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Transgression of D-branes
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Closed strings can be seen either as one-dimensional objects in a
target space or as points in the free loop space. Correspondingly, a
B-field can be seen either as a connection on a gerbe over the tar-
get space, or as a connection on a line bundle over the loop space.
Transgression establishes an equivalence between these two per-
spectives. Open strings require D-branes: submanifolds equipped
with vector bundles twisted by the gerbe. In this paper we develop
a loop space perspective on D-branes. It involves bundles of sim-
ple Frobenius algebras over the branes, together with bundles of
bimodules over spaces of paths connecting two branes. We prove
that the classical and our new perspectives on D-branes are equi-
valent. Further, we compare our loop space perspective to Moore-
Segal/Lauda-Pfeiffer data for open-closed 2-dimensional topolog-
ical quantum field theories, and exhibit it as a smooth family of
reflection-positive, colored knowledgable Frobenius algebras.
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1. Introduction

The motivation for this article comes from the Lagrangian approach to 2-
dimensional field theories, where we consider smooth maps ϕ : Σ →M from
a Riemann surface Σ to a smooth manifoldM . If the surface Σ has a bound-
ary, then we specify a family of submanifolds Qi ⊆M (the “D-branes”) and
require that ϕ map each boundary component to one of these [Pol96].

The usual sigma model action functional on the space of maps ϕ requires
a metric g and a hermitian line bundle gerbe G with connection over M , the
“B-field” [Alv85, Gaw88, Mur96]. In the case that Σ has boundaries, the
D-branes Qi have to be equipped with G|Qi-twisted vector bundles Ei with
connections, known as “twisted Chan-Paton gauge fields” in string theory,
[Kap00, GR02, CJM02]. The twisted vector bundles make up the famous
relation between D-branes and twisted K-theory [FW99, FH00].

In Wess-Zumino-Witten (WZW) models, for instance, M is a compact
Lie group G and the branes Qi are conjugacy classes of G [AS99]. The metric
is induced by the Killing form, and the bundle gerbe G represents the “level”
via its Dixmier-Douady class [G] ∈ H3(G,Z) ∼= Z. The bundle gerbe G and
the twisted vector bundles can be constructed explicitly in a Lie-theoretic
way, for all compact simple Lie groups [GR02, Mei02, GR03, Gaw05].

Especially in the discussion of WZW models it is common to consider,
instead of the bundle gerbe G, a hermitian line bundle with connection over
the loop group LG. One advantage of this perspective is, for example, that
one can (at least at an informal level) study the geometric quantization of the
model. In fact, every smooth manifold M has a corresponding transgression
map to its free loop space LM = C∞(S1,M) [Gaw88, Bry93, Wal10]

{
Hermitian line bundle gerbes

with connection over M

}
→
{

Hermitian line bundles
with connection over LM

}
.

In good cases, for instance in WZW models with simply-connected target
groups, this map induces an equivalence of the corresponding categories, so
that the loop space perspective is equivalent to the original setting.
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In cases of more general topology, transgression is neither injective nor
surjective, but the equivalence can be re-established by changing the range
of transgression [Wal16]. Two changes are necessary: the first change is to
add fusion products, a structure defined for a line bundle L over the loop
space LM [ST05, Wal16]. It consists of fiber-wise isomorphisms

L|γ1∪γ2 ⊗ L|γ2∪γ3 → L|γ1∪γ3 ,

where (γ1, γ2, γ3) is a triple of paths in M with a common initial point and
a common end-point, and γi ∪ γj denotes the loop that first follows γi and
then returns along the reverse of γj . The second change is to impose various
conditions on the connection on L, most importantly the condition that it
is superficial. This is a property that can be considered for connections on
bundles over mapping spaces C∞(K,M), where K is a compact manifold
(here, K = S1 or K = [0, 1] later). If Γ : [0, 1] → C∞(K,M) is a smooth
path in such a mapping space, then there is a corresponding “adjoint” map
Γ∨ : [0, 1]×K →M , and superficiality requires certain conditions for the
parallel transport along Γ depending on the rank of the differential of Γ∨. We
refer to [Wal16, Sec. 2] or Appendix A.2 for more details. Taking fusion and
superficial connections into account, transgression provides a complete loop
space perspective to connections on bundle gerbes (“B-fields”) for arbitrary
smooth manifolds M .

In this article we establish an analogous loop space perspective to D-
branes and their twisted Chan-Paton gauge fields. To that end, we provide
a transgression map for G|Qi-twisted vector bundles Ei supported on sub-
manifolds Qi and prove that it establishes an equivalence between the ap-
propriate categories. Due to the twist represented by the bundle gerbe G,
transgression of D-branes will be defined relative to the above-mentioned
transgression of bundle gerbes.

First results in this direction have been obtained by Brylinski [Bry93],
Gawȩdzki-Reis [GR02] and Gawȩdzki [Gaw05]. In the following, we say that
a G-brane is a pair (Q, E) of a submanifold Q ⊆M and a G|Q-twisted vector
bundle E with connection. In [GR02, Gaw05] it is described how to associate
to a pair of two G-branes (Q, E) and (Q′, E ′) a hermitian vector bundle R with
connection over the space P of paths connecting Q with Q′. In Section 4.2
we give an alternative, but equivalent description of this vector bundle in
terms of a modern, bicategorical treatment of bundle gerbes. We also clarify
some regularity aspects of the vector bundle R that have not been treated
so far. More precisely, we work in the convenient setting of diffeology, which
provides a simple and yet powerful framework to study geometry over spaces
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of loops and paths. Furthermore, we exhibit in Section 4.3 a new property of
the connection on R, which is analogous to the superficiality for line bundles
over loop spaces mentioned above.

While this construction of the vector bundle R over P is the basis of our
transgression map for D-branes, the picture is incomplete in essentially two
aspects. First, it seems that the vector bundle R has lost its relation to the
twist G, or rather its loop space analogue, the transgressed hermitian line
bundle L. In Section 4.4 we discover an isomorphism

(1) L|γ1∪γ2 ⊗ R|γ2 → R|γ1 ,

where γ1, γ2 are paths with a common initial point and a common end point.
It satisfies the axiom of an action with respect to the fusion product on L;
therefore, we will call it the fusion representation of L on R. Second, we
discover in Section 4.5 a homomorphism

(2) R23|γ23 ⊗ R12|γ12 → R13|γ23⋆γ12

relating the vector bundles Rij formed from three G-branes (Q1, E1), (Q2, E2)
and (Q3, E3), which lifts the concatenation of a path γ12 between Q1 and
Q2 and a path γ23 from Q2 to Q3 to the path γ23 ⋆ γ12 between Q1 and Q3.
The homomorphism of (2) is accompanied by additional structure rendering
it compatible with identity paths and path reversal, and satisfies several
compatibility conditions. We call it the lifted path concatenation.

We assemble the data obtained by transgression abstractly into a cate-
gory LBG(M,Q) of loop space brane geometry (LBG), depending on a target
space M and a family Q = {Qi}i∈I of D-branes. Roughly, the objects are
tuples consisting of a line bundle L over LM with superficial connection, a
fusion product on L, vector bundles Rij over the spaces Pij of paths connect-
ing Qi with Qj , fusion representations for each of these vector bundles, and
a lifted path concatenation relating them to each other. A precise definition
is given in Section 2.2. On the other side, the basis of transgression was a bi-
category TBG(M,Q) of target space brane geometry (TBG), whose objects
consist of a bundle gerbe G over M with connection and G|Qi-twisted vector
bundles Ei with connection. A precise definition of that bicategory and some
background about bundle gerbes is given in Section 2.1. In Section 4.8 we
prove that transgression furnishes a functor

T : h1TBG(M,Q) → LBG(M,Q),
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where h1 denotes the 1-truncation of a bicategory (identify 2-isomorphic
1-morphisms). In Section 5 we construct in a natural way a functor R in
the opposite direction called regression. Our main result is the following
theorem.

Theorem 1. Transgression and regression form an equivalence between
target space brane geometry and loop space brane geometry,

h1TBG(M,Q) ∼= LBG(M,Q).

The proof of Theorem 1 is carried out in Section 6 by constructing explic-
itly natural isomorphisms R ◦ T ∼= id and T ◦ R ∼= id. Theorem 1 means
that the Lagrangian approach to 2-dimensional topological field theories
with D-branes can be pursued in an equivalent way either via TBG or via
LBG.

An interesting aspect of the equivalence of Theorem 1 is the presence
of algebra bundles over the D-branes, arising in both perspectives. In TBG,
algebra bundles Ai arise as endomorphism bundles of the G|Qi-twisted vector
bundles [STV14]. They are well-known for their relation to twisted K-theory
[Kar12]. In LBG, algebra bundles Ai are obtained by restricting the vector
bundles Rii to constant paths in Qi, and turning these restrictions into
algebra bundles using the lifted path concatenation of (2), see Section 3.1.
We prove the following result.

Theorem 2.

(a) The algebra bundles Ai arising from loop space brane geometry are
bundles of simple Frobenius algebras.

(b) Transgression and regression induce isomorphisms Ai ∼= Ai between
the algebra bundles that arise independently from target space and loop
space brane geometry.

At first sight, it seems that (b) implies (a) because endomorphism al-
gebras are automatically simple Frobenius algebras. However, we prove (a)
loop-space-intrinsically without any reference to endomorphism bundles, see
Proposition 3.4. In fact, we use (a) in the construction of the regression
functor R so that it really is an independent result. Part (b) is proved in
Section 6.1.

In Section 3.2 we also discover the following algebraic feature of the
vector bundles Rij over the spaces Pij of paths connecting Qi with Qj .
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Theorem 3.

(a) The vector bundles Rij are bundles of bimodules over the algebra bun-
dles ev∗0Ai and ev∗1Aj, where ev0 : Pij → Qi and ev1 : Pij → Qj are
the end point evaluations.

(b) Lifted path concatenation induces connection-preserving isomorphisms
Rjk ⊗Aj

Rij
∼= Rik.

Our motivation for exhibiting these algebraic features is the functorial
perspective to topological field theories [Seg04, ST04, Lur09], where field
theories are regarded as functors from certain categories of bordisms to cer-
tain algebraic categories. The bordisms are equipped with smooth maps
to M in order to incorporate a target space. Bunke-Turner-Willerton have
shown that 2-dimensional topological functorial field theories are equivalent
to bundle gerbes with connection over M [BTW04]. In an upcoming arti-
cle [BW21] we will extend this result to an equivalence between TBG and
functorial field theories with D-branes, whose values will be given by the
algebraic data provided in Theorem 3.

In the setting of functorial field theories, quantum theories are defined
on bordisms without a map to a target space. Equivalently, a quantum field
theory is one with M = {∗}. Quantization is supposed to correspond to the
pushforward to a point in a suitable generalized cohomology theory [ST04].
For quantum field theories, it is common to describe functorial field the-
ories by algebraic structure obtained from a presentation of the bordism
category in terms of generators and relations. For the closed sector and
two dimensions, this leads to commutative Frobenius algebras [Abr96]. For
quantum theories with D-branes, the algebraic structure has been deter-
mined by Lazaroiu, Moore-Segal, and Lauda-Pfeiffer [Laz01, MS06, LP08],
of which the last reference termed it a colored knowledgable Frobenius al-
gebra (the “colors” are the brane indices i ∈ I). One can now perform an
interesting consistency check between classical and quantum field theories:
the restriction of a classical field theory to a point; here, this means putting
M = Qi = {∗} for all brane indices i. Of course, this will not give “the”
quantization of the original theory, but it does give “a” quantum theory
and thus should fit into that framework. We show that our LBG passes
this consistency check in the sense that there is a naturally defined faithful
functor

F : LBG(∗, {∗}i∈I) → K-Frob(I)
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to the category of I-colored knowledgable Frobenius algebras. Our final re-
sult determines the image of this functor. We show that all colored knowl-
edgable Frobenius algebras in its image are equipped with an additional
structure that we call a positive reflection structure. In our upcoming article
[BW21] we will show that it is equivalent – under the correspondence to
topological quantum field theories – to a positive reflection structure in the
sense of functorial field theories [FH21]. We prove the following.

Theorem 4. The functor F induces an equivalence between loop space
brane geometries of a point and reflection-positive, I-colored knowledgable
Frobenius algebras whose underlying Frobenius algebra is C.

Thus, LBG is a target space family of reflection-positive, colored knowl-
edgable structures on the Frobenius algebra C. All details and the proof of
Theorem 4 are given out in Section 3.3.

This paper is organized in the following way. In Section 2 we give precise
definitions of the categories TBG(M,Q) and LBG(M,Q), and we recall some
relevant aspects about bundle gerbes. In Section 3 we derive the algebraic
structures induced by LBG as stated in Theorem 2 (a) and Theorem 3 and
discuss the reduction to the work of Moore-Segal [MS06] and Lauda-Pfeiffer
[LP08]. In Sections 4 and 5 we construct the transgression and regression
functors T and R, respectively. In Section 6 we prove Theorem 1 and Theo-
rem 2 (b). We conclude with an appendix providing technical background
material, in particular about diffeological vector bundles, superficial connec-
tions on path spaces, and bundles of algebras and bimodules. For the benefit
of the reader we include a small table of notation on page 1194.

Acknowledgements. KW was supported by the German Research Foun-
dation under project code WA 3300/1-1. SB was partly supported by the
RTG 1670 “Mathematics inspired by string theory and quantum field the-
ory”. We would like to thank Ulrich Bunke, Lukas Müller, Ingo Runkel,
Christoph Schweigert, Richard Szabo, Peter Teichner and Stephan Stolz for
valuable conversations.

2. Brane geometries

In the following, a target space will be a pair (M,Q) of a connected smooth
manifold M and a family Q = {Qi}i∈I of submanifolds Qi ⊆M . We work
over a fixed target space; but all definitions and constructions will be natural
under maps between target spaces, i.e. smooth maps f :M →M ′ such that
f(Qi) ⊆ Q′

i.
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2.1. Target space brane geometry

As motivated in Section 1, an object in the bicategory TBG(M,Q) is a pair
(G, E), consisting of a hermitian line bundle gerbe G with connection overM
and a family E = {Ei}i∈I of G|Qi-twisted vector bundles Ei with connections.

We recall some minimal facts to explain these notions. Hermitian line
bundle gerbes with connection over M form a bicategory Grb∇(M) that can
be defined in the following very elegant way [NS11]. Let HVBun∇(M) de-
note the symmetric monoidal category of hermitian vector bundles equipped
with (unitary) connections, with the morphisms connection-preserving, uni-
tary bundle morphisms. The assignment M 7→ HVBun∇(M) forms a sheaf
of symmetric monoidal categories over the site of smooth manifolds (with
surjective submersions as coverings). We consider the following bicategory
TrivGrb∇(M):

(a) Its objects are 2-forms B ∈ Ω2(M), which we will denote by IB in this
context.

(b) The Hom-category Hom(IB1
, IB2

) is by definition the full subcategory
HVBun∇(M)B2−B1 of HVBun∇(M) on the objects (E,∇) with

(3)
1

rk(E)
tr(curv(∇)) = B2 −B1.

(c) Composition is the tensor product in HVBun∇(M).

The assignment M 7→ TrivGrb∇(M) is a presheaf of bicategories. The sheaf
Grb∇ is by definition its sheafification, i.e.

Grb∇ := (TrivGrb∇)+.

The objects IB ∈ TrivGrb∇(M) ⊆ Grb∇(M) are now called trivial bundle ger-
bes. Spelling this out results exactly in the usual notion of bundle gerbes
[Mur96, MS00, Ste00] with the bicategorical structure described in [Wal07].
In particular, 1-morphisms in Grb∇(M) have a well-defined rank, and a 1-
morphism is a 1-isomorphism (“stable isomorphism”) if and only if it has
rank one [Wal07, Prop. 3].

We will use a slightly generalized version of this bicategory, obtained by
performing the sheafification in the site of diffeological spaces (with respect
to the Grothendieck topology subductions), and then restricting again to
smooth manifolds. The occurring vector bundles have to be treated as vec-
tor bundles over diffeological spaces (see Appendix A.1). This generalization
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results in an equivalent bicategory, see [Wal16, Section 3.1] for more infor-
mation. It is necessary because the regression functor defined in Section 5
takes values in the generalized version of bundle gerbes.

If G is a bundle gerbe with connection over M , then a G-twisted vector
bundle with connection is a 2-form ω ∈ Ω2(M) together with a 1-morphism
E : G → Iω in Grb∇(M). This gives precisely the usual notion of a “bundle
gerbe module with connection” introduced in [CJM02], see [Wal07]. A
twisted vector bundle of rank one is called a trivialization of G.

We return to the definition of the bicategory TBG(M,Q) of target
space brane geometry, whose objects are pairs (G, E) of a hermitian line
bundle gerbe G with connection over M and a family E = {Ei}i∈I of G|Qi-
twisted vector bundles Ei with connections. The 1-morphisms between (G, E)
and (G′, E ′) are pairs (A, ψ), consisting of a 1-isomorphism A : G → G′ in
Grb∇(M) and a family ψ = {ψi}i∈I of 2-morphisms ψi : Ei ⇒ E ′

i ◦ A|Qi in
Grb∇(Qi). The 2-morphisms between (A, ψ) and (A′, ψ′) are 2-morphisms
φ : A ⇒ A′ in Grb∇(M) such that the diagram

Ei
ψi +3

ψ′
i �#

E ′
i ◦ A|Qi

idE′
i
◦φ|Qi{�

E ′
i ◦ A

′|Qi

of 2-morphisms in Grb∇(Qi) is commutative for all i ∈ I.
In the remainder of this subsection we discuss an operation on 1-

morphisms between bundle gerbes that will be used frequently throughout
this article. Namely, for bundle gerbes G, H ∈ Grb∇(M) there is a functor

(4) ∆ : Hom(G, Iω2
)×Hom(G, Iω1

)op → HVBun∇(M)ω2−ω1 ,

that can be seen as an enriched version of an internal hom, see [BSS18]
and [Bun17, Thm. 3.6.3], and [BS17] for a less technical overview. It is de-
fined in the following way. We first consider the functor ()∗ : Hom(G,H)op →
Hom(H,G), which on the level of the presheaf TrivGrb∇(M) is just the du-
alization E 7→ E∗. Since this is a morphism of presheaves, it survives the
sheafification and induces the claimed functor ()∗. Now, ∆ is defined by

Hom(G, Iω2
)×Hom(G, Iω1

)op
id×()∗

// Hom(G, Iω2
)×Hom(Iω1

,G)

◦ // Hom(Iω1
, Iω2

) ∼= HVBun∇(M)ω2−ω1 .
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Since the functor ∆ is quite important in this article, we spell out its
definition in terms of the explicit definition of bundle gerbes. Suppose G
consists of a surjective submersion Y →M , a hermitian line bundle L with
connection over Y [2] := Y ×M Y , and a bundle gerbe product µ over Y [3].
Twisted vector bundles Ei : G → Iωi (i = 1, 2) consist of hermitian vector
bundles Ei with connection over Y , and of connection-preserving, unitary
bundle isomorphisms

ζi : L⊗ pr∗2Ei → pr∗1Ei

over Y [2], satisfying a compatibility condition with the bundle gerbe product
µ over Y [3], see [Wal07]. In order to define the vector bundle ∆(E2, E1),
we consider the vector bundle E∗

1 ⊗ E2 over Y , and over Y [2] the bundle
isomorphism ζ̃ defined by

(5) pr∗2(E
∗
1 ⊗ E2) ∼= pr∗2E

∗
1 ⊗ L∗ ⊗ L⊗ pr∗2E2

ζtr−1
1 ⊗ζ2

// pr∗1E
∗
1 ⊗ pr∗1E2

∼= pr∗1(E
∗
1 ⊗ E2).

Here we have used the coevaluation isomorphisms between a complex line
bundle and its dual, and (..)tr denotes the transpose of a linear map. The
conditions for ζ1 and ζ2 imply a cocycle condition for ζ̃ over Y [3]. Since ζ̃ is
connection-preserving and unitary, E∗

1 ⊗ E2 descends to a hermitian vector
bundle ∆(E2, E1) with connection over M ; this gives the definition of ∆.

Remark 2.1. We observe the following features of the functor ∆:

(a) For three twisted vector bundles E1, E2, E3 we have a morphism

∆(E3, E2)⊗∆(E2, E1) → ∆(E3, E1)

inHVBun∇(M), which is an isomorphism if and only if E2 is invertible.
It is induced by a 2-morphism E∗

2 ◦ E2 ⇒ idIω2
, which is in turn induced

by the evaluation E2 ⊗ E∗
2 → C of dual vector bundles.

(b) For two twisted vector bundles Ei : G → Iωi we have an isomorphism
∆(E1, E2) → ∆(E2, E1)

∗ in HVBun∇(M), induced by the canonical iso-
morphism (E1 ◦ E

∗
2 )

∗ = E2 ◦ E
∗
1 .

(c) For two twisted vector bundles Ei : G → Iωi and a 1-morphism A :
G′ → G in Grb∇(M) we have a morphism

∆(E1 ◦ A, E2 ◦ A) → ∆(E1, E2)
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in HVBun∇(M), which is an isomorphism if and only if A is invertible.
It is induced from the 2-morphism A ◦ A∗ ⇒ idG and a 2-isomorphism
(E2 ◦ A)∗ ⇒ A∗ ◦ E∗

2 , which is in turn induced by the canonical isomor-
phism (A ◦ E2)

∗ ∼= E∗
2 ⊗A∗.

Remark 2.2. If E is a G-twisted vector bundle, we obtain a hermitian vec-
tor bundle End(E) := ∆(E , E) with connection. Remark 2.1 (a) provides a
connection-preserving bundle morphism

(6) End(E)⊗ End(E) → End(E),

which endows the fibers of End(E) with (associative, unital, complex) alge-
bra structures. The fact that End(E) carries a connection for which (6) is
connection-preserving, together with the fact that all fibers are simple alge-
bras, assures that End(E) is an algebra bundle, see Lemmas A.13 and A.14.
For an explicit construction, one notices that the descent isomorphism ζ̃
of (5) is an isomorphism between algebra bundles [STV14]. In relation to
twisted K-theory the same algebra bundle has been constructed in [Kar12].

Remark 2.3. Applying the previous remark to a TBG object (G, E), we ob-
tain bundles of central simple algebras End(Ei) over the branes Qi. The
assignment of these bundles is functorial with respect to TBG morphisms.
Indeed, if (A, ψ) is a 1-morphism, then we obtain a bundle morphism

∆(Ei, Ei)
∆(ψi,ψ

−1
i )

// ∆(E ′
i ◦ A, E

′
i ◦ A) // ∆(E ′

i, E
′
i)

by Remark 2.1 (c). Following Remark 2.1 it is easy to check that this bundle
morphism preserves the algebra structures. Furthermore, one can check that
it only depends on the 2-isomorphism class of (A, ψ). Finally, the composi-
tion of TBG morphisms induces the composition of algebra bundle homo-
morphisms. Summarizing, for every brane index i ∈ I we have constructed
a functor (G, E) 7→ End(Ei) from h1TBG(M,Q) to the category of central
simple algebra bundles over Qi.

Remark 2.4. We recall the following facts about trivializations of bundle
gerbes, described in [Wal16, Lemma 3.2.3]. Suppose G ∈ Grb∇(M) and s :
M → Y is a smooth section into the surjective submersion of G. Then, we
obtain a 1-morphism Ts : G → Is∗B in Grb∇(M), where B is the curving of
G. Explicitly, it is defined by the hermitian line bundle Ts := (idY , s ◦ π)

∗L
over Y and the isomorphism σs := (pr1, pr2, s ◦ π)

∗µ, where L is the line
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bundle of G, and µ is its bundle gerbe product. We call Ts the trivialization
associated to the section s. If s′ :M → Y is another section, and s̃ :M → L
is a parallel unit-length section along (s, s′) :M → Y [2], then we obtain a
2-isomorphism ψs̃ : Ts ⇒ Ts′ in Grb∇(M), given fiber-wise by

Ts|y = Ly,s(π(y))
id⊗s̃

// Ly,s(π(y)) ⊗ Ls(π(y)),s′(π(y))

µ
// Ly,s′(π(y)) = Ts′ |y .

Now, consider a 1-morphism E : G → Iρ in Grb∇(M), consisting of a vector
bundle E over Y and a bundle isomorphism ζ over Y [2], and a section s :
M → Y . Then, there is a connection-preserving, unitary bundle isomorphism
φs : ∆(E , Ts) → s∗E, which is induced by

Ts|
∗
y ⊗ E|y = L|∗y,s(π(y)) ⊗ E|y

µ̃⊗id
// L|s(π(y)),y ⊗ E|y

ζ|s(π(y)),y
// E|s(π(y)).

Here, µ̃ : L|∗y1,y2 → L|y2,y1 is induced from the bundle gerbe product. In the
presence of a second section s′ and a parallel unit-length section s̃ of L along
(s, s′) we obtain from the definitions a commutative diagram

∆(E , Ts′)

∆(id,ψs̃)

��

φs′ // s′∗E

ζ(s̃⊗−)

��

∆(E , Ts) φs
// s∗E.

2.2. Loop space brane geometry

We let LM := C∞(S1,M) be the loop space of M , considered as a
Fréchet manifold or, equivalently, as a diffeological space. We let PM ⊆
C∞([0, 1],M) be the subset of paths with sitting instants, considered as a
diffeological space. Further, we let Pij ⊆ PM be the subspace of paths γ
with γ(0) ∈ Qi and γ(1) ∈ Qj . Vector bundles and connections on diffeolo-
gical spaces are discussed in Appendix A.1; essentially, they can be treated
just like vector bundles over smooth manifolds.

We now describe the objects of the category LBG(M,Q), making the an-
nouncements of Section 1 precise. An object is a septuple (L, λ,R, ϕ, χ, ϵ, α)
consisting of the following structure:

(1) A hermitian line bundle L over LM with a superficial connection.
The definition of “superficial” is [Wal16, Definition 2.2.1]. We re-
call that a thin homotopy between loops τ, τ ′ : S1 →M is a path
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h : [0, 1] → LM such that the differential of its adjoint map h∨ :
[0, 1]× S1 →M has rank less than two everywhere. If τ, τ ′ are thin
homotopic, then the parallel transport of a superficial connection
along a thin homotopy h between τ and τ ′ is independent of the
choice of h, and hence determines a canonical unitary isomorphism
dτ,τ ′ : L|τ → L|τ ′ , independent of the thin homotopy.

(2) A fusion product λ on L, i.e. unitary isomorphisms

λγ1,γ2,γ3 : L|γ1∪γ2 ⊗ L|γ2∪γ3 → L|γ1∪γ3

for all triples (γ1, γ2, γ3) of paths in M with a common initial point
and a common end point, forming a connection-preserving unitary
bundle isomorphism over the 3-fold fibre product PM [3] of ev : PM →
M ×M with itself. The fusion product is required to be associative
over PM [4] and to be symmetrizing with respect to the connection
([Wal16, Def. 2.1.5]); this latter property only plays a minor role in
the present article, though.
The fusion product induces a parallel, unit-length section PM → L :
γ 7→ νγ along the inclusion of “flat” loops PM → LM : γ 7→ γ ∪ γ,
which is neutral with respect to fusion [Wal16, Lemma 2.1.4]. Fur-
ther, we obtain a connection-preserving, unitary isomorphism λ̃γ1,γ2 :
L|γ1∪γ2 → L∗|γ2∪γ1 that we will often combine with the identification
L∗ ∼= L between the dual and the complex conjugate line bundle, in-
duced by the hermitian metric on L.

(3) A family R = {Rij}i,j∈I of hermitian vector bundles Rij over Pij with
superficial connections ptij .
We refer to Definition A.11 in Appendix A.2 for the definition of “su-
perficial” for connections on vector bundles over path spaces. Similarly
to (1), a superficial connection determines – via parallel transport – a
canonical unitary isomorphism dγ,γ′ : Rij |γ → Rij |γ′ between the fibers
of Rij over all pairs of fixed-ends thin homotopic paths γ, γ′ ∈ Pij .

(4) A family ϕ = {ϕij}i,j∈I of unitary isomorphisms

ϕij |γ1,γ2 : L|γ1∪γ2 ⊗ Rij |γ2 → Rij |γ1

for all γ1, γ2 ∈ Pij with common initial point and common end point.
These have to form connection-preserving bundle isomorphisms ϕij
over P

[2]
ij := Pij ×Qi×Qj Pij .
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(5) A family χ = {χijk}i,j,k∈I of linear maps

χijk|γ12,γ23 : Rjk|γ23 ⊗ Rij |γ12 → Rik|γ23⋆γ12

for all composable paths γ12 and γ23. These have to form a connection-
preserving bundle morphism χijk over Pjk ×Qj Pij .

(6) A family ϵ = {ϵi}i∈I of parallel sections ϵi : Qi → Rii along the inclu-
sion x 7→ cx of constant paths.

(7) A family α = {αij}i,j∈I of unitary isomorphisms

αij |γ : Rij |γ → Rji|γ

for all γ ∈ Pij , where γ denotes the reversed path. These have to form
a connection-preserving bundle isomorphism over Pij .

This structure has to satisfy the following axioms:

(LBG1) The isomorphisms ϕij are compatible with the fusion product λ;
that is, the diagram

L|γ1∪γ2 ⊗ L|γ2∪γ3 ⊗ Rij |γ3

λγ1,γ2,γ3⊗id

��

id⊗ϕij |γ2,γ3 // L|γ1∪γ2 ⊗ Rij |γ2

ϕij |γ1,γ2

��

L|γ1∪γ3 ⊗ Rij |γ3
ϕij |γ1,γ3

// Rij |γ1

is commutative for all (γ1, γ2, γ3) ∈ P
[3]
ij . We say that ϕij is a fusion

representation of (L, λ) on Rij .

(LBG2) The maps χijk are associative up to parallel transport along a
reparameterization; that is, the diagram

Rkl|γ34 ⊗ Rjk|γ23 ⊗ Rij |γ12

χjkl|γ23,γ34⊗id

xx

id⊗χijk|γ12,γ23

''

Rjl|γ34⋆γ23 ⊗ Rij |γ12

χijl|γ12,γ34⋆γ23

��

Rkl|γ34 ⊗ Rik|γ23⋆γ12

χikl|γ23⋆γ12,γ34

��

Ril|(γ34⋆γ23)⋆γ12 d

// Ril|γ34⋆(γ23⋆γ12).

is commutative for all triples γ12 ∈ Pij , γ23 ∈ Pjk and γ13 ∈ Pik of
composable paths, and d is the canonical isomorphism of (3). We
say that χ is a lifted path concatenation on R.
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(LBG3) Fusion representation and lifted path concatenation are compati-
ble in the following sense. Suppose γ12, γ

′
12 ∈ Pij and γ23, γ

′
23 ∈ Pjk

connect three points in the following way:

x

γ12

  

γ′12

== y

γ23

  

γ′23

== z.

Then, the diagram

L|γ23∪γ′23 ⊗ L|γ12∪γ′12 ⊗ Rjk|γ′23 ⊗ Rij |γ′12

λ′⊗χijk
//

id⊗braid⊗id

��

L|(γ23⋆γ12)∪(γ′23⋆γ
′
12)

⊗ Rik|γ′23⋆γ′12

ϕik

��

L|γ23∪γ′23 ⊗ Rjk|γ′23 ⊗ L|γ12∪γ′12 ⊗ Rij |γ′12

ϕjk⊗ϕij

��

Rjk|γ23 ⊗ Rij |γ12 χijk

// Rik|γ23⋆γ12

has to be commutative. The isomorphism λ′ on the top of this
diagram is given by

L|γ23∪γ′23 ⊗ L|γ12∪γ′12
d⊗d

// L|
(γ′23⋆γ23)∪cy

⊗ L|
cy∪(γ′12⋆γ12)

λ

��

L|
(γ′23⋆γ23)∪(γ′12⋆γ12) d

// L|(γ23⋆γ12)∪(γ′23⋆γ
′
12)

.

(LBG4) The sections ϵi provide units (up to reparameterization) for the
lifted path concatenation, i.e.

χiij |cx,γ(v, ϵi(x)) = dγ,γ⋆cx(v) and χijj |γ,cy(ϵj(y), v) = dγ,cy⋆γ(v)

for all paths γ ∈ Pij with x := γ(0) and y := γ(1), and all v ∈
Rij |γ . We say that ϵi is a lifted constant path.

(LBG5) The isomorphisms αij satisfy the following compatibility condition
with the hermitian metric hij on Rij and the lifted path concate-
nation: for γ ∈ Pij and elements v, w ∈ Rij |γ we have

hii(χiji|γ,γ(αij(w)⊗ v), dcx,γ⋆γ(ϵi(x)))

= hij(v, w) = hjj(dcx,γ⋆γ(ϵj(x)), χjij |γ,γ(w ⊗ αij(v))).

We will say that αij is a lifted path reversal.



✐

✐

“1-Bunk” — 2022/6/9 — 18:43 — page 1110 — #16
✐

✐

✐

✐

✐

✐

1110 S. Bunk and K. Waldorf

(LBG6) Lifted constant paths are invariant under the lifted path reversal:

αii|cx(ϵi(x)) = ϵi(x).

(LBG7) Lifted path reversal is involutive: αji ◦ αij = idRij .

(LBG8) Lifted path reversal is an anti-homomorphism with respect to
lifted path concatenation: the diagram

Rjk|γ2 ⊗ Rij |γ1

αjk⊗αij

��

χijk|γ1,γ2 // Rik|γ2⋆γ1

αik

��

Rkj |γ2 ⊗ Rji|γ1

braid

��

Rji|γ1 ⊗ Rkj |γ2
χkji|γ2,γ1

// Rki|γ1⋆γ2

is commutative for all γ1 ∈ Pij and γ2 ∈ Pjk.

(LBG9) Lifted path reversal intertwines the fusion representation (up to
reparameterization), in the sense that the diagram

L|γ1∪γ2 ⊗ Rij |γ2

λ̃⊗αij

��

ϕij
// Rij |γ1

αij

��

L|γ2∪γ1 ⊗ Rji|γ2

d⊗id

��

L|γ1∪γ2 ⊗ Rji|γ2 ϕji

// Rji|γ1

is commutative, where λ̃ was explained in (2).

(LBG10) The following normalization condition holds between the lifted
path concatenation and the hermitian metric hij on Rij : for all
γ ∈ Pij with x := γ(0) and y := γ(1), every orthonormal basis
(v1, ..., vn) of Rij |γ and every v ∈ Rii|cx :

n∑

k=1

χjij |γ,γ⋆cx(χiij |cx,γ(vk ⊗ v)⊗ αij(vk)) = hii(ϵi(x), v) · dcy,γ⋆cx⋆γ(ϵj(y)).

Loop space brane geometry as defined above forms a groupoid
LBG(M,Q) in a natural way: a morphism between (L, λ,R, ϕ, χ, ϵ, α) and
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(L′, λ′,R′, ϕ′, χ′, ϵ′, α′) is a pair (φ, ξ) consisting of a connection-preserving
unitary isomorphism φ : L → L′ that preserves the fusion products λ and
λ′, and of a family ξ = {ξij}i,j∈I of connection-preserving, unitary bundle
isomorphisms ξij : Rij → R′

ij that are compatible with the remaining struc-
ture in the obvious way. In the remainder of this subsection we deduce some
direct consequences from the axioms of LBG in the following remarks.

Remark 2.5. From (LBG1) one can easily deduce that the section ν in L

described in (2) is neutral for the fusion representation, i.e. ϕij |γ,γ(νγ , v) = v
for all v ∈ Rij |γ .

Remark 2.6. In the context of field theories, (LBG10) will be responsible
for the Cardy condition, see Section 3.3. Here we remark the following con-
sequences of (LBG10) for the rank of the vector bundles ∈ Rij :

(a) We have

∥ϵi(x)∥ = 4
√

rk(Rii),

where the norm is formed fibrewise using the hermitian metric on Rii.
Indeed, we set i = j, γ = cx and v = ϵi(x) in (LBG10), and obtain
using (LBG4):

n∑

k=1

χiii|cx,cx(vk ⊗ αii(vk)) = hii(ϵi(x), ϵi(x)) · ϵi(x).

Inserting this into hii(ϵi(x),−) and using (LBG5) gives

n∑

k=1

hii(vk, vk) = hii(ϵi(x), ϵi(x))
2.

Since (v1, ..., vn) is an orthonormal basis, we have the claim.

(b) Putting v = ϵi(x) in (LBG10) we obtain using (a)

(7)

n∑

k=1

χjij |γ,γ(vk ⊗ αij(vk)) =
√

rk(Rii) · dcy,γ⋆γ(ϵj(y)).

We insert (7) into hjj(−, dcy,γ⋆γ(ϵj(y))) and obtain

n∑

k=1

hjj(χjij |γ,γ(vk ⊗ αij(vk)), dcy,γ⋆γ(ϵj(y))) =
√

rk(Rii) · hjj(ϵj(y), ϵj(y)).
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With (LBG5) the left hand side sums up to n = rk(Rij), so that we
obtain:

rk(Rij)
2 = rk(Rii) · rk(Rjj).

Remark 2.7. Let Li := {γ ∈ Pii | γ(0) = γ(1)}, coming with an injective
smooth map Li → LM which we usually drop from notation (the image
consists of loops based in Qi with sitting instants at 1 ∈ S1). Consider the
map Li → Pii ×Qi×Qi Pii : γ 7→ (cx, γ), where x := γ(0). The pullback of the
fusion representation along this map is a connection-preserving bundle iso-
morphism

ϕii|cx,γ : Lcx∪γ ⊗ Rii|cx → Rii|γ .

Using the superficial connection on L to identify Lcx∪γ
∼= Lγ , and the lifted

constant path ϵi(x) we obtain a connection-preserving bundle morphism

ιi : L → Rii|Li

over Li. We call it the string opening morphism; in the context of topological
field theories it will describe the phenomenon that a closed string opens up
in the presence of a D-brane [BW21]. In order to describe the converse
phenomenon, we define a smooth, fiber-wise linear map θi : c

∗Rii → C by
θi(v) := hii(ϵi(x), v), where v ∈ Rii|cx . We will reveal it in Section 3.1 as the
trace of a certain Frobenius algebra. Now, the inverse of ϕii in combination
with θi gives a connection-preserving bundle morphism

ι∗i : Rii|Li → L

over Li, which is called the string closing morphism.

3. Algebraic structures in loop space brane geometry

In this section we study LBG intrinsically, without relation to TBG.We show
that LBG induces bundles of simple Frobenius algebras over the branes,
together with bundles of bimodules over spaces of paths connecting the
branes. By an algebra we always mean a complex, associative, unital, finite-
dimensional algebra, and algebra homomorphisms are assumed to be unital.

3.1. Frobenius algebra bundles over the branes

Let (L, λ,R, ϕ, χ, ϵ, α) ∈ LBG(M,Q). A vector bundle over Qi is obtained
by putting Ai := c

∗Rii, where c : Qi → Pii associates to each point x ∈ Qi
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the constant path cx at that point. The pullback of χiii along Qi → Pii ×Qi

Pii : x 7→ (cx, cx) gives a bundle morphism µi : Ai ⊗Ai → Ai. We consider
condition (LBG2) restricted to a triple of constant paths, (cx, cx, cx). The
reparameterization at the bottom of the diagram is trivial in this case, and
we obtain that µi is associative. Further, the lifted constant paths ϵi : Qi →
Rii induce a smooth section of Ai that by (LBG4) provides a unit for each
fiber.

Lemma 3.1. Ai is a bundle of simple algebras over Qi.

Proof. So far we have constructed an algebra structure on the vector bundle
Ai, see Appendix A.3. The connection on Rii induces a connection on Ai, for
which the multiplication µi is connection-preserving. By Lemma A.13 the
algebra structure is local. We will show in Corollary 3.19 that all algebras
Ai|x are simple, so that Ai is a genuine algebra bundle (Lemma A.14). □

We continue writing a · b := µi(a⊗ b) and 1 := ϵi(x) for short. Further,
we consider the following additional structures: first, the lifted path reversal
induces an isomorphism c

∗αii : Ai → Ai that is unital (LBG6), involutive
(LBG7) and anti-multiplicative (LBG8); we write a∗ := c

∗αii(a). With
these operations, Ai becomes a bundle of involutive algebras. Second, the
hermitian metric hii on Rii induces a hermitian metric ⟨−,−⟩ : Ai ×Ai → C

on Ai. The induced norm satisfies ∥1∥ = 4
√

rk(Ai) by Remark 2.6 (a). In
particular, Ai is not a bundle of C∗-algebras unless rk(Ai) = rk(Rii) = 1.

Remark 3.2. Since units in algebras are uniquely determined, we obtain that
the lifted constant path is fiber-wise uniquely determined. More precisely, if
(L, λ,R, ϕ, χ, ϵ, α) and (L, λ,R, ϕ, χ, ϵ′, α′) are LBG objects, then ϵ = ϵ′.

Using the involution we can turn the hermitian metric into a bilinear
product,

σi : Ai ×Ai → C : (v, w) 7→ ⟨v∗, w⟩ .

Lemma 3.3. The bilinear product σi is fiber-wise non-degenerate, sym-
metric, and invariant, i.e. σi(v · w, x) = σi(v, w · x) for all v, w, x ∈ Ai.

Proof. It is fiber-wise non-degenerate because hii is so and because αii is an
isomorphism. The unitarity of αii implies that ⟨a∗, b∗⟩ = ⟨b, a⟩; this shows
that σi is symmetric. For the invariance, we use (LBG5) to check:

⟨(v · w)∗, x⟩ = ⟨x∗ · (v · w)∗, 1⟩ = ⟨(w · x)∗ · v∗, 1⟩ = ⟨v∗, w · x⟩ ,
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which proves the claim. □

This shows that Ai|x is a symmetric Frobenius algebra for each x ∈ Qi,
and together with Lemma 3.1 we have the following result:

Proposition 3.4. Ai is a bundle of simple, symmetric Frobenius algebras
over Qi.

Remark 3.5. The trace Ai → C corresponding to the bilinear form σi is
a 7→ σi(a, 1). In terms of the hermitian metric, it is a 7→ ⟨a∗, 1⟩ = ⟨1, a⟩, so
that it is precisely the map θi defined in Remark 2.7. From this it is easy
to see that it respects the involution: θi(a

∗) = θi(a). It is non-degenerate in
the sense that its kernel contains no non-trivial left ideals; this follows from
the non-degeneracy of σi, see [Koc03, Lemma 2.2.4].

3.2. Bimodule bundles and Morita equivalences

In this section we show that the vector bundles Rij are bundles of bimodules
over the algebra bundles defined in Section 3.1. For this purpose, we define
bundle morphisms

λij : ev
∗
1Aj ⊗ Rij → Rij and ρij : Rij ⊗ ev∗0Ai → Rij

over Pij in the following way. For a path γ ∈ Pij with x := γ(0) and y :=
γ(1), we let λij |γ be defined by

Aj |y ⊗ Rij |γ
χijj |γ,cy

// Rij |cy⋆γ
dcy⋆γ,γ

// Rij |γ ,

and we let ρij |γ be defined by

Rij |γ ⊗Ai|x
χiij |cx,γ // Rij |γ⋆cx

dγ⋆cx,γ // Rij |γ .

Lemma 3.6. The bundle morphisms λij and ρij define commuting left and
right actions of Aj and Ai on Rij.
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Proof. We consider the following diagram; the commutativity of its outer
square corresponds to the statement that left and right actions commute:

Aj |y ⊗ Rij |γ ⊗Ai|x

χijj |γ,cy⊗id

��

id⊗χiij |cx,γ // Aj |y ⊗ Rij |γ⋆cx
id⊗d

//

χijj |γ⋆cx,cy

��

Aj |y ⊗ Rij |γ

χijj |γ,cy

��

Rij |cy⋆(γ⋆cx) d
// Rij |cy⋆γ

d

��

Rij |cy⋆γ ⊗Ai|x

d⊗id

��

χiij |cx,cy⋆γ
// Rij |(cy⋆γ)◦cx

d

��

d

99

Rij |γ ⊗Ai|x
χiij |cx,γ

// Rij |γ◦cx d
// Rij |γ

The diagram in the upper left corner is the pentagon diagram of
(LBG2). The two rectangular diagrams commute because χiij is connection-
preserving, and the diagram in the lower right corner is commutative be-
cause the isomorphism d is independent of the ways the thin homotopy is
performed.

Associativity of the left action follows from (LBG2) in a very similar
way, and the associativity of the right action is seen analogously. The fact
that the actions are unital can easily be deduced from (LBG4). □

Lemma 3.7. The bundle morphisms λij and ρij are connection-preserving.

Proof. For λij , we have to show that for each path Γ : γ → γ′ in Pij there is
a commutative diagram

Aj |y ⊗ Rij |γ

ptη⊗ptij |Γ

��

χijj |γ,cy
// Rij |cy⋆γ

ptij |Γη

��

dcy◦γ,γ
// Rij |γ

ptij |Γ

��

Aj |y′ ⊗ Rij |γ′
χijj |γ′,cy

// Rij |c′y⋆γ′ d
c
y′

◦γ′,γ′

// Rij |γ′

Here, η ∈ PQj is the path formed by the end points of Γ, i.e. η(t) := Γ(t)(1),
and Γη ∈ PPM is defined by Γη(t) := cη(t) ⋆ Γ(t). Further, we have set
y := γ(1) and y′ := γ′(1). The diagram on the left is commutative because
χijj is connection-preserving. The diagram on the right is commutative be-
cause the connection on Rij is superficial. Indeed, we note that the obvi-
ous homotopy h ∈ PPPM between Γη and Γ fixes the paths of end points
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(namely, t 7→ Γ(t)(0) and η). Further, the adjoint map h∨ : [0, 1]3 →M fac-
tors through Γ∨ : [0, 1]2 →M , which implies that its rank is less or equal
than two. Then, the diagram on the right is precisely an instance of the
property Definition A.11 (ii) of a superficial connection. The discussion for
ρij is analogous. □

Proposition 3.8. The vector bundle Rij is bundle of ev∗1Aj-ev
∗
0Ai-

bimodules.

Proof. By now we have equipped Rij with a bimodule structure (λij , ρij). As
a consequence of Lemmas 3.6, 3.7 and A.15 this bimodule structure is local.
We show below (Remark 3.12 (c)) that the bimodule structure is faithfully
balanced, so that Lemma A.16 implies that Rij is a bundle of bimodules. □

Remark 3.9.

(a) Rii|cx is the identity Ai|x-Ai|x-bimodule.

(b) Lemma 3.7 implies that parallel transport along a fixed-ends path
Γ in Pij is an intertwiner of ev∗1Aj-ev

∗
0Ai-bimodules. In particular,

the canonical isometries dγ,γ′ : Rij |γ → Rij |γ′ for a pair (γ, γ′) of thin
fixed-ends homotopic paths are intertwiners. If a path Γ does not fix
the endpoints, then parallel transport is an intertwiner with respect
to the parallel transport in Ai and Aj along the paths of end points,
respectively.

(c) The lifted path reversal αij : Rij → Rji exchanges left and right actions
under the involutions of the algebra bundles. More precisely, for a path
γ ∈ Pij with x := γ(0) and y := γ(1) the diagram

Aj |y ⊗ Rij |γ

λij

��

c
∗αii⊗αij

// Aj |y ⊗ Rij |γ
braid // Rji|γ ⊗Aj |y

ρij

��

Rij |γ αij
// Rji|γ

is commutative. This follows from (LBG8) and the fact that αij is
connection-preserving.

Next, we consider the space Pjk ×Qj Pij of composable paths between
three D-branes, equipped with the projections pij to Pij and pjk to Pjk, the
composition c to Pik, and the projections pi, pj , pk to the end points of the
paths.
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Proposition 3.10. Lifted path concatenation χijk induces an isomorphism

p∗jkRjk ⊗p∗jAj
p∗ijRij

∼= c∗Rik

of bundles of p∗kAk-p
∗
iAi-bimodules over Pjk ×Qj Pij.

Proof. In order to see that χijk is well-defined on p∗jkRjk ⊗p∗jAj
p∗ijRij it

suffices to show that it vanishes on elements of the form ρjk|γ′(w ⊗ a)⊗ v −
w ⊗ λij |γ(a⊗ v), where a ∈ Aj |y, v ∈ Rij |γ and w ∈ Rjk|γ′ , and γ(1) = y =
γ′(0). This follows from the definitions of λij and ρjk and (LBG2) via a
direct calculation.

Similarly one checks that χijk is an intertwiner for both actions. In order
to show that it is an isomorphism we construct an inverse map in the fiber
over a point (γ′, γ) ∈ Pjk ×Qj Pij . Let (v1, ..., vn) be an orthonormal basis of
Rij |γ . For x ∈ Rik|γ′⋆γ we consider the element

ψ(x) :=
1√

rk(Rjj)

n∑

l=1

d(γ′⋆γ)⋆γ,γ′

(
χjik|γ,γ′⋆γ(x⊗ αij(vl))

)
⊗ vl

∈ Rjk|γ′ ⊗ Rij |γ .

Using the fact that χijk is connection-preserving and (LBG2), we compute

χijk|γ,γ′(ψ(x)) =
1√

rk(Rjj)

n∑

l=1

d(γ′⋆γ)⋆(γ⋆γ),γ′⋆γ

×
(
χiik|γ⋆γ,γ′⋆γ(x⊗ χiji|γ,γ(αij(vl)⊗ vl))

)
.

With (7) the latter becomes

χijk|γ,γ′(ψ(x)) = d(γ′⋆γ)⋆(γ⋆γ),γ′⋆γ(χiik|γ⋆γ,γ′⋆γ(x⊗ dcx,γ⋆γ(ϵi(x)))).

Via (LBG4) this is equal to x. Conversely, we compute ψ(χijk|γ,γ′(w ⊗ v))
for v ∈ Rij |γ and w ∈ Rjk|γ′ . Using the definitions, the fact that χijk is
connection-preserving, and (LBG2), we obtain

ψ(χijk|γ,γ′(w ⊗ v)) =
1√

rk(Rjj)

n∑

l=1

ρjk
(
w ⊗ dγ⋆γ,cy(χjij |γ,γ(v ⊗ αij(vl)))

)
⊗ vl.

Under the quotient by the Aj-action, the right hand side is identified with

ψ(χijk|γ,γ′(w ⊗ v)) =
1√

rk(Rjj)

n∑

l=1

w ⊗ λij(dγ⋆γ,cy(χjij |γ,γ(v ⊗ αij(vl)))⊗ vl).
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Again, from the definitions, the fact that χijk is connection-preserving, and
(LBG2) we obtain

ψ(χijk|γ,γ′(w ⊗ v)) =
1√

rk(Rjj)

n∑

l=1

w ⊗ dγ⋆(γ⋆γ),γ

×
(
χiij |γ⋆γ,γ(v ⊗ χiji|γ,γ(αij(vl)⊗ vl))

)
.

Now we use (7) to obtain

ψ(χijk|γ,γ′(w ⊗ v)) = w ⊗ dγ⋆(γ⋆γ),γ(χiij |γ⋆γ,γ(v ⊗ dcx,γ⋆γ(ϵi(x)))).

Finally, by (LBG4), the latter is equal to w ⊗ v. □

Corollary 3.11. The bimodule bundles Rij and Rji are invers to each
other, in the sense that there exist bimodules isomorphisms

Rji|γ ⊗Aj |y Rij |γ
∼= Ai|x and Rij |γ ⊗Ai|x Rji|γ

∼= Aj |y,

for every γ ∈ Pij with x := γ(0) and y := γ(1), forming bundle isomorphisms
over Pij. In particular, the bimodule Rij |γ establishes a Morita equivalence.

Proof. Proposition 3.10 provides bimodule isomorphisms

Rji|γ ⊗Ai|x Rij |γ
∼= Rii|γ⋆γ and Rij |γ ⊗Aj |y Rji|γ

∼= Rjj |γ⋆γ ,

and by Remark 3.9 (b) we have bimodule isomorphisms Rii|γ⋆γ ∼= Rii|cx =
Ai|x and Rjj |γ⋆γ ∼= Rjj |cy = Aj |y. □

Remark 3.12.

(a) Since all algebras Ai|x are simple, it is clear that they are all Morita
equivalent (to C); the point is that LBG provides a consistent choice
of these Morita equivalences, parameterized by paths.

(b) Inverses of invertible bimodules are unique up to unique intertwin-
ers, and a canonical choice is to take the complex conjugate vec-
tor space with swapped left and right actions. Remark 3.9 (c)
shows that αij : Rij → Rji is that unique intertwiner. In particular,
if (L, λ,R, ϕ, χ, ϵ, α) and (L, λ,R, ϕ, χ, ϵ, α′) are LBG objects, then
α = α′.
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(c) By Lemma 3.6 we have morphisms between algebra bundles

ev∗1Aj → Endev∗
0Ai

(Rij) and ev∗0Ai → (Endev∗
1Aj

(Rij))
op

over Pij , where Endev∗
0Ai

(Rij) and (Endev∗
1Aj

(Rij))
op are bundles of en-

domorphisms of right ev∗0Ai-module bundles and of left ev∗1Aj-module
bundles, respectively. Since the bimodule Rij establishes a Morita
equivalence, it is faithfully balanced; i.e., the above algebra bundle
homomorphisms are isomorphisms.

The following statement combines the bimodules structure with the fu-
sion representation, and will be useful in Section 5.

Lemma 3.13. The fusion representation commutes with the bimodule ac-
tions of Lemma 3.6; more precisely, the diagrams

Aj |y ⊗ (L|γ1∪γ2 ⊗ Rij |γ2)
id⊗ϕij |γ1,γ2 //

braid⊗id

��

Aj |y ⊗ Rij |γ1

λij |γ1

��

L|γ1∪γ2 ⊗ (Aj |y ⊗ Rij |γ2)

id⊗λij |γ2

��

L|γ1∪γ2 ⊗ Rij |γ2
ϕij |γ1,γ2

// Rij |γ1

and

L|γ1∪γ2 ⊗ Rij |γ2 ⊗Ai|x
ϕij |γ1,γ2⊗id

//

id⊗ρij |γ2

��

Rij |γ1 ⊗Ai|x

ρij |γ1

��

L|γ1∪γ2 ⊗ Rij |γ2
ϕij |γ1,γ2

// Rij |γ1

are commutative for all (γ1, γ2) ∈ P
[2]
ij with x := γ1(0) = γ2(0) and y :=

γ1(1) = γ2(1).
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Proof. For the first diagram, we insert k = j, γ12 := γ1, γ
′
12 := γ2, γ23 :=

γ′23 := cy into (LBG3) and use the section νcy into Lγ23∪γ′
23
. As νcy is neu-

tral with respect to the fusion product and the fusion representation (Re-
mark 2.5) we obtain from (LBG3) the commutativity of the diagram

L|γ1∪γ2 ⊗ Rjj |cy ⊗ Rij |γ2

d⊗χijj |γ′12,cy //

braid⊗id

��

L|(cy⋆γ1)∪(cy⋆γ2) ⊗ Rij |cy⋆γ2

ϕij |cy⋆γ1,cy⋆γ2

��

Rjj |cy ⊗ L|γ1∪γ2 ⊗ Rij |γ2

id⊗ϕij |γ1,γ2

��

Rjj |cy ⊗ Rij |γ1
χijj |γ1,cy

// Rij |cy⋆γ1.

Using the obvious reparameterizations and the superficial connection, as well
as the fact that ϕij is connection-preserving, this shows the commutativity
of the first diagram. The second diagram follows analogously. □

3.3. Reduction to the point

One important insight of the Stolz-Teichner programme [ST04] is that clas-
sical field theories (with a target space) and quantum field theories fit into
the same framework of functorial field theories, in such a way that the tar-
get space of a quantum theory is a point. Under a conjectural identification
between certain types of field theories and generalized cohomology theories,
quantization is the pushforward to the point in that cohomology theory.

As we will show in [BW21], our LBG is precisely the data for a
2-dimensional open-closed topological field theory with target space M .
On the other hand, Lazaroiu, Lauda-Pfeiffer and Moore-Segal determined
the data for a 2-dimensional open-closed topological quantum field theory
[Laz01, MS06, LP08], resulting in a structure called an I-colored knowl-
edgable Frobenius algebra in [LP08]. In this subsection we prove that both
data are consistent in the sense that in the caseM = {∗} our LBG reduces to
an I-colored knowledgable Frobenius algebra (with additional structure and
properties). Loosely speaking, LBG is a family of I-colored knowledgable
Frobenius algebras. We start with the following simple reduction of LBG to
a point:
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Lemma 3.14. Consider the target space (M,Q) with M = {∗} and Q =
{∗}i∈I . Then, the category LBG(M,Q) is canonically equivalent to a cate-
gory LBG(I) defined as follows. An object is a septuple (L, λ,R, ϕ, χ, ϵ, α)
consisting of the following structure:

(1∗) A complex inner product space L together with a unitary isomorphism
λ : L⊗ L → L such that (L, λ) is a commutative algebra.

(2∗) A family R = {Rij}i,j∈I of complex inner product spaces.

(3∗) A family ϕ = {ϕij}i,j∈I of unitary isomorphisms ϕij : L⊗ Rij → Rij,
forming a representation of (L, λ) on Rij.

(4∗) A family χ = {χijk}i,j,k∈I of associative, linear maps χijk : Rjk ⊗
Rij → Rik, and a family ϵ = {ϵi}i∈I of elements ϵi ∈ Rii that are neutral
with respect to χiij and χijj.

(5∗) A family α = {αij}i,j∈I of unitary isomorphisms αij : Rij → Rji

that are unital (αii(ϵi) = ϵi), involutive (αji ◦ αij = idRij ) and anti-
multiplicative, i.e. χkji(αij(v)⊗ αjk(w)) = αik(χijk(w ⊗ v)) for all v ∈
Rij, w ∈ Rjk.

This structure has to satisfy the following axioms:

(LBG1∗) The following diagram is commutative:

L⊗ L⊗ Rjk ⊗ Rij

λ⊗χijk
//

id⊗braid⊗id

��

L⊗ Rik

ϕik

��

L⊗ Rjk ⊗ L⊗ Rij

ϕjk⊗ϕij

��

Rjk ⊗ Rij χijk

// Rik

(LBG2∗) For any elements v, w ∈ Rij we have

hii(χiji(αij(w)⊗ v), ϵi) = hij(v, w) = hjj(ϵj , χjij(w ⊗ αij(v))).
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(LBG3∗) The following diagram, where λ̃ is defined as in (2), is commuta-
tive:

L⊗ Rij

λ̃⊗αij

��

ϕij
// Rij

αij

��

L⊗ Rji
ϕji

// Rji

(LBG4∗) For every orthonormal basis (v1, ..., vn) of Rij and every v ∈ Rii

we have

n∑

k=1

χjij(χiij(vk ⊗ v)⊗ αij(vk)) = hii(ϵi, v) · ϵj.

Finally, a morphism in LBG(I) is a pair (φ, ξ), consisting of a unitary al-
gebra isomorphism φ : L → L′ and of a family ξ = {ξij}i,j∈I of unitary iso-
morphisms ξij : Rij → R′

ij that are compatible with the remaining structure
in the obvious way. □

Remark 3.15. The unit-length section ν of (2) yields a unit-length element
1 ∈ L that is neutral with respect to λ. By definition, the map λ̃ : L → L∗

mentioned in (2) is given by

λ̃(ℓ)(ℓ′) · 1 = λ(ℓ⊗ ℓ′).

Using that {1} is an orthonormal basis of L and λ is unitary, one can show
that λ̃ (under the isomorphism L∗ ∼= L) is given by

λ̃ : L → L : ℓ 7→ h(ℓ, 1) · 1.

We find that λ̃ is a unital, involutive, algebra homomorphism. The map
C → L : z 7→ z · 1 is a unitary algebra isomorphism, and under this algebra
homomorphism, λ̃ becomes complex conjugation.

Our goal is to compare the category LBG(I) with the following cate-
gory, which in turn is equivalent to the category of topological open-closed
quantum field theories with boundary labels in I, valued in the symmet-
ric monoidal category of finite-dimensional complex vector spaces [LP08,
Theorem 5.6] and [MS06]. The relationship to quantum field theories will
be further elaborated in [BW21].
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Definition 3.16. Let I be a set. An I-colored knowledgable Frobenius al-
gebra is a septuple (L,R, χ, ϵ, θ, ι, ι∗) consisting of the following structure:

(CFa1) L is a commutative Frobenius algebra whose trace will be denoted
by ϑ.

(CFa2) R = {Rij}i,j∈I is a family of finite-dimensional complex vector
spaces.

(CFa3) χ = {χijk}i,j,k∈I is a family of linear maps χijk : Rjk ⊗ Rij → Rik

satisfying an associativity condition for four indices, and ϵ = {ϵi}i∈I
is a family of elements ϵi ∈ Rii that are neutral with respect to χ.
In particular, Rii is an algebra.

(CFa4) θ = {θi}i∈I is a family of linear maps θi : Rii → C.

(CFa5) ι = {ιi}i∈I is a family of algebra homomorphisms ιi : L → Rii which
are central in the sense that χiij(v ⊗ ιi(ℓ)) = χijj(ιj(ℓ)⊗ v) for all
ℓ ∈ L and v ∈ Rij .

(CFa6) ι∗ = {ι∗i }i∈I is a family of linear maps ι∗i : Rii → L which are adjoint
to ιi in the sense that ϑ(ℓ · ι∗i (v)) = θi(χiii(ιi(ℓ)⊗ v)) for all v ∈ Rii

and ℓ ∈ L.

This structure defines a pairing σij by

(8) Rji ⊗ Rij
χiji

// Rii
θi // C

which is supposed to satisfy the following three axioms:

(CFa7) σij is non-degenerate, i.e. the induced map Φij : Rij → R∗
ji is bijec-

tive.

(CFa8) σij and σji are symmetric: σij(a⊗ b) = σji(b⊗ a) for all b ∈ Rij and
a ∈ Rji.

(CFa9) If (v1, ..., vn) is a basis of Rij , (v
1, ..., vn) is the dual basis of Rji with

respect to σij , and v ∈ Rii, then

(ιj ◦ ι
∗
i )(v) =

n∑

k=1

χjij(χiij(vk ⊗ v)⊗ vk).

Note that (CFa7) and (CFa8) imply that Rii is a symmetric Frobenius al-
gebra. A homomorphism between I-colored knowledgable Frobenius algebras
is a pair (φ, ξ), consisting of a Frobenius algebra homomorphism φ : L → L′
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and of a family ξ = {ξij}i,j∈I of linear maps ξij : Rij → R′
ij that respect pro-

ducts, units, and traces in the obvious sense, and satisfy ι′i ◦ φ = ξii ◦ ιi and
ι′∗i ◦ ξii = φ ◦ ι∗i . The category of I-colored knowledgable Frobenius algebras
is denoted by K-Frob(I).

Remark 3.17. Definition 3.16 was described first in [MS06, Section 2.2],
where (CFa9) was related to the Cardy condition. The terminology “I-
colored knowledgable Frobenius algebra” was coined in [LP08, Def. 5.1] for a
slightly different but equivalent structure – the equivalence is established by
an “I-colored version” of the well-known equivalent ways to define a Frobe-
nius algebra (one by a non-degenerate inner product and the other one by
a co-product, see [Koc03, Prop. 2.3.22 & 2.3.24]).

Moore and Segal prove the following theorem [MS06, Theorem 2]; their
proof applies without changes.

Theorem 3.18. Let (L,R, χ, ϵ, θ, ι, ι∗) be an I-colored knowledgable Frobe-
nius algebra with L one-dimensional. Then, the Frobenius algebra Rii is
simple, for every i ∈ I. □

In the following we construct a functor

(9) F : LBG(I) → K-Frob(I).

Suppose (L, λ,R, ϕ, χ, ϵ, α) is an object in LBG(I). Thus, L is a commutative
algebra. The hermitian metric h on L induces a non-degenerate trace ϑ(ℓ) :=
h(1, ℓ), making L into a commutative Frobenius algebra; this is (CFa1).
The vector spaces Rij , products χijk, and units ϵi give (CFa2) and (CFa3).
The trace θi is the one given in Remark 3.5, i.e. θi(v) := hii(ϵi, v); this
gives (CFa4). The linear map ιi : L → Rii is the string opening morphism
of Remark 2.7, i.e. ιi(ℓ) := ϕii(ℓ⊗ ϵi). In order to check (CFa5) we have to
prove that ιi has the following properties:

(a) It is an algebra homomorphism. This follows by reducing (LBG1∗) to
i = j = k, inserting ϵi ∈ Rii, and using that χiii(ϵi ⊗ ϵi) = ϵi.

(b) It is unital. This follows from Remark 2.5.

(c) It is central. This follows by reducing (LBG1∗) to the cases i = j and
j = k, and by using the neutrality of ϵi.
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The linear map ι∗i : Rii → L is the string closing morphism, i.e. ι∗i (v) :=
1 · θi(v). In order to check (CFa6) we show that it is adjoint to ιi:

ϑ(ι∗i (v) · ℓ) = hii(ϵi, h(1, ℓ) · v) = hii(ϵi, αii(ϕii(h(ℓ, 1) · 1⊗ αii(v))))

Remark 3.15
↓
= hii(ϵi, αii(ϕii(λ̃(ℓ)⊗ αii(v))))

(LBG3∗)
↓
= hii(ϵi, ϕii(ℓ⊗ v))

(LBG1∗)
↓
= hii(ϵi, χiii(v ⊗ ϕii(ℓ⊗ ϵi))) = θi(χiii(v ⊗ ιi(ℓ))).

Now it remains to verify the axioms that involve the pairings σij . For (CFa7),
the non-degeneracy of σij , we show that the corresponding map Φij coincides
with the isomorphism αij under the isomorphism ()♭ : Rji → R∗

ji, i.e. we

show that Φij(v) = αij(v)
♭ for all v ∈ Rij . To that end, let w ∈ Rji. We

compute:

Φij(v)(w) = hii(ϵi, χiji(w ⊗ v))

= hii(χiji(αij(v)⊗ αji(w))), ϵi)

(LBG2∗)
↓
= hij(αji(w), v)

= hji(w,αij(v)) = αij(v)
♭(w).

The next calculation verifies (CFa8), the symmetry between σij and σji:

σij(w ⊗ v) = hii(χiji(αij(v)⊗ αji(w)), ϵi)

(LBG2∗)
↓
= hjj(ϵj , χjij(v ⊗ w)) = σji(v ⊗ w).

Finally, we verify the Cardy condition (CFa9). Suppose (v1, ..., vn) is an
orthonormal basis of Rij with respect to hij , and suppose (v1, ..., vn) is the
dual basis of Rji with respect to σij . We have already seen that Φij = ()♭ ◦
αij ; this means that vk = αij(vk) for all k = 1, ..., n. We get for v ∈ Rii:

ιj(ι
∗
i (v)) = ιj(1 · θi(v)) = θi(v) · ϵj = hii(ϵi, v) · ϵj .

Now, (LBG4∗) implies (CFa9). This finishes the proof that (L,R, χ, ϵ, θ, ι, ι∗)
is an I-colored knowledgable Frobenius algebra.
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In order to define the functor F on the level of morphisms, we consider
a morphism (φ, ξ) in LBG(I). We claim that the same maps φ : L → L′ and
ξij : Rij → R′

ij form a morphism of the corresponding objects in K-Frob(I).
First of all, the unitarity of φ implies that ϑ′ ◦ φ = ϑ, i.e. φ is a Frobenius
algebra homomorphism. Second, by assumption, ξij respects products and
units, and since ξij is unitary, it also respects the traces θi. Proving the iden-
tities ι′i ◦ φ = ξii ◦ ιi and ι

′∗
i ◦ ξii = φ ◦ ι∗i is straightforward. This completes

the definition of the functor F .
Now we are in position to deliver the remaining part of the proof of

Proposition 3.4, namely that the algebras Ai|x, for x ∈ Qi and i ∈ I, are
simple. Restricting a given LBG object to x yields an object in LBG(I) with
L := L|cx and Rii := Rii|cx = Ai|x. Under the functor F , it becomes an I-
colored knowledgable Frobenius algebra with L one-dimensional. Applying
Theorem 3.18, we obtain:

Corollary 3.19. The algebras Ai|x obtained from LBG in Section 3.1 are
all simple.

We continue studying the functor F . It is obviously faithful, but nei-
ther full (i.e., non-isomorphic LBG may give isomorphic I-colored knowl-
edgable Frobenius algebras), nor essentially surjective. In order to prop-
erly understand these phenomena, we lift the functor F to a new cate-
gory RPK-Frob(I), where the I-colored knowledgable Frobenius algebras are
equipped with so-called positive reflection structures, which we introduce
next. We will discuss in [BW21] the relation to positive reflection structures
in functorial field theories, in the sense of Freed-Hopkins [FH21].

Definition 3.20. A reflection structure on an I-colored knowledgable
Frobenius algebra (L,R, χ, ϵ, θ, ι, ι∗) is a pair (λ̃, α) consisting of an involu-
tive algebra isomorphism λ̃ : L → L and of a family α = {αij}i,j∈I of invo-
lutive (i.e., αji ◦ αij = id), anti-multiplicative isomorphisms αij : Rij → Rji

such that the conditions
(10)
ϑ(λ̃(ℓ)) = ϑ(ℓ), αii(ϵi) = ϵi, θi(αii(v)) = θi(v) and αii ◦ ιi = ιi ◦ λ̃

are satisfied for all i ∈ I. A reflection structure is called positive if the
sesquilinear pairings

(v, w) 7→ σij(α
−1
ji (v)⊗ w) and (ℓ, ℓ′) 7→ ϑ(λ̃−1(ℓ) · ℓ′)

on Rij and L, respectively, are positive-definite for all i, j ∈ I.



✐

✐

“1-Bunk” — 2022/6/9 — 18:43 — page 1127 — #33
✐

✐

✐

✐

✐

✐

Transgression of D-branes 1127

We remark that the last equation in (10) implies the analogous con-
dition λ̃ ◦ ι∗i = ι∗i ◦ αii for ι∗, due to the adjointness in (CFa6) and the
non-degeneracy of θ. A homomorphism (φ, ξ) between I-colored knowl-
edgable Frobenius algebras is called reflection-preserving, if λ̃′ ◦ φ = φ ◦ λ̃
and α′

ij ◦ ξij = ξji ◦ αij . The category of I-colored knowledgable Frobenius
algebras with positive reflection structures is denoted by RPK-Frob(I). There
is an obvious forgetful functor RPK-Frob(I) → K-Frob(I). Next, we construct
a lift of the functor F to RPK-Frob(I),

RPK-Frob(I)

��LBG(I)

F̃
44

F
// K-Frob(I).

In order to define the lift F̃ , we have to define positive reflection struc-
tures on the I-colored knowledgable Frobenius algebras in the image of
F . The isomorphisms λ̃ and αij are the given ones. Remark 3.15 shows
that λ̃ has the required properties; the properties of αij follow directly
from (5∗). The compatibility condition (10) follows from the definition of
ι and (LBG3∗). The pairing reproduces exactly the given hermitian metric
on Rij ,

(v, w) 7→ θi(χiji(αij(v)⊗ w)) = hii(ϵi, χiji(αij(v)⊗ w))

(LBG2∗)
↓
= hji(αij(w), αij(v)) = hij(v, w),

and is hence positive definite. Similarly, the pairing on L reproduces the
metric h:

(ℓ, ℓ′) 7→ ϑ(λ̃(ℓ) · ℓ′) = h(1, λ̃(ℓ) · ℓ′) = h(λ̃(ℓ), 1) · h(1, ℓ′)

= h(ℓ, 1) · h(1, ℓ′) = h(ℓ, ℓ′).

Finally, we observe that the morphisms of LBG(I) respect the reflection
structure by definition. This completes the definition of the lift F̃ .

Proposition 3.21. The lifted functor F̃ is full and faithful, and surjective
onto those objects with L ∼= C as Frobenius algebras (with idC as the trace
on C). In particular, it induces an equivalence

LBG(I) ∼= RPK-Frob(I)C,
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where RPK-Frob(I)C is the full subcategory on all objects with L = C as
Frobenius algebras.

Proof. It is obvious that F̃ is faithful. In order to show that it is full, we con-
sider two objects (L, λ,R, ϕ, χ, ϵ, α) and (L′, λ′,R′, ϕ′, χ′, ϵ′, α′) in LBG(I),
and consider a morphism (φ, ξ) between the corresponding I-colored knowl-
edgable Frobenius algebras with reflection structures. The compatibility of
φ and ξij with the involutions λ̃ and αij follows because (φ, ξ) is reflection-
preserving. It remains to show that φ and ξij are unitary, and that the fusion
representations are preserved. We have seen above that the metrics h and
hij are determined by the traces, the multiplications, and the involutions,
which are all preserved by φ and ξij ; this implies unitarity. Concerning the
fusion representation, (LBG1∗) implies that ϕij = χijj ◦ (ιj ⊗ idRij ). Thus,
the fusion representation ϕij is determined by the product χijj and the al-
gebra homomorphism ιj . Since these are preserved by ξij and φ, the fusion
representation is preserved. This completes the proof that F̃ is full.

Now we assume that (L,R, χ, ϵ, θ, ι, ι∗) is an I-colored knowledgable
Frobenius algebra with a positive reflection structure (λ̃, αij), such that
L ∼= C as Frobenius algebras. First of all, we remark that if L ∼= C, preser-
vation of traces implies that there is only one such isomorphism, namely
the trace ϑ itself. In particular, ϑ : L → C is a unital algebra isomorphism.
We equip L with the sesquilinear form h(ℓ, ℓ′) := ϑ(λ̃(ℓ) · ℓ′). Using that ϑ is
involutive and an algebra homomorphism, we get h(ℓ, ℓ′) = ϑ(ℓ) · ϑ(ℓ′); this
shows that h is a hermitian metric and that the product λ of L is unitary.
We equip Rij with the sesquilinear form hij(v, w) := θi(χiji(α

−1
ji (v)⊗ w)).

Using that αij is involutive, anti-multiplicative and compatible with θi, we
see that hij is hermitian. It is non-degenerate, since the pairing σij is non-
degenerate and αij is an isomorphism. Finally, it is positive-definite since the
reflection structure is positive. The involutions αij are unitary with respect
to the metrics hij and hji: we have

hji(αij(v), αij(w)) = σji(v ⊗ αij(w))

(CFa8)
↓
= σij(αij(w)⊗ v) = hij(w, v) = hij(v, w).

We define the fusion representation by ϕij := χijj ◦ (ιj ⊗ idRij ). This is a
representation because χijk are associative and ιi is an algebra homomor-
phism. Further, ϕij is unitary:
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hij(ϕij(ℓ⊗ v), ϕij(ℓ
′ ⊗ v′))

(10)
= θi(χiji(χjii(ιi(λ̃(ℓ))⊗ α−1

ji (v))⊗ χijj(ιj(ℓ
′)⊗ v′)))

(CFa5)
↓
= θi(χiii(χiii(ιi(λ̃(ℓ))⊗ ιi(ℓ

′))⊗ χiji(α
−1
ji (v)⊗ v′)))

= θi(χiii(ιi(λ̃(ℓ) · ℓ
′)⊗ χiji(α

−1
ji (v)⊗ v′)))

(CFa6)
↓
= ϑ(λ̃(ℓ) · ℓ′ · ι∗i (χiji(α

−1
ji (v)⊗ v′)))

ϑ is an algebra homomorphism
↓
= ϑ(λ̃(ℓ) · ℓ′) · ϑ(1 · ι∗i (χiji(α

−1
ji (v)⊗ v′)))

(CFa6)
↓
= h(ℓ, ℓ′) · θi(χiii(ϵi ⊗ χiji(α

−1
ji (v)⊗ v′)))

= h(ℓ, ℓ′) · hij(v, v
′).

Now we have provided the structure (1∗) to (5∗) of an object of LBG(I).
It remains to check the axioms. Axioms (LBG1∗) and (LBG3∗) follow from
the definition of ϕij , the centrality of ιi in (CFa5) and its compatibility with
α in (10). The first part of (LBG2∗) follows from the associativity of χijk
and its compatibility with αij , and the second part additionally from the
symmetry of the pairing σij in (CFa8). Finally, for Axiom (LBG4∗) we have
seen above that vk = αij(vk) for a basis (v1, ..., vn) of Rij and its dual basis
(v1, ..., vn) with respect to σij . With (CFa9), it thus remains to prove that

hii(ϵi, v) · ϵj = (ιj ◦ ι
∗
i )(v).

To see this, we first note that ϑ(ι∗i (v)) = θi(v) due to the adjointness
in (CFa6). Since ϑ is a unital algebra isomorphism, this implies ι∗i (v) = θi(v) ·
1. Then, we obtain (ιj ◦ ι

∗
i )(v) = θi(v) · ϵj , which coincides with hii(ϵi, v) · ϵj .

Summarizing, we have constructed an object of LBG(I), which is (by con-
struction) sent by the functor F̃ to the I-colored knowledgable Frobenius
algebra with reflection structure we started with. □

Proposition 3.21 shows that by restriction of LBG to a point one obtains
all reflection-positive open-closed topological quantum field theories whose
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bulk algebra is C. This will be further investigated in our upcoming paper
[BW21].

4. Transgression

In this section we construct our transgression functor T : TBG(M,Q) →
LBG(M,Q). In Sections 4.1 to 4.7 we describe its action on the level of
objects, i.e. the transgression of a TBG object (G, E). In Section 4.8 we
treat the morphisms, and in Section 4.9 we consider the situation where the
bundle gerbe G is trivial.

As announced in the introduction, we will treat analytical regularity
over loop spaces and path spaces in the framework of diffeology. The reason
is that we use extensively the concatenation of arbitrary paths, whenever
they have a common end point. This requires sitting instants (i.e., the map
γ : [0, 1] →M is constant around {0} and {1}). Spaces of paths with sit-
ting instants are not manifolds in any way; this forces us to use diffeologi-
cal spaces. An introduction to diffeology can be found in [IZ13, BH11]. A
systematic application to spaces of paths and loops in the context of pa-
rallel transport has been pursued in [Bae07, SW13], and in the context of
transgression in [Wal12, Wal16]. For the sake of self-containedness, we have
included an Appendix A.1 about vector bundles over diffeological spaces.

4.1. The line bundle over the loop space

The transgression of gerbes with connection to the loop space was described
first by Gawȩdzki [Gaw88] (in terms of Deligne cohomology) and Brylinski
[Bry93] (in terms of Dixmier-Douady sheaves of groupoids). A transgression
for bundle gerbes was described by Gawȩdzki and Reis in [GR02]. An adap-
tion to bundle gerbes of Brylinski’s transgression was described in [Wal10],
and then extended in [Wal16] to include fusion products. In the following
we recall this approach briefly.

Let G be a bundle gerbe with connection over M . We define a principal
U(1)-bundle LG over LM in the following way. The fiber LG|τ over a loop
τ is the set of 2-isomorphism classes of trivializations T : τ∗G → I0, i.e. 1-
isomorphisms in Grb∇(S1). This set is a torsor over the group of isomorphism
classes of principal U(1)-bundles with connection over S1, which can be
identified canonically with U(1) by taking the holonomy around the base
S1; this establishes the U(1)-action on LG|τ . The total space of LG is the
disjoint union of the fibers LG|τ . A diffeology on LG is defined as follows.
A map c̃ : U → LG is a plot if the projection c := π ◦ c̃ : U → LM is a plot
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of LM , and every point u ∈ U has an open neighborhood u ∈W ⊆ U and
a trivialization T of (c∨)∗G over W × S1 such that c̃(w) = [i∗wT ] ∈ LG|τ
for all w ∈W . Here c∨ : U × S1 →M is the map c∨(u, z) := c(u)(z), and
iw : S1 →W × S1 is defined by iw(t) := (w, t). It is proved in [Wal16, Sec.
4.1] that this makes LG into a diffeological principal U(1)-bundle over LM .
By Lemma A.2, the associated vector bundle L := LG ×U(1) C with respect
to the standard representation of U(1) on C is a hermitian line bundle over
LM .

The fusion product λ on L is defined first on the principal U(1)-bundle
LG as described in [Wal16, Sec. 4.2]. We consider (γ1, γ2, γ3) ∈ PM [3] and
the corresponding loops τab := γa ∪ γb, for a, b = 1, 2.3. Let Tab : τ

∗
abG → I0

be trivializations for ab ∈ {12, 23, 13}. We work with S1 = R/Z, and consider
the two maps ι1, ι2 : [0, 1] → S1 defined by ι1(t) :=

1
2 t and ι2(t) := 1− 1

2 t.
Suppose there exist 2-isomorphisms ϕ1 : ι

∗
1T12 ⇒ ι∗1T13, ϕ2 : ι

∗
2T12 ⇒ ι∗1T23

and ϕ3 : ι
∗
2T23 ⇒ ι∗2T13 over the interval [0, 1] such that ϕ1|0 = ϕ3|0 • ϕ2|0 and

ϕ1|1 = ϕ3|1 • ϕ2|1, where • denotes the vertical composition of 2-morphisms
in Grb∇. Then, we set

λ|γ1,γ2,γ3(T12 ⊗ T23) := T13.

It is proved in [Wal16, Sec. 4.2] that this sufficiently characterizes λ as a
bundle morphism. On the associated bundle L, the fusion product is then
defined by

λ|γ1,γ2,γ3([T12, z12]⊗ [T23, z23]) := [λ(T12 ⊗ T23), z12 · z23].

Remark 4.1. Pullback along rev : S1 → S1 : t 7→ 1− t defines a bundle mor-
phism LG → LG∗ that covers the loop reflection r̃ev : LM → LM : τ 7→
τ ◦ rev. We note that r̃ev(γ1 ∪ γ2) = γ2 ∪ γ1. On the associated line bundle,
r̃ev induces the bundle morphism

λ̃γ1,γ2 : Lγ1∪γ2 → L|γ2∪γ1 : [T , z] 7→ [rev∗T , z],

which is part of the LBG structure (2).

A connection ω on LG is defined in [Wal16, Sec. 4.3]. Here, we describe
its parallel transport τω, combining the definition of the 1-form ω [Wal16,
Sec. 4.3] with the derivation of the parallel transport described in [Wal12,
Def. 3.2.9]. If Γ ∈ PLM is a path, T : (Γ∨)∗G → Iρ is a trivialization, and
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T0 and T1 are its restrictions to {0} × S1 and {1} × S1, respectively, then

τωΓ (T0) := T1 · exp

(∫

[0,1]×S1

ρ

)
.

The connection ω on LG is superficial [Wal16, Cor. 4.3.3] and symmetrizes
the fusion product [Wal16, Prop. 4.3.5]. We obtain an associated connection
pt on the associated line bundle L, see Lemma A.7. This completes the
construction of LBG structures (1) and (2) from a bundle gerbe G with
connection over M .

4.2. The vector bundle over the path space

In this section we construct the vector bundles Rij over the path spaces
Pij , from a given TBG object (G, E). It is different from a construction of
Gawȩdzki and Reis [GR02], but results into an isomorphic bundle. We use
the following notation: if p ∈M is a point, we denote by G|p the pullback of
G along the map {∗} →M : ∗ 7→ p.

The fiber of Rij over a path γ ∈ Pij with x := γ(0) and y := γ(1) is
defined as follows. Let T : γ∗G → I0 be a trivialization. Over the point we
have the two 1-morphisms T |0 : G|x → I0 and Ei|x : G|x → I0, so that we
obtain a hermitian vector bundle ∆(Ei|x, T |0) with connection over the point,
i.e. a complex inner product space; see Section 2.1. Similarly we obtain a
complex inner product space ∆(Ej |y, T |1). We define

Rij |γ(T ) := Hom
(
∆(Ei|x, T |0),∆(Ej |y, T |1)

)
,

which is a vector space of dimension rk(Ei) · rk(Ej), and comes equipped
with the complex inner product hij(φ, ψ) := tr(φ∗ ◦ ψ), where φ∗ denotes
the adjoint map.

Remark 4.2. Under the identification Hom(V,W ) = V ∗ ⊗W , this inner
product is the one induced from the inner products on V and W . The
induced norm is the Frobenius norm.

We show that the vector spaces Rij |γ(T ) and Rij |γ(T
′) associated to two

trivializations are canonically isomorphic. If ψ : T ⇒ T ′ is a 2-isomorphism
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in Grb∇([0, 1]), then we have unitary isomorphisms

ψ0 := ∆(id, ψ|0) : ∆(Ei|x, T
′|0) → ∆(Ei|x, T |0)

ψ1 := ∆(id, ψ|1) : ∆(Ej |y, T
′|1) → ∆(Ej |y, T |1),

combining into a unitary isomorphism

rψ : Rij |γ(T
′) → Rij |γ(T ) : φ 7→ ψ1 ◦ φ ◦ ψ−1

0 .

This isomorphism is in fact independent of ψ: since [0, 1] is connected, any
other 2-isomorphism ψ′ : T ⇒ T ′ satisfies ψ′ = ψ · z for a constant z ∈ U(1);
and hence we have rψ = rψ′ . Moreover, since [0, 1] is contractible and 1-
dimensional, any two trivializations over [0, 1] are 2-isomorphic.

Alternatively, we give another description of rψ. The two trivializations
T and T ′ determine a hermitian line bundle L := ∆(T , T ′) with connection
over [0, 1]. By Remark 2.1 (a) we have canonical isomorphisms

∆(Ei|x, T |0)⊗ L|0 = ∆(Ei|x, T |0)⊗∆(T |0, T
′|0) ∼= ∆(Ei|x, T

′|0)

∆(Ej |y, T |1)⊗ L|1 = ∆(Ej |y, T |1)⊗∆(T |1, T
′|1) ∼= ∆(Ej |y, T

′|1)

that together yield an isomorphism

L|∗0 ⊗ Rij |γ(T )⊗ L|1 ∼= Rij |γ(T
′).

Any parallel unit-length section σ in L then determines an isomorphism

σ̃ : Rij |γ(T ) → Rij |γ(T
′).

This isomorphism is again independent of σ: if σ′ is another parallel unit-
length section, we have σ′ = σ · z for a constant z ∈ U(1). This shows that
σ̃ = σ̃′.

A parallel unit-length section σ in ∆(T , T ′) is the same as a 2-
isomorphism ψ : T ⇒ T ′, and under this correspondence we have rψ = σ̃.
Thus, we have two descriptions of the same, canonical isomorphism, which
we will denote by rT ,T ′ . On the class of pairs (T , φ), where φ ∈ Rij |γ(T ), we
define the relation (T ′, φ′) ∼ (T , rT ,T ′(φ′)). This is an equivalence relation,
and Rij |γ is, by definition, the set of equivalence classes. It is a complex
inner product space of dimension rk(Ei) · rk(Ej). We note that the choice of
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any trivialization T determines a unitary isomorphism

Rij |γ(T ) → Rij |γ : φ 7→ [(T , φ)].

We will shortly need to consider the vector spaces Rij in smooth families,
and we thus prepare the following notation and Lemma 4.3 below. Suppose U
is a smooth manifold, possibly with boundary, and f : U → Pij is a smooth
map. By definition of the diffeology on Pij , this means that f∨ : U × [0, 1] →
M is smooth. For u ∈ U and t ∈ [0, 1] we will use the maps two maps iu :
[0, 1] → U × [0, 1] and jt : U → U × [0, 1] defined by iu(t) := jt(u) := (u, t).
If T : (f∨)∗G → Iρ is a trivialization, then we define the hermitian vector
bundles

VT := ∆((ev0 ◦ f)
∗Ei, j

∗
0T ) and WT := ∆((ev1 ◦ f)

∗Ej , j
∗
1T )

with connection over U . In terms of this notation, we have Rij |f(u)(i
∗
uT ) =

Hom(VT ,WT )|u for all u ∈ U . We need the following result about a change
of trivialization in smooth families.

Lemma 4.3. Let T : (f∨)∗G → Iρ and T ′ : (f∨)∗G → Iρ′ be two trivializa-
tions. If U is contractible, then there exist the following:

• a 1-form η ∈ Ω1(U × [0, 1]) such that ρ− ρ′ = dη and i∗uη = 0 for all
u ∈ U

• a connection-preserving bundle isomorphism

σ̃ : Hom(VT ,WT )⊗ Cj∗1η−j
∗
0η → Hom(VT ′ ,WT ′)

over U , such that σ̃|u = ri∗uT ,i∗uT ′ for all u ∈ U . Here, Cω denotes the
trivial line bundle equipped with the connection induced by a 1-form ω.

Proof. We use a U -family version of the canonical isomorphism rT ,T ′ . We
consider the hermitian line bundle L := ∆(T , T ′) over U × [0, 1] with con-
nection of curvature ρ− ρ′. By Remark 2.1 (a) we have an isomorphism

VT ⊗ j∗0L = ∆((ev0 ◦ c)
∗Ei, j

∗
0T )⊗∆(j∗0T , j

∗
0T

′)
∼= ∆((ev0 ◦ c)

∗Ei, j
∗
0T

′) = VT ′

A similar construction works for WT and WT ′ , and together we obtain a
bundle isomorphism

j∗0L
∗ ⊗Hom(VT ,WT )⊗ j∗1L

∼= Hom(VT ′ ,WT ′).
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Now, L may not have a parallel unit-length section. However, it always
admits a unit-length section σ that is parallel along iu. Indeed, since U
is contractible, there exists a smooth unit-length section σ0 : U → i∗0L. We
define σ(u, t) := ptγu,t(σ0(u)), where γu,t is the path τ 7→ iu(τ) restricted
to [0, t]. Since the parallel transport depends smoothly on the path, this
gives a smooth section of L, as desired. We denote by η ∈ Ω1(U × [0, 1])
its covariant derivative, so that dη = ρ− ρ′. Therefore, σ determines the
claimed connection-preserving bundle isomorphism σ̃, as claimed. Since σ is
parallel along iu, we have i∗uη = 0 and σ̃|u = ri∗uT ,i∗uT ′ . □

We are now in position to assemble the fibers Rij |γ into a diffeological
vector bundle. Its total space Rij is the disjoint union of the fibers Rij |γ
for γ ∈ Pij , equipped with the obvious projection π : Rij → Pij . Let U ⊆ Rk

be open. We define a map c̃ : U → Rij to be a plot of Rij if the following
conditions hold:

(a) The composition c := π ◦ c̃ : U → Pij is a plot of Pij .

(b) Every point u ∈ U has an open neighborhood W ⊆ U , a triviali-
zation T : (c|∨W )∗G → Iρ, and a smooth section τ into the bundle
Hom(VT ,WT ) over W , such that c̃(w) = [i∗wT , τ(w)] for all w ∈W .

It is straightforward to show that this indeed defines a diffeology.

Proposition 4.4. Rij is a hermitian vector bundle over Pij.

Proof. Let c : U → Pij be a plot and let u ∈ U . We choose a contractible
open neighborhoodW ⊆ U of u. SinceW × [0, 1] is contractible, there exists
a trivialization T : (c|∨W )∗G → Iρ, and since W is contractible, there exists
a trivialization

τ :W × C
k → Hom(VT ,WT ),

where k = rk(Ei) · rk(Ej). We define a local trivialization ϕ of Rij by the
formula

ϕ :W × C
k →W ×Pij Rij : (w, v) 7→ (w, [i∗wT , τ(w, v)]).

This map is smooth (by definition of the plots) and fiber-wise linear. We
have to show that it is a diffeomorphism.

The inverse map of ϕ can be described in the following way. Given
(w, [Tw, φ]) ∈W ×Pij Rij with a trivialization Tw : c(w)∗G → I0 and φ ∈
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Rij |c(w)(Tw), we have

ϕ−1(w, [Tw, φ]) = τ−1(rι∗wT ,Tw(φ)).

In order to show that ϕ−1 is smooth, we consider a plot ofW ×Pij Rij , which
is a pair (f, c̃) of a smooth map f : U ′ →W and a plot c̃ : U ′ → Rij such that
c ◦ f = π ◦ c̃ =: c′. Since c̃ is a plot, there exists (possibly after replacing U ′

by a smaller subset) a trivialization T ′ : (c′∨)∗G → Iρ′ and a smooth section
τ ′ of Hom(VT ′ ,WT ′) such that c̃(u) = [i∗uT , τ

′(u)] for all u ∈ U ′. Now, we
have to show that the map U ′ →W × Ck given by

u 7→ ϕ−1(f(u), [i∗uT
′, τ ′(u)]) = τ−1(ri∗uT ,i∗uT ′(τ ′(u)))

is smooth. Indeed, by Lemma 4.3 it is the composition of smooth bundle
morphisms. □

4.3. The superficial connection

We define a connection on the vector bundle Rij , in the sense of Defi-
nition A.5. A similar definition of that connection has been sketched in
[GR02]. Let Γ ∈ PPij be a path in Pij , and let γs := Γ(s) ∈ Pij . Thus, Γ
is a path from γ0 to γ1. We consider the adjoint map Γ∨ : [0, 1]2 →M
(i.e. Γ∨(s, t) := γs(t)) and choose a trivialization T : (Γ∨)∗G → Iρ. Let Ts :=
T |{s}×[0,1]; these are trivializations of (γ∨s )

∗G. Further, let T 0 := T |[0,1]×{0}

and T 1 := T |[0,1]×{1}, which are trivializations along the paths of end points.
In the notation of the previous subsection, we consider the hermitian vector
bundles VT 0 and WT 1 with connection over [0, 1], and the corresponding
Hom-bundle Hom(VT 0 ,WT 1) over [0, 1] with its induced connection. Now
we have

Rij |γ0(T0) = Hom(VT 0 ,WT 1)|0 and Rij |γ1(T1) = Hom(VT 0 ,WT 1)|1.

Then, we define

(11) ptij |Γ : Rij |γ0(T0) → Rij |γ1(T1) : φ 7→ exp

(∫

[0,1]2
ρ

)
· pt(φ),

where pt is the parallel transport in Hom(VT 0 ,WT 1) along the linear path
in [0, 1] from 0 to 1.

Proposition 4.5. (11) defines a superficial, unitary connection ptij on Rij.
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Proof. The proof is split into five parts.
Part I: the definition of ptij |Γ is independent of the choice of the trivi-

alization T . In order to prove this, let T ′ : (Γ∨)∗G → Iρ′ be another trivi-
alization. We consider a 1-form η ∈ Ω1([0, 1]2) and a connection-preserving
bundle isomorphism

σ̃ : Hom(VT ,WT )⊗ Cj∗1η−j
∗
0η → Hom(VT ′ ,WT ′)

over U , as in Lemma 4.3. Thus, the parallel transport pt in Hom(VT ,WT )
and pt′ in Hom(VT ′ ,WT ′) differ by the parallel transport of Cj∗1η−j∗0η, i.e.,

pt′(σ̃|0(φ)) = σ̃|1(pt(φ)) · exp

(∫

[0,1]
j∗1η − j∗0η

)

for all φ ∈ Hom(VT ,WT )|0. Due to Stokes’ Theorem, and the properties
ρ′ − ρ = dη and i∗0η = i∗1η = 0 of η, we can write this as

pt′(σ̃|0(φ)) · exp

(∫

[0,1]2
ρ′

)
= σ̃|1(pt(φ)) · exp

(∫

[0,1]2
ρ

)
.

Since σ̃|s establishes the isomorphism rTs,T ′
s

between Rij |γs(Ts) and
Rij |γs(T

′
s ); this shows the claimed independence.

Part II is the verification of A.5 (a): ptij |Γ depends only on the thin
homotopy class of Γ. In order to prove this, we suppose Γ1,Γ2 ∈ PPij are
thin homotopic (Definition A.4 for X = Pij). Thus, there exists h ∈ PPPij
such that

(a) h(0) = Γ1 and h(1) = Γ2

(b) h(r)(0) = Γ1(0) = Γ2(0) and h(r)(1) = Γ1(1) = Γ2(1) for all r ∈ [0, 1]

(c) h∨ : [0, 1]2 → Pij : (r, s) 7→ h(r)(s) has rank one.

Here, a smooth map f between smooth manifolds is said to have rank k if
rk(dfx) ≤ k for all points x in its domain. We let H : [0, 1]3 →M denote
the map H(r, s, t) = h(r)(s)(t) = h∨(r, s)(t); which by (c) has rank two. We
choose a trivialization T : H∗G → Iρ; since H has rank two, H∗G is flat and
hence dρ = 0.

The restriction of H to the (t = 0) face of the cube [0, 1]3 has rank
one due to (c). By Theorem C.1 there exists a parallel trivialization T ′

t=0,
a hermitian vector bundle E0 with flat connection, and a 2-isomorphism
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T ′
t=0 ⊗ E0

∼= H|∗t=0Ei. Thus,

(12) VT = ∆(H|∗t=0Ei, Tt=0) ∼= ∆(T ′
t=0 ⊗ E0, Tt=0) ∼= ∆(T ′

t=0, Tt=0)⊗ E0.

We note that the line bundle ∆(T ′
t=0, Tt=0) carries a connection of curvature

−ρt=0. Analogously, WT
∼= ∆(T ′

t=1, Tt=1)⊗ E1, for another flat hermitian
vector bundle E1 and a parallel trivialization T ′

t=1. Computing the holonomy
of the vector bundle Hom(VT ,WT ) over [0, 1]2 around the boundary, we
obtain

(13) ptr=1 ◦ pts=0 = pts=1 ◦ ptr=0 · exp

(∫

[0,1]2
−ρt=0 − ρt=1

)
.

Here and in the following, the orientation on the faces of the cube [0, 1]3 are
always the ones induced on the boundary by the standard orientation on
[0, 1]3.

Next, we consider the (s = 0) face of the cube [0, 1]3, whereH is constant
in r due to (b). Let Ts=0 := T |[0,1]×{0}×[0,1] be the restriction of T to that
face, and let ρs=0 be its 2-form. For p : [0, 1]2 → [0, 1]2 : (r, t) 7→ (0, t) we
have another trivialization T ′

s=0 := p∗T |{0}×{0}×[0,1] with vanishing 2-form,
since p factors through [0, 1]. Applying Lemma 4.3 to the pair (Ts=0, T

′
s=0),

we obtain a 1-form η0 ∈ Ω1([0, 1]2) such that ρs=0 = dη0 and i∗rη0 = 0 for all
r ∈ [0, 1], and a connection-preserving bundle isomorphism

σ̃0 : Hom(VTs=0
,WTs=0

)⊗ Cj∗1η0−j
∗
0η0 → Hom(VT ′

s=0
,WT ′

s=0
)

over [0, 1]. The parallel transport from 0 to 1 gives the identity

σ̃0|1 ◦ pts=0 = pt′s=0 ◦ σ̃0|0 · exp

(∫ 1

0
j∗0η0 − j∗1η0

)
.

In this identity, we used the fact that over each point r ∈ [0, 1] σ̃0 restricts
to the canonical isomorphism

rTs,r=0,T ′
s,r=0

: Rij |γ0(Ts,r=0) → Rij |γ0(T
′
s,r=0),

see Lemma 4.3. Likewise, the parallel transport pt′s=0 in Hom(VT ′
s=0
,WT ′

s=0
)

coincides with the canonical isomorphism rT ′
s,r=0,T

′
s=0,r=1

, since it describes a
trivialization of ∆(T ′

s,r=0, T
′
s=0,r=1). Finally, we use the properties of η0 and
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Stokes’ Theorem, and obtain

(14) pts=0 = rTs,r=0,Ts=0,r=1
· exp

(∫

[0,1]2
ρs=0

)
.

The (s = 1) face is treated analogously, just that we get −ρs=1 under the
integral.

Now we are in position to show that the two parallel transports ptij |Γ1

and ptij |Γ2
coincide, under the canonical isomorphisms r. Indeed, for φ ∈

Rij |γ0(Ts,r=0) we have:

ptij |Γ2
(rTs,r=0,Ts=0,r=1

(φ))

= ptr=1(rTs,r=0,Ts=0,r=1
(φ)) · exp

(∫

[0,1]2
−ρr=1

)

(14)
= ptr=1(pts=0(φ)) · exp

(∫

[0,1]2
−ρs=0 − ρr=1

)

(13)
= pts=1(ptr=0(φ)) · exp

(∫

[0,1]2
−ρt=0 − ρt=1 − ρs=0 − ρr=1

)

(14)
= rTs=1,r=0,Ts,r=1

(ptr=0(φ)) · exp

(∫

[0,1]2
−ρt=0 − ρt=1 − ρs=0 − ρs=1 − ρr=1

)

= rTs=1,r=0,Ts,r=1
(ptr=0(φ)) · exp

(∫

[0,1]2
ρr=0

)

= rTs=1,r=0,Ts,r=1
(ptij |Γ1

(φ))

In the last-but-one step we have used Stokes’ Theorem for the closed 2-
form ρ.

Part III is the verification of A.5 (b): parallel transport is compatible
with path concatenation; this follows directly from the definition.

Part IV is the verification of A.5 (c): ptij is compatible with local
trivializations. Let c : U → Pij be a plot and let ϕ :W × Ck →W ×Pij Rij

be a local trivialization with W ⊆ U . We can assume that ϕ(w, v) =
(w, [ι∗wT , τ(w, v)]), where T : (c∨)∗G → Iρ is a trivialization over [0, 1]×W ,
and τ is a bundle isomorphism τ :W × Ck → Hom(VT ,WT ). We let ωτ ∈
Ω1(W, gl(Ck)) be the corresponding connection 1-form, i.e. it induces the
unique connection on W × Ck such that τ is connection-preserving. This
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means that for a path γ ∈ PW we have

(15) τ(γ(1), exp(ωτ )(γ) · v) = ptγ(τ(γ(0), v)),

where exp(ωτ )(γ) ∈ GL(Ck) is the path-ordered exponential of ωτ along γ.
Then we define

(16) ωϕ := ωτ +

∫

[0,1]
ρ ∈ Ω1(W, gl(Ck)),

with the addition performed under the diagonal embedding R ⊆ gl(Ck). We
note that

(17) exp(ωϕ)(γ) = exp(ωτ )(γ) · exp

(∫

[0,1]2
(id[0,1] × γ)∗ρ

)
.

Now we consider the relevant diagram, whose commutativity is to check:

C
k

exp(ωϕ)(γ)
//

ϕ|γ(0)

��

C
k

ϕ|γ(1)

��

Rij |c(γ(0))
ptij |c◦γ

// Rij |c(γ(1)).

Clockwise, using (15) and (17) we obtain the map

v 7→

[
ι∗γ(1)T , exp

(∫

[0,1]2
(id× γ)∗ρ

)
· ptγ(τ(γ(0), v)))

]
.

Counter-clockwise, we first have v 7→ [ι∗γ(0)T , τ(γ(0), v)] and then obtain, by
definition of ptij , precisely the same result.

Part V: the connection ptij is superficial (Definition A.11). For condition
A.11 (i), we may equivalently show that a thin, fixed-ends loop Γ : S1 → Pij
has trivial holonomy, ptij |Γ = id. Here, by a thin loop we mean that its
adjoint Γ∨ : S1 × [0, 1] →M has rank one. Since Γ∨|S1×{0} and Γ∨|S1×{1} are
constant and all paths have sitting instants, we can extend Γ∨ constantly to
discs glued along their boundary to S1 × {0} and S1 × {1}. By Theorem C.1
(a) there exists a trivialization T : (Γ∨)∗G → I0. Thus, ptij |Γ is determined
completely by the holonomy of Hom(VT ,WT ) around S

1 = ∂D2. The vector
bundles VT and WT are defined over D2 and are flat by Theorem C.1 (b);
hence, their holonomy vanishes.
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For condition A.11 (ii), we consider a rank-two-homotopy h ∈ PPPij
between paths Γ1 = h(0) and Γ2 = h(1). Let T : (h∨)∗G → Iρ be a trivi-
alization. Due to condition A.10 (c), h∨ has rank two, so that (h∨)∗G is
flat and dρ = 0. Over the (t = 0) face, h∨ is constant in r due to A.10 (b),
and hence is of rank one. Using Theorem C.1, there exists a trivialization
T0 : (h

∨)|∗t=0G → I0 and a flat hermitian vector bundle E0 over [0, 1]2 such
that VT

∼= ∆(T0, Tt=0)⊗ E0, see (12). Since ∆(T0, Tt=0) is a hermitian line
bundle with connection of curvature −ρ|t=0, we have

(18) HolVT
(∂[0, 1]2) = exp

(∫

[0,1]2
−ρ|t=0

)
.

We treat the (t = 1) face analogously, producing the same formula for WT

and ρ|t=1. Now we are in position to prove condition A.11 (ii); we need to
check that

ptij |h1
◦ ptij |γ1 = ptij |γ2 ◦ ptij |h0

.

Substituting our above findings, we obtain the integral of ρ over four faces
of the cube, as well as the holonomy of Hom(VT ,WT ) around ∂[0, 1]2. Us-
ing (18) the latter provides integrals of ρ over the remaining faces. All to-
gether, these integrals vanish due to dρ = 0 by Stokes’ Theorem. □

We conclude the discussion of the connection ptij with the following
result. It coincides with a corresponding claim in [GR02] (for rank one D-
branes).

Lemma 4.6. The curvature of the connection ptij on Rij satisfies

1

rk(Rij)
tr(curv(ptij)) =

∫

[0,1]
ev∗curv(G) + ev∗1ωj − ev∗0ωi.

Proof. According to Remark A.9, we have to compute tr(dωϕ), where ωϕ
is the 1-form encountered in the preceding proof in (16), which in turn
was obtained from a trivialization T : (c∨)∗G → Iρ. For the first summand
in (16) we have to compute tr(dωτ ), i.e. the trace of the curvature of the
vector bundle Hom(VT ,WT ). From the definition of the functor ∆ and the
vector bundles VT and WT we see that

1

rk(Ei)
tr(curv(VT )) = (ev0 ◦ c)

∗ωi − j∗0ρ and

1

rk(Ej)
tr(curv(WT )) = (ev0 ◦ c)

∗ωj − j∗1ρ.
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Thus, we obtain

1

rk(Ei)rk(Ej)
tr(curv(Hom(VT ,WT ))) = c∗(ev∗1ωj − ev∗0ωi)− j∗1ρ+ j∗0ρ

in ∈ Ω2(W ). For the second summand in (16) we recall that integration over
a fiber with boundary satisfies a version of Stokes’ Theorem,

d

∫

[0,1]
ρ =

∫

[0,1]
dρ+ j∗1ρ− j∗0ρ.

We have dρ = (c∨)∗curv(G) and obtain – under the sum of (16) – the claimed
formula. □

4.4. Fusion representation

We equip the vector bundle Rij over Pij with a fusion representation of the
line bundle L over LM . We start by constructing isomorphisms

ϕij |γ1,γ2 : L|τ ⊗ Rij |γ2 → Rij |γ1

for (γ1, γ2) ∈ P
[2]
ij := Pij ×Qi×Qj Pij , with τ := γ1 ∪ γ2. Let T be a trivi-

alization of τ∗G. We recall that S1 = R/Z and consider the two maps
ι1, ι2 : [0, 1] → S1 defined by ι1(t) :=

1
2 t and ι2(t) := 1− 1

2 t. Then, T1 := ι∗1T
is a trivialization of γ∗1G, and T2 := ι∗2T is a trivialization of γ∗2G. We note
that

Rij |γ2(T2) = Hom(∆(Ei|x, T |0),∆(Ej |y, T | 1
2
)) = Rij |γ1(T1),

and define:

ϕij |γ1,γ2 : L|τ ⊗ Rij |γ2(T2) → Rij |γ1(T1) : [T , z]⊗ φ 7→ zφ.

Lemma 4.7. This defines a connection-preserving, unitary bundle isomor-
phism ϕij.

Proof. (1) The map ϕij |γ1,γ2 is independent of the choice of the triviali-
zation T . Indeed, if T ′ is another trivialization of τ∗G, let P be a her-
mitian line bundle with connection over S1 such that T ′ ∼= T ⊗ P . Let
σ1 and σ2 be parallel unit-length sections into ι∗1P and ι∗2P , inducing 2-
isomorphisms ψ1 : T1 ⇒ T ′

1 and ψ2 : T2 ⇒ T ′
2 . These differ over the endpoints
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by numbers a0, a1 ∈ U(1), say ψ1|0 = ψ2|0 · a0 and ψ1|1 = ψ2|1 · a1. We ob-
tain HolP (idS1) = a0a

−1
1 , and [T , z] = [T ′, a1a

−1
0 · z] in L|τ . Further, we have

(in the notation of Section 4.2)

rψ2
(φ) = (ψ2)1 ◦ φ ◦ (ψ2)

−1
0 = a−1

1 a0 · (ψ1)1 ◦ φ ◦ (ψ1)
−1
0 = a−1

1 a0 · rψ1
(φ).

We obtain

(a1a
−1
0 · z) · rψ2

(φ) = rψ1
(zφ);

this shows the independence.

(2) The map ϕij is smooth. Consider a plot c : U → P
[2]
ij . We con-

sider an open subset W ⊆ U with a trivialization T : (c̃∨)∗G → Iρ, where
c̃ :W → LM is the induced plot of LM , i.e., c̃ := ∪ ◦ c. We obtain induced
trivializations T1 := (ι1 × idW )∗T and T2 := (ι2 × idW )∗T . After choosing
a trivialization τ of the vector bundle Hom(VT ,WT ) over W , we obtain
local trivializations ϕ1 of pr∗1Rij and ϕ2 of pr∗2Rij over P

[2]
ij , defined by

ϕ1(w, v) := (w, [ι∗wT1, τ(w, v)]) and ϕ2(w, v) := (w, [ι∗wT2, τ(w, v)]), accord-
ing to the proof of Proposition 4.4. Further, we have a local trivialization
ϕ of ∪∗L defined (see Lemma A.2) by ϕ(w, v) := (w, [ι∗wT , v]). By definition
of the isomorphism ϕij , we have a commutative diagram

((W × C)⊗ (W × C
k)

ϕ⊗ϕ2

��

// W × C
k

ϕ1

��

(W ×
P

[2]
ij

∪∗
L)⊗ (W ×

P
[2]
ij

pr∗2Rij) ϕij

// W ×
P

[2]
ij

pr∗1Rij

whose top arrow is pointwise scalar multiplication. This shows that ϕij is
smooth.

(3) The bundle morphism ϕij is connection-preserving. Let Γ = (Γ1,Γ2)
be a path in P

[2]
ij , and let τ := Γ1 ∪ Γ2 be the induced path in LM . Let

T : (τ∨)∗G → Iρ be a trivialization over [0, 1]× S1. Let T1 : (Γ
∨
1 )

∗G → Iρ1
and T2 : (Γ

∨
2 )

∗G → Iρ2 be the trivializations obtained by pullback of T along
the maps id× ι1, id× ι2 : [0, 1]

2 → [0, 1]× S1, respectively. Let Tk(s) be the
restriction of Tk to {s} × [0, 1], for s ∈ {0, 1}. By construction, we have VT1

=
VT2

and WT1
= WT2

, as well as

∫

[0,1]×S1

ρ+

∫

[0,1]2
ρ2 =

∫

[0,1]2
ρ1.
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From the definitions of the parallel transport in L and Rij , we conclude that
the diagram

L|τ(0) ⊗ Rij |Γ2(0)(T2(0))

ptτ⊗ptij |Γ2

��

ϕij |Γ1(0),Γ2(0)
// Rij |Γ1(0)(T1(0))

ptij |Γ1

��

L|τ(1) ⊗ Rij |Γ2(1)(T2(1))
ϕij |Γ1(1),Γ2(1)

// Rij |Γ1(1)(T1(1))

is commutative; this shows that ϕij is connection-preserving. □

Next we show that the first LBG axiom is satisfied.

Lemma 4.8. Axiom (LBG1) is satisfied: ϕij is a fusion representation.

Proof. We consider a triple (γ1, γ2, γ3) ∈ PM [3] and the corresponding loops
τab := γa ∪ γb. Using trivializations Tab : τ

∗
abG → I0, and 2-isomorphisms

ϕ1 : ι
∗
1T12 ⇒ ι∗1T13, ϕ2 : ι

∗
2T12 ⇒ ι∗1T23 and ϕ3 : ι

∗
2T23 ⇒ ι∗2T13, (LBG1) im-

plies the commutativity of the following diagram:

L|γ1∪γ2 ⊗ L|γ2∪γ3 ⊗ Rij |γ3(ι
∗
2T23)

λγ1,γ2,γ3⊗id

��

id⊗ϕij |γ2,γ3 // Lγ1∪γ2 ⊗ Rij |γ2(ι
∗
1T23)

id⊗rϕ2

��

Lγ1∪γ2 ⊗ Rij |γ2(ι
∗
2T12)

ϕij |γ1,γ2

��

L|γ1∪γ3 ⊗ Rij |γ3(ι
∗
2T23)

id⊗r−1
ϕ3

��

Rij |γ1(ι
∗
1T12)

(rϕ1 )−1

��

Lγ1∪γ3 ⊗ Rij |γ3(ι
∗
2T13)

ϕij |γ1,γ3

// Rij |γ1(ι
∗
1T13).

In this diagram, the bundle morphisms ϕij , ϕjk and ϕik are just scalar
multiplication. We may additionally assume that λ([T12, z12]⊗ [T23, z23]) =
[T13, z12z23], reducing the commutativity of the diagram to the equation
r−1
ϕ1

◦ rϕ2
= r−1

ϕ3
. By definition of the fusion product and of the morphisms

rϕa , this equation follows from the identities between the 2-isomorphisms
ϕ1, ϕ2 and ϕ3. □
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4.5. Lifted path concatenation

We equip the vector bundle Rij over Pij with a lifted path concatenation,
and start by constructing a linear map

χijk|γ12,γ23 : Rjk|γ23 ⊗ Rij |γ12 → Rik|γ23⋆γ12

for all (γ23, γ12) ∈ Pjk ×Qj Pij and i, j, k ∈ I. Let x := γ12(0), y := γ12(1) =
γ23(0) and z := γ23(1). Consider a trivialization T of (γ23 ⋆ γ12)

∗G, and let
trivializations T12 of γ∗12G and T23 of γ∗23G be defined via restriction, i.e.
T12 := ι∗1T and T23 := ι∗2T , where ι1, ι2 : [0, 1] → [0, 1] are defined by ι1(t) :=
1
2 t and ι2(t) :=

1
2 + 1

2 t. We find

Rij |γ12(T12) = Hom(∆(Ei|x, T |0),∆(Ej |y, T | 1
2
))

Rjk|γ23(T23) = Hom(∆(Ej |y, T | 1
2
),∆(Ek|z, T |1))

Rik|γ23◦γ12(T ) = Hom(∆(Ei|x, T |0),∆(Ek|z, T |1)).

Thus, we define

Rjk|γ23(T23)⊗ Rij |γ12(T12) → Rik|γ23⋆γ12(T )

simply as the composition of linear maps, i.e., φ23 ⊗ φ12 7→ φ23 ◦ φ12.

Lemma 4.9. This defines a connection-preserving bundle morphism

χijk : pr
∗
1Rjk ⊗ pr∗2Rij → ⋆∗Rik.

Proof. (1) Independence of the choice of the trivialization is straightforward
to see and left out for brevity.

(2) In order to see that χijk is a smooth bundle morphism we represent
it in local trivializations. Consider a plot c : U → Pjk ×Qj Pij , and let c12,
c23 and c13 be the pointwise projections to Pij and Pjk, and the pointwise
concatenation, respectively. We restrict to a contractible open subsetW ⊆ U
such that there is a trivialization T : (c∨13)

∗G → Iρ. We induce trivializations
T12 and T23 of (c∨12)

∗G and (c∨23)
∗G by pullback along idW × ι1 and idW × ι2,

respectively. We then consider the vector bundles

V1 := ∆((ev0 ◦ c13)
∗Ei, j

∗
0T ), V2 := ∆((ev 1

2
◦ c13)

∗Ej , j
∗
1

2

T )

and V3 := ∆((ev1 ◦ c13)
∗Ei, j

∗
1T )
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over W . We claim that there exist trivializations τab of the Hom-bundles
Hom(Va,Vb) such that the diagram

(W × C
n3×n2)⊗ (W × C

n2×n1)

τ23⊗τ12

��

· // W × C
n3×n1

τ13

��

Hom(V2,V2)⊗Hom(V1,V2) ◦
// Hom(V1,V3)

is commutative, with pointwise matrix multiplication in the top row. These
can be found by choosing trivializations of the bundles Va separately, and
then inducing trivializations of the Hom-bundles via Hom(Va,Vb) = V∗

a ⊗
Vb. According to the proof of Proposition 4.4, the gerbe trivializations Tab
and the bundle isomorphisms τab induce local trivializations ϕjk of c∗23Rjk,
ϕij of c

∗
12Rij , and ϕik of c∗13Rik. By construction, the diagram

W × (Cnk×nj ⊗ C
nj×ni)

ϕjk⊗ϕij

��

· // W × C
nk×ni

ϕik

��

W ×Pjk×QjPij (pr
∗
jkRjk ⊗ pr∗ijRij) id×χijk

// W ×Pjk×QjPij (⋆
∗
Rik)

is commutative. This shows that χijk is smooth under local trivializations,
and hence smooth.

(3) The bundle morphism χijk is connection-preserving. Indeed, consider
a path (Γ23,Γ12) in Pjk ×Qj Pij , and let Γ be its pointwise concatenation.
Let T : (Γ∨)∗G → Iρ be a trivialization, and let T12 : (Γ

∨
12)

∗G → Iρ12 and
T23 : (Γ

∨
23)

∗G → Iρ23 be the pullbacks of T under (id× ι1) and (id× ι2),
respectively. We consider the hermitian vector bundles with connections

U := ∆((ev0 ◦ Γ)
∗Ei, j

∗
0T ), V := ∆((ev 1

2
◦ Γ)∗Ej , j

∗
1

2

T )

and W := ∆((ev1 ◦ Γ)
∗Ek, j

∗
1T )

over [0, 1], so that

Rij |Γ12(s)(T12|{s}×[0,1]) = Hom(U,V)|s,

Rjk|Γ23(s)(T23|{s}×[0,1]) = Hom(V,W)|s

and Rik|Γ(s)(T |{s}×[0,1]) = Hom(U,W)|s,

and lifted path concatenation is the composition

(19) Hom(V,W)⊗Hom(U,V) → Hom(U,W).
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It is elementary to see that (19) is a connection-preserving bundle morphism
over [0, 1]. Further, we find

∫

[0,1]2
(Γ∨)∗ρ =

∫

[0,1]2
(Γ∨

12)
∗ρ12 +

∫

[0,1]2
(Γ∨

23)
∗ρ23

for the integrals of the 2-form of the trivializations. These results prove the
claim. □

Now that we have established the lifted path concatenation in Rij , we
are in position to show that the next two LBG axioms are satisfied.

Lemma 4.10. Axiom (LBG2) is satisfied: the maps χijk are associative
up to reparameterization.

Proof. In order to prove the pentagon diagram of (LBG2), we have to
choose a path Γ in Pil connecting (γ34 ⋆ γ23) ⋆ γ12 with γ34 ⋆ (γ23 ⋆ γ12). In
order to do so, we let φ : [0, 1] → [0, 1] be a smooth reparameterization such
that ((γ34 ⋆ γ23) ⋆ γ12)(t) = (γ34 ⋆ (γ23 ⋆ γ12))(φ(t)) for t ∈ [0, 1]. We let Γ be
induced from a fixed-ends homotopy h between id[0,1] and φ. We let T1 be
a trivialization of (γ34 ⋆ (γ23 ⋆ γ12))

∗G, and then define a trivialization of G
along Γ by T := h∗T1. We set T0 := T |{0}×[0,1] = φ∗T1. We note that Γ is a
thin path with fixed endpoints, and that T is a trivialization with vanishing
2-form. Thus, by definition of the parallel transport ptil|Γ,

d(γ34⋆γ23)⋆γ12,γ34⋆(γ23⋆γ12) : Ril|(γ34⋆γ23)⋆γ12(T0) → Ril|γ34⋆(γ23⋆γ12)(T1)

is the identity map. The pentagon diagram we have to prove thus reads as

Rkl|γ34(ι
∗
2ι

∗
2T0)⊗ Rjk|γ23(ι

∗
1ι

∗
2T0)⊗ Rij |γ12(ι

∗
1T0)

//

χjkl|γ23,γ34⊗id

��

Rkl|γ34(ι
∗
2T1)⊗ Rjk|γ23(ι

∗
2ι

∗
1T1)⊗ Rij |γ12(ι

∗
1ι

∗
1T1)

id⊗χijk|γ12,γ23

��

Rjl|γ34⋆γ23(ι
∗
2T0)⊗ Rij |γ12(ι

∗
1T0)

χijl|γ12,γ34⋆γ23

��

Rkl|γ34(ι
∗
2T1)⊗ Rik|γ23⋆γ12(ι

∗
1T1)

χikl|γ23⋆γ12,γ34

��

Ril|(γ34⋆γ23)⋆γ12(T0) Ril|γ34⋆(γ23⋆γ12)(T1).

The arrow on top consists of the canonical identifications r relating different
choices of trivializations, and they are all identities according to the sub-
sequent Remark 4.11. The remaining diagram then commutes due to the
associativity of the composition of maps. □
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Remark 4.11. Suppose γ ∈ Pij and φ : [0, 1] → [0, 1] is a smooth map
with φ(0) = 0 and φ(1) = 1, such that γ ◦ φ = γ. Let T : γ∗G → I0 be a
trivialization, and let T ′ := φ∗T . We have Rij |γ(T ) = Rij |γ(T

′), and we
claim that rT ,T ′ = id. In order to see this, we may choose a smooth ho-
motopy h : [0, 1]2 → [0, 1] between the identity and φ, with fixed ends
(h(s, 0) = 0, h(s, 1) = 1 for all s ∈ [0, 1]) that fixes the path, γ(h(s, t)) = γ(t)
for all s, t ∈ [0, 1]. Then, we consider the trivializations h∗T and pr∗2T ,
where pr2 : [0, 1]

2 → [0, 1] is the projection. The hermitian line bundle
L := ∆(h∗T , pr∗2T ) has a flat connection and thus admits a parallel unit-
length section over ({0} × [0, 1]) ∪ ([0, 1]× {0}) ∪ ([0, 1]× {1}), where the
two trivializations agree. With the connection, the section can be extended
to all of [0, 1]2. In particular, we obtain a parallel section σ of ∆(T ′, T ) that
is the identity over the end points. This shows rT ,T ′ = id.

Lemma 4.12. Axiom (LBG3) is satisfied: ϕij and χijk are compatible with
each other.

Proof. We consider paths γ12, γ
′
12 ∈ Pij and γ23, γ

′
23 ∈ Pjk as in (LBG3),

and form the loops

τ := (γ23 ⋆ γ12) ∪ (γ′23 ⋆ γ
′
12) , τ12 := γ12 ∪ γ

′
12 , τ23 := γ23 ∪ γ

′
23.

We consider corresponding trivializations of G, namely T along τ , T12 along
τ12, and T23 along τ23. The first objective is to compare these trivializations
wherever two of them are defined. Over the common point y, we fix a 2-
isomorphism σ : T12| 1

2
⇒ T23|0. Since all paths have sitting instants there

exist maps φ,φ12, φ23 : S
1 → S1 such that

τ23 ◦ φ23 ◦ ι1 = τ23 = τ ◦ φ ◦ ι1,

τ23 ◦ φ23 ◦ ι1 = cy = τ12 ◦ φ12 ◦ ι1,

τ12 ◦ φ12 ◦ ι2 = τ12 ◦ rotπ = τ ◦ φ ◦ ι2,

where rotπ : S1 → S1 is the rotation by an angle of π. Due to the first and the
third of these identities, we can find 2-isomorphisms ϕ1 : ι

∗
1φ

∗
23T23 ⇒ ι∗1φ

∗T
and ϕ3 : ι

∗
2φ

∗
12T12 ⇒ ι∗2φ

∗T . Because of the second identity, we have a 2-
isomorphism ϕ2 := c

∗
yσ : ι∗2φ

∗
23T23 ⇒ ι∗1φ

∗
12T12. We claim that we can choose

these 2-isomorphism such that

(20) ϕ1|0 = ϕ3|0 • ϕ2|0 and ϕ1|1 = ϕ3|1 • ϕ2|1.
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Indeed, the first equation can be used to re-define σ such that this first
equation is satisfied. Since ϕ2 = c

∗
yσ, we cannot repeat this for the second

equation, so that we first obtain an error, a number z ∈ U(1). We consider
the hermitian line bundle Lz over S1 with connection of holonomy z. Then
we replace T12 by T12 ⊗ Lz and repeat the whole construction by fixing a
new 2-isomorphism σ; then both equations in (20) are satisfied. Comparing
with the definition of the fusion product given in Section 4.1, we have that

[T23, z23]⊗ [T12, z12] 7→ [φ∗
23T23, z23]⊗ [φ∗

12T12, z12]

7→ [φ∗T , z12z23] 7→ [T , z12z23]

realizes the isomorphism λ′ on top of the diagram of (LBG3). The remain-
ing arrows of the diagram are labelled with the lifted path concatenation
and the fusion representation, which, by our choices of trivializations, are
just composition and scalar multiplication of linear maps, and the commu-
tativity of the diagram reduces to the trivial fact that z12z23 · (φ23 ◦ φ12) =
(z23φ23) ◦ (z12φ12). □

4.6. Lifted constant paths

We equip the vector bundle Rii with lifted constant paths. To that end,
we consider x ∈ Qi and choose a trivialization T : G|x → I0. We have
Rii|cx(c

∗
xT ) = End(∆(Ei|x, T )), and readily define ϵi(x) := id∆(Ei|x,T ).

Lemma 4.13. The assignment x 7→ ϵi(x) defines a smooth, parallel section
along c : Qi → Pii.

Proof. If T ′ is another trivialization of G|x, then there exists a 2-isomorphism
ψ : T ⇒ T ′ inducing the linear map rc∗xψ : Rii|cx(c

∗
xT

′) → Rii|cx(c
∗
xT ). We

have rc∗xψ(id∆(Ei|x,T ′)) = id∆(Ei|x,T ); this shows well-definedness. Next, we
show directly that ϵi : Qi → Rii is smooth. Let f : U → Qi be a plot of
Qi, i.e., a smooth map defined on an open subset U ⊆ Rn. We have to
show that c̃ := ϵi ◦ f : U → Rii is a plot. Note that c := π ◦ c̃ = c ◦ f , where
c : Qi → Pii is the assignment of constant paths, and c∨ : U × [0, 1] → Pii
is the map (u, t) 7→ cf(u)(t) = f(u). We choose an open subset W ⊆ U such
that there exists a trivialization T : f∗G|W → Iρ. Then we set T ′ := pr∗WT
for prW : [0, 1]×W →W , so that T ′ is a trivialization of (c∨)∗G. The rele-
vant vector bundle over W is

Hom(∆((ev0 ◦ c)
∗Ei, j

∗
0T

′),∆((ev1 ◦ c)
∗Ei, j

∗
1T

′)) = End(∆(f∗Ei, T )).
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We note that w 7→ τ(w) := id∆(f∗Ei,T )|w is a smooth section of this bundle
over W . By definition of the diffeology on Rii, we have that w 7→
[i∗wT

′, τ(w)] = [c∗wT , id∆(Ei|f(w),T |w)] = ϵi(f(w)) = c̃(w) is a plot, which was
to show.

If γ is a path in Qi, let T be a trivialization along γ, and consider the
trivialization S := pr∗2T over [0, 1]2. In particular, S is a trivialization along
the path t 7→ cγ(t) connecting cx with cy in Pii, and it has vanishing 2-form.
We let V := ∆(γ∗Ei, T ). Then, the parallel transport in Rii along cγ(−) is
just the parallel transport in End(V):

ptii|cγ(−)
: End(V)|0 → End(V)|1.

Since the section id into End(V) = V∗ ⊗ V is parallel, we have the claim. □

Lemma 4.14. Axiom (LBG4) is satisfied: ϵi provides units up to repa-
rameterization for χijk.

Proof. Let T0 be a trivialization of G along a path γ from x to y, and let φ :
[0, 1] → [0, 1] be a smooth map such that γ ◦ φ = γ ⋆ cx (this uses the sitting
instants of γ). Let h be a fixed-ends homotopy between id[0,1] and φ, and let
T := h∗T as well as T1 := T |{1}×[0,1] = φ∗T0. These are trivializations with
vanishing 2-forms and they agree on [0, 1]× {0, 1}, so that

dγ,γ⋆cx : Rij |γ(T0) → Rij |γ⋆cx(T1)

is the identity by definition of the connection ptij . Moreover,

χiij |cx,γ : Rij |γ(ι
∗
2T1)⊗ Rii|cx(ι

∗
1T1) → Rij |γ⋆cx(T1)

is the composition. Due to Remark 4.11 we have identities Rii|cx(ι
∗
1T1) =

Rii|cx(c
∗
0(T0|0)) and Rij |γ(ι

∗
2T1) = Rij |γ(T0). The first shows that ϵi(x) =

id ∈ Rii|cx(ι
∗
1T1). The second shows that Rij |γ(ι

∗
2φ

∗T ) = Rij |γ(T0), and to-
gether with the first we have

χiij |cx,γ(v, ϵi(x)) = dγ,γ⋆cx(v),

which is the first half of (LBG4). The second half is proved analogously. □

4.7. Lifted path reversal

We equip the vector bundle Rij with a lifted path reversal. Let γ ∈ Pij
with x := γ(0) and y := γ(1). We choose a trivialization T of γ∗G, and let
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T := rev
∗T , where rev : [0, 1] → [0, 1] is defined by rev(t) := 1− t. We have

Rji|γ(T ) = Hom(∆(Ej |y, T |0),∆(Ei|x, T |1))

= Hom(∆(Ej |y, T |1),∆(Ei|x, T |0)).

We define the lifted path reversal by forming the adjoint linear map with
respect to the given hermitian metrics,

αij |γ : Rij |γ(T ) → Rji|γ(T ) : φ 7→ φ∗.

Lemma 4.15. This defines a connection-preserving bundle morphism.

Proof. If T ′ is another trivialization we consider a 2-isomorphism ψ : T ⇒
T ′ and the corresponding canonical identification rψ(φ) = ψ1 ◦ φ ◦ ψ−1

0 , for
φ ∈ Rij |γ(T

′). Since ψ0 and ψ1 are isometric isomorphisms, we have

(rψ(φ))
∗ = (ψ1 ◦ φ ◦ ψ−1

0 )∗ = ψ0 ◦ φ
∗ ◦ ψ−1

1

= (rev∗ψ)∗1 ◦ φ
∗ ◦ (rev∗ψ)−1

0 = rrev∗ψ(φ
∗),

where rev
∗ψ : T → T ′. This shows the independence of the choice of the

trivialization.
In the following we consider a smooth map f :W → Pij , where W is a

smooth manifold, that admits a trivialization T : (f∨)∗G → Iρ defining the
vector bundles VT and WT overW . We consider the pointwise path reversal,
revW :W × [0, 1] →W × [0, 1] : (w, t) 7→ (w, 1− t). Then, T := rev

∗
WT is a

trivialization of G along f∨ ◦ revW . We have

VT = ∆((ev0 ◦ f
∨)∗Ei, j

∗
0T ) = ∆((ev1 ◦ f

∨ ◦R)∗Ei, j
∗
1T ) = WT ,

and similarly WT = VT . Now suppose f := c|W is the restriction of a
plot c : U → Pij to an open subset W ⊆ U , and we have a trivializa-
tion τ :W × Ck → Hom(VT ,WT ), inducing a local trivialization of Rij .
Taking the pointwise adjoint defines a local trivialization τ :W × Ck →
Hom(WT ,VT ) = Hom(VT ,WT ), inducing a local trivialization of Rji. Under
these local trivializations, αij is the identity, and hence smooth.

In order to see that αij is connection-preserving, we consider a path
Γ ∈ PPij and compare the parallel transport ptij |Γ with ptji|r̃ev◦Γ, where
˜rev : Pij → Pji : γ 7→ γ̄. We put f := Γ in the situation described above. It
is elementary to see that taking adjoints in the bundle of homomorphisms be-
tween hermitian vector bundles preserves induced connections. In the present
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case, we have a commutative diagram

Hom(VT ,WT )|0

pt

��

()∗
// Hom(WT ,VT )|0

pt

��

Hom(VT ,WT )|0

pt

��

Hom(VT ,WT )|1
()∗

// Hom(WT ,VT )|1 Hom(VT ,WT )|1

It remains to compare the integral of the 2-form ρ over Γ∨ with the integral
of rev

∗
Wρ over (r̃ev ◦ Γ)∨ = revW ◦ Γ∨. Since revW is orientation-reversing,

we get the opposite sign. In the definition of ptji|r̃ev◦Γ, the exponential of
this integral is considered as a scalar, which is multiplied with the parallel
transport in the Hom-bundle. Since we are concerned with the complex
conjugate vector bundle Rji, the product has again the correct sign. This
shows that the diagram

Rij |Γ(0)(T0)

ptij |Γ

��

αij
// Rji|Γ(0)(T 0)

ptji|r̃ev◦Γ

��

Rij |Γ(1)(T1) αij
// Rji|Γ(1)(T 1)

is commutative; hence, αij is connection-preserving. □

Lemma 4.16. Axiom (LBG5) is satisfied: lifted path reversal is compatible
with the metrics.

Proof. As in the proofs of Lemmas 4.10 and 4.14, the endomorphisms
dcx,γ⋆γ(ϵi(x)) and dcx,γ⋆γ(ϵj(x)) are identities, and the remaining equality
is the obvious identity

tr((ψ∗ ◦ κ)∗ ◦ id) = tr(κ∗ ◦ ψ) = tr(id ◦ ψ ◦ κ∗)

for traces and adjoints of endomorphisms ψ, κ of a finite-dimensional com-
plex inner product space. □

Axioms (LBG6), (LBG7) and (LBG8) are obvious identities for ad-
joints of linear operators. The last two axioms are again more involved.

Lemma 4.17. Axiom (LBG9) is satisfied: lifted path reversal is compatible
with the fusion representation.

Proof. We consider (γ1, γ2) ∈ Pij ×Qi×Qj Pij , the corresponding loop τ :=
γ1 ∪ γ2, and a trivialization T : τ∗G → I0. In the diagram of (LBG9), the
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clockwise composition

L|τ ⊗ Rij |γ2(ι
∗
2T )

ϕij
// Rij |γ1(ι

∗
1T )

αij
// Rji|γ1(ι

∗
1T )

sends [T , z]⊗ φ to z · φ∗. For the counter-clockwise direction, we let rotπ :
S1 → S1 denote the rotation by an angle of π. Then, the map d : L|γ2∪γ1 →
L|γ1∪γ2 is given by [T , z] 7→ [rot∗πT , z], see [Wal16, Lemma 4.3.6]. We have
to compose this with the isomorphism λ̃ of (2), which was computed in
Section 4.1, see Remark 4.1. Thus, the map

L|τ ⊗ Rij |γ2(ι
∗
2T )

λ̃⊗αij
// L|γ2∪γ1 ⊗ Rji|γ2(ι

∗
2T )

d⊗id
// L|γ1∪γ2 ⊗ Rji|γ2(ι

∗
2T )

is given by [T , z]⊗ φ 7→ [rev∗T , z]⊗ φ∗ 7→ [T ′, z]⊗ φ∗, where T ′ :=
rot

∗
πrev

∗T . In order to obtain the counter-clockwise composition, it remains
to compose the with fusion representation. We observe that ι∗2T

′ = ι∗2T and
ι∗1T

′ = ι∗1T ; hence, the fusion representation results in ϕji([T
′, z]⊗ φ∗) =

z · φ∗ ∈ Rji|γ1(ι
∗
1T ). This shows that the diagram of (LBG9) is commuta-

tive. □

Lemma 4.18. The Cardy condition (LBG10) is satisfied.

Proof. As in the proofs of Lemmas 4.10 and 4.14, the endomorphism
dcy,γ⋆cx⋆γ(ϵj(y)) is the identity. The remaining equality is the identity

n∑

k=1

φk ◦ φ ◦ φ∗
k = tr(φ) · id,

where (φ1, ..., φn) is an orthonormal basis of Rij |γ(T ) with respect to the
metric defined in Section 4.2. It is straightforward to check this identity, for
instance using elementary matrices. □

4.8. Functoriality of transgression

In Sections 4.1 to 4.7 we have defined our transgression functor on the level
of objects. Now we provide its definition on the level of morphisms: we
associate to a TBG 1-morphism (A, ψ) : (G, E) → (G′, E ′) a morphism (φ, ξ)
between the transgressed LBG objects.
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To start with, the transgression of U(1)-bundle gerbes is functorial
[Wal10]: from the isomorphism A : G → G′ we obtain an isomorphism φ :
L → L′, which over a loop τ ∈ LM is given by [T , z] 7→ [T ◦ τ∗A−1, z], for
T a trivialization of τ∗G. The isomorphism φ is connection-preserving and
fusion-preserving.

Next, we define a vector bundle isomorphism ξij : Rij → R′
ij for all i, j ∈

I, using the 2-isomorphisms ψi : Ei ⇒ E ′
i ◦ A|Qi . Let γ ∈ Pij be a path with

x := γ(0) and y := γ(1), let T : γ∗G → I0 be a trivialization, and let T ′ :=
T ◦ γ∗A−1. We consider vector bundle isomorphisms

ψi,0 : ∆(Ei|x, T |0) → ∆(E ′
i|x, T

′|0) and

ψi,1 : ∆(Ej |y, T |1) → ∆(E ′
j |y, T

′|1)

defined as follows. The bicategory Grb∇(M) provides a 2-isomorphism
δ : A−1 ◦ A ⇒ id, which induces a 2-isomorphism id ◦ δ−1 : T ⇒ T ′ ◦ γ∗A.
Now, ψi,0 is the composite

∆(Ei|x, T |0)
∆(ψi,id)

// ∆(E ′
i|x ◦ A|x, T |0)

∆(id,id◦δ−1)
// ∆(E ′

i|x ◦ A|x, T |′0 ◦ A|x)
∆A|x// ∆(E ′

i|x, T
′|0),

where ∆A|x is defined in Remark 2.1 (c). ψi,1 is defined analogously. We have

Rij |γ(T ) = Hom(∆(Ei|x, T |0),∆(Ej |y, T |1))

R
′
ij |γ(T

′) = Hom(∆(E ′
i|x, T

′|0),∆(E ′
j |y, T

′|1)),

and we finally define

ξij : Rij |γ(T ) → R
′
ij |γ(T

′) : φ 7→ ψi,1 ◦ φ ◦ ψ−1
i,0 .

Lemma 4.19. This defines a connection-preserving bundle isomorphism,
which depends only on the 2-isomorphism class of (A, ψ).

Proof. Independence of the choice of T is routine. For the smoothness,
we consider a plot c : U → Pij , an open subset W ⊆ U , a trivialization
T : (c|∨W )∗G → Iρ, and a bundle isomorphism τ :W × Cn → Hom(VT ,WT )
over W , so that we have a local trivialization ϕ of Rij . We set T ′ :=
T ◦ (c|∨W )∗A−1 and obtain bundle isomorphisms ψi,0 : VT → VT ′ and ψi,1 :
WT → WT ′ over W from exactly the same definition as above. Then we ob-
tain a local trivialization of R′

ij using T ′ and τ ′(w, v) := ψi,1 ◦ τ(w, v) ◦ ψ
−1
i,0
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for w ∈W and v ∈ Cn; in these local trivializations the map ξij is the iden-
tity, and hence smooth.

If Γ : [0, 1] → Pij is a path, we choose a trivialization T : (Γ∨)∗G → Iρ.
Then, the trivialization T ′ := T ◦ (Γ∨)∗A−1 has the same 2-form ρ. Since
the isomorphisms ψi,0 and ψi,1 over [0, 1] are connection-preserving, the
induced isomorphism between Hom-bundles is connection-preserving, too.
This shows that ξij preserves connections.

We consider a 2-isomorphism φ between (A, ψ) and (A′, ψ′) and the
corresponding vector bundle isomorphisms ξij and ξ

′
ij . For a path γ ∈ Pij , let

T : (γ∨)∗G → I0 be a trivialization, T
′ := T ◦ γ∗A−1 and T ′′ := T ◦ γ∗A′−1.

From the 2-isomorphism φ : A ⇒ A′ we construct another 2-isomorphism
η := id ◦ γ∗φ# : T ′ ⇒ T ′′, where φ# : A−1 ⇒ A′−1 denotes the inverse with
respect to horizontal composition. We consider the following diagram of
linear maps:

∆(E ′
i|x ◦ A|x, T |0)

∆(id◦φ,id)

��

∆(id,id◦δ−1
A )

// ∆(E ′
i|x ◦ A|x, T

′|0 ◦ A|x)

∆(id◦φ,η|0◦φ)

��

∆A|x // ∆(E ′
i|x, T

′|0)

∆(id,η|0)

��

∆(Ei|x, T |0)

∆(ψ′
i,id) ))

∆(ψi,id)
55

∆(E ′
i|x ◦ A

′|x, T |0)
∆(id,id◦δ−1

A′ )
// ∆(E ′

i|x ◦ A|′x, T
′′|0 ◦ A

′|x)
∆A|y

// ∆(E ′
i|x, T

′′|0)

The diagram is commutative: the triangular diagram on the left commutes
due to the condition for TBG 2-isomorphisms, ψ′

i = (id ◦ φ) • ψi. The dia-
gram in the middle commutes because the 2-isomorphism δA : A−1 ◦ A ⇒ id
is natural with respect to 2-morphisms, and the diagram on the right-
hand side commutes by definition of ∆A|x . The diagram gives the equation
ψ′
i,0 = ∆(id, η|0) ◦ ψi,0. Analogously, we have ψ′

i,1 = ∆(id, η|1) ◦ ψi,1. Thus,
for Rij |γ(T ) we have:

ξ′ij(φ) = ψ′
i,1 ◦ φ ◦ ψ′−1

i,0 = ∆(id, η|0) ◦ ψi,0 ◦ φ ◦ ψ−1
i,1 ◦∆(id, η|1)

−1

= ∆(id, η|0) ◦ ξij(φ) ◦∆(id, η|1)
−1 = rη(ξij(φ)).

This shows that ξij = ξ′ij . □

The following lemma is a straightforward check, only using the defini-
tions; its proof is left out for brevity.

Lemma 4.20. The bundle isomorphism ξij intertwines the fusion represen-
tations, and respects the lifted path composition, lifted constant paths, and
lifted path reversal. □
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Thus, the pair (φ, ξ), with ξ = {ξij}i,j∈I is a morphism in LBG(M,Q),
and we call it the transgression of the 1-morphism (A, ψ). It is again straight-
forward to show that the assignment (A, ψ) 7→ (φ, ξ) preserves identities and
the composition, so that we have the following:

Proposition 4.21. Transgression is a functor T : TBG(M,Q) →
LBG(M,Q). □

4.9. Transgression of a trivial bundle gerbe, and reduction

to the point

We analyze the transgression of TBG with a trivial bundle gerbe, i.e. G =
Iρ. We note that the bundle gerbe modules Ei are nothing but ordinary
hermitian vector bundles Ei with connections over Qi, and the 2-forms ωi
are determined by

ωi = ρ+
1

rk(Ei)
tr(curv(Ei)).

Under transgression, we obtain the following. The line bundle is L = CρLM ,
the trivial line bundle equipped with the connection 1-form ρLM :=

∫
S1 ev

∗ρ,
and the fusion product is just multiplication in the fibers [Wal11, Lemma
3.6]. Concerning the vector bundles Rij , we claim that we have a canonical,
connection-preserving, unitary bundle isomorphism

(21) Rij
∼= Hom(ev∗0Ei, ev

∗
1Ej)⊗ CρPM

over Pij , where ρPM :=
∫
[0,1] ev

∗ρ. Thus, Rij is globally a bundle of homo-
morphisms between two vector bundles.

The isomorphism (21) is defined in the following way. We consider
a path γ ∈ Pij from x ∈ Qi to y ∈ Qj and the trivialization T := idI0

of γ∗G = γ∗Iρ = I0. Then, ∆(Ei|x, T |0) = Ei|x and ∆(Ej |y, T |1) = Ej |y, so
that Rij |γ(idI0

) = Hom(Ei|x, Ej |y). It is straightforward to see that this
defines a smooth bundle morphism (21). Concerning the connection, let
Γ : [0, 1] → Pij be a path. Considering the trivialization T := idI(Γ∨)∗ρ

of
(Γ∨)∗Iρ, we obtain VT = (ev0 ◦ Γ)

∗Ei and WT = (ev1 ◦ Γ)
∗Ej . Now, the pa-

rallel transport in Rij is

ptij |Γ : Rij |Γ(0)(idI0
) → Rij |Γ(1)(idI0

) : φ 7→ exp

(∫

[0,1]2
(Γ∨)∗ρ

)
· pt(φ).

This is precisely the parallel transport in the vector bundle
Hom(ev∗0Ei, ev

∗
1Ej)⊗ CρPM .
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The fusion representation is trivial. The lifted path concatenation is the
composition, under the isomorphisms (21), which is connection-preserving
because ⋆∗ρPM = pr∗jkρPM + pr∗ijρPM on Pjk ×Qj Pij . The lifted constant
path ϵi is the identity section, and the lifted path reversal is given by taking
adjoint homomorphisms.

Finally, we consider the yet more trivial case of a target space (M,Q)
withM = {∗} and Q = {∗}i∈I . The bundle gerbe G is trivial, as before, while
the twisted vector bundles Ei give just a family {Ei}i∈I of finite-dimensional
hermitian vector spaces. In other words,

TBGI := h1TBG(∗, {∗}i∈I) =
∐

i∈I

HVectfin − .

Transgression to the category LBG(I) described in Lemma 3.14 takes a fam-
ily {Ei}i∈I to the object (L, λ,R, ϕ, χ, ϵ, α) with L := C, λ := id, Rij :=
Hom(Ei, Ej), ϕ := id, χijk := ◦, ϵi := idEi , αij = ()∗.

5. Regression

In this section we construct our regression functor Ri0,x0,F0
: LBG(M,Q) →

TBG(M,Q), depending on three parameters as explained below. We con-
sider a LBG object (L, λ,R, ϕ, χ, ϵ, α).

We first treat the line bundle L with its superficial connection and
the fusion product λ. The regression of (L, λ) is discussed in [Wal16]. It
requires the choice of a base point x0 ∈M . The regressed bundle gerbe
G := Rx0

(L, λ) has the subduction (the diffeological analogue of a surjective
submersion) ev1 : Px0

M →M , where Px0
M := {γ ∈ PM | γ(0) = x0}. The

2-fold fiber product is equipped with the smooth map ∪ : Px0
M [2] → LM ,

and the hermitian line bundle of G is ∪∗L. The bundle gerbe product is the
restriction of the fusion product λ to Px0

M [3].
In the presence of branes, we need to choose a brane index i0 ∈ I such

that x0 ∈ Qi0 . Over x0 we have the simple algebra A0 := Ai0 |x0
(Corol-

lary 3.19), which is isomorphic to a Matrix algebra Cn0×n0 , where n0 =√
rk(Ri0i0) = ∥ϵi0(x0)∥

2 by Remark 2.6 (a). Thus, there exists an irreducible
n0-dimensional left A0-module F0, which we fix, too. In the following we con-
sider A0 and F0 as bundles of algebras and left A0-modules over the point
x0, respectively.

For i ∈ I we consider the subspace Pi := {γ ∈ Pi0i | γ(0) = x0} ⊆ Px0
M ,

over which we find the bundle Ri0i of ev∗1Ai-ev
∗
0A0-bimodules (Proposi-

tion 3.8). Tensoring over A0 with the bundle ev∗0F0 of left ev
∗
0A0-modules, we
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obtain a bundle Ei := Ri0i ⊗ev∗
0A0

ev∗0F0 of left ev∗1Ai-modules over Pi. We
forget the left ev∗1Ai-action and consider Ei as a hermitian vector bundle.
For later purpose, we note the following result.

Lemma 5.1. We have rk(Ei) =
√

rk(Rii) for all i ∈ I.

Proof. By Corollary 3.11, Ri0i|γ establishes, for any γ ∈ Pij with γ(1) =: x,
a Morita equivalence between A0 and Ai|x. The module Ei|γ is the image of
F0 under the corresponding functor between representation categories. Irre-
ducibility is preserved under Morita equivalence; hence, Ei|γ is an irreducible
module of the algebra Ai|x, which is a simple algebra (Corollary 3.19) and
has dimension rk(Rii) (Remark 2.6 (a)). Matrix algebras have only one ir-
reducible module up to isomorphism, namely the standard one; thus it has
dimension

√
rk(Rii). □

As bundles over a point, F0 and A0 are equipped with trivial connec-
tions, for which the module action F0 ⊗A0 → F0 is connection-preserving.
Since the right module action Ri0i ⊗ ev∗0A0 → Ri0i is connection-preserving
(Lemma 3.7), it follows that Ei comes equipped with a connection, see Re-
mark A.18.

The fusion representation ϕ induces a connection-preserving, unitary
bundle isomorphism

ζi : ∪
∗
L⊗ pr∗2Ei → pr∗1Ei.

over P
[2]
i ; explicitly, it is induced by

∪∗L⊗ pr∗2Ri0i ⊗ ev∗0F0
ρi0i⊗id

// pr∗1Ri0i ⊗ ev∗0F0.

Since the fusion representation intertwines the algebra actions
(Lemma 3.13), this is well-defined under taking the quotient by the
ev∗0A0-action. The compatibility between fusion representation and the
fusion product (LBG1) ensures that the bundle isomorphism ζi satisfies
the condition for making Ei := (Ei, ζi) a G|Qi-module. This completes the
definition of our regression functor on the level of objects.

Next, we consider an LBG morphism (φ, ξ) between LBG objects
(L, λ,R, ϕ, χ, ϵ, α) and (L′, λ′,R′, ϕ′, χ′, ϵ′, α′). The regression of φ : L → L′

to a 1-morphism A : G → G′ in Grb∇(M) is discussed in [Wal16]; it is a “re-
finement” consisting simply of the bundle morphism ∪∗φ : ∪∗L → ∪∗L′. The
bundle isomorphisms ξij : Rij → R′

ij induce in the obvious way isomorphisms
of the corresponding bundles of algebras and bimodules. In particular, we
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obtain an algebra isomorphism ξ0 : A0 → A′
0. Again, since the modules F0

and F′
0 are irreducible modules over isomorphic matrix algebras, they must

be isomorphic, and we can choose an intertwiner f0 : F0 → F′
0. Then, the

bundle isomorphism

ξi0i ⊗ ev∗0f0 : Ri0i ⊗ ev∗0F0 → R
′
i0i ⊗ ev∗0F0

induces a connection-preserving, unitary bundle isomorphism ψ̃i : Ei → E′
i,

since ξi0i and f0 intertwine the A0 and A′
0 actions. The diagram

(22)

∪∗
L⊗ pr∗2Ei

∪∗φ⊗pr∗2 ψ̃i

��

ϵi // pr∗1Ei

pr∗1 ψ̃i

��

∪∗
L

′ ⊗ pr∗2E
′
i

ϵ′i

// pr∗1E
′
i

is commutative, because ξi0i commutes with the fusion representation. This
means that ψ̃i gives rise to a 2-isomorphism ψi : Ei ⇒ E ′

i ◦ A. Thus, forming
the collection ψ = {ψi}i∈I , the pair (A, ψ) is a TBG 1-morphism. It depends
on the (non-canonical) choice of the intertwiner f0; however, we have the
following.

Lemma 5.2. The 2-isomorphism class of (A, ψ) is independent of the choice
of f0.

Proof. If f0 and f
′
0 are two choices, then, by Schur’s lemma and because both

respect hermitian metrics, they differ by a number z ∈ U(1), say f ′0 = f0 · z.
This number determines a 2-isomorphism φ̃ : A ⇒ A, by inducing it via the
automorphism z · id of ∪∗L′. Let ψ̃i and ψ̃

′
i be the vector bundle morphisms

determined by f0 and f ′0, respectively, so that ψ̃′
i = ψ̃i · z. Then, we have

ψ′
i = (idE ′

i
◦ φ̃) • ψi; this shows that φ̃ is the required 2-isomorphism. □

We have thus provided the data for our regression functor Ri0,x0,F0
. The

fact that it preserves the composition is easy to see by choosing, for the
composed morphism, the composition of the intertwiners f0 of the separate
morphisms.

Remark 5.3. Up to canonical natural isomorphism, the regression functor is
independent of all choices. This can be seen either manually, or it can be
deduced from Theorem 1, which says that it is inverse to one fixed functor,
the transgression functor.
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6. Equivalence of target space and loop space perspectives

In this section we prove our main results: Theorem 2 (b) in Section 6.1, and
Theorem 1 in Sections 6.2 and 6.3. Throughout this section, we fix a target
space (M,Q), with Q = {Qi}i∈I .

6.1. Coincidence of the algebra bundles

We recall that TBG and LBG independently induce algebra bundles over
the branes (Remark 2.2 and Section 3.1). We show that they coincide under
transgression and regression.

We start with a TBG object (G, E). Let Rij be the transgressed vector
bundle over Pij , and let Ai = c

∗Rii be the induced algebra bundle over
Qi. We let π : Y →M be the surjective submersion of the bundle gerbe G.
For a point y ∈ Y with x := π(y) ∈ Qi, we denote by Ty the corresponding
trivialization of G|x, see Remark 2.4. Applying that remark to s = cy as a
section of π : Y →M along {x} →M , we obtain a canonical vector bundle
isomorphism φy : ∆(Ei|x, Ty) → Ei|y. It is straightforward to see that

ψy : End(Ei)|y → Ai|x : φ 7→ (c∗xTy, φ
−1
y ◦ φ ◦ φy)

induces a smooth, connection-preserving vector bundle isomorphism ψ :
End(Ei) → π∗Ai over π

−1(Qi) that preserves the fiber-wise algebra struc-
tures. If y′ ∈ Y is another point with π(y′) = x, we choose ℓ ∈ L|y,y′ and
obtain a 2-isomorphism ψ : Ty ⇒ Ty′ in such a way that the diagram

(23)

∆(Ei|x, Ty′)

∆(ψ,id)

��

φy′
// Ei|y′

ζi(ℓ⊗−)

��

∆(Ei|x, Ty) φy
// Ei|y.

is commutative (see again Remark 2.4). By (23), the bundle morphism

(24) pr∗1ψ
−1 ◦ pr∗2ψ : pr∗2End(Ei) → pr∗1End(Ei)

over Y [2] is given at (y, y′) by φ 7→ ζi(ℓ⊗−) ◦ φ ◦ ζi(ℓ⊗−)−1. One can check
that this is independent of ℓ; in fact, under the isomorphism End(Ei) =
E∗
i ⊗ Ei, it is precisely the descent isomorphism ζ̃i that defines the bundle

End(Ei). This proves that ψ descends to an isomorphism End(Ei) ∼= Ai of
algebra bundles over Qi.
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Now, consider an LBG object (L, λ,R, ϕ, χ, ϵ, α), and the correspond-
ing regression (G, E). We recall from Section 5 that Ei = Ri0i ⊗ev∗

0A0
ev∗0F0,

which is a bundle of left ev∗1Ai-modules over Pi. In particular, we have a
homomorphism of algebra bundles

ev∗1Ai → End(Ei).

We remark that Ei is the composition of two Morita equivalences: Ri0i is a
Morita equivalence by Corollary 3.11, and, since it is an irreducible module,
F0 is a Morita equivalence between A0 and C. Hence, Ei is a Morita equiv-
alence; in particular it is faithfully balanced, which implies that the above
map is an isomorphism. The bundle of algebras End(Ei) of TBG is now
obtained via descent of End(Ei) along the path evaluation ev1 : Pi → Qi.
Using that the bundle morphism ζi is defined from the fusion representation
(see Section 5) and that the fusion representation commutes with the action
of Ai (Lemma 3.13) one can show that the diagram

ev∗
1Ai

yy %%

pr∗2End(Ei)
ζ̃i

// pr∗1End(Ei)

is commutative. Thus, we obtain an algebra bundle isomorphism Ai
∼=

End(Ei).

6.2. Regression after Transgression

In this section we provide a natural isomorphism Ri0,x0,F0
◦ T ∼=

idTBG(M,Q), contributing one half of the equivalence TBG(M,Q) ∼=
LBG(M,Q). Thus, we construct for each TBG object (G, E) a 1-morphism
(A, ψ) : (Ri0,x0,F0

◦ T )(G, E) → (G, E), and show that this is natural with
respect to TBG morphisms.

We consider a TBG object (G, E), form the transgressed LBG object
(L, λ,R, ϕ, χ, ϵ, α), and consider the regressed bundle gerbe Rx0

(L, λ). The
bundle gerbe G consists of a surjective submersion π : Y →M , a hermitian
line bundle P over Y [2], and a bundle gerbe product µ. A 1-isomorphism
A : Rx0

(L, λ) → G was constructed in [Wal16, Lemma 6.1.1] over the fiber
product Z := Px0

M ×M Y . We review and slightly reformulate its construc-
tion in the following. The 1-isomorphism A consists of a hermitian line
bundle K with connection over Z. Its construction involves the choice of a
point y0 ∈ Y with π(y0) = x0. Let T : γ∗G → I0 be a trivialization of G along
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γ ∈ Px0
M , consisting of a hermitian line bundle T over Yγ := [0, 1] ×γ π Y

and a bundle isomorphism τ over Y
[2]
γ . We define the complex inner product

space

(25) K|γ,y(T ) := T |(0,y0) ⊗ T |∗(1,y).

If ψ : T ⇒ T ′ is a 2-isomorphism in Grb∇([0, 1]), then it is given by a bundle
isomorphism ψ : T → T ′ over Yγ , and hence induces an obvious isomorphism
K|γ,y(T ) ∼= K|γ,y(T

′). We let K|γ,y be the set of equivalence classes of pairs
(T , s⊗ σ) with a trivialization T and s⊗ σ ∈ K|γ,y(T ).

The disjoint union of all these fibers define the total space of K. It can
be equipped with a diffeology such that it becomes a hermitian line bundle.
Further, one can define a connection on K in a canonical way. It remains to
provide the bundle isomorphism over Z [2] which is part of the 1-isomorphism
A. Here,

κ|(γ1,y1),(γ2,y2) : Lγ1∪γ2 ⊗K|γ2,y2 → K|γ1,y1 ⊗ Py1,y2

is defined as follows. We choose a trivialization T : (γ1 ∪ γ2)
∗G → I0 and

consider the induced trivializations T1 : γ
∗
1G → I0 and T2 : γ

∗
2G → I0. Let τ

be the bundle isomorphism of the trivialization T . We define for s0 ∈ T |(0,y0)
and σ ∈ T |∗(1,y2):

κ|(γ1,y1),(γ2,y2)((T , z)⊗ (T2, s0 ⊗ σ))

:= z · (T1, s0 ⊗ τ tr−1|(1,y1),(1,y2)(σ)) ∈ K|γ1,y1(T1)⊗ Py1,y2 .

It is proved in [Wal16, Lemmata 6.1.1 & 6.1.3] that κ defines a connection-
preserving unitary bundle isomorphism. This finishes the definition of the
1-isomorphism A : Rx0

(L, λ) → G.
Next, we construct, for each brane index i ∈ I, a 2-isomorphism φi :

Ei ◦ A|Qi ⇒ E ′
i, where E

′
i is the regressed bundle gerbe module. The inverses

φ := {φ−1
i }i∈I will then complete A into a TBG morphism (A, φ). We set

Zi := Z|Qi and Ki := K|Zi . The 2-isomorphism φi consists of a bundle iso-
morphism φi : Ki ⊗ pr∗1Ei → pr∗2E

′
i over Zi, where E

′
i is the vector bundle

of the regressed module E ′
i. Over a point (y, γ) ∈ Zi with π(y) = γ(1) ∈ Qi

and γ(0) = x0, this is an isomorphism

(26) φi|y,γ : Ki|y,γ ⊗ Ei|y → Ri0i|γ ⊗A0
F0.

Here, A0 = Ri0i0 |cx0 is the fiber of the algebra bundle Ai0 = c
∗Ri0i0 over

Qi0 over the point x0. In order to define φi|y,γ , we make two observations.



✐

✐

“1-Bunk” — 2022/6/9 — 18:43 — page 1163 — #69
✐

✐

✐

✐

✐

✐

Transgression of D-branes 1163

The first is the algebra isomorphism φy0 : End(Ei0)|y0 → A0 constructed in
Section 6.1, that allows us to choose F0 = Ei0 |y0 in the definition of the
regression functor. The second observation is the following: the chosen lifts
y0 of x0 = γ(0) and y of γ(1) yield a vector space isomorphism

(27) Ri0i|γ(T ) = Hom(∆(Ei0 |x0
, T |0),∆(Ei|γ(1), T |1))

δy0,y // Hom(T |∗(0,y0) ⊗ Ei0 |y0 , T |
∗
(1,y) ⊗ Ei|y)

∼= Ei0 |
∗
y0 ⊗ T |(0,y0) ⊗ T |∗(1,y) ⊗ Ei|y.

for any trivialization T : γ∗G → I0, where δy0,y is obtained from the isomor-
phisms ∆(Ei0 |x0

, T |0) ∼= T |∗(0,y0) ⊗ Ei0 |y0 and ∆(Ei|γ(1), T |1) ∼= T |∗(1,y) ⊗ Ei|y
that result from the definition of ∆ via descent. For another point y′ ∈ Y
with π(y) = γ(1), the two isomorphisms δy0,y and δy0,y′ are related by the
descent isomorphism
(28)

T ∗|(1,y′) ⊗ Ei|y′ ∼= T ∗|(1,y′) ⊗ P ∗
y,y′ ⊗ Py,y′ ⊗ Ei|y′

τ tr−1⊗ζi
// T ∗|(1,y) ⊗ Ei|y

that produces ∆(Ei|γ(1), T |1). Now we are ready to give the definition of the
isomorphism φi|y,γ of (26). We consider the linear map

T |(0,y0) ⊗ T |∗(1,y) ⊗ Ei|y → Ei0 |
∗
y0 ⊗ T |(0,y0) ⊗ T |∗(1,y) ⊗ Ei|y ⊗ Ei0 |y0

induced by the counit C → E∗ ⊗ E of the vector space E = Ei0 |y0 . The
vector space on the left-hand side is isomorphic to Ki|y,γ(T )⊗ Ei|y, and
the vector space on the right-hand side is isomorphic to Ri0i|γ(T )⊗ Ei0 |y0
via δ−1

y0,y ⊗ id. Composed with the projection to the quotient Ri0i|γ(T )⊗
Ei0 |y0 → Ri0i|γ(T )⊗A0

Ei0 |y0 , it becomes an isomorphism, and this is the de-
finition of φi|y,γ . It is straightforward to check that this definition is compat-
ible with a change of the trivialization, smooth, and connection-preserving.

Lemma 6.1. For all i ∈ I, the bundle isomorphism φi induces a 2-
isomorphism φi : Ei ◦ A|Qi ⇒ E ′

i, i.e., the diagram

L|γ1∪γ2 ⊗Ki|y2,γ2 ⊗ Ei|y2

id⊗φi

��

κ⊗id
// Ki|γ1,y1 ⊗ Py1,y2 ⊗ Ei|y2

id⊗ζi
// Ki|y1,γ1 ⊗ Ei|y1

φi

��

L|γ1∪γ2 ⊗ E′
i|γ2 ζ′i

// E′
i|γ1

is commutative for any point ((y1, γ1), (y2, γ2)) ∈ Z
[2]
i .
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Proof. Choosing a trivialization T of G along γ1 ∪ γ2, we obtain an isomor-
phism Lγ1∪γ2

∼= C. Substituting the definitions ζ ′i (via the fusion represen-
tation), of Ki, and of and φi (on the left using δy0,y2 and on the right using
δy0,y1) and using (28), the diagram can be reduced to

T |(0,y0) ⊗ T |∗(1,y1) ⊗ Py1,y2 ⊗ Ei|y2

id⊗ζi

##

T |(0,y0) ⊗ T |∗(1,y2) ⊗ Ei|y2

κ|L=C⊗id

;;

##

T |(0,y0) ⊗ T |∗(1,y1) ⊗ Ei|y1

T |(0,y0) ⊗ T ∗|(1,y2) ⊗ P ∗
y1,y2 ⊗ Py1,y2 ⊗ Ei|y2

id⊗τtr−1⊗ζi

;;

.

Consulting the definitions, we observe that this diagram is commutative. □

So far we have constructed a TBG 1-isomorphism (A, φ) : (G′, E ′
i) →

(G, E) for every TBG object (G, E). With the following lemma we show that
this assignment is natural with respect to TBG morphisms, and hence results
in a natural isomorphism.

Lemma 6.2. Let (A, ψ) : (G1, E1) → (G2, E2) be a TBG 1-morphism. For
a = 1, 2, let (G′

a, E
′
a) be the TBG objects obtained by transgressing and then

regressing (Ga, Ea), and let (Aa, φa) be the corresponding 1-isomorphisms
constructed above. Further, let (A′, ψ′) be obtained by transgressing and re-
gressing (A, ψ). Then, there exists a 2-isomorphism

(G′
1, E

′
1)

(A1,φ1)

��

(A′,ψ′)
// (G′

2, E
′
2)

ϕ

v~
(A2,φ2)

��

(G1, E1)
(A,ψ)

// (G2, E2)

in the bicategory TBG(M,Q). In other words, the diagram

(G′
1, E

′
1)

(A1,φ1)

��

(A′,ψ′)
// (G′

2, E
′
2)

(A2,φ2)

��

(G1, E1)
(A,ψ)

// (G2, E2).

is commutative in h1(TBG(M,Q)).

Proof. The 2-isomorphism ϕ itself is already part of the naturality of ordi-
nary bundle gerbe transgression and has been constructed in [Wal16, Lemma
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6.1.4]. It remains to show that it is compatible with the 2-isomorphisms of
the TBG morphisms. This is equivalent to the commutativity of the follow-
ing pentagon diagram:

E2,i ◦ A2 ◦ A
′

ck
φ2,i◦idid◦ϕ

s{
E2,i ◦ A ◦ A1X`

ψi◦id

E ′
2,i ◦ A

′

=E

ψ′
i

E1,i ◦ A1
ks

φ1,i
E ′
1,i

We translate this further into a diagram of the bundle isomorphisms under-
lying these 2-isomorphisms. Let Q be the vector bundle of the 1-isomorphism
A : G1 → G2, defined over the fibre product Y1 ×M Y2 of the surjective sub-
mersions of the two bundle gerbes. Further, we recall that A′ : G′

1 → G′
2 is the

1-isomorphism induced by the identity map on Px0
M and the bundle isomor-

phism φ : L1 → L2 : [T , z] 7→ [T ◦ A−1, z]. Thus, its hermitian line bundle
is L2. In the following we work over a point (y1, y2, γ1, γ2) ∈ Y1 ×M Y2 ×M

Px0
M [2], over which our diagram becomes the following diagram of linear

maps:

L2|γ1∪γ2 ⊗K2|y2,γ2 ⊗ E2,i|y2hh

id⊗φ2,iϕ⊗id

vv
K1|y1,γ1 ⊗Qy1,y2 ⊗ E2,i|y2WW

id⊗ψi

L2|γ1∪γ2 ⊗ E′
2,i|γ2

AA

ψ′
i

K1|y1,γ1 ⊗ E1,i|y1 oo
φ1,i

E′
1,i|γ1

For further elaboration, we choose a trivialization T1 of G1 along γ1 ∪ γ2, and
consider its two halves ι∗1T1 and ι

∗
2T1, as well as the composite T2 := T1 ◦ A

−1

and its two halves ι∗1T2 and ι∗2T2. Then, using (25), we are able to express
the line bundles K1 and K2 in terms of the line bundles T1 of T1 and the
line bundle Q, and we can express using (27) and the points y1, y2 the vector
bundle E′

1,i and E2,i in terms of E1,i, E2,i, T1, and Q. The main point now is
to compute the 2-isomorphism ψ′

i : E
′
1,i ⇒ E ′

2,i ◦ A
′, defined as the regression

of the isomorphism (φ, ξ), which in turn is the transgression of (A, ψ). For
the regression we only need

ξi0i : R1,i0i|γ1(ι
∗
1T1) → R2,i0i|γ1(ι

∗
1T2),
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which is – under the above isomorphisms – determined by ψi via

E1,i0 |
∗
y1,0 ⊗ T1|(0,y1,0) ⊗ T1|

∗
(1,y1)

⊗ E1,i|y1
ψtr−1
i0

⊗id⊗id⊗ψi
//

E2,i0 |
∗
y2,0 ⊗Q∗

y1,0,y2,0 ⊗ T1|(0,y1,0) ⊗ T1|
∗
(1,y1)

⊗Qy1,y2 ⊗ E2,i|y2 .

For the subsequent regression of ξi0i we need to fix an intertwiner f0 :
E1,i0 |y1,0 → E2,i0 |y2,0 , see Section 5. Then – under our isomorphisms – the
bundle isomorphism ψ′

i : E
′
1,i|γ1 → L2|γ1∪γ2 ⊗ E′

2,i|γ2 becomes a map

E1,i0 |
∗
y1,0 ⊗ T1|(0,y1,0) ⊗ T1|

∗
(1,y1)

⊗ E1,i|y1 ⊗ E1,i0 |y1,0

→ L2|γ1∪γ2 ⊗ E2,i0 |
∗
y2,0 ⊗Q∗

y1,0,y2,0

⊗ T1|(0,y1,0) ⊗ T1|
∗
(1,y1)

⊗Qy1,y2 ⊗ E2,i|y2 ⊗ E2,i0 |y2,0

given by

ω ⊗ s⊗ σ ⊗ v ⊗ v0 7→ [T2, 1]⊗ ψtr−1
i0

(ω)⊗ s⊗ σ ⊗ ψi(v)⊗ f0(v0).

In the following we will use a specific intertwiner f0, obtained by choosing
an element χ0 ∈ Q∗|y1,0,y2,0 and setting f0 := (χ0 ⊗ id) ◦ ψi0 |y1,0,y2,0 .

Finally, we recall the definition of the 2-isomorphism ϕ from [Wal16,
Lemma 6.1.4]. Its bundle morphism

ϕ : L2|γ1∪γ2 ⊗Q∗
y1,0,y2,0 ⊗ T1|(0,y1,0) ⊗ T1|

∗
(1,y1)

⊗Qy1,y2

→ T1|(0,y1,0) ⊗ T1|(1,y1) ⊗Qy1,y2

is determined so that it sends [T2, 1]⊗ χ0 ⊗ s⊗ σ ⊗ q to s⊗ σ ⊗ q, where
χ0 is the element fixed above. We can now prove the commutativity of the
pentagon diagram. The counter-clockwise composition acts as

ω ⊗ s⊗ σ ⊗ v ⊗ v0 7→ ω0(f0(v0)) · s⊗ σ ⊗ q ⊗ v′,

where ω0 is determined so that ψtr−1
i0

(ω) = ω0 ⊗ χ0, and q ⊗ v′ := ψi(v). On
the other hand, the clock-wise composition yields

ω ⊗ s⊗ σ ⊗ v ⊗ v0 7→ ω(v0) · s⊗ σ ⊗ q ⊗ v′,

and it is straightforward to deduce the coincidence ω(v0) = ω0(f0(v0)) from
the given definitions. Thus, the pentagon diagram is commutative. □
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6.3. Transgression after Regression

In this section we provide a natural equivalence T ◦ Ri0,x0,F0
∼=

idLBG(M,Q), thus establishing the second half of the equivalence
TBG(M,Q) ∼= LBG(M,Q). To that end, we construct for each LBG object
(L, λ,R, ϕ, χ, ϵ, α) a 1-morphism

(φ, ξ) : (T ◦ Ri0,x0,F0
)(L, λ,R, ϕ, χ, ϵ, α) → (L, λ,R, ϕ, χ, ϵ, α),

and show that it is natural with respect to LBG morphisms.
We let (G, E) := Ri0,x0,F0

(L, λ,R, ϕ, χ, ϵ, α) be the regressed TBG,
and denote its transgressed LBG by (L′, λ′,R′, ϕ′, χ′, ϵ′, α′) := T (G, E). In
[Wal16, Section 6.2] we have constructed an isomorphism φ : L′ → L of
hermitian line bundles over LM . We recall this construction in a slightly
adapted version. We consider a loop τ ∈ LM of the form τ = (γ1 ⋆ γ0) ∪
(γ2 ⋆ γ0), where γ0 ∈ Px0

M and (γ1, γ2) ∈ PM [2]. Up to thin homotopy, ev-
ery loop in M is of this form. Now let T : τ∗G → I0 be a trivialization, in-
cluding a hermitian line bundle T with connection over Z := S1 ×τ ev1

Px0
M

and a connection preserving bundle isomorphism

δ|(t,β1),(t,β2) : L|β1∪β2
⊗ T(t,β2) → T(t,β1)

over Z [2]. We consider the obvious paths αi in Z connecting (0, id ⋆ γ0) with
(12 , γi ⋆ γ0). Then, there exists a unique element p ∈ L|τ = L|(γ1⋆γ0)∪(γ2⋆γ0)
such that

δ(p⊗ ptα2
(q)) = ptα1

(q)

for all q ∈ T(0,id⋆γ0). We define φ([T , z]) := p · z. Using the superficial connec-
tion on L and its parallel transport along thin homotopies, this definition
can be extended to all loops τ ∈ LM . This results in a fusion-preserving
bundle morphism φ : L′ → L that is independent of all involved choices, see
[Wal16, Lemma 6.2.1 & 6.2.2].

Next, we construct, for i, j ∈ I, a vector bundle isomorphism

ξij : R
′
ij → Rij

over Pij . First, we compute R′
ij over a path γ ∈ Pij connecting x ∈ Qi with

y ∈ Qj . Let x0 ∈ Qi0 be the point and F0 be the Ax0
-module chosen for

regression, and recall that we constructed the bundle Ei := Ri0i ⊗ev∗
0A0

F0

over Pi. We choose a path γ0 ∈ Pi0i with γ0(0) = x0 and γ0(1) = x, and



✐

✐

“1-Bunk” — 2022/6/9 — 18:43 — page 1168 — #74
✐

✐

✐

✐

✐

✐

1168 S. Bunk and K. Waldorf

obtain a smooth map

(29) s : [0, 1] → Px0
M : t 7→ γt ⋆ γ0,

where γt denotes the restriction of a path to [0, t], reparameterized to [0, 1]
(with sitting instants). In fact, s is a section along γ into the surjective
submersion of γ∗G. By Remark 2.4 this induces a trivialization T : γ∗G → I0,
together with an isomorphism

R
′
ij |γ(T ) = Hom(∆(Ei|x, T |0),∆(Ej |y), T |1)

∼= Hom((s∗Ei)|0, (s
∗Ej)|1) = Hom(Ei|cx⋆γ0 , Ej |γ⋆γ0).(30)

Using the definition of Ei and Ej via regression, as well as the lifted path
concatenation, we obtain another isomorphism

Hom(Ei|cx⋆γ0 , Ej |γ⋆γ0) = Hom(Ri0i|cx⋆γ0 ⊗Ax0
F0,Ri0j |γ⋆γ0 ⊗Ax0

F0)
∼= Hom(Ri0i|γ0 ⊗Ax0

F0,Rij |γ ⊗Ai|x Ri0i|γ0 ⊗Ax0
F0)

= Hom(Ei|γ0 ,Rij |γ ⊗Ai|x Ei|γ0).(31)

Next, we consider the linear map

(32) Rij |γ → Hom(Ei|γ0 ,Rij |γ ⊗Ai|x Ei|γ0)

that sends a vector v ∈ Rij |γ to the homomorphism w 7→ v ⊗Ai|x w. Using
that Ai|x is simple and that Ei|γ0 is irreducible, it is straightforward to see
that (32) is injective. Moreover, the dimensions on both sides coincide, so
that it is in fact an isomorphism,

dim(Rij |γ)

Remark 2.6 (b)
↓
=
√

rk(Rii) · rk(Rjj)

Lemma 5.1
↓
= rk(Ei) · rk(Ej)

= dim(Hom(Ei|cx⋆γ0 , Ej |γ⋆γ0))
(31)
= dim(Hom(Ei|γ0 ,Rij |γ ⊗Ai|x Ei|γ0)).

Combining (30) and (31) with the inverse of (32), we obtain the isomorphism

ξij |γ : R′
ij |γ → Rij |γ .

Lemma 6.3. ξij |γ is independent of the choice of the path γ0.

Proof. If γ′0 is another path connecting x0 with x = γ(0), then we have the
two sections s, s′ into the submersion of γ∗G, inducing trivializations T and
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T ′, respectively. Any element p ∈ Lγ0∪γ′
0
determines (via a thin homotopy)

a section of L along (s, s′), and hence a hence a 2-isomorphism ψp : T ⇒ T ′,
see Remark 2.4. Our aim is to show that the following diagram is commu-
tative, whose top row and bottom row are the isomorphisms ξ−1

ij , defined
using γ′0 and γ0, respectively.

Rij |γ
(32)

// Hom(Ei|γ′
0
,Rij |γ ⊗Ai|x Ei|γ′

0
)

((id⊗ρp⊗idF0
)◦−◦(ρp⊗idF0

)−1)

��

(31)
// Hom(Ei|cx⋆γ′

0
, Ej |γ⋆γ′

0
)

ζ′j◦−◦ζ′−1
i

��

(30)
// R′
ij |γ(T

′)

rψp

��

Rij |γ
(32)

// Hom(Ei|γ0 ,Rij |γ ⊗Ai|x Ei|γ0) (31)
// Hom(Ei|cx⋆γ0 , Ej |γ⋆γ0) (30)

// R′
ij |γ(T ).

The vertical maps in this diagram all depend on the choice of the point
p ∈ Lγ0∪γ′

0
: first, we have an isomorphism ρp : Ri0i|γ′

0
→ Ri0i|γ0 of right Ax0

-
modules, obtained by fusion with p. Second, we have linear isomorphisms
ζ ′i : Ei|cx⋆γ′

0
→ Ei|cx⋆γ0 and ζ ′j : Ej |γ⋆γ′

0
→ Ej |γ⋆γ0 obtained using the gerbe

module isomorphisms ζi and ζj , with the first argument fixed by the elements
in L(cx⋆γ0)∪(cx⋆γ′

0)
and L(γ⋆γ0)∪(γ⋆γ′

0)
determined by p under thin homotopies.

Now, all three subdiagrams are commutative: the one on the left commutes
obviously by inspection, the one in the middle commutes due to the fact that
ζi is defined (in the process of regression) by the fusion representation, and
the one on the right-hand side commutes by definition of the isomorphism
rψp (see Section 4.2) and Remark 2.4. □

By the previous lemma, the isomorphisms ξij |γ assemble into a well-
defined map ξij : R

′
ij → Rij .

Lemma 6.4. For all i, j ∈ I, the map ξij is a connection-preserving bundle
morphism.

Proof. We first show the smoothness of ξij . Let c : U → Pij be a plot and
let W ⊆ U be a contractible open subset such that we can find a local
trivialization ϕ :W × Ck →W ×Pij Rij . Due to the contractibility of W ,
there exists a point w0 ∈W and a smooth map W → PW : w 7→ γw with
γw(0) = w0 and γw(1) = w for all w ∈W . We let c0 := ev0 ◦ c be the plot of
initial points, set x := c0(w0) and choose a path γ0 in M connecting x0 with
x. For w ∈W , we have the path γcw := c0 ◦ γw ∈ Pii connecting x with c0(w).
Finally (upon choosing a smoothing function which we suppress from the
notation), for every w ∈W and t ∈ [0, 1] we have a path βw,t ∈ PM defined
by βw,t(s) := c(w)(ts); it connects βw,t(0) = c0(w) with βw,t(1) = c(w)(t) =
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c∨(w, t). The concatenation of these paths defines a smooth map

(33) σ : [0, 1]×W → Px0
M : (t, w) 7→ βw,t ⋆ (γ

c
w ⋆ γ0)

such that ev1 ◦ σ = c∨. In other words, σ is a lift of c∨ to the surjective
submersion of the regressed bundle gerbe G and hence defines a triviali-
zation T : (c∨)∗G → Iσ∗B. We want to compute the corresponding vector
bundles VT and WT over W , as defined in Section 4.2. For this pur-
pose, we consider the map σ′ :W → Pi defined by σ′(w) := γcw ⋆ γ0, so that
(σ ◦ j0)(w) = cc0(w) ⋆ σ

′(w). We obtain an isomorphism of vector bundles
over W :

(34) VT
∼= (σ ◦ j0)

∗Ei = (σ ◦ j0)
∗
Ri0i ⊗Ax0

F0

∼= (c ◦ c0)
∗
Rii ⊗c∗0Ai

σ′∗Ri0i ⊗Ax0
F0

∼= σ′∗Ri0i ⊗Ax0
F0

using, respectively, Remark 2.4, the definition of Ei under regression, Pro-
position 3.10, and the definition Ai|c0(w) = Rii|cc0(w)

. Analogously, we obtain
an isomorphism

(35) WT
∼= c∗Rij ⊗c∗0Ai

σ′∗Ri0i ⊗Ax0
F0.

Combining these two isomorphisms, we have an isomorphism

ψij : Hom(VT ,WT ) → c∗Rij ⊗c∗0Ai
End(VT ),

of vector bundles over W , and by construction it restricts over each point
w ∈W to the isomorphism ξij |c(w). Using the given local trivialization ϕ of

Rij , we consider the trivialization τ ′ :W × Ck → Hom(VT ,WT ) defined by
τ ′(w, v) := ψ−1

ij (ϕ(w, v)⊗ id), and consider the associated local trivialization
ϕ′ of R′

ij , which reads as

ϕ′(w, v) := (w, [i∗wT , τ
′(w, v)]).

Under the two local trivializations ϕ and ϕ′, the map ξij corresponds to the
identity, and hence it is smooth.

In order to show that ξij is connection-preserving, we compute the local
connection 1-form ωϕ′ associated to the local trivialization ϕ′, and prove
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that ωϕ′ = ωϕ. According to the proof of Proposition 4.5 (see (16)), we have

ωϕ′ = ωτ ′ +

∫

[0,1]
σ∗B′ ∈ Ω1(W, gl(Ck)),

where B′ is the curving of G′. We observe from the constructions that the
bundle isomorphisms (34) and (35), and hence the bundle isomorphism ψij
are connection-preserving. The definition of τ ′, together with the fact that
the identity section in End(VT ) is parallel, show that ωτ ′ = ωϕ. It remains
to prove that the 1-form

(36)

∫

[0,1]
σ∗B′ ∈ Ω1(W )

vanishes. This is complicated by the fact that the regressed curving B′ is
defined using a correspondence between 2-forms and smooth functions on a
space of bigons; see [SW11] for the general theory of this correspondence. In
our case, the 2-form B′ ∈ Ω2(Px0

M) corresponds to a certain map GL whose
definition we will recall below. In Appendix B we show that the 1-form (36)
corresponds to the map

PW → U(1) : γ 7→ GL(σ∗(Σγ)),

where the bigon Σγ is defined by Σγ := (id× γ)∗(Σ1,1), where Σ1,1 : [0, 1]
2 →

[0, 1]2 is the so-called standard bigon. Using the definition of σ from (33),
the bigon σ∗(Σγ) is

(s, t) 7→ βγ(ξ2(s,t)),ξ1(s,t) ⋆ (γ
c
γ(ξ2(s,t))

⋆ γ0),

where ξ1, ξ2 are the two components of Σ1,1, i.e. Σ1,1 = (ξ1, ξ2). In the fol-
lowing we prove that GL(σ∗(Σγ)) = 1 for all γ ∈ PW ; this shows that (36)
is zero. In order to do this, we recall the definition of GL(Σ) given in [Wal16,
Section 5.2], which is essentially by parallel transport in L along a path γΣ
in LM (see Figure 1 in Section 5.2 of [Wal16] for a picture of this path). We
write χγ := γσ∗(Σγ) for simplicity; this is a path in LM given by

(37) χγ(t) = (βγ(ξ2(−,t)),ξ1(−,t)(1) ⋆ βγ(ξ2(0,t)),ξ1(0,t) ⋆ γ
c
γ(ξ2(0,t))

⋆ γ0)

∪ (c ⋆ βγ(ξ2(1,t)),ξ1(1,t) ⋆ γ
c
γ(ξ2(1,t))

⋆ γ0) ∈ LM .

The end loops χγ(0) and χγ(1) are “flat”, i.e. in the image of the map
γ 7→ γ ∪ γ, along which L has the canonical flat section ν. In particular,
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this defines elements ν0, ν1 ∈ L projecting to χγ(0) and χγ(1), respectively.
Then, GL(σ∗(Σγ)) is defined by

(38) ptχγ (ν0) = ν1 ·GL(σ∗(Σγ)).

We consider for r ∈ [0, 1] maps ξr1, ξ
r
2 : [0, 1]2 → [0, 1] that constitute fixed-

ends homotopies between ξ1, ξ2 and the map (s, t) 7→ t. That is, we have
ξ11 = ξ1 and ξ

1
2 = ξ2, and ξ

0
1(s, t) = ξ02(s, t) = t, as well as ξr1(s, 0) = ξr2(s, 0) =

0 and ξr1(s, 1) = ξr2(s, 1) = 1, for all s, t ∈ [0, 1]. We consider the path χrγ
defined as in (37) but using ξr1 and ξr2 instead of ξ1 and ξ2. We regard
h : [0, 1]2 → LM : (r, t) 7→ χrγ(t) as a homotopy between the paths χγ and
χ0
γ in LM . Calculating the latter paths explicitly, we notice that χ0

γ is a
path trough flat loops. The homotopy h fixes the end-loops. We claim that
the adjoint map h∨ : [0, 1]2 × S1 →M has rank two; which can be checked
explicitly using (37). Since the connection on L is superficial (see [Wal16,
Lemma 2.2.3]) and ν is parallel, we have ptχγ (ν0) = ptχ0

γ
(ν0) = ν1. Compar-

ing with (38), we have the claim. □

So far we have provided the data (φ, ξ) for a LBG morphism. It remains
to show that it respects the fusion representation and the lifted path con-
catenation, see Remarks 3.2 and 3.12 (b). This is done in the following two
lemmas.

Lemma 6.5. The bundle isomorphism ξij respects the fusion representa-
tions, i.e. the diagram

(39)

L
′|τ ⊗ R

′
ij |γ2

φ⊗ξij

��

ϕ′
ij |γ1,γ2

// R
′
ij |γ1

ξij

��

L|τ ⊗ Rij |γ2
ϕij |γ1,γ2

// Rij |γ1

is commutative for all γ1, γ2 ∈ Pij with γ1(0) = γ2(0) and γ1(1) = γ2(1), and
τ := γ1 ∪ γ2.

Proof. We set x := γ1(0) and y := γ1(1). Let T be a trivialization of τ∗G,
and let p := φ(T ) ∈ L|τ . We choose a path γ0 connecting x0 with x and
consider the corresponding sections

sa : [0, 1] → Px0
M : t 7→ γta ⋆ γ0

along γa into the surjective submersions of G, for a = 1, 2. We have to study
the induced trivializations Ta : γ

∗
aG → I0: their line bundles are Ta|(t,β) :=
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∆(Ej |y, T2|1)

((

σ //

��

∆(Ej |y, T1|1)

vv

��

L|∗(γ2⋆γ0)∪(γ2⋆γ0)
⊗ Ej |γ2⋆γ0

λ(−⊗p)tr⊗id
//

λ̃⊗id

��

L|∗(γ2⋆γ0)∪(γ1⋆γ0)
⊗ Ej |γ2⋆γ0

λ̃⊗id

��

L|(γ2⋆γ0)∪(γ2⋆γ0) ⊗ Ej |γ2⋆γ0
λ(p⊗−)⊗id

//

ζj

vv

L|(γ1⋆γ0)∪(γ2⋆γ0) ⊗ Ej |γ2⋆γ0

ζj

((

Ej |γ2⋆γ0
ζj(p⊗−)

// Ej |γ1⋆γ0

Figure 1.

Lβ∪sa(t) and their isomorphisms are σa|(t,β1,β2) := λβ1,β2,sa(t), for t ∈ [0, 1]
and paths β, β1, β2 ∈ Px0

M ending at γta(1); see Remark 2.4. Let ι∗aT be
the restrictions of T to trivializations along γa. Then, there exist parallel
unit-length sections σa in ∆(Ta, ι

∗
aT ). They induce unit-length sections into

∆(T2|0, T1|0) and into ∆(T2|1, T1|1). Since s1(0) = s2(0), we have T1|0 = T2|0
and can thus assume that the induced section into ∆(T2|0, T1|0) is the
trivial one. The induced section into ∆(T2|1, T1|1) defines a 2-isomorphism
σ : ∆(Ej |y, T2|1) ⇒ ∆(Ej |y, T1|1). From the fact that the sections σk are pa-
rallel together with the definition of p, we conclude that σ is induced by

(40) T1|(1,β) = Lβ,γ1⋆γ0

λ(−⊗p)
// Lβ,γ2⋆γ0 = T2|(1,β).

We apply this to β = γ2 ⋆ γ0 and obtain the diagram shown in Figure 1. Its
outer vertical arrows are the maps of Remark 2.4 that have been used in
order to define the isomorphisms of (30) over γ1 and γ2, respectively. The
diagram in Figure 1 is commutative: the subdiagrams on the sides give the
construction of Remark 2.4, the subdiagram on the bottom is the relation
between ζj and λ from the definition of the 1-morphism Ej , the subdiagram in
the middle is obviously commutative, and the one on top is (40). We embed
the diagram of Figure 1 twice as subdiagram B into a new diagram shown in
Figure 2. In that diagram, subdiagram A commutes by construction of σ, and
C commutes by definition of ϵj under regression. All other subdiagrams are
obviously commutative. Since the equality R′

ij |γ2(ι
∗
2T ) = R′

ij |γ1(ι
∗
1T ) on top

of this diagram is realized by ϕ′ij |γ1∪γ2([T , 1]⊗−), it is now straightforward
to conclude the commutativity of (39). □
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R
′
ij |γ2(T2)

ξij |γ2

��

R
′
ij |γ2(ι

∗
2T )

rψ2oo R
′
ij |γ1(ι

∗
1T )

rψ1 // R
′
ij |γ1(T1)

ξij |γ1

��

Hom(∆(Ei|x, T |0),∆(Ej |y), T | 1
2
)

σ̃2

}}

σ̃1

((

A Hom(∆(Ei|x, T1|0),∆(Ej |y, T1|1))

(30)

��

Hom(∆(Ei|x, T2|0),∆(Ej |y, T2|1))

(30)

��

σ◦−

22

B Hom(Ei|cx⋆γ0 , Ej |γ1⋆γ0)

(31)

��

Hom(Ei|cx⋆γ0 , Ej |γ2⋆γ0)

ζj(p⊗−)◦−

22

(31)

��

C

Hom(Ei|γ0 ,Rij |γ1 ⊗Ai|x Ei|γ0)
aa

(32)
Hom(Ei|γ0 ,Rij |γ2 ⊗Ai|x Ei|γ0)

(ϕij(p⊗−)⊗id)◦−

22

66

(32)

Rij |γ2
ϕij(p⊗−)

//Rij |γ1

Figure 2.

Lemma 6.6. The bundle isomorphism ξij respects the lifted path concate-
nations, i.e., the diagram

R
′
jk|γ23 ⊗ R

′
ij |γ12

χ′
ijk

//

ξjk⊗ξij

��

R
′
ik|γ23⋆γ12

ξik

��

Rjk|γ23 ⊗ Rij |γ12 χijk

// Rik|γ23⋆γ12

is commutative for all composable paths γ12 ∈ Pij and γ23 ∈ Pjk.

Proof. We choose a path γ0 connecting x0 with γ12(0), induce the section
s of (29) along γ23 ⋆ γ12, and obtain a trivialization T13 of (γ23 ⋆ γ12)

∗G.
We have its restrictions to trivializations T12 and T23 over γ12 and γ23, re-
spectively; then we can use the definition of χ′

ijk under transgression, see
Section 4.5. It is straightforward to see that T12 is induced by the section
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s12 := s ◦ ι1, and T23 is induced by the section s23 := s ◦ ι2. While s12 is
again of the form (29), and thus can be used to define ξij , the section s23
is not of this form. Instead, we have s23(t) = (γt23 ⋆ γ12) ⋆ γ12. In order to
describe ξjk, we use the trivialization T ′

23 induced by the section s′23 defined
by s′23(t) := γt23 ⋆ (γ12 ⋆ γ0). In order to compare T23 and T ′

23, we consider
the section s̃ : [0, 1] → L along (s23, s

′
23), defined by

s̃(t) := ds23(t)∪s23(t),s23(t)∪s′23(t)(νs23(t)).

Then, by Remark 2.4, we obtain a 2-isomorphism ψ : T23 ⇒ T ′
23 and a com-

mutative diagram
(41)
R′
jk|γ23(T

′
23)

rψ

��

Hom(∆(Ej |y, T
′
23|0),∆(Ek|z, T

′
23|1))

Hom(ψ0,ψ1)

��

// Hom(Ej |cy⋆(γ23⋆γ12), Ek|γ23⋆(γ12⋆γ0))

Hom(ζj(s̃(0)⊗−),ζk(s̃(1)⊗−))

��

R′
jk|γ23(T23) Hom(∆(Ej |y, T23|0),∆(Ek|z, T23|1)) // Hom(Ej |γ23⋆γ12 , Ek|(γ23⋆γ12)⋆γ0).

Using a thin homotopy Γt between s′23(t) := γt23 ⋆ (γ12 ⋆ γ0) and s23(t) =
(γt23 ⋆ γ12) ⋆ γ0, the fact that ζi is connection-preserving, and the fact that
the canonical elements νs23(t) are neutral under under ζi, one can show that
ζj(s̃(0)⊗−) = ptΓ0

and ζk(s̃(1)⊗−) = ptΓ1
, so that the morphism on the

right hand side of the previous diagram is just Hom(ptΓ0
, ptΓ1

). We now
replace Ei by its explicit form as obtained from regression. In the first com-
ponent, ptΓ0

then becomes

d
cy⋆(γ12⋆γ0),γ12⋆γ0 ⊗Ax0

idF0
: Ri0j |cy⋆(γ12⋆γ0) ⊗Ax0

F0 → Ri0j |γ12⋆γ0 ⊗Ax0
F0,

which can be identified via (LBG4) with χi0jj |γ12⋆γ0,cy(ϵj(y)⊗−)−1. In the
second component, ptΓ1

becomes

dγ23⋆(γ12⋆γ0),(γ23⋆γ12)⋆γ0 ⊗Ax0
idF0

: Ri0k|γ23⋆(γ12⋆γ0) ⊗Ax0
F0

→ Ri0k|(γ23⋆γ12)⋆γ0 ⊗Ax0
F0.

In combination with the commutativity of diagram (41), this shows the
commutativity of a diagram, which we find as a subdiagram in the up-
per left corner of the diagram shown in Figure 3. The commutativity of
this diagram is what we want to show. The triangular subdiagrams com-
mute by definition of one of their arrows. The four-sided diagram at the
top is the definition of χ′

ijk under regression. The four-sided diagram be-
low is just linear algebra, given that s(0) = s12(0), s12(1) = s23(0), and
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R′
jk|γ23(T

′
23)⊗ R′

ij |γ12(T12)

(30)

��

R′
jk|γ23(T23)⊗ R′

ij |γ12(T12)
rT23,T

′
23
⊗id

oo
χ′
ijk

//
R′
ik|γ23⋆γ12(T )

(30)

��

Hom(∆(Ej |y, T23|0),∆(Ek|z, T23|1))
⊗Hom(∆(Ei|x, T12|0),∆(Ej |y, T12|1))

◦
//

Hom(φs23(0),φs23(1))⊗Hom(φs12(0),φs12(1))

��

Hom(∆(Ei|x, T |0),∆(Ek|z, T |1))

Hom(φs(0),φs(1))

!!Hom(Ej |γ12⋆γ0 , Ek|(γ23⋆γ12)⋆γ0)

⊗Hom(Ei|cx⋆γ0 , Ej |γ12⋆γ0)
gg

Hom(id,χi0ik)⊗Hom(χi0ii,id)

◦
//Hom(Ei|cx⋆γ0 , Ek|(γ23⋆γ12)⋆γ0)

(32)−1◦(31)

��

Hom(Ej |γ12⋆γ0 ,Rik|γ23⋆γ12 ⊗Ai|x Ei|γ0)

⊗Hom(Ei|γ0 , Ej |γ12⋆γ0)

Hom(Ej |cy⋆(γ12⋆γ0), Ek|γ23⋆(γ12⋆γ0))

⊗Hom(Ei|cx⋆γ0 , Ej |γ12⋆γ0)

(32)−1◦(31)

��

^^

Hom(χi0jj ,χi0jk)⊗Hom(χi0ii,χi0ij)

Hom(χ−1
i0jj

,d)⊗id

@@

Hom(Ej |γ12⋆γ0 ,Rjk|γ23 ⊗Aj |y Rij |γ12 ⊗Ai|x Ei|γ0)

⊗Hom(Ei|γ0 ,Rij |γ12 ⊗Ai|x Ei|γ0)

Hom(id,χijk⊗id)⊗Hom(id,χi0ij)

OO

Hom(Ej |γ12⋆γ0 ,Rjk|γ23 ⊗Aj |y Ej |γ12⋆γ0)

⊗Hom(Ei|γ0 ,Rij |γ12 ⊗Ai|x Ei|γ0)
77

(32)

ww

Hom(id,id⊗χi0ij)⊗id

Rjk|γ23 ⊗ Rij |γ12 χijk
//
Rik|γ23⋆γ12

Figure 3.
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s23(1) = s(1). The Pentagon diagram in the middle has four tensor factors,
split as Hom(−,−)⊗Hom(−,−), which commute separately. Indeed, com-
mutativity in the first, third, and fourth factor is obvious, and in the second
factor it is precisely the Pentagon diagram of (LBG2). Finally, there is a
strangely shaped diagram at the lower right corner; this diagram commutes
again by pure linear algebra. □

So far we have completed the definition of a LBG morphism (φ, ξ) be-
tween the transgression of the regression of a LBG object and this LBG
object. It remains to prove that this construction depends naturally on the
given LBG object; this is the content of the following lemma.

Lemma 6.7. Let

(φ, ξ) : (L1, λ1,R1, ϕ1, χ1, ϵ1, α1) → (L2, λ2,R2, ϕ2, χ2, ϵ2, α2)

be a LBG morphism. We label the transgression of regressions of LBG objects
and morphisms with primes, and denote by

(φ1, ξ1) : (L
′
1, λ

′
1,R

′
1, ϕ

′
1, χ

′
1, ϵ

′
1, α

′
1) → (L1, λ1,R1, ϕ1, χ1, ϵ1, α1)

(φ2, ξ2) : (L
′
2, λ

′
2,R

′
2, ϕ

′
2, χ

′
2, ϵ

′
2, α

′
2) → (L2, λ2,R2, ϕ2, χ2, ϵ2, α2)

the LBG morphisms associated to the two LBG objects. Then, we have

(φ2, ξ2) ◦ (φ
′, ξ′) = (φ, ξ) ◦ (φ1, ξ1).

Proof. Commutativity of the line bundle isomorphisms, φ2 ◦ φ
′ = φ ◦ φ1,

has been shown in [Wal16, Section 6.2]. For the vector bundle isomorphisms,
the relevant statement is the commutativity of the diagram

(42)

R
′
1,ij |γ

ξ′ij
//

ξ1,ij

��

R
′
2,ij |γ

ξ2,ij

��

R1,ij |γ
ξij

// R2,ij |γ ,

for all paths γ ∈ Pij . We pick an arbitrary γ ∈ Pij and set x := γ(0) and
y := γ(1). For the construction of ξ1,ij and ξ2,ij we need to choose a path
γ0 ∈ Pi0i with γ0(1) = x, inducing sections s1 and s2 into the surjective
submersions of γ∗G1 and γ∗G2, respectively, where G1,G2 are the regressed
bundle gerbes, see (29). These sections, in turn, induce trivializations T1 and
T2 of γ∗G1 and γ∗G2, respectively.
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R′
1,ij |γ(T1)

(30)

��

ξ′ij
// R′

2,ij |γ(T2)

(30)

��

Hom(E1,i|cx⋆γ0 , E1,j |γ⋆γ0)

(31)

��

Hom(ψ̃i,ψ̃j)
// Hom(E1,i|cx⋆γ0 , E1,j |γ⋆γ0)

(31)

��

Hom(E1,i|γ0 ,R1,ij |γ ⊗A1,i|x E1,i|γ0)

(32)

��

Hom(ξi0i⊗ev∗
0f0,ξij⊗ξi0i⊗ev∗

0f0)
// Hom(E2,i|γ0 ,R2,ij |γ ⊗A2,i|x E2,i|γ0)

(32)

��

R1,ij |γ
ξij

// R2,ij |γ .

Figure 4.

Let (A, ψ) be the regression of (φ, ξ), i.e. A : G1 → G2 is a 1-isomorphism
induced from the line bundle morphism ∪∗φ, and ψ = {ψi}i∈I consists of
2-isomorphisms ψi : E1,i ⇒ E2,i ◦ A induced from the vector bundle homo-
morphism ψ̃i := ξi0i ⊗ ev∗0f0 : E1,i → E2,i, see Section 5. The transgression
of (A, φ) is defined by

ξ′ij : R1,ij |γ(T1) → R2,ij |γ(T2) : φ 7→ ψi,1 ◦ φ ◦ ψ−1
i,0 ,

see Section 4.8. Evaluating the construction of the isomorphisms ψi,1 and
ψi,0 in the present situation, using that the trivializations T1 and T2 are
induced from sections, we obtain commutative diagrams

∆(E1,i|x, T1|0)

φs

��

ψi,0
// ∆(E2,i|x, T2|0)

φs

��

E1,i|cx⋆γ0
ψ̃i

// E2,i|cx⋆γ0

and

∆(E1,j |y, T1|1)

φs

��

ψi,1
// ∆(E2,j |y, T2|1)

φs

��

E1,j |γ⋆γ0
ψ̃j

// E2,j |γ⋆γ0

where vertical arrows are the bundle morphisms of Remark 2.4. This shows
the commutativity of the first subdiagram of the diagram shown in Figure 4.
The diagram in the middle is commutative because ξij is compatible with
the lifted path concatenation, and the diagram at the bottom is obviously
commutative. The outer shape of the diagram of Figure 4 is (42). □
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Appendix A. Vector bundles and algebra bundles over

diffeological spaces

A.1. Diffeological vector bundles

In this section we provide the basics about vector bundles over diffeological
spaces. For the definition we follow [IZ13, Art. 8.9]. Let X be a diffeological
space.

Definition A.1. A complex vector bundle of rank k over X consists of the
following structure:

(a) a diffeological space E, the total space,

(b) a smooth map π : E → X, the projection,

(c) a complex vector space structure on each fiber E|x := π−1({x}), for
all x ∈ X.

The following condition has to be satisfied: for each plot c : U → X and each
point u ∈ U there exists an open neighborhood u ∈W ⊆ U and a diffeomor-
phism

ϕ :W × C
k →W ×X E

that covers the identity map on W , and restricts to a linear map ϕ|w : Ck →
E|c(w) over each point w ∈W .

A morphism between vector bundles E and E′ over X is a smooth map
φ : E → E′ that commutes with the projections and restricts to a linear
map φ|x : E|x → E|′x over each fiber. Hermitian vector bundles and unitary
bundle morphisms are defined in the obvious analogous way.

As usual, vector bundles can be associated to principal bundles via rep-
resentations. For principal bundles over diffeological spaces we use the defi-
nition of [Wal12].

Lemma A.2. Suppose G is a Lie group and ρ : G→ GL(Ck) is a Lie group
homomorphism. Suppose further that P is a principal G-bundle over X. Let
E := P ×G Ck be equipped with the quotient diffeology, the projection induced
from P , and the fibrewise vector space structure of Ck. Then, E is a vector
bundle over X.
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Proof. Since the projection π : P → X of a principal G-bundle is a subduc-
tion, every plot c : U → X and every point u ∈ U admit an open neighbor-
hood u ∈W ⊆ U with a lift: a plot c̃ :W → P such that π ◦ c̃ = c. Then we
define a local trivialization of E by

ϕ(w, v) := (w, [c̃(w), v]).

This is obviously smooth and fiber-wise linear. An inverse is defined in
the following way. Suppose (w, [p, v]) ∈W ×X E. Since P is a principal
G-bundle, there exists a unique gp,w ∈ G such that p = c̃(w)gp,w. We set
ϕ−1(w, [p, v]) := (w, ρ(gp,w)(v)). It is easy to check that this is inverse to ϕ.
In order to check the smoothness of ϕ−1, let d :W ′ →W ×X E be a plot,
i.e. d = (d1, d2) where d1 :W

′ →W is a smooth map and d2 :W
′ → E is a

plot of E, such that π ◦ d2 = c ◦ d1. We have to show that ϕ−1 ◦ d :W ′ →
W × Ck is smooth, which can be done locally. By definition of the quo-
tient diffeology of E, W ′ can be covered by smaller open sets W ′′ such that
d2|W ′′ = [p, v], where p :W ′′ → P is a plot of P and v :W ′′ → Ck is smooth.
Now we have to check that

ϕ−1 ◦ d|W ′′ :W ′′ →W × C
k : w 7→ (d1(w), ρ(gp(w),d1(w))(v(w)))

is smooth. This follows from the definition of principal G-bundles, according
to which the map δ : P ×X P → G that induces gp,v := δ(p, v) is smooth. □

Remark A.3.

(a) If the image of ρ in Lemma A.2 is contained in U(Ck), then E is a
hermitian vector bundle.

(b) It is easy to check that all familiar operations with vector bundles can
be performed: pullback, tensor product, dual bundles, Hom-bundles
etc.

(c) If X is a smooth manifold, considered as a diffeological space, and E
is a vector bundle over X in the sense of Definition A.1, then there
exists a unique smooth manifold structure on E that induces the given
diffeology and gives E the structure of a smooth vector bundle over
X. Indeed, this smooth manifold structure is defined via local trivial-
izations of E, whose transition functions are smooth.

We continue with connections on vector bundles over diffeological spaces,
for which no established definition exists. Since tangent vectors in diffeologi-
cal spaces are notoriously difficult to handle, we define connections via their
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parallel transport. First we recall the following prerequisite. By a path in X
we understand a smooth map γ : [0, 1] → X with sitting instants, and we
denote by PX ⊆ C∞([0, 1], X) the space of paths, equipped with its natural
diffeology. A smooth map f between smooth manifolds is said to have rank
k if rk(dfx) ≤ k for all points x in its domain. A smooth map has rank k if
and only if the pullback of every (k + 1)-forms vanishes [SW11, Lemma 4.2].
That condition makes sense for smooth maps between diffeological spaces,
and we define the rank of maps between diffeological spaces in this way.

Definition A.4. Two paths γ1, γ2 ∈ PX in a diffeological space X are
called thin homotopic, if there exists a path h ∈ PPX such that

(a) it is a homotopy: h(0) = γ1 and h(1) = γ2

(b) it fixes end-points: h(s)(0) = γ1(0) = γ2(0) and h(s)(1) = γ1(1) =
γ2(1) for all s ∈ [0, 1].

(c) it is thin: the map h∨ : [0, 1]2 → X : (s, t) 7→ h(s)(t) has rank one.

Now we are in position to define a connection on a vector bundle E over
a diffeological space X.

Definition A.5. A connection on E is a family of linear maps ptγ : E|γ(0) →
E|γ(1), for each path γ in X, such that the following conditions are satisfied:

(a) ptγ depends only on the thin homotopy class of the path γ.

(b) ptγ2⋆γ1 = ptγ2 ◦ ptγ1 for all composable paths in X.

(c) for each local trivialization ϕ :W × Ck →W ×X E of E there exists
a 1-form ωϕ ∈ Ω1(W, gl(Ck)) such that for every γ ∈ PW the diagram

C
k

exp(ωϕ)(γ)
//

ϕ|γ(0)

��

C
k

ϕ|γ(1)

��

Ec(γ(0))
ptc◦γ

// Ec(γ(1))

is commutative, where exp(ωϕ)(γ) ∈ GL(Ck) is the path-ordered ex-
ponential of ωϕ along γ.

Remark A.6. Under the assumption that conditions (a) and (b) hold, (c) is
equivalent to the following condition.
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(c’) for each local trivialization ϕ :W × Ck →W ×X E of E the map pϕ :
PW → GL(Ck), where pϕ(γ) ∈ GL(Ck) is the linear isomorphism

Ck
ϕ|γ(0)

// Ec(γ(0))
ptc◦γ

// Ec(γ(1))
ϕ|−1
γ(1)

// Ck,

is smooth.

The equivalence uses the theory of smooth functors [SW09]. Indeed, if ωϕ
exists, then the map pϕ is exp(ωϕ) : PW → GL(Ck), and hence smooth.
Conversely, if pϕ is smooth, then it follows from (a) and (b) that it defines a
smooth functor pϕ : P1(W ) → BGL(Ck), corresponding to a 1-form ωϕ such
that pϕ = exp(ωϕ).

If E is hermitian, then a connection is called unitary if ptγ is unitary and
the 1-forms ωϕ of all local trivializations ϕ take values in u(n). A connection
is called flat if ptγ depends only on the homotopy class of γ.

Let E and E′ be vector bundles over X equipped with connections pt
and pt′, respectively. A bundle morphism φ : E → E′ is called connection-
preserving if it commutes with the parallel transport, i.e. the diagram

E|x
ptγ

//

φ

��

E|y

φ

��

E′|x
pt′γ

// E′|y

is commutative for all paths γ ∈ PX, with x := γ(0) and y := γ(1).
We shall verify that our notion of a connection is compatible with the

existing notion of a connection on a principal bundle (defined in [Wal12]
as a Lie algebra-valued 1-form) under the associated bundle construction of
Lemma A.2.

Lemma A.7. Suppose P is a principal G-bundle over X and ω ∈ Ω1(P, g)
is a connection on P . We denote by τωγ : Pγ(0) → Pγ(1) the parallel transport

along a path γ ∈ PX. Let ρ : G→ GL(Ck) be a Lie group homomorphism.
Then, the formula

ptγ([p, v]) := [τωγ (p), v]

defines a connection on the associated vector bundle P ×G Ck.

Proof. We use [Wal12, Prop. 3.2.10] for the properties of the parallel trans-
port τω. It is G-equivariant by item (b); hence ptγ is well-defined. Further,
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ptγ is linear by construction. It is compatible with path composition due to
item (a), and it only depends on the thin homotopy class due to item (b). It
remains to check the compatibility with a local trivialization ϕ, obtained as
described in Lemma A.2 as ϕ(w, v) := (w, [c̃(w), v]). We set ωϕ := ρ∗(c̃

∗ω).
Suppose γ ∈ PW . Set γ̃ := c̃ ◦ γ; this is a lift of c ◦ γ ∈ PX. By [Wal12, Def.
3.2.9] we have τωc◦γ(γ̃(0)) = γ̃(1) · exp(ω)(γ̃). The calculus for path ordered
exponentials implies that

(A.1) ρ(exp(ω)(γ̃)) = exp(ρ∗(c̃
∗ω))(γ) = exp(ωϕ)(γ).

Now, the commutativity of the diagram in Definition A.5 is straightforward
to check. □

Remark A.8. If X is a smooth manifold, then a connection in the sense of
Definition A.5 furnishes a transport functor [SW09]. These are equivalent
to ordinary connections on ordinary vector bundles. Thus, our approach to
vector bundles and connections over diffeological spaces reduces consistently
to the classical theory over smooth manifolds.

Remark A.9. The treatment of curvature in terms of parallel transport
involves transport 2-functors, and drops a bit out of the context of this
article, see [SW09, Sec. 7.2] and [SW13, Sec. 3.4]. The content of [SW13,
Lemma 3.4.3] is that the curvature of a connection on a vector bundle E is
given locally by the endomorphism valued 2-form

Ωϕ := dωϕ +
1

2
[ωϕ ∧ ωϕ] ∈ Ω2(W, gl(Ck)),

where ωϕ ∈ Ω1(W, gl(Ck)) is the 1-form of a local trivialization. Globally, one
can consider its trace, which is a globally-defined 2-form tr(Ωϕ) = tr(dωϕ).

A.2. Superficial connections on path spaces

Let M be a smooth manifold, and let PM denote the diffeological space of
paths in M with sitting instants. A path Γ ∈ PPM is called thin if Γ∨ :
[0, 1]2 →M has rank one, and it is called fixed-ends, if the end-paths s 7→
Γ(s)(0) and s 7→ Γ(s)(1) are constant. A fixed-ends thin path Γ makes the
paths Γ(0),Γ(1) ∈ PM thin homotopic in the sense of Definition A.4.

Definition A.10. Two paths Γ1,Γ2 ∈ PPM are called rank-two-
homotopic, if there exists h ∈ PPPM satisfying the following conditions:
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(a) It is a homotopy, i.e. h(0) = Γ1 and h(1) = Γ2.

(b) It fixes the paths of end-points: for all r, s ∈ [0, 1] we have

h(r)(s)(0) = Γ1(s)(0) = Γ2(s)(0) and h(r)(s)(1) = Γ1(s)(1) = Γ2(s)(1).

(c) h∨ : [0, 1]3 →M has rank two.

For such a homotopy we write h0 ∈ PPM for the path h0(r) := h(r)(0)
connecting Γ1(0) with Γ2(0), and h1 ∈ PPM for the path h1(r) := h(r)(1)
connecting Γ1(1) with Γ2(1). Note that h0 and h1 are fixed-ends paths by (b).

Definition A.11. Let E be a vector bundle over PM . A connection pt on
E is called superficial, if the following two conditions are satisfied:

(i) Parallel transport along a fixed-ends thin path is independent of that
path. More precisely, if Γ1,Γ2 ∈ PPM are fixed-ends thin paths with
Γ1(0) = Γ2(0) and Γ1(1) = Γ2(1), then ptΓ1

= ptΓ2
.

(ii) If Γ1,Γ2 ∈ PPM are rank-two-homotopic via h ∈ PPPM , then the
following diagram is commutative:

E|Γ1(0)

ptΓ1 //

pth0

��

E|Γ1(1)

pth1

��

E|Γ2(0) ptΓ2

// E|Γ2(1)

Via Definition A.11 (i), a superficial connection on E determines for each
pair (γ, γ′) of thin homotopic paths a canonical map dγ,γ′ : E|γ → E|γ′ by
putting dγ,γ′ := ptΓ for some fixed-ends thin path Γ connecting γ with γ′.
We also note that Definition A.11 (ii) implies that ptΓ1

= ptΓ2
if the rank

two homotopy h fixes the end-points.

Remark A.12. Two paths Γ1,Γ2 ∈ PPM can be rank-two-homotopic in the
sense of Definition A.10 or thin homotopic as paths in X = PM in the sense
of Definition A.4. In general, both conditions are different and none implies
the other.
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A.3. Bundles of algebras and bimodules

By an algebra we will always mean a unital, associative algebra over C, and
all algebra homomorphisms and representations will be unital. We first fix
some terminology. Let X be a diffeological space.

(a) An algebra structure on a vector bundle E overX is a bundle morphism
µ : E ⊗ E → E over X such that over each point x ∈ X the map µ|x :
E|x ⊗ E|x → E|x equips E|x with the structure of an algebra, and the
section x 7→ 1x of unit elements is smooth.

(b) An algebra structure on a vector bundle E is called local, if for each plot
c : U → X and each point x ∈ U there exist an algebra Ac,x, an open
neighborhood x ∈ V ⊆ U and a diffeomorphism ϕ : V ×Ac,x → V ×X

E that induces the identity on V and its restriction ϕ|v : Ac,x → E|c(v)
to the fiber over each v ∈ V is an algebra isomorphism.

(c) A vector bundle E with local algebra structure is called algebra bundle
or bundle of algebras, if the algebras Ac,x can be chosen independently
of the plot c and the point x.

Analogous terminology will be used for various types of algebras, for in-
stance, involutive algebras and Frobenius algebras. We remark that the
necessity of carefully distinguishing between these types of bundles is not
caused by the fact that we work over diffeological spaces; the same types
exist over smooth manifolds and have to be distinguished.

The following results explain in a nice way the role of connections in
relation to algebra bundles.

Lemma A.13. Suppose a vector bundle E with algebra structure µ ad-
mits a connection pt for which µ is connection-preserving. Then, µ is local.
Moreover, the restriction of E to each path-connected component of X is an
algebra bundle.

Proof. That µ is connection-preserving means that the isomorphisms ptγ :
E|x → E|y are algebra isomorphisms. Consider a local trivialization ϕ : V ×
Ck → V ×X E of the vector bundle E, for a plot c : U → X and V ⊆ U
a contractible open set. For a fixed smooth contraction of V to a point
x0 ∈ V , we obtain a smooth map γ : V → PV assigning to a point x ∈ V
a path γx from x0 to x. We induce an algebra structure on Ck such that
ϕ|x0

: Ck → E|c(x0) is an algebra isomorphism, and denote that algebra by
Ac,x0

. In general, ϕ|x : Ac,x0
→ E|c(x) is not an algebra homomorphism for
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x ̸= x0. However, consider the new trivialization ϕ′ : V ×Ac,x0
→ V ×X E

defined by ϕ′(x, v) := ϕ(x, exp(ωϕ)(γx)v), where ωϕ is a local connection 1-
form for ϕ. We claim that ϕ′|x : Ac,x0

→ E|c(x) is an algebra homomorphism
for all x ∈ V . Indeed, we get from Definition A.5 (c)

ϕ′|x = ϕ|x ◦ exp(ωϕ)(γx) = ptc◦γx ◦ ϕ|x0
,

and this is a composition of algebra homomorphisms. This shows that µ is
local.

Now, fix an arbitrary plot c0 : U0 → X, a point x0 ∈ U0, an algebra
Ac0,x0

with a local algebra trivialization ϕ0 around x0. For any other plot
c : U → X, x ∈ U and local algebra trivialization ϕ : V ×Ac,x → V ×X E
defined in x ∈ V ⊆ U , choose a path γ ∈ PX connecting x0 with x. Parallel
transport and the algebra isomorphisms ϕ0|x0

and ϕ|x determine an algebra
isomorphism Ac0,x0

∼= Ac,x. Pre-composing with ϕ produces a new local tri-
vialization ϕ′ defined over V with typical fiber Ac0,x0

. Thus, E is an algebra
bundle over the path-connected component of x0. □

If X is not path-connected, then local algebra structures have non-
isomorphic typical fibers over the different connected components, in general.
However, since the underlying vector bundle has the same rank everywhere,
all these algebras have the same dimension. Since simple algebras of the
same dimension are necessarily isomorphic, we obtain the following.

Lemma A.14. If E carries a local algebra structure such that for all x ∈ X
the algebra E|x is simple, then E is an algebra bundle. □

Next, we introduce terminology for bundles of bimodules. Let A and B
be vector bundles over X with algebra structures.

(a) An A-B-bimodule structure on a vector bundle M over X is a pair
(λ, ρ) of vector bundle morphisms λ : A⊗M →M and ρ :M ⊗B →
M such that over each point x ∈ X the linear maps λ|x : A|x ⊗M |x →
M |x and ρ|x :M |x ⊗B|x →M |x define commuting left and right al-
gebra actions.

(b) An A-B-bimodule structure is called local, if for each plot c : U → X
and each x ∈ U there exist an open neighborhood x ∈ V ⊆ U , algebras
A0 and B0, an A0-B0-bimodule M0 and diffeomorphisms

ϕA : V ×A0 → V ×X A, ϕB : V ×B0 → V ×X B,

ϕM : V ×M0 → V ×X M
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covering the identity on V , such that for each v ∈ V the restric-
tions ϕA|v : A0 → A|c(v) and ϕB|v : B0 → B|c(v) are algebra isomor-
phisms, and the restriction ϕM |v :M0 →M |c(v) is a bimodule inter-
twiner (along ϕA|v and ϕB|v).

(c) We say thatM is a bundle of A-B-bimodules, or A-B-bimodule bundle,
if A and B are bundles of algebras, with typical fibers A0 and B0,
respectively, and M0 can be chosen independently of c and x as an
A0-B0-bimodule.

Lemma A.15. Suppose A,B are vector bundles over X with connections
and connection-preserving algebra structures, and suppose M is a vector
bundle over X with connection and a connection-preserving A-B-bimodule
structure (λ, ρ). Then, (λ, ρ) is local. Moreover, the restriction of M to each
path-connected component is a bundle of A-B-bimodules.

Proof. The proof is analogous to Lemma A.13 and left out for brevity. □

Lemma A.16. Suppose A and B are bundles of simple algebras over X,
and M is a vector bundle with a local A-B-bimodule structure (λ, ρ). Sup-
pose further that M is faithfully balanced, i.e., the induced maps λ̃ : A→
EndB(M) and ρ̃ : B → EndA(M)op are fiber-wise isomorphisms. Then, M
is a bundle of A-B-bimodules.

Proof. Faithfully balanced bimodules establish Morita equivalences. The
claim then follows from the statement that Morita equivalent simple al-
gebras are Morita equivalent in a unique way (up to isomorphism). Indeed,
every Morita equivalence has to be irreducible (as an A⊗Bop-module), be-
cause if it was a direct sum of two bimodules, it would not be invertible.
However, if A and B are simple, then A⊗Bop is again simple, so it has a
unique irreducible module. □

Finally, we discuss the composition of bimodule bundles, i.e. their tensor
product over an algebra bundle. This tends to be difficult and is treated in
[KLW]. Let A,B,C be vector bundles over X with algebra structures, let
M be a vector bundle with A-B-bimodule structure (λM , ρM ), and let N
be a vector bundle with B-C-bimodule structure (λN , ρN ). Over each point
x ∈ X we consider the subspace Kx ⊆M |x ⊗N |x generated by elements of
the form

ρM |x(m⊗ b)⊗ n−m⊗ λN |x(b⊗ n)
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for all m ∈M |x, n ∈ N |x and b ∈ B|x. We consider the disjoint union of the
quotient spaces (M |x ⊗N |x)/Kx for all x ∈ X and denote it by M ⊗B N .
It will be equipped with the obvious left A-action λM and the right C-
action ρN , and be equipped with the unique diffeology making the projection
M ⊗N →M ⊗B N a subduction. In general, M ⊗B N will not even be a
vector bundle. Under assumptions of locality and semisimplicity, however,
we have the following result [KLW, Thm. 4.2.6 & Cor. 3.1.12]:

Lemma A.17. If the algebra structures on A,B,C are local and semisimple,
and the bimodule structures on M and N are local, then M ⊗B N is a vector
bundle, and (λM , ρN ) is a local A-C-bimodule structure.

Remark A.18. Consider again bundles of algebras A,B,C and bundles M
of A-B-bimodules and N of B-C-bimodules. We assume that all bundles are
equipped with connections, in such a way that the algebra structures and the
bimodule structures are connection-preserving. Then, there is a naturally
defined connection on M ⊗B N , for which the A-C-bimodule structure is
connection-preserving. In order to see this, we only have to observe that the
sub-vector bundle U is invariant under parallel transport.

Appendix B. Fiber integration for smooth 2-functors

In this section we provide a result for the theory of smooth functors of
[SW09, SW11]. It is used in Lemma 6.4 as one step to establish our main
theorem, but also might be interesting in other contexts. Let X be a smooth
manifold. We recall that there is a bijection

(B.2) Fun∞(P1(X), BU(1)) ∼= Ω1(X),

where the left hand side consists of smooth functors defined on the smooth
path groupoid of X with values in the Lie groupoid BU(1) (it has a single
object and U(1) as the manifold of morphisms) [SW09, Prop. 4.7]. Analo-
gously, there is a bijection

(B.3) Fun∞(P2(X), BBU(1)) ∼= Ω2(X),

where the left hand side consists of smooth 2-functors defined on the smooth
path 2-groupoid of X with values in the Lie 2-groupoid BBU(1) (one object,
one 1-morphism, and U(1) as the manifold of 2-morphisms) [SW11, Theorem
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2.21]. We define a ,,fiber integration map“ for smooth 2-functors, i.e. a map

(B.4)

∫

[0,1]
: Fun∞(P2([0, 1]×X), BBU(1)) → Fun∞(P1(X), BU(1)),

and prove the following result.

Proposition B.1. The fiber integration map (B.4) corresponds under above
bijections to the ordinary fiber integration of differential forms, i.e. the dia-
gram

(B.5)

Fun∞(P2([0, 1]×X), BBU(1))

∫
[0,1]

//

��

Fun∞(P1(X), BU(1))

��

Ω2([0, 1]×X) ∫
[0,1]

// Ω1(X)

is commutative.

The fiber integration map (B.4) is defined as follows. Suppose F is a
smooth 2-functor on [0, 1]×X, and γ ∈ PX is a path in X. Then,

(B.6)

(∫

[0,1]
F

)
(γ) := F (Σγ) with Σγ := (id× γ)∗(Σ1,1).

Here, Σs,t is the standard bigon in [0, 1]2, and id× γ : [0, 1]2 → [0, 1]×X
pushes it to a bigon in [0, 1]×X. The standard bigon Σs,t is the uniquely
defined bigon that fills the rectangle spanned by (0, 0) and (s, t), see [SW11,
Sec. 2.2.1]. We note that Σγ is a bigon between the path (γ1, cγ(1)) ⋆ (c0, γ)
and the path (c1, γ) ⋆ (γ1, cγ(0)), where γ1 is the standard path in [0, 1].

Lemma B.2. (B.6) defines a smooth functor

∫

[0,1]
F : P1(X) → BU(1).

Proof. We have to check that
∫
[0,1] F respects the composition, that it only

depends on the thin homotopy class of γ, and that it is smooth. The lat-
ter follows directly from the smoothness of F . If h : [0, 1]2 → X is a thin
homotopy between γ and γ′, then it induces a homotopy

[0, 1]3 → [0, 1]×X : (r, s, t) 7→ (id× h(r,−))(Σ1,1(s, t))
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between (id× γ)∗(Σ1,1) and (id× γ′)∗(Σ1,1). This homotopy has rank two,
because h has rank one, and thus the product id× h has rank two. By inspec-
tion one checks that it restricts to a thin homotopy between the boundary
paths. This shows that Σγ and Σγ′ are rank-two-homotopic, which implies
F (Σγ) = F (Σγ′). Finally, if γ and γ′ are composable paths in X, then

Σγ′⋆γ = (Σγ′ ◦ cγ) • (cγ′ ◦ Σγ),

where cγ is the constant bigon for γ, and • and ◦ denote the vertical and
horizontal composition of 2-morphisms in P2(X), respectively. Since F is a
2-functor and BBU(1)-valued, this gives F (Σγ′⋆γ) = F (Σγ′) · F (Σγ). □

Now we prove the commutativity of the diagram (B.5). Consider a point
x ∈ X and a tangent vector v ∈ TxX represented by a curve γ : R → X
with γ(0) = x. Using the description of the bijections (B.2) and (B.3), and
starting with a 2-functor F , following diagram (B.5) clockwise yields

−
d

dt

∣∣∣∣
0

(∫

[0,1]
F

)
(γ∗(γt)) =

d

dt

∣∣∣∣
0

F (Σγ∗(γt)),

where γt is the standard path in R from 0 to t. Counter-clockwise, we have

−

∫ 1

0
dr

d2

dsdt

∣∣∣∣
0,0

F (Γr(Σs,t)),

where Γr : R
2 → [0, 1]×X represents the tangent vectors ∂r ∈ Tr[0, 1] and

v ∈ TxX; for instance, we can put Γr(s, t) := (r + s, γ(t)). In order to com-
pare these two expressions, we consider the map

Γ̃r : R
2 → R

2 : (s, t) → (r + s, t).

Then, we have

(Γ̃r(Σs,t) ◦ c) • (c ◦ Σr,t) = Σs+r,t

as bigons in R2. Further, Γr = (id× γ) ◦ Γ̃r, and thus

(Γr(Σs,t) ◦ c) • (id× γ)(c ◦ Σr,t) = (id× γ)(Σs+r,t).

We apply F and obtain

F (Γr(Σs,t)) · F ((id× γ)(Σr,t)) = F ((id× γ)(Σs+r,t)).
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Differentiating, we get

d

ds

∣∣∣∣
s=0

F (Γr(Σs,t)) =
d

ds

∣∣∣∣
s=r

F ((id× γ)(Σs,t)) · F ((id× γ)(Σr,t))
−1.

This is the pullback of the Maurer-Cartan form on U(1) along r 7→ F ((id×
γ)(Σr,t)); hence we have

exp

(∫ 1

0
dr

d

ds

∣∣∣∣
0

F (Γr(Σs,t))

)
= F ((id× γ)(Σ1,t)).

Taking the derivative with respect to t and evaluating at t = 0 gives

∫ 1

0
dr

d2

dsdt

∣∣∣∣
0,0

F (Γr(Σs,t)) =
d

dt

∣∣∣∣
0

F ((id× γ)(Σ1,t)).

It remains to observe that the bigons Σγ∗(γt) = (id× γ∗(γt))(Σ1,1) and (id×
γ)(Σ1,t) are thin homotopic, which is straightforward to see.

Appendix C. Pullback of bundle gerbes along rank-one maps

We provide the following, general result about bundle gerbes and bundle
gerbe morphisms. We need it in the proof of Proposition 4.5.

Theorem C.1. Let M be a smooth manifold, X be a compact smooth
manifold, and ϕ : X →M be a smooth map of rank at most one.

(a) If G is a bundle gerbe with connection over M , then its pullback along
ϕ admits a parallel trivialization, i.e. a 1-isomorphism T : ϕ∗G → I0
in Grb∇(X).

(b) If A : G → G′ is a 1-morphism in Grb∇(M), and T : ϕ∗G → I0 and
T ′ : ϕ∗G′ → I0 are parallel trivializations, then there exists a hermitian
vector bundle E with flat connection, and a 2-isomorphism in Grb∇(X):

ϕ∗G
ϕ∗A

//

T

��

ϕ∗G′

y�
T ′

��

I0
E

// I0

Before proving Theorem C.1, we shall point out the following corollary,
which appeared already as [Wal16, Prop. 3.3.1]. It follows from Theorem C.1
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(a) and the definition of surface holonomy as the exponential of the integral
over X of the 2-form ρ of any trivialization T : ϕ∗G → Iρ.

Corollary C.2. If X is an oriented closed surface and G is a bundle gerbe
with connection over M , then the surface holonomy of G around ϕ is trivial.

□

In the remainder of this section we proof Theorem C.1. We work on the
level of cocycle data, with respect to an open cover {Uα}α∈A ofM . A bundle
gerbe G with connection is given by a triple (B,A, g), where gαβγ : Uα ∩
Uβ ∩ Uγ → U(1), Aαβ ∈ Ω1(Uα ∩ Uβ), and Bα ∈ Ω2(Uα) satisfy the cocycle
conditions

Bβ −Bα = dAαβ , Aβγ −Aαγ +Aαβ = dlog(gαβγ),

and gβγδ gαβδ = gαγδ gαβγ .

We can assume that each cocycle is normalized in the sense that Aαα = 0
and gαβγ = 1 whenever |{α, β, γ}| < 3. With respect to cocycles (B,A, g)
and (B′, A′, g′) for bundle gerbes G and G′, respectively, a 1-morphism A :
G → G′ is given by a pair (Π, G), where Gαβ : Uα ∩ Uβ → U(n) and Πα ∈
Ω1(Uα, u(n)) satisfy

B′
α = Bα + 1

ntr(dΠα)

Πβ +Aαβ = A′
αβ +Ad−1

Gαβ
(Πα) + dlog(Gαβ)

Gαγ · gαβγ = g′αβγ ·Gαβ ·Gβγ ;

see, e.g. [Gaw05]. Here, n is the rank of the vector bundle of the 1-morphism,
and we regard U(1) ⊆ U(n) as the central subgroup, and similarly we view
R ⊆ u(n) as diagonal matrices.

We construct a refinement of the open cover {Uα}α∈A with properties
adapted to the map ϕ : X →M . Let K := ϕ(X) ⊆M be equipped with the
subspace topology, so that {Uα ∩K}α∈A is an open cover of K. By [Sar65,
Theorem 2] and [Chu63, Proposition 1.3] the covering dimension of K is
dim(K) ≤ 2. Thus, there exists a refinement {Vα}α∈B consisting of open
sets Vα ⊆ K and a refinement map r : B → A with Vα ⊆ Ur(α) ∩K, such
that all non-trivial 3-fold intersections are empty. Since Vα is open in K,
there exists an open set Ṽα ⊆M such that Vα = Ṽα ∩K. Now we collect all
open sets Ṽα and all sets Uα \K, which are open since K ⊆M is closed, as
it is a compact subset of a Hausdorff space. This results in a new open cover
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{Wα}α∈C of M that is a refinement of the original one, and no point x ∈ K
is contained in an intersection Wα ∩Wβ ∩Wγ with α, β, γ distinct.

Since we have a refinement, we can assume that our cocycles (B,A, g),
(B′, A′, g′) and (Π, G) are defined with respect to {Wα}α∈C . Now we
prove (a). Let {ψα}α∈C be a smooth partition of unity subordinated to
the open cover {Wα}α∈C . We define

ρα :=
∑

β∈C

ψβAαβ ∈ Ω1(Wα)

and check that

ρα − ρβ = Aαβ +
∑

γ∈C

ψγdlog(gαβγ).

We change our cocycle (B,A, g) by the 1-forms ρα, and obtain an equivalent
cocycle (B̃, Ã, g) with B̃α = Bα + dρα and Ãαβ = Aαβ − ρα + ρβ . Then we
perform the pullback along ϕ. The fact that ϕ is of rank one implies ϕ∗B̃α =
0. Since there are no non-trivial 3-fold intersections, we have ϕ∗gαβγ = 1,
and the above calculation implies ϕ∗Ãαβ = 0. Thus, the pullback results in
(0, 0, 1), which is a cocycle for I0. Translating between cocycle data and
geometric objects, this implies the existence of the parallel trivialization T .

It remains to prove (b). Under the change of local data from (B,A, g)
to (B̃, Ã, g), and similarly for (B′, A′, g′), we obtain new local data (Φ̃, G̃)
for the 1-morphism. Pulling back along ϕ, we obtain local data (ϕ∗Π̃, ϕ∗G̃)
for a 1-endomorphism of (0, 0, 1). Since ϕ is of rank one, we have d(ϕ∗Π̃) =
ϕ∗(dΠ̃) = 0, and the absence of non-trivial 3-fold intersections implies the
usual cocycle condition for ϕ∗G̃. Thus, (ϕ∗Π̃, ϕ∗G̃) is local data for a vector
bundle E with flat connection over X.
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Table of Notation

LBG loop space brane geometry,
Section 2.1

TBG target space brane geometry,
Section 2.2

PX the space of smooth paths in X
with sitting instants

γ1 ⋆ γ2 denotes the concatenation of
paths

γ denotes the reversed path

cx denotes the constant path at a
point x

γ1 ∪ γ2 the loop γ2 ⋆ γ1, when γ1 and γ2
have a common initial point
and a common end point

dγ1,γ2 the parallel transport of a
superficial connection along a
(arbitrary) thin path
connecting γ1 with γ2

∆(E ,F) a vector bundle obtained from
two twisted vector bundles,
see (4)

V the complex conjugate
vector space

V ∗ the dual vector space,
V ∗ := Hom(V,C)

φ∗ the adjoint of a linear
map between complex
inner product spaces

S1 the circle, S1 = R/Z.

ι1 the map
[0, 1] → S1 : t 7→ 1

2 t

ι2 the map
[0, 1] → S1 : t 7→ 1− 1

2 t

ix for x ∈ X, is the map
[0, 1] → X × [0, 1] : t 7→
(x, t)

jt for t ∈ [0, 1] and some
space X, is
X → X × [0, 1] : x 7→

(x, t)

f∨ for f : X → C∞(Y, Z),
denotes the adjoint map
X × Y → Z : (x, y) 7→
f(x)(y).
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Différ. Catég., LIII:162–210, 2012.

[Wal16] Konrad Waldorf, “Transgression to loop spaces and its inverse,
II: Gerbes and fusion bundles with connection”. Asian J. Math.,
20(1):59–116, 2016.

Fachbereich Mathematik

Bereich für Algebra und Zahlentheorie

Bundesstrasse 55, D-20146 Hamburg, Germany

E-mail address: severin.bunk@uni-hamburg.de

Universität Greifswald

Institut für Mathematik und Informatik

Walther-Rathenau-Str. 47, D-17487 Greifswald, Germany

E-mail address: konrad.waldorf@uni-greifswald.de


	Introduction
	Brane geometries
	Algebraic structures in loop space brane geometry
	Transgression
	Regression
	Equivalence of target space and loop space perspectives
	Appendix Vector bundles and algebra bundles over diffeological spaces
	Appendix Fiber integration for smooth 2-functors
	Appendix Pullback of bundle gerbes along rank-one maps
	Table of Notation
	References

