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In a recent work, we have initiated the theory of N = 2 symmet-
ric superpolynomials. As far as the classical bases are concerned,
this is a rather straightforward generalization of the N = 1 case.
However this construction could not be generalized to the formu-
lation of Jack superpolynomials. The origin of this obstruction is
unraveled here, opening the path for building the desired Jack ex-
tension. Those are shown to be obtained from the non-symmetric
Jack polynomials by a suitable symmetrization procedure and an
appropriate dressing by the anticommuting variables. This con-
struction is substantiated by the characterization of the N = 2
Jack superpolynomials as the eigenfunctions of the N = 2 super-
symmetric version of the Calogero-Sutherland model, for which,
as a side result, we demonstrate the complete integrability by dis-
playing the explicit form of four towers of mutually commuting
(bosonic) conserved quantities. The N = 2 Jack superpolynomials
are orthogonal with respect to the analytical scalar product (in-
duced by the quantum-mechanical formulation) as well as a new
combinatorial scalar product defined on a suitable deformation of
the power-sum basis.
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544 L. Alarie-Vézina, L. Lapointe, and P. Mathieu

5 Two orthogonality characterizations of the Jack
superpolynomials 573

6 Norm and evaluation 580

Appendix A Different prescribed symmetries 585

References 588

1. Introduction

The study of the N = 2 symmetric superpolynomials has been initiated in
[1]. Let us review briefly what is meant by this program.

The construction amounts to extending the classical symmetric polyno-
mials to functions depending on not only x1, . . . , xN but also on two extra
independent sets of anticommuting variables θ1, . . . , θN and ϕ1, . . . , ϕN . We
require the variables in each set to anticommute among themselves:

(1) θiθj = −θjθi , ϕiϕj = −ϕjϕi,

and also with each other:

(2) θiϕj = −ϕjθi.

Equivalently, we consider the ring C(x1, . . . , xN )⊗
∧(

C(θ1, . . . , θn, ϕ1, . . . ,
ϕN )

)
. This addition of the anticommuting variables is understood in the

context of superspace: the variables ϕi and θi are attached to the bosonic
variable xi. Therefore, the symmetry requirement imposed on polynomi-
als is the invariance under the interchange of two triplets (xi, ϕi, θi)↔
(xσ(i), ϕσ(i), θσ(i)) where σ belongs to SN , the symmetric group on N el-
ements. We call the resulting objects N = 2 symmetric superpolynomials
and denote their ring as ΠN .

A detailed analysis of the N = 2 supersymmetric version of the classical
bases mλ, eλ, hλ and pλ (λ being a partition), was presented in [1]. Take for
instance the power-sum basis. It is a multiplicative basis built out of four
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constituents:

(3) pn =

N∑

i=1

xni , pr =

N∑

i=1

ϕi x
r
i , p

r
=

N∑

i=1

θi x
r
i , p

r
=

N∑

i=1

ϕiθi x
r
i

with n ≥ 1 and r ≥ 0.

Symmetric N = 2 superpolynomials are labelled by N = 2 superparti-
tions. The occurrence of four types of power-sums suggests that the super-
partitions are composed of four partitions. The splitting of these four types
into two bosonic and two fermionic ones further entails that two of these
partitions – that associated to the product of the pr’s and that associated
to the product of the p

r
’s – have distinct parts. The superpartition Λ will

be written as

(4) Λ = (Λ;Λ; Λ; Λs)

where Λ and Λs are usual partitions while Λ and Λ are partitions without
repeated parts. For instance, we have for N = 2:

(5)
p(;1;1;) = p1p1 = (ϕ1x1 + ϕ2x2)(θ1x1 + θ2x2),

p(2;;;) = p
2
= ϕ1θ1x

2
1 + ϕ2θ2x

2
2.

There is a natural extension of the combinatorial scalar product defined in
terms of the power-sums which preserves the dual nature of the extension
of mλ and hλ.

However, the ultimate objective of this generalization of the theory of
symmetric polynomials is to construct the N = 2 Jack superpolynomials.
We expect those to be defined by directly extending the N = 0, 1 defini-
tion to the N = 2 case, namely, in terms of two conditions: triangularity
in the monomial basis and orthogonality. The scalar product with respect
to which we expect the yet-to-be-defined N = 2 Jack superpolynomials to
be orthogonal is the α-deformation of the power-sums scalar product just
alluded to. However, in [1], we have indicated the difficulty of obtaining the
Jack deformation of the classical bases along those lines.

Let us pinpoint the source of the problem. We have considered in [1] the
characterization of the superpartitions that label the symmetric superpoly-
nomials by three numbers: the degree of the polynomial, denoted n, and the
number of ϕi and θj factors in the monomial of anticommuting variables
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that decorate each term in the expression of the superpolynomial in a given
sector. Let us denote these numbers mϕ and mθ. Now what is the problem
with this description? Take the simple monomial (still for N = 2):

(6) m(;1;1;) = ϕ1x1θ2x2 + ϕ2x2θ1x1

(The construction of the monomial is explained below.) Its decomposition
in terms of power sums is easily found to be

(7) m(;1;1;) = p1p1 − p2.

This preserves the sector mϕ = mθ = 1. However, it mixes for instance the
sectors corresponding to the product of θ1 and ϕ1 to the sector correspond-
ing to θ1ϕ1. According to our earlier attempts, this mixing seems to prevent
the introduction of a consistent dominance ordering, which in turn implies
the impossibility of using the triangularity requirement for defining the Jack
superpolynomials.

Heuristically, the cure for this problem is clear: the separation of the
superpartition into four blocks suggests the characterization of each sector
by four numbers, n, m, m and m, the latter three counting respectively the
number of factors ϕiθi (i.e., paired with the same indices), ϕj and θk. Equiv-
alently, m, m and m stand respectively for the length of Λ, Λ and Λ. This
refinement of the characterization of the fermionic sector is indeed a neces-
sary requirement for the successful construction of Jack superpolynomials.
But can we figure out a firmer argument for the necessity of four entries
specifying a given sector?

The physics of integrable N–body problems provide such a foundation.
Recall that the usual Jack polynomials are the eigenfunctions (with the
ground-state contribution factored out) of the Calogero-Sutherland model.
Their N = 1 extension is similarly related to the supersymmetric version of
the CS model (referred to as the sCS model). We thus require the N = 2
Jack superpolynomials to be eigenfunctions of the N = 2 supersymmetric
extension of the CS model (to be dubbed, for short, the s2CS model), first
introduced in [22]. This model is shown here to be integrable, as expected,
by displaying four towers of N bosonic mutually commuting conservation
law. This naturally implies a characterization of the sectors by four quantum
numbers.
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But this simple cure (refinement of the fermionic sector) entails the re-
placement of the power-sum basis by an alternative one that does not lead
to sector mixing. This is one of the key technical point of our new construc-
tion and the new basis, called quasi-power-sums, is not multiplicative. The
combinatorial scalar product is now defined with respect to this new basis.

In this way, we have succeeded in constructing theN = 2 Jack superpoly-
nomials orthogonal with respect to this new combinatorial scalar product.
But there is more: their construction from an appropriate symmetrization
of the non-symmetric Jack polynomials, taylor made to render them s2CS
eigenfunctions, implies their orthogonality with respect to an analytic scalar
product. This is compatible with their physical interpretation as wavefunc-
tions.

The outline of the article is a follows. In Section 2, we derive the N = 2
supersymmetric Calogero-Sutherland model using the formalism of [22] and
following the construction of the N = 0, 1 cases. In Section 3, we intro-
duce the space of N = 2 symmetric superfunctions and provide two simples
bases: the monomial symmetric functions and the quasi-power sums. We also
present superpartitions, the combinatorial objects which naturally index the
bases, as well as the dominance ordering on superpartitions. In Section 4, we
introduce the N = 2 Jack superpolynomials from the non-symmetric Jack
polynomials. We then construct 4N quantities built out of Dunkl operators
that have those polynomials as eigenfuntions, a result that implies the inte-
grability of the N = 2 supersymmetric Calogero-Sutherland model. We then
show that if a triangularity condition is imposed, it suffices to consider only
4 commuting quantities, one of them being the Hamiltonian, to characterize
the N = 2 Jack superpolynomials. In Section 5, we present two scalar prod-
ucts, dubbed analytic and combinatorial, with respect to which the N = 2
Jack superpolynomials are orthogonal. But in order to not overburden the
text, only an outline of the proofs of the orthogonality are presented. In
Section 6, we give conjectures for the norm (with respect to the combinato-
rial scalar product) and the evaluation of the N = 2 Jack superpolynomials.
Finally, we discuss in Appendix A how our construction of the N = 2 Jack
superpolynomials from the non-symmetric Jack polynomials is only of one
many possible constructions.
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2. N = 2 supersymmetric Calogero-Sutherland model

Before defining the N = 2 version of the Calogero-Sutherland model, we
introduce the N = 0 and N = 1 versions. The construction of the N = 2
version will mimic very particularly that of the N = 1 case.

The Calogero-Sutherland (CS) model [6, 21] describes a system of N
identical particles (of mass m = 1) lying on a circle of circumference L and
interacting pairwise:

(8) H(N=0) =
1

2

N∑

j=1

p2j +
(π
L

)2
β(β − 1)

∑

1≤i<j≤N

1

sin2(πxij/L)
,

where xij = xi − xj and pj = −i∂/∂xj (we set ℏ = 1).
In the N = 1 version of the CS model, every particle coordinate xj is

paired with an anticommuting variable θj . In this case, the Hamiltonian is

built out of two anticommuting charges Q and Q† (with θ†j = ∂/∂θj) defined
in terms of a prepotential W as

(9) Q =
∑

j

θj
(
pj−i∂xj

W (x)
)
.

Explicitly, the Hamiltonian is obtained as follows

(10) H(N=1) =
1

2
{Q,Q†},

where W (x) is determined by the requirement

(11) H(N=1)
∣∣∣θj=0 = H(N=0).

This fixes W (x) to be

W (x) =
∑

1≤i<j≤N

β

2
ln

(
1

sin2( πLxij)

)
,(12)

and the resulting Hamiltonian reads

(13) H(N=1) =
1

2

N∑

j=1

p2j +
(π
L

)2 ∑

1≤i<j≤N

β(β − 1 + θijθ
†
ij)

sin2(πxij/L)
,

with θij = θi − θj .
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For the N = 2 extension, in which case xj is then paired with two inde-
pendent anticommuting variables, θj and ϕj , we need two supercharges Q1

and Q2 realizing the algebra

{Qa, Q
†
b} = 2δabH, {Qa, Qb} = 0, {Q†

a, Q
†
b} = 0, a, b = 1, 2(14)

where

(15) H ≡ H(N=2).

As noted in [22], the supercharges are now expressed in terms of two prepo-
tentials: W [0] (the previous W (x)) and W [1]:1

Q1 =
∑

j

θj


pj − iW [0]

j (x)− i
N∑

k,l=1

W
[1]
jkl(x)ϕkϕ

†
l


(16)

Q2 =
∑

j

ϕj


pj − iW [0]

j (x)− i
N∑

k,l=1

W
[1]
jkl(x)θkθ

†
l


 ,(17)

where we have introduced the notation

(18) W
[0]
i := ∂iW

[0], W
[1]
ijk := ∂i∂j∂kW

[1].

It is readily seen that when the ϕ variables are set equal to zero, Q1 reduces
to Q while Q2 vanishes.

Under the assumption thatW [1] =
∑

i<j w(xij), the conditions (14) lead
to the following Hamiltonian (we refer to [22] for the details of this analysis)

Hs2CS =
1

2

∑

i

p2i + β
(π
L

)2∑

i<j

1

sin2 π
Lxij

(
β − (1− ϕijϕ

†
ij)(1− θijθ

†
ij)
)
.

(19)

This is thus the candidate N = 2 version of the supersymmetric CS model
(s2CS for short). As it will be shown below, this is precisely the form of the
Hamiltonian that would result from an exchange formalism projected onto

1Due to the presence of four charges, Q1,2 and Q†
1,2, the model is said to have

four supersymmetries in [22]. Our point of view is that there are two independent
charges, hence the N = 2 qualifier.
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the space of symmetric superfunctions.

This Hamiltonian has the same ground state as the N = 0 and N = 1
versions, namely

(20) ψ0(x) = ∆β(x) =
∏

j<k

[
sin
(πxjk

L

)]β
.

The ground-state energy is

(21) E0 =

(
πβ

L

)2 N(N2 − 1)

6
.

Any excited-state wavefunction will be of the form

ψ(x, θ, ϕ) = ψ0(x)φ(x, θ, ϕ),

with φ(x, θ, ϕ) a polynomial in its variables.

Upon the change of variables zi = e2πixi/L, the Hamiltonian becomes

H = 2
(π
L

)2

∑

i

(zi∂i)
2 − 2

∑

i<j

zizj
(zij)2

β
(
β − (1− ϕijϕ

†
ij)(1− θijθ

†
ij)
)

 .

(22)

It is convenient to factor out the contribution of the ground-state by a con-
jugation operation and perform a rescaling to get rid of the above prefactor,
defining thereby the new Hamiltonian

(23) H =
1

2

(
L

π

)2

∆−β(H − E0)∆
β

A simple computation yields

H =
∑

i

(zi∂i)
2 + β

∑

i<j

zi + zj
zij

(zi∂i − zj∂j)(24)

− 2β
∑

i<j

zizj
z2ij

(1− (1− ϕijϕ
†
ij)(1− θijθ

†
ij)).

To demonstrate the integrability of this model and to study its eigenfunc-
tions, we first need to introduce the space of symmetric superfunctions.
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3. Superpartitions and the space of symmetric

superfunctions

3.1. Symmetric superfunctions

One obvious symmetry of the Hamiltonian (24) is its invariance under the
simultaneous exchange of the triplet of variables, that is, under (zi, θi, ϕi)↔
(zj , θj , ϕj) for all i, j. This is the defining property of the N = 2 symmetric
superfunctions. Let us define the following operators:

Kij : zi ←→ zj , κij : ϕi ←→ ϕj , κij : θi ←→ θj .(25)

The operator that produces the simultaneous exchange of the three types of
variables is thus

Kij := Kijκijκij(26)

with the following action on a superfunction

Kijf(zi, zj , θi, θj , ϕi, ϕj) = f(zj , zi, θj , θi, ϕj , ϕi).(27)

Accordingly, a superfunction f(z, θ, ϕ) in N (triplets of) variables is said to
be symmetric if and only if

Kijf(z, θ, ϕ) = f(z, θ, ϕ) ∀ i, j = 1, . . . , N.(28)

We will denote the space of symmetric superfunctions in the 3N variables
(xi, θi, ϕi) by ΠN :

f ∈ ΠN ⇐⇒ Kijf = f ∀ i, j = 1, . . . , N.(29)

This space is graded by four numbers and each set of those four numbers de-
fines a sector. To define those sectors, we must first introduce some notation.

We first define the fermionic sector, denoted M , which is itself charac-
terized by three numbers:

M := (m,m,m).(30)

These numbers are defined as follows:

1) m is the degree of the polynomial in the doublet of variables ϕiθi;
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2) m is the degree of the polynomial in the variables ϕj that do not form
a doublet with a variable θj ;

3) m is the degree of the polynomial in the variables θj that do not form
a doublet with a variable ϕj .

For example, taking N = 4, the following superpolynomial is in the M =
(1, 1, 2) fermionic sector:

(ϕ1θ1ϕ2 + ϕ2θ2ϕ1)θ3θ4(z3 − z4) + permutations(31)

= (ϕ1θ1)(ϕ2)(θ3θ4)z3 + · · ·

Focusing on the sole term written on the right-hand side, we see that we
have only one doublet of variables ϕ and θ with the same index (m = 1), one
variable ϕ that do not form a doublet with a θ of the same index (m = 1)
and two θ variables that do not form a doublet with a ϕ of the same index
(m = 2). The subspace of symmetric superfunctions (in N variables) in the
fermionic sector M will de denoted ΠN(M).

It is convenient to introduce the following partial sums over the three
numbers that define the fermionic sector

M1 = m, M2 := m+m, M3 := m+m+m.(32)

We then introduce the M -fermion monomial

[ϕ; θ]M =

M1∏

i=1

ϕiθi

M2∏

j=M1+1

ϕj

M3∏

k=M2+1

θk,(33)

with the understanding that the product is 1 if the upper bound of the
product is lower than the lower bound. The projector onto the monomial
term [ϕ; θ]M is

PM = [ϕ; θ]M

(
[ϕ; θ]M

)†
.(34)

For instance,

P(1,1,2)[(ϕ1θ1ϕ2 + ϕ2θ2ϕ1)θ3θ4(z3 − z4) + permutations](35)

= ϕ1θ1ϕ2θ3θ4(z3 − z4).

To recover the full symmetric superpolynomial from the projected term (e.g.,
the term on the right-hand side of the previous equality), we need to sum
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over the permutations of the symmetric group SN that mix the elements of
the different fermionic subsectors, that is, over the elements of S(M) defined
as

(36) S(M) := SN/(SM1
× S]M1,M2] × S]M2,M3] × S]M3,N ])

where the following notation has been used

(37) S]j,j+k] := S{j+1,...,j+k}

(so that SN = S]0,N ]). We can thus characterize a superfunction f of ΠN(M)
with the condition

∑

ω∈S(M)

KωP
Mf = f.(38)

We finally define the subspace ΠN(n|M) as the set of polynomials f in ΠN that
have degree n in the variables z and that belong to the fermionic sector M .

The following proposition shows that this characterization of the super-
polynomials in terms of the three numbers defining the fermionic sector is
sound.

Proposition 1. Let us introduce the three operators

F =

N∑

i=1

ϕiθi(ϕiθi)
†, F =

N∑

i=1

ϕiϕ
†
i − F , F =

N∑

i=1

θiθ
†
i − F .(39)

Then, for a function f ∈ ΠN(M), we have

F f = mf, F f = mf, F f = mf.(40)

The proof is reported at the end of the section.

Since these three operators commute with the s2CS Hamiltonian, their
eigenvalues partly characterize its eigenfunctions.
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3.2. Interlude: rederivation of the s2CS Hamiltonian

The N = 0 Hamiltonian can be recovered from the exchange formalism,
where

(41) Hexch =
1

2

N∑

j=1

p2j +
(π
L

)2 ∑

1≤i<j≤N

β(β −Kij)

sin2(πxij/L)
,

when the latter is restricted to the space of symmetric functions f(x) such
that Kijf(x) = f(x), i.e.,

(42) H(N=0) = Hexch|ΠN

Similarly, the N = 1 sCS Hamiltonian is recovered from

(43) H(N=1) = Hexch|ΠN

where now the restriction is on the space of symmetric superfunctions f(x, θ)
such that Kijf(x, θ) = κijf(x, θ), where

(44) κij = 1− θijθ
†
ij

In the same way, the s2CS Hamiltonian constructed previously (cf. eq. (19))
is easily recovered form

(45) H(N=2) = Hexch|ΠN

where in this case the restriction is on the space of N = 2 symmetric su-
perfunctions f(x, ϕ, θ) such that Kijf(x, ϕ, θ) = κijκijf(x, ϕ, θ). This obser-
vation will be crucial when we study the conserved quantities of the s2CS
model.

3.3. Superpartitions

Bases of the space of symmetric superpolynomials, to be introduced shortly,
are labeled by superpartitions [1]. A superpartition Λ is a set of four parti-
tions, written as,

(46) Λ = (Λ; Λ; Λ; Λ
s
)

with restrictions on the constituent partitions: Λ is a standard partition in
which 0’s are allowed and contribute to the length of the partition. Both Λ



“1-Lapointe” — 2022/3/21 — 19:04 — page 555 — #13

The N = 2 supersymmetric Calogero-Sutherland model 555

and Λ are partitions with distinct parts that can contain one zero which, if
present, also contributes to the length. Finally, Λ

s
is a standard partition

(for which zeros are ignored). Or, more explicitly:

Λ1 ≥ Λ2 ≥ · · · ≥ Λm ≥ 0

Λ1 > Λ2 > · · · > Λm ≥ 0

Λ1 > Λ2 > · · · > Λm ≥ 0

Λ
s
1 ≥ Λ

s
2 ≥ · · · ≥ Λ

s
ℓ( Λ

s
) > 0,(47)

where ℓ(λ) is the length of the partition λ. The length of the superpartition,
ℓ(Λ), is the sum of the length of the constituent partitions,

ℓ(Λ) = ℓ( Λ) + ℓ( Λ) + ℓ( Λ) + ℓ( Λ
s
).(48)

A superpartition is said to belong to the M -fermion sector, with M =
(m,m,m), if

ℓ( Λ) = m, ℓ( Λ) = m, ℓ( Λ) = m.(49)

With the Mi’s defined in (32), a superpartition takes the form

Λ = (Λ1, . . . ,ΛM1
; ΛM1+1, . . . ,ΛM2

; ΛM2+1, . . . ,ΛM3
; ΛM3+1, . . . ,ΛN )(50)

with the understanding that

Λi ∈ Λ for i ∈ {1, . . . ,M1}(51)

Λi ∈ Λ for i ∈ {M1 + 1, . . . ,M2}

Λi ∈ Λ for i ∈ {M2 + 1, . . . ,M3}

Λi ∈ Λ
s
for i ∈ {M3 + 1, . . . , N}.(52)

Finally, the bosonic degree of a superpartition is defined to be the sum of
all its entries and is written |Λ| :

|Λ| =

ℓ(Λ)∑

i=1

Λi.(53)
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Therefore, a superpartition of bosonic degree n in the M -fermion sector is
said to be part of the (n|M) = (n|m,m,m) sector. For instance,

Λ = (3, 2, 2, 0, 0; 1, 0; 3, 1; 2, 1, 1) ∈ (16|5, 2, 2),

Ω = (1, 0; 5, 2, 1; 5, 1; 4, 1) ∈ (20|2, 3, 2).(54)

3.4. Diagrammatic representation of superpartitions

The superpartition Λ = (Λ; Λ; Λ; Λs) can also be written as a standard par-
tition where the parts are marked according to which constituent partition
they belong: with overbars, underbars, both overbars and underbars, and
unmarked. If there are parts which are equal, we use the ordering a, a, a, a.
Here is an example:

(55) Λ = (4, 2, 0; 4, 2, 0; 3, 2, 0; 3, 1) = (4, 4, 3, 3, 2, 2, 2, 1, 0, 0, 0)

This notation suggests the following diagrammatic representation. As usual,
every part is represented by a row with as many boxes as its numerical value.
If the part is marked, we add a circle of a given type the end of the row: a
if the part is overlined, a if the part is underlined and a if the part is

overlined and underlined. We add the above ordering convention: when there
are more than one circle in a column, the ordering, from top to bottom, is
, and . Here is the diagrammatic representation of the above example:

Λ = (4, 4, 3, 3, 2, 2, 2, 1, 0, 0, 0) ←→(56)

Note that there cannot be two circles of any type in the same row.
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3.5. Ordering on superpartitions

We now introduce the dominance ordering on superpartitions. To formulate
it, we first need to a introduce a few concepts. For a composition η ∈ ZN≥0,
let η+ be the partition obtained by reordering the entries of η in weakly
decreasing order. Considering Λ as a composition, that is, by replacing its
semicolons by commas, we define

(57) Λ[0] = Λ+

Also, for 1 ≤ m ≤ N , let η + 1m stand for the composition (η1 + 1, . . . , ηm +
1, ηm+1, . . . , ηN ). This allows to define

(58) Λ[k] = (Λ + 1Mk)+, k = 1, 2, 3.

In the diagrammatic representation defined in the previous subsection, Λ[0]

correspond to the partition whose diagram is that of Λ without its circles,
Λ[1] correspond to the partition whose diagram is that of Λ where every
is replaced by a box, Λ[2] correspond to the partition whose diagram is

that of Λ where every or is replaced by a box, and Λ[3] correspond to
the partition whose diagram is that of Λ where every circle is replaced by a
box. For instance, using the example given in (56), we have

Λ[0] = (4, 4, 3, 3, 2, 2, 2, 1), Λ[1] = (5, 4, 3, 3, 3, 2, 2, 1, 1, 1),

Λ[2] = (5, 5, 3, 3, 3, 3, 2, 1, 1, 1, 1), Λ[3] = (5, 5, 4, 3, 3, 3, 3, 1, 1, 1, 1) .(59)

Note that it is then obvious that there is a bijective correspondence between
(Λ[0],Λ[1],Λ[2],Λ[3]) and Λ.

The ordering on superpartitions can now be defined as

Λ ≥ Ω ⇐⇒ Λ[k] ≥ Ω[k] ∀ k = 0, 1, 2, 3.(60)

where the ordering on partitions is the standard dominance ordering [17]

λ ≥ µ ⇐⇒ |λ| = |µ| and

k∑

i=1

λi ≥
k∑

i=1

µi ∀ k(61)
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Example 2. Consider the three superpartitions:

Λ = (0, 0; 1, 0; 0; 2)

Ω = (1, 0; 1, 0; 0; 1)

Γ = (0, 0; 2, 1; 0; )(62)

We have

(63)

Λ[0] = (2, 1) Λ[1] = (2, 1, 1, 1)

Λ[2] = (2, 2, 1, 1, 1) Λ[3] = (2, 2, 1, 1, 1, 1)

Ω[0] = (1, 1, 1) Ω[1] = (2, 1, 1, 1)

Ω[2] = (2, 2, 1, 1, 1) Ω[3] = (2, 2, 1, 1, 1, 1)

Γ[0] = (2, 1) Γ[1] = (2, 1, 1, 1)

Γ[2] = (3, 2, 1, 1) Γ[3] = (3, 2, 1, 1, 1)

which gives

Λ[0] > Ω[0], Λ[1] = Ω[1], Λ[2] = Ω[2] and Λ[3] = Ω[3] =⇒ Λ > Ω

Γ[0] = Λ[0], Γ[1] = Λ[1], Γ[2] > Λ[2] and Γ[3] > Λ[3] =⇒ Γ > Λ(64)

3.6. Two bases of symmetric superpolynomials

We now introduce two bases of superpolynomials that will be central in our
construction of the eigenfunctions of the s2CS model.

Definition 3. Let zΛ = zΛ1

1 zΛ2

2 · · · . To every Λ in the M -fermion sector,
we associate a monomial symmetric polynomial defined as 2

mΛ =
1

fΛ

∑

ω∈SN

Kω[ϕ; θ]Mz
Λ(65)

where

fΛ = fΛfΛs with fλ = nλ(0)!nλ(1)! · · ·(66)

2Note that this basis differs sightly from the one presented in [1] since we use
a different ordering on [ϕ; θ]M (compare eq. (27) of [1] with eq. (33) above). This
minor redefinition is more in line with the symmetrization of the non-symmetric
Jack polynomials that plays a pivotal role in our construction.



“1-Lapointe” — 2022/3/21 — 19:04 — page 559 — #17

The N = 2 supersymmetric Calogero-Sutherland model 559

In the last equation, nλ(i) stands for the multiplicity of the part i in the
partition λ (the part 0 being considered only for the partition Λ).

Note that 1/fΛ is a normalization factor that can be avoided by restrict-
ing the summation to distinct permutations.

Proposition 4 ([1]). The monomial symmetric functions {mΛ}Λ for all
superpartitions Λ in the M -fermionic sector and length at most N form a
basis of ΠN(M).

Example 5. Here are some examples of the monomial symmetric functions:

(67)

m( ; 1,0; 2; ) = ϕ1ϕ2θ3(z1 − z2)z
2
3 + ϕ2ϕ3θ1(z2 − z3)z

2
1

+ ϕ1ϕ3θ2(z1 − z3)z
2
2 ,

m(0,0; 1; ; 1) = ϕ1θ1ϕ2θ2ϕ3z3z4 + distinct permutations,

m(2,1; 1,0; 0; 3,1,1) = ϕ1θ1ϕ2θ2ϕ3ϕ4θ5z
2
1z

1
2z

1
3z

0
4z

0
5z

3
6z

1
7z

1
8

+ distinct permutations ,

where in the first example we set N = 3 while in the two other examples the
number of variables in unspecified.

Now, a key step in the construction of the Jack superpolynomials relies
on the introduction of a new basis that can be viewed as a deformation of
the super power-sums introduced in [1].

Definition 6. To every Λ in theM -fermion sector, we associate a symmet-
ric function qΛ, dubbed the quasi-power sums, defined as

qΛ = pΛm(; Λ; Λ;) pΛ
s(68)

where

pΛ =
∏

i

(
N∑

k=1

ϕkθkz
Λi

k

)
(69)

and where pλ stands for the usual power sums:

(70) pλ = pλ1
· · · pλℓ

with pn =

N∑

i=1

zni .
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Example 7. We give some examples of the qΛ polynomials

(71)

q( ; 1,0; 2; ) = m( ; 1,0; 2; )

q(0,0; 1; ; 1) = (ϕ1θ1 + ϕ2θ2 + · · · )
2(ϕ1z1 + ϕ2z2 + · · · )

× (z1 + z2 + · · · )

q(1,0; 2,1; 1,0; 2,2) = (ϕ1θ1z1 + ϕ2θ2z2 + · · · )(ϕ1θ1 + ϕ2θ2 + · · · )

×m( ; 2,1; 1,0; )(z
2
1 + z22 + · · · )

2

We stress that this new basis is not multiplicative due to the non-
multiplicative character of the factor m(; Λ; Λ;).

3.7. Proof of Proposition 1

Having introduced the monomial basis, we are now in position to prove
Proposition 1.

Proof. Only the proof of the first relation in (40) will be presented since
the other two are similar. The proposition is proven by direct calculation.
Applying F on an arbitrary monomial mΛ ∈ ΠN(M) we have

F mΛ =

N∑

i=1

ϕiθi(ϕiθi)
†
∑′

ω∈SN

Kω[ϕ; θ]Mz
Λ(72)

where the prime indicates that we sum only over distinct permutations. Now,
since (

∑
i ϕiθi(ϕiθi)

†) is SN -invariant, we can move it through Kω to get

F mΛ =
∑′

ω∈SN

Kω

N∑

i=1

ϕiθi(ϕiθi)
†[ϕ; θ]Mz

Λ(73)

Let us now focus on the second sum:

N∑

i=1

ϕiθi(ϕiθi)
†[ϕ; θ]M(74)

=

N∑

i=1

ϕiθi(ϕiθi)
†ϕ1θ1 · · ·ϕmθmϕM1+1 · · ·ϕM2

θM2+1 · · · θM3
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It is clear that ϕiθi(ϕiθi)
†ϕjθj = δijϕjθj + (1− δij)ϕjθjϕiθi(ϕiθi)

†. We can
thus write

N∑

i=1

ϕiθi(ϕiθi)
†[ϕ; θ]M =

m∑

i=1

[ϕ; θ]M = m [ϕ; θ]M .(75)

Substituting this back into (73) gives us

F mΛ = mmΛ(76)

Now, since any f ∈ ΠN(M) has a unique decomposition on the monomial basis,
we have

F f = F
∑

Λ

cΛmΛ =
∑

Λ

cΛFmΛ =
∑

Λ

cΛmmΛ = mf(77)

and the result holds. □

4. Conserved quantities of the s2CS model and its

eigenfunctions

4.1. Eigenfunctions of the s2CS model in terms of the
non-symmetric Jack polynomials

The construction of the s2CS eigenfunctions that is presented below is a
direct generalization of that worked out in the CS and the sCS models when
formulated in terms of the non-symmetric Jack polynomials. We thus start
with a brief review of these two known cases after summarizing the proper-
ties of the non-symmetric Jack polynomials.

When discussing Jack polynomials and their generalizations, we will
comply with the standard notation and use instead the parameter α de-
fined as

(78) α = 1/β.

4.1.1. Brief review of the non-symmetric Jack polynomials. The
non-symmetric Jack polynomials [4, 19], denoted Eη, are indexed by a com-
position η ∈ ZN≥0 and defined as follows: Eη is the unique polynomial of the
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form

Eη(z) = zη +
∑

ν≺η

aη,νz
ν(79)

which simultaneously diagonalizes all Dunkl operators

DiEη = η̂iEη,(80)

where the Dunkl operators Di is defined as

Di = αzi∂i +
∑

j<i

zi
zij

(1−Kij) +
∑

j>i

zj
zij

(1−Kij)− (i− 1).(81)

The ordering ≺ in (79) is the Bruhat order on weak compositions, that is:

ν ≺ η ⇐⇒ ν+ < η+ or ν+ = η+ and wν > wη(82)

where wη is the unique permutation of minimal length such that η = wηη
+

(wη permutes the entries of η) and where the Bruhat order on the sym-
metric group SN is such that wν > wη iff wη can be written using reduced
decompositions as a subword of wν . The eigenvalues η̂i are given by

η̂i = αηi −
(
#{j = 1, . . . , i− 1|ηj ≥ ηi}(83)

+ #{j = i+ 1, . . . , N |ηj > ηi}
)
.

For instance, for η = (6, 2, 3, 5, 2, 7, 3, 2), we have

(84) η̂1 = 6α− 1 and η̂5 = 2α− (4 + 2).

The action of the Dunkl operators on monomials is triangular in the Bruhat
order. To be more specific, we have

(85) Dix
η = η̂i x

η +
∑

ν≺η

∗ zν

where the expansion coefficients are represented by ∗ for simplicity.

In the remainder of this subsection, we collect some relations that will
later be useful, relations that describe the action ofKi,i+1 on both the Dunkl
operators and the Eη.
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The Dunkl operators satisfy the degenerate Hecke relations :

Ki,i+1Di+1 −DiKi,i+1 = −1, and(86)

Kj,j+1Di = DiKj,j+1 for i ̸= j, j + 1.

Finally, the non-symmetric Jack polynomials have the following property
(see for instance [15])

Ki,i+1Eη =





1
δi,η

Eη + (1− 1
δi,η

)EKi,i+1η ηi > ηi+1

Eη ηi = ηi+1
1
δi,ηEη + EKi,i+1η ηi < ηi+1

,(87)

where

δi,η = η̂i − η̂i+1.(88)

4.1.2. Construction of the Jack polynomials in terms of Eη. It is
well known that the (symmetric) Jack polynomials can be constructed out
of the non-symmetric ones by a direct symmetrization process

(89) P
(α)
λ (z) =

1

fλ

∑

ω∈SN

KωEλR(z)

where fλ was defined in (66) and where λR is the composition obtained by
reordering the entries of λ in a weakly increasing way, that is, given the
partition λ = (λ1, λ2, . . . , λN ) (note that λ may contain a string of zeros at
the end), we have

(90) λR = (λN , . . . , λ2, λ1) .

We stress that any composition η that rearranges to λ could have been used
instead of λR. The only difference would be that the normalization factor
would not necessarily be given by fλ.

4.1.3. Construction of the N = 1 Jack superpolynomials in terms
of Eη. The N = 1 Jack superpolynomials can also be defined by a similar
symmetrization of the non-symmetric Jack polynomials (suitably dressed
with θ-terms). In this case, the superpartition Λ is of the form Λ = (Λa; Λs)
where the parts of Λa are distinct and the partition Λs is an ordinary par-

tition (with possibly zeros at the end). The Jack superpolynomial P
(α)
Λ – in
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the fermionic sector m – takes the form

(91) P
(α)
Λ (z, θ) =

(−1)(
m

2 )

fΛs

∑

ω∈SN

Kω θ1 · · · θmEΛR(z)

where ΛR = ((Λa)R, (Λs)R) and where Kij stands for Kij = Kijκij , with κij
defined in (44). It was shown that the P

(α)
Λ (z, θ)’s are the eigenfunctions of

the sCS model [9].

4.1.4. Construction of the N = 2 Jack superpolynomials in terms
of Eη. By analogy, the candidate N = 2 Jack superpolynomials are con-
structed as follows.

Definition 8. The N = 2 Jack superpolynomials, in the M -fermionic sec-
tor, are given by

P
(α)
Λ (z, ϕ, θ) =

(−1)(
m

2 )+(
m

2 )

fΛ

∑

ω∈SN

Kω[ϕ; θ]MEΛR(z)(92)

where ΛR is the composition defined as follow

ΛR = ((Λ)R, ( Λ)R, ( Λ)R, ( Λ
s
)R).(93)

4.2. Sekiguchi operators

We will construct four families of conserved quantities in involution using
Sekiguchi operators. The first is the usual Sekiguchi operator

(94) S[0](u, α) =

N∏

i=1

(Di + u)

The other three, S[k](u, α), are defined as

(95) S[k](u, α) =
∑

M

1

|S(M)|

∑

ω∈SN

KωP
M

Mk∏

i=1

(Di + α+ u)

N∏

j=Mk+1

(Di + u),

where k = 1, 2, 3.
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Proposition 9. We have that P
(α)
Λ (z, ϕ, θ) given in (92) is a common

eigenfunction of the operators S[k](u, α). More precisely, let

(96) ελ(u, α) =

N∏

i=1

(αλi + 1− i+ u)

where λ is a partition (with possibly zeros at the end). Then

(97) S[k](u, α)P
(α)
Λ = εΛ[k](u, α)P

(α)
Λ for k = 0, 1, 2, 3

Proof. The proof follows most of the steps of the proof of Proposition 1 of
[12]. It is easy to verify, using (86), that for all i = 1, . . . , N − 1 we have

(98) Ki,i+1(Di + c)(Di+1 + c) = (Di + c)(Di+1 + c)Ki,i+1 ,

where c is an arbitrary constant. Hence KωS
[0](u, α) = S[0](u, α)Kω for all

ω ∈ SN . And since S[0](u, α) only acts on the variables z, we also have
Kω[ϕ; θ]MS

[0](u, α) = S[0](u, α)Kω[ϕ; θ]M for all ω ∈ SN . Therefore, using
(92), to prove the S[0](u, α) case we simply need to show that

(99)

(
N∏

i=1

(Di + u)

)
EΛR(z) = εΛ[0](u, α)EΛR(z).

Similarly, we will now show that to prove the remaining cases, it suffices to
prove that

(100)



Mk∏

i=1

(Di + α+ u)

N∏

j=Mk+1

(Dj + u)


EΛR(z) = εΛ[k](u, α)EΛR(z) .

for k = 1, 2, 3.
As observed before, PMKω[ϕ; θ]M is non-zero only if ω ∈ S(M). Using

(92) again (forgetting the multiplicative factor), we get

S[k](u, α)
∑

ω∈SN

Kω[ϕ; θ]MEΛR(z)(101)

=
1

|S(M)|

∑

σ∈SN

Kσ



Mk∏

i=1

(Di + α+ u)

N∏

j=Mk+1

(Dj + u)




×
∑

ω∈S(M)

Kω[ϕ; θ]MEΛR(z)
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From (98), we can deduce that
∏Mk

i=1(Di + α+ u)
∏N
j=Mk+1(Dj + u) com-

mutes with Kω[ϕ; θ]M for every ω ∈ S(M). Hence

S[k](u, α)
∑

ω∈SN

Kω[ϕ; θ]MEΛR(z)(102)

=
∑

σ∈SN

Kσ[ϕ; θ]M



Mk∏

i=1

(Di + α+ u)

N∏

j=Mk+1

(Dj + u)


EΛR(z)

and, as claimed, (100) implies the remaining statements in the proposition.

We have left to prove expressions (99) and (100). Let η = ΛR and suppose
that ηi = r. It is easy to get from (83) that the eigenvalue η̂i of Di is

η̂i = αr −#{rows of Λ[0] of size larger than r}(103)

−#{rows of ΛR of size r above row i} .

Therefore, letting

ji = #{rows of Λ[0] of size larger than r}(104)

+ #{rows of ΛR of size r above row i}+ 1

we have {j1, . . . , jN} = {1, . . . , N}, Λ
[0]
ji

= r, and η̂i = αΛ
[0]
ji

+ 1− ji, which
gives (99).

Continuing with the same notation, we suppose that i belongs to
{1, . . . ,m} and that there are ℓ rows of size r in (η1, . . . , ηm). Then ηi = r

belongs to the ℓ highest rows of size r in η, and thus, by (104), Λ
[0]
ji

is also

one of the ℓ highest rows of size r in Λ[0]. Hence, in this case

(105) η̂i + α = αΛ
[0]
ji

+ 1− ji + α = αΛ
[k]
ji

+ 1− ji .

If i does not belong to {1, . . . ,m}, then ηi = r does not belong to the ℓ
highest rows of size r in η, and we have

(106) η̂i = αΛ
[0]
ji

+ 1− ji = αΛ
[k]
ji

+ 1− ji

and (100) follows. □

From this proposition, we will later conclude that the Jack superpolynomials
expand triangularly in the monomial basis. But we first need to establish
that the Sekiguchi operators act triangularly on the monomial basis.
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Proposition 10. We have that

(107) S[k](u, α)mΛ = εΛ[k](u, α)mΛ + lower terms

Proof. For any weak composition η, define η[0] to be η+ and η[k] to be (η +
1Mk)+. It was shown in [5] that if zν occurs in the expansion of Yiz

η, where
Yi is a Cherednik operator [7, 8, 18] (whose precise form is not needed here)
then ν [0] ≤ η[0] and ν[k] ≤ η[k]. Since Di can be obtained as a limit of Yi,
that is, since [14]

(108) Di = lim
q=tα,t→1

1− Yi
1− q

,

the result also holds for Di. Using (85), which gives the triangularity in the
Bruhat order, we thus have

(109) Diz
η = η̂iz

η +
∑

η<γ

∗ zν

for certain coefficients ∗, where η ≤ γ iff ν[k] ≤ η[k] for k = 0, 1, 2, 3. We then
have that

(110) Diz
η = η̂iz

η +
∑

η<γ

∗ zν

where the order is now

(111) η ≤ γ ⇐⇒ ν [k] ≤ η[k] with k = 0, 1, 2, 3.

We finish the proof by showing that (the other cases are similar)

(112) S[1](u, α)mΛ = εΛ[1](u, α)mΛ + lower terms

It is easy to see that, up to a sign (−1)ξ, we have

(113) mΛ =
1

fΛ

∑

ω∈SN

Kω[ϕ; θ]Mz
Λ = (−1)ξ

1

fΛ

∑

ω∈SN

Kω[ϕ; θ]Mz
ΛR

since the permutation γ that sends Λ to ΛR is such that Kγ [ϕ; θ]M =
(−1)ξ[ϕ; θ]MKγ . After acting with the projector PM contained in S[1](u, α),
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we then obtain

S[1](u, α)mΛ =
(−1)ξ

fΛ|S(M)|

∑

ω∈SN

Kω

M1∏

i=1

(Di + α+ u)(114)

×
N∏

j=M1+1

(Di + u)
∑

σ∈S(M)

Kσ[ϕ; θ]Mz
ΛR

Now, Kσ commutes with the two products of Di’s since σ ∈ S(M), which
gives
(115)

S[1](u, α)mΛ =
(−1)ξ

fΛ

∑

ω∈SN

Kω[ϕ; θ]M

M1∏

i=1

(Di + α+ u)

N∏

j=M1+1

(Di + u)zΛ
R

Using (100) and (110) , this gives

S[1](u, α)mΛ =
(−1)ξ

fΛ

∑

ω∈SN

Kω[ϕ; θ]M


εΛ[1](u, α)zΛ

R

+
∑

η<ΛR

∗ zη




=
1

fΛ

∑

ω∈SN

Kω[ϕ; θ]M


εΛ[1](u, α)zΛ +

∑

η<ΛR

∗ zη


(116)

Now, η corresponds to a unique superpartition Ω = wηη, where wη ∈ S(M).
This correspondence is easily seen to be such that η < ν iff the corresponding
superpartitions Ω and Γ are such that Ω < Γ. The previous equation then
immediately implies (112). □

Proposition 11. The Jack superpolynomials are unitriangularly related to
the monomials, that is,

(117) P
(α)
Λ = mΛ +

∑

Ω<Λ

dΛΩ(α)mΩ

Proof. The proof that follows is basically the proof of the triangularity in
Proposition 7 of [5]. We include it for completeness.

Suppose that there exists a term mΩ such that Ω ̸≤ Λ in P
(α)
Λ and sup-

pose that Ω is maximal among those superpartitions. Then, by Proposi-
tion 10, the coefficient of mΩ in S[k](u, α)JαΛ is equal to dΛΩεΩ[k](u, α) for
k = 0, 1, 2, 3. On the other hand, Proposition 9 tells us that the coefficient
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of mΩ in in S[k](u, α)JαΛ is equal to dΛΩεΛ[k](u, α) , again for k = 0, 1, 2, 3.
But this gives that

(118)
εΩ[0](u, α) = εΛ[0](u, α), εΩ[1](u, α) = εΛ[1](u, α),

εΩ[2](u, α) = εΛ[2](u, α), εΩ[3](u, α) = εΛ[3](u, α),

which is a contradiction since Λ ̸= Ω (εΛ[0](u, α), εΛ[1](u, α), εΛ[2](u, α) and
εΛ[3](u, α) uniquely determine Λ since they uniquely determine Λ[0], Λ[1], Λ[2]

and Λ[3]). □

Given that the monomials form a basis of ΠN(M), we have immediately.

Corollary 12. The Jack superpolynomials {P
(α)
Λ }Λ for all superpartitions

Λ in the M -fermionic sector and length at most N form a basis of ΠN(M).

For i = 1, . . . , N , let H
[0]
i be the coefficient of uN−i in S[0](u, α). Let also

H
[1]
i be the coefficient of uN−i in S[1](u, α), and similarly for H

[2]
i and H

[3]
i .

The previous corollary together with Proposition 9 imply that these 4N
operators are in involution. We will see in the next subsection how the inte-
grability of the s2CS model is then immediate since the s2CS Hamiltonian
H can be taken to be one of those operators.

Corollary 13. The 4N quantities H
[0]
i , H

[1]
j , H

[2]
k and H

[3]
ℓ , for i, j, k, ℓ =

1, . . . , N mutually commute when restricted to the space of symmetric su-
perpolynomials, that is,

(119) [H
[k]
i , H

[l]
j ]f = 0 ∀ k, l = 0, 1, 2, 3 and i, j = 1, . . . , N

whenever f belongs to ΠN(M).

4.3. Complete characterization of the eigenfunctions from a
minimal set of commuting operators and integrability

of the s2CS model

The Jack polynomials are fully characterized by being (1) triangular in the
monomial basis, and (2) eigenfunctions of the CS Hamiltonian. Similarly,
the N = 1 Jack superpolynomials are completely characterized by the tri-
angularity condition and that they diagonalize both the sCS Hamiltonian
and another conservation law I. For the N = 2 version, the condition (2)
amounts to diagonalizing the s2CS Hamiltonian together with three extra
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conservation laws (that we shall denote I[1], I[2] and I[3]). This implies in
passing that the s2CS model is integrable.

We first prove that if we impose the unitriangularity, then the operators

H
[i]
2 for i = 0, 1, 2, 3 are sufficient to characterize the Jack superpolynomials.

The eigenvalue of those operators is the coefficient of uN−2 in εΛ[k](u, α) for
k = 0, 1, 2, 3. In general, we have that

(120) ε
(2)
λ (α) := ελ(u, α)

∣∣∣
u2

= e2(αλ1, αλ2 − 1, . . . , αλN + 1−N)

where e2(x1, x2, x3, . . . ) = x1x2 + x1x3 + x2x3 + · · · is an elementary sym-
metric function.

The following lemma will prove useful.

Lemma 14. If µ < λ then ε
(2)
λ (α) ̸= ε

(2)
µ (α).

Proof. It is a known easy lemma (see for instance [20]) that we prove for
completeness. Suppose that λ and ν are two partitions such that λi = νi + 1
and λj = νj − 1 for i < j. Comparing their quadratic terms in α, we get

(121)
(
ε(2)ν (α)− ε

(2)
λ (α)

) ∣∣∣
α2

= 1 + νi − νj > 0

since ν is a partition. When µ < λ, it is well-known [17] that one can go
from λ to µ using steps such as those we just used to go from λ to ν. Hence

(122)
(
ε(2)µ (α)− ε

(2)
λ (α)

) ∣∣∣
α2
> 0

and we can conclude that ε
(2)
λ (α) ̸= ε

(2)
µ (α). □

Proposition 15. The Jack superpolynomial P
(α)
Λ is uniquely defined by the

following two conditions:

(1) : P
(α)
Λ = mΛ + lower terms

(2) : P
(α)
Λ diagonalizes the operators H

[0]
2 , H

[1]
2 , H

[2]
2 and H

[3]
2(123)
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Proof. This is again a standard proof that we include for completeness. Let

P
(α)
Λ and P̃

(α)
Λ be two polynomials that obey the two conditions (123). Then

(124) P
(α)
Λ − P̃

(α)
Λ =

∑

Ω<Λ

cΛΩ(α)mΩ

for some coefficients cΛΩ(α). Assume that Γ is maximal among the Ω’s
such that cΛΩ(α) ̸= 0. Since Λ ̸= Γ, we have that Λ[k] ̸= Γ[k] for either k =

0, 1, 2, 3. Suppose without loss of generality that Λ[0] ̸= Γ[0]. Applying H
[0]
2

on both sides of the previous equation then gives, from our assumptions,

ε
(2)
Λ[0](α)

(
P

(α)
Λ − P̃

(α)
Λ

)
= ε

(2)
Λ[0](α)

∑

Ω<Λ

cΛΩ(α)mΩ(125)

= H
[0]
2

∑

Ω<Λ

cΛΩ(α)mΩ ,

where we used the fact, on the l.h.s., that the eigenvalue of P
(α)
Λ and P̃

(α)
Λ

needs to be ε
(2)
Λ[0](α) from Proposition 10. The coefficient of mΓ is then, by

maximality and Proposition 10, such that

(126) ε
(2)
Λ[0](α) cΛΓ(α) = ε

(2)
Γ[0](α) cΛΓ(α)

Since Γ[0] < Λ[0], we have from Lemma 14 that ε
(2)
Λ[0](α) ̸= ε

(2)
Γ[0](α). This leads

to the contradiction that cΛΓ(α) = 0 from which we deduce that cΛΩ(α) = 0

for all Ω. Hence P
(α)
Λ = P̃

(α)
Λ and the proof is complete. □

We will now show that we can replace the four operators in the previous
proposition by simpler ones. Let

(127) I[k] =
∑

M

1

|S(M)|

∑

ω∈SN

KωP
M (D1 + · · ·+DMk

).

Theorem 16. The Jack superpolynomials P
(α)
Λ are uniquely defined by the

following two conditions:

(1) : P
(α)
Λ = mΛ + lower terms

(2) : P
(α)
Λ diagonalizes the operators H, I[1], I[2] and I[3](128)

where H is the Hamiltonian defined in (24).
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Proof. Let

(129) D := H
[0]
1 = D1 + · · ·+DN

whose eigenvalue on P
(α)
Λ is

∑
i(αΛ

[0]
i + 1− i) = α|Λ| −N(N − 1)/2. The

eigenvalue of D is thus constant on basis elements of the same degree (which
is the case we are considering). From (45) we have that the relation

(130) α2H = D2 − 2H
[0]
2 + (N − 1)D +

N(N2 − 1)

6

which is valid in the N = 0 case3 also holds in the N = 2 case. Hence H can
replace H

[0]
2 in Proposition 15 without affecting the validity of the proposi-

tion.

It is also straightforward to check that

D1 + · · ·+Dm(131)

=




N∏

j=1

(Di + u)−
m∏

i=1

(Di + α+ u)

N∏

j=m+1

(Di + u)



∣∣∣∣∣
u2

+m(D1 + · · ·+DN ) +m(m− 1)/2

which implies that

(132) I[k] = H
[0]
2 −H

[k]
2 +MkD +Mk(Mk − 1)/2

for k = 1, 2, 3. Since the eigenvalue of D are constant on basis elements of
the same degree (these numbers are already encoded in Λ), we have that

I[k] can also replace H
[k]
2 in Proposition 15 without affecting the validity of

the proposition. □

From (129) and (130), the s2CS Hamiltonian H can be taken to be one of the

4N independent commuting quantitiesH
[k]
i for i = 1, . . . , N and k = 0, 1, 2, 3

(see Corollary 13). Hence, we have the following.

Corollary 17. The s2CS model is integrable.

For completeness, we give the eigenvalues of H, I[1], I[2] and I[3].

3This is a well know result that can be compared for instance with (3.27) in [16]
for lack of a better reference
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Proposition 18. We have that

(133) HPαΛ = ϵΛ(α)P
α
Λ and I[k] P

α
Λ = ϵ

[k]
Λ (α)PαΛ

for k = 1, 2, 3. The eigenvalues are given explicitly as

ϵΛ(α) =

N∑

i=1

[
α2(Λ

[0]
i )2 + α(N + 1− 2i)Λ

[0]
i

]
(134)

and ϵ
[k]
Λ (α) =

∑

i:Λ
[k]
i ̸=Λ

[0]
i

(αΛ
[k]
i + 1− i)

with k = 1, 2, 3.

Proof. Straightforward using (130), (132) and the known eigenvalues of

H
[0]
2 , H

[k]
2 and D. □

5. Two orthogonality characterizations of the Jack

superpolynomials

5.1. Relation with Jack polymomials with prescribed symmetries
and the analytic scalar product

The relation between the Jack superpolynomials and the non-symmetric
Jack polynomials implies that we can define a scalar product with respect
to which the Jack superpolynomials are orthogonal. We outline the details
of this implication in the present section.

It proves convenient to introduce as an intermediate step the relation

between P
(α)
Λ (z, ϕ, θ) and the Jack polynomials with prescribed symmetry.

Definition 19. The Jack polynomials with prescribed symmetry (the pre-
scription being SAAS where S and A stand respectively for symmetry and
antisymmetry), are defined as

EΛ =
(−1)(

m

2 )+(
m

2 )

fΛ

∑

α, α, α, γ

(−1)ℓ(α)+ℓ(α)KαKαKαKγEΛR(135)
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where fΛ was defined in (66) and where we used the compact notation

(136)
∑

α, α, α, γ

≡
∑

α∈SM1

α∈S]M1,M2]

α∈S]M2,M3]

γ∈S]M3,N]

Explicitly, the SAAS prescription means that the symmetrization is taken
independently with respect to the m first and last N −M3 variables while
the antisymmetrization is taken independently with respect to the variables
in position M1 + 1, . . . ,M2 and M2 + 1, . . . ,M3. This entails the following
corollary of Definition 8:

Corollary 20. The Jack superpolynomials (92) can equivalently be written
as

P
(α)
Λ (z, ϕ, θ) =

∑

ω∈S(M)

Kω[ϕ; θ]MEΛ(z)(137)

where we recall that S(M) was defined in (36).

Proof. The proof is obtained by direct calculation using Definition 19:

∑

ω∈S(M)

Kω[ϕ; θ]MEΛ =
(−1)(

m

2 )+(
m

2 )

fΛ
(138)

×
∑

ω∈S(M)

α, α, α, γ

Kω[ϕ; θ]M (−1)ℓ(α)+ℓ(α)KαKαKαKγEΛR

=
(−1)(

m

2 )+(
m

2 )

fΛ

∑

ω∈S(M)

α, α, α, γ

KωKαKαKαKγ [ϕ; θ]MEΛR(139)

In the last equation, passing the factor [ϕ; θ]M through the permutations
Kα,Kα produces a sign (−1)ℓ(α)+ℓ(α). Then, the combined sum over all the
permutations is exactly the sum over all permutations of SN . The last line

then matches the definition of P
(α)
Λ given in (92). □
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Definition 21. The analytic scalar product in the M -fermion sector is
defined as

⟨A(z, θ, ϕ)|B(z, θ, ϕ)⟩α =

N∏

i=1

(∮
dzi
2πizi

)
(140)

×
N∏

i=1

∫
dϕidθi

∏

k ̸=l

(
1−

zk
zl

) 1

α

[A(z, θ, ϕ)]‡B(z, θ, ϕ)

where the ‡ operation on the zi variables acts as z‡i = zi
−1 while on the

anticommuting variables it is defined such that

∏

i∈I

ϕiθi
∏

j∈J

ϕj
∏

l∈L

θl


∏

i∈I

ϕiθi
∏

j∈J

ϕj
∏

l∈L

θl




‡

= θNϕN · · · θ1ϕ1.(141)

The non-symmetric Jack polynomials are known to be orthogonal with
respect to the scalar product (141) (see [19]) in the case where M1 =M2 =
M3 = 0. It then easily follows that the Jack polynomials with prescribed
symmetry are also orthogonal with respect to that scalar product. We have
indeed

(142) ⟨EΛ|EΩ⟩α = δΛΩ cΛ(α)

where cΛ(α) is a non-zero constant belonging to Q(α) (see [2] for an explicit
formula).

Lemma 22. The sJacks are orthogonal with respect to the scalar product
(141) and have the following norm:

⟨P
(α)
Λ |P

(α)
Ω ⟩α = δΛΩ

N !

m!m!m! (N −M3)!
cΛ(α)(143)

where cΛ(α) is the norm of the Jack polynomials with prescribed symmetry.

Proof. We know that any two symmetric superpolynomials that are not in
the same sector will be de facto orthogonal. So Λ and Ω must belong to the
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same sector M . We thus have

⟨P
(α)
Λ |P

(α)
Ω ⟩α = ⟨

∑

ω∈S(M)

Kω[ϕ; θ]MEΛ

∣∣ ∑

σ∈S(M)

Kσ[ϕ; θ]MEΩ⟩α(144)

Now, using the adjoint ([ϕ; θ]M )†(Kσ)
−1 of Kσ[ϕ; θ]M , we obtain

⟨P
(α)
Λ |P

(α)
Ω ⟩α = ⟨

∑

ω,σ∈S(M)

([ϕ; θ]M )†(Kσ)
−1Kω[ϕ; θ]MEΛ|EΩ⟩α(145)

Here, we see that ([ϕ; θ]M )†(Kσ)
−1Kω[ϕ; θ]M will be 0 unless ([ϕ; θ]M )† and

(Kσ)
−1Kω[ϕ; θ]M have the exact same fermionic content, that is, unless ω =

σ. We then get

⟨P
(α)
Λ |P

(α)
Ω ⟩α =

∑

ω∈S(M)

⟨EΛ|EΩ⟩α(146)

=
N !

m!m!m! (N −M3)!
⟨EΛ|EΛ⟩αδΛ,Ω(147)

□

Summing up, the Jack superpolynomials given in Definition 8 are equiva-
lently characterized as follows:

Theorem 23. The superpolynomials {P
(α)
Λ }Λ are defined by the two con-

ditions:

(1) : P
(α)
Λ = mΛ + lower terms

(2) : ⟨P
(α)
Λ |P

(α)
Ω ⟩α ∝ δΛΩ.(148)

Proof. The triangularity was shown in Proposition 11. Given that the Gram-
Schmidt process constructs a unique basis from any total order compatible
with the order on superpartitions, the theorem follows immediately. □

5.2. Combinatorial scalar product

We first give two simple examples of sJacks constructed from (92), or equiv-
alently, as eigenfunctions of the s2CS four basic conservation laws, expressed
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both in the monomial basis and the quasi-power sums.

P
(α)
(1; 2,1,0; ; ) = m(1; 2,1,0; ; ) +

1

α+ 2
m(0; 2,1,0; ; 1)

=
1

(2 + α)
q(0; 2,1,0; ; 1) −

1

(2 + α)
q(0; 3,1,0; ; ) +

1 + α

2 + α
q(1; 2,1,0; ; )

P
(α)
(0; 3,1,0; ; ) = m(0; 3,1,0; ; ) +

1

α+ 1
m(0; 2,1,0; ; 1) +

1

α+ 1
m(1; 2,1,0; ; )

=
1

(1 + α)
q(0; 2,1,0; ; 1) +

α

1 + α
q(0; 3,1,0; ; )(149)

We now introduce a combinatorial scalar product defined directly in
terms of the quasi-power sums. It is a natural (albeit non-trivial) extension
of the N = 1 scalar product for super power-sums [10].

Definition 24. The scalar product is defined on the qΛ basis as

⟨⟨qΛ|qΩ⟩⟩α = αm+ℓ( Λ
s
) ξΛ zΛsδΛΩ(150)

with

zλ =
∏

i

inλ(i)nλ(i)! and ξΛ =
∏

i

nΛ(i)!(151)

We can check that the P (α)’s given in (149) are orthogonal with respect
to the scalar product defined in (150):

⟨⟨P
(α)
(1; 2,1,0; ; )|P

(α)
(0; 3,1,0; ; )⟩⟩α =

1

(α+ 2)(α+ 1)
||q(0; 2,1,0; ; 1)||

2(152)

−
α

(α+ 2)(α+ 1)
||q(0; 3,1,0; ; )||

2

=
1

(α+ 2)(α+ 1)
α2 −

α

(α+ 2)(α+ 1)
α

= 0

Claim 25. The superpolynomials {P
(α)
Λ }Λ are defined by the two condi-

tions:

(1) : P
(α)
Λ = mΛ + lower terms

(2) : ⟨⟨P
(α)
Λ |P

(α)
Ω ⟩⟩α ∝ δΛΩ(153)

where the scalar product is given in (150).
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In order to prove the claim, it suffices to prove that the Jack superpolyno-
mials are orthogonal with respect to the combinatorial scalar product (150).
As we will briefly outline, the main ingredient is a symmetry property of

the 4N commuting quantities H
[k]
n with respect to a reproductive kernel of

the scalar product (150). This symmetry property, which is equivalent to

the self-adjointness of the operators H
[k]
n with respect to the scalar product

(150), then implies the orthogonality of the superpolynomials {P
(α)
Λ }Λ. This

result is given as a claim since it is presented without a complete proof. We
only detail the original part of the argument, which is the formulation of the
kernel.

To appropriately describe the reproductive kernel, it is convenient to
define auxiliary variables. Let the variables (η, ϕ̃, θ̃) obey the relations

{ϕ̃i, ϕ̃j} = {θ̃i, θ̃j} = {ϕ̃i, θ̃j} = 0(154)

[ηi, ηj ] = 0(155)

ϕ̃kθ̃k = 0, ηiηi = 0(156)

ϕ̃iηi = θ̃iηi = 0(157)

We then introduce the space Π̃N of symmetric superfunctions in the 4N
auxiliary variables (zi, ϕ̃i, θ̃i, ηi), where f̃ belongs to Π̃N if and only if it
is invariant under the simultaneous exchange of the quartet of variables
(zi, ϕ̃i, θ̃i, ηi)←→ (zj , ϕ̃j , θ̃j , ηj) for any i, j ∈ {1, . . . , N}. It is easy to see
that if f̃(z, ϕ̃, θ̃, η) ∈ Π̃N , then we can obtain a function f(z, θ, ϕ) ∈ ΠN by
doing the substitution

f(z, ϕ, θ) =
[
f̃(z, ϕ̃, θ̃, η)

]
ϕ̃i→ϕi

θ̃i→θi
ηi→ϕiθi

(158)

In particular, it is not too difficult to show that

qΛ(z, ϕ, θ) =
[
pΛ(z, ϕ̃, θ̃, η)

]
ϕ̃i→ϕi

θ̃i→θi
ηi→ϕiθi

(159)

where pΛ = pΛpΛpΛpΛs is defined in the obvious way with for instance (com-
pare with (69))

pΛ(z, ϕ̃, θ̃, η) =
∏

i

(
N∑

k=1

ηkz
Λi

k

)
(160)
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The auxiliary kernel KA(z, ϕ̃, θ̃, η; y, ψ̃, τ̃ , ζ) ≡ KA(Z̃, Ỹ ;α) is defined to be
the bi-symmetric formal power series

KA(Z̃, Ỹ ;α) =
∏

ij

1

(1− ziyj)1/α

∏

ij

(
1 +

α−1ηiζj
1− ziyj

)
(161)

×
∏

ij

(
1 +

ϕ̃iψ̃j
1− ziyj

)
∏

ij

(
1 +

θ̃iτ̃j
1− ziyj

)
.

It is then straightforward to show that

KA(Z̃, Ỹ ;α) =
∑

Λ∈SPar

1

αm+ℓ( Λ
s
)ξΛzΛ

p⊤Λ(z, θ̃, ϕ̃, η)pΛ(y, τ̃ , ψ̃, ζ)(162)

Taking this result from the auxiliary world back to our world, we get the
following.

Proposition 26. Let K(Z, Y ;α) = K(z, ϕ, θ; y, τ, ψ;α) be given by

K(Z, Y ;α) =
[
KA(Z̃, Ỹ ;α)

]
ϕ̃i→ϕi, τ̃i→τi
θ̃i→θi, ψ̃i→ψi

ηi→ϕiθi, ζi→ψiτi

(163)

We then have

K(Z, Y ;α) =
∑

Λ∈SPar

1

αm+ℓ( Λ
s
)ξΛzΛ

q⊤Λ (z, θ, ϕ, η)qΛ(y, τ, ψ, ζ)(164)

which implies that K(Z;Y ;α) is a reproducing kernel of the scalar product
(150), that is,

⟨⟨K(Z, Y ;α)⊤|f(Z)⟩⟩α = f(Y ) ∀ f ∈ ΠN ,(165)

The main step to prove Claim 25 is then to show that the 4N commuting

quantities H
[k]
n (Z) are symmetric with respect to the reproducing kernel

K(Z, Y ;α), that is

(166) H [k]
n (Z)K(Z;Y ;α) = H [k]

n (Y )K(Z;Y ;α)

This can be done using the methods described in [11]. The orthogonality
of the Jack superpolynomials, and thus also the claim, then follows from
standard arguments in symmetric function theory (see for instance [17]).
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6. Norm and evaluation

6.1. The combinatorial norm

In order to present our conjectured expression for the norm of the Jack
superpolynomial with respect to the scalar product (150), we have to refine
the description of the diagrams introduced in Subsection 3.4. We first divide
the set of boxes in a diagram into fermionic and bosonic boxes. The fermionic
boxes are the boxes that have a both at the end of their row and at the
end of their column or a both at the end of their row and at the end
of their column. The bosonic boxes are then simply the boxes that are not
fermionic. We further subdivide the set of bosonic boxes into four subsets
defined as follows. Let BkΛ with k = 0, 1, 2, 3 be the subset of bosonic boxes
that are in rows which end with a box, a , a , or a respectively.
We illustrate this definition with an example in which the fermionic boxes
are indicated in gray and the boxes in the sets BkΛ are identified by their
coordinates (i, j) (i-th row and j-th column):

(167)

B0Λ = {(6, 1)}
B1Λ = {(4, 1), (4, 2)}
B2Λ = {(1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4)}
B3Λ = {(3, 3), (3, 4)}

We are now in position to present the conjectured norm of the Jack
superpolynomials.

Conjecture 27. The superpolynomial P
(α)
Λ has the following norm with

respect to the combinatorial scalar product (150):

jΛ := ⟨⟨P
(α)
Λ |P

(α)
Λ ⟩⟩α =

αM3

ξΛ

3∏

i=0

∏

s∈BiΛ

ℓΛ[i−1](s) + (aΛ[0](s) + 1)α

ℓΛ[i](s) + 1 + aΛ[3](s)α,
(168)

with the convention that Λ[−1] ≡ Λ[3] and where, for a partition λ and its
conjugate λ′ (obtained by interchanging rows and columns), we have that
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the arm-length and the leg-length are respectively given by

(169) aλ(s) = λi − j and ℓλ(s) = λ′j − i, where s = (i, j).

This conjecture has been tested for every superpartition of the following
sectors:

(170)

(1|1, 1, 1), (2|1, 1, 1), (2|2, 1, 1),

(3|2, 1, 0), (3|2, 1, 1), (3|2, 1, 2),

(3|2, 2, 0), (3|2, 2, 1), (3|2, 2, 2),

(4|2, 2, 2), (5|3, 2, 2), (6|2, 2, 2).

These sectors all together contain 171 superpartitions. As further evidence
of the validity of the conjecture, we stress that the norm has the correct
reduction for N = 1 superpartitions. Let us make this explicit. In the case
where there is only one type of circles, we need to replace Λ(3) by Λ(1) (so
that now Λ(−1) = Λ(1)) and to restrict the product to i = 0, 1. Thus, the
N = 1 special case of (171) reads (with M3 = m)

jΛ
N=1
= αm

∏

s∈B0Λ

ℓΛ[1](s) + (aΛ[0](s) + 1)α

ℓΛ[0](s) + 1 + aΛ[1](s)α
(171)

×
∏

s∈B1Λ

ℓΛ[0](s) + (aΛ[0](s) + 1)α

ℓΛ[1](s) + 1 + aΛ[1](s)α
.

Note that the boxes in B1Λ belong to rows that end with a circle and because
they are bosonic they cannot have a circle in their column. Therefore, for
the boxes in B1Λ, we have that ℓΛ[0](s) = ℓΛ[1](s) so that we can rewrite jΛ
under the compact form:

(172) jΛ
N=1
= αm

∏

s∈B0Λ∪B1Λ

ℓΛ[1](s) + (aΛ[0](s) + 1)α

ℓΛ[0](s) + 1 + aΛ[1](s)α

which is precisely the formula given in [13, Eq. (18)].

Back to the generalN = 2 case, we see that each bosonic box contributes
to a factor in the conjectural expression for the norm. Here is an example,
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where the contribution of each bosonic box is written within the box:

3+4α
4+4α

3+3α
4+3α

2+2α
3+2α

2+3α
3+3α

2+2α
3+2α

1+α
2+α

1+2α
2+2α

α
1+α

2+2α
4+2α

α
1+α

3+α
1

The norm is the product of all theses contributions times the prefactor
αM3/ξΛ = α8/1, which gives

(173) jΛ = α8

[
α2(3 + α)(1 + 2α)(2 + 3α)(3 + 4α)

2(2 + α)2(3 + 2α)2(4 + 3α)

]
.

6.2. Evaluation

The evaluation of the Jack polynomials J
(α)
λ refer to its explicit expression

(in terms of λ, α and the number of variables N) when all variables xi are
set equal to 1. In the N = 1 case, because there is a part of the superpoly-
nomial that is antisymmetric in the xi’s, setting xi = 1 for all i makes the
polynomial vanish if its fermionic sector m is greater than 1. Note that the
fermionic variables θi are not set to a definite value. The proper way to do
the evaluation is by:

1) removing the monomial prefactor θ1 · · · θm,

2) dividing the result by the Vandermonde determinant in the variables
x1, . . . , xm, and

3) setting all the variables xi = 1.
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In the resulting combinatorial expression for the evaluation, the contribut-
ing boxes are those of the skew diagram Λ[1]/δm where δm is the fermionic
core, defined as δm = (m,m− 1, . . . , 1).

The procedure for the evaluation of the N = 2 superpolynomial is a
direct generalization of the N = 1 case. We first introduce the fermionic
core

δm,m = (m,m− 1, . . . , 1) ∪ (m,m− 1, . . . , 1)(174)

and then define the skew diagram

(175) ∆Λ = Λ[3]/δm,m,

i.e., the set of boxes of Λ[3] that are not in δm,m. Here is an example

Λ = δ4,3 = ∆Λ =(176)

with the understanding that ∆Λ is the set of white boxes in the last diagram.

For a superpolynomial F (x, θ, ϕ) in the M -fermionic sector, with N ≥
M3, we define its evaluation as

EN,M [F (x, θ, ϕ)] :=

[
[ϕ; θ]†MF (x, θ, ϕ)

VM (x)

]

x1=x2=···=xN=1

,(177)

where

VM (x) =
∏

M1<i<j≤M2

(xi − xj)
∏

M2<k<l≤M3

(xk − xl),(178)

is a product of Vandermonde determinants in the variables xM1+1, ..., xM2

and xM2+1, ..., xM3
respectively. We are now in position to formulate our

conjectural expression for the evaluation.
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Conjecture 28. The evaluation of the Jack superpolynomial P
(α)
Λ , for N ≥

ℓ(Λ), is

EN,M

[
P

(α)
Λ

]
=

(
N −m−m

m

)−1

(179)

×

∏
s∈∆Λ

(
N − ℓ′Λ[3](s) + αa′Λ[3](s)

)

ξΛ
∏3
i=0

∏
s∈BiΛ

(
ℓΛ[i](s) + 1 + αaΛ[3](s)

) ,

where, for a partition λ,

(180) a′λ(s) = j − 1 and ℓ′λ(s) = i− 1, with s = (i, j).

This conjecture has been tested for N = 3, 4, 5, 6 in each of the follow-
ing sectors (with the understanding that the evaluation only makes sense
whenever N ≥ ℓ(Λ)): (1|1, 0, 1), (2|1, 0, 1), (3|2, 0, 1), (3|2, 2, 1), (3|2, 2, 2),
(n|0, 0,m) with n = 1 . . . 4 and m = 1 . . . 3. It was also tested for (4|0, 0, 3)
with N = 7. These sectors represent together 120 superpartitions. Note also
that this formula is de facto correct for any sector (n|m, 0, 0) or (n|0,m, 0)
since, in these cases, it reduces to the N = 1 evaluation formula presented
in [13].

We illustrate the formula for the Jack superpolynomial in the fermionic
sector M = (1, 2, 2) indexed by the superpartition

Λ =(181)

We will consider the case N = 6 = ℓ(Λ). First, we have ξΛ = 1 and the

binomial coefficient is
(
N−m−m

m

)
= 2. We next compute the product in the

numerator. Here δ2,2 = (2, 2, 1, 1). The contribution of each box that belongs
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to ∆Λ is given explicitly in the following diagram

6+2α

5+2α

4+α 4+2α

3+α

2

1

=⇒

∏

s∈∆Λ

(N − ℓ′Λ[3](s) + αa′Λ[3](s))

= 8(2 + α)(3 + α)2(4 + α)(5 + 2α).

(182)

For the denominator, we have

4+2α 3+α 1

3+2α 2+α

1+α

=⇒

3∏

i=0

∏

s∈BiΛ

(ℓΛ[i](s) + 1 + αaΛ[3](s))

= 2(1 + α)(2 + α)2(3 + α)(3 + 2α).

(183)

Collecting these contributions gives

E6,(1,2,2)[P
(α)

] =
2(3 + α)(4 + α)(5 + 2α)

(1 + α)(2 + α)(3 + 2α)
.(184)
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Appendix A. Different prescribed symmetries

The construction of the Jack superpolynomials in terms of the Jack polyno-
mials with prescribed symmetry was discussed in Section 5.1. The prescribed
symmetry underlying our construction is of type SAAS – cf. Definition 19.
Although this ordering of the (anti)-symmetrization operation appears to be
rather natural (up to the trivial permutation of Aϕ and Aθ which amounts
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to a simple relabeling of variables), one can ask wether this is the only pos-
sibility for defining the N = 2 version of the Jacks.

For stability reasons when the number of variables is set to infinity, it is
natural to let the symmetrization associated to the unmarked entries in a
superpartition be to the right. Given the aforementioned trivial permutation
between Aϕ and Aθ we actually only have to consider the alternatives ASA
or AAS for the first three constituent partitions with the understanding that

SϕθAϕAθ −→

{
M = (m,m,m)

Λ = (Λ; Λ; Λ; Λ
s
)

(A.1)

AϕSϕθAθ −→

{
M = (m,m,m)

Λ = (Λ; Λ; Λ; Λ
s
)

(A.2)

AϕAθSϕθ −→

{
M = (m,m,m)

Λ = (Λ; Λ; Λ; Λ
s
)

(A.3)

with the partial sumsMi being changed accordingly. To each case, there cor-
responds a specific dominance ordering. Accordingly, the ordering of symbols
in the diagrammatic representation of superpartitions must be coherent with
the choice of symmetrization, that is

SAA: , ASA: , AAS:(A.4)

Let us introduce a compact notation to cover these alternative construc-
tions. Let

Λ(1) = Λ, Λ(2) = Λ, Λ(3) = Λ, Λ(4) = Λ
s

(A.5)

and σ be an element of S3, so that

(A.6) σ(Λ) = (Λ(σ(1)); Λ(σ(2)); Λ(σ(3)); Λ(4))

The reverse superpartition would now read

(A.7) (σ(Λ))R = ((Λ(σ(1)))R; (Λ(σ(2)))R; (Λ(σ(3)))R; (Λ(4))R)

Finally, with

(A.8) Ξ
(i)
j =





ϕjθj for i = 1
ϕj for i = 2
θj for i = 3
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the modified version of [ϕ; θ]M is

(A.9) [ϕ; θ]σM =

[
M1∏

i=1

Ξσ(1)

]


M2∏

j=M1+1

Ξσ(2)



[

M3∏

k=M2+1

Ξσ(3)

]

The polynomial with σ(SAA) symmetry and labelled by σ(Λ) would the be
given by

P
(α)
σ(Λ) =

(−1)(
2

m
)+( 2

m
)

fΛ

∑

ω∈SN

Kω[ϕ; θ]
σ
ME(σ(Λ))R(A.10)

Are these proper candidates for N = 2 versions of the Jack superpolyno-
mials? Remarkably, it seems that it is indeed the case given the following
properties/conjectures:

1) These polynomials are still eigenfunction of the s2CMS Hamiltonian.

2) By construction, they are still orthogonal with respect to the analytic
scalar product (141).

3) They appear to be also orthogonal with respect to the combinatorial
scalar product (150).

4) The expression for the norm given in Conjecture 27 is still valid if
the role of the BiΛ’s is changed according to the permutation of the
constituent partitions Λ, Λ and Λ. (This version of the conjecture has
been tested for every permutation of (SAA) for all the cases listed in
eq. (170).)
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Sector(Λ) PαΛ

(1|1, 1, 1) Pα(0; 0; 0; 1) = m(0; 0; 0; 1)

Pα(0; 0; 1; ) = m(0; 0; 1; ) −
1

(α+3)m(0; 0; 0; 1)

Pα(0; 1; 0; ) = m(0; 1; 0; ) −
1

(α+2)m(0; 0; 1; ) +
1

(α+2)m(0; 0; 0; 1)

Pα(1; 0; 0; ) = m(1; 0; 0; ) +
1

(α+1)m(0; 1; 0; ) −
1

(α+1)m(0; 0; 1; ) +
1

(α+1)m(0; 0; 0; 1)

(2|2, 2, 1) Pα(0,0; 0; 1; 1) = m(0,0; 0; 1; 1) −
2

(α+5)m(0,0; 0; 0; 1,1)

Pα(0,0; 0; 0; 2) = m(0,0; 0; 0; 2) +
1

(α+1)m(1,0; 0; 0; 1) +
1

(α+1)

m(0,0; 1; 0; 1) −
1

(α+1)m(0,0; 0; 1; 1) +
2

(α+1)m(0,0; 0; 0; 1,1)

Pα(0,0; 0; 2; ) = m(0,0; 0; 2; ) +
1

(α+1)m(1,0; 0; 1; ) −
1

2(α+2)

−1
m(0,0; 0; 0; 2)

− 1
2(α+2)(α+1)m(1,0; 0; 0; 1) −

1
(α+1)m(0,0; 1; 1; ) −

1
2(α+2)(α+1)m(0,0; 1; 0; 1)

+ 2α+5
2(α+2)(α+1)m(0,0; 0; 1; 1) −

1
(α+2)(α+1)m(0,0; 0; 0; 1,1)

(3|2, 2, 0) Pα(1,0; 2,0; ; ) = m(1,0; 2,0; ; ) +
2

(α+2)m(1,1; 1,0; ; ) +
2

(α+2)m(0,0; 2,1; ; )

+ 2
(α+2)m(0,0; 2,0; ; 1) +

α+4
(α+2)2

m(1,0; 1,0; ; 1) +
4

(α+2)2
m(0,0; 1,0; ; 1,1)

Pα(0,0; 3,0; ; ) = m(0,0; 3,0; ; ) +
1

(2α+1)m(2,0; 1,0; ; ) +
2

(2α+1)m(1,0; 2,0; ; )

+ 2
(α+1)(2α+1)m(1,1; 1,0; ; ) +

1
(2α+1)m(0,0; 2,1; ; ) +

2
(2α+1)m(0,0; 2,0; ; 1)

+ 1
(2α+1)m(0,0; 1,0; ; 2) +

2
(α+1)(2α+1)m(1,0; 1,0; ; 1) +

2
(α+1)(2α+1)m(0,0; 1,0; ; 1,1)

(5|1, 3, 2) Pα(0; 2,1,0; 2,1; ) = m(0; 2,1,0; 2,1; ) −
1

(α+3)m(0; 2,1,0; 2,0; 1) −
α+2

(α+3)(2α+5)m(0; 2,1,0; 1,0; 2)

+ 1
(α+3)(2α+5)m(1; 2,1,0; 1,0; 1) +

2
(α+3)(2α+5)m(0; 2,1,0; 1,0; 1,1)

Table A1: Sample of small degree Jack superpolynomials expanded in the
monomial basis.
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