then the S′ ⊗ S′-
valued functions g(Z)(1⊗ Z) and g(Z)(Z ⊗ 1) are “right regular” in the sense
that they satisfy

[
g(Z)(1⊗ Z)

]
(
←−−−−
∇+ ⊗ 1) = 0,

[
g(Z)(Z ⊗ 1)

]
(
←−−−−
1⊗∇+) = 0.



✐

✐

“4-Libine” — 2022/2/17 — 23:38 — page 394 — #16
✐

✐

✐

✐

✐

✐

394 I. Frenkel and M. Libine

Proof. We have:

(∇+ ⊗ 1)
[
(1⊗ Z)f(Z)

]
= (e0 ⊗ e0 + e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3)f(Z)

+ (1⊗ Z)
[
(∇+ ⊗ 1)f(Z)

]
,

the first summand is zero by Lemma 5 and the second summand is zero
because f satisfies (∇+ ⊗ 1)f = 0. Proofs of the other assertions are similar.

□

Let (deg+2) denote the degree operator plus two times the identity. For
example, if f is a function on H,

(deg+2)f = x0
∂f

∂x0
+ x1

∂f

∂x1
+ x2

∂f

∂x2
+ x3

∂f

∂x3
+ 2f.

Similarly, we can define operators deg and (deg+2) acting on functions on
HC. For convenience we recall Lemma 8 from [FL2] (it applies to both cases).

Lemma 7.

(15) 2(deg+2) = Z+∇+ +∇Z = ∇+Z+ + Z∇.

Define

(16) k1(Z −W ) =
1

4
(∇⊗∇)

(
1

N(Z −W )

)

(the derivatives can be taken with respect to either Z or W variable – the
result is the same); this is a function of Z and W taking values in HC ⊗HC, it
is spelled out in equation (19). We also consider holomorphic 3-forms Dz ⊗ Z
and Z ⊗Dz on HC with values in HC ⊗HC. Then we obtain the following
analogue of the Cauchy-Fueter formulas for doubly regular functions.

Theorem 8. Let U ⊂ H be an open bounded subset with piecewise C1 bound-
ary ∂U . Suppose that f(Z) is doubly left regular on a neighborhood of the
closure U , then

1

2π2

∫

∂U
k1(Z −W ) · (Dz ⊗ Z) · f(Z)

=
1

2π2

∫

∂U
k1(Z −W ) · (Z ⊗Dz) · f(Z) =

{
(deg+2)f(W ) if W ∈ U ;

0 if W /∈ U .
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If g(Z) is doubly right regular on a neighborhood of the closure U , then

1

2π2

∫

∂U
g(Z) · (Dz ⊗ Z) · k1(Z −W )

=
1

2π2

∫

∂U
g(Z) · (Z ⊗Dz) · k1(Z −W ) =

{
(deg+2)g(W ) if W ∈ U ;

0 if W /∈ U .

Proof. By Lemma 6, the S⊗ S-valued function (1⊗ Z)f(Z) satisfies (∇+ ⊗
1)
[
(1⊗ Z)f(Z)

]
= 0. From the classical Cauchy-Fueter formula for left reg-

ular functions, we obtain:

1

2π2

∫

∂U
k1/2(Z −W ) · (Dz ⊗ 1) · (1⊗ Z)f(Z)(17)

=

{
(1⊗W )f(W ) if W ∈ U ;

0 if W /∈ U ,

where

k1/2(Z −W ) =
(Z −W )−1

N(Z −W )
⊗ 1

= −1

2
(∇Z ⊗ 1)

(
1

N(Z −W )

)
=

1

2
(∇W ⊗ 1)

(
1

N(Z −W )

)
.

Applying 1⊗∇ to both sides of (17) (the derivative is taken with respect to
W ),

1

π2

∫

∂U
k1(Z −W ) · (Dz ⊗ Z) · f(Z)

=

{
(1⊗∇)(1⊗W )f(W ) if W ∈ U ;

0 if W /∈ U

=

{
2(deg+2)f(W ) if W ∈ U ;

0 if W /∈ U ,

where the last equality follows from (15), since (1⊗∇+)f = 0. The other
cases are similar. □

We have an analogue of Liouville’s theorem for doubly regular functions:

Corollary 9. Let f : H→ S⊙ S be a function that is doubly left regular and
bounded on H, then f is constant. Similarly, if g : H→ S′ ⊙ S′ is a function
that is doubly right regular and bounded on H, then g is constant.
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Proof. The proof is essentially the same as for the (classical) left and right
regular functions on H, so we only give a sketch of the first part. From
Theorem 8 we have:

∂

∂x11
(deg+2)f(X) =

1

2π2

∫

S3
R

∂k1(Z −X)

∂x11
· (Dz ⊗ Z) · f(Z)

where S3
R ⊂ H is the three-dimensional sphere of radius R centered at the

origin

S3
R = {X ∈ H; N(X) = R2}

with R2 > N(X). If f is bounded, one easily shows that the integral on the
right hand side tends to zero as R→∞. Thus ∂

∂x11
(deg+2)f = 0. Similarly,

∂

∂x12
(deg+2)f =

∂

∂x21
(deg+2)f =

∂

∂x22
(deg+2)f = 0.

It follows that (deg+2)f and hence f are constant. □

2.3. Expansion of the Cauchy-Fueter kernel for
doubly regular functions

We often identify HC with 2× 2 matrices with complex entries. Similarly,
it will be convenient to identify HC ⊗HC with 4× 4 matrices with com-
plex entries using the Kronecker product. Let Cn×n denote the algebra of
n× n complex matrices. If A =

(
a11 a12
a21 a22

)
, B =

(
b11 b12
b21 b22

)
∈ C2×2, then their

Kronecker product is

A⊗B =

(
a11B a12B
a21B a22B

)
=




a11b11 a11b12 a12b11 a12b12
a11b21 a11b22 a12b21 a12b22
a21b11 a21b12 a22b11 a22b12
a21b21 a21b22 a22b21 a22b22


 ∈ C4×4.

Similarly, if we identify S and S′ with columns and rows of two complex
numbers respectively, then

(
z1
z2

)
⊗
(
w1

w2

)
=

(
z1w1
z1w2
z2w1
z2w2

)
,(18)

(z1, z2)⊗ (w1, w2) = (z1w1, z1w2, z2w1, z2w2).
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A 4-tuple belongs to S⊙ S or S′ ⊙ S′ if and only if its second entry equals
the third entry. It is easy to see that Kronecker product satisfies

(A⊗B)(C ⊗D) = (AC)⊗ (BD).

Recall that the Cauchy-Fueter kernel for doubly regular functions is de-
fined by (16). From its realization as a 4× 4 matrix, we find:

k1(Z −W ) = (∂Z ⊗ ∂Z)

(
1

N(Z −W )

)
(19)

=


∂11

(
∂11 ∂21

∂12 ∂22

)
∂21

(
∂11 ∂21

∂12 ∂22

)

∂12

(
∂11 ∂21

∂12 ∂22

)
∂22

(
∂11 ∂21

∂12 ∂22

)


(

1

N(Z −W )

)

=
2

N(Z −W )
(Z −W )−1 ⊗ (Z −W )−1

− 1/2

N(Z −W )2
(e0 ⊗ e0 + e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3).

Next we recall the matrix coefficients tlnm(Z)’s of SU(2) described by
equation (27) of [FL1] (cf. [V]):

tlnm(Z) =
1

2πi

∮
(sz11 + z21)

l−m(sz12 + z22)
l+ms−l+n ds

s
,(20)

l = 0,
1

2
, 1,

3

2
, . . . , m, n ∈ Z+ l, −l ≤ m,n ≤ l,

Z =
(
z11 z12
z21 z22

)
∈ HC, the integral is taken over a loop in C going once around

the origin in the counterclockwise direction. We regard these functions as
polynomials on HC. Using Lemma 22 from [FL1] repeatedly, we compute:

(∂ ⊗ ∂)tlnm(Z) =


∂11

(
∂11 ∂21

∂12 ∂22

)
∂21

(
∂11 ∂21

∂12 ∂22

)

∂12

(
∂11 ∂21

∂12 ∂22

)
∂22

(
∂11 ∂21

∂12 ∂22

)

 tlnm(Z)

=




(l−m)(l−m−1)tl−1
n+1m+1 (l−m)(l−m−1)tl−1

nm+1 (l−m)(l−m−1)tl−1
nm+1 (l−m)(l−m−1)tl−1

n−1m+1

(l+m)(l−m)tl−1
n+1m (l+m)(l−m)tl−1

nm (l+m)(l−m)tl−1
nm (l+m)(l−m)tl−1

n−1m

(l−m)(l+m)tl−1
n+1m (l−m)(l+m)tl−1

nm (l−m)(l+m)tl−1
nm (l−m)(l+m)tl−1

n−1m

(l+m)(l+m−1)tl−1
n+1m−1 (l+m)(l+m−1)tl−1

nm−1 (l+m)(l+m−1)tl−1
nm−1 (l+m)(l+m−1)tl−1

n−1m−1


(Z).

Since □tlnm(Z) = 0, by observation made after Definition 1, the columns and
rows of this 4× 4 matrix are respectively doubly left and right regular.
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Lemma 10. Let

l = 0,
1

2
, 1,

3

2
, . . . , m, n ∈ Z+ l, −l − 1 ≤ m ≤ l + 1, −l ≤ n ≤ l.

The functions HC → S⊙ S

Fl,m,n(Z) =




(l −m)(l −m+ 1)tlnm+1(Z)

(l −m+ 1)(l +m+ 1)tlnm(Z)

(l −m+ 1)(l +m+ 1)tlnm(Z)

(l +m)(l +m+ 1)tlnm−1(Z)




and

F ′
l,m,n(Z) =

1

N(Z)




(l − n+ 1)(l − n+ 2)tl+1
n−1m(Z−1)

(l − n+ 1)(l + n+ 1)tl+1
nm(Z−1)

(l − n+ 1)(l + n+ 1)tl+1
nm(Z−1)

(l + n+ 1)(l + n+ 2)tl+1
n+1m(Z−1)




are doubly left regular. Similarly, the functions HC → S′ ⊙ S′

Gl,m,n(Z) =
(
tlm+1n(Z), tlmn(Z), tlmn(Z), tlm−1n(Z)

)

and

G′
l,m,n(Z) = N(Z)−1 ·

(
tl+1
mn−1(Z

−1), tl+1
mn(Z

−1), tl+1
mn(Z

−1), tl+1
mn+1(Z

−1)
)

are doubly right regular.

Proof. The result can be derived either by direct computations using Lemmas
22 and 23 in [FL1] or from Proposition 24 in [FL1]. □

Proposition 11. Let

F+ = C-span of
{
Fl,m,n(Z)

}
, F− = C-span of

{
F ′
l,m,n(Z)

}
,(21)

G+ = C-span of
{
Gl,m,n(Z)

}
, G− = C-span of

{
G′

l,m,n(Z)
}
,(22)

l = 0,
1

2
, 1,

3

2
, . . . , m, n ∈ Z+ l, −l − 1 ≤ m ≤ l + 1, −l ≤ n ≤ l.

Then (πdl,F+), (πdl,F−), (πdr,G+) and (πdr,G−) are irreducible represen-
tations of sl(2,HC) (as well as gl(2,HC)).

The result can be proved directly by finding the K-types of (πdl,F±)
and (πdr,G±), computing the actions of

(
0 B
0 0

)
and

(
0 0
C 0

)
, then showing that
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any non-zero vector generates the whole space. Alternatively, it follows from
Corollary 51.

Next we derive two matrix coefficient expansions of the Cauchy-Fueter
kernel for doubly regular functions (16) in terms of these functions Fl,m,n,
F ′
l,m,n, Gl,m,n, G′

l,m,n. This is a doubly regular function analogue of Proposi-
tion 26 from [FL1] for the usual regular functions (see also Proposition 113).

Proposition 12. We have the following expansions

k1(Z −W ) =
∑

l,m,n

Fl,m,n(Z) ·G′
l,m,n(W )(23)

=
1

N(W )

∑

l,m,n




(l −m)(l −m+ 1)tlnm+1(Z)

(l −m+ 1)(l +m+ 1)tlnm(Z)

(l −m+ 1)(l +m+ 1)tlnm(Z)

(l +m)(l +m+ 1)tlnm−1(Z)




×
(
tl+1
mn−1(W

−1), tl+1
mn(W

−1), tl+1
mn(W

−1), tl+1
mn+1(W

−1)
)
,

which converges uniformly on compact subsets in the region {(Z,W ) ∈ HC ×
H×

C
; ZW−1 ∈ D+}, and

k1(Z −W ) =
∑

l,m,n

F ′
l.m,n(Z) ·Gl,m,n(W )(24)

=
1

N(Z)

∑

l,m,n




(l − n+ 1)(l − n+ 2)tln−1m(Z−1)

(l − n+ 1)(l + n+ 1)tlnm(Z−1)

(l − n+ 1)(l + n+ 1)tlnm(Z−1)

(l + n+ 1)(l + n+ 2)tln+1m(Z−1)




×
(
tlm+1n(W ), tlmn(W ), tlmn(W ), tlm−1n(W )

)
,

which converges uniformly on compact subsets in the region {(Z,W ) ∈ H×
C
×

HC; WZ−1 ∈ D+}. The sums are taken first over all m = −l − 1,−l, . . . , l +
1, n = −l,−l + 1, . . . , l, then over l = 0, 12 , 1,

3
2 , . . . .

Proof. See the discussion after equation (21) in [FL3] for the definition of the
open domain D ⊂ HC. Using our previous calculations (19) and Proposition
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26 in [FL1] (see also Proposition 113), we obtain:

k1(Z −W ) = (∂Z ⊗ ∂Z)

(
1

N(Z −W )

)

= −(∂Z ⊗ 1)

(
1⊗ (Z −W )−1

N(Z −W )

)

=
1

N(W )
(∂Z ⊗ 1)

(
1⊗

∑

l,m,n′



(l −m+ 1)t

l+ 1

2

n′ m+ 1

2

(Z)

(l +m+ 1)t
l+ 1

2

n′ m− 1

2

(Z)




×
(
tl+1
mn′− 1

2

(W−1), tl+1
mn′+ 1

2

(W−1)
)
)

=
1

N(W )

∑

l,m,n′

(
A11(l,m, n′) A12(l,m, n′)
A21(l,m, n′) A22(l,m, n′)

)
,

where l = −1
2 , 0,

1
2 , 1,

3
2 , . . . , m = −l − 1,−l, . . . , l + 1, n′ = −l − 1

2 ,−l + 1
2 ,

. . . , l + 1
2 , and

A11(l,m, n′) = ∂11



(l −m+ 1)t

l+ 1

2

n′ m+ 1

2

(Z)

(l +m+ 1)t
l+ 1

2

n′ m− 1

2

(Z)




×
(
tl+1
mn′− 1

2

(W−1), tl+1
mn′+ 1

2

(W−1)
)

=

(
(l −m)(l −m+ 1)tl

n′+ 1

2
m+1

(Z)

(l −m+ 1)(l +m+ 1)tl
n′+ 1

2
m
(Z)

)

×
(
tl+1
mn′− 1

2

(W−1), tl+1
mn′+ 1

2

(W−1)
)
,

A12(l,m, n′) = ∂21



(l −m+ 1)t

l+ 1

2

n′ m+ 1

2

(Z)

(l +m+ 1)t
l+ 1

2

n′ m− 1

2

(Z)




×
(
tl+1
mn′− 1

2

(W−1), tl+1
mn′+ 1

2

(W−1)
)

=

(
(l −m)(l −m+ 1)tl

n′− 1

2
m+1

(Z)

(l −m+ 1)(l +m+ 1)tl
n′− 1

2
m
(Z)

)

×
(
tl+1
mn′− 1

2

(W−1), tl+1
mn′+ 1

2

(W−1)
)
,
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A21(l,m, n′) = ∂12



(l −m+ 1)t

l+ 1

2

n′ m+ 1

2

(Z)

(l +m+ 1)t
l+ 1

2

n′ m− 1

2

(Z)




×
(
tl+1
mn′− 1

2

(W−1), tl+1
mn′+ 1

2

(W−1)
)

=

(
(l −m+ 1)(l +m+ 1)tl

n′+ 1

2
m
(Z)

(l +m)(l +m+ 1)tl
n′+ 1

2
m−1

(Z)

)

×
(
tl+1
mn′− 1

2

(W−1), tl+1
mn′+ 1

2

(W−1)
)
,

A22(l,m, n′) = ∂22



(l −m+ 1)t

l+ 1

2

n′ m+ 1

2

(Z)

(l +m+ 1)t
l+ 1

2

n′ m− 1

2

(Z)




×
(
tl+1
mn′− 1

2

(W−1), tl+1
mn′+ 1

2

(W−1)
)

=

(
(l −m+ 1)(l +m+ 1)tl

n′− 1

2
m
(Z)

(l +m)(l +m+ 1)tl
n′− 1

2
m−1

(Z)

)

×
(
tl+1
mn′− 1

2

(W−1), tl+1
mn′+ 1

2

(W−1)
)
.

Since the terms with l = −1
2 are zero, we can restrict l to 0, 12 , 1,

3
2 , . . . . We

have:

∑

l,m,n′

A11(l,m, n′) =
∑

l,m,n

(
(l −m)(l −m+ 1)tlnm+1(Z)

(l −m+ 1)(l +m+ 1)tlnm(Z)

)

×
(
tl+1
mn−1(W

−1), tl+1
mn(W

−1)
)
,

∑

l,m,n′

A21(l,m, n′) =
∑

l,m,n

(
(l −m+ 1)(l +m+ 1)tlnm(Z)

(l +m)(l +m+ 1)tlnm−1(Z)

)

×
(
tl+1
mn−1(W

−1), tl+1
mn(W

−1)
)
,

where n = n′ + 1
2 , and

∑

l,m,n′

A12(l,m, n′) =
∑

l,m,n

(
(l −m)(l −m+ 1)tlnm+1(Z)

(l −m+ 1)(l +m+ 1)tlnm(Z)

)

×
(
tl+1
mn(W

−1), tl+1
mn+1(W

−1)
)
,

∑

l,m,n′

A22(l,m, n′) =
∑

l,m,n

(
(l −m+ 1)(l +m+ 1)tlnm(Z)

(l +m)(l +m+ 1)tlnm−1(Z)

)

×
(
tl+1
mn(W

−1), tl+1
mn+1(W

−1)
)
,
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where n = n′ − 1
2 ; in all cases n = −l,−l + 1, . . . , l. This proves the first ex-

pansion. The other expansion is proved similarly. □

2.4. Doubly regular functions on H×

In this subsection we show that if a (left or right) doubly regular function
is defined on all of H×, then the operator (deg+2) can be inverted. This
will be needed, for example, when we define the invariant bilinear pairing for
such functions.

We start with a doubly left regular function f : H× → S⊙ S and de-
rive some properties of such functions. Of course, doubly right regular func-
tions g : H× → S′ ⊙ S′ have similar properties. Let 0 < r < R, then, by the
Cauchy-Fueter formulas for doubly regular functions (Theorem 8),

(deg+2)f(W ) =
1

2π2

∫

S3
R

k1(Z −W ) · (Dz ⊗ Z) · f(Z)

− 1

2π2

∫

S3
r

k1(Z −W ) · (Dz ⊗ Z) · f(Z),

for all W ∈ H such that r2 < N(W ) < R2, where S3
R ⊂ H is the sphere of

radius R centered at the origin

S3
R = {X ∈ H; N(X) = R2}.

Define functions f̃+ : H→ S⊙ S and f̃− : H× → S⊙ S by

f̃+(W ) =
1

2π2

∫

S3
R

k1(Z −W ) · (Dz ⊗ Z) · f(Z), R2 > N(W ),

f̃−(W ) = − 1

2π2

∫

S3
r

k1(Z −W ) · (Dz ⊗ Z) · f(Z), r2 < N(W ).

Note that f̃+ and f̃− are doubly left regular and that f̃−(W ) decays at
infinity at a rate ∼ N(W )−2.

For a function φ defined on H or, slightly more generally, on a star-shaped
open subset of H centered at the origin, let

(
(deg+2)−1φ

)
(Z) =

∫ 1

0
t · φ(tZ) dt.
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Similarly, for a function φ defined on H× and decaying sufficiently fast at
infinity, we can define (deg+2)−1φ as

(
(deg+2)−1φ

)
(Z) = −

∫ ∞

1
t · φ(tZ) dt.

Then

(deg+2)
(
(deg+2)−1φ

)
= (deg+2)−1

(
(deg+2)φ

)
= φ

for functions φ that are either defined on star-shaped open subsets of H

centered at the origin or on H× and decaying sufficiently fast at infinity. (In
the same fashion one can also define (deg+2)−1φ for functions defined on
star-shaped open subsets of HC centered at the origin or on H×

C
and decaying

sufficiently fast at infinity.)
We introduce functions

f+ = (deg+2)−1f̃+ and f− = (deg+2)−1f̃−.

Proposition 13. Let f : H× → S⊙ S be a doubly left regular function. Then
f(X) = f+(X) + f−(X), for all X ∈ H×.

Proof. Let f−2 = f − f+ − f−, we want to show that f−2 ≡ 0. Note that
f−2 : H

× → S⊙ S is a doubly left regular function such that (deg+2)f−2 ≡
0, hence f−2 is homogeneous of degree −2. Let

f−3 =
∂

∂x11
f−2, f−3 : H

× → S⊙ S,

then f−3 is a doubly left regular function that is homogeneous of degree −3.
By the Cauchy-Fueter formulas for doubly regular functions (Theorem 8),

f−3(X) = − 1

2π2

∫

S3
R

k1(Z −X) · (Dz ⊗ Z) · f−3(Z)

+
1

2π2

∫

S3
r

k1(Z −X) · (Dz ⊗ Z) · f−3(Z),

where R, r > 0 are such that r2 < N(X) < R2. By Liouville’s theorem (Corol-
lary 9), the first integral defines a doubly left regular function on H that is
either constant or unbounded. On the other hand, the second integral de-
fines a doubly left regular function on H× that decays at infinity at a rate
∼ N(W )−2. We conclude that f−3 ≡ 0, hence f−2 ≡ 0 as well. □
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Definition 14. Let f : H× → S⊙ S be a doubly left regular function. We
define

(deg+2)−1f = (deg+2)−1f+ + (deg+2)−1f−.

Similarly, we can define (deg+2)−1g for doubly right regular functions g :
H× → S′ ⊙ S′.

From the previous discussion we immediately obtain:

Proposition 15. Let f : H× → S⊙ S be a doubly left regular function and
g : H× → S′ ⊙ S′ a doubly right regular function. Then

(deg+2)
(
(deg+2)−1f

)
= (deg+2)−1

(
(deg+2)f

)
= f,

(deg+2)
(
(deg+2)−1g

)
= (deg+2)−1

(
(deg+2)g

)
= g.

From the expansions of the Cauchy-Fueter kernel (23) and (24) we im-
mediately obtain an analogue of Laurent series expansion for doubly regular
functions.

Corollary 16. Let f : H× → S⊙ S be a doubly left regular function, write
f = f+ + f− as in the above proposition. Then the functions f+ and f− can
be expanded as series

f+(X) =
∑

l

(
∑

m,n

al,m,nFl,m,n(X)

)
, f−(X) =

∑

l

(
∑

m,n

bl,m,nF
′
l,m,n(X)

)
.

If g : H× → S′ ⊙ S′ is a doubly right regular function, then it can be ex-
pressed as g = g+ + g− in a similar way, and the functions g+ and g− can
be expanded as series

g+(X) =
∑

l

(
∑

m,n

cl,m,nGl,m,n(X)

)
, g−(X) =

∑

l

(
∑

m,n

dl,m,nG
′
l,m,n(X)

)
.

Formulas expressing the coefficients al,m,n, bl,m,n, cl,m,n and dl,m,n will
be given in Corollary 21.

2.5. Invariant bilinear pairing for doubly regular functions

We define a pairing between doubly left and right regular functions as fol-
lows. If f(Z) and g(Z) are doubly left and right regular functions on H×

C
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respectively, then by the results of the previous subsection (deg+2)−1f and
(deg+2)−1g are well defined, and we set

(25) ⟨f, g⟩DR =
1

2π2

∫

Z∈S3
R

g(Z) · (Z ⊗Dz) ·
(
(deg+2)−1f

)
(Z),

where S3
R ⊂ H ⊂ HC is the sphere of radius R centered at the origin

S3
R = {X ∈ H; N(X) = R2}.

Recall that by Lemma 6 in [FL1] the 3-form Dz restricted to S3
R becomes

Z dS/R, where dS is the usual Euclidean volume element on S3
R. Thus we

can rewrite (25) as

⟨f, g⟩DR =
1

2π2

∫

Z∈S3
R

g(Z) · (Z ⊗ Z) ·
(
(deg+2)−1f

)
(Z)

dS

R

=
1

2π2

∫

Z∈S3
R

g(Z) · (Dz ⊗ Z) ·
(
(deg+2)−1f

)
(Z).

Since (1⊗∇+)(deg+2)−1f = 0 and, by Lemma 6,
[
g(Z)(Z ⊗ 1)

]
(
←−−−−
1⊗∇+) =

0, the integrand of (25) is a closed 3-form and the contour of integration can
be continuously deformed. In particular, this pairing does not depend on the
choice of R > 0.

Proposition 17. If f(Z) and g(Z) are doubly left and right regular func-
tions on H×

C
respectively, then

⟨f, g⟩DR =
1

2π2

∫

Z∈S3
R

g(Z) · (Z ⊗Dz) ·
(
(deg+2)−1f

)
(Z)(26)

= − 1

2π2

∫

Z∈S3
R

(
(deg+2)−1g

)
(Z) · (Z ⊗Dz) · f(Z).

Proof. Since the expression

∫

Z∈S3
R

g(Z) · (Z ⊗Dz) · f(Z)
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is independent of the choice of R > 0, we have:

0 =
d

dt

∣∣∣∣
t=1

(∫

Z∈S3
tR

g(Z) · (Z ⊗Dz) · f(Z)

)

=

∫

Z∈S3
R

((
(deg+2)g

)
(Z) · (Z ⊗Dz) · f(Z)

+ g(Z) · (Z ⊗Dz) ·
(
(deg+2)f

)
(Z)
)
.

From this (26) follows. □

Corollary 18. If f(Z) and g(Z) are doubly left and right regular functions
on HC respectively and W ∈ D+

R (open domains D±
R were defined by equa-

tion (22) in [FL3]), the Cauchy-Fueter formulas for doubly regular functions
(Theorem 8) can be rewritten as

f(W ) =
〈
k1(Z −W ), f(Z)

〉
DR

and g(W ) = −
〈
g(Z), k1(Z −W )

〉
DR

.

We can rewrite the bilinear pairing (25) in a more symmetrical way.
Let 0 < r < R and 0 < r1 < R < r2. Using the Cauchy-Fueter formulas for
doubly regular functions (Theorem 8), substituting

g(Z) =
1

2π2

∫

W∈S3
r2

(
(deg+2)−1g

)
(W ) · (W ⊗Dw) · k1(W − Z)

− 1

2π2

∫

W∈S3
r1

(
(deg+2)−1g

)
(W ) · (W ⊗Dw) · k1(W − Z),

Z ∈ D+
r2 ∩ D−

r1 ,

into (25) and shifting contours of integration, we obtain:

⟨f, g⟩DR =
1

4π4

∫∫

Z∈S3
r

W∈S3
R

(
(deg+2)−1g

)
(W ) · (W ⊗Dw)(27)

· k1(W − Z) · (Z ⊗Dz) ·
(
(deg+2)−1f

)
(Z)

− 1

4π4

∫∫
Z∈S3

R
W∈S3

r

(
(deg+2)−1g

)
(W ) · (W ⊗Dw)

· k1(W − Z) · (Z ⊗Dz) ·
(
(deg+2)−1f

)
(Z).

Proposition 19. The bilinear pairing (25) is gl(2,HC)-invariant.
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Proof. It is sufficient to show that the pairing is invariant under SU(2)×
SU(2) ⊂ GL(2,HC), dilation matrices

(
λ 0
0 1

)
∈ GL(2,HC), λ ∈ R, λ > 0, in-

versions
(
0 1
1 0

)
∈ GL(2,HC) and

(
0 B
0 0

)
∈ gl(2,HC), B ∈ HC.

First, let h =
(
a 0
0 d

)
∈ GL(2,HC), a, d ∈ H, N(a) = N(d) = 1, Z̃ = a−1Zd.

Using Proposition 11 from [FL1] we obtain:

2π2 · ⟨πdl(h)f, πdr(h)g⟩DR

=

∫

Z∈S3
R

(πdr(h)g)(Z) · (Z ⊗Dz) ·
(
(deg+2)−1(πdl(h)f)

)
(Z)

=

∫

Z∈S3
R

g(a−1Zd) · a
−1 ⊗ a−1

N(a)
· (Z ⊗Dz)

· (deg+2)−1
(
N(d) · (d⊗ d) · f(a−1Zd)

)

=

∫

Z̃∈S3
R

g(Z̃) · (Z̃ ⊗Dz̃) ·
(
(deg+2)−1f

)
(Z̃)

= 2π2 · ⟨f, g⟩DR.

The calculations for h =
(
λ 0
0 1

)
∈ GL(2,HC), λ ∈ R, λ > 0, are similar.

Next, we recall that matrices
(
0 B
0 0

)
∈ gl(2,HC), B ∈ HC, act by differ-

entiation (Lemma 4). For example, if B =
(
1 0
0 0

)
∈ HC, using the symmetric

expression (27) we obtain:

4π4 ·
〈
πdl
(
0 B
0 0

)
f, g
〉
DR

=

∫∫

Z∈S3
r

W∈S3
R

(
(deg+2)−1g

)
(W ) · (W ⊗Dw)

· k1(W − Z) · (Z ⊗Dz) ·
(
(deg+2)−1 ∂f

∂z11

)
(Z)

−
∫∫

Z∈S3
R

W∈S3
r

(
(deg+2)−1g

)
(W ) · (W ⊗Dw)

· k1(W − Z) · (Z ⊗Dz) ·
(
(deg+2)−1 ∂f

∂z11

)
(Z)

=

∫∫

Z∈S3
r

W∈S3
R

(
(deg+2)−1g

)
(W ) · (W ⊗Dw)

·
(

∂

∂w11
k1(W − Z)

)
· (Z ⊗Dz) ·

(
(deg+2)−1f

)
(Z)
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−
∫∫

Z∈S3
R

W∈S3
r

(
(deg+2)−1g

)
(W ) · (W ⊗Dw)

·
(

∂

∂w11
k1(W − Z)

)
· (Z ⊗Dz) ·

(
(deg+2)−1f

)
(Z)

= −
∫∫

Z∈S3
r

W∈S3
R

(
(deg+2)−1g

)
(W ) · (W ⊗Dw)

·
(

∂

∂z11
k1(W − Z)

)
· (Z ⊗Dz) ·

(
(deg+2)−1f

)
(Z)

+

∫∫
Z∈S3

R
W∈S3

r

(
(deg+2)−1g

)
(W ) · (W ⊗Dw)

·
(

∂

∂z11
k1(W − Z)

)
· (Z ⊗Dz) ·

(
(deg+2)−1f

)
(Z)

= −
∫∫

Z∈S3
r

W∈S3
R

(
(deg+2)−1 ∂g

∂w11

)
(W ) · (W ⊗Dw)

· k1(W − Z) · (Z ⊗Dz) ·
(
(deg+2)−1f

)
(Z)

+

∫∫
Z∈S3

R
W∈S3

r

(
(deg+2)−1 ∂g

∂w11

)
(W ) · (W ⊗Dw)

· k1(W − Z) · (Z ⊗Dz) ·
(
(deg+2)−1f

)
(Z)

= −4π4 ·
〈
f, πdr

(
0 B
0 0

)
g
〉
DR

.

Finally, if h =
(
0 1
1 0

)
∈ GL(2,HC), changing the variable to Z̃ = Z−1 –

which is an orientation reversing map S3
R → S3

1/R – and using Proposition 11

from [FL1], we have:

2π2 · ⟨πdl(h)f, πdr(h)g⟩DR

=

∫

Z∈S3
R

g(Z−1) · Z
−1 ⊗ Z−1

N(Z)
· (Z ⊗Dz)

· (deg+2)−1

(
Z−1 ⊗ Z−1

N(Z)
· f(Z−1)

)

= −
∫

Z∈S3
R

g(Z−1) · Z
−1 ⊗ (Z−1 ·Dz · Z−1)

N(Z)2
·
(
(deg+2)−1f

)
(Z−1)

= −
∫

Z̃∈S3
1/R

g(Z̃) · (Z̃ ⊗Dz̃) ·
(
(deg+2)−1f

)
(Z̃)

= −2π2 · ⟨f, g⟩DR.
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(Note that the negative sign in ⟨πdl(h)f, πdr(h)g⟩DR = −⟨f, g⟩DR does not
affect the invariance of the bilinear pairing under the Lie algebra gl(2,HC).)

□

Next we describe orthogonality relations for doubly regular functions.
Recall functions Fl,m,n, F ′

l,m,n, Gl,m,n and G′
l,m,n introduced in Lemma 10,

these are the functions that appear in matrix coefficient expansions of the
Cauchy-Fueter kernel (23) and (24).

Proposition 20. We have the following orthogonality relations:

⟨Fl,m,n, G
′
l′,m′,n′⟩DR = −⟨F ′

l,m,n, Gl′,m′,n′⟩DR = δll′ · δmm′ · δnn′ ,

⟨Fl,m,n, Gl′,m′,n′⟩DR = ⟨F ′
l,m,n, G

′
l′,m′,n′⟩DR = 0.

Proof. Recall that, by Lemma 6 in [FL1], the 3-form Dz restricted to S3
R

equals Z dS/R. We continue to identify tensor products of matrices with
their Kronecker products. Applying Lemma 23 from [FL1] repeatedly, we
compute

(Z ⊗ Z) · Fl,m,n(Z) =




(l−n+1)(l−n+2)tl+1
n−1m(Z)

(l+n+1)(l−n+1)tl+1
nm(Z)

(l−n+1)(l+n+1)tl+1
nm(Z)

(l+n+1)(l+n+2)tl+1
n+1m(Z)


 .

When we multiply this by G′
l′,m′,n′(Z) and integrate over S3

R, by the orthog-
onality relations (17) in [FL3] (see also equation (1) in §6.2 of Chapter III
in [V]),

⟨Fl,m,n, G
′
l′,m′,n′⟩DR = δll′ · δmm′ · δnn′ .

Since

Gl′,m′,n′(Z) · (Z ⊗ Z) · Fl,m,n(Z)

is homogeneous of degree 2(l + l′) > −2 and the pairing (25) is independent
of the choice of R > 0, ⟨Fl,m,n, Gl′,m′,n′⟩DR must be zero. The cases involving
F ′
l,m,n can be proved similarly. □

Corollary 21. The coefficients al,m,n, bl,m,n, cl,m,n and dl,m,n of Laurent
expansions of doubly regular functions given in Corollary 16 are given by the
following expressions:

al.m,n = ⟨f,G′
l,m,n⟩DR, bl.m,n = −⟨f,Gl,m,n⟩DR,

cl.m,n = −⟨F ′
l,m,n, g⟩DR, dl.m,n = ⟨Fl,m,n, g⟩DR.
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2.6. n-regular functions

One can generalize the notion of doubly regular functions to triply regu-
lar functions, quadruply regular functions and so on. Thus, left n-regular
functions take values in

S⊙ · · · ⊙ S︸ ︷︷ ︸
n times

and satisfy n regularity conditions

(1⊗ · · · ⊗ ∇+

i-th place
⊗ · · · ⊗ 1)f = 0, i = 1, . . . , n.

Similarly, one can define right n-regular functions with values in

S′ ⊙ · · · ⊙ S′︸ ︷︷ ︸
n times

.

The group GL(2,HC) acts on n-regular functions similarly to (13)–(14). Then
polynomial n-regular functions should yield realizations of all the highest
weight representations of the most degenerate series of representations of
the conformal Lie algebra sl(2,HC). Those are often called the spin n

2 rep-
resentations of positive and negative helicities. The spin 0 case corresponds
to the harmonic functions, while the spin 1

2 case correspond to the usual
left and right regular functions. Such representations were considered by
H. P. Jakobsen and M. Vergne in [JV1].

One can also derive an analogue of the Cauchy-Fueter formulas as well
as a bilinear pairing for n-regular functions, just as we did for the n = 2
case in this section. However, the n = 2 case appears to be special, as the
doubly regular functions can be realized as a certain subspace of HC-valued
functions, which will be the subject of Section 4.

Functions with values in S⊙ · · · ⊙ S are a subspace of all functions

H×
C
→ S⊗ · · · ⊗ S︸ ︷︷ ︸

n times

.

As a special case of Schur-Weyl duality,

(28) S⊗ · · · ⊗ S︸ ︷︷ ︸
n times

=

n⊕

k=0

Mk ⊗ Vk,

where Vk is the irreducible representation of SL(2,C) of dimension k + 1
and Mk is its multiplicity, which is also an irreducible representation of the
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symmetric group on n objects. In particular,

Vn = S⊙ · · · ⊙ S︸ ︷︷ ︸
n times

and V0 = S ∧ · · · ∧ S︸ ︷︷ ︸
n times

.

When n = 2, M1 = 0 and

S⊗ S = (S ∧ S)⊕ (S⊙ S).

Proposition 22. As a representation of gl(2,HC), the space of maps

H×
C
→ S ∧ S

is isomorphic to C[z11, z12, z21, z22, N(Z)−1] with gl(2,HC) action obtained
by differentiating the following action of GL(2,HC):

f(Z) 7→ 1

N(cZ + d)2
· f
(
(aZ + b)(cZ + d)−1

)
,

h−1 =
(
a b
c d

)
∈ GL(2,HC).

Similarly, as a representation of gl(2,HC), the space of maps

H×
C
→ S′ ∧ S′

is isomorphic to C[z11, z12, z21, z22, N(Z)−1] with gl(2,HC) action obtained
by differentiating another action of GL(2,HC):

f(Z) 7→ 1

N(a′ − Zc′)2
· f
(
(a′ − Zc′)−1(−b′ + Zd′)

)
,

h =
(
a′ b′

c′ d′

)
∈ GL(2,HC).

Proof. Since S ∧ S and S′ ∧ S′ are one-dimensional, the spaces of functions
H×

C
→ S ∧ S and H×

C
→ S′ ∧ S′ can be both identified with C[z11, z12, z21, z22,

N(Z)−1]. The actions of gl(2,HC) are obtained by taking the determinants
of πdl and πdr respectively, and the result follows from (13)–(14). □

Note that similar representations and their irreducible components were
considered in Subsections 3.1-3.2 in [L1].

For general n, we have a decomposition of the space of functions H×
C
→

S⊗ · · · ⊗ S according to (28). In a separate paper [FL4] we study n-regular
functions in more detail. For example, we prove that generalizations of the
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Cauchy-Fueter formulas to such functions provide natural quaternionic ana-
logues of Cauchy’s differentiation formula

f (n−1)(w) =
(n− 1)!

2πi

∮
f(z) dz

(z − w)n
.

3. Quaternionic chain complex and decomposition of (ρ,X),
(ρ′,X′) into irreducible components

3.1. Quaternionic chain complex

We start with a sequence of maps (57) from [FL1]:

(29) (ρ′,X′)
∂+

−−−−→ (ρ′2,W ′)
Mx−−−−→ (ρ2,W)

Tr ◦∂+

−−−−→ (ρ,X),

where

X = X
′ =

{
C-valued polynomial functions on H×

C

}

= C[z11, z12, z21, z22, N(Z)−1],

W =W ′ =
{
HC-valued polynomial functions on H×

C

}
= HC ⊗X,

∂ =

(
∂11 ∂21
∂12 ∂22

)
=

1

2
∇,

∂+ =

(
∂22 −∂21
−∂12 ∂11

)
=

1

2
∇+,

MxF = ∇F∇−□F+.

Since the compositions of any two consecutive maps are zero:

Mx ◦∂+ = 0 and (Tr ◦∂+) ◦Mx = 0,

we call (29) a quaternionic chain complex. The Lie algebra gl(2,HC) acts on
these spaces by differentiating the following group actions:
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ρ(h) : f(Z) 7→
(
ρ(h)f

)
(Z) =

f
(
(aZ + b)(cZ + d)−1

)

N(cZ + d)2 ·N(a′ − Zc′)2
,

ρ′(h) : f(Z) 7→
(
ρ(h)f

)
(Z) = f

(
(aZ + b)(cZ + d)−1

)
,

ρ2(h) : F (Z) 7→
(
ρ2(h)F

)
(Z) =

(cZ + d)−1

N(cZ + d)

· F
(
(aZ + b)(cZ + d)−1

)
· (a

′ − Zc′)−1

N(a′ − Zc′)
,

ρ′2(h) : F (Z) 7→
(
ρ′2(h)F

)
(Z) =

(a′ − Zc′)

N(a′ − Zc′)

· F
(
(aZ + b)(cZ + d)−1

)
· (cZ + d)

N(cZ + d)
,

where f ∈X or X
′, F ∈ W or W ′, h =

(
a′ b′

c′ d′

)
∈ GL(2,HC) and h−1 =(

a b
c d

)
. Although X = X

′ andW =W ′ as vector spaces, these notations indi-
cate the action of gl(2,HC). Also, in [FL3] we treat (ρ1,Ж), where Ж = X as
vector spaces, but the action ρ1 of gl(2,HC) is different from ρ, ρ′ considered
here. We have the following four analogues of Lemma 68 in [FL1]:

Lemma 23. The Lie algebra action ρ of gl(2,HC) on X is given by

ρ
(
A 0
0 0

)
: f(Z) 7→ −Tr(AZ∂ + 2A)f,

ρ
(
0 B
0 0

)
: f(Z) 7→ −Tr(B∂)f,

ρ
(

0 0
C 0

)
: f(Z) 7→ Tr(ZCZ∂ + 4CZ)f,

ρ
(
0 0
0 D

)
: f(Z) 7→ Tr(ZD∂ + 2D)f.

Lemma 24. The Lie algebra action ρ′ of gl(2,HC) on X
′ is given by

ρ′
(
A 0
0 0

)
: f(Z) 7→ −Tr(AZ∂)f,

ρ′
(
0 B
0 0

)
: f(Z) 7→ −Tr(B∂)f,

ρ′
(

0 0
C 0

)
: f(Z) 7→ Tr(ZCZ∂)f,

ρ′
(
0 0
0 D

)
: f(Z) 7→ Tr(ZD∂)f.
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Lemma 25. The Lie algebra action ρ2 of gl(2,HC) on W is given by

ρ2
(
A 0
0 0

)
: F (Z) 7→ −Tr(AZ∂ +A)F − FA,

ρ2
(
0 B
0 0

)
: F (Z) 7→ −Tr(B∂)F,

ρ2
(

0 0
C 0

)
: F (Z) 7→ Tr(ZCZ∂ + 2ZC)F + CZF + FZC,

ρ2
(
0 0
0 D

)
: F (Z) 7→ Tr(ZD∂ +D)F +DF.

Lemma 26. The Lie algebra action ρ′2 of gl(2,HC) on W ′ is given by

ρ′2
(
A 0
0 0

)
: F (Z) 7→ −Tr(AZ∂ +A)F +AF,

ρ′2
(
0 B
0 0

)
: F (Z) 7→ −Tr(B∂)F,

ρ′2
(

0 0
C 0

)
: F (Z) 7→ Tr(ZCZ∂ + 2ZC)F − ZCF − FCZ,

ρ′2
(
0 0
0 D

)
: F (Z) 7→ Tr(ZD∂ +D)F − FD.

Next, we show that the maps in the quaternionic chain complex (29) are
gl(2,HC)-equivariant.

Proposition 27. The map ∂+ : (ρ′,X′)→ (ρ′2,W ′) in (29) is gl(2,HC)-
equivariant.

Proof. For f(Z) ∈X
′, by direct computation we obtain:

−∂+Tr(AZ∂)f = −Tr(AZ∂)∂+f

+

(
−a12∂12 − a22∂22 a12∂11 + a22∂21
a11∂12 + a21∂22 −a11∂11 − a21∂21

)
f

= −Tr(AZ∂)∂+f − Tr(A)∂+f +A∂+f,

∂+Tr(ZCZ∂)f = Tr(ZCZ∂)∂+f

+




c21z11∂21 + c22z21∂21 + c21z12∂22 + 2c22z22∂22
+c12z11∂12 + c12z21∂22 + c22z12∂12

−c11z11∂21 − 2c12z21∂21 − c11z12∂22 − c12z22∂22
−c12z11∂11 − c22z12∂11 − c22z22∂21

−c21z11∂11 − c22z21∂11 − 2c21z12∂12 − c22z22∂12
−c11z11∂12 − c11z21∂22 − c21z22∂22

2c11z11∂11 + c12z21∂11 + c11z12∂12 + c12z22∂12
+c11z21∂21 + c21z12∂11 + c21z22∂21



f

= Tr(ZCZ∂)∂+f + 2Tr(ZC)∂+f − ZC∂+f − (∂+f)CZ.

The calculations showing that ∂+ intertwines the actions of
(
0 B
0 0

)
and

(
0 0
0 D

)

are similar. □

Proposition 28. The map Mx : (ρ′2,W ′)→ (ρ2,W) in (29) is gl(2,HC)-
equivariant.
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Proof. Note that MxF = 4(∂F∂ − ∂∂+F+), where F (Z) ∈ W ′. Using

(30)
∂[Tr(AZ∂)F ] = Tr(AZ∂)(∂F ) + ∂AF,

∂+[Tr(AZ∂)F ] = Tr(AZ∂)(∂+F ) +A+∂+F,

we obtain

1

4
Mx
(
−Tr(AZ∂ +A)F +AF

)

= −
[
Tr(AZ∂)(∂F )

]←−
∂ + ∂

[
Tr(AZ∂)(∂+F+) +A+∂+F+

]

+Tr(A)∂∂+F+ − ∂∂+F+A+

= −Tr(AZ∂ +A)(∂F∂)− (∂F∂)A+Tr(AZ∂)(∂∂+F+)

+ ∂A∂+F+ + ∂A+∂+F+ + ∂∂+F+A

= −Tr(AZ∂ +A)(∂F∂ − ∂∂+F+)− (∂F∂ − ∂∂+F+)A;

−MxTr(B∂)F = −Tr(B∂)MxF ;

similarly, using

(31)
∂[Tr(ZD∂)F ] = Tr(ZD∂)(∂F ) +D∂F,

∂+[Tr(ZD∂)F ] = Tr(ZD∂)(∂+F ) + ∂+D+F,

we obtain

1

4
Mx
(
Tr(ZD∂ +D)F − FD

)

=
[
Tr(ZD∂ +D)(∂F ) +D∂F − ∂FD

]←−
∂

− ∂
[
Tr(ZD∂)(∂+F+) + ∂+D+F+

]
− Tr(D)∂∂+F+ +D+∂∂+F+

= Tr(ZD∂ +D)(∂F∂) +D(∂F∂)− Tr(ZD∂)(∂∂+F+)

−D∂∂+F+ − Tr(D)∂∂+F+

= Tr(ZD∂ +D)(∂F∂ − ∂∂+F+) +D(∂F∂ − ∂∂+F+);

finally, using

∂[Tr(ZCZ∂ + 2ZC)F − ZCF − FCZ](32)

= Tr(ZCZ∂ + 2ZC)(∂F ) + CZ(∂F )− (∂F )CZ − Tr(FC),
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we obtain

1

4
Mx
(
Tr(ZCZ∂ + 2ZC)F − ZCF − FCZ

)

= Tr(ZCZ∂ + 2ZC)(∂F∂) + CZ(∂F∂)

+ (∂F∂)ZC + C Tr(∂F )− ∂ Tr(FC)

−
(
∂+[Tr(ZCZ∂ + 2ZC)(∂F ) + CZ∂F − (∂F )CZ − Tr(FC)]

)+

= Tr(ZCZ∂ + 2ZC)(∂F∂) + CZ(∂F∂) + (∂F∂)ZC + C Tr(∂F )

− ∂ Tr(FC)− Tr(ZCZ∂ + 2ZC)(∂+∂F+)

− (∂+∂F+)ZC − CZ(∂+∂F+)− F+∂+C − ∂FC + ∂ Tr(FC)

= Tr(ZCZ∂ + 2ZC)(∂F∂ − ∂∂+F+) + CZ(∂F∂ − ∂∂+F+)

+ (∂F∂ − ∂∂+F+)ZC.
□

Proposition 29. The map Tr ◦∂+ : (ρ2,W)→ (ρ,X) in (29) is gl(2,HC)-
equivariant.

Proof. For F (Z) ∈ W, by direct computation we obtain:

− Tr
(
∂+Tr(AZ∂)F + ∂+Tr(A)F + (∂+F )A

)

= −Tr(AZ∂) Tr(∂+F )− (TrA) Tr(∂+F )

− Tr(A∂+F )− Tr

[(
a12∂12 + a22∂22 −a12∂11 − a22∂21
−a11∂12 − a21∂22 a11∂11 + a21∂21

)
F

]

= −Tr(AZ∂ + 2A) Tr(∂+F ),

Tr
(
∂+Tr(ZCZ∂ + 2ZC)F + ∂+CZF + ∂+FZC

)

= Tr(ZCZ∂ + 2ZC) Tr(∂+F ) + Tr
(
CZ(F∂+) + ZC∂+F

)

+Tr






c21z11∂21 + c22z21∂21 + c21z12∂22 + 2c22z22∂22
+c12z11∂12 + c12z21∂22 + c22z12∂12

−c11z11∂21 − 2c12z21∂21 − c11z12∂22 − c12z22∂22
−c12z11∂11 − c22z12∂11 − c22z22∂21

−c21z11∂11 − c22z21∂11 − 2c21z12∂12 − c22z22∂12
−c11z11∂12 − c11z21∂22 − c21z22∂22

2c11z11∂11 + c12z21∂11 + c11z12∂12 + c12z22∂12
+c11z21∂21 + c21z12∂11 + c21z22∂21



F




= Tr(ZCZ∂ + 4ZC) Tr(∂+F ).

The calculations showing that Tr ◦∂+ intertwines the actions of
(
0 B
0 0

)
and(

0 0
0 D

)
are similar. □

We have another equivariant map that does not appear in (29):

Proposition 30. The map □ ◦□ : (ρ′,X′)→ (ρ,X) is gl(2,HC)-equivariant.
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Proof. Note that □ = 4∂∂+ = 4∂+∂. For f(Z) ∈X
′, using (30) and (31),

we obtain:

−1

4
□[Tr(AZ∂)f ] = −∂[Tr(AZ∂)(∂+f)−A+∂+f ]

= −Tr(AZ∂)(∂∂+f)− Tr(A)∂∂+f,

−(□ ◦□)[Tr(AZ∂)f ] = −Tr(AZ∂ + 2A)(□ ◦□f);

1

4
□[Tr(ZCZ∂)f ] = ∂[Tr(ZCZ∂)(∂+f) + (∂+f)Z+C+ + C+Z+∂+f ]

= Tr(ZCZ∂)(∂∂+f) + CZ(∂∂+f) + ∂[ZC∂+f ]

− 2C∂+f + ∂[(∂+f)Z+C+ + C+Z+∂+f ]

= Tr(ZCZ∂)(∂∂+f) + (CZ + Z+C+)(∂∂+f)

+ ∂[ZC∂+f + C+Z+∂+f ]− 2C∂+f − (∂f)C+

= Tr(ZCZ∂ + 2CZ)(∂∂+f)− Tr(C+∂)f,

(□ ◦□)[Tr(ZCZ∂)f ] = Tr(ZCZ∂ + 4CZ)(□ ◦□f).

The calculations showing that □ ◦□ intertwines the actions of
(
0 B
0 0

)
and(

0 0
0 D

)
are similar. □

3.2. Decomposition of (ρ,X) and (ρ′,X′) into irreducible
components

Similarly to how we proved Theorem 8 in [L1], we can obtain the following
two decomposition results.

Theorem 31. The only proper gl(2,HC)-invariant subspaces of (ρ,X) are

X
+ = C-span of

{
N(Z)k · tlnm(Z); k ≥ 0

}
,

X
− = C-span of

{
N(Z)k · tlnm(Z); k ≤ −(2l + 4)

}
,

I+ = C-span of
{
N(Z)k · tlnm(Z); k ≥ −(2l + 1)

}
,

I− = C-span of
{
N(Z)k · tlnm(Z); k ≤ −3

}
,

J = C-span of
{
N(Z)k · tlnm(Z); −(2l + 1) ≤ k ≤ −3

}

and their sums (see Figure 2).
The irreducible components of (ρ,X) are the subrepresentations

(ρ,X+), (ρ,X−), (ρ,J )
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Figure 2. Decomposition of (ρ,X) into irreducible components.

and the quotients

(
ρ, I+/(X+ ⊕ J )

)
,
(
ρ, I−/(X− ⊕ J )

)
,
(
ρ,X/(I+ + I−)

)

(see Figure 3).

Theorem 32. The only proper gl(2,HC)-invariant subspaces of (ρ′,X′) are

I ′0 = C = C-span of
{
N(Z)0 · t00 0(Z)

}
,

BH+ = C-span of
{
N(Z)k · tlnm(Z); 0 ≤ k ≤ 1

}
,

BH− = C-span of
{
N(Z)k · tlnm(Z); −1 ≤ 2l + k ≤ 0

}
,

X
+ = C-span of

{
N(Z)k · tlnm(Z); k ≥ 0

}
,

X
′− = C-span of

{
N(Z)k · tlnm(Z); k ≤ −2l

}
,

I ′+ = C-span of
{
N(Z)k · tlnm(Z); k ≥ −(2l + 1)

}
,

I ′− = C-span of
{
N(Z)k · tlnm(Z); k ≤ 1

}
,

J ′ = C-span of
{
N(Z)k · tlnm(Z); −(2l + 1) ≤ k ≤ 1

}

and their sums (see Figure 4).
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I−/(X− ⊕ J )
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Figure 3. Irreducible components of (ρ,X).

The irreducible components of (ρ′,X′) are the trivial subrepresentation
(ρ′, I ′0) and the quotients

(ρ′,BH+/I ′0), (ρ′,BH−/I ′0),
(ρ′,X+/BH+) = (ρ′,X/I ′−), (ρ′,X′−/BH−) = (ρ′,X/I ′+),(
ρ′,X/(I ′+ + I ′−)

)
=
(
ρ′, I ′+/(X+ + BH−)

)

=
(
ρ′, I ′−/(X′− + BH+)

)
=
(
ρ′,J ′/(BH+ + BH−)

)

(see Figure 5, which is essentially a shifted Figure 3).

Corollary 33. The image under the gl(2,HC)-equivariant map □ ◦□ :
(ρ′,X′)→ (ρ,X) from Proposition 30 is X

+ ⊕ J ⊕X
−; this map provides

isomorphisms

(ρ′,X+/BH+) ≃ (ρ,X+),
(
ρ′,J ′/(BH+ + BH−)

)
≃ (ρ,J ),

(ρ′,X′−/BH−) ≃ (ρ,X−).

Proof. The result follows from Theorems 31, 32 and an identity:

(33) □
(
N(Z)k · tlnm(Z)

)
= 4k(2l + k + 1)N(Z)k−1 · tlnm(Z),
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Figure 4. Decomposition of (ρ′,X′) into irreducible components.
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Figure 5. Irreducible components of (ρ′,X′).
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which can be verified by direct computation. □

We call a function f biharmonic if (□ ◦□)f = 0. Using (33), we can
characterize the space of biharmonic functions.

Proposition 34. We have:

{f ∈X; (□ ◦□)f = 0} = BH+ + BH−.

In other words, a function f ∈X is biharmonic if and only if it can be
written as

f(Z) = h0(Z) + h1(Z) ·N(Z)

with h0 and h1 harmonic.

4. Realization of doubly regular functions in the
quaternionic chain complex

In this section we decompose kerMx – which is an invariant subspace of
(ρ′2,W ′) – into irreducible components. We will see that it has ten irre-
ducible components: five coming from (ρ′,X′) under the map ∂+, one trivial
one-dimensional representation and four components that are isomorphic to
the spaces of doubly regular maps mentioned in Proposition 11. Results of
this section will be later used in Subsection 5.2 to decompose (ρ′2,W ′) into
irreducible components.

4.1. The structure of kerMx ⊂ W ′

We introduce a gl(2,HC)-equivariant map on kerMx; its kernel is automati-
cally an invariant subspace of kerMx.

Proposition 35. The map Tr ◦∂ ◦□ : (ρ′2, kerMx)→ (ρ,X) is gl(2,HC)-
equivariant.

Proof. Recall that the matrices
(
1 0
0 0

)
,
(
0 B
0 0

)
and

(
0 0
C 0

)
∈ gl(2,HC), B,C ∈

HC, generate gl(2,HC). Thus, it is sufficient to show that the map Tr ◦∂ ◦□
commutes with actions of dilation matrices

(
λ 0
0 1

)
∈ GL(2,HC), λ ∈ R, λ > 0

and
(
0 B
0 0

)
,
(

0 0
C 0

)
∈ gl(2,HC), B,C ∈ HC. It is clear from Lemmas 23 and 26

that Tr ◦∂ ◦□ commutes with the actions of
(
0 B
0 0

)
. The dilation matrices
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(
λ 0
0 1

)
act by

F (Z) 7→ λ−1 · F (λ−1Z) on W ′ and f(Z) 7→ λ−4 · f(λ−1Z) on X,

and it is clear that Tr ◦∂ ◦□ commutes with these actions as well.
If F (Z) ∈ kerMx, using our previous calculations (32), we obtain:

Tr ∂
(
ρ′2
(

0 0
C 0

)
F
)
= Tr(ZCZ∂ + 2ZC)(Tr ∂F )− 2Tr(CF ).

Then we apply □ = 4∂∂+ = 4
(

∂2

∂z11∂z22
− ∂2

∂z12∂z21

)
:

Tr ∂□
(
ρ′2
(

0 0
C 0

)
F
)
= Tr(ZCZ∂ + 2ZC)(Tr ∂□F )− 2Tr(C□F )

− 4Tr(C∂+) Tr(∂F ) + Tr(CZ + ZC)(Tr ∂□F )

+ 8Tr(C∂+) Tr(∂F )

= Tr(ZCZ∂ + 4CZ)(Tr ∂□F ) + 4Tr(C∂+) Tr(∂F )

− 2Tr(C□F )

= ρ
(

0 0
C 0

)
(Tr ∂□F ) + 4Tr

(
(C∂+ + ∂C+)∂F

)

− 2Tr(C□F )

= ρ
(

0 0
C 0

)
(Tr ∂□F ),

since MxF = 0. □

We introduce a subspaceM of W ′ – the kernel of the above equivariant
map:

M =
{
F ∈ W ′; MxF = 0, Tr(∂ ◦□F ) = 0

}
.

Corollary 36. The subspaceM is invariant under the ρ′2 action of gl(2,HC)
on W ′. All elements of M are biharmonic (i.e. annihilated by □ ◦□).

Proof. The invariance ofM under the ρ′2 action is immediate from the above
proposition. Pick any F ∈M. Since Tr(∂ ◦□F ) = 0,

0 = □ ◦ ∂F +□F+∂+.

And since MxF = 0,

0 =
(
□ ◦ ∂F +□F+∂+

)
∂ =

1

2
□ ◦□F+.

This proves that every element of M is biharmonic. □
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Proposition 37. We have: ∂+(X′) +M = kerMx.

Proof. Clearly, ∂+(X′) +M⊂ kerMx. Thus, it is sufficient to prove that
the images of ∂+(X′) and kerMx under the map Tr ◦∂ ◦□ from Proposi-
tion 35 are the same. Then, by Corollary 33, we need to show that Tr(∂ ◦
□(kerMx)) = X

+ ⊕ J ⊕X
−. And, by Theorem 31 and Proposition 35, it is

sufficient to show that Tr(∂ ◦□(W ′)) does not contain N(Z)−1 nor N(Z)−3.
For this purpose we use an identity

Z · tlnm(Z) =
1

2l + 1



(l − n+ 1)t

l+ 1

2

n− 1

2
m− 1

2

(Z) (l − n+ 1)t
l+ 1

2

n− 1

2
m+ 1

2

(Z)

(l + n+ 1)t
l+ 1

2

n+ 1

2
m− 1

2

(Z) (l + n+ 1)t
l+ 1

2

n+ 1

2
m+ 1

2

(Z)




(34)

+
N(Z)

2l + 1
·




(l +m)t
l− 1

2

n− 1

2
m− 1

2

(Z) −(l −m)t
l− 1

2

n− 1

2
m+ 1

2

(Z)

−(l +m)t
l− 1

2

n+ 1

2
m− 1

2

(Z) (l −m)t
l− 1

2

n+ 1

2
m+ 1

2

(Z)


 ,

which can be verified using Lemma 23 in [FL1], and equation (33) to check
that

∂ij ◦□(
(
N(Z)k · tlnm(Z)

)
, i, j = 1, 2,

is a linear combination of

4k(2l + k + 1)N(Z)k−1 · tl−
1

2

n± 1

2
m± 1

2

(Z),

4k(2l + k + 1)N(Z)k−2 · tl+
1

2

n± 1

2
m± 1

2

(Z).

But none of these terms can be N(Z)−1 or N(Z)−3. □

The intersection of ∂+(X′) and M will be described in Corollary 41.
Next, we show that elements ofM have a particular form; this will be used
to identify the K-types of (ρ′2,M).

Lemma 38. Let Fd : H×
C
→ HC be homogeneous of degree d and such that

□Fd = 0, then

F (Z) = Fd(Z) +
N(Z)

d+ 1
·
(
∂Fd(Z)∂

)+

satisfies MxF = 0 and Tr(∂□F ) = 0. In particular, if Fd(Z) ∈ W ′, then
F (Z) ∈M.
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Proof. Note that there are no homogeneous harmonic functions of degree
−1, so division by d+ 1 is permissible. First we check that MxF = 0. Using
(15) and the fact that ∂∂+Fd = 0, we obtain:

d+ 1

4
MxF = (d+ 1)∂Fd∂ + ∂

(
N(Z) · (∂Fd∂)

+
)
∂ − ∂∂+

(
N(Z) · (∂Fd∂)

)

= (d+ 1)∂Fd∂ +
(
Z+ · (∂Fd∂)

+
)
∂ − ∂

(
Z · (∂Fd∂)

)

= (d+ 1)∂Fd∂ − ∂Fd∂ − d∂Fd∂

= 0.

Then we check that Tr(∂□F ) = 0:

d+ 1

4
Tr(∂□F ) = Tr

(
∂+∂∂

(
N(Z) · (∂Fd∂)

+
))

= Tr
(
∂+∂

(
(∂Fd∂)

+ · Z+
))

= −Tr
(
∂+(∂Fd∂)

)
= 0.

□

Lemma 39. We have1:

1

4
Mx

(
α11t

l
nm(Z) α12t

l
nm+1(Z)

α21t
l
n+1m(Z) α22t

l
n+1m+1(Z)

)
(35)

= ∂

(
α11t

l
nm(Z) α12t

l
nm+1(Z)

α21t
l
n+1m(Z) α22t

l
n+1m+1(Z)

)
∂

=
(
(l −m)(α11 + α21) + (l +m+ 1)(α12 + α22)

)

×
(
(l −m− 1)tl−1

n+1m+1(Z) (l −m− 1)tl−1
nm+1(Z)

(l +m)tl−1
n+1m(Z) (l +m)tl−1

nm(Z)

)

1In this formula, whenever the indices of, say, α11t
l
nm

(Z) happen to be outside

of the allowed range l = 0, 1

2
, 1, 3

2
, . . . , −l ≤ m,n ≤ l, the coefficient α11 must be

set to be zero. The same considerations apply to other formulas in this Lemma.
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and, if l > 1,

1

4
Mx

(
N(Z) ·

(
β11t

l−1
nm(Z) β12t

l−1
nm+1(Z)

β21t
l−1
n+1m(Z) β22t

l−1
n+1m+1(Z)

))
(36)

= 3l

(
−β22tl−1

n+1m+1(Z) β12t
l−1
nm+1(Z)

β21t
l−1
n+1m(Z) −β11tl−1

nm(Z)

)

+
1

l − 1

(
γ11t

l−1
n+1m+1(Z) γ12t

l−1
nm+1(Z)

γ21t
l−1
n+1m(Z) γ22t

l−1
nm(Z)

)

+
N(Z) · l
l − 1

(
(l −m− 1)(β11 + β21) + (l +m)(β12 + β22)

)

×
(
(l −m− 2)tl−2

n+1m+1(Z) (l −m− 2)tl−2
nm+1(Z)

(l +m− 1)tl−2
n+1m(Z) (l +m− 1)tl−2

nm(Z)

)
,

where the coefficients

γ11 = (l −m− 1)(l + n)β11 + (m+ 1)(l + n)β12

+ (l −m− 1)(n+ 1)β21 + (m+ 1)(n+ 1)β22,

γ12 = (l −m− 1)nβ11 + (m+ 1)nβ12 − (l −m− 1)(l − n− 1)β21

− (m+ 1)(l − n− 1)β22,

γ21 = m(l + n)β11 − (l +m)(l + n)β12 +m(n+ 1)β21 − (l +m)(n+ 1)β22,

γ22 = mnβ11 − (l +m)nβ12 −m(l − n− 1)β21 + (l +m)(l − n− 1)β22;

in the special case of l = 1,

1

4
Mx

(
N(Z) ·

(
β11t

0
nm(Z) β12t

0
nm+1(Z)

β21t
0
n+1m(Z) β22t

0
n+1m+1(Z)

))

= 3

(−β22t0n+1m+1(Z) β12t
0
nm+1(Z)

β21t
0
n+1m(Z) −β11t0nm(Z)

)
.

Similarly,

1

4
Mx

(
1

N(Z)

(
α′
11t

l
n+1m+1(Z

−1) α′
12t

l
nm+1(Z

−1)

α′
21t

l
n+1m(Z−1) α′

22t
l
nm(Z−1)

))

=
(
(l − n)(α′

11 + α′
21) + (l + n+ 1)(α′

12 + α′
22)
)

× 1

N(Z)

(
(l − n+ 1)tl+1

nm(Z−1) (l − n+ 1)tl+1
nm+1(Z

−1)

(l + n+ 2)tl+1
n+1m(Z−1) (l + n+ 2)tl+1

n+1m+1(Z
−1)

)
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and, if l ≥ −1/2,

1

4
Mx

(
β′
11t

l+1
n+1m+1(Z

−1) β′
12t

l+1
nm+1(Z

−1)

β′
21t

l+1
n+1m(Z−1) β′

22t
l+1
nm(Z−1)

)

=
3(l + 1)

N(Z)

(
β′
22t

l+1
nm(Z−1) −β′

12t
l+1
nm+1(Z

−1)

−β′
21t

l+1
n+1m(Z−1) β′

11t
l+1
n+1m+1(Z

−1)

)

+
N(Z)−1

l + 2

(
γ′11t

l+1
nm(Z−1) γ′12t

l+1
nm+1(Z

−1)

γ′21t
l+1
n+1m(Z−1) γ′22t

l+1
n+1m+1(Z

−1)

)

+
l + 1

l + 2

(
(l − n+ 1)(β′

11 + β′
21) + (l + n+ 2)(β′

12 + β′
22)
)

×
(

(l − n+ 2)tl+2
nm(Z−1) (l − n+ 2)tl+2

nm+1(Z
−1)

(l + n+ 3)tl+2
n+1m(Z−1) (l + n+ 3)tl+2

n+1m+1(Z
−1)

)
,

where the coefficients

γ′11 = −(l +m+ 2)(l − n+ 1)β′
11 − (l +m+ 2)nβ′

12

−m(l − n+ 1)β′
21 −mnβ′

22,

γ′12 = −(m+ 1)(l − n+ 1)β′
11 − (m+ 1)nβ′

12

+ (l −m+ 1)(l − n+ 1)β′
21 + (l −m+ 1)nβ′

22,

γ′21 = −(l +m+ 2)(n+ 1)β′
11 + (l +m+ 2)(l + n+ 2)β′

12

−m(n+ 1)β′
21 +m(l + n+ 2)β′

22,

γ′22 = −(m+ 1)(n+ 1)β′
11 + (m+ 1)(l + n+ 2)β′

12 + (l −m+ 1)(n+ 1)β′
21

− (l −m+ 1)(l + n+ 2)β′
22.

Proof. The result is obtained by rather tedious, yet completely straightfor-
ward calculations using equation (34), Lemma 22 from [FL1] and identity

(37) ∂
(
N(Z)−1 · tlnm(Z−1)

)

= − 1

N(Z)



(l − n+ 1)t

l+ 1

2

n− 1

2
m− 1

2

(Z−1) (l − n+ 1)t
l+ 1

2

n− 1

2
m+ 1

2

(Z−1)

(l + n+ 1)t
l+ 1

2

n+ 1

2
m− 1

2

(Z−1) (l + n+ 1)t
l+ 1

2

n+ 1

2
m+ 1

2

(Z−1)


 ,

which in turn can be verified using Lemmas 22 and 23 in [FL1]. □
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Proposition 40. We have:

M⊕ C-span of
{
N(Z) · Z

}
=
{
F ∈ W ′; MxF = 0, (□ ◦□)F = 0

}
.

Moreover, every element A ∈M is a linear combination of N(Z)−1 · Z and
homogeneous elements of the form

(38) Ad(Z) +
N(Z)

d+ 1
·
(
∂Ad(Z)∂

)+ ∈M

for some Ad : H×
C
→ HC which is homogeneous of degree d and harmonic.

In particular, the space M can be characterized as the unique maximal
gl(2,HC)-invariant subspace of kerMx consisting of biharmonic functions.

Proof. It is easy to see that N(Z)−1 · Z ∈M and N(Z) · Z /∈M. Let

M′ =
{
F ∈ W ′; MxF = 0, (□ ◦□)F = 0

}
.

By Corollary 36,

M⊕ C-span of
{
N(Z) · Z

}
⊂M′,

and we need to prove the opposite inclusion. By Lemma 38 it is sufficient
to show that every element A ∈M′ is a linear combination of N(Z) · Z,
N(Z)−1 · Z and homogeneous elements of the form (38). By Proposition 34,
A(Z) has to be a linear combination of homogeneous elements that appear
in Lemma 39:

(
α11t

l
nm(Z) α12t

l
nm+1(Z)

α21t
l
n+1m(Z) α22t

l
n+1m+1(Z)

)
,

N(Z) ·
(

β11t
l−1
nm(Z) β12t

l−1
nm+1(Z)

β21t
l−1
n+1m(Z) β22t

l−1
n+1m+1(Z)

)
,

1

N(Z)

(
α′
11t

l
n+1m+1(Z

−1) α′
12t

l
nm+1(Z

−1)

α′
21t

l
n+1m(Z−1) α′

22t
l
nm(Z−1)

)
,

(
β′
11t

l+1
n+1m+1(Z

−1) β′
12t

l+1
nm+1(Z

−1)

β′
21t

l+1
n+1m(Z−1) β′

22t
l+1
nm(Z−1)

)
.

Our element A(Z) ∈M′ must also be annihilated by Mx, and, in view of
Lemma 39, without loss of generality we may assume that it is either a linear
combination of the first two or the last two types. We provide a sketch for
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the first case with l ̸= 1 only, the subcase l = 1 and other case are similar.
Thus we assume

A(Z) =

(
α11t

l
nm(Z) α12t

l
nm+1(Z)

α21t
l
n+1m(Z) α22t

l
n+1m+1(Z)

)

+N(Z) ·
(

β11t
l−1
nm(Z) β12t

l−1
nm+1(Z)

β21t
l−1
n+1m(Z) β22t

l−1
n+1m+1(Z)

)
.

If the second summand is zero, then A(Z) is harmonic with ∂A(Z)∂ = 0
(since MxA = 0), and A(Z) is of the form (38). Thus we further assume

(39) N(Z) ·
(

β11t
l−1
nm(Z) β12t

l−1
nm+1(Z)

β21t
l−1
n+1m(Z) β22t

l−1
n+1m+1(Z)

)
̸= 0

and that −l + 1 ≤ m,n ≤ l − 2 so that tl−1
nm(Z), tl−1

nm+1(Z), tl−1
n+1m(Z),

tl−1
n+1m+1(Z) ̸= 0. (The case when some of these functions are zero needs

to be considered separately.) Since MxA = 0, MxA has no harmonic com-
ponent. This means that in the harmonic component of (36) the coefficients
in the same rows are equal and proportional to the coefficients in (35):





−3l(l − 1)β22 + γ11 = 3l(l − 1)β12 + γ12

3l(l − 1)β21 + γ21 = −3l(l − 1)β11 + γ22

(l +m)
(
−3l(l − 1)β22 + γ11

)
= (l −m− 1)

(
3l(l − 1)β21 + γ21

)
.

The first two equations simplify to

(40)

{
l
(
(l −m− 1)(β11 + β21)− (3l −m− 4)(β12 + β22)

)
= 0

l
(
(3l +m− 3)(β11 + β21)− (l +m)(β12 + β22)

)
= 0,

and

det

(
l −m− 1 −3l +m+ 4
3l +m− 3 −(l +m)

)
= 4(l − 1)(2l − 3).

Assume for now that l ̸= 3/2, then β11 + β21 = 0 and β12 + β22 = 0. Substi-
tuting β21 = −β11 and β12 = −β22 into the third equation yields

4l(l − 1)
(
(l −m− 1)β11 − (l +m)β22

)
= 0,

hence (β11, β22) is proportional to (l +m, l −m− 1). It follows from
MxA(Z) = 0 that A(Z) is of the form (38).
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In the exceptional case l = 3/2, the system (40) has rank one and sim-
plifies to a single equation β11 + β21 = β12 + β22. If m = n = −1/2 we get
exactly one additional linearly independent solution inM′ that is not inM:

β11 = β12 = β21 = β22 = 1, A(Z) = N(Z) · Z.

Finally, to prove the maximality property of M, it is sufficient to show
that a gl(2,HC)-invariant subspace of M′ cannot contain an element of the
form A+N(Z) · Z with A ∈M. Indeed, N(Z) · Z is the image of an el-
ement 1

2N(Z)2 under a map ∂+ : X′ →W ′, which is gl(2,HC)-equivariant
by Proposition 27. Since 1

2N(Z)2 generates X
+ (Theorem 32), N(Z) · Z

generates ∂+(X+), which contains N(Z)2 · Z /∈M′. Therefore, a gl(2,HC)-
invariant subspace ofW ′ containing A+N(Z) · Z with A ∈M also contains
elements not in M′. □

Corollary 41. The intersection of the image of the map ∂+ : X′ →W ′ and
M in W ′ is precisely ∂+(BH+)⊕ ∂+(BH−).

Proof. The result follows from Proposition 27, Theorem 32 and Proposi-
tion 40. □

4.2. The K-types of M

In this subsection we describe the K-types ofM. For d ∈ Z, define

M(d) = {A(Z) ∈M; A(Z) is homogeneous of degree d}.

We realize sl(2,C)× sl(2,C) as diagonal elements of gl(2,HC):

sl(2,C)× sl(2,C) =
{(

A 0
0 D

)
∈ gl(2,HC); A,D ∈ HC,Re(A) = Re(D) = 0

}
.

Proposition 42. EachM(d) is invariant under the ρ′2 action restricted to
sl(2,C)× sl(2,C), and we have the following decomposition into irreducible
components:

M(−1) = V0 ⊠ V0 = C-span of
{
N(Z)−1 · Z

}
,

M(2l) =
(
Vl− 1

2
⊠ Vl− 1

2

)
⊕
(
Vl+ 1

2
⊠ Vl− 1

2

)
(41)

⊕
(
Vl− 1

2
⊠ Vl+ 1

2

)
⊕
(
Vl+ 1

2
⊠ Vl+ 1

2

)
,

M(−2l − 2) =
(
Vl− 1

2
⊠ Vl− 1

2

)
⊕
(
Vl+ 1

2
⊠ Vl− 1

2

)
(42)

⊕
(
Vl− 1

2
⊠ Vl+ 1

2

)
⊕
(
Vl+ 1

2
⊠ Vl+ 1

2

)
,
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l = 0, 12 , 1,
3
2 , . . . . Explicitly, these irreducible components are generated by

homogeneous elements of the form (38) with harmonic parts:

Vl− 1

2
⊠ Vl− 1

2
= C-span of

{(
(l−n)tlnm(Z) (l−n)tlnm+1(Z)

(l+n+1)tln+1m(Z) (l+n+1)tln+1m+1(Z)

)
;

l= 1

2
,1, 3

2
,2,...

−l≤m,n≤l−1

}

or

{
H̃ ′

l,m,n(Z) =
1

N(Z)

(
(l+n+1)tln+1m+1(Z

−1) −(l−n)tlnm+1(Z
−1)

−(l+n+1)tln+1m(Z−1) (l−n)tlnm(Z−1)

)
;

l= 1

2
,1, 3

2
,2,...

−l≤m,n≤l−1

}
,

Vl+ 1

2
⊠ Vl− 1

2
= C-span of

{
G̃l,m,n(Z) =

(
tlnm(Z) tlnm+1(Z)

−tln+1m(Z) −tln+1m+1(Z)

)
;

l= 1

2
,1, 3

2
,2,...

−l≤m≤l−1
−l−1≤n≤l

}

or

{
F̃ ′
l,m,n(Z) =

1

N(Z)

(
(l−m)(l+n+1)tln+1m+1(Z

−1) −(l−m)(l−n)tlnm+1(Z
−1)

(l+m+1)(l+n+1)tln+1m(Z−1) −(l+m+1)(l−n)tlnm(Z−1)

)
;

l= 1

2
,1, 3

2
,2,...

−l−1≤m≤l
−l≤n≤l−1

}
,

Vl− 1

2
⊠ Vl+ 1

2
= C-span of

{
F̃l,m,n(Z) =

(
(l+m+1)(l−n)tlnm(Z) −(l−m)(l−n)tlnm+1(Z)

(l+m+1)(l+n+1)tln+1m(Z) −(l−m)(l+n+1)tln+1m+1(Z)

)
;

l= 1

2
,1, 3

2
,2,...

−l−1≤m≤l
−l≤n≤l−1

}

or

{
G̃′

l,m,n(Z) =
1

N(Z)

(
tln+1m+1(Z

−1) tlnm+1(Z
−1)

−tln+1m(Z−1) −tlnm(Z−1)

)
;

l= 1

2
,1, 3

2
,2,...

−l≤m≤l−1
−l−1≤n≤l

}
,

Vl+ 1

2
⊠ Vl+ 1

2
= C-span of

{
H̃l,m,n(Z) =

(
(l+m+1)tlnm(Z) −(l−m)tlnm+1(Z)

−(l+m+1)tln+1m(Z) (l−m)tln+1m+1(Z)

)
;

l=0, 1
2
,1, 3

2
,...

−l−1≤m,n≤l

}

or

{
1

N(Z)

(
(l−m)tln+1m+1(Z

−1) (l−m)tlnm+1(Z
−1)

(l+m+1)tln+1m(Z−1) (l+m+1)tlnm(Z−1)

)
; l=0, 1

2
,1, 3

2
,...

−l−1≤m,n≤l

}
.

The functions in M(2l) that lie in

(
Vl+ 1

2
⊠ Vl− 1

2

)
⊕
(
Vl− 1

2
⊠ Vl+ 1

2

)
⊕
(
Vl+ 1

2
⊠ Vl+ 1

2

)
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and the functions in M(−2l − 2) that lie in

(
Vl− 1

2
⊠ Vl− 1

2

)
⊕
(
Vl+ 1

2
⊠ Vl− 1

2

)
⊕
(
Vl− 1

2
⊠ Vl+ 1

2

)

have harmonic parts only, their non-harmonic parts are zero.

Proof. Note that, as usual, if the indices of tlnm(Z) happen to be outside of

the allowed range l = 0, 12 , 1,
3
2 , . . . , m,n ∈ Z+ l, −l ≤ m,n ≤ l, then such

matrix coefficients are declared to be zero. The result follows from Proposi-
tion 40, Lemma 26 and explicit realization of the isomorphism of represen-
tations of sl(2,C)

Vl ⊗ V 1

2
≃ Vl− 1

2
⊕ Vl+ 1

2
.

The assertion about non-harmonic parts follows from Lemma 39. □

Combining this result with Corollary 41 and comparing the decomposi-
tions into the sl(2,C)× sl(2,C) components, we obtain:

Corollary 43.

∂+(BH+) =
⊕

l≥0

(
Vl− 1

2
⊠ Vl− 1

2
component of M(2l)

)

⊕
(
Vl+ 1

2
⊠ Vl+ 1

2
component of M(2l)

)
,

∂+(BH−) =
⊕

l≥0

(
Vl− 1

2
⊠ Vl− 1

2
component of M(−2l − 2)

)

⊕
(
Vl+ 1

2
⊠ Vl+ 1

2
component of M(−2l − 2)

)
.

Lemma 44. The functions (F̃l,m,n)
+, (F̃ ′

l,m,n)
+ : HC → HC are left regular.

The functions (G̃l,m,n)
+, (G̃′

l,m,n)
+ : HC → HC are right regular. The func-

tions (H̃l,m,n)
+, (H̃ ′

l,m,n)
+ : HC → HC are both left and right regular.

Proof. The result follows by comparing the columns and rows of the func-
tions in question with the basis of left and right regular functions given in
Proposition 24 in [FL1]. □

The harmonic functions

F̃l,m,n(Z), F̃ ′
l,m,n(Z), G̃l,m,n(Z), G̃′

l,m,n(Z), H̃l,m,n(Z), H̃ ′
l,m,n(Z)
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belong toM. We complete these and N(Z)−1 · Z to a basis ofM by letting
Ĩl,m,n(Z) be the elements in M that have harmonic parts

(
(l − n)tlnm(Z) (l − n)tlnm+1(Z)

(l + n+ 1)tln+1m(Z) (l + n+ 1)tln+1m+1(Z)

)
, l= 1

2
,1, 3

2
,2,...

−l≤m,n≤l−1
,

these generate the Vl− 1

2
⊠ Vl− 1

2
component of M(2l), and Ĩ ′l,m,n(Z) be the

elements in M that have harmonic parts

1

N(Z)

(
(l −m)tln+1m+1(Z

−1) (l −m)tlnm+1(Z
−1)

(l +m+ 1)tln+1m(Z−1) (l +m+ 1)tlnm(Z−1)

)
, l=0, 1

2
,1, 3

2
,...

−l−1≤m,n≤l
,

these generate the Vl+ 1

2
⊠ Vl+ 1

2
component of M(−2l − 2). The following

technical lemma will be used to construct equivariant maps τ±a and τ±s from
W ′ to doubly regular functions.

Lemma 45. We have the following identities:

(F̃l,m,n
←−
∂ )(Z) = (F̃ ′

l,m,n

←−
∂ )(Z) =

−→
∂ G̃l,m,n(Z) =

−→
∂ G̃′

l,m,n(Z) = 0,
−→
∂ H̃l,m,n(Z) = (H̃l,m,n

←−
∂ )(Z) =

−→
∂ H̃ ′

l,m,n(Z) = (H̃ ′
l,m,n

←−
∂ )(Z) = 0,

−→
∂
(
N(Z)−1 · Z

)
=
(
N(Z)−1 · Z

)←−
∂ = N(Z)−1,

−→
∂ F̃l,m,n(Z) = (2l + 1)




(l−m)(l+m+1)t
l− 1

2

n+1
2

m+1
2

(Z) −(l−m−1)(l−m)t
l− 1

2

n+1
2

m+3
2

(Z)

(l+m)(l+m+1)t
l− 1

2

n+1
2

m− 1
2

(Z) −(l+m+1)(l−m)t
l− 1

2

n+1
2

m+1
2

(Z)




= (2l + 1)Z−1 · F̃l,m,n(Z),

−→
∂ F̃ ′

l,m,n(Z) =
2l + 1

N(Z)




−(l−n)(l+n+1)t
l+1

2

n+1
2

m+1
2

(Z−1) (l−n+1)(l−n)t
l+1

2

n− 1
2

m+1
2

(Z−1)

−(l+n+2)(l+n+1)t
l+1

2

n+3
2

m+1
2

(Z−1) (l+n+1)(l−n)t
l+1

2

n+1
2

m+1
2

(Z−1)




= −(2l + 1)Z−1 · F̃ ′
l,m,n(Z),

(G̃l,m,n
←−
∂ )(Z) = (2l + 1)




t
l− 1

2

n+1
2

m+1
2

(Z) t
l− 1

2

n− 1
2

m+1
2

(Z)

−t
l− 1

2

n+3
2

m+1
2

(Z) −t
l− 1

2

n+1
2

m+1
2

(Z)




= (2l + 1)Gl,m,n(Z) · Z−1,

(G̃′
l,m,n

←−
∂ )(Z) =

2l + 1

N(Z)




−t
l+1

2

n+1
2

m+1
2

(Z−1) −t
l+1

2

n+1
2

m+3
2

(Z−1)

t
l+1

2

n+1
2

m− 1
2

(Z−1) t
l+1

2

n+1
2

m+1
2

(Z−1)




= −(2l + 1)G̃′
l,m,n(Z) · Z−1,
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−→
∂ Ĩl,m,n(Z) = (2l + 1)Z−1 · Ĩl,m,n(Z),

(Ĩl,m,n
←−
∂ )(Z) = (2l + 1)Ĩl,m,n(Z) · Z−1,

−→
∂ Ĩ ′l,m,n(Z) = −(2l + 1)Z−1 · Ĩ ′l,m,n(Z),

(Ĩ ′l,m,n

←−
∂ )(Z) = −(2l + 1)Ĩ ′l,m,n(Z) · Z−1.

Proof. The result follows by direct computations from Lemmas 22, 23 from
[FL1] and identity (37). □

4.3. Equivariant maps from W ′ to doubly regular functions

The goal of this subsection is to construct equivariant maps τ±a and τ±s
from W ′ into the spaces of doubly left and right regular functions. We con-
clude that (ρ′2,M) contains irreducible components isomorphic to (πdl,F+),
(πdl,F−), (πdr,G+) and (πdr,G−) introduced in Proposition 11.

Recall that we refer to Section 2 of [FL3] for a summary of notations. In
particular, we treat U(2) as a subgroup of H×

C
, let U(2)R = {RZ; Z ∈ U(2)},

where R > 0. We will also need the open domains D+
R, D−

R defined by equation
(22) in [FL3]. We introduce four maps p+a , p−a , p+s and p−s :W ′ →W:

p+a : F (Z) 7→ i

2π3

[∫

Z∈U(2)R

(Z −W )−1

N(Z −W )
· Z · F (Z)+

dV

N(Z)

]+
, W ∈ D+

R,

p−a : F (Z) 7→ − i

2π3

[∫

Z∈U(2)R

(Z −W )−1

N(Z −W )
· Z · F (Z)+

dV

N(Z)

]+
, W ∈ D−

R,

p+s : F (Z) 7→ i

2π3

[∫

Z∈U(2)R

F (Z)+ · Z · (Z −W )−1

N(Z −W )

dV

N(Z)

]+
, W ∈ D+

R,

p−s : F (Z) 7→ − i

2π3

[∫

Z∈U(2)R

F (Z)+ · Z · (Z −W )−1

N(Z −W )

dV

N(Z)

]+
, W ∈ D−

R.

(These maps do not depend on the choice of R > 0.) First, we show that
these maps annihilate the non-harmonic parts.

Lemma 46. Let F : H×
C
→ HC be such that □F = 0 and k ̸= 0, then

p+a
(
N(Z)k · F (Z)

)
= p−a

(
N(Z)k · F (Z)

)

= p+s
(
N(Z)k · F (Z)

)
= p−s

(
N(Z)k · F (Z)

)
= 0.
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In particular, these maps annihilate the non-harmonic parts of functions of
the form (38).

Proof. Observe that

(Z −W )−1

N(Z −W )
· Z and Z · (Z −W )−1

N(Z −W )

are harmonic with respect to the Z variable:

□Z

(
(Z −W )−1

N(Z −W )
· Z
)

= □Z

(
(Z −W )−1

N(Z −W )
· (Z −W )

)

= □Z

(
1

N(Z −W )

)
= 0,

since (Z−W )−1

N(Z−W ) ,
(Z−W )−1

N(Z−W ) ·W and 1
N(Z−W ) are harmonic with respect to Z.

Then the integrals

∫

Z∈U(2)R

(
(Z −W )−1

N(Z −W )
· Z
)
·N(Z)k−1 · F (Z)+ dV = 0,

∫

Z∈U(2)R

N(Z)k−1 · F (Z)+ ·
(
Z · (Z −W )−1

N(Z −W )

)
dV = 0

by the orthogonality relations (19) in [FL3], since we never get the power of
N(Z) that can potentially result in non-zero integral. □

Then we determine the effect of the maps p±a and p±s on harmonic func-
tions. Note that any harmonic function in W ′ is a linear combination of
harmonic parts of functions from Proposition 42.

Proposition 47. For each l, l = 0, 12 , 1,
3
2 , . . . ,

1) The map p+a annihilates M(−2l − 2) and the components of M(2l)
isomorphic to Vl− 1

2
⊠ Vl− 1

2
and Vl+ 1

2
⊠ Vl− 1

2
from Proposition 42; it

leaves the components ofM(2l) isomorphic to Vl− 1

2
⊠ Vl+ 1

2
and Vl+ 1

2
⊠

Vl+ 1

2
unchanged.

2) The map p−a annihilates M(2l) and the components of M(−2l − 2)
isomorphic to Vl− 1

2
⊠ Vl+ 1

2
and Vl+ 1

2
⊠ Vl+ 1

2
; it leaves the components

ofM(−2l − 2) isomorphic to Vl− 1

2
⊠ Vl− 1

2
and Vl+ 1

2
⊠ Vl− 1

2
unchanged.
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3) The map p+s annihilates M(−2l − 2) and the components of M(2l)
isomorphic to Vl− 1

2
⊠ Vl− 1

2
and Vl− 1

2
⊠ Vl+ 1

2
; it leaves the components

of M(2l) isomorphic to Vl+ 1

2
⊠ Vl− 1

2
and Vl+ 1

2
⊠ Vl+ 1

2
unchanged.

4) The map p−s annihilates M(2l) and the components of M(−2l − 2)
isomorphic to Vl+ 1

2
⊠ Vl− 1

2
and Vl+ 1

2
⊠ Vl+ 1

2
; it leaves the components

ofM(−2l − 2) isomorphic to Vl− 1

2
⊠ Vl− 1

2
and Vl− 1

2
⊠ Vl+ 1

2
unchanged.

5) The component M(−1) is annihilated by all four maps p±a , p±s .

Proof. We show calculations for p+a acting on the harmonic part of the com-
ponent M(2l) isomorphic to Vl− 1

2
⊠ Vl+ 1

2
. Suppose W ∈ D+

R, using Lemma

23 and Proposition 26 from [FL1] (see also Proposition 113) we can rewrite
the integrand as

(Z −W )−1

N(Z −W )
· Z · F (Z)+ =

(Z −W )−1

N(Z −W )
· Z

×
( −(l −m)(l + n+ 1)tln+1m+1(Z) (l −m)(l − n)tlnm+1(Z)

−(l +m+ 1)(l + n+ 1)tln+1m(Z) (l +m+ 1)(l − n)tlnm(Z)

)

=
1

N(Z)

∑

l′,m′,n′



(l′ −m′ + 1

2)t
l′

n′ m′+ 1

2

(W )

(l′ +m′ + 1
2)t

l′

n′ m′− 1

2

(W )


 ·

(
t
l′+ 1

2

m′ n′− 1

2

(Z−1), t
l′+ 1

2

m′ n′+ 1

2

(Z−1)
)

×



−(l − n)(l + n+ 1)t

l+ 1

2

n+ 1

2
m+ 1

2

(Z) (l − n+ 1)(l − n)t
l+ 1

2

n− 1

2
m+ 1

2

(Z)

−(l + n+ 2)(l + n+ 1)t
l+ 1

2

n+ 3

2
m+ 1

2

(Z) (l + n+ 1)(l − n)t
l+ 1

2

n+ 1

2
m+ 1

2

(Z)


 .

When integrated over Z ∈ U(2)R, by the orthogonality relations (19) in
[FL3], only two terms survive – with l′ = l, m′ = m+ 1

2 and n′ = n or n+ 1:

( −(l −m)(l + n+ 1)tln+1m+1(W ) (l −m)(l − n)tlnm+1(W )

−(l +m+ 1)(l + n+ 1)tln+1m(W ) (l +m+ 1)(l − n)tlnm(W )

)+

.

The other cases are similar. □

We introduce C-linear maps S→ S′ and S′ → S:

(
s1
s2

)†

= (s2,−s1), (s′1, s
′
2)

† =

(
−s′2
s′1

)
,

(
s1
s2

)
∈ S, (s′1, s

′
2) ∈ S′.

These maps are similar to quaternionic conjugation:

(s†)† = s, (s′†)† = s′, (Zs)† = s†Z+, (s′Z)† = Z+s′†,
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for all Z ∈ HC, s ∈ S, s′ ∈ S′. Then we have two more isomorphisms induced
by these maps:

σ : HC ≃ S⊗ S′ → S⊗ S, s⊗ s′ 7→ s⊗ s′†,

σ′ : HC ≃ S⊗ S′ → S′ ⊗ S′, s⊗ s′ 7→ s† ⊗ s′.

If we identify S⊗ S with 4-columns and S′ ⊗ S′ with 4-rows as in (18), the
maps σ and σ′ can be expressed as

σ

(
z11 z12
z21 z22

)
=




z12
−z11
z22
−z21


 , σ′

(
z11 z12
z21 z22

)
= (−z21,−z22, z11, z12).

Note that X⊗ S⊗ S and X⊗ S′ ⊗ S′ denote respectively S⊗ S and S′ ⊗ S′-
valued polynomial functions on H×

C
. The maps σ and σ′ naturally extend to

maps

σ :W →X⊗ S⊗ S and σ′ :W →X⊗ S′ ⊗ S′.

We are particularly interested in the following four maps:

τ+a , τ−a :W ′ →X⊗ S⊗ S, τ+s , τ−s :W ′ →X⊗ S′ ⊗ S′ :

τ+a (F ) = −σ
(
∂
(
p+a (F )

))
, τ+s (F ) = σ′

((
p+s (F )

)←−
∂
)
,

τ−a (F ) = −σ
(
∂
(
p−a (F )

))
, τ−s (F ) = σ′

((
p−s (F )

)←−
∂
)
.

Combining Lemmas 45, 46 and Proposition 47, we obtain the following
description of these maps:

Lemma 48. The maps τ±a and τ±s annihilate all functions of the form
N(Z)k · F (Z) with F : H×

C
→ HC harmonic and k ̸= 0. For each l, l = 1

2 , 1,
3
2 , 2, . . . ,

1) τ+a annihilatesM(−2l − 2), projectsM(2l) onto the Vl− 1

2
⊠ Vl+ 1

2
com-

ponent in the decomposition (41), then applies ∂ and identifies the re-
sult with a polynomial function H×

C
→ S⊗ S;

2) τ−a annihilatesM(2l), projectsM(−2l − 2) onto the Vl+ 1

2
⊠ Vl− 1

2
com-

ponent in the decomposition (42), then applies ∂ and identifies the re-
sult with a polynomial function H×

C
→ S⊗ S;

3) τ+s annihilatesM(−2l − 2), projectsM(2l) onto the Vl+ 1

2
⊠ Vl− 1

2
com-

ponent in the decomposition (41), then applies ∂ on the right and iden-
tifies the result with a polynomial function H×

C
→ S′ ⊗ S′;
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4) τ−s annihilatesM(2l), projectsM(−2l − 2) onto the Vl− 1

2
⊠ Vl+ 1

2
com-

ponent in the decomposition (42), then applies ∂ on the right and iden-
tifies the result with a polynomial function H×

C
→ S′ ⊗ S′;

5) The component M(−1) is annihilated by all four maps τ±a , τ±s .

Theorem 49. For each F ∈ W ′, τ+a (F ) and τ−a (F ) are polynomial func-
tions H×

C
→ S⊙ S that are doubly left regular, and τ+s (F ) and τ−s (F ) are

polynomial functions H×
C
→ S′ ⊙ S′ that are doubly right regular.

Moreover, the maps τ±a , τ±s produce isomorphisms of representations of
sl(2,HC):

τ+a : (ρ′2,W ′/ ker τ+a ) ≃ (πdl,F+), τ−a : (ρ′2,W ′/ ker τ−a ) ≃ (πdl,F−),

τ+s : (ρ′2,W ′/ ker τ+s ) ≃ (πdr,G+), τ−s : (ρ′2,W ′/ ker τ−s ) ≃ (πdr,G−).

(Recall that the spaces F± and G± were introduced in equations (21)–(22).)

Remark 50. The maps τ±a , τ±s do not produce isomorphisms of represen-
tations of gl(2,HC) because the scalar matrices act trivially via the ρ′2 action
and non-trivially via the πdl and πdr actions.

Proof. By direct computation, using Lemmas 45, 48, identity (37) and Lemma
22 from [FL1],

τ+a
(
F̃l,m,n(Z)

)
= (2l + 1)Fl− 1

2
,m+ 1

2
,n+ 1

2
(Z),(43)

τ−a
(
F̃ ′
l,m,n(Z)

)
= −(2l + 1)F ′

l− 1

2
,m+ 1

2
,n+ 1

2

(Z),(44)

τ+s
(
G̃l,m,n(Z)

)
= (2l + 1)Gl− 1

2
,n+ 1

2
,m+ 1

2
(Z),(45)

τ−s
(
G̃′

l,m,n(Z)
)
= −(2l + 1)G′

l− 1

2
,n+ 1

2
,m+ 1

2

(Z);(46)
(

∂11F̃l,m,n(Z) ∂21F̃l,m,n(Z)

∂12F̃l,m,n(Z) ∂22F̃l,m,n(Z)

)
(47)

=
2l + 1

2l

(
(l−m)F̃l− 1

2
,m+1

2
,n+1

2
(Z) (l−m)F̃l− 1

2
,m+1

2
,n− 1

2
(Z)

(l+m+1)F̃l− 1
2
,m− 1

2
,n+1

2
(Z) (l+m+1)F̃l− 1

2
,m− 1

2
,n− 1

2
(Z)

)

+
1

2l

(
(l−m)(l+n+1)H̃l− 1

2
,m+1

2
,n+1

2
(Z) −(l−m)(l−n)H̃l− 1

2
,m+1

2
,n− 1

2
(Z)

(l+m+1)(l+n+1)H̃l− 1
2
,m− 1

2
,n+1

2
(Z) −(l+m+1)(l−n)H̃l− 1

2
,m− 1

2
,n− 1

2
(Z)

)
,
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(
∂11F̃ ′

l,m,n(Z) ∂21F̃ ′
l,m,n(Z)

∂12F̃ ′
l,m,n(Z) ∂22F̃ ′

l,m,n(Z)

)(48)

= −2l + 1

2l + 2

(
(l−n)F̃ ′

l+1
2
,m− 1

2
,n− 1

2

(Z) (l−n)F̃ ′

l+1
2
,m+1

2
,n− 1

2

(Z)

(l+n+1)F̃ ′

l+1
2
,m− 1

2
,n+1

2

(Z) (l+n+1)F̃ ′

l+1
2
,m+1

2
,n+1

2

(Z)

)

+
1

2l + 2

(
(l+m+1)(l−n)H̃′

l+1
2
,m− 1

2
,n− 1

2

(Z) −(l−m)(l−n)H̃′

l+1
2
,m+1

2
,n− 1

2

(Z)

(l+m+1)(l+n+1)H̃′

l+1
2
,m− 1

2
,n+1

2

(Z) −(l−m)(l+n+1)H̃′

l+1
2
,m+1

2
,n+1

2

(Z)

)
,

(
∂11G̃l,m,n(Z) ∂21G̃l,m,n(Z)

∂12G̃l,m,n(Z) ∂22G̃l,m,n(Z)

)

=
2l + 1

2l

(
(l−m−1)G̃l− 1

2
,m+1

2
,n+1

2
(Z) (l−m−1)G̃l− 1

2
,m+1

2
,n− 1

2
(Z)

(l+m)G̃l− 1
2
,m− 1

2
,n+1

2
(Z) (l+m)G̃l− 1

2
,m− 1

2
,n− 1

2
(Z)

)

+
1

2l

(
H̃l− 1

2
,m+1

2
,n+1

2
(Z) H̃l− 1

2
,m+1

2
,n− 1

2
(Z)

−H̃l− 1
2
,m− 1

2
,n+1

2
(Z) −H̃l− 1

2
,m− 1

2
,n− 1

2
(Z)

)
,

(
∂11G̃′

l,m,n(Z) ∂21G̃′
l,m,n(Z)

∂12G̃′
l,m,n(Z) ∂22G̃′

l,m,n(Z)

)

= −2l + 1

2l + 2

(
(l−n+1)G̃′

l+1
2
,m− 1

2
,n− 1

2

(Z) (l−n+1)G̃′

l+1
2
,m+1

2
,n− 1

2

(Z)

(l+n+2)G̃′

l+1
2
,m− 1

2
,n+1

2

(Z) (l+n+2)G̃′

l+1
2
,m+1

2
,n+1

2

(Z)

)

+
1

2l + 2

(
H̃′

l+1
2
,m− 1

2
,n− 1

2

(Z) H̃′

l+1
2
,m+1

2
,n− 1

2

(Z)

−H̃′

l+1
2
,m− 1

2
,n+1

2

(Z) −H̃′

l+1
2
,m+1

2
,n+1

2

(Z)

)
;

(
∂11Fl,m,n(Z) ∂21Fl,m,n(Z)
∂12Fl,m,n(Z) ∂22Fl,m,n(Z)

)

=

(
(l −m+ 1)Fl− 1

2
,m+ 1

2
,n+ 1

2
(Z) (l −m+ 1)Fl− 1

2
,m+ 1

2
,n− 1

2
(Z)

(l +m+ 1)Fl− 1

2
,m− 1

2
,n+ 1

2
(Z) (l +m+ 1)Fl− 1

2
,m− 1

2
,n− 1

2
(Z)

)
,

(
∂11F

′
l,m,n(Z) ∂21F

′
l,m,n(Z)

∂12F
′
l,m,n(Z) ∂22F

′
l,m,n(Z)

)

= −
(
(l − n+ 1)F ′

l+ 1

2
,m− 1

2
,n− 1

2

(Z) (l − n+ 1)F ′
l+ 1

2
,m+ 1

2
,n− 1

2

(Z)

(l + n+ 1)F ′
l+ 1

2
,m− 1

2
,n+ 1

2

(Z) (l + n+ 1)F ′
l+ 1

2
,m+ 1

2
,n+ 1

2

(Z)

)
,

(
∂11Gl,m,n(Z) ∂21Gl,m,n(Z)
∂12Gl,m,n(Z) ∂22Gl,m,n(Z)

)

=

(
(l − n)Gl− 1

2
,m+ 1

2
,n+ 1

2
(Z) (l − n)Gl− 1

2
,m− 1

2
,n+ 1

2
(Z)

(l + n)Gl− 1

2
,m+ 1

2
,n− 1

2
(Z) (l + n)Gl− 1

2
,m− 1

2
,n− 1

2
(Z)

)
,

(
∂11G

′
l,m,n(Z) ∂21G

′
l,m,n(Z)

∂12G
′
l,m,n(Z) ∂22G

′
l,m,n(Z)

)

= −
(
(l −m+ 2)G′

l+ 1

2
,m− 1

2
,n− 1

2

(Z) (l −m+ 2)G′
l+ 1

2
,m− 1

2
,n+ 1

2

(Z)

(l +m+ 2)G′
l+ 1

2
,m+ 1

2
,n− 1

2

(Z) (l +m+ 2)G′
l+ 1

2
,m+ 1

2
,n+ 1

2

(Z)

)
.
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It follows from Lemmas 4 and 26 that, if B ∈ HC,

τ+a ◦ ρ′2
(
0 B
0 0

)
F̃l,m,n(Z) = πdl

(
0 B
0 0

)
◦ τ+a F̃l,m,n(Z),

τ−a ◦ ρ′2
(
0 B
0 0

)
F̃ ′
l,m,n(Z) = πdl

(
0 B
0 0

)
◦ τ−a F̃ ′

l,m,n(Z),

τ+s ◦ ρ′2
(
0 B
0 0

)
G̃l,m,n(Z) = πdr

(
0 B
0 0

)
◦ τ+s G̃l,m,n(Z),

τ−s ◦ ρ′2
(
0 B
0 0

)
G̃′

l,m,n(Z) = πdr
(
0 B
0 0

)
◦ τ−s G̃′

l,m,n(Z).

Let
(
0 1
1 0

)
∈ GL(2,HC), then

ρ′2
(
0 1
1 0

)
F̃l,m,n(Z) = F̃ ′

l,m,n(Z), ρ′2
(
0 1
1 0

)
G̃l,m,n(Z) = G̃′

l,m,n(Z);(49)

πdl
(
0 1
1 0

)
Fl,m,n(Z) = F ′

l,m,n(Z), πdr
(
0 1
1 0

)
Gl,m,n(Z) = G′

l,m,n(Z).

This implies that the maps τ±a , τ±s commute with actions of
(

0 0
C 0

)
, C ∈ HC.

Since matrices of the form
(
0 B
0 0

)
and

(
0 0
C 0

)
, B,C ∈ HC, generate sl(2,HC),

the maps τ±a , τ±s are sl(2,HC)-equivariant. □

Corollary 51. The following representations

(ρ′2,W ′/ ker τ+a ) = (ρ′2,M/(ker τ+a ∩M)) ≃ (πdl,F+),

(ρ′2,W ′/ ker τ−a ) = (ρ′2,M/(ker τ−a ∩M)) ≃ (πdl,F−),

(ρ′2,W ′/ ker τ+s ) = (ρ′2,M/(ker τ+s ∩M)) ≃ (πdr,G+),
(ρ′2,W ′/ ker τ−s ) = (ρ′2,M/(ker τ−s ∩M)) ≃ (πdr,G−)

of sl(2,HC) are irreducible.

Proof. By Lemma 48,

W ′/ ker τ+a =
⊕

l= 1

2
,1, 3

2
,2,...

Vl− 1

2
⊠ Vl+ 1

2

as a representation of SU(2)× SU(2), where each direct summand Vl− 1

2
⊠

Vl+ 1

2
is spanned by F̃l,m,n’s with −l − 1 ≤ m ≤ l, −l ≤ n ≤ l − 1. And by

Lemma 26 and equations (47), (48), (49) we have:

ρ′2
(
0 B
0 0

)
F̃l,m,n(Z)

= −2l + 1

2l
Tr

[
B

(
(l−m)F̃l− 1

2
,m+1

2
,n+1

2
(Z) (l−m)F̃l− 1

2
,m+1

2
,n− 1

2
(Z)

(l+m+1)F̃l− 1
2
,m− 1

2
,n+1

2
(Z) (l+m+1)F̃l− 1

2
,m− 1

2
,n− 1

2
(Z)

)]
,

ρ′2
(

0 0
C 0

)
F̃l,m,n(Z)

=
2l + 1

2l + 2
Tr

[
C

(
(l−n)F̃l+1

2
,m− 1

2
,n− 1

2
(Z) (l−n)F̃l+1

2
,m+1

2
,n− 1

2
(Z)

(l+n+1)F̃l+1
2
,m− 1

2
,n+1

2
(Z) (l+n+1)F̃l+1

2
,m+1

2
,n+1

2
(Z)

)]
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in the quotient space W ′/ ker τ+a . It follows that any non-zero vector in
W ′/ ker τ+a generates the V0 ⊠ V1 component and hence the whole space,
thus proving irreducibility of (ρ′2,W ′/ ker τ+a ) ≃ (πdl,F+). The other cases
are similar. □

4.4. Quaternionic analogue of Cauchy’s integral formula for the
second order pole

Note that the maps τ±a and τ±s on W ′ are given by integrating over a four-
dimensional cycle U(2)R. For example,

(τ+a F )(W ) = −σ ◦ ∂W
(

i

2π3

∫

Z∈U(2)R

F (Z) · Z+ ·
[
(Z −W )−1

N(Z −W )

]+
dV

N(Z)

)
,

W ∈ D+
R.

When restricted toM⊂W ′, these maps can be rewritten so that the integral
is over the sphere S3

R of radius R.

Theorem 52. The restrictions of τ±a and τ±s to M can be rewritten as

(τ+a F )(W ) = −σ ◦ ∂W
[

1

2π2

∫

Z∈S3
R

(Z −W )−1

N(Z −W )
·Dz · F+(Z)

]+
,

W ∈ D+
R,

(τ−a F )(W ) = −σ ◦ ∂W
[
−1
2π2

∫

Z∈S3
R

(Z −W )−1

N(Z −W )
·Dz · F+(Z)

]+
,

W ∈ D−
R,

(τ+s F )(W ) = σ′

([
1

2π2

∫

Z∈S3
R

F+(Z) ·Dz · (Z −W )−1

N(Z −W )

]+
←−
∂ W

)
,

W ∈ D+
R,

(τ−s F )(W ) = σ′

([
1

2π2

∫

Z∈S3
R

F+(Z) ·Dz · (Z −W )−1

N(Z −W )

]+
←−
∂ W

)
,

W ∈ D−
R,

where F ∈M.
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Remark 53. Note that (apart from quaternionic conjugation), the maps
τ±a and τ±s restricted toM are essentially derivatives of the classical Cauchy-
Fueter formulas for left and right regular functions. Thus τ±a and τ±s can be
treated as another analogue of Cauchy’s integral formula for the second order
pole (5).

Proof. First, we determine the effect of these maps on the non-harmonic
parts of functions of the form (38). Suppose that Fd : H×

C
→ HC be homoge-

neous of degree d and harmonic, then

∇+(∂Fd(Z)∂) = (∂Fd(Z)∂)
←−∇+ = 0,

i.e. the function ∂Fd(Z)∂ is both left and right regular. Thus we can apply
the Cauchy-Fueter formulas. In the case of τ+a , the integral becomes

[
1

2π2

∫

Z∈S3
R

(Z −W )−1

N(Z −W )
·Dz ·

(
∂Fd(Z)∂

)
]+

=

{
(∂Fd(W )∂)+ if d ≥ 0;

0 if d < 0.

Applying ∂W results in zero. The cases of τ−a and τ±s are similar. Using
Lemma 6 from [FL1], we replace Dz|S3

R
with R−1Z dS, where dS is the usual

Euclidean volume element on the 3-sphere S3
R. Then the proof proceeds ex-

actly as those of Proposition 47 and Theorem 49, except using orthogonality
relations (17) from [FL3] instead of (19). □

4.5. Invariant bilinear pairing on (ρ′

2
,M)

We define a bilinear pairing on M by
(50)

⟨F1, F2⟩M =
1

2π2

∫

Z∈S3
R

Tr
(
d̃eg

−1(
(F1
←−
∂ )(Z) · Z

)
·
(
Z · (−→∂ F2)(Z)

)+)dS
R

.

Note that if F1 happens to be N(Z)−1 · Z, then by Lemma 45

(F1
←−
∂ )(Z) · Z = N(Z)−1 · Z,

and d̃eg
−1(

(F1
←−
∂ )(Z) · Z

)
is undefined. Thus we declare the pairing (50) to

be zero onM(−1). We will see shortly that the pairing does not depend on
the choice of R > 0.

Theorem 54. The bilinear pairing (50) on M is sl(2,HC)-invariant and
does not depend on the choice of R > 0. We have the following orthogonality
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relations:

⟨G̃l,m,n(Z), F̃ ′
l′,n′,m′(Z)⟩M = −⟨G̃′

l,m,n(Z), F̃l′,n′,m′(Z)⟩M
= (2l + 1)2δll′δmm′δnn′ ;

all other pairing between F̃l,m,n(Z), F̃ ′
l,m,n(Z), G̃l,m,n(Z), G̃′

l,m,n(Z),

H̃l,m,n(Z), H̃ ′
l,m,n(Z), Ĩl,m,n(Z), Ĩ ′l,m,n(Z) are zero; in particular,

⟨F̃l,m,n(Z), G̃′
l′,n′,m′(Z)⟩M = ⟨F̃ ′

l,m,n(Z), G̃l′,n′,m′(Z)⟩M = 0.

Proof. First, we check the orthogonality relations; they follow from Lemma
45 and orthogonality relations (17) from [FL3]. The orthogonality relations
also imply that the pairing is independent of the choice of R > 0.

Using Proposition 20 and equations (43)–(46) we can relate the bilinear
pairing (50) to the pairing for doubly regular functions (25) as

⟨F1, F2⟩M =
〈
τ+a (F2), τ

−
s (F1)

〉
DR

+
〈
τ−a (F2), τ

+
s (F1)

〉
DR

.

Since the right hand side is sl(2,HC)-invariant, the pairing (50) is sl(2,HC)-
invariant as well. □

5. The quaternionic chain complex and decomposition of
(ρ2,W), (ρ′

2
,W ′) into irreducible components

5.1. Decomposition of (ρ2,W)

In this subsection we find explicit decomposition of (ρ2,W) into irreducible
components. The idea is to use the quaternionic chain complex (29) and deal
separately with

ker(Tr ◦∂+) ⊂ W and W/ ker(Tr ◦∂+) ⊂X.

We will see that there is a total of thirteen irreducible components with
ker(Tr ◦∂+) having eight components and W/ ker(Tr ◦∂+) having five.

Lemma 55. The image of the map Tr ◦∂+ :W →X from (29) is I+ + I−.

Proof. Indeed, Tr ◦∂+(N(Z)−1 · Z+) = 2N(Z)−1, which generates I+, and
Tr ◦∂+(N(Z)−3 · Z+) = −2N(Z)−3, which generates I−. Thus the image of
Tr ◦∂+ contains I+ + I−. It remains to show that the image is I+ + I−.
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Otherwise, by Theorem 31, the image of Tr ◦∂+ is all of X. In particu-
lar, there exists a homogeneous function F ∈ W of degree −3 such that
Tr ◦∂+F = N(Z)−2. Such a function F must be a linear combination of

N(Z)−2 ·H1(Z), N(Z)−3 ·H3(Z), N(Z)−4 ·H5(Z), . . .

with H1(Z), H3(Z), H5(Z), . . . harmonic and homogeneous of degrees 1,
3, 5, . . . respectively. On the other hand, the ρ action of sl(2,C)× sl(2,C)
on N(Z)−2 is trivial, hence the ρ2 action of sl(2,C)× sl(2,C) on H1(Z),
H3(Z), H5(Z), . . . must be trivial as well. Since each Hk(Z) lies in (V k

2
⊗

V 1

2
)⊠ (V k

2
⊗ V 1

2
), it follows that H3(Z) = H5(Z) = · · · = 0 and H1(Z) is pro-

portional to N(Z)−2 · Z+. But Tr ◦∂+(N(Z)−2 · Z+) = 0, which gives us a
contradiction. □

Combining this with Theorem 31 we obtain:

Corollary 56. The quotient
(
ρ2,W/ ker(Tr ◦∂+)

)
has five irreducible com-

ponents that are isomorphic to

(ρ,X+), (ρ,X−), (ρ,J ),
(
ρ, I+/(X+ ⊕ J )

)
,
(
ρ, I−/(X− ⊕ J )

)
.

Our next task is to decompose ker(Tr ◦∂+).

Lemma 57. We have:

Tr ◦∂+

[
N(Z)k ·

(
α11t

l
n+1m+1(Z) α12t

l
nm+1(Z)

α21t
l
n+1m(Z) α22t

l
nm(Z)

)]

=
2l + k + 1

2l + 1

(
(l +m+ 1)(α11 − α12)

+ (l −m)(α22 − α21)
)
·N(Z)k · tl−

1

2

n+ 1

2
m+ 1

2

(Z)

+
k

2l + 1

(
(l − n)(α11 + α21)

+ (l + n+ 1)(α12 + α22)
)
·N(Z)k−1 · tl+

1

2

n+ 1

2
m+ 1

2

(Z);
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Tr ◦∂+

[
N(Z)k−1 ·

(
β11t

l
nm(Z−1) β12t

l
nm+1(Z

−1)

β21t
l
n+1m(Z−1) β22t

l
n+1m+1(Z

−1)

)]

= −2l − k + 1

2l + 1

(
(l + n+ 1)(β11 − β12)

+ (l − n)(β22 − β21)
)
·N(Z)k−1 · tl+

1

2

n+ 1

2
m+ 1

2

(Z−1)

+
k

2l + 1

(
(l −m)(β11 + β21)

+ (l +m+ 1)(β12 + β22)
)
·N(Z)k−2 · tl−

1

2

n+ 1

2
m+ 1

2

(Z−1).

Proof. The result follows by direct computation using Lemma 22 from [FL1]
and identities (34), (37). □

Let

Fl,m,n(Z) =
(

−(l−m)(l+n+1)tln+1m+1(Z) (l−m)(l−n)tlnm+1(Z)

−(l+m+1)(l+n+1)tln+1m(Z) (l+m+1)(l−n)tlnm(Z)

)
;

l= 1

2
,1, 3

2
,2,...

−l−1≤m≤l
−l≤n≤l−1

;

Gl,m,n(Z) =
(

−tln+1m+1(Z) −tlnm+1(Z)

tln+1m(Z) tlnm(Z)

)
;

l= 1

2
,1, 3

2
,2,...

−l≤m≤l−1
−l−1≤n≤l

;

Hk,l,m,n(Z) =
2l + k + 2

2l + 1
N(Z)k ·

(
(l−m)tln+1m+1(Z) (l−m)tlnm+1(Z)

(l+m+1)tln+1m(Z) (l+m+1)tlnm(Z)

)

− k

2l + 3
N(Z)k−1 ·

(
(l+n+2)tl+1

n+1m+1(Z) −(l−n+1)tl+1
nm+1(Z)

−(l+n+2)tl+1
n+1m(Z) (l−n+1)tl+1

nm(Z)

)
;

k=0,±1,±2,...
l=0, 1

2
,1, 3

2
,...

−l−1≤m,n≤l
.

We also introduce

F′
l,m,n(Z) =

1

N(Z)

(
−(l+m+1)(l−n)tlnm(Z−1) (l−m)(l−n)tlnm+1(Z

−1)

−(l+m+1)(l+n+1)tln+1m(Z−1) (l−m)(l+n+1)tln+1m+1(Z
−1)

)
;

l= 1

2
,1, 3

2
,2,...

−l−1≤m≤l
−l≤n≤l−1

;

G′
l,m,n(Z) =

1

N(Z)

(
−tlnm(Z−1) −tlnm+1(Z

−1)

tln+1m(Z−1) tln+1m+1(Z
−1)

)
;

l= 1

2
,1, 3

2
,2,...

−l≤m≤l−1
−l−1≤n≤l

;

H′
k,l,m,n(Z) =

k + 1

2l + 1
N(Z)k−1 ·

(
−(l+m+1)tlnm(Z−1) (l−m)tlnm+1(Z

−1)

(l+m+1)tln+1m(Z−1) −(l−m)tln+1m+1(Z
−1)

)

− 2l − k + 1

2l + 3
N(Z)k ·

(
(l−n+1)tl+1

nm(Z−1) (l−n+1)tl+1
nm+1(Z

−1)

(l+n+2)tl+1
n+1m(Z−1) (l+n+2)tl+1

n+1m+1(Z
−1)

)
;

k=0,±1,±2,...
l=0, 1

2
,1, 3

2
,...

−l−1≤m,n≤l
.

Let K = U(2)× U(2) sitting as the diagonal subgroup of GL(2,HC).
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Proposition 58. The functions

(51)
N(Z)k · Fl,m,n(Z), N(Z)k ·Gl,m,n(Z),

Hk,l,m,n(Z) and N(Z)−2 · Z+

span the kernel of Tr ◦∂+ :W →X and generate the K-types of the kernel.
More precisely, as representations of SU(2)× SU(2),

V0 ⊠ V0 = C-span of
{
N(Z)−2 · Z+

}
,

and, for k, l fixed,

Vl− 1

2
⊠ Vl+ 1

2
= C-span of

{
N(Z)k · Fl,m,n(Z); −l−1≤m≤l

−l≤n≤l−1

}
,

Vl+ 1

2
⊠ Vl− 1

2
= C-span of

{
N(Z)k ·Gl,m,n(Z); −l≤m≤l−1

−l−1≤n≤l

}
,

Vl+ 1

2
⊠ Vl+ 1

2
= C-span of {Hk,l,m,n(Z); −l − 1 ≤ m,n ≤ l} .

Proof. Clearly, these functions are K-finite, linearly independent and anni-
hilated by Tr ◦∂+. It remains to show that these functions span all of the
kernel of Tr ◦∂+. This is done by checking, for each d ∈ Z, that if one takes
the K-types of

W(d) = {F (Z) ∈ W; F (Z) is homogeneous of degree d}

and “subtracts” the K-types of

(I+ + I−)(d− 1) = {f(Z) ∈ I+ + I−; f(Z) is homogeneous of degree d− 1}

then all the remaining K-types are accounted for in (51). □

We compute the action of
(
0 B
0 0

)
∈ gl(2,HC), B ∈ HC, on these genera-

tors:

(
∂11(N(Z)k · Fl,m,n(Z)) ∂21(N(Z)k · Fl,m,n(Z))
∂12(N(Z)k · Fl,m,n(Z)) ∂22(N(Z)k · Fl,m,n(Z))

)(52)

=
2l + k + 1

2l
N(Z)k

(
(l −m)Fl− 1

2
,m+ 1

2
,n+ 1

2

(Z) (l −m)Fl− 1

2
,m+ 1

2
,n− 1

2

(Z)

(l +m+ 1)Fl− 1

2
,m− 1

2
,n+ 1

2

(Z) (l +m+ 1)Fl− 1

2
,m− 1

2
,n− 1

2

(Z)

)

+
k

2l + 2
N(Z)k−1

(
(l + n+ 1)Fl+ 1

2
,m+ 1

2
,n+ 1

2

(Z) −(l − n)Fl+ 1

2
,m+ 1

2
,n− 1

2

(Z)

−(l + n+ 1)Fl+ 1

2
,m− 1

2
,n+ 1

2

(Z) (l − n)Fl+ 1

2
,m− 1

2
,n− 1

2

(Z)

)

+
1

2l + 1

(
(l −m)(l + n+ 1)Hk,l− 1

2
,m+ 1

2
,n+ 1

2

(Z) −(l −m)(l − n)Hk,l− 1

2
,m+ 1

2
,n− 1

2

(Z)

(l +m+ 1)(l + n+ 1)Hk,l− 1

2
,m− 1

2
,n+ 1

2

(Z) −(l +m+ 1)(l − n)Hk,l− 1

2
,m− 1

2
,n− 1

2

(Z)

)
;
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(
∂11(N(Z)k ·Gl,m,n(Z)) ∂21(N(Z)k ·Gl,m,n(Z))
∂12(N(Z)k ·Gl,m,n(Z)) ∂22(N(Z)k ·Gl,m,n(Z))

)(53)

=
2l + k + 1

2l
N(Z)k

(
(l −m− 1)Gl− 1

2
,m+ 1

2
,n+ 1

2

(Z) (l −m− 1)Gl− 1

2
,m+ 1

2
,n− 1

2

(Z)

(l +m)Gl− 1

2
,m− 1

2
,n+ 1

2

(Z) (l +m)Gl− 1

2
,m− 1

2
,n− 1

2

(Z)

)

+
k

2l + 2
N(Z)k−1

(
(l + n+ 2)Gl+ 1

2
,m+ 1

2
,n+ 1

2

(Z) −(l − n+ 1)Gl+ 1

2
,m+ 1

2
,n− 1

2

(Z)

−(l + n+ 2)Gl+ 1

2
,m− 1

2
,n+ 1

2

(Z) (l − n+ 1)Gl+ 1

2
,m− 1

2
,n− 1

2

(Z)

)

+
1

2l + 1

(
Hk,l− 1

2
,m+ 1

2
,n+ 1

2

(Z) Hk,l− 1

2
,m+ 1

2
,n− 1

2

(Z)

−Hk,l− 1

2
,m− 1

2
,n+ 1

2

(Z) −Hk,l− 1

2
,m− 1

2
,n− 1

2

(Z)

)
;

(
∂11Hk,l,m,n(Z) ∂21Hk,l,m,n(Z)
∂12Hk,l,m,n(Z) ∂22Hk,l,m,n(Z)

)

=
k(2l + k + 2)N(Z)k−1

(l + 1)(2l + 1)(2l + 3)

(
−Fl+ 1

2
,m+ 1

2
,n+ 1

2

(Z) −Fl+ 1

2
,m+ 1

2
,n− 1

2

(Z)

Fl+ 1

2
,m− 1

2
,n+ 1

2

(Z) Fl+ 1

2
,m− 1

2
,n− 1

2

(Z)

)

+
k(2l + k + 2)N(Z)k−1

(l + 1)(2l + 1)(2l + 3)

×
(
−(l −m)(l + n+ 2)Gl+ 1

2
,m+ 1

2
,n+ 1

2

(Z) (l −m)(l − n+ 1)Gl+ 1

2
,m+ 1

2
,n− 1

2

(Z)

−(l +m+ 1)(l + n+ 2)Gl+ 1

2
,m− 1

2
,n+ 1

2

(Z) (l +m+ 1)(l − n+ 1)Gl+ 1

2
,m− 1

2
,n− 1

2

(Z)

)

+
2l(2l + k + 2)

(2l + 1)2

(
(l −m)Hk,l− 1

2
,m+ 1

2
,n+ 1

2

(Z) (l −m)Hk,l− 1

2
,m+ 1

2
,n− 1

2

(Z)

(l +m+ 1)Hk,l− 1

2
,m− 1

2
,n+ 1

2

(Z) (l +m+ 1)Hk,l− 1

2
,m− 1

2
,n− 1

2

(Z)

)

+
k(2l + 4)

(2l + 3)2

(
(l + n+ 2)Hk−1,l+ 1

2
,m+ 1

2
,n+ 1

2

(Z) −(l − n+ 1)Hk−1,l+ 1

2
,m+ 1

2
,n− 1

2

(Z)

−(l + n+ 2)Hk−1,l+ 1

2
,m− 1

2
,n+ 1

2

(Z) (l − n+ 1)Hk−1,l+ 1

2
,m− 1

2
,n− 1

2

(Z)

)
;

(
∂11(N(Z)−2 · Z+) ∂21(N(Z)−2 · Z+)
∂12(N(Z)−2 · Z+) ∂22(N(Z)−2 · Z+)

)
(54)

=
3

2

(
−H−2,0,0,0(Z) H−2,0,0,−1(Z)
H−2,0,−1,0(Z) −H−2,0,−1,−1(Z)

)
;

(
∂11(N(Z)k · F′

l,m,n(Z)) ∂21(N(Z)k · F′
l,m,n(Z))

∂12(N(Z)k · F′
l,m,n(Z)) ∂22(N(Z)k · F′

l,m,n(Z))

)

=
k

2l
N(Z)k−1

(
(l +m+ 1)F′

l− 1

2
,m− 1

2
,n− 1

2

(Z) −(l −m)F′
l− 1

2
,m+ 1

2
,n− 1

2

(Z)

−(l +m+ 1)F′
l− 1

2
,m− 1

2
,n+ 1

2

(Z) (l −m)F′
l− 1

2
,m+ 1

2
,n+ 1

2

(Z)

)

− 2l − k + 1

2l + 2
N(Z)k

(
(l − n)F′

l+ 1

2
,m− 1

2
,n− 1

2

(Z) (l − n)F′
l+ 1

2
,m+ 1

2
,n− 1

2

(Z)

(l + n+ 1)F′
l+ 1

2
,m− 1

2
,n+ 1

2

(Z) (l + n+ 1)F′
l+ 1

2
,m+ 1

2
,n+ 1

2

(Z)

)

+
1

2l + 1

(
−(l +m+ 1)(l − n)H′

k−1,l− 1

2
,m− 1

2
,n− 1

2

(Z) (l −m)(l − n)H′
k−1,l− 1

2
,m+ 1

2
,n− 1

2

(Z)

−(l +m+ 1)(l + n+ 1)H′
k−1,l− 1

2
,m− 1

2
,n+ 1

2

(Z) (l −m)(l + n+ 1)H′
k−1,l− 1

2
,m+ 1

2
,n+ 1

2

(Z)

)
;
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(
∂11(N(Z)k ·G′

l,m,n(Z)) ∂21(N(Z)k ·G′
l,m,n(Z))

∂12(N(Z)k ·G′
l,m,n(Z)) ∂22(N(Z)k ·G′

l,m,n(Z))

)

=
k

2l
N(Z)k−1

(
(l +m)G′

l− 1

2
,m− 1

2
,n− 1

2

(Z) −(l −m− 1)G′
l− 1

2
,m+ 1

2
,n− 1

2

(Z)

−(l +m)G′
l− 1

2
,m− 1

2
,n+ 1

2

(Z) (l −m− 1)G′
l− 1

2
,m+ 1

2
,n+ 1

2

(Z)

)

− 2l − k + 1

2l + 2
N(Z)k

(
(l − n+ 1)G′

l+ 1

2
,m− 1

2
,n− 1

2

(Z) (l − n+ 1)G′
l+ 1

2
,m+ 1

2
,n− 1

2

(Z)

(l + n+ 2)G′
l+ 1

2
,m− 1

2
,n+ 1

2

(Z) (l + n+ 2)G′
l+ 1

2
,m+ 1

2
,n+ 1

2

(Z)

)

+
1

2l + 1

(
−H′

k−1,l− 1

2
,m− 1

2
,n− 1

2

(Z) −H′
k−1,l− 1

2
,m+ 1

2
,n− 1

2

(Z)

H′
k−1,l− 1

2
,m− 1

2
,n+ 1

2

(Z) H′
k−1,l− 1

2
,m+ 1

2
,n+ 1

2

(Z)

)
;

(
∂11H

′
k,l,m,n(Z) ∂21H

′
k,l,m,n(Z)

∂12H
′
k,l,m,n(Z) ∂22H

′
k,l,m,n(Z)

)

=
(k + 1)(2l − k + 1)N(Z)k

(l + 1)(2l + 1)(2l + 3)

(
−F′

l+ 1

2
,m− 1

2
,n− 1

2

(Z) −F′
l+ 1

2
,m+ 1

2
,n− 1

2

(Z)

F′
l+ 1

2
,m− 1

2
,n+ 1

2

(Z) F′
l+ 1

2
,m+ 1

2
,n+ 1

2

(Z)

)

+
(k + 1)(2l − k + 1)N(Z)k

(l + 1)(2l + 1)(2l + 3)

×
(
−(l +m+ 1)(l − n+ 1)G′

l+ 1

2
,m− 1

2
,n− 1

2

(Z) (l −m)(l − n+ 1)G′
l+ 1

2
,m+ 1

2
,n− 1

2

(Z)

−(l +m+ 1)(l + n+ 2)G′
l+ 1

2
,m− 1

2
,n+ 1

2

(Z) (l −m)(l + n+ 2)G′
l+ 1

2
,m+ 1

2
,n+ 1

2

(Z)

)

+
2l(k + 1)

(2l + 1)2

(
(l +m+ 1)H′

k−1,l− 1

2
,m− 1

2
,n− 1

2

(Z) −(l −m)H′
k−1,l− 1

2
,m+ 1

2
,n− 1

2

(Z)

−(l +m+ 1)H′
k−1,l− 1

2
,m− 1

2
,n+ 1

2

(Z) (l −m)H′
k−1,l− 1

2
,m+ 1

2
,n+ 1

2

(Z)

)

− (2l + 4)(2l − k + 1)

(2l + 3)2

(
(l − n+ 1)H′

k,l+ 1

2
,m+ 1

2
,n+ 1

2

(Z) (l − n+ 1)H′
k,l+ 1

2
,m+ 1

2
,n− 1

2

(Z)

(l + n+ 2)H′
k,l+ 1

2
,m− 1

2
,n+ 1

2

(Z) (l + n+ 2)H′
k,l+ 1

2
,m+ 1

2
,n+ 1

2

(Z)

)
.

Let
(
0 1
1 0

)
∈ GL(2,HC), then

ρ2
(
0 1
1 0

)(
N(Z)k · Fl,m,n(Z)

)
= N(Z)−k−2 · F′

l,m,n(Z),

ρ2
(
0 1
1 0

)(
N(Z)k ·Gl,m,n(Z)

)
= N(Z)−k−2 ·G′

l,m,n(Z),

ρ2
(
0 1
1 0

)(
Hk,l,m,n(Z)

)
= H′

−k−2,l,m,n(Z),

ρ2
(
0 1
1 0

)(
N(Z)−2 · Z+

)
= −N(Z)−2 · Z+.

Now we can compute the action of
(

0 0
C 0

)
∈ gl(2,HC), C ∈ HC, on these gen-

erators:
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(
ρ2
(
0 1
1 0

)
∂11ρ2

(
0 1
1 0

)
(N(Z)k · Fl,m,n(Z)) ρ2

(
0 1
1 0

)
∂21ρ2

(
0 1
1 0

)
(N(Z)k · Fl,m,n(Z))

ρ2
(
0 1
1 0

)
∂12ρ2

(
0 1
1 0

)
(N(Z)k · Fl,m,n(Z)) ρ2

(
0 1
1 0

)
∂22ρ2

(
0 1
1 0

)
(N(Z)k · Fl,m,n(Z))

)

= −k + 2

2l
N(Z)k+1

(
(l +m+ 1)Fl− 1

2
,m− 1

2
,n− 1

2

(Z) −(l −m)Fl− 1

2
,m+ 1

2
,n− 1

2

(Z)

−(l +m+ 1)Fl− 1

2
,m− 1

2
,n+ 1

2

(Z) (l −m)Fl− 1

2
,m+ 1

2
,n+ 1

2

(Z)

)

− 2l + k + 3

2l + 2
N(Z)k

(
(l − n)Fl+ 1

2
,m− 1

2
,n− 1

2

(Z) (l − n)Fl+ 1

2
,m+ 1

2
,n− 1

2

(Z)

(l + n+ 1)Fl+ 1

2
,m− 1

2
,n+ 1

2

(Z) (l + n+ 1)Fl+ 1

2
,m+ 1

2
,n+ 1

2

(Z)

)

+
1

2l + 1

(
−(l +m+ 1)(l − n)Hk+1,l− 1

2
,m− 1

2
,n− 1

2

(Z) (l −m)(l − n)Hk+1,l− 1

2
,m+ 1

2
,n− 1

2

(Z)

−(l +m+ 1)(l + n+ 1)Hk+1,l− 1

2
,m− 1

2
,n+ 1

2

(Z) (l −m)(l + n+ 1)Hk+1,l− 1

2
,m+ 1

2
,n+ 1

2

(Z)

)
;

(
ρ2
(
0 1
1 0

)
∂11ρ2

(
0 1
1 0

)
(N(Z)k ·Gl,m,n(Z)) ρ2

(
0 1
1 0

)
∂21ρ2

(
0 1
1 0

)
(N(Z)k ·Gl,m,n(Z))

ρ2
(
0 1
1 0

)
∂12ρ2

(
0 1
1 0

)
(N(Z)k ·Gl,m,n(Z)) ρ2

(
0 1
1 0

)
∂22ρ2

(
0 1
1 0

)
(N(Z)k ·Gl,m,n(Z))

)

= −k + 2

2l
N(Z)k+1

(
(l +m)Gl− 1

2
,m− 1

2
,n− 1

2

(Z) −(l −m− 1)Gl− 1

2
,m+ 1

2
,n− 1

2

(Z)

−(l +m)Gl− 1

2
,m− 1

2
,n+ 1

2

(Z) (l −m− 1)Gl− 1

2
,m+ 1

2
,n+ 1

2

(Z)

)

− 2l + k + 3

2l + 2
N(Z)k

(
(l − n+ 1)Gl+ 1

2
,m− 1

2
,n− 1

2

(Z) (l − n+ 1)Gl+ 1

2
,m+ 1

2
,n− 1

2

(Z)

(l + n+ 2)Gl+ 1

2
,m− 1

2
,n+ 1

2

(Z) (l + n+ 2)Gl+ 1

2
,m+ 1

2
,n+ 1

2

(Z)

)

+
1

2l + 1

(
−Hk+1,l− 1

2
,m− 1

2
,n− 1

2

(Z) −Hk+1,l− 1

2
,m+ 1

2
,n− 1

2

(Z)

Hk+1,l− 1

2
,m− 1

2
,n+ 1

2

(Z) Hk+1,l− 1

2
,m+ 1

2
,n+ 1

2

(Z)

)
;

(
ρ2
(
0 1
1 0

)
∂11ρ2

(
0 1
1 0

)
Hk,l,m,n(Z) ρ2

(
0 1
1 0

)
∂21ρ2

(
0 1
1 0

)
Hk,l,m,n(Z)

ρ2
(
0 1
1 0

)
∂12ρ2

(
0 1
1 0

)
Hk,l,m,n(Z) ρ2

(
0 1
1 0

)
∂22ρ2

(
0 1
1 0

)
Hk,l,m,n(Z)

)

= −(k + 1)(2l + k + 3)N(Z)k

(l + 1)(2l + 1)(2l + 3)

(
−Fl+ 1

2
,m− 1

2
,n− 1

2

(Z) −Fl+ 1

2
,m+ 1

2
,n− 1

2

(Z)

Fl+ 1

2
,m− 1

2
,n+ 1

2

(Z) Fl+ 1

2
,m+ 1

2
,n+ 1

2

(Z)

)

+
(k + 1)(2l + k + 3)N(Z)k

(l + 1)(2l + 1)(2l + 3)

×
(
(l +m+ 1)(l − n+ 1)Gl+ 1

2
,m− 1

2
,n− 1

2

(Z) −(l −m)(l − n+ 1)Gl+ 1

2
,m+ 1

2
,n− 1

2

(Z)

(l +m+ 1)(l + n+ 2)Gl+ 1

2
,m− 1

2
,n+ 1

2

(Z) −(l −m)(l + n+ 2)Gl+ 1

2
,m+ 1

2
,n+ 1

2

(Z)

)

− 2l(k + 1)

(2l + 1)2

(
(l +m+ 1)Hk+1,l− 1

2
,m− 1

2
,n− 1

2

(Z) −(l −m)Hk+1,l− 1

2
,m+ 1

2
,n− 1

2

(Z)

−(l +m+ 1)Hk+1,l− 1

2
,m− 1

2
,n+ 1

2

(Z) (l −m)Hk+1,l− 1

2
,m+ 1

2
,n+ 1

2

(Z)

)

− (2l + 4)(2l + k + 3)

(2l + 3)2

(
(l − n+ 1)Hk,l+ 1

2
,m+ 1

2
,n+ 1

2

(Z) (l − n+ 1)Hk,l+ 1

2
,m+ 1

2
,n− 1

2

(Z)

(l + n+ 2)Hk,l+ 1

2
,m− 1

2
,n+ 1

2

(Z) (l + n+ 2)Hk,l+ 1

2
,m+ 1

2
,n+ 1

2

(Z)

)
;
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(
ρ2
(
0 1
1 0

)
∂11ρ2

(
0 1
1 0

)
(N(Z)−2 · Z+) ρ2

(
0 1
1 0

)
∂21ρ2

(
0 1
1 0

)
(N(Z)−2 · Z+)

ρ2
(
0 1
1 0

)
∂12ρ2

(
0 1
1 0

)
(N(Z)−2 · Z+) ρ2

(
0 1
1 0

)
∂22ρ2

(
0 1
1 0

)
(N(Z)−2 · Z+)

)(55)

=
3

2

(
H′

0,0,0,0(Z) −H′
0,0,0,−1

(Z)

−H′
0,0,−1,0(Z) H′

0,0,−1,−1
(Z)

)

= −3

2

(
H−1,0,−1,−1(Z) H−1,0,0,−1(Z)
H−1,0,−1,0(Z) H−1,0,0,0(Z)

)
,

From (52)–(54) we see that any ρ2-invariant subspace of the kernel of
Tr ◦∂+ :W →X contains at least one function Hk,l,m,n(Z). We introduce
a U(2)× U(2)-invariant subspace of W

H = C-span of

{
Hk,l,m,n(Z); k = 0,±1,±2, . . . ,

l = 0,
1

2
, 1,

3

2
, . . . , −l − 1 ≤ m,n ≤ l

}

– note that H is not gl(2,HC)-invariant – and a projection

ϖH : ker(Tr ◦∂+ :W →X)→ H

that maps each Hk,l,m,n(Z) into itself and annihilates Z+ ·N(Z)2, all N(Z)k ·
Fl,m,n(Z)’s and all N(Z)k ·Gl,m,n(Z)’s. Then

(
ϖH ◦ ∂11Hk,l,m,n(Z) ϖH ◦ ∂21Hk,l,m,n(Z)
ϖH ◦ ∂12Hk,l,m,n(Z) ϖH ◦ ∂22Hk,l,m,n(Z)

)

=
2l(2l + k + 2)

(2l + 1)2

(
(l −m)Hk,l− 1

2
,m+ 1

2
,n+ 1

2

(Z) (l −m)Hk,l− 1

2
,m+ 1

2
,n− 1

2

(Z)

(l +m+ 1)Hk,l− 1

2
,m− 1

2
,n+ 1

2

(Z) (l +m+ 1)Hk,l− 1

2
,m− 1

2
,n− 1

2

(Z)

)

+
k(2l + 4)

(2l + 3)2

(
(l + n+ 2)Hk−1,l+ 1

2
,m+ 1

2
,n+ 1

2

(Z) −(l − n+ 1)Hk−1,l+ 1

2
,m+ 1

2
,n− 1

2

(Z)

−(l + n+ 2)Hk−1,l+ 1

2
,m− 1

2
,n+ 1

2

(Z) (l − n+ 1)Hk−1,l+ 1

2
,m− 1

2
,n− 1

2

(Z)

)

and

(
ϖH ◦ ρ2

(
0 1
1 0

)
∂11ρ2

(
0 1
1 0

)
Hk,l,m,n(Z) ϖH ◦ ρ2

(
0 1
1 0

)
∂21ρ2

(
0 1
1 0

)
Hk,l,m,n(Z)

ϖH ◦ ρ2
(
0 1
1 0

)
∂12ρ2

(
0 1
1 0

)
Hk,l,m,n(Z) ϖH ◦ ρ2

(
0 1
1 0

)
∂22ρ2

(
0 1
1 0

)
Hk,l,m,n(Z)

)

= −2l(k + 1)

(2l + 1)2

(
(l +m+ 1)Hk+1,l− 1

2
,m− 1

2
,n− 1

2

(Z) −(l −m)Hk+1,l− 1

2
,m+ 1

2
,n− 1

2

(Z)

−(l +m+ 1)Hk+1,l− 1

2
,m− 1

2
,n+ 1

2

(Z) (l −m)Hk+1,l− 1

2
,m+ 1

2
,n+ 1

2

(Z)

)

− (2l + 4)(2l + k + 3)

(2l + 3)2

(
(l − n+ 1)Hk,l+ 1

2
,m+ 1

2
,n+ 1

2

(Z) (l − n+ 1)Hk,l+ 1

2
,m+ 1

2
,n− 1

2

(Z)

(l + n+ 2)Hk,l+ 1

2
,m− 1

2
,n+ 1

2

(Z) (l + n+ 2)Hk,l+ 1

2
,m+ 1

2
,n+ 1

2

(Z)

)
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(a) Actions of ρ2
(

A 0

0 0

)

and ρ2

(

0 0

0 D

)

(b) Action of ϖH ◦ ρ2

(

0 B

0 0

)

(c) Action of ϖH ◦ ρ2

(

0 0

C 0

)

Figure 6

The actions of
(
A 0
0 0

)
,
(
0 B
0 0

)
,
(

0 0
C 0

)
and

(
0 0
0 D

)
are illustrated in Figure 6.

In the diagram describing ϖH ◦ ρ2
(
0 B
0 0

)
the vertical arrow disappears if l = 0

or 2l + k + 2 = 0 and the diagonal arrow disappears if k = 0. Similarly, in
the diagram describing ϖH ◦ ρ2

(
0 0
C 0

)
the vertical arrow disappears if 2l +

k + 3 = 0 and the diagonal arrow disappears if k = −1 or l = 0. Let

H+ = C-span of
{
Hk,l,m,n(Z); k ≥ 0

}
,

H− = C-span of
{
Hk,l,m,n(Z); k ≤ −(2l + 3)

}
,

H0 = C-span of
{
Hk,l,m,n(Z); −(2l + 2) ≤ k ≤ −1

}

(see Figure 7 and compare with Figure 2 in [FL3]). It follows that if U is
a ρ2-invariant subspace of ker(Tr ◦∂+ :W →X), then ϖH(U) must be H−,
H0, H+, a direct sum of two of these spaces or all of H.

Now let

Q+ = C-span of
{
N(Z)k · Fl,m,n(Z), N(Z)k ·Gl,m,n(Z), Hk,l,m,n(Z); k ≥ 0

}
,

Q− = C-span of
{
N(Z)k · Fl,m,n(Z), N(Z)k ·Gl,m,n(Z), Hk,l,m,n(Z); k ≤ −(2l + 3)

}
,

Q0 = C-span of

{
N(Z)k · Fl,m,n(Z), N(Z)k ·Gl,m,n(Z) with − (2l + 1) ≤ k ≤ −2,

Hk,l,m,n(Z) with − (2l + 2) ≤ k ≤ −1

}
.

It is easy to see that

ϖH(Q+) = H+, ϖH(Q−) = H−, ϖH(Q0) = H0,

Q+, Q−, Q0 are invariant under the ρ2-action of gl(2,HC) and irreducible.
Moreover, these are the only irreducible subrepresentations of (ρ2, ker(Tr ◦∂+)).
Furthermore, the quotient

ker(Tr ◦∂+ :W →X)

Q− ⊕Q0 ⊕Q+
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r r r r r r r r r r r
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✻

✲❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅❅

2l

k

H−

H0

H+

Figure 7. Decomposition of (ϖH ◦ ρ2,H) into invariant components.

decomposes into five irreducible subrepresentations; they are the images of

C-span of
{
N(Z)−1 · Fl,m,n(Z); l ≥ 1/2

}
,

C-span of
{
N(Z)−(2l+2) ·Gl,m,n(Z); l ≥ 1/2

}

= C-span of
{
N(Z)−1 · F′

l,m,n(Z); l ≥ 1/2
}
,

C-span of
{
N(Z)−1 ·Gl,m,n(Z); l ≥ 1/2

}
,

C-span of
{
N(Z)−(2l+2) · Fl,m,n(Z); l ≥ 1/2

}

= C-span of
{
N(Z)−1 ·G′

l,m,n(Z); l ≥ 1/2
}
,

C-span of
{
N(Z)−2 · Z+

}
.

These subrepresentations are isomorphic to

(ρ′2,W ′/ ker τ+a ), (ρ′2,W ′/ ker τ−a ), (ρ′2,W ′/ ker τ+s ), (ρ′2,W ′/ ker τ−s )

(which appeared in Corollary 51) and the trivial one-dimensional representa-
tion respectively. Combining this with Corollary 56, we obtain a description
of all thirteen irreducible components of (ρ2,W).

For future reference we make the following observation:
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Lemma 59. The element N(Z)−2 · Z+ ∈ W generates a subrepresentation
U of W that has exactly two irreducible components: Q0 and the trivial one-
dimensional representation. Moreover, the trivial one-dimensional represen-
tation does not appear as a subrepresentation of U – it is isomorphic to the
quotient U/Q0.

Proof. The result follows from equations (54), (55). □

5.2. Decomposition of (ρ′

2
,W ′)

By Proposition 80 in [FL1], the representations (ρ2,W) and (ρ′2,W ′) of
gl(2,HC) are dual to each other. Thus the irreducible components of (ρ′2,W ′)
are dual to those of (ρ2,W), and, in particular, these two representations
have the same number of irreducible components – thirteen. We would like
to describe the irreducible components of (ρ′2,W ′) more explicitly.

The idea is to use the quaternionic chain complex (29) and deal sepa-
rately with kerMx ⊂ W ′ and W ′/ kerMx. Since kerMx contains the image
∂+(X′) ≃X

′/ ker ∂+ = X
′/I ′0, the following five irreducible components

listed in Theorem 32 reappear in (ρ′2,W ′):

(ρ′,BH+/I ′0), (ρ′,BH−/I ′0), (ρ′,X+/BH+),

(ρ′,X′−/BH−),
(
ρ′,J ′/(BH+ + BH−)

)
.

The ρ′2-invariant subspaceM⊂ kerMx contains all of the above components
plus five more: four that appeared in Corollary 51:

(ρ′2,W ′/ ker τ+a ), (ρ′2,W ′/ ker τ−a ), (ρ′2,W ′/ ker τ+s ), (ρ′2,W ′/ ker τ−s )

as well as the trivial one-dimensional representation spanned by N(Z)−1 · Z.
By Proposition 37, these are the ten irreducible components of kerMx. It
remains to describe the three irreducible components of W ′/ kerMx that are
dual to (ρ2,Q+), (ρ2,Q−) and (ρ2,Q0).

Recall the functions F̃l,m,n(Z), G̃l,m,n(Z), H̃l,m,n(Z) from Proposition 42.
We also introduce functions

Ĩk,l,m,n(Z) = (2l + k + 2)N(Z)k ·
(

(l +m+ 1)tlnm(Z) −(l −m)tlnm+1(Z)

−(l +m+ 1)tln+1m(Z) (l −m)tln+1m+1(Z)

)

+ kN(Z)k−1 ·
(

(l − n+ 1)tl+1
nm(Z) (l − n+ 1)tl+1

nm+1(Z)

(l + n+ 2)tl+1
n+1m(Z) (l + n+ 2)tl+1

n+1m+1(Z)

)
,

k = ±1,±2,±3, . . . l = −1

2
, 0,

1

2
, 1,

3

2
, . . . − l − 1 ≤ m,n ≤ l,
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(when l = −1
2 , the function Ĩk,− 1

2
,− 1

2
,− 1

2
(Z) reduces to kN(Z)k−1 · Z) and

J̃l,m,n(Z) = N(Z)−1 ·
(

(l − n)tlnm(Z) (l − n)tlnm+1(Z)

(l + n+ 1)tln+1m(Z) (l + n+ 1)tln+1m+1(Z)

)
,

l =
1

2
, 1,

3

2
, 2, . . . − l ≤ m,n ≤ l − 1.

Note that:

when k = 1, the function Ĩ1,l,m,n(Z) is Ĩl+1,m,n(Z)

introduced after Lemma 44,

when 2l + k + 2 = 0, the function Ĩk,l,m,n(Z) is proportional

to H̃ ′
l+1,−n−1,−m−1(Z),

when 2l + k + 1 = 0, the function Ĩk,l,m,n(Z) is proportional to

Ĩ ′l,−n−1,−m−1(Z),

J̃ 1

2
,− 1

2
,− 1

2
(Z) = N(Z)−1 · Z.

Recall that K = U(2)× U(2) sitting as the diagonal subgroup of GL(2,HC).

Proposition 60. The functions

N(Z)k · F̃l,m,n(Z), N(Z)k · G̃l,m,n(Z), N(Z)k · H̃l,m,n(Z),

Ĩk,l,m,n(Z), J̃l,m,n(Z)

span W ′ and generate the K-types of (ρ′2,W ′). More precisely, as represen-
tations of SU(2)× SU(2),

Vl− 1

2
⊠ Vl+ 1

2
= C-span of

{
N(Z)k · F̃l,m,n(Z); −l−1≤m≤l

−l≤n≤l−1

}
,

Vl+ 1

2
⊠ Vl− 1

2
= C-span of

{
N(Z)k · G̃l,m,n(Z); −l≤m≤l−1

−l−1≤n≤l

}
,

Vl+ 1

2
⊠ Vl+ 1

2
= C-span of

{
N(Z)k · H̃l,m,n(Z); −l − 1 ≤ m,n ≤ l

}
,

Vl+ 1

2
⊠ Vl+ 1

2
= C-span of

{
Ĩk,l,m,n(Z); −l − 1 ≤ m,n ≤ l

}
,

Vl− 1

2
⊠ Vl− 1

2
= C-span of

{
J̃l,m,n(Z); −l ≤ m,n ≤ l − 1

}
,

for k and l fixed.

Proof. Clearly, these functions are K-finite and linearly independent. One
checks that these functions span all of W ′ by checking, for each d ∈ Z, that
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these functions generate all the K-types of

W ′(d) = {F (Z) ∈ W ′; F (Z) is homogeneous of degree d}.
□

Lemma 61. We have:

∂+(X) = C-span of

{
H̃l,m,n(Z); l=0, 1

2
,1, 3

2
,...

−l−1≤m,n≤l

}

⊕
C-span of

{
Ĩk,l,m,n(Z);

k=±1,±2,±3,...
l=− 1

2
,0, 1

2
,1, 3

2
,...

−l−1≤m,n≤l

}
.

Proof. By Corollary 6 from [FL3],

X = C-span of

{
N(Z)k · tlnm(Z);

k=0,±1,±2,...
l=0, 1

2
,1, 3

2
,...

−l≤m,n≤l

}
.

Using Lemma 21 in [FL1] and identity (34), we obtain:

∂+
(
t00 0(Z)

)
= 0,

∂+
(
tlnm(Z)

)
= H̃l− 1

2
,m− 1

2
,n− 1

2
(Z) if l > 0,

∂+
(
N(Z)k · tlnm(Z)

)
=

1

2l + 1
Ĩk,l− 1

2
,m− 1

2
,n− 1

2
(Z) if k ̸= 0.

□

Now let

Q′+ = C-span of
{
N(Z)k · F̃l,m,n(Z), N(Z)k · G̃l,m,n(Z),

N(Z)k · H̃l,m,n(Z); k ≥ 1
}
,

Q′− = C-span of
{
N(Z)k · F̃l,m,n(Z), N(Z)k · G̃l,m,n(Z),

N(Z)k · H̃l,m,n(Z); k ≤ −(2l + 2)
}
,

Q′0 = C-span of





N(Z)k · F̃l,m,n(Z), N(Z)k · G̃l,m,n(Z) with − 2l ≤ k ≤ −1,
N(Z)k · H̃l,m,n(Z) with − (2l + 1) ≤ k ≤ −1,

J̃l,m,n(Z) with l = 1, 32 , 2,
5
2 , . . .



;

we treat Q′+, Q′− and Q′0 as subspaces of the quotient space W ′/ kerMx.

Theorem 62. The quotient representation (ρ′2,W ′/ kerMx) is the direct
sum of three irreducible components (ρ′2,Q′+), (ρ′2,Q′−) and (ρ′2,Q′0). These
irreducible components are dual to (ρ2,Q−), (ρ2,Q+) and (ρ2,Q0) respec-
tively via the invariant bilinear pairing given in Proposition 80 in [FL1].
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Proof. The result follows by identifying the functions listed in Proposition 60
that are dual to the K-types of (ρ2,Q−), (ρ2,Q+) and (ρ2,Q0) respectively
via the bilinear pairing given in Proposition 80 in [FL1]. □

Combining this with our description of irreducible components of
(ρ′2, kerMx), we obtain a complete list of all thirteen irreducible compo-
nents of (ρ′2,W ′). Now that we know the irreducible components of (ρ2,W)
and (ρ′2,W ′), it is easy to identify the indecomposable subrepresentations of
(ρ2,W) and (ρ′2,W ′).

Collecting the K-types of each irreducible components (ρ′2,W ′), we ob-
tain a decomposition of W ′ into a direct sum of thirteen K-invariant vec-
tor subspaces. This decomposition is compatible with the decomposition of
(ρ1,Ж) into irreducible components

(ρ1,Ж) = (ρ1,Ж
+)⊕ (ρ1,Ж

0)⊕ (ρ1,Ж
−)

given in Section 4 of [FL3] in the following sense.

Lemma 63. As vector spaces, HC ⊗Ж =W ′ = (HC ⊗Ж
+)⊕ (HC ⊗Ж

0)⊕
(HC ⊗Ж

−), and

HC ⊗Ж
+ = ∂+

(
BH+/I0

)
⊕ ∂+

(
X

+/BH+
)

⊕
(
W ′/ ker τ+a

)
⊕
(
W ′/ ker τ+s

)
⊕Q′+,

HC ⊗Ж
0 = ∂+

(
BH−/I0

)
⊕ ∂+

(
J ′/(BH+ + BH−)

)

⊕ C-span of
{
N(Z)−1 · Z

}
⊕
(
W ′/ ker τ−a

)

⊕
(
W ′/ ker τ−s

)
⊕Q′0,

HC ⊗Ж
− = ∂+

(
X

′−/BH−
)
⊕Q′−.

On the other hand, the image of Mx :W ′ →W has three irreducible com-
ponents (ρ2,Q+), (ρ2,Q0), (ρ2,Q−), and

Q+ ⊂ HC ⊗Ж
+, Q0 ⊂ HC ⊗Ж

0, Q− ⊂ HC ⊗Ж
−.

6. Polarization of vacuum and equivariant maps

(ρ′

2
,W ′) → (πl ⊗ πr, Ṽ ⊗ V ′)

6.1. Equivariant maps (ρ′

2
,W ′) → (πl ⊗ πr, Ṽ ⊗ V ′)

Recall the HC-modules S and S′ introduced just before equation (12). We
denote by Ṽ the space of S-valued holomorphic left regular functions on
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HC (possibly with singularities) and by Ṽ ′ the space of S′-valued holomor-
phic right regular functions on HC (possibly with singularities). The group
GL(2,HC) acts on these spaces via

πl(h) : f(Z) 7→ (πl(h)f)(Z) =
(cZ + d)−1

N(cZ + d)
· f
(
(aZ + b)(cZ + d)−1

)
,

πr(h) : g(Z) 7→ (πr(h)g)(Z) = g
(
(a′ − Zc′)−1(−b′ + Zd′)

)
· (a

′ − Zc′)−1

N(a′ − Zc′)

respectively, where f ∈ Ṽ , g ∈ Ṽ ′, h =
(
a′ b′

c′ d′

)
∈ GL(2,HC) and h−1 =

(
a b
c d

)
.

Inside Ṽ and Ṽ ′, we have subspaces

V+ = {f ∈ Ṽ; f : HC → S is a polynomial map},
V− =

{
f ∈ Ṽ; πl

(
0 1
1 0

)
f = N(Z)−1 · Z−1 · f(Z−1) ∈ V+

}
,

V ′+ = {g ∈ Ṽ ′; g : HC → S′ is a polynomial map},
V ′− =

{
g ∈ Ṽ ′; πr

(
0 1
1 0

)
g = −N(Z)−1 · g(Z−1) · Z−1 ∈ V ′+

}
.

We can form a tensor product representation (πl ⊗ πr, Ṽ ⊗ Ṽ ′) and con-
sider a larger space

Ṽ ⊗ V ′ =





holomorphic HC-valued functions in two variables
Z1, Z2 ∈ HC (possibly with singularities) that are left regular

with respect to Z1 and right regular with respect to Z2



 .

The action of GL(2,HC) on these functions is given by

(πl ⊗ πr)(h) : F (Z1, Z2) 7→
(
(πl ⊗ πr)(h)F

)
(Z1, Z2)

=
(cZ1 + d)−1

N(cZ1 + d)
· F
(
(aZ1 + b)(cZ1 + d)−1, (a′ − Z2c

′)(−b′ + Z2d
′)−1

)

× (a′ − Z2c
′)−1

N(a′ − Z2c′)
.

Differentiating, we obtain the corresponding action of the Lie algebra gl(2,HC)
also denoted by πl ⊗ πr.

We denote by Diag the restriction to the diagonal map

(56) Diag : F (Z1, Z2) 7→ F (Z,Z).

Clearly, Diag intertwines the actions of πl ⊗ πr and ρ2.
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We consider maps W ′ → Ṽ ⊗ V ′

(JRF )(Z1, Z2)(57)

=
12i

π3

∫

W∈U(2)R

(W − Z1)
−1

N(W − Z1)
· F (W ) · (W − Z2)

−1

N(W − Z2)
dV.

If Z1, Z2 ∈ D−
R ⊔ D+

R, the integrand has no singularities and the result is
a holomorphic function in two variables Z1, Z2 which is harmonic in each
variable separately. We will see soon that the result depends on whether
Z1 and Z2 are both in D+

R, both in D−
R or one is in D+

R and the other is
in D−

R. Thus the expression (57) determines four different maps. We use
notations J++

R and J−−
R to signify Z1, Z2 ∈ D+

R and Z1, Z2 ∈ D−
R respectively.

(Notations J+−
R and J−+

R will be introduced in the next subsection.) These
maps JR are closely related to the maps IR given by equation (34) in Chapter
6 of [FL3]

Ж ∋ f 7→ (IRf)(Z1, Z2)(58)

=
i

2π3

∫

W∈U(2)R

f(W ) dV

N(W − Z1) ·N(W − Z2)
∈ H̃ ⊗H,

where H̃ ⊗ H denotes the space of holomorphic C-valued functions in two
variables Z1, Z2 ∈ HC (possibly with singularities) that are harmonic in each
variable separately. Indeed, IR extends to a map on HC ⊗Ж =W ′, and

(59) JRF (Z1, Z2) = 24
−→
∂ Z1

(
IRF (Z1, Z2)

)←−
∂ Z2

.

Recall from Section 2 of [FL3] that the group U(2, 2)R is a conjugate of
U(2, 2), which is a real form of GL(2,HC) preserving U(2)R, D+

R and D−
R.

Proposition 64. The maps F 7→ (JRF )(Z1, Z2) are U(2, 2)R and gl(2,HC)-

equivariant maps from (ρ′2,W ′) to (πl ⊗ πr, Ṽ ⊗ V ′).

Proof. We need to show that, for all h ∈ U(2, 2)R, the maps (57) commute
with the action of h. Writing h =

(
a′ b′

c′ d′

)
, h−1 =

(
a b
c d

)
,

Z̃1 = (aZ1 + b)(cZ1 + d)−1, Z̃2 = (aZ2 + b)(cZ2 + d)−1,

W̃ = (aW + b)(cW + d)−1
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and using Lemmas 10 and 61 from [FL1] we obtain:

∫

W∈U(2)R

(W − Z1)
−1

N(W − Z1)
· (ρ′2(h)F )(W ) · (W − Z2)

−1

N(W − Z2)
dV

=

∫

W∈U(2)R

(W − Z1)
−1

N(W − Z1)
· (a′ −Wc′)

N(a′ −Wc′)

× F (W̃ ) · (cW + d)

N(cW + d)
· (W − Z2)

−1

N(W − Z2)
dV

=

∫

W∈U(2)R

(cZ1+d)−1·(W̃−Z̃1)−1·F (W̃ )·(W̃−Z̃2)−1·(a′−Z2c′)−1 dV

N(cZ1+d)·N(a′−Wc′)2·N(W̃−Z̃1)·N(W̃−Z̃2)·N(cW+d)2·N(a′−Z2c′)

=
(cZ1 + d)−1

N(cZ1 + d)
·
∫

W̃∈U(2)R

(W̃ − Z̃1)
−1

N(W̃ − Z̃1)
· F (W̃ ) · (W̃ − Z̃2)

−1

N(W̃ − Z̃2)
dV

× (a′ − Z2c
′)−1

N(a′ − Z2c′)
.

This proves the U(2, 2)R-equivariance. The gl(2,HC)-equivariance then fol-
lows since gl(2,HC) ≃ C⊗ u(2, 2)R. □

We compose the maps JR with the restriction onto the diagonal map

Diag defined by (56). Note that the subspace V+ ⊗ V ′+ ⊂ Ṽ ⊗ V ′ can be

described as the HC-valued polynomials in Ṽ ⊗ V ′.

Theorem 65. The maps F 7→ (JRF )(Z1, Z2) have the following properties:

1) If Z1, Z2 ∈ D+
R, then J++

R maps W ′ into V+ ⊗ V ′+ ⊂ Ṽ ⊗ V ′, annihi-
lates all irreducible components of (ρ′2,W ′), except for Q′+, and

Diag ◦(J++
R F )(Z1, Z2) = MxF, if F ∈ HC ⊗Ж

+.

2) If Z1, Z2 ∈ D−
R, then J−−

R maps W ′ into V− ⊗ V ′− ⊂ Ṽ ⊗ V ′, annihi-
lates all irreducible components of (ρ′2,W ′), except for Q′−, and

Diag ◦(J−−
R F )(Z1, Z2) = MxF, if F ∈ HC ⊗Ж

−.

Proof. We prove part 1 only, the other part can be proven in the same way.
So, suppose that Z1, Z2 ∈ D+

R. It follows immediately from Theorem 12 in
[FL3], Lemma 63 and equation (59) that the image of J++

R lies in V+ ⊗ V ′+
and that J++

R annihilates the irreducible components of (ρ′2,W ′) that lie in
HC ⊗ (Ж0 ⊕Ж

−) (as described in Lemma 63). Then we check the effect of
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J++
R on a suitable generator of each of the remaining irreducible component

of (ρ′2,W ′). For the irreducible components from Corollary 51

(ρ′2,W ′/ ker τ+a ) and (ρ′2,W ′/ ker τ+s ),

choose generators F̃ 1

2
, 1
2
,− 1

2
(W ) and G̃ 1

2
,− 1

2
, 1
2
(W ) respectively. The image of

X
+ under ∂+ is generated by ∂+(N(Z)2) = 2N(Z) · Z and contains two

irreducible components. We show the calculations for N(Z) · Z only, the
other cases are similar. Using Lemma 23 and the matrix coefficient expansion
of (W−Z1)−1

N(W−Z1)
given by Proposition 26 in [FL1] (see also Proposition 113), we

compute:

J++
R

(
N(W ) ·W

)
(Z1, Z2)

=
24i

π3

∫

W∈U(2)R

(W − Z1)
−1

N(W − Z1)
·N(W ) ·W · (W − Z2)

−1

N(W − Z2)
dV

=
24i

π3

∑

l,m,n,l′,m′,n′

(
(l−m+ 1

2
)tl

nm+1
2

(Z1)

(l+m+ 1

2
)tl

nm− 1
2

(Z1)

)

×
∫

W∈U(2)R

(
t
l+1

2

mn− 1
2

(W−1), t
l+1

2

mn+1
2

(W−1)

)
· W

N(W )

×
(

(l′−n′+ 1

2
)tl

′

n′− 1
2

m′ (W
−1)

(l′+n′+ 1

2
)tl

′

n′+1
2

m′ (W
−1)

)
dV
(

t
l′− 1

2

m′+1
2

n′ (Z2), t
l′− 1

2

m′− 1
2

n′ (Z2)

)

=
24i

π3

∑

l,m,n,l′,m′,n′

(
(l−m+ 1

2
)tl

nm+1
2

(Z1)

(l+m+ 1

2
)tl

nm− 1
2

(Z1)

)
·
(

t
l′− 1

2

m′+1
2

n′ (Z2), t
l′− 1

2

m′− 1
2

n′ (Z2)

)

×
∫

W∈U(2)R

1

N(W )

(
tl
m+1

2
n
(W−1), tl

m− 1
2

n
(W−1)

)

×
(

(l′−n′+ 1

2
)tl

′

n′− 1
2

m′ (W
−1)

(l′+n′+ 1

2
)tl

′

n′+1
2

m′ (W
−1)

)
dV

= 0

by the orthogonality relations (19) in [FL3], since l′ ≥ 1/2. We conclude from
Proposition 64 that J++

R annihilates all of (ρ′2, ∂
+(X+)).

Finally, the statement about the composition Diag ◦J++
R follows from

Theorem 77 in [FL1]. (Note that the differential form dV that appears in
(57) differs from dZ4 that appears in Theorem 77 in [FL1] by a factor of
1/4.) □
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6.2. Polarization of vacuum

Now we suppose Z1 ∈ D+
R and Z2 ∈ D−

R (or the other way around), this case
is much more subtle. We reduce the spinor case of JR to the already known
scalar case of IR as much as possible via the relation (59).

Proposition 66. Let Z1 ∈ D+
R and Z2 ∈ D−

R, then the map JR annihilates
all irreducible components of (ρ′2,W ′), except for Q′0 and the trivial one-
dimensional representation spanned by N(W )−1 ·W . Moreover,

JR
(
N(W )−1 ·W

)
(Z1, Z2) = 24

(Z1 − Z2)
−1

N(Z1 − Z2)
.

Similarly, if Z1 ∈ D−
R and Z2 ∈ D+

R, then the map JR annihilates all irre-
ducible components of (ρ′2,W ′), except for Q′0 and the trivial one-dimensional
representation spanned by N(W )−1 ·W . Moreover,

JR
(
N(W )−1 ·W

)
(Z1, Z2) = −24

(Z1 − Z2)
−1

N(Z1 − Z2)
.

Proof. Since IR annihilates Ж+ ⊕Ж
−, it follows from equation (59) that JR

annihilates the irreducible components of (ρ′2,W ′) that lie in HC ⊗ (Ж+ ⊕
Ж

−) (as described in Lemma 63). Then we check the effect of JR on a suitable
generator of each of the remaining irreducible component of (ρ′2,W ′).

The image of X′ under ∂+ is generated by two generators

∂+(N(Z)2) = 2N(Z) · Z and ∂+(N(Z)−2) = −2N(Z)−3 · Z;

these take care of irreducible components contained in ∂+(X′). For the irre-
ducible components (ρ′2,W ′/ ker τ−a ) and (ρ′2,W ′/ ker τ−s ) make a choice of
generators such as

F̃ ′
1

2
, 1
2
,− 1

2

(W ) =
2

N(W )2

(
0 0

w11 w12

)

and G̃′
1

2
,− 1

2
, 1
2

(W ) =
1

N(W )2

(
0 w11

0 w21

)

respectively. We show the calculations for F̃ ′
1

2
, 1
2
,− 1

2

(W ) with Z1 ∈ D+
R, Z2 ∈

D−
R only; the other cases are similar and easier. Using Lemma 23 and the

matrix coefficient expansion of (W−Z1)−1

N(W−Z1)
given by Proposition 26 in [FL1]
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(see also Proposition 113), we compute:

JR
(
F̃ ′

1

2
, 1
2
,− 1

2

(W )
)
(Z1, Z2)

=
24i

π3

∫

W∈U(2)R

(W − Z1)
−1

N(W − Z1)
· 1

N(W )2
·
(

0 0
w11 w12

)
· (W − Z2)

−1

N(W − Z2)
dV

= −24i

π3

∑

l,m,n,l′,m′,n′

(
(l−m+ 1

2
)tl

nm+1
2

(Z1)

(l+m+ 1

2
)tl

nm− 1
2

(Z1)

)

×
∫

W∈U(2)R

(
t
l+1

2

mn− 1
2

(W−1), t
l+1

2

mn+1
2

(W−1)

)

× 1

N(W )3
·
(

0 0
w11 w12

)
·
(

(l′−m′+ 1

2
)tl

′

n′ m′+1
2

(W )

(l′+m′+ 1

2
)tl

′

n′ m′− 1
2

(W )

)
dV

×N(Z2)
−1 ·

(
t
l′+1

2

m′ n′− 1
2

(Z−1
2 ), t

l′+1
2

m′ n′+1
2

(Z−1
2 )

)

=
−24i

π3N(Z2)

∑

l,m,n,l′,m′,n′

(
(l−m+ 1

2
)tl

nm+1
2

(Z1)

(l+m+ 1

2
)tl

nm− 1
2

(Z1)

)
·
(

t
l′+1

2

m′ n′− 1
2

(Z−1
2 ), t

l′+1
2

m′ n′+1
2

(Z−1
2 )

)

×
∫

W∈U(2)R

(
t
l+1

2

mn− 1
2

(W−1), t
l+1

2

mn+1
2

(W−1)

)

× 1

N(W )3
·
(

0

(l′−n′+1)t
l′+1

2

n′− 1
2

m′ (W )

)
dV

= 0

by the orthogonality relations (19) in [FL3], since the power of N(W ) is
not −2. We conclude from Proposition 64 that JR annihilates all of
(ρ′2,W ′/ ker τ−a ). □

For Z1, Z2 ∈ H×
C
, let λ1 and λ2 denote the eigenvalues of Z1Z

−1
2 , and

introduce an open subset of H×
C
×H×

C

Ω0 =

{
(Z1, Z2) ∈ H×

C
×H×

C
;

λ1 ̸=1, λ2 ̸=1, neither
1−λ1
1−λ2

nor

1−λ
−1
1

1−λ
−1
2

is a negative real number

}
.

Let Z1 ∈ D+
R and Z2 ∈ D−

R and recall the relation (59) between JR and IR.
From Section 6 of [FL3], we see that, for any F ∈ W ′, (JRF )(Z1, Z2) extends
analytically across Ω0, and we have a well defined operator J+−

R on W ′:

(J+−
R F )(Z1, Z2) = analytic extension of (JRF )(Z1, Z2) from D+

R × D−
R to Ω0.
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The operator J+−
R is U(2)× U(2) and gl(2,HC)-equivariant (which follows

from Proposition 64) and annihilates all irreducible components of (ρ′2,W ′),
except for Q′0 and the trivial one-dimensional representation spanned by
N(W )−1 ·W (which follows from Proposition 66). While J+−

R F is indepen-
dent of the choice of R > 0, we keep the subscript R to distinguish this
analytic function from a formal series J+−F that will be defined in Subsec-
tion 7.3.

Similarly, we can switch the domains of Z1 and Z2 and define another
operator J−+

R on W ′:

(J−+
R F )(Z1, Z2) = analytic extension of (JRF )(Z1, Z2) from D−

R × D+
R to Ω0.

The operator J−+
R is also U(2)× U(2) and gl(2,HC)-equivariant and anni-

hilates all irreducible components of (ρ′2,W ′), except for Q′0 and the trivial
one-dimensional representation spanned by N(W )−1 ·W .

We introduce the following notation: if λ ∈ C, let

sign(Imλ) =





1 if λ lies in the upper half plane of C,

−1 if λ lies in the lower half plane of C,

undefined if λ ∈ R.

Theorem 67. We have a well defined operator on W ′

(Mx0 F )(Z) = lim
Z1,Z2→Z, N(Z1−Z2) ̸=0

sign(Imλ1)=sign(Imλ2)

−
(
(J+−

R + J−+
R )F

)
(Z1, Z2),(60)

Z ∈ U(2)R,

where λ1 and λ2 are the eigenvalues of Z1Z
−1
2 . The operator Mx0 has val-

ues in W, is gl(2,HC)-equivariant, annihilates all irreducible components of
(ρ′2,W ′), except for Q′0, and equals Mx on Q′0.

Furthermore, the operator Mx0 on W ′ can be computed as follows:

(Mx0 F )(Z) = −12i

π3
lim
θ→0

lim
s→1

(∫

W∈U(2)R

(W − seiθZ)−1

N(W − seiθZ)
· F (W )

× (W − s−1e−iθZ)−1

N(W − s−1e−iθZ)
dV

+

∫

W∈U(2)R

(W − s−1eiθZ)−1

N(W − s−1eiθZ)
· F (W ) · (W − se−iθZ)−1

N(W − se−iθZ)
dV

)
,

Z ∈ U(2)R.
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Note that the space W ′ consists of rational functions, and rational func-
tions on HC as well as analytic ones are completely determined by their
values on U(2)R.

Proof. First, we show that the limit (60) exists. The map (J+−
R + J−+

R ) is
related to the map (I+−

R + I−+
R ) from Theorem 15 in [FL3] via

(61)
(
(J+−

R + J−+
R )F

)
(Z1, Z2) = 24

−→
∂ Z1

(
(I+−

R + I−+
R )F (Z1, Z2)

)←−
∂ Z2

,

which is essentially equation (59). We saw in the course of proof of Theo-
rem 15 in [FL3] (see also Theorem 116) that the image of (I+−

R + I−+
R ) is

generated by

(
(I+−

R + I−+
R )N(W )−1

)
(Z1, Z2)(62)

= − 1

N(Z2)
·
{

log λ2−log λ1

λ2−λ1
if λ1 ̸= λ2;

λ−1 if λ1 = λ2 = λ, λ ̸= 1,

where log denotes the branch of logarithm with a cut along the positive real
axis. If we restrict

(
(I+−

R + I−+
R )N(W )−1

)
(Z1, Z2) to the open set where

sign(Imλ1) = sign(Imλ2), we see that this restriction is

1

N(Z2)
·
(
function of λ1, λ2 ∈ C that is holomorphic near (λ1, λ2) = (1, 1)

)
.

Since the map (I+−
R + I−+

R ) is gl(2,HC)-equivariant, it follows that the same
is true for

(
(I+−

R + I−+
R )F

)
(Z1, Z2) with any F ∈ W ′. Therefore, the limit

(60) exists.
Clearly, the operator Mx0 on W ′ is gl(2,HC)-equivariant and, by Propo-

sition 66, annihilates all irreducible components of (ρ′2,W ′), except for Q′0.
It remains to show that Mx0 equals Mx on Q′0 on one particular generator,
then the other statements of the theorem follow immediately, including the
part that the values of Mx0 lie inW . For this purpose we choose a generator

N(Z)−1 = N(Z)−1 · H̃0,0,0(Z) +N(Z)−1 · H̃0,−1,−1(Z) ∈ Q′0.

Moreover, since Mx0 is (U(2)× U(2))-equivariant, it is sufficient to show
that Mx0N(Z)−1 = MxN(Z)−1 when Z is diagonal. And since the limit
(60) is known to exist, we can assume that Z1, Z2 are diagonal as well. We
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have:

Mx(N(Z)−1) = 4N(Z)−2 + 8N(Z)−3 · (Z+)2

and

(63) Mx

(
1

N(Z)

)
=

4

a2d2

(
1 + 2d/a 0

0 1 + 2a/d

)
, if Z =

(
a 0
0 d

)
.

Suppose first that Z1 ∈ D+
R and Z2 ∈ D−

R. Recall from Section 6 of [FL3] that

(IRN(W )−1)(Z1, Z2) =
∑

l,m,n

1

2l + 1
tlnm(Z1) ·N(Z2)

−1 · tlmn(Z
−1
2 ).

By (59),

(JRN(W )−1)(Z1, Z2) = 24
−→
∂ Z1

(
(IRN(W )−1)(Z1, Z2)

)←−
∂ Z2

= −
∑

l,m,n

24

2l + 1



(l −m)t

l− 1

2

n+ 1

2
m+ 1

2

(Z1) (l −m)t
l− 1

2

n− 1

2
m+ 1

2

(Z1)

(l +m)t
l− 1

2

n+ 1

2
m− 1

2

(Z1) (l +m)t
l− 1

2

n− 1

2
m− 1

2

(Z1)




× 1

N(Z2)



(l −m+ 1)t

l+ 1

2

m− 1

2
n− 1

2

(Z−1
2 ) (l −m+ 1)t

l+ 1

2

m− 1

2
n+ 1

2

(Z−1
2 )

(l +m+ 1)t
l+ 1

2

m+ 1

2
n− 1

2

(Z−1
2 ) (l +m+ 1)t

l+ 1

2

m+ 1

2
n+ 1

2

(Z−1
2 )


 .

Additionally, assume that Z1 and Z2 are diagonal: Z1 =
(
a1 0
0 d1

)
with

|a1|, |d1| < R and Z2 =
(
a2 0
0 d2

)
with |a2|, |d2| > R, then

(64) tlnm

(
a 0
0 d

)
=

{
al−mdl+m if m = n;

0 otherwise,

and only the terms with n = m− 1,m,m+ 1 are non-zero, and it is easy to
see that

(65) (JRN(W )−1)(Z1, Z2)

=
∑

l,m

24

2l + 1

(
∂2

∂a1∂a2
+ ∂2

∂a1∂d2
0

0 ∂2

∂d1∂d2
+ ∂2

∂a2∂d1

)
al−m
1 a−l+m−1

2 dl+m
1 d−l−m−1

2

= 24

(
∂2

∂a1∂a2
+ ∂2

∂a1∂d2
0

0 ∂2

∂d1∂d2
+ ∂2

∂a2∂d1

)
log(1− d1/d2)− log(1− a1/a2)

a2d2(a1/a2 − d1/d2)
.
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Now suppose that Z1 ∈ D−
R and Z2 ∈ D+

R, then

(JRN(W )−1)(Z1, Z2) = 24
−→
∂ Z1

(
(IRN(W )−1)(Z1, Z2)

)←−
∂ Z2

= −
∑

l,m,n

24

2l + 1

1

N(Z1)

×



(l −m+ 1)t

l+ 1

2

m− 1

2
n− 1

2

(Z−1
1 ) (l −m+ 1)t

l+ 1

2

m− 1

2
n+ 1

2

(Z−1
1 )

(l +m+ 1)t
l+ 1

2

m+ 1

2
n− 1

2

(Z−1
1 ) (l +m+ 1)t

l+ 1

2

m+ 1

2
n+ 1

2

(Z−1
1 )




×



(l −m)t

l− 1

2

n+ 1

2
m+ 1

2

(Z2) (l −m)t
l− 1

2

n− 1

2
m+ 1

2

(Z2)

(l +m)t
l− 1

2

n+ 1

2
m− 1

2

(Z2) (l +m)t
l− 1

2

n− 1

2
m− 1

2

(Z2)


 .

If Z1 and Z2 are diagonal: Z1 =
(
a1 0
0 d1

)
with |a1|, |d1| > R and Z2 =

(
a2 0
0 d2

)

with |a2|, |d2| < R, then, by (64), only the terms with n = m− 1,m,m+ 1
are non-zero, and it is easy to see that

(66) (JRN(W )−1)(Z1, Z2)

=
∑

l,m

24

2l + 1

(
∂2

∂a1∂a2
+ ∂2

∂a1∂d2
0

0 ∂2

∂d1∂d2
+ ∂2

∂a2∂d1

)
a−l+m−1
1 al−m

2 d−l−m−1
1 dl+m

2

= 24

(
∂2

∂a1∂a2
+ ∂2

∂a1∂d2
0

0 ∂2

∂d1∂d2
+ ∂2

∂a2∂d1

)
log(1− d2/d1)− log(1− a2/a1)

a1d1(a2/a1 − d2/d1)
.

Adding (65) and (66), we obtain

(67)
(
(J+−

R + J−+
R )N(W )−1

)
(Z1, Z2)

= 24

(
∂2

∂a1∂a2
+ ∂2

∂a1∂d2
0

0 ∂2

∂d1∂d2
+ ∂2

∂a2∂d1

)
log(a1/a2)− log(d1/d2)

a2d2(a1/a2 − d1/d2)
,

where Z1 =
(
a1 0
0 d1

)
, Z2 =

(
a2 0
0 d2

)
∈ U(2)R. Note that in this equation log

denotes the branch of logarithm with a cut along the positive real axis.
Finally, we take a limit of (67) as Z1, Z2 → Z =

(
a 0
0 d

)
∈ U(2)R. Since we

know that the limit exists, to find its value, we can, for example, set a1 = a,
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(a) Spinor case (b) Scalar case

Figure 8. Vacuum polarization Feynman diagrams.

d1 = d2 = d and let a1/a2 → 1. We obtain

(
(J+−

R + J−+
R )N(W )−1

)
(Z1, Z2)

→ − 4

a2d2

(
1 + 2d/a 0

0 1 + 2a/d

)
= −Mx

(
1

N(Z)

)

as Z1, Z2 → Z =
(
a 0
0 d

)
∈ U(2)R (recall our earlier computation (63)). This

completes our proof that Mx0N(Z)−1 = MxN(Z)−1. □

We note that Theorem 67 in this paper and Theorem 15 in [FL3] can be
viewed as mathematical versions of the regularization of vacuum polarization
in QED and scalar QED, as it was discussed in Subsection 4.5 of [FL1]. One
just has to add, respectively, operators J++

R + J−−
R and I++

R + I−−
R , which

do not contain any singularities and are also related by the same identity
(61). Note, however, that the non-scalar case (Theorem 67) contains an ad-
ditional subtraction of the one-dimensional representation component from
F ∈ W ′ (after factorization by the intersection of the kernels of the maps
J±±
R ). Thus, one can say that the trivial one-dimensional component of W ′

that appears in the decomposition of (ρ′2,W ′) into irreducible components in
Subsection 5.2 lies at the heart of the regularization of the vacuum polariza-
tion. The subtraction of this component in the Minkowski picture is a subtle
procedure that is a part of the art of renormalization in four-dimensional
QED.

7. Algebras of quaternionic functions

In this section we construct gl(2,HC)-invariant algebra structures on (ρ1,Ж)
and (ρ′2,W ′/ kerMx). The first two subsections deal with the scalar case
(ρ1,Ж) and the following two subsections deal with the spinor case
(ρ′2,W ′/ kerMx). In the last subsection we conjecture that these algebras
have the structures of weak cyclic A∞-algebras.
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7.1. Scalar version of the convolution algebra

Recall harmonic polynomial functions on H×
C
:

H+ =
{
φ ∈ C[z11, z12, z21, z22]; □φ = 0

}

= C-span of
{
tlnm(Z)

}
,

H− =
{
φ ∈ C[z11, z12, z21, z22, N(Z)−1]; N(Z)−1 · φ(Z−1) ∈ H+

}

= C-span of
{
N(Z)−1 · tlmn(Z

−1)
}
,

H =
{
φ ∈ C[z11, z12, z21, z22, N(Z)−1]; □φ = 0

}

= H+ ⊕H−,

where l = 0, 12 , 1,
3
2 , . . . , m,n ∈ Z+ l, −l ≤ m,n ≤ l. The Lie algebra

gl(2,HC) acts on H+, H− and H via two slightly different actions π0
l and π0

r

(Subsections 2.4-2.5 in [FL1]). There is a non-degenerate gl(2,HC)-invariant
bilinear pairing between (π0

l ,H+) and (π0
r ,H−) given by the integral formula

⟨φ1, φ2⟩H =
1

2π2

∫

Z∈SU(2)
(d̃egZφ1)(Z) · φ2(Z) dS, φ1 ∈ H+, φ2 ∈ H−,

(equation (32) in [FL1]). We extend this pairing to H− ×H+ by the same
formula (or antisymmetry), and then declare pairings onH+ ×H+ andH− ×
H− to be zero (even though the integral need not be zero in these cases).
Thus we obtain a non-degenerate antisymmetric gl(2,HC)-invariant bilinear
pairing between (π0

l ,H) and (π0
r ,H).

We considerH⊗H. This space consists of polynomial C-valued functions
in two variables Z1, Z2 ∈ H×

C
that are harmonic with respect to Z1 and Z2.

We define a convolution operation on H⊗H as

(68) (f ∗ g)(Z1, Z2) = ⟨φ2, φ
′
1⟩H · φ1(Z1)⊗ φ′

2(Z2),

where f = φ1(Z1)⊗ φ2(Z2), g = φ′
1(Z1)⊗ φ′

2(Z2) ∈ H ⊗H. This operation
givesH⊗H the structure of an associative algebra. Since the bilinear pairing
is gl(2,HC)-invariant, the above convolution product is gl(2,HC)-equivariant
with respect to the π0

l ⊗ π0
r action on H⊗H.

Next, we consider a space HH consisting of infinite sums
∑

i φi(Z1)⊗
φ′
i(Z2), where φi, φ

′
i ∈ H, such that

| degree of φi + degree of φ′
i|
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is bounded. More precisely, HH consists of formal series of the form

∑

l,m,n

l′,m′,n′

a l,m,n

l′,m′,n′
tlnm(Z1) · tl

′

n′ m′(Z2)(69)

+
∑

l,m,n

l′,m′,n′

b l,m,n

l′,m′,n′
tlnm(Z1) ·N(Z2)

−1 · tl′m′ n′(Z−1
2 )

+
∑

l,m,n

l′,m′,n′

c l,m,n

l′,m′,n′
N(Z1)

−1 · tlmn(Z
−1
1 ) · tl′n′ m′(Z2)

+
∑

l,m,n

l′,m′,n′

d l,m,n

l′,m′,n′
N(Z1)

−1 · tlmn(Z
−1
1 ) ·N(Z2)

−1 · tl′m′ n′(Z−1
2 )

such that only finitely many coefficients a l,m,n

l′,m′,n′
’s, d l,m,n

l′,m′,n′
’s are non-zero and

non-zero coefficients b l,m,n

l′,m′,n′
’s, c l,m,n

l′,m′,n′
’s have bounded difference of indices

|l − l′|.

Lemma 68. The convolution operation (68) extends to HH and gives it
the structure of a gl(2,HC)-invariant associative algebra. Moreover, if f ∈
H ⊗H and g ∈ HH, then both f ∗ g and g ∗ f lie in H⊗H.

Proof. The result follows from an observation that, for a fixed index l0, there
are only finitely many non-zero coefficients

a l0,m,n

l′,m′,n′
, b l0,m,n

l′,m′,n′
, c l0,m,n

l′,m′,n′
, d l0,m,n

l′,m′,n′

with that particular index, and similarly for index l′0. □

Unlike H⊗H, HH has a unit. The expression for the unit is obtained
by formally combining two copies of matrix coefficient expansions of N(Z1 −
Z2)

−1 given in Proposition 25 from [FL1] (see also Proposition 112):

1HH = −
∑

l,m,n

tlnm(Z1) ·N(Z2)
−1 · tlmn(Z

−1
2 )(70)

+
∑

l,m,n

N(Z1)
−1 · tlmn(Z

−1
1 ) · tlnm(Z2) ∈ HH.

The fact that 1HH is indeed a unit follows from the definition of the convo-
lution operation and orthogonality relations (17) in [FL3].

The Lie algebra gl(2,HC) can act on H⊗H by at least three different
actions: π0

l ⊗ 1, 1⊗ π0
r and π0

l ⊗ π0
r . Clearly, all three actions extend to HH.

Then the convolution operation on HH is (π0
l ⊗ π0

r )-equivariant.
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For each d ∈ Z, we define operators (deg+d)−1
Z1

and (deg+d)−1
Z2

on HH
as follows. If f ∈ HH is expressed as a series (69), then

(deg+d)−1
Z1

f(Z1, Z2) =
∑

l>−d/2

m,n,l′,m′,n′

a l,m,n

l′,m′,n′

2l + d
tlnm(Z1) · tl

′

n′ m′(Z2)

+
∑

l>−d/2

m,n,l′,m′,n′

b l,m,n

l′,m′,n′

2l + d
tlnm(Z1) ·N(Z2)

−1 · tl′m′ n′(Z−1
2 )

−
∑

l>d/2−1

m,n,l′,m′,n′

c l,m,n

l′,m′,n′

2l + 2− d
N(Z1)

−1 · tlmn(Z
−1
1 ) · tl′n′ m′(Z2)

−
∑

l>d/2−1

m,n,l′,m′,n′

d l,m,n

l′,m′,n′

2l + 2− d
N(Z1)

−1 · tlmn(Z
−1
1 ) ·N(Z2)

−1 · tl′m′ n′(Z−1
2 ).

Note that if d ̸= 1, certain terms get discarded: if d > 1, terms

N(Z1)
−1 · tlmn(Z

−1
1 ) · tl′n′ m′(Z2) and

N(Z1)
−1 · tlmn(Z

−1
1 ) ·N(Z2)

−1 · tl′m′ n′(Z−1
2 )

with 0 ≤ l ≤ d/2− 1 are discarded; and if d < 1, terms

tlnm(Z1) · tl
′

n′ m′(Z2) and tlnm(Z1) ·N(Z2)
−1 · tl′m′ n′(Z−1

2 )

with 0 ≤ l ≤ −d/2 are discarded. Then (deg+d)−1
Z2

f(Z1, Z2) is defined sim-
ilarly.

Lemma 69. Let f(Z1, Z2) ∈ HH, d ∈ Z and A,B,C,D ∈ HC. We have the
following commutation relations:

(deg+d)−1
Z1

(π0
l ⊗ 1)

(
A 0
0 D

)
f(Z1, Z2) = (π0

l ⊗ 1)
(
A 0
0 D

)
(deg+d)−1

Z1
f(Z1, Z2),

(deg+d)−1
Z1

(π0
l ⊗ 1)

(
0 B
0 0

)
f(Z1, Z2) = (π0

l ⊗ 1)
(
0 B
0 0

)
(deg+d− 1)−1

Z1
f(Z1, Z2),

(deg+d)−1
Z1

(π0
l ⊗ 1)

(
0 0
C 0

)
f(Z1, Z2) = (π0

l ⊗ 1)
(

0 0
C 0

)
(deg+d+ 1)−1

Z1
f(Z1, Z2),

and similarly for (deg+d)−1
Z2

and 1⊗ π0
r .
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Lemma 70. Let f, g ∈ HH and d ∈ Z. We have the following relations:

(deg+d)−1
Z1

(f ∗ g) =
(
(deg+d)−1

Z1
f
)
∗ g,

(deg+d)−1
Z2

(f ∗ g) = f ∗
(
(deg+d)−1

Z2
g
)
,

(
(deg+d)−1

Z2
f
)
∗ g = −f ∗

(
(deg+2− d)−1

Z1
g
)
.

We define an equivariant map

I = I++ − (I+− + I−+) + I−− : (ρ1,Ж)→ (π0
l ⊗ π0

r ,HH)

as follows. Recall the maps IR given by equation (34) in Chapter 6 of [FL3],
their definition is copied here in (58). By Lemma 11 and Theorem 12 in [FL3],
if Z1, Z2 ∈ D+

R, IR is a gl(2,HC)-equivariant map (ρ1,Ж)→ (π0
l ⊗ π0

r ,H+ ⊗
H+) independent of the choice of R > 0; we call this map I++. Similarly,
if Z1, Z2 ∈ D−

R, IR is a gl(2,HC)-equivariant map (ρ1,Ж)→ (π0
l ⊗ π0

r ,H− ⊗
H−) also independent of the choice of R > 0; we call this map I−−. If f ∈Ж,

I+−(f) =
∑

l,m,n

l′,m′,n′

b(f) l,m,n

l′,m′,n′
tlnm(Z1) ·N(Z2)

−1 · tl′m′ n′(Z−1
2 ),

where

b(f) l,m,n

l′,m′,n′
=

i

2π3

∫

U(2)R

f(W ) ·N(W )−1 · tlmn(W
−1) · tl′n′ m′(W ) dV.

On the one hand, this integral does not depend on R > 0. On the other hand,
by the matrix coefficient expansion of N(Z −W )−1 given in Proposition 25
from [FL1] (see also Proposition 112), for each R > 0, the series I+−(f)
converges to (IRf)(Z1, Z2) whenever Z1 ∈ D+

R and Z2 ∈ D−
R. Similarly,

I−+(f) =
∑

l,m,n

l′,m′,n′

c(f) l,m,n

l′,m′,n′
N(Z1)

−1 · tlmn(Z
−1
1 ) · tl′n′ m′(Z2),

where

c(f) l,m,n

l′,m′,n′
= b(f) l′,m′,n′

l,m,n

=
i

2π3

∫

U(2)R

f(W ) · tlnm(W ) ·N(W )−1 · tl′m′ n′(W−1) dV.

This integral is independent of R > 0 and, for each R > 0, the series I−+(f)
converges to (IRf)(Z1, Z2) whenever Z1 ∈ D−

R and Z2 ∈ D+
R.
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Proposition 71. We have:

I(N(Z)−1) = (deg+1)−1
Z1

1HH = −(deg+1)−1
Z2

1HH.

In particular, for any g ∈ HH,

I(N(Z)−1) ∗ g = (deg+1)−1
Z1

g, g ∗ I(N(Z)−1) = −(deg+1)−1
Z2

g.

Proof. From Section 6 in [FL3], we have:

I(N(Z)−1)(Z1, Z2) = −
∑

l,m,n

N(Z2)
−1

2l + 1
tlnm(Z1) · tlmn(Z

−1
2 )

−
∑

l,m,n

N(Z1)
−1

2l + 1
tlmn(Z

−1
1 ) · tlnm(Z2).

Then the result follows from (70) and Lemma 70. □

7.2. Scalar version of the algebra of quaternionic functions

In this subsection we give (ρ1,Ж) the structure of a gl(2,HC)-invariant al-
gebra.

Definition 72. Let HHω denote the subspace of HH generated by H⊗H,
I(Ж), application of operators (deg+d)−1

Z1
and (deg+d)−1

Z2
, d ∈ Z, as well as

actions π0
l ⊗ 1 and 1⊗ π0

r of gl(2,HC).

Thus, by definition, HHω is invariant under the π0
l ⊗ π0

r action of
gl(2,HC). We want to reduce the number of generators of HHω.

Lemma 73. The space HHω is generated by H⊗H, elements of the type

I(N(Z)−1), (deg+d1)
−1
Z1

I(N(Z)−1), (deg+d1)
−1
Z2

I(N(Z)−1),

(deg+d2)
−1
Z1

(deg+d1)
−1
Z1

I(N(Z)−1), (deg+d2)
−1
Z1

(deg+d1)
−1
Z2

I(N(Z)−1),

(deg+d2)
−1
Z2

(deg+d1)
−1
Z2

I(N(Z)−1),

(deg+d3)
−1
Z1

(deg+d2)
−1
Z1

(deg+d1)
−1
Z1

I(N(Z)−1), . . .

as well as actions π0
l ⊗ 1 and 1⊗ π0

r of gl(2,HC).

Proof. Since Ж = Ж
− ⊕Ж

0 ⊕Ж
+, I(Ж− ⊕Ж

+) ⊂ H⊗H and Ж
0 is gen-

erated by N(Z)−1, HHω can be generated by H⊗H and I(N(Z)−1) instead
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of H⊗H and I(Ж). Notice that applying (deg+d)−1
Z1

or (deg+d)−1
Z2

to an el-
ement of H⊗H results in another element of H⊗H. Then the result follows
from Lemma 69. □

Proposition 74. The space HHω is closed under the convolution operation:
if f, g ∈ HHω, then f ∗ g also lies in HHω.

Proof. First, observe that if f or g ∈ H ⊗H, then, by Lemma 68,

f ∗ g ∈ H ⊗H ⊂ HHω.

Since the convolution operation is (π0
l ⊗ π0

r )-equivariant,

(
(π0

l ⊗ π0
r )(X)f

)
∗ g = (π0

l ⊗ π0
r )(X)(f ∗ g)− f ∗

(
(π0

l ⊗ π0
r )(X)g

)
,

for all X ∈ gl(2,HC). And by Lemmas 70 and 73, it is sufficient to prove
the proposition for the case f is one of the generators of HHω of the form
I(N(Z)−1) with operators (deg+di)

−1
Z1

and (deg+dj)
−1
Z2

applied several times.
Then Lemma 70 reduces this further to the case f = I(N(Z)−1), and the re-
sult follows from Proposition 71. □

Next, we realize elements of HHω as analytic functions as opposed to for-
mal series. For Z1, Z2 ∈ H×

C
, let λ1 and λ2 denote the eigenvalues of Z1Z

−1
2 ,

and introduce open subsets of H×
C
×H×

C

Ω = {(Z1, Z2) ∈ H×
C
×H×

C
; neither λ1 nor λ2 is a positive real number},

Λ+ = {(Z1, Z2) ∈ H×
C
×H×

C
; sign(Imλ1) > 0, sign(Imλ2) > 0},

Λ− = {(Z1, Z2) ∈ H×
C
×H×

C
; sign(Imλ1) < 0, sign(Imλ2) < 0}.

Then Λ+,Λ− ⊂ Ω.

Lemma 75. The elements of HHω can be realized as analytic functions on
Ω.

Proof. Elements of H⊗H are polynomials, hence can be treated as analytic
functions on Ω. On the other hand,

I(N(Z)−1) = −I+−(N(Z)−1)− I−+(N(Z)−1).

As was shown in Section 6 of [FL3], the series I+−(N(Z)−1) converges on
D+
R × D−

R and extends analytically to Ω. Similarly, the series I−+(N(Z)−1)
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converges on D−
R × D+

R and also extends analytically to Ω. Just as we ex-
pressed (deg+2)−1 as an integral operator in Subsection 2.4, integral expres-
sions can be found for (deg+d)−1

Z1
and (deg+d)−1

Z2
, d ∈ Z. This shows that the

result of application of such operators to I+−(N(Z)−1) and I−+(N(Z)−1)
is analytic on Ω as well. Finally, the actions π0

l ⊗ 1 and 1⊗ π0
r of gl(2,HC)

preserve analyticity of functions. □

Each f ∈ HHω is harmonic with respect to Z1 and Z2:

□Z1
f(Z1, Z2) = 0 = □Z2

f(Z1, Z2).

We have the following inclusions:

H⊗H ⊂ HHω ⊂ HH.

Thus, we can think of HHω as a completion of H⊗H.

Definition 76. We call a function f ∈ HHω extendable if, for each Z0 ∈
H×

C
, there exists an open neighborhood V ⊂ H×

C
×H×

C
of (Z0, Z0) and two

functions f+ and f− analytic on V such that f = f+ for all points in Λ+ ∩ V
and f = f− for all points in Λ− ∩ V .

Informally, extendable functions are functions f whose restrictions f |Λ+

and f |Λ− extend analytically across the diagonal in H×
C
×H×

C
. Clearly, ele-

ments of H⊗H are extendable. Also, the following observation is obvious,
but will be used in the future.

Lemma 77. The extendable functions in HHω form a subspace that is in-
variant under the actions π0

l ⊗ 1, 1⊗ π0
r and π0

l ⊗ π0
r of gl(2,HC).

Remark 78. We expect all functions in HHω to be extendable.

Lemma 79. For each f ∈Ж, I(f) is extendable and can be written as a
finite linear combination of analytic functions on Ω that are homogeneous in
Z1 and Z2.

Proof. Recall that Ж = Ж
− ⊕Ж

0 ⊕Ж
+. If f ∈ I(Ж− ⊕Ж

+), then I(f) ∈
H ⊗H is extendable and can be written as a finite linear combination of
homogeneous functions. On the other hand, expression (62) shows that
I(N(Z)−1) is extendable and homogeneous in Z1 and Z2 (of degree −1 in
each variable). Since N(Z)−1 generates Ж

0, it follows from Lemma 77 that
the result is true for all f ∈Ж

0. □
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Let f be an extendable function. Even though it may be singular along
the diagonal, we still can construct two analytic functions on H×

C
:

(Diag+ f)(Z) = lim
Z1,Z2→Z

(Z1,Z2)∈Λ+

f(Z1, Z2) and

(Diag− f)(Z) = lim
Z1,Z2→Z

(Z1,Z2)∈Λ−

f(Z1, Z2).

In some cases, applying Diag+ and Diag− may yield different results, we will
see a concrete example in Proposition 87. Note also that functions Diag+ f
and Diag− f need not be elements of Ж because they may not be poly-
nomials on H×

C
. Nevertheless, the operators Diag+ and Diag− intertwine

the gl(2,HC)-actions π0
l ⊗ π0

r on extendable functions in HHω and ρ1 on
C-valued analytic functions on H×

C
.

Lemma 80. If f(Z1, Z2) ∈ H ⊗H, then

Diag+ f = Diag− f ∈Ж.

Proof. Note that, when restricted to H⊗H, both Diag+ and Diag− reduce
to the multiplication map H⊗H →Ж. □

Theorem 81. Let f, g ∈Ж, then I(f) ∗ I(g) is extendable and

(71) Diag+
(
I(f) ∗ I(g)

)
, Diag−

(
I(f) ∗ I(g)

)
∈Ж.

Proof. Recall that Ж = Ж
− ⊕Ж

0 ⊕Ж
+. If f or g ∈Ж

− ⊕Ж
+, then I(f) or

I(g) ∈ H ⊗H. Then, by Lemma 68, I(f) ∗ I(g) ∈ H ⊗H, hence I(f) ∗ I(g)
is extendable and (71) is true.

It remains to consider the case f, g ∈Ж
0. Since Ж

0 is irreducible and
generated by N(Z)−1, the result follows from Proposition 71 and Lemmas
69, 77 and 82. □

Lemma 82. For each d ∈ Z,

(deg+d)−1
Z1

I(N(Z)−1) and (deg+d)−1
Z2

I(N(Z)−1)

are extendable. Furhermore,

Diag+
(
(deg+d)−1

Z1
I(N(Z)−1)

)
, Diag−

(
(deg+d)−1

Z1
I(N(Z)−1)

)
,

Diag+
(
(deg+d)−1

Z2
I(N(Z)−1)

)
, Diag−

(
(deg+d)−1

Z2
I(N(Z)−1)

)

are proportional to N(Z)−1, and hence elements of Ж.
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Proof. First, we consider the case d = 1. Recall the dilogarithm function:

Li2(z) =

∞∑

k=1

zk

k2
,

it extends to an analytic function on C with a cut along [1,∞). It also
satisfies a well known identity

Li2(z) + Li2(1/z) = −
π2

6
− 1

2
log2(−z)

(see, for example, [Z]). As we saw in the proof of Proposition 71,

I+−(N(Z)−1)(Z1, Z2) =
∑

l,m,n

N(Z2)
−1

2l + 1
tlnm(Z1) · tlmn(Z

−1
2 ),

I−+(N(Z)−1)(Z1, Z2) =
∑

l,m,n

N(Z1)
−1

(2l + 1)2
tlmn(Z

−1
1 ) · tlnm(Z2).

We have:

(deg+1)−1
Z1

I+−(N(Z)−1)(Z1, Z2) = −(deg+1)−1
Z2

I+−(N(Z)−1)(Z1, Z2)

=
∑

l,m,n

N(Z2)
−1

(2l + 1)2
tlnm(Z1) · tlmn(Z

−1
2 ).

Recall that λ1 and λ2 are the eigenvalues of Z1Z
−1
2 . Then, following calcu-

lations (36) from [FL3],

(deg+1)−1
Z1

I+−(N(Z)−1)(Z1, Z2) = −(deg+1)−1
Z2

I+−(N(Z)−1)(Z1, Z2)

=
∑

l

N(Z2)
−1

(2l + 1)2
λ2l+1
1 − λ2l+1

2

λ1 − λ2
=

1

N(Z2)

Li2(λ1)− Li2(λ2)

λ1 − λ2
.

Similarly,

(deg+1)−1
Z1

I−+(N(Z)−1)(Z1, Z2) = −(deg+1)−1
Z2

I−+(N(Z)−1)(Z1, Z2)

= −
∑

l,m,n

N(Z1)
−1

(2l + 1)2
tlmn(Z

−1
1 ) · tlnm(Z2) = −

∑

l

N(Z1)
−1

(2l + 1)2
λ
−(2l+1)
1 − λ

−(2l+1)
2

λ−1
1 − λ−1

2

= − 1

N(Z1)

Li2(λ
−1
1 )− Li2(λ

−1
2 )

λ−1
1 − λ−1

2

=
1

N(Z2)

Li2(λ
−1
1 )− Li2(λ

−1
2 )

λ1 − λ2
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(recall that N(Z1) = λ1λ2 ·N(Z2)). Thus,

(deg+1)−1
Z1

I(N(Z)−1)(Z1, Z2) = −(deg+1)−1
Z2

I(N(Z)−1)(Z1, Z2)(72)

= − 1

N(Z2)

Li2(λ1) + Li2(λ
−1
1 )− Li2(λ2)− Li2(λ

−1
2 )

λ1 − λ2

=
1

N(Z2)

log2(−λ1)− log2(−λ2)

2(λ1 − λ2)
.

If λ1 = λ2 = λ ̸= 1, we get

1

N(Z2)

log(−λ)
λ

.

This shows that (deg+1)−1
Z1

I(N(Z)−1) and (deg+1)−1
Z2

I(N(Z)−1) are ex-
tendable and applying Diag+ or Diag− results in scalar multiples of N(Z)−1.

Now, suppose that d > 1. Consider a power series

p(z) =

∞∑

k=1

zk

k(k + d− 1)
.

Then
(
zd−1p(z)

)′
=

∞∑

k=1

zk+d−2

k
= −zd−2 log(1− z),

and

p(z) = −z1−d

∫ z

0
td−2 log(1− t) dt

= − z1−d

d− 1

(
zd−1 log(1− z)−

∫ z

0

td−1

t− 1
dt

)

=
1

d− 1
(z1−d − 1) log(1− z) +

1

d− 1

d−1∑

k=1

zk−d+1

k
.

Similarly, consider another power series

q(z) =

∞∑

k=d

zk

k(k + 1− d)
.

Then

q′(z) =

∞∑

k=d

zk−1

k + 1− d
= −zd−2 log(1− z),
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and

q(z) =
1

d− 1
(1− zd−1) log(1− z) +

1

d− 1

d−1∑

k=1

zk

k
.

We have:

(deg+d)−1
Z1

I+−(N(Z)−1)(Z1, Z2)

=
∑

l,m,n

N(Z2)
−1

(2l + 1)(2l + d)
tlnm(Z1) · tlmn(Z

−1
2 )

=
∑

l

N(Z2)
−1

(2l + 1)(2l + d)

λ2l+1
1 − λ2l+1

2

λ1 − λ2
=

1

N(Z2)

p(λ1)− p(λ2)

λ1 − λ2
.

Similarly,

(deg+d)−1
Z1

I−+(N(Z)−1)(Z1, Z2)

= −
∑

l,m,n

N(Z1)
−1

(2l + 1)(2l + 2− d)
tlmn(Z

−1
1 ) · tlnm(Z2)

= −
∑

l>d/2−1

N(Z1)
−1

(2l + 1)(2l + 2− d)

λ
−(2l+1)
1 − λ

−(2l+1)
2

λ−1
1 − λ−1

2

= − 1

N(Z1)

q(λ−1
1 )− q(λ−1

2 )

λ−1
1 − λ−1

2

=
1

N(Z2)

q(λ−1
1 )− q(λ−1

2 )

λ1 − λ2

(recall that N(Z1) = λ1λ2 ·N(Z2)). Using

log(1− λ)− log(1− λ−1) = log(−λ),

we obtain

(deg+d)−1
Z1

I(N(Z)−1)(Z1, Z2)(73)

= − 1

N(Z2)

p(λ1) + q(λ−1
1 )− p(λ2)− q(λ−1

2 )

λ1 − λ2

=
1

N(Z2)

(1− λ1−d
1 ) log(−λ1)− (1− λ1−d

2 ) log(−λ2)

(d− 1)(λ1 − λ2)

− N(Z2)
−1

d− 1

d−1∑

k=1

λk−d+1
1 + λ−k

1 − λk−d+1
2 − λ−k

2

k(λ1 − λ2)
.
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In the same fashion we also obtain:

(deg+d)−1
Z2

I(N(Z)−1)(Z1, Z2)(74)

= − 1

N(Z2)

q(λ1) + p(λ−1
1 )− q(λ2)− p(λ−1

2 )

λ1 − λ2

=
1

N(Z2)

(λd−1
1 − 1) log(−λ1)− (λd−1

2 − 1) log(−λ2)

(d− 1)(λ1 − λ2)

− N(Z2)
−1

d− 1

d−1∑

k=1

λk
1 + λd−k−1

1 − λk
2 − λd−k−1

2

k(λ1 − λ2)
.

Then equations (73) and (74) show that (deg+d)−1
Z1

I(N(Z)−1) and

(deg+d)−1
Z2

I(N(Z)−1)(Z1, Z2) are extendable and applying Diag+ or Diag−

results in scalar multiples of N(Z)−1. The case d < 1 is similar. □

Theorem 81 allows us to define two gl(2,HC)-invariant multiplication
operations on Ж as follows.

Definition 83. Let f, g ∈Ж, define

f ∗+ g = Diag+
(
I(f) ∗ I(g)

)
,

f ∗− g = Diag−
(
I(f) ∗ I(g)

)
.

Lemma 84. The two multiplication operations are related to each other as
follows:

f ∗+ g = f ∗− g if f or g is in Ж
− ⊕Ж

+,

N(Z)−1 ∗+ N(Z)−1 = −N(Z)−1 ∗− N(Z)−1 = −πi ·N(Z)−1.

Proof. If f or g ∈Ж
− ⊕Ж

+, then I(f) or I(g) ∈ H ⊗H. Then, by Lemma
68, I(f) ∗ I(g) ∈ H ⊗H and, by Lemma 80,

Diag+
(
I(f) ∗ I(g)

)
= Diag−

(
I(f) ∗ I(g)

)
.

On the other hand, Proposition 71 and our previous calculations (72) show
that

Diag+
(
IN(Z)−1 ∗ IN(Z)−1

)

= lim
Z1,Z2→Z

(Z1,Z2)∈Λ+

(deg+1)−1
Z1

I(N(Z)−1)(Z1, Z2) = −
πi

N(Z)
,
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Diag−
(
IN(Z)−1 ∗ IN(Z)−1

)

= lim
Z1,Z2→Z

(Z1,Z2)∈Λ−

(deg+1)−1
Z1

I(N(Z)−1)(Z1, Z2) =
πi

N(Z)
.

□

Proposition 85. One can also consider multiplications obtained by taking
linear combinations of f ∗+ g and f ∗− g. Thus we obtain a one-parameter
family of gl(2,HC)-invariant multiplications on Ж.

Example 86. In this example we show that the multiplication operations
∗+ and ∗− on Ж are not associative.

Proof. Consider elements f1(Z) = N(Z)−1, f2(Z) = 1 and f3(Z) = N(Z)−2

of Ж. Then

I(f2) = 1, I(f3) = N(Z1)
−1 ·N(Z2)

−1.

By Proposition 71,

I(f1) ∗ I(f2) = 1, I(f2) ∗ I(f3) = N(Z2)
−1,

I(f1) ∗ I(f2) ∗ I(f3) = N(Z2)
−1.

Hence

f1 ∗± f2 = 1, f2 ∗± f3 = N(Z)−1, (f1 ∗± f2) ∗± f3 = N(Z)−1.

On the other hand, by Lemma 84,

f1 ∗+ (f2 ∗± f3) = −πi ·N(Z)−1, f1 ∗− (f2 ∗± f3) = πi ·N(Z)−1.

We also have

Diag+
(
I(f1) ∗ I(f2) ∗ I(f3)

)
= Diag−

(
I(f1) ∗ I(f2) ∗ I(f3)

)
= N(Z)−1.

□
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Proposition 87. For each positive integer n,

I(N(Z)−1) ∗ · · · ∗ I(N(Z)−1)︸ ︷︷ ︸
n times

∈ HHω

is extendable and

Diag+
(
I(N(Z)−1) ∗ · · · ∗ I(N(Z)−1)︸ ︷︷ ︸

n times

)
= κ+n ·N(Z)−1,

Diag−
(
I(N(Z)−1) ∗ · · · ∗ I(N(Z)−1)︸ ︷︷ ︸

n times

)
= κ−n ·N(Z)−1,

where

κ+n = −(2πi)n−1Bn−1(1)

(n− 1)!
, κ−n = −(2πi)n−1Bn−1(0)

(n− 1)!
.

Proof. Recall the polylogarithm function:

Lin(z) =

∞∑

k=1

zk

kn
,

it extends to an analytic function on C with a cut along [1,∞). It also
satisfies an identity

Lin(z) + (−1)n Lin(1/z) = −
(2πi)n

n!
Bn

(1
2
− log(−z)

2πi

)
, z /∈ (0,∞),

where Bn are the Bernoulli polynomials (equation 1.11(18) in [Er] as well as
its correction on Wikipedia’s Polylogarithm page).

By Proposition 71, we have:

I(N(Z)−1) ∗ · · · ∗ I(N(Z)−1)︸ ︷︷ ︸
n− 1 times

∗I+−(N(Z)−1)

= (deg+1)−1
Z1

. . . (deg+1)−1
Z1︸ ︷︷ ︸

n− 1 times

∑

l,m,n

N(Z2)
−1

2l + 1
tlnm(Z1) · tlmn(Z

−1
2 )

=
∑

l

N(Z2)
−1

(2l + 1)n
λ2l+1
1 − λ2l+1

2

λ1 − λ2
=

1

N(Z2)

Lin(λ1)− Lin(λ2)

λ1 − λ2
.
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Similarly,

I(N(Z)−1) ∗ · · · ∗ I(N(Z)−1)︸ ︷︷ ︸
n− 1 times

∗I+−(N(Z)−1)

= (deg+1)−1
Z1

. . . (deg+1)−1
Z1︸ ︷︷ ︸

n− 1 times

∑

l,m,n

N(Z1)
−1

2l + 1
tlmn(Z

−1
1 ) · tlnm(Z2)

= (−1)n−1
∑

l

N(Z1)
−1

(2l + 1)n
λ
−(2l+1)
1 − λ

−(2l+1)
2

λ−1
1 − λ−1

2

=
(−1)n−1

N(Z1)

Lin(λ
−1
1 )− Lin(λ

−1
2 )

λ−1
1 − λ−1

2

=
(−1)n
N(Z2)

Lin(λ
−1
1 )− Lin(λ

−1
2 )

λ1 − λ2

(recall that N(Z1) = λ1λ2 ·N(Z2)). Thus,

I(N(Z)−1) ∗ · · · ∗ I(N(Z)−1)︸ ︷︷ ︸
n times

= − 1

N(Z2)

Lin(λ1) + (−1)n Lin(λ−1
1 )− Lin(λ2)− (−1)n Lin(λ−1

2 )

λ1 − λ2

=
(2πi)n

n!N(Z2)

Bn

(
1
2 −

log(−λ1)
2πi

)
−Bn

(
1
2 −

log(−λ2)
2πi

)

λ1 − λ2
.

If λ1, λ2 → 1 with sign(Imλ1), sign(Imλ2) > 0,

(2πi)n

n!N(Z2)

Bn

(
1
2 −

log(−λ1)
2πi

)
−Bn

(
1
2 −

log(−λ2)
2πi

)

λ1 − λ2
→ −(2πi)n−1B

′
n(1)

n!

1

N(Z2)
;

and if λ1, λ2 → 1 with sign(Imλ1), sign(Imλ2) < 0,

(2πi)n

n!N(Z2)

Bn

(
1
2 −

log(−λ1)
2πi

)
−Bn

(
1
2 −

log(−λ2)
2πi

)

λ1 − λ2
→ −(2πi)n−1B

′
n(0)

n!

1

N(Z2)
.

Since the Bernoulli polynomials satisfy

B′
n(z) = nBn−1(z)

(see, for example, [Er]), the result follows. □
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Remark 88. It is well known (see, for example, [Er]) that Bn(0) is the n-th
Bernoulli number Bn and that

Bn(1) = Bn(0), n ≥ 2,

B0(0) = B0(1) = 1, B1(0) = −1/2, B1(1) = 1/2,

B2n+1 = 0, n = 1, 2, 3, . . . .

7.3. Convolution algebra

Recall the bases of left and right regular polynomial functions on H×
C

with
values in S and S′ respectively that were introduced in Proposition 24 of
[FL1]:

v+l,m,n(Z) =

(
(l−m+ 1

2
)tl

nm+1
2

(Z)

(l+m+ 1

2
)tl

nm− 1
2

(Z)

)
,

l=0, 1
2
,1, 3

2
,...,

m=−l− 1

2
,−l+ 3

2
,...,l+ 1

2
,

n=−l,−l+1,...,l;

v−l,m,n(Z) =

(
(l−m+ 1

2
)N(Z)−1·tl

m− 1
2

n
(Z−1)

(l+m+ 1

2
)N(Z)−1·tl

m+1
2

n
(Z−1)

)
,

l= 1

2
,1, 3

2
,2,...,

m=−l+ 1

2
,−l+ 3

2
,...,l− 1

2
,

n=−l,−l+1,...,l;

v′+l,m,n(Z) =
(
t
l− 1

2

n+ 1

2
m
(Z), t

l− 1

2

n− 1

2
m
(Z)
)
,

l= 1

2
,1, 3

2
,2,...,

m=−l+ 1

2
,−l+ 3

2
,...,l− 1

2
,

n=−l,−l+1,...,l;

v′−l,m,n(Z) =
(
N(Z)−1 · tl+

1

2

mn− 1

2

(Z−1), N(Z)−1 · tl+
1

2

mn+ 1

2

(Z−1)
)
,

l=0, 1
2
,1, 3

2
,...,

m=−l− 1

2
,−l+ 3

2
,...,l+ 1

2
,

n=−l,−l+1,...,l.

Then

V+ =
{
f ∈ S⊗ C[z11, z12, z21, z22]; ∇+f = 0

}

= C-span of

{
v+l,m,n(Z);

l=0, 1
2
,1, 3

2
,...,

m=−l− 1

2
,−l+ 3

2
,...,l+ 1

2
,

n=−l,−l+1,...,l

}
,

V− =
{
f ∈ S⊗ C[z11, z12, z21, z22, N(Z)−1]; N(Z)−1 · Z−1 · f(Z−1) ∈ V+

}

= C-span of

{
v−l,m,n(Z);

l= 1

2
,1, 3

2
,2,...,

m=−l+ 1

2
,−l+ 3

2
,...,l− 1

2
,

n=−l,−l+1,...,l

}
,

V =
{
f ∈ S⊗ C[z11, z12, z21, z22, N(Z)−1]; ∇+f = 0

}

= V+ ⊕ V−;
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V ′+ =
{
g ∈ S′ ⊗ C[z11, z12, z21, z22]; g∇+ = 0

}

= C-span of

{
v′+l,m,n(Z);

l= 1

2
,1, 3

2
,2,...,

m=−l+ 1

2
,−l+ 3

2
,...,l− 1

2
,

n=−l,−l+1,...,l

}
,

V ′− =
{
g ∈ S′ ⊗ C[z11, z12, z21, z22, N(Z)−1]; N(Z)−1 · g(Z−1) · Z−1 ∈ V ′+

}

= C-span of

{
v′−l,m,n(Z);

l=0, 1
2
,1, 3

2
,...,

m=−l− 1

2
,−l+ 3

2
,...,l+ 1

2
,

n=−l,−l+1,...,l

}
,

V ′ =
{
g ∈ S′ ⊗ C[z11, z12, z21, z22, N(Z)−1]; g∇+ = 0

}

= V ′+ ⊕ V ′−.

The Lie algebra gl(2,HC) acts on V and V ′ via πl and πr respectively. There
is a non-degenerate gl(2,HC)-invariant bilinear pairing between (πr,V ′) and
(πl,V) given by the integral formula

⟨g, f⟩V =
1

2π2

∫

Z∈SU(2)
g(Z) ·Dz · f(Z), g ∈ V ′, f ∈ V,

(equation (29) in [FL1]). The above basis functions satisfy the following
orthogonality relations:

⟨v′−l,m,n, v
+
l′,m′,n′⟩V = δll′δmm′δnn′ ,(75)

⟨v′+l,m,n, v
−
l′,m′,n′⟩V = δll′δmm′δnn′ ,(76)

⟨v′+l,m,n, v
+
l′,m′,n′⟩V = ⟨v′−l,m,n, v

−
l′,m′,n′⟩V = 0(77)

(Proposition 24 in [FL1]).
We consider V ⊗ V ′. This space consists of polynomial HC-valued func-

tions in two variables Z1, Z2 ∈ H×
C

that are left regular with respect to Z1

and right regular with respect to Z2. We have a multiplication (or restriction
to the diagonal) operation

Mult : V ⊗ V ′ →W, v(Z1)⊗ v′(Z2) 7→ v(Z) · v′(Z).

It is clearly gl(2,HC)-equivariant with respect to the πl ⊗ πr action on V ⊗ V ′
and ρ2 action on W .

Proposition 89. The image under the multiplication map Mult : V ⊗ V ′ →
W is precisely Q+ ⊕Q0 ⊕Q−.

Proof. Multiplying generators of V and V ′, one checks that the image of
V ⊗ V ′ containsQ+,Q0 andQ−. Thus it remains to show the other inclusion.
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It is easy to see that Tr ◦∂+ annihilates the image, hence Mult(V ⊗ V ′) ⊂
ker(Tr ◦∂+). Recall that the decomposition of ker(Tr ◦∂+) into irreducible
components was obtained in Subsection 5.1. By Theorem 28 from [FL1], V ,
V ′ and hence V ⊗ V ′ have inner products such that the real form u(2, 2)
of gl(2,HC) acts unitarily. In particular, (πl ⊗ πr,V ⊗ V ′) is semisimple. It
follows that the other irreducible components of ker(Tr ◦∂+) cannot appear
in the image of the multiplication map because they are not semisimple. □

We define convolution operation on V ⊗ V ′ as

(F ∗G)(Z1, Z2) =
1

2π2

∫

W∈SU(2)
F (Z1,W ) ·Dw ·G(W,Z2), F,G ∈ V ⊗ V ′.

Alternatively, this operation can be defined on pure tensors as follows. If
F (Z1, Z2) = v(Z1)⊗ v′(Z2), G(Z1, Z2) = w(Z1)⊗ w′(Z2) ∈ V ⊗ V ′, then

(78) (F ∗G)(Z1, Z2) = ⟨v′, w⟩V · v(Z1)⊗ w′(Z2).

This operation gives V ⊗ V ′ the structure of an associative algebra. Since
the bilinear pairing is gl(2,HC)-invariant, the above convolution product is
gl(2,HC)-equivariant with respect to the πl ⊗ πr action on V ⊗ V ′.

Next, we consider a space A consisting of infinite sums
∑

i vi(Z1)⊗
v′i(Z2), where vi ∈ V, v′i ∈ V ′, such that

| degree of vi + degree of v′i|

is bounded. More precisely, A consists of formal series of the form

∑

l,m,n

l′,m′,n′

a l,m,n

l′,m′,n′
v+l,m,n(Z1) · v′+l′,m′,n′(Z2)(79)

+
∑

l,m,n

l′,m′,n′

b l,m,n

l′,m′,n′
v+l,m,n(Z1) · v′−l′,m′,n′(Z2)

+
∑

l,m,n

l′,m′,n′

c l,m,n

l′,m′,n′
v−l,m,n(Z1) · v′+l′,m′,n′(Z2)

+
∑

l,m,n

l′,m′,n′

d l,m,n

l′,m′,n′
v−l,m,n(Z1) · v′−l′,m′,n′(Z2)

such that only finitely many coefficients a l,m,n

l′,m′,n′
’s, d l,m,n

l′,m′,n′
’s are non-zero and

non-zero coefficients b l,m,n

l′,m′,n′
’s, c l,m,n

l′,m′,n′
’s have bounded difference of indices

|l − l′|. We have an analogue of Lemma 68, its proof is exactly the same.
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Lemma 90. The convolution operation (78) extends to A and gives it the
structure of a gl(2,HC)-invariant associative algebra. Moreover, if F ∈ V ⊗
V ′ and G ∈ A, then both F ∗G and G ∗ F lie in V ⊗ V ′.

Unlike V ⊗ V ′, A has a unit. The expression for the unit is obtained by
formally combining the two matrix coefficient expansions of (Z1−Z2)−1

N(Z1−Z2)
given

in Proposition 26 from [FL1] (see also Proposition 113):

(80) 1A =
∑

l,m,n

v+l,m,n(Z1) · v′−l,m,n(Z2) +
∑

l,m,n

v−l,m,n(Z1) · v′+l,m,n(Z2) ∈ A.

The fact that 1A is indeed a unit follows from the definition of the convolution
operation and orthogonality relations (75)–(77).

The Lie algebra gl(2,HC) can act on V ⊗ V ′ by at least three different
actions: πl ⊗ 1, 1⊗ πr and πl ⊗ πr. Clearly, all three actions extend to A.
Then the convolution operation on A is (πl ⊗ πr)-equivariant.

Similarly to how we did in the case ofHH, we define operators (deg+d)−1
Z1

and (deg+d)−1
Z2

on A, where d ∈ Z. If F ∈ A is expressed as a series (79),
then

(deg+d)−1
Z1

F (Z1, Z2) =
∑

l>−d/2

m,n,l′,m′,n′

a l,m,n

l′,m′,n′

2l + d
v+l,m,n(Z1) · v′+l′,m′,n′(Z2)

+
∑

l>−d/2

m,n,l′,m′,n′

b l,m,n

l′,m′,n′

2l + d
v+l,m,n(Z1) · v′−l′,m′,n′(Z2)

−
∑

l>d/2−1

m,n,l′,m′,n′

c l,m,n

l′,m′,n′

2l + 2− d
v−l,m,n(Z1) · v′+l′,m′,n′(Z2)

−
∑

l>d/2−1

m,n,l′,m′,n′

d l,m,n

l′,m′,n′

2l + 2− d
v−l,m,n(Z1) · v′−l′,m′,n′(Z2).

Note that if d ̸= 1 or 2, certain terms get discarded. Then

(deg+d)−1
Z2

F (Z1, Z2)

is defined similarly. We have analogues of Lemmas 69 and 70:
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Lemma 91. Let F (Z1, Z2) ∈ A, d ∈ Z and A,B,C,D ∈ HC. We have the
following commutation relations:

(deg+d)−1
Z1

(πl ⊗ 1)
(
A 0
0 D

)
F (Z1, Z2) = (πl ⊗ 1)

(
A 0
0 D

)
(deg+d)−1

Z1
F (Z1, Z2),

(deg+d)−1
Z1

(πl ⊗ 1)
(
0 B
0 0

)
F (Z1, Z2) = (πl ⊗ 1)

(
0 B
0 0

)
(deg+d− 1)−1

Z1
F (Z1, Z2),

(deg+d)−1
Z1

(πl ⊗ 1)
(

0 0
C 0

)
F (Z1, Z2) = (πl ⊗ 1)

(
0 0
C 0

)
(deg+d+ 1)−1

Z1
F (Z1, Z2),

and similarly for (deg+d)−1
Z2

and 1⊗ πr.

Lemma 92. Let F,G ∈ A and d ∈ Z. We have the following relations:

(deg+d)−1
Z1

(F ∗G) =
(
(deg+d)−1

Z1
F
)
∗G,

(deg+d)−1
Z2

(F ∗G) = F ∗
(
(deg+d)−1

Z2
G
)
,

(
(deg+d)−1

Z2
F
)
∗G = −F ∗

(
(deg+3− d)−1

Z1
G
)
.

We define an equivariant map

J = J++ − (J+− + J−+) + J−− : (ρ′2,W ′)→ (πl ⊗ πr,A)

as follows. Recall the maps JR given by equation (57). By Theorem 65, if
Z1, Z2 ∈ D+

R, JR is a gl(2,HC)-equivariant map (ρ′2,W ′)→ (πl ⊗ πr,V+ ⊗
V ′+) independent of the choice of R > 0; we call this map J++. Similarly,
if Z1, Z2 ∈ D−

R, JR is a gl(2,HC)-equivariant map (ρ′2,W ′)→ (πl ⊗ πr,V− ⊗
V ′−) also independent of R > 0; we call this map J−−. If F ∈ W ′,

J+−(F ) =
∑

l,m,n

l′,m′,n′

b(F ) l,m,n

l′,m′,n′
v+l,m,n(Z1) · v′−l′,m′,n′(Z2),

where

b(F ) l,m,n

l′,m′,n′
=

12

π3i

∫

U(2)R

v′−l,m,n(W ) · F (W ) · v+l′,m′,n′(W ) dV.

On the one hand, this integral does not depend on R > 0. On the other hand,
by the matrix coefficient expansions of (Z−W )−1

N(Z−W ) given in Proposition 26 from

[FL1] (see also Proposition 113), for each R > 0, the series J+−(F ) converges
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to (JRF )(Z1, Z2) whenever Z1 ∈ D+
R and Z2 ∈ D−

R. Similarly,

J−+(F ) =
∑

l,m,n

l′,m′,n′

c(F ) l,m,n

l′,m′,n′
v−l,m,n(Z1) · v′+l′,m′,n′(Z2),

where

c(F ) l,m,n

l′,m′,n′
=

12

π3i

∫

U(2)R

v′+l,m,n(W ) · F (W ) · v−l′,m′,n′(W ) dV.

This integral is independent of R > 0 and, for each R > 0, the series J−+(F )
converges to (JRF )(Z1, Z2) whenever Z1 ∈ D−

R and Z2 ∈ D+
R.

Lemma 93. We have:

J
(
N(Z)−1 · Z

)
= 24 · 1A.

Proof. The result follows immediately from Proposition 66 and expression
(80). □

Choose a generator

N(Z)−1 · H̃0,0,0(Z) = N(Z)−1 ·
(
1 0
0 0

)
∈ Q′0.

We conclude this subsection with an analogue of Proposition 71:

Proposition 94. We have:

J
(
N(W )−1 · H̃0,0,0(W )

)
= 24(∂11)Z1

(deg+1)−1
Z1

1A

= 24(∂11)Z2
(deg+1)−1

Z2
1A.

In particular, for any G ∈ A,

J
(
N(W )−1 · H̃0,0,0(W )

)
∗G = 24(∂11)Z1

(deg+1)−1
Z1

G(Z1, Z2),

G ∗ J
(
N(W )−1 · H̃0,0,0(W )

)
= 24(∂11)Z2

(deg+1)−1
Z2

G(Z1, Z2).
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Proof. We start by computing J+− of N(W )−1 · H̃0,0,0(W ):

J+−
(
N(W )−1 · H̃0,0,0(W )

)
(Z1, Z2)

=
∑

l,m,n

l′,m′,n′

b(F ) l,m,n

l′,m′,n′
v+l,m,n(Z1) · v′−l′,m′,n′(Z2),

where

π3i

12
· b(F ) l,m,n

l′,m′,n′
=

∫

U(2)R

v′−l,m,n(W ) ·N(W )−1 ·
(
1 0
0 0

)
· v+l′,m′,n′(W ) dV

=

∫

U(2)R

(
t
l+1

2

mn− 1
2

(W−1), t
l+1

2

mn+1
2

(W−1)

)
·N(W )−2

×
(
1 0
0 0

)
·
(

(l′−m′+ 1

2
)tl

′

n′ m′+1
2

(W )

(l′+m′+ 1

2
)tl

′

n′ m′− 1
2

(W )

)
dV

=
(
l′ −m′ +

1

2

)∫

U(2)R

N(W )−2 · tl+
1

2

mn− 1

2

(W−1) · tl′n′ m′+ 1

2

(W ) dV.

By the orthogonality relations (19) in [FL3] this coefficient is zero unless
l + 1/2 = l′, m = m′ + 1/2 and n− 1/2 = n′. So, let us assume that this is
the case. Using Lemma 22 from [FL1], we obtain:

J+−
(
N(W )−1 · H̃0,0,0(W )

)
(Z1, Z2)

=
−24

N(Z2)

∑

l,m,n

l−m+ 3

2

2l + 2
·
(

(l−m+ 1

2
)tl

nm+1
2

(Z1)

(l+m+ 1

2
)tl

nm− 1
2

(Z1)

)
·
(
tl+1

m− 1
2

n−1
(Z−1

2 ), tl+1

m− 1
2

n
(Z−1

2 )
)

= −24
∑

l,m,n

(∂11)Z1

2l + 2
·
(

(l−m+ 3

2
)t

l+1
2

n− 1
2

m
(Z1)

(l+m+ 1

2
)t

l+1
2

n− 1
2

m−1
(Z1)

)

×N(Z2)
−1 ·

(
tl+1

m− 1
2

n−1
(Z−1

2 ), tl+1

m− 1
2

n
(Z−1

2 )
)
.

Alternatively, using (37), we can rewrite J+−
(
N(W )−1 · H̃0,0,0(W )

)
as

J+−
(
N(W )−1 · H̃0,0,0(W )

)
(Z1, Z2) = 24

∑

l,m,n

(∂11)Z2

2l + 2
·
(

(l−m+ 1

2
)tl

nm+1
2

(Z1)

(l+m+ 1

2
)tl

nm− 1
2

(Z1)

)

×N(Z2)
−1 ·

(
t
l+1

2

mn− 1
2

(Z−1
2 ), t

l+1
2

mn+1
2

(Z−1
2 )

)
.
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Next, we find J−+ of N(W )−1 · H̃0,0,0(W ):

JR
(
N(W )−1 · H̃0,0,0(W )

)
(Z1, Z2) =

∑

l,m,n

l′,m′,n′

c(F ) l,m,n

l′,m′,n′
v−l,m,n(Z1) · v′+l′,m′,n′(Z2),

where

π3i

12
· c(F ) l,m,n

l′,m′,n′
=

∫

U(2)R

v′+l,m,n(W ) ·N(W )−1 ·
(
1 0
0 0

)
· v−l′,m′,n′(W ) dV

=

∫

U(2)R

(
t
l− 1

2

m+1
2

n
(W ), t

l− 1
2

m− 1
2

n
(W )

)
·N(W )−2

×
(
1 0
0 0

)
·
(

(l′−n′+ 1

2
)tl

′

n′− 1
2

m′ (W
−1)

(l′+n′+ 1

2
)tl

′

n′+1
2

m′ (W
−1)

)
dV

=
(
l′ − n′ +

1

2

)∫

U(2)R

N(W )−2 · tl−
1

2

m+ 1

2
n
(W ) · tl′n′− 1

2
m′(W

−1) dV.

By the orthogonality relations (19) in [FL3] this coefficient is zero unless
l − 1/2 = l′, m+ 1/2 = m′ and n = n′ − 1/2. So, let us assume that this is
the case. Using (37), we obtain:

J−+
(
N(W )−1 · H̃0,0,0(W )

)
(Z1, Z2)

= −24
∑

l,m,n

l≥1

l−n− 1

2

2l ·N(Z1)

(
(l−n+ 1

2
)tl

n− 1
2

m
(Z−1

1 )

(l+n+ 1

2
)tl

n+1
2

m
(Z−1

1 )

)
·
(

tl−1

m+1n+1
2

(Z2), t
l−1

mn+1
2

(Z2)
)

=
24

N(Z1)

∑

l,m,n

l≥1

(∂11)Z1

2l




(l−n− 1

2
)t

l− 1
2

nm+1
2

(Z−1
1 )

(l+n+ 1

2
)t

l− 1
2

n+1m+1
2

(Z−1
1 )


 ·

(
tl−1

m+1n+1
2

(Z2), t
l−1

mn+1
2

(Z2)
)
.

Alternatively, using Lemma 22 from [FL1], we can rewrite J−+
(
N(W )−1 ·

H̃0,0,0(W )
)

as

J−+
(
N(W )−1 · H̃0,0,0(W )

)
(Z1, Z2)

=
−24

N(Z1)

∑

l,m,n

l≥1

(∂11)Z2

2l

(
(l−n+ 1

2
)tl

n− 1
2

m
(Z−1

1 )

(l+n+ 1

2
)tl

n+1
2

m
(Z−1

1 )

)
·
(

t
l− 1

2

m+1
2

n
(Z2), t

l− 1
2

m− 1
2

n
(Z2)

)
.

By Theorem 65,

J++
(
N(W )−1 · H̃0,0,0(W )

)
= J−−

(
N(W )−1 · H̃0,0,0(W )

)
= 0.
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Thus,

J
(
N(W )−1 · H̃0,0,0(W )

)
(Z1, Z2)

= −(J+− + J−+)
(
N(W )−1 · H̃0,0,0(W )

)
(Z1, Z2)

= 24(∂11)Z1
(deg+1)−1

Z1

×
(∑

l,m,n

v+l,m,n(Z1) · v′−l,m,n(Z2) +
∑

l,m,n

v−l,m,n(Z1) · v′+l,m,n(Z2)
)

= 24(∂11)Z2
(deg+1)−1

Z2

×
(∑

l,m,n

v+l,m,n(Z1) · v′−l,m,n(Z2) +
∑

l,m,n

v−l,m,n(Z1) · v′+l,m,n(Z2)
)
.

Then the result follows from (80) and Lemmas 91, 92. □

Remark 95. The same argument shows that, for A ∈ HC,

J
(
N(W )−1 ·A

)
= 24Tr(A∂)Z1

(deg+1)−1
Z1

1A = 24Tr(A∂)Z2
(deg+1)−1

Z2
1A.

In particular,

J
(
N(W )−1

)
= 24(∂11 + ∂22)Z1

(deg+1)−1
Z1

1A

= 24(∂11 + ∂22)Z2
(deg+1)−1

Z2
1A.

7.4. Algebra of quaternionic functions

In this subsection we give (ρ′2,W ′/ ker J) the structure of a gl(2,HC)-invariant
algebra. Many steps are proved by reduction to the already developed scalar
case of (ρ1,Ж).

Definition 96. Let Aω denote the subspace of A generated by V ⊗ V ′,
J(W ′), application of operators (deg+d)−1

Z1
and (deg+d)−1

Z2
, d ∈ Z, as well

as actions πl ⊗ 1 and 1⊗ πr of gl(2,HC).

Thus, by definition, Aω is invariant under the πl ⊗ πr action of gl(2,HC).
As was done in the case of HHω, we want to reduce the number of generators
of Aω.
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Lemma 97. The space Aω is generated by V ⊗ V ′, elements of the type

J(N(Z)−1), (deg+d1)
−1
Z1

J(N(Z)−1), (deg+d1)
−1
Z2

J(N(Z)−1),

(deg+d2)
−1
Z1

(deg+d1)
−1
Z1

J(N(Z)−1), (deg+d2)
−1
Z1

(deg+d1)
−1
Z2

J(N(Z)−1),

(deg+d2)
−1
Z2

(deg+d1)
−1
Z2

J(N(Z)−1),

(deg+d3)
−1
Z1

(deg+d2)
−1
Z1

(deg+d1)
−1
Z1

J(N(Z)−1), . . .

as well as actions πl ⊗ 1 and 1⊗ πr of gl(2,HC).

Proof. By Theorem 65 and Proposition 66, J(W ′) ≃ W ′/ ker J has four ir-
reducible components:

Q′+, Q′0, Q′−

and the trivial one-dimensional representation generated by N(Z)−1 · Z.
Since (ρ′2,W ′) and (ρ2,W) are linear dual to each other, by Lemma 59,
the one-dimensional representation appears as a subrepresentation in J(W ′)
and the irreducible component Q′0 only as a subquotient. By Theorem 65
again,

J(Q′+ ⊕Q′−) ⊂ V ⊗ V ′.
On the other hand, N(Z)−1 generates both Q′0 and the one-dimensional
component. Then the proof proceeds the same way as that of Lemma 73. □

Proposition 98. The space Aω is closed under the convolution operation:
if F,G ∈ Aω, then F ∗G also lies in Aω.

Proof. The proof is essentially the same as that of Proposition 74. □

As was done in the case of HHω, we want to realize elements of Aω as
analytic functions. Recall open subset Ω of H×

C
×H×

C
introduced in Subsec-

tion 7.2. There is a natural map ω from Aω into HC-valued analytic functions
on Ω. Indeed, elements of V ⊗ V ′ are polynomials, hence can be treated as
analytic functions on Ω. On the other hand, by (59),

J(N(Z)−1) = 24
−→
∂ Z1

I(N(Z)−1)
←−
∂ Z2

is an analytic function on Ω also. Then operators (deg+d)−1
Z1

and (deg+d)−1
Z2

,
d ∈ Z, as well as actions πl ⊗ 1 and 1⊗ πr of gl(2,HC) preserve analyticity
of functions. Unlike the case of HHω, this map ω has a non-trivial kernel:
ω(1A) = 0, by Proposition 66. We denote the composition ω ◦ J by J̃ and
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the space of analytic functions on Ω that are in the image of ω by Ãω. Note
that ker J̃ = kerMx and

(81) J̃(F ) = 24
−→
∂ Z1

I(F )
←−
∂ Z2

, F ∈ W ′.

Each F ∈ Ãω is left regular with respect to Z1 and right regular with respect
to Z2:

−→∇Z1
F (Z1, Z2) = 0 = F (Z1, Z2)

←−∇Z2
.

Since

V ⊗ V ′ ⊂ Ãω,

we can think of Ãω as a completion of V ⊗ V ′.
Recall open subsets Λ+, Λ− of H×

C
×H×

C
introduced in Subsection 7.2.

Definition 76 extends to Ãω.

Definition 99. We call a function F ∈ Ãω extendable if, for each Z0 ∈ H×
C
,

there exists an open neighborhood V ⊂ H×
C
×H×

C
of (Z0, Z0) and two HC-

valued functions F+ and F− analytic on V such that F = F+ for all points
in Λ+ ∩ V and F = F− for all points in Λ− ∩ V .

Clearly, elements of V ⊗ V ′ are extendable.

Lemma 100. The extendable functions in Ãω form a subspace that is in-
variant under the actions πl ⊗ 1, 1⊗ πr and πl ⊗ πr of gl(2,HC).

Remark 101. We expect all functions in Ãω to be extendable.

Let F ∈ Ãω be an extendable function, define two analytic functions on
H×

C
:

(Diag+ F )(Z) = lim
Z1,Z2→Z

(Z1,Z2)∈Λ+

F (Z1, Z2) and

(Diag− F )(Z) = lim
Z1,Z2→Z

(Z1,Z2)∈Λ−

F (Z1, Z2).

As in the scalar case, applying Diag+ F and Diag− F may yield different
results; functions Diag+ F and Diag− F need not be elements of W because
they may not be polynomials on H×

C
. Nevertheless, the operators Diag+ and

Diag− intertwine the gl(2,HC)-actions πl ⊗ πr on extendable functions in Ãω

and ρ2 on HC-valued analytic functions on H×
C
.
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Lemma 102. If F (Z1, Z2) ∈ V ⊗ V ′, then

Diag+ F = Diag− F ∈ Q+ ⊕Q0 ⊕Q−.

Proof. Note that, when restricted to V ⊗ V, both Diag+ and Diag− reduce
to the multiplication map Mult : V ⊗ V ′ →W, then the result follows from
Proposition 89. □

Lemma 103. For each F ∈ W ′, J̃(F ) is extendable and can be written as
a finite linear combination of HC-valued analytic functions on Ω that are
homogeneous in Z1 and Z2. Moreover,

Diag+ J̃(F ) = Diag− J̃(F ) = MxF ∈ Q+ ⊕Q0 ⊕Q−.

Proof. The first part follows from Lemma 79 and equation (81). The second
part follows from Theorems 65 and 67. □

Lemma 104. For each d ∈ Z,

(deg+d)−1
Z1

J̃(N(Z)−1) and (deg+d)−1
Z2

J̃(N(Z)−1)

are extendable.

Proof. The result follows from Lemma 82 and equation (81). □

Theorem 105. Let F,G ∈ W ′, then ω(J(F ) ∗ J(G)) ∈ Ãω is extendable
and
(82)

Diag+
(
ω
(
J(F ) ∗ J(G)

))
, Diag−

(
ω
(
J(F ) ∗ J(G)

))
∈ Q+ ⊕Q0 ⊕Q−.

Proof. Recall that W ′/ ker J has four irreducible components:

Q′+, Q′0, Q′−

and the trivial one-dimensional subrepresentation generated by N(Z)−1 · Z.
If F or G ∈ Q′− ⊕Q′+, then, by Theorem 65, J(F ) or J(G) ∈ V ⊗ V ′, and
the result follows from Lemmas 90, 102.

If F or G is proportional to N(Z)−1 · Z, then, by Lemma 93, J(F ) ∗ J(G)
is proportional to J(F ) or J(G), and the result follows from Lemma 103.

It remains to consider the case F,G ∈ Q′0. Since Q′0 is irreducible and
can be generated by either N(Z)−1 or N(Z)−1 · H̃0,0,0(Z), Proposition 94
and Lemmas 91, 100 and 104 imply that ω(J(F ) ∗ J(G)) is extendable.
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We still need to prove property (82). As usual, let K = U(2)× U(2) and
observe that F,G ∈ W ′ are K-finite. Since all operations involved inter-
twine the actions of gl(2,HC), analytic functions Diag+

(
ω
(
J(F ) ∗ J(G)

))

and Diag−
(
ω
(
J(F ) ∗ J(G)

))
on H×

C
are K-finite as well. By Proposition 60,

(ρ′2,W ′) and its dual (ρ2,W) are admissible (g,K)-modules. Since the ele-
ments of W are dense in the space of all analytic functions on H×

C
, it follows

that

Diag+
(
ω
(
J(F ) ∗ J(G)

))
, Diag−

(
ω
(
J(F ) ∗ J(G)

))
∈ W.

On the other hand, by Proposition 89, Diag+
(
ω
(
J(F ) ∗ J(G)

))
and

Diag−
(
ω
(
J(F ) ∗ J(G)

))
must be in the closure of Q+ ⊕Q0 ⊕Q−, then (82)

follows. □

Theorem 105 allows us to define two gl(2,HC)-invariant multiplication-
like operations

(W ′/ ker J)⊗ (W ′/ ker J)→W ′/ kerMx

as follows. Recall Mx :W ′ →W, its image is Q+ ⊕Q0 ⊕Q−. Let

Mx−1 : Q+ ⊕Q0 ⊕Q− →W ′/ kerMx

be the inverse isomorphism to Mx :W ′/ kerMx→ Mx(W ′) ⊂ W.

Definition 106. Let F,G ∈ W ′/ ker J , define

F ∗+ G = Mx−1 ◦Diag+
(
ω
(
J(F ) ∗ J(G)

))
,

F ∗− G = Mx−1 ◦Diag−
(
ω
(
J(F ) ∗ J(G)

))
.

Remark 107. Note thatW ′/ kerMx =W ′/ ker J̃ is the quotient ofW ′/ ker J
by the one-dimensional trivial subrepresentation spanned by N(Z)−1 · Z.

Proposition 108. One can also consider multiplications obtained by taking
linear combinations of F ∗+ G and F ∗− G. Thus we obtain a one-parameter
family of gl(2,HC)-equivariant maps

(W ′/ ker J)⊗ (W ′/ ker J)→W ′/ kerMx .
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If F1, . . . , Fn ∈ W ′/ ker J , we expect

ω(J(F1) ∗ · · · ∗ J(Fn)) ∈ Ãω

to be extendable. Once this is established, we can define gl(2,HC)-invariant
n-multiplications:

Definition 109. Let F1, . . . , Fn ∈ W ′/ ker J , define

(W ′/ ker J)× · · · × (W ′/ ker J)︸ ︷︷ ︸
n times

→W ′/ kerMx :

F1 ∗+ · · · ∗+ Fn = Mx−1 ◦Diag+
(
ω
(
J(F1) ∗ · · · ∗ J(Fn)

))
,

F1 ∗− · · · ∗− Fn = Mx−1 ◦Diag−
(
ω
(
J(F1) ∗ · · · ∗ J(Fn)

))
.

Remark 110. Once again, W ′/ kerMx is the quotient of W ′/ ker J by the
one-dimensional trivial subrepresentation. In a future work we intend to “lift”
these operations to genuine multiplications

(W ′/ ker J)× · · · × (W ′/ ker J)︸ ︷︷ ︸
n times

→W ′/ ker J.

Furthermore, we can also consider n-multiplications obtained by taking
linear combinations of F1 ∗+ · · · ∗+ Fn and F1 ∗− · · · ∗− Fn. Thus we obtain
a one-parameter family of gl(2,HC)-invariant multiplications

(W ′/ ker J)⊗ · · · ⊗ (W ′/ ker J)︸ ︷︷ ︸
n times

→W ′/ ker J.

We conclude this subsection with some thoughts about lifting operations

∗± : (W ′/ ker J)⊗ (W ′/ ker J)→W ′/ kerMx

to gl(2,HC)-invariant multiplication operations on W ′/ ker J and properties
of these multiplication operations. Recall that the definition of ∗+ and ∗−
involves a composition of maps factoring through a subspace of W (Def-
inition 106). Our first observation is that a multiplication operation on
W ′/ ker J cannot be factored through a subspace of W because there does
not exist a ρ2-invariant subspace of W isomorphic to W ′/ ker J . Indeed, the
only ρ2-invariant subspace of W that has the same irreducible components
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as W ′/ ker J is the subspace of (ρ2,W) generated by Q+ ⊕Q0 ⊕Q− and
N(Z)−2 · Z+. But this subspace is still not isomorphic to W ′/ ker J because
of Lemma 59.

Next, we assume that a gl(2,HC)-invariant multiplication operation lift-
ing ∗+ or ∗− is defined and try to derive some of its properties. As usual, let
K = U(2)× U(2). Recall that W ′/ ker J has four irreducible components:

Q′+, Q′0, Q′−

and the trivial one-dimensional representation generated by N(Z)−1 · Z. The
one-dimensional representation appears as a subrepresentation in W ′/ ker J
and the irreducible component Q′0 only as a subquotient. We decompose
W ′/ ker J as a direct sum of K-invariant subspaces:

W ′/ ker J ≃ C⊕Q′+ ⊕Q′0 ⊕Q′−,

where C denotes the trivial one-dimensional representation generated by
N(Z)−1 · Z. We emphasize that this direct sum decomposition is not
gl(2,HC)-invariant, since the subspace Q′0 is not gl(2,HC)-invariant, it is
only K-invariant. Since

W ′/ kerMx ≃ Q′+ ⊕Q′0 ⊕Q′−,

we have a direct sum decomposition of K-invariant subspaces

(83) W ′/ ker J ≃ C⊕ (W ′/ kerMx),

and we can write elements of W ′/ ker J as pairs

(c, w), c ∈ C, w ∈ W ′/ kerMx .

For example, by Lemma 93, element N(Z)−1 · Z corresponds to a pair (24, 0) ∈
C⊕ (W ′/ kerMx). Then lifting an operation from

∗± : (W ′/ ker J)⊗ (W ′/ ker J)→W ′/ kerMx

to multiplication

∗̃± : (W ′/ ker J)⊗ (W ′/ ker J)→W ′/ ker J

amounts to specifying a C-valued bilinear pairing

c±(F1, F2), F1, F2 ∈ W ′/ ker J
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so that the lift is

F1∗̃±F2 =
(
c±(F1, F2), F1 ∗± F2

)
∈ C⊕ (W ′/ kerMx).

If ∗̃± is K-invariant, then so is c±(F1, F2).

Lemma 111. Suppose that the multiplication operation ∗̃± on W ′/ ker J is
gl(2,HC)-invariant. Then the bilinear pairing c±(F1, F2) cannot be gl(2,HC)-
invariant.

Proof. First, we spell out the gl(2,HC)-invariance of ∗̃±:

(84)
(
ρ′2(X)F1

)
∗̃±F2 + F1∗̃±

(
ρ′2(X)F2

)
= ρ′2(X)(F1∗̃±F2),

for all F1, F2 ∈ W ′/ ker J and all X ∈ gl(2,HC). Since gl(2,HC) acts on the
C-component of (83) trivially,

ρ′2(X)(F1∗̃±F2) = ρ′2(X)(F1 ∗± F2).

If the bilinear pairing c±(F1, F2) is gl(2,HC)-invariant, then the C-component
of the left hand side of (84) is zero.

On the other hand, the image of

∗± : (W ′/ ker J)⊗ (W ′/ ker J)→W ′/ kerMx

contains Q′0. But Q′0 is not a gl(2,HC)-invariant subspace of W ′/ ker J –
there exist an F ∈ Q′0 and an X ∈ gl(2,HC) such that ρ′2(X)F has non-
zero C-component. Hence there exist elements F1, F2 ∈ W ′/ ker J and an
X ∈ gl(2,HC) such that the C-component of

ρ′2(X)(F1∗̃±F2) = ρ′2(X)(F1 ∗± F2) ∈ W ′/ ker J

is not zero. Substituting such F1, F2 and X into (84) produces a contradic-
tion. □

Thus, lifting ∗+ (or ∗−) to a gl(2,HC)-invariant multiplication operation
∗̃+ (or ∗̃−) onW ′/ ker J amounts to specifying a certain K-invariant bilinear
pairing c+ (or c−) on W ′/ ker J . But, since this pairing cannot be gl(2,HC)-
invariant, finding such a pairing that would make the resulting multiplication
operation gl(2,HC)-invariant is not trivial.



✐

✐

“4-Libine” — 2022/2/17 — 23:38 — page 498 — #120
✐

✐

✐

✐

✐

✐

498 I. Frenkel and M. Libine

7.5. Properties of multiplications on quaternionic algebras

We know that the quaternionic algebra W ′/ ker J and its scalar counterpart
Ж are not associative (Example 86). On the other hand, in both cases we have
indicated how to define gl(2,HC)-invariant n-multiplications (Proposition 87
and Remark 110). It is natural to conjecture that these n-multiplications
satisfy some sort of relaxed associativity-type relations. There is a well-known
structure of this kind known as an A∞-algebra. There are several types of
A∞-algebras, and, in order to formulate our conjecture more explicitly, we
recall some basic definitions (see, for example, [K] for details).

An A∞ algebra over C is a complex vector space A endowed with maps

νn : A⊗n = A⊗ · · · ⊗A︸ ︷︷ ︸
n times

→ A, n = 1, 2, 3, . . . ,

such that, for all n ≥ 1, we have associativity-type identities of the form

(85)
∑

a+b+c=n

νa+1+c ◦ (✶⊗a ⊗ νb ⊗ ✶⊗c) = 0

as maps from A⊗n to A. For n = 1, 2, 3, these identities become

ν1 ◦ ν1 = 0,(86)

ν1 ◦ ν2 + ν2(ν1 ⊗ ✶+ ✶⊗ ν1) = 0,(87)

ν1 ◦ ν3 + ν2(ν2 ⊗ ✶+ ✶⊗ ν2)(88)

+ ν3(ν1 ⊗ ✶⊗ ✶+ ✶⊗ ν1 ⊗ ✶+ ✶⊗ ✶⊗ ν1) = 0.

The first identity (86) states that A is a complex, the second (87) means that
ν2 : A⊗A→ A is a morphism of complexes. Neither of these two assertions
seem natural for the quaternionic algebras. However, there is a more general
notion of a weak A∞-algebra with an additional map

ν0 : C→ A

such that the identities (85) hold after one includes the additional terms with
ν0. For example, for n = 1, 2, identities (86)–(87) become

ν1 ◦ ν1 + ν2(ν0 ⊗ ✶+ ✶⊗ ν0) = 0,(89)

ν1 ◦ ν2 + ν2(ν1 ⊗ ✶+ ✶⊗ ν1)(90)

+ ν3(ν0 ⊗ ✶⊗ ✶+ ✶⊗ ν0 ⊗ ✶+ ✶⊗ ✶⊗ ν0) = 0.
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Identity (89) is satisfied when ν1 is the identity map on A and

(91) ν2(ν0(1), a) + ν2(a, ν0(1)) = −a, ∀a ∈ A.

Thus we can define multiplication on A by setting

µ2 = −
1

2
ν2,

then (91) will be satisfied if ν0(1) is the (left and right) unit for the mul-
tiplication operation µ2. Similarly, choosing appropriate coefficients, we can
relate νn with n-multiplications µn for our quaternionic algebras.

We also expect that our n-multiplications µn satisfy a certain cyclic
symmetry. Namely, there is a gl(2,HC)-invariant bilinear product ⟨ · , · ⟩ such
that

(92)
〈
µn(a1, . . . , an), an+1

〉
=
〈
a1, µn(a2, . . . , an+1)

〉
, ∀a1, . . . , an+1 ∈ A.

Those A∞-algebras that satisfy the additional property (92) are called cyclic
A∞-algebras, in our case weak cyclic A∞-algebras.

In the case of quaternionic algebras, the cyclic symmetry of n-
multiplications should follow from the conjectural identification of the paired
n-products as in (92) with variants of the (n+ 1)-photon diagrams (Fig-
ure 1). In fact, our map

J :W ′ → A = completion of V ⊗ V ′

corresponds to the vertices in this diagram, with spaces V and V ′ identified
with the solutions of the massless Dirac equations. Note that we are con-
sidering the chiral case of n-photon diagrams; in the non-chiral case all the
diagrams with odd number of vertices cancel out and yield a zero result.
Also, the Maxwell equations – which define the classical photon space and
play an important role in the quantum theory – are crucial to our defini-
tion of algebra of quaternionic functions. One can ask then, what might be
the physical meaning of the associativity-type identities (85)–(90). It turns
out that, despite the long history of four-dimensional quantum field theory,
only recently there were discovered certain quadratic relations, first, in quan-
tum Yang-Mills theory [BCFW]. These relations were later extended to one-
loop multi-photon diagrams in QED (see [BBBV] and references therein),
and they might provide a source of associativity in quaternionic algebra.
Note that there is also a scalar counterpart of QED, which has an anal-
ogous structure, including the quadratic identities. This scalar version of
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QED is expected to match our scalar quaternionic algebra, including the
associativity-type identities.

To make the identification of our quaternionic constructions with physics
more transparent, we can “translate” all our definitions related to quater-
nionic algebra from the quaternionic space into the Minkowski space us-
ing the Cayley transform, as we did in [FL1]. In [FL1], the switch to the
Minkowski space via the Cayley transform was crucial for demonstrating
unitarity of the spaces of (left and right) regular functions. The unitarity of
(ρ1,Ж) was shown in Proposition 9 of [FL3]. The same methods and moti-
vations also apply to the spaces of (left and right) doubly regular functions
and to the underlying space of quaternionic algebra W ′/ ker J factored by
the one dimensional subrepresentation. On the physics side, the unitarity
is fundamental in four-dimensional quantum field theory, in particular in
QED. Minkowski space realization of our current results also suggests an
interesting problem of finding of physical meaning of our present results in
quaternionic analysis, including the decomposition of spaces W and W ′ into
irreducible components, the role of the one-dimensional representation in
vacuum polarization and the meaning of the quaternionic algebras.

Comparing the structures of quaternionic analysis with those of four-
dimensional quantum field theory will be beneficial to both disciplines. On
the one hand, various techniques of calculations and regularizations of Feyn-
man integrals should apply to different constructions of quaternionic analy-
sis, including the quaternionic algebras. On the other hand, our clear con-
ceptual program of quaternionic analysis developed along the lines of well-
established complex analysis and carried out to a new step in this paper
might eventually provide a purely mathematical foundation of the vast num-
ber of scattered calculations, curious identities and remarkable cancellations
in the still mysterious subject of four-dimensional quantum physics.

8. Appendix: Comments about [FL1] and [FL3]

We would like to add some comments about [FL1] and [FL3] that are relevant
to the present article.

8.1. Comments about [FL1]

Lemma 17 describing the Lie algebra actions π0
l and π0

r of gl(2,H) on the
space of harmonic functions should state

π0
l

(
0 0
C 0

)
= π0

r

(
0 0
C 0

)
: φ 7→ Tr

(
C ·
(
X · (∂φ) ·X +Xφ

))
(93)

= Tr
(
C ·
(
X · ∂(Xφ)

)
−Xφ

)
.
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The matrix coefficient expansions from Propositions 25, 26 and 27 have
much larger regions of convergence than stated, the proofs remain the same.
Since we use these expansions so often, we provide more precise statements.

Proposition 112. We have the following matrix coefficient expansion

k0(Z −W ) =
1

N(Z −W )
(94)

= N(W )−1 ·
∑

l,m,n

tlnm(Z) · tlmn(W
−1),

which converges uniformly on compact subsets in the region {(Z,W ) ∈ HC ×
H×

C
; ZW−1 ∈ D+}. The sum is taken first over all m,n = −l,−l + 1, . . . , l,

then over l = 0, 12 , 1,
3
2 , . . . .

Proposition 113. We have the following matrix coefficient expansions

k(Z −W ) =
(Z −W )−1

N(Z −W )

=
1

N(Z)

∑

l,m,n

(
(l−m+ 1

2
)tl

nm+1
2

(W )

(l+m+ 1

2
)tl

nm− 1
2

(W )

)
·
(

t
l+1

2

mn− 1
2

(Z−1), t
l+1

2

mn+1
2

(Z−1)

)
,

which converges uniformly on compact subsets in the region {(Z,W ) ∈ H×
C
×

HC; WZ−1 ∈ D+}. The sum is taken first over all m = −l − 1
2 ,−l + 3

2 , . . . ,
l + 1

2 and n = −l,−l + 1, . . . , l, then over l = 0, 12 , 1,
3
2 , . . . . Similarly,

k(Z −W ) =
(Z −W )−1

N(Z −W )

= −
∑

l,m,n

1

N(W )

(
(l−m+ 1

2
)tl

m− 1
2

n
(W−1)

(l+m+ 1

2
)tl

m+1
2

n
(W−1)

)
·
(

t
l− 1

2

n+1
2

m
(Z), t

l− 1
2

n− 1
2

m
(Z)

)
,

which converges uniformly on compact subsets in the region {(Z,W ) ∈ HC ×
H×

C
; ZW−1 ∈ D+}. The sum is taken first over all m = −l + 1

2 ,−l + 3
2 , . . . ,

l − 1
2 and n = −l,−l + 1, . . . , l, then over l = 1

2 , 1,
3
2 , 2, . . . .

Proposition 114. We have the following matrix coefficient expansions

1

N(Z −W )2
=
∑

k,l,m,n

(2l + 1)N(Z)k · tlnm(Z) ·N(W )−k−2 · tlmn(W
−1),
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which converges uniformly on compact subsets in the region {(Z,W ) ∈ HC ×
H×

C
; ZW−1 ∈ D+}. The sum is taken first over all m,n = −l,−l + 1, . . . , l,

then over k = 0, 1, 2, 3, . . . and l = 0, 12 , 1,
3
2 , . . . .

The representation (ρ2,W+) introduced at the beginning of Subsection
4.2 is not irreducible. In fact, it is easy to see from Subsection 5.1 that
(ρ2,W+) has two irreducible components: (ρ2,Q+) and (ρ,X+).

There are several sign errors in Subsection 4.3. In particular, Ã should
be defined as

Ã = −A0ẽ0 +A1e1 +A2e2 +A3e3 = −ẽ0A0 +
−→
A

(negative of the original Ã). Either way, the main conclusion still holds.
Namely, that Mx Ã = 0 if and only if the Maxwell equations (expressed as
equation (56) in [FL1]) are satisfied.

The main purpose of Subsection 5.1 was to describe the decomposi-
tion of the tensor product representation (π0

l ,H+)⊗ (π0
r ,H+) of gl(2,HC)

into irreducible components due to [JV2]. Unfortunately, the representations
(ρn,Ж

+
n ) of gl(2,HC) are not irreducible for n ≥ 2. Indeed, we saw in Section

5 that (ρ2,Ж
+
2 ) = (ρ2,W+) is not irreducible. Thus, Theorem 82 in [FL1]

can be corrected as

Theorem 115. The image of the intertwining map Mn from Theorem 85
in [FL1] is an irreducible subrepresentation of (ρn,Ж

+
n ), n = 1, 2, 3, . . . .

Let us denote this image by (Ж+
n )irr. The irreducible representations(

ρn, (Ж
+
n )irr

)
, n = 1, 2, 3, . . . , of sl(2,HC) are pairwise non-isomorphic and

possess inner products which make them unitary representations of the real
form su(2, 2) of sl(2,HC).

When n = 1, we have (Ж+
1 )irr = Ж

+
1 = Ж

+. Then equation (61) in [FL1]
should read as follows.

(95) (π0
l ,H+)⊗ (π0

r ,H+) ≃
∞⊕

n=1

(
ρn, (Ж

+
n )irr

)
,

This decomposition is obtained by treating H+ ⊗H+ as functions of two
variables Z,Z ′ ∈ HC and filtering them by the degree of vanishing on the
diagonal HC ⊂ HC ×HC. Then

(ρ1,Ж
+) generated by 1⊗ 1,
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(
ρn, (Ж

+
n )irr

)
generated by (zij − z′ij)

n−1, n ≥ 2.

Subsection 5.3 was written so it could be later used to give a proof of
the “magic identities” for the conformal four-point integrals described by the
box diagrams. Magic identities are proved in [L2] using different methods.

8.2. Comments about [FL3]

In the expression above Theorem 15

(
(I+−

R + I−+
R )N(W )−1

)
(Z1, Z2) = −

1

N(Z2)
·
{

log λ2−log λ1

λ2−λ1
if λ1 ̸= λ2;

λ−1 if λ1 = λ2 = λ,

log denotes the branch of logarithm with a cut along the positive real axis
and λ ̸= 1. Thus when we let Z1, Z2 → Z we need the eigenvalues λ1, λ2 of
Z1Z

−1
2 to stay on the same side of the cut:

lim
Z1,Z2→Z, N(Z1−Z2) ̸=0

sign(Imλ1)=sign(Imλ2)

(
(I+−

R + I−+
R )N(W )−1

)
(Z1, Z2) = −N(Z)−1, Z ∈ U(2)R.

Recall that H̃ ⊗ H denotes the space of holomorphic C-valued functions in
two variables Z1, Z2 ∈ HC (possibly with singularities) that are harmonic in
each variable separately. Then Theorem 15 should be restated as

Theorem 116. The gl(2,HC)-equivariant map

f 7→
(
(I+−

R + I−+
R )f

)
(Z1, Z2) ∈ H̃ ⊗H, f ∈Ж,

where Z1, Z2 ∈ U(2)R, N(Z1 − Z2) ̸= 0, is well-defined and annihilates Ж− ⊕
Ж

+.
Moreover, we have a well defined operator P0 on Ж

f 7→ (P0 f)(Z) = lim
Z1,Z2→Z, N(Z1−Z2) ̸=0

sign(Imλ1)=sign(Imλ2)

−
(
(I+−

R + I−+
R )f

)
(Z1, Z2), Z ∈ U(2)R,

which annihilates Ж
− ⊕Ж

+ and is the identity mapping on Ж
0.

Furthermore, the projector P0 on Ж can be computed as follows:

(P0 f)(Z) =
1

2π3i
lim
θ→0

lim
s→1

(∫

W∈U(2)R

f(W ) dV

N(W − seiθZ) ·N(W − s−1e−iθZ)

+

∫

W∈U(2)R

f(W ) dV

N(W − s−1eiθZ) ·N(W − se−iθZ)

)
, Z ∈ U(2)R.
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The fact that P0 is a projector onto Ж
0 may be interpreted as

M ◦
(
(I+−

R + I−+
R )f

)
= f if f ∈Ж

0.

Theorem 22 should be restated in a similar manner. In particular, the
operator P0

M on ρ1(Ж) should be defined as

(P0
M f)(Z) = lim

Z1,Z2→Z, N(Z1−Z2) ̸=0

sign(Imλ1)=sign(Imλ2)

−
(
(I+−

M
+ I−+

M
)f
)
(Z1, Z2), Z ∈M,

where λ1 and λ2 denote the eigenvalues of (Z1 + 1)(Z1 − 1)−1(Z2 − 1)(Z2 +
1)−1.
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