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Eight-dimensional non-geometric heterotic strings with gauge al-
gebra e8e7 were constructed by Malmendier and Morrison as het-
erotic duals of F-theory on K3 surfaces with Λ1,1 ⊕ E8 ⊕ E7 lat-
tice polarization. Clingher, Malmendier and Shaska extended these
constructions to eight-dimensional non-geometric heterotic strings
with gauge algebra e7e7 as heterotic duals of F-theory on Λ1,1 ⊕
E7 ⊕ E7 lattice polarized K3 surfaces. In this study, we analyze
the points in the moduli of non-geometric heterotic strings with
gauge algebra e7e7, at which the non-Abelian gauge groups on the
F-theory side are maximally enhanced. The gauge groups on the
heterotic side do not allow for the perturbative interpretation at
these points. We show that these theories can be described as de-
formations of the stable degenerations, as a result of coincident
7-branes on the F-theory side. From the heterotic viewpoint, this
effect corresponds to the insertion of 5-branes. These effects can
be used to understand nonperturbative aspects of nongeometric
heterotic strings.

Additionally, we build a family of elliptic Calabi–Yau 3-folds by
fibering elliptic K3 surfaces, which belong to the F-theory side of
the moduli of non-geometric heterotic strings with gauge algebra
e7e7, over P

1. We find that highly enhanced gauge symmetries arise
on F-theory on the built elliptic Calabi–Yau 3-folds.

1 Introduction 1268

2 Review of non-geometric heterotic strings with unbroken
e7e7 algebra, F-theory, and extremal K3 surfaces 1272

3 Special points in the moduli of eight-dimensional
non-geometric heterotic strings and F-theory duals
with enhanced gauge groups 1281

1267



✐

✐

“4-Kimura” — 2022/6/4 — 0:33 — page 1268 — #2
✐

✐

✐

✐

✐

✐

1268 Yusuke Kimura

4 Jacobian Calabi–Yau 3-folds and F-theory
compactifications 1291

5 Conclusions 1308

Appendix A Elliptic fibrations of attractive K3 S[2 0 2] 1310

Appendix B Types of the singular fibers of extremal
rational elliptic surfaces 1311

References 1312

1. Introduction

F-theory/heterotic duality [1–5] states that F-theory [1–3] compactification
on an elliptic K3 fibered Calabi–Yau (n+ 1)-fold describes a theory phys-
ically equivalent to heterotic compactification1 on an elliptic Calabi–Yau
n-fold. Non-perturbative aspects of heterotic theory can be studied by uti-
lizing this duality. F-theory/heterotic duality is strictly formulated when the
stable degeneration limit2 [5, 17] is taken on the F-theory side in which K3
fibers split into pairs of half K3 surfaces.

Recently, eight-dimensional non-geometric heterotic strings with unbro-
ken e8e7 algebra were constructed by Malmendier and Morrison [24] by uti-
lizing the F-theory/heterotic duality. The Narain space [25]

(1) D2,18/O(Λ2,18)

gives the moduli space of eight-dimensional heterotic strings, and the double
cover of this space,

(2) D2,18/O
+(Λ2,18),

is equivalent to the moduli space of F-theory on elliptic K3 surfaces with
a section. This is the statement of F-theory/heterotic duality. Malmendier
and Morrison considered F-theory compactifications on elliptic K3 surfaces
with H ⊕ E8 ⊕ E7 lattice polarization, namely elliptically fibered K3 sur-
faces with a type II∗ fiber and a type III∗ fiber with a global section, and

1Recent progress of heterotic strings can be found, for example, in [6–16].
2Stable degenerations in F-theory/heterotic duality have been studied recently,

for example, in [18–23].
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they constructed the moduli of heterotic strings with unbroken e8e7 algebra
as the heterotic duals of them on the 2-torus. The moduli space of the non-
geometric heterotic strings with unbroken e8e7 algebra constructed in [24] is
given by

(3) D2,3/O
+(L2,3).

Here L2,3 denotes the orthogonal complement of H ⊕ E8 ⊕ E7 inside the
K3 lattice ΛK3, and the non-geometric heterotic strings constructed in [24]
possess O+(L2,3)-symmetry. Here O+(L2,3)3 mixes the complex structure
moduli, the Kähler moduli and the moduli of Wilson line values. There-
fore, the resulting heterotic strings do not have a geometric interpretation4;
for this reason, the resulting heterotic strings are called non-geometric het-
erotic strings. A single Wilson line expectation value is non-zero for the non-
geometric heterotic strings with unbroken e8e7 gauge algebra as constructed
in [24]. The mathematical results of Kumar [28] and Clingher and Doran
[29, 30], which gave the Weierstrass equations of elliptic K3 surfaces with a
global section with E8E7 singularity, the coefficients of which are expressed
as Siegel modular forms of even weight, were used in their construction.

Clingher, Malmendier, and Shaska [31] extended the construction of non-
geometric heterotic strings by Malmendier and Morrison to non-geometric
heterotic strings with unbroken e7e7 algebra. F-theory compactifications on
elliptic K3 surfaces with H ⊕ E7 ⊕ E7 lattice polarization, namely K3 sur-
faces with a global section with two type III∗ fibers, were considered, and
eight-dimensional non-geometric heterotic strings on T 2 were obtained as the
heterotic duals in their construction. The moduli of the resulting heterotic
strings is parametrized by the space

(4) D2,4/O
+(L2,4).

HereD2,4 is the symmetric space of O(2, 4), namely,D2,4 is defined as O(2)×
O(4)\O(2, 4). The symmetric space D2,4 is also referred to as the bounded
symmetric domain of type IV . Here L2,4 denotes the orthogonal complement
ofH ⊕ E7 ⊕ E7 in the K3 lattice ΛK3. The complex structure moduli, Kähler
moduli, and the moduli of Wilson line expectation values are mixed under
the symmetry O+(L2,4), thus the heterotic strings constructed in [31] also do
not have a geometric interpretation. Two Wilson line expectation values are

3The authors of [26] discussed connections of K3 surfaces with lattice polariza-
tions, non-geometric heterotic strings, and O+(Λ2,2)-modular forms.

4The authors of [27] discussed non-geometric type II theories.
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non-trivial in non-geometric heterotic strings with unbroken e7e7 algebra.
See also [32–40] for recent progress on non-geometric heterotic strings.

In this note, we analyze theories that correspond to the points in the
moduli of eight-dimensional non-geometric heterotic strings on the 2-torus
T 2 constructed in [31], at which the ranks of the non-Abelian gauge groups
are enhanced to 18 on the F-theory side. These are the maximal enhance-
ments of the non-Abelian gauge groups on the F-theory side. We mainly
consider E8 × E8 heterotic strings, rather than SO(32) heterotic strings.
(However, we do consider some applications to SO(32) heterotic strings.) As
only up to an E8 × E8 × U(1)4 gauge group can arise in eight-dimensional
E8 × E8 heterotic strings compactified on the 2-torus [39], a consideration of
the ranks of the non-Abelian gauge groups reveals that the gauge groups of
the dual heterotic theories of these F-theory models do not allow for a pertur-
bative interpretation. These heterotic strings include the non-perturbative
effects of 5-branes. We find that these theories can be described as the defor-
mations of the heterotic strings from the stable degeneration limit, in which
the F-theory/heterotic duality strictly holds, and that these deformations
result from the coincident 7-branes on the F-theory side. In the heterotic
language, the effect of coincident 7-branes corresponds to the presence of
5-branes.

When the non-Abelian gauge groups on F-theory on an elliptic K3 sur-
face are enhanced to rank 18, K3 surfaces become extremal K3 surfaces. A
K3 surface is called attractive, when it has the Picard number ρ = 20, which
is the highest value for a complex K3 surface. A complex elliptic K3 sur-
face f : X → P1 with a section is said to be extremal if the Picard number
of X is 20 and the Mordell–Weil group MW(X, f) is finite. Owing to the
classification result in [41], the complex structures of extremal K3 surfaces
on which non-Abelian gauge groups on F-theory compactifications are en-
hanced to rank 18 in the moduli can be determined, and this enables us to
deduce the Weierstrass equations of extremal K3 surfaces. By analyzing the
deduced Weierstrass equations, we study F-theory compactifications and the
non-geometric heterotic duals at these special points in the moduli.

We also discuss applications to SO(32) heterotic strings in this study.
We deduce the Weierstrass equations of elliptic K3 surfaces appearing as
the compactification spaces of the F-theory duals of some SO(32) heterotic
strings, which are obtained as the transformations of e7e7 non-geometric
heterotic strings.

In addition, we consider fibering elliptic K3 surfaces that belong to the
F-theory side of the moduli of eight-dimensional e7e7 non-geometric het-
erotic strings, over P1, to build elliptically fibered Calabi–Yau 3-folds with
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a global section. We study F-theory compactifications on the resulting el-
liptic Calabi–Yau 3-folds5. We find that highly enhanced gauge groups arise
in these compactifications. It is mainly local F-theory model buildings that
have been discussed in recent studies [61–64]. However, the global aspects of
the geometry need to be considered to discuss the issues of gravity. We in-
vestigate F-theory on elliptically fibered Calabi–Yau 3-folds from the global
perspective in this study.

A similar organization can be found in [39].
This note is structured as follows. In Section 2, we briefly review F-theory

compactifications, and we also review attractive K3 surfaces and extremal
K3 surfaces that are technically necessary to analyze special points in the
moduli of eight-dimensional non-geometric heterotic strings and F-theory
duals. We also review the construction of non-geometric heterotic strings
with unbroken e7e7 algebra in [31].

In Section 3, we discuss the special points in the eight-dimensional non-
geometric heterotic moduli with unbroken e7e7 at which the ranks of the
non-Abelian gauge symmetries on the F-theory side are enhanced to 18.
The gauge groups in the heterotic strings which correspond to these points
do not allow for the perturbative interpretations. We demonstrate that these
theories can be seen as deformations of the stable degenerations as a result of
the coincident 7-branes on the F-theory side. We also discuss applications to
SO(32) heterotic strings. We derive the Weierstrass equations of K3 elliptic
fibrations appearing as the compactification spaces of the F-theory duals of
some SO(32) heterotic strings. We determine the gauge groups that arise
on F-theory compactifications, including the global structures of the gauge
groups. Some of the cases of elliptically fibered K3 surfaces with extended
gauge groups in Section 3.3 can also be found in [57].

We build elliptically fibered Calabi–Yau 3-folds in Section 4 by fiber-
ing examples of elliptic K3 surfaces, which belong to the F-theory side
of the moduli of eight-dimensional unbroken e7e7 non-geometric heterotic
strings, over P1. We analyze F-theory compactifications on the resulting el-
liptic Calabi–Yau 3-folds. First, we consider the higher-dimensional analog
of the construction of genus-one fibered K3 surfaces without a global sec-
tion6 to build genus-one fibered Calabi–Yau 3-folds without a section. This

5Recent discussions of F-theory compactifications on elliptic Calabi–Yau 3-folds
can be found, e.g., in [39, 42–56]. The authors of [58–60] discussed F-theory on
Calabi–Yau 3-folds with terminal singularities.

6Recent studies of F-theory compactifications on genus-one fibered spaces lacking
a global section can be found in, for example, [58, 65–85].
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construction ensures that the resulting 3-folds in fact satisfy the Calabi–
Yau condition. Similar constructions of genus-one fibered Calabi–Yau 4-folds
without a section using double covers can be found in [76]. Taking the Jaco-
bian fibration7 of the resulting genus-one fibered Calabi–Yau 3-folds yields
elliptically fibered Calabi–Yau 3-folds with a global section. K3 fibers of
these elliptic Calabi–Yau 3-folds belong to the F-theory side of the moduli
of eight-dimensional non-geometric heterotic strings with unbroken e7e7 al-
gebra. Therefore, the obtained elliptic Calabi–Yau 3-folds can be seen as the
fibering of such K3 surfaces over the base curve P1. We deduce the gauge
groups on F-theory compactifications on the elliptic Calabi–Yau 3-folds, and
we find that some specific models do not have a U(1) gauge field. We de-
termine the Mordell–Weil groups of some models, and we obtain the global
structures of the gauge groups of these models. We also deduce candidate
matter spectra on F-theory on the constructed elliptically fibered Calabi–
Yau 3-folds that satisfy the six-dimensional anomaly cancellation condition.
We determine these candidate matter spectra directly from the global defin-
ing equations of the elliptically fibered Calabi–Yau 3-folds. We state our
concluding remarks in Section 5.

2. Review of non-geometric heterotic strings with unbroken

e7e7 algebra, F-theory, and extremal K3 surfaces

2.1. Review of F-theory compactifications

We briefly review F-theory compactifications on elliptic K3 surfaces. A simi-
lar review can be found in [39]. F-theory is compactified on spaces that admit
a genus-one fibration. The complex structure of the genus-one fiber is iden-
tified with the axio-dilaton in F-theory compactification. This formulation
allows the axio-dilaton to have SL(2,Z) monodromy. Genus-one fibrations
do not necessarily admit a global section; there are situations in which they
have a global section, and those in which they do not. F-theory compacti-
fications on elliptic fibrations with a global section have been investigated
in recent studies, for example, in [21, 87–112]. Although Calabi–Yau genus-
one fibration lacking a global section cannot be expressed in the Weierstrass
form, when the Jacobian fibration of it exists, the Jacobian fibration yields
an elliptic fibration with a global section. Calabi–Yau genus-one fibration
Y and the Jacobian fibration J(Y ) have the identical types of the singular
fibers, and they have the same discriminant loci.

7[86] discussed the Jacobians of elliptic curves.



✐

✐

“4-Kimura” — 2022/6/4 — 0:33 — page 1273 — #7
✐

✐

✐

✐

✐

✐

Unbroken E7 × E7 nongeometric heterotic strings 1273

Genus-one fibers degenerate over the codimension 1 locus in the base
space, and this locus is referred to as the discriminant locus. Such degenerate
fibers are called the singular fibers. When genus-one fiber degenerates, it
becomes either P1 with a single singularity, or a sum of smooth P1’s meeting
in specific ways. The types of the singular fibers of genus-one fibered surfaces
were classified by Kodaira [113, 114]. Methods to determine the singular
fibers of elliptic surfaces can be found in [115, 116].

In F-theory compactifications on genus-one fibrations, the non-Abelian
gauge groups that form on the 7-branes correspond to the singular fibers of
genus-one fibrations [3, 117]. The correspondences of the singular fibers and
the singularity types of the compactification spaces are shown in Table 1 be-
low. The corresponding monodromies and j-invariants of the singular fibers
are also presented in the table.

Fiber type J-invariant Monodromy Order of Monodromy Singularity Type

I∗0 regular −
(

1 0

0 1

)

2 D4

Im ∞
(

1 m

0 1

)

infinite Am−1

I∗m ∞ −
(

1 m

0 1

)

infinite Dm+4

II 0

(

1 1

−1 0

)

6 none.

II∗ 0

(

0 −1

1 1

)

6 E8

III 1728

(

0 1

−1 0

)

4 A1

III∗ 1728

(

0 −1

1 0

)

4 E7

IV 0

(

0 1

−1 −1

)

3 A2

IV ∗ 0

(

−1 −1

1 0

)

3 E6

Table 1: Monodromies, j-invariants and the corresponding types of the sin-
gularities of singular fibers. “Regular” for j-invariant of I∗0 fiber means that
j-invariant can take any finite value in C for I∗0 fiber.
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The types of singular fibers of elliptic surfaces can be determined from
the vanishing orders of the coefficients of the Weierstrass equations. The cor-
respondences of the fiber types and the vanishing orders of the Weierstrass
coefficients are shown in Table 2.

Fiber Type Ord(f) Ord(g) Ord(∆)

I0 ≥ 0 ≥ 0 0

In (n ≥ 1) 0 0 n

II ≥ 1 1 2

III 1 ≥ 2 3

IV ≥ 2 2 4

I∗0 ≥ 2 3 6

2 ≥ 3

I∗m (m ≥ 1) 2 3 m+ 6

IV ∗ ≥ 3 4 8

III∗ 3 ≥ 5 9

II∗ ≥ 4 5 10

Table 2: List of the types of the singular fibers, and the correspond-
ing vanishing orders of the coefficients, f, g, of the Weierstrass equation
y2 = x3 + f x+ g, and the orders of the discriminant, ∆.

When an elliptic fibration has a global section, the set of sections form
a group, known as the Mordell–Weil group. The rank of the Mordell–Weil
group gives the number of the U(1) gauge fields in F-theory compactification
on the elliptic fibration [3].

The second integral cohomology group H2(S,Z) of K3 surface S includes
the information of the geometry of the K3 surface. This group has the lattice
structure, and it is called the K3 lattice, ΛK3. The K3 lattice is unimodular,
even lattice of signature (3,19), and it is isometric to the direct sum of two
E8’s and three hyperbolic planes [118]

(5) ΛK3
∼= E2

8 ⊕H3.
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The group of divisors (modulo algebraic equivalence) constitutes a sublat-
tice inside the K3 lattice, called the Néron-Severi lattice NS(S). When a K3
surface has an elliptic fibration with a global section, an elliptic fiber and a
global section generate the hyperbolic plane H inside the Néron-Severi lat-
tice. K3 surface S admitting an elliptic fibration with a section is equivalent
to the condition that the Néron-Severi lattice NS(S) contains the hyper-
bolic plane H [119]. When an elliptic K3 surface has the singular fibers,
the Néron-Severi lattice NS(S) contains the ADE lattices that correspond
to the types of the singular fibers. For example, that a K3 surface S is
H ⊕ E7 ⊕ E7-lattice polarized means that the Néron-Severi lattice NS(S)
includes the lattice H ⊕ E7 ⊕ E7 where the hyperbolic plane H is generated
by the fiber class and the class of the section of the elliptic fibration. When an
elliptic K3 surface has an elliptic fibration with a section the singular fibers
of which include two type III∗ fibers (or worse), then its Néron-Severi lat-
tice contains the lattice H ⊕ E7 ⊕ E7 where the fiber class and the class of
the section of the elliptic fibration generate H. One must require that the
image of the lattice H embedded inside the Néron-Severi lattice includes
a pseudo-ample class to ensure that it corresponds to an elliptic fibration
with a section as mentioned in [24]. K3 surfaces with H ⊕ E7 ⊕ E7 lattice
polarization are parametrized by the bounded symmetric domain of type
IV , D2,4, modded out by the symmetry of the orthogonal complement of
the lattice H ⊕ E7 ⊕ E7 inside the K3 lattice ΛK3:

(6) D2,4/O
+(L2,4).

L2,4 denotes the orthogonal complement of H ⊕ E7 ⊕ E7 inside the K3 lat-
tice ΛK3. Because the K3 lattice ΛK3 is isometric to E2

8 ⊕H3, L2,4 can also
be defined as the orthogonal complement of E7 ⊕ E7 in the lattice E2

8 ⊕H2.
By utilizing the F-theory/heterotic duality, eight-dimensional non-

geometric heterotic strings with unbroken e7e7, the moduli space of which is
equivalent to (6) were constructed in [31]. In this note, we study the points in
the moduli of such non-geometric heterotic strings at which the non-Abelian
gauge symmetries are enhanced to rank 18 on the F-theory side.

2.2. Construction of e7e7 non-geometric heterotic strings by
Clingher, Malmendier, and Shaska

We briefly review the construction of eight-dimensional non-geometric het-
erotic strings with unbroken e7e7 by Clingher, Malmendier and Shaska [31].
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As stated previously, the moduli of elliptic K3 surfaces with a global
section with two E7 singularities, namely the K3 surfaces with H ⊕ E7 ⊕ E7

lattice polarization, are parameterized by the following space:

(7) D2,4/O
+(L2,4).

The bounded symmetric domain of type IV , D2,4, is known to be isomorphic
to H2 [120]:

(8) H2
∼= D2,4.

H2 is defined as
(9)

H2 :=
{

(

z1 z2
z3 z4

)

∈M2(C) | 4Im z1Im z4 > |z2 − z3|2 and Im z4 > 0
}

.

As mentioned in [31], H2 is a generalization of the Siegel upper-half space
H2 in the following sense:

(10) H2 =
{

ω ∈ H2 | ωt = ω
}

.

The modular group Γ acting on H2 is defined as

(11) Γ =
{

G ∈ GL4(Z[i]) | G†

(

0 12
−12 0

)

G =

(

0 12
−12 0

)

}

.

12 denotes the 2 × 2 identity matrix.

(

A B
C D

)

in the modular group Γ acts

on ω ∈ H2 as

(12)

(

A B
C D

)

· ω = (Aω +B)(C ω +D)−1.

There is an involution, T , that acts on H2 as

(13) T · ω = ωt.

The group ΓT is defined to be the semi-direct product of the modular group
Γ and < T >:

(14) ΓT := Γ⋊ < T > .

There is an isomorphism ΓT
∼= O+(L2,4), and this induces the isomorphism

(8) [120].
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Under the isomorphism ΓT
∼= O+(L2,4), the ring of O+(L2,4)-modular

forms corresponds to the ring of ΓT -modular forms of even characteristic
[121], generated by the five modular forms Jk of weights 2k, k = 2, · · · , 6
[31]. See [31] for definitions of the modular forms Jk. In a special situa-
tion, the modular forms J2, J3, J5, J6 restrict to Igusa’s generators [122],
ψ4, ψ6, χ10, χ12 (and J4 vanishes in this situation) [31].

The periods of H ⊕ E7 ⊕ E7 lattice polarized K3 surfaces S in H2(S,Z)
determine points in H2. The Weierstrass coefficients of such elliptically
fibered K3 surfaces were given in terms of ΓT -modular forms of even char-
acteristic [31].

The Weierstrass equation of a K3 surface with H ⊕ E7 ⊕ E7 lattice po-
larization is given by [31]:

(15) y2 = x3 + (e t4 + c t3 + a t2)x+ t7 + g t6 + (d e+ f) t5 + c d t4 + b t3.

Up to some scale factors, the coefficients are given in terms of the modular
forms J2, J3, J4, J5, J6 [31]:

c = −J5(ω), d = −1
3J4(ω), e = −3J2(ω)(16)

f = J6(ω), g = −2J3(ω)

a = −3d2 = −1

3
J4(ω)

2, b = −2d3 =
2

27
J4(ω)

3.

The elliptically fibered K3 surface determines a point in D2,4, and this also
determines a point in H2 under the isomorphism (8), which we denote by
ω.

Now, consider a manifold M and a line bundle Λ on M , and choose
sections a, b, c, d, e, f, g of the line bundles Λ⊗16, Λ⊗24, Λ⊗10, Λ⊗8, Λ⊗4,
Λ⊗12 and Λ⊗6, respectively. When the sections a, b, c, d, e, f, g are identi-
fied as (16), because ΓT is isomorphic to O+(L2,4), the compactification
on M (which is the 2-torus when we consider 8D heterotic strings) gives a
heterotic string theory with O+(L2,4)-symmetry. The moduli space of eight-
dimensional heterotic strings on the 2-torus T 2 decomposes into the prod-
uct of the complex structure moduli, the Wilson line expectation values
and Kähler moduli, in a suitable limit [123]. The complex structure mod-
uli, the Wilson line expectation values and Kähler moduli are mixed under
the O+(L2,4)-symmetry. This represents the construction of non-geometric
heterotic strings with e7e7 gauge algebra in [31].

The locus in the moduli in which the singularity ranks of elliptic K3
surfaces are enhanced satisfies 5-brane solutions on the heterotic side. The
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generic 5-brane solutions of non-geometric heterotic strings with e7e7 gauge
algebra are discussed in [31].

Elliptic K3 surfaces with the lattice polarization H ⊕ E7 ⊕ E7 were de-
scribed in [29] as the minimal resolution of the quartic hypersurfaces in P3

given by the following equations:

Y 2ZW − 4X3Z + 3αXZW 2 + βZW 3 + γXZ2W(17)

− 1

2
(ζW 4 + δZ2W 2) + εXW 3 = 0,

where [X : Y : Z :W ] are homogeneous coordinates on P3. α, β, γ, δ, ε, ζ are
parameters, and (γ, δ) ̸= (0, 0), and (ε, ζ) ̸= (0, 0).

Making the following substitutions

X = tx(18)

Y = y

W = 4t3

Z = 4t4

yields the Weierstrass equation with two type III∗ fibers as follows [31] :

(19) y2 = x3 + 4t3 (γt2 − 3αt+ ε)x− 8t5 (δt2 + 2βt+ ζ).

Type III∗ fibers are at t = 0 and at t = ∞.
K3 surface with the lattice polarization H ⊕ E7 ⊕ E7 given by (17) al-

ways admits another fibration with a type II∗ fiber and a type I∗2 fiber, as
shown in [31], and the Weierstrass equation of this fibration is:

y2 =x3 − 1

3

[

9αt4 + 3(γζ + δε) t3 + (γε)2 t2
]

x

+
1

27

[

27t7 − 54βt6 + 27(αγε+ δζ) t5 + 9γε(δε+ γζ) t4 + 2(γε)3 t3
]

.

(20)

TheWeierstrass equation (20) was used in [31] to construct eight-dimensional
non-geometric heterotic strings with unbroken e7e7. (Compare the equation
(20) with the equation (15).) Although the presence of two E7 singularities
in the Weierstrass equation is explicit in the equation (19), as stated in [31],
the Weierstrass equation (19) does not necessarily extend over the entire
parameter space. For this reason, the Weierstrass equation (20) was instead
used to construct non-geometric heterotic strings with unbroken e7e7 in [31].
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The K3 surface with the lattice polarization H ⊕ E7 ⊕ E7 (17) also ad-
mits another elliptic fibration further, the singular fibers of which include
a type I∗8 fiber (or worse) [31]. This alternate fibration relates to SO(32)
heterotic string. The Weierstrass equation of this fibration is obtained by
making the following substitutions into the equation (17) [31]:

X = tx3(21)

Y =
√
2x2y

W = 2x3

Z = 2x2(−εt+ ζ).

The Weierstrass equation is [31] :

(22) y2 = x3 +Ax2 +Bx,

where

A = t3 − 3αt− 2β(23)

B = (γt− δ)(εt− ζ).

The discriminant is given by

(24) ∆ = B2 (A2 − 4B).

2.3. Extremal K3 surfaces

By the Shioda–Tate formula [124–126], the following equality holds for an
elliptic surface S with a global section:

(25) rkL+ rkMW + 2 = ρ(S).

We have used rk L to denote the rank of the root lattice L generated by
the fiber components of the reducible singular fibers of an elliptic surface
S not meeting the zero section. The intersection matrix of root lattice L
corresponds to a sum of ADE Dynkin diagrams. The Picard number ρ(S)
ranges from 2 to 20 for an elliptic K3 surface with a section. Thus, the rank
of the singularity of an elliptic K3 surface S with a section is bounded by:

(26) rkL = ρ(S)− 2− rkMW ≤ 18− rkMW.

Therefore, the rank of the singularity of an elliptic K3 surface S with a
section can be 18 at the highest, and this value is achieved precisely when



✐

✐

“4-Kimura” — 2022/6/4 — 0:33 — page 1280 — #14
✐

✐

✐

✐

✐

✐

1280 Yusuke Kimura

the Picard number attains the highest value 20, and the Mordell–Weil rank
is 0. Physically, this means that the rank of the gauge group on F-theory
compactification on an elliptic K3 surface is at most 18, and when the non-
Abelian gauge group has the rank 18, it does not have a U(1) gauge field.

K3 surfaces with Picard number 20 are called attractive K3 surfaces8.
The complex structure moduli of the attractive K3 surfaces is known to
be parametrized by three integers. The transcendental lattice T (S) of a K3
surface S is the orthogonal complement of the Néron–Severi lattice NS(S)
inside the K3 lattice ΛK3, and the transcendental lattices T (S) of attractive
K3 surfaces are positive-definite, even 2 × 2 lattices. The complex structure
of an attractive K3 surface is determined by the transcendental lattice [128,
129]. The intersection form of the transcendental lattice of an attractive K3
surface can be transformed into the following form under the GL2(Z) action:

(27)

(

2a b
b 2c

)

.

Here a, b, c are integers, a, b, c ∈ Z, and satisfy the relations:

(28) a ≥ c ≥ b ≥ 0.

Thus, the triplet of integers, a, b, c, parameterizes the complex structure
moduli of the attractive K3 surfaces. We denote an attractive K3 surface,
whose transcendental lattice has the intersection form (27) as S[2a b 2c] in
this note.

An elliptic attractive K3 surfaces with a section is said to be extremal
when it has Mordell–Weil rank 0. This condition is equivalent to an elliptic
K3 surface with a section having singularity rank 18. Thus, the non-Abelian
gauge group forming in F-theory compactification on an elliptic K3 surface
has rank 18 precisely when the K3 surface is extremal. In Section 3, we
study the points in the moduli of eight-dimensional non-geometric heterotic
strings with unbroken e7e7 algebra at which the non-Abelian gauge groups
are enhanced to rank 18 on the F-theory side. Elliptic K3 surfaces on the
F-theory side become extremal at these points.

Elliptically fibered K3 surfaces generally admit distinct elliptic fibra-
tions9, and distinct elliptic fibrations have different singularity types and
different Mordell–Weil groups. Physically, this means that the gauge groups

8We refer to complex K3 surfaces with the highest Picard number 20 as attractive
K3 surfaces, following the convention for the term used in [127].

9Genus-one fibered K3 surfaces in general admit both genus-one fibrations with-
out a section, as well as elliptic fibrations with a section. However, as shown in
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and U(1) gauge fields that arise in F-theory compactification on an elliptic
K3 surface with the fixed complex structure vary, because there still remains
freedom to choose a fibration structure among the distinct choices of elliptic
fibrations of that elliptic K3 surface10.

The attractive K3 surface whose transcendental lattice has the intersec-
tion form

(29)

(

2 0
0 2

)

is particularly relevant to the contents of this study. The elliptic fibrations
of the attractive K3 surface S[2 0 2] were classified in [131] and there are 13
types. We list these 13 types of elliptic fibration of the attractive K3 surface
S[2 0 2] in Appendix A.

3. Special points in the moduli of eight-dimensional

non-geometric heterotic strings and F-theory duals with

enhanced gauge groups

3.1. Summary

There are finitely many points in the moduli of eight-dimensional non-
geometric heterotic strings with unbroken e7e7 algebra, at which the non-
Abelian gauge groups on the F-theory side are enhanced to rank 18.

In Section 3.2, we show that the heterotic strings at these special points
in the moduli can be described as deformations of the stable degenerations,
as a result of the coincident 7-branes on the F-theory side. This effect can be
seen as the insertion of 5-branes in the heterotic language. We also discuss
applications to SO(32) heterotic strings.

As stated in Section 2.3, K3 surfaces become extremal on the F-theory
side at these points in the moduli. The complex structures of the extremal K3
surfaces were classified in [41], and using this result, the complex structures
of the extremal K3 surfaces at these points in the moduli can be determined.
This enables us to determine the Weierstrass equations of the extremal K3
surfaces that appear as compactification spaces on the F-theory side in the

[130], the attractive K3 surface with discriminant four, S[2 0 2], only admits elliptic
fibrations with a global section. The authors of [105] discussed F-theory compacti-
fication on the surface S[2 0 2], in relation to the appearances of the U(1) factor.

10This point is discussed in [19].
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moduli. By using this approach, we study the physics of the theories at the
enhanced special points in the moduli.

In eight-dimensional E8 × E8 heterotic strings on the 2-torus T 2, only
the gauge groups up to E8 × E8 × U(1)4 can arise in the perturbative de-
scription [39]. This implies that the heterotic dual of F-theory on an extremal
elliptic K3 surface with the non-Abelian gauge group of rank 18 does not
allow for the perturbative interpretation of the gauge group. This can reflect
some non-perturbative aspects of the non-geometric heterotic strings.

3.2. F-theory on extremal K3 surfaces and non-geometric
heterotic duals in the moduli

We discuss the points in the moduli of non-geometric heterotic strings with
unbroken e7e7 algebra, at which the non-Abelian gauge symmetries on the F-
theory side are enhanced to rank 18. K3 surfaces as compactification spaces
on the F-theory side become extremal at these points. There are finitely
many such points in the moduli, and the complex structures and the singu-
larity types of the extremal K3 surfaces that appear in the moduli can be
determined from Table 2 of [41]. Among these, those of the singularity types,
which include E8E7, are studied in [39]. We do not discuss these extremal
K3 surfaces in this note. Instead, we discuss the extremal K3 surfaces that
belong to the moduli, the singularity types of which include E2

7
11.

The singularity types of the extremal K3 surfaces in the moduli of K3
surfaces with H ⊕ E7 ⊕ E7 lattice polarization, which do not include E8, are
as follows [41]:

(30) E2
7A3A1, E

2
7D4, E

2
7A4, E

2
7A

2
2.

We study F-theory on the extremal K3 surfaces possessing the first two
singularity types in this note.

Because the perturbative eight-dimensional heterotic strings on T 2 can
have up to E8 × E8 × U(1)4 gauge group, the heterotic duals of F-theory on
these extremal K3 surfaces do not allow for the perturbative interpretation
of these gauge groups [39]. As we demonstrate in Sections 3.2.1 and 3.2.2,
these theories can be seen as deformations of the stable degenerations as a
result of the coincident 7-branes on the F-theory side. These theories satisfy
multiple 5-brane solutions on the heterotic side.

11The singularity types of extremal K3 surfaces can also be enhanced to E8D7,
as discussed in [31].
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3.2.1. Extremal K3 surface with E2
7A3A1 singularity. The complex

structure of the extremal K3 surface with E2
7A3A1 singularity is uniquely

determined, and its transcendental lattice has the following intersection form
[41]:

(31)

(

4 0
0 2

)

.

Therefore, the attractive K3 surface S[4 0 2]
12 admits an extremal fibration

with the singularity type E2
7A3A1, and F-theory on this extremal fibration

has non-geometric heterotic dual with unbroken e7e7. The Weierstrass form
of this extremal fibration can be found in [23] as

(32) y2 = x3 − 9

16
(t2 + s2 +

10

3
ts) t3s3 x+

9

4
t5s5 (

1

4
t2 +

1

4
s2 +

7

18
ts),

the singular fibers of which consist of two type III∗ fibers, a type I4 fiber,
and a type I2 fiber. The above Weierstrass equation was obtained in [23] as
the quadratic base change of an extremal rational elliptic surface. Geomet-
rically, the quadratic base change of a rational elliptic surface is to glue a
pair of identical rational elliptic surfaces. Extremal rational elliptic surfaces
are the rational elliptic surfaces with a global section, the singularity types
of which have rank 8. The types of singular fibers of the extremal ratio-
nal elliptic surfaces were classified in [133]. The fiber types of the extremal
rational elliptic surfaces are listed in Appendix B.

The complex structures of extremal rational elliptic surfaces are uniquely
specified by the fiber types, except those with two fibers of type I∗0 (see [133]).
The complex structures of extremal rational elliptic surfaces with two fibers
of type I∗0 depend on the j-invariants of the fibers. The j-invariant j of an
extremal rational elliptic surface with two type I∗0 fibers is constant over
the base, and the fixed j specifies the complex structure [133]. In this study,
we denote, for example, the extremal rational elliptic surface with a type
III∗ fiber and a type III fiber as X[III, III∗]. We simply use n to denote a
singular fiber of type In andm∗ to represent a fiber of type I∗m. The extremal
rational elliptic surface with a type III∗ fiber, a type I2 fiber and a type I1
fiber is denote as X[III∗, 2,1]. Because the complex structure of an extremal
rational elliptic surface with two type I∗0 fibers depends on the j-invariant of
the elliptic fibers, we use X[0∗, 0∗](j) to denote this extremal rational elliptic
surface.

12The elliptic fibrations and the Weierstrass equations of the attractive K3 surface
S[4 0 2] were obtained in [132].
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Now we demonstrate that F-theory on an extremal K3 surface (32) can
be seen as a deformation of stable degeneration, owing to an effect of coin-
cident 7-branes. As deduced in [23], the K3 extremal fibration (32) is ob-
tained as the quadratic base change of the extremal rational elliptic surface
X[III∗, 2,1] in which two type I2 fibers and two type I1 fibers collide. Whereas
the quadratic base change of a rational elliptic surface generally yields an
elliptic K3 surface, with twice as many singular fibers as the original ratio-
nal elliptic surface, at the special limits at which singular fibers collide, the
singularity type of the resulting K3 surface is enhanced. As discussed in [23],
two identical extremal rational elliptic surfaces X[III∗, 2,1] are glued together
to yield an elliptic K3 surface, which we denote as S1, the singular fibers of
which consist of two type III∗ fibers, two type I2 fibers, and two type I1
fibers. In the special limit at which 7-branes over which type I2 fiber lies co-
incide with those over which type I2 fiber lies, and 7-brane over which type
I1 fiber lies coincides with 7-brane over which type I1 fiber lies, two type
I2 fibers are enhanced to type I4 fiber, and two type I1 fibers are enhanced
to type I2 fiber. Because a K3 surface with two type III∗ fibers, a type I4
fiber, and a type I2 fiber has the singularity type E2

7A3A1, the K3 surface S1
deforms and it becomes an extremal K3 surface (32) in this limit. In short,
F-theory on the extremal K3 surface (32) can be seen as deformation of the
stable degeneration because of the coincident 7-branes.

As the singularity rank of a rational elliptic surface is up to 8, the non-
Abelian gauge group that arises on F-theory on a generic K3 surface obtained
as the reverse of the stable degeneration has rank up to 16. Here, by generic
we mean a situation in which singular fibers of rational elliptic surfaces do
not collide when they are glued together to yield an elliptic K3 surface. When
the large radius limit is taken, the heterotic dual of this compactification
admits a geometric interpretation. In special situations in which singular
fibers collide, 7-branes become coincident and the singularity ranks of the
resulting K3 surfaces enhance to become greater than 16. The gauge groups
of the heterotic duals of F-theory compactifications on these K3 surfaces do
not allow for geometric interpretation.

When the BPS solitons constitute a faithful representation of the gauge
group G, the fundamental group of the gauge group G, π1(G), is isomor-
phic to the torsion part of the Mordell–Weil group of the elliptic fibration
on which F-theory is compactified [134]. The Mordell–Weil group of the K3
extremal fibration (32) is isomorphic to Z2 [41, 132]. Thus, the global struc-
ture [134–136] of the gauge group that arises in F-theory compactification
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on this extremal K3 surface is [23]

(33) E7 × E7 × SU(4)× SU(2)/Z2.

Comparing the Weierstrass equation (32) with equation (19), we find
that the following substitutions:

α =
5

32
(34)

β = − 7

128

γ = ε = − 9

64

δ = ζ = − 9

128

into equation (19) yield the Weierstrass equation (32). Plugging the substi-
tutions (34) into the equation of the alternate fibration (20), we obtain the
following equation:

(35) y2 = x3 − 1

3
(10t4 + 8t3 + t2)x+ t7 +

56

27
t6 +

26

9
t5 +

8

9
t4 +

2

27
t3,

with the discriminant

(36) ∆ ∼ t11(t+ 2)2(27t+ 4).

From equations (35) and (36), we find that the fibration (35) has a type II∗

fiber at t = ∞, a type I∗5 fiber at t = 0, a type I2 fiber at t = −2, and a type
I1 fiber at t = −4/27. Thus, the fibration (35) has singularity type E8D9A1,
and because the singularity type has rank 18, we deduce that this fibration
is also extremal. Therefore, we find that the attractive K3 surface S[4 0 2]

also admits an extremal fibration (35) with singularity type E8D9A1. This
agrees with the results in [41, 132].

3.2.2. Extremal K3 surface with E2
7D4 singularity. The complex

structure of the extremal K3 surface with the singularity type E2
7D4 is

uniquely determined, and the intersection form of the transcendental lat-
tice is [41]:

(37)

(

2 0
0 2

)

.
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The Weierstrass equation of this extremal fibration of the attractive K3
surface S[2 0 2] is given as follows:

(38) y2 = x3 + 4t3(t− s)2 s3 x,

with the discriminant

(39) ∆ ∼ t9s9 (t− s)6.

[t : s] in the equation (38) denotes the homogeneous coordinate of the base
P1. Two type III∗ are at [t : s] = [0 : 1] and [1 : 0], and a type I∗0 fiber is at
[t : s] = [1 : 1].

As shown in [23], the extremal K3 fibration (38) can be seen as defor-
mation of the stable degeneration. Gluing two identical extremal rational
elliptic surfaces X[III, III∗] yields an elliptic K3 surface, S2, the singular
fibers of which have two type III∗ fibers and two type III fibers. This is
technically given by a generic quadratic base change of the extremal rational
elliptic surface X[III, III∗], and this is the reverse of the stable degeneration.
In a special limit at which two type III fibers collide, the elliptic K3 surface
S2 deforms to yield the extremal fibration (38) of the attractive K3 surface
S[2 0 2] [23]. 7-branes over which type III fiber lies coincide with those over
which type III fiber lies in this limit, at which colliding two type III fibers
are enhanced to a type I∗0 fiber. Therefore, F-theory on the extremal K3
surface (38) can be seen as deformation of the stable degeneration as the
consequence of the coincident 7-branes.

The Mordell–Weil group of the extremal elliptic fibration (38) is isomor-
phic to Z2 [41, 131]. Therefore, the gauge group on F-theory compactification
on the extremal fibration (38) is [23]

(40) E7 × E7 × SO(8)/Z2.

Comparing the equation (38) with the equation (19), we find that the
following substitutions

α =
2

3
(41)

β = δ = ζ = 0

γ = ε = 1

into (19) yield the Weierstrass equation (38).
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By plugging the substitutions (41) into the equation (20), we obtain the
following Weierstrass equation:

(42) y2 = x3 − 1

3
t2(6t2 + 1)x+

1

27
t3(27t4 + 18t2 + 2),

with the discriminant

(43) ∆ ∼ t12(27t2 + 4).

We can confirm from the equations (42) and (43) that this alternate fibration
in fact has a type II∗ fiber at t = ∞, a type I∗6 fiber at t = 0, and two type I1
fibers at the roots of 27t2 + 4 = 0. Thus, the singularity type of the alternate
fibration is E8D10, and we find that this fibration is also extremal. This gives
the Weierstrass equation of the fibration no. 2 in Table A1 of the attractive
K3 surface S[2 0 2] in Appendix A.

Double cover of P1 × P1 ramified along a bidegree (4,4) curve, given by
the following equation:

(44) τ2 = (t− α1)
3(t− α2)x

4 + (t− α3)
3(t− α2)

yields a genus-one fibered K3 surface lacking a global section, but admitting
a bisection, and this K3 surface was considered in [75] in the context of
F-theory compactifications on genus-one fibrations without a global section.
x denotes the inhomogeneous coordinate of the first P1, and t denotes the
inhomogeneous coordinate of the second P1, in the product P1 × P1, respec-
tively. α1, α2, α3 are distinct points in P1. α’s are superfluous parameters,
and these can be mapped to:

(45) α1 = 0, α2 = 1, α3 = ∞

under some appropriate automorphism of the base P1. The K3 genus-one
fibration (44) has two type III∗ fibers at t = α1, α3, and a type I∗0 fiber at
t = α2 [75].

The Jacobian fibration of the K3 genus-one fibration (44) gives the ex-
tremal K3 elliptic fibration (38), as demonstrated in [75]. Utilizing this fact,
in Section 4 we build an elliptically fibered Calabi–Yau 3-fold, by fibering
the K3 genus-one fibration (44) over the base P1, then taking the Jacobian
fibration of it. It turns out that the resulting Calabi–Yau 3-fold is a fibra-
tion of the extremal K3 surface (38) over the base P1. We also build a family
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of elliptic Calabi–Yau 3-folds which includes this Calabi–Yau 3-fold. These
constructions will be discussed in detail in Section 4.

3.3. Applications to SO(32) heterotic strings

As reviewed in Section 2.2, the K3 surface (17) with H ⊕ E7 ⊕ E7 lattice
polarization admits another elliptic fibration, the singular fibers of which
include a type I∗8 fiber, given by the Weierstrass equation:

(46) y2 = x3 + (t3 − 3αt− 2β)x2 + (γt− δ)(εt− ζ)x

with the discriminant

(47) ∆ ∼ (γt− δ)2(εt− ζ)2
[

(t3 − 3αt− 2β)2 − 4(γt− δ)(εt− ζ)
]

.

Therefore, there is a birational map that transforms the elliptic fibration
with two type III∗ fibers (19) into an alternate fibration (46) with a type
I∗8 fiber (or worse). Using this birational map, we send the extremal K3
elliptic fibrations with two E7 singularities studied in Section 3.2 to another
fibration with a type I∗8 fiber (or worse). This relates to SO(32) heterotic
strings.

As we saw previously in Section 3.2.2, the Weierstrass equation of the
extremal fibration of the attractive K3 surface S[2 0 2] with singularity type
E2

7D4 is given by (38), with

α =
2

3
(48)

β = δ = ζ = 0

γ = ε = 1.

By plugging these values (48) into the alternate fibration (46), we obtain
the Weierstrass equation as

(49) y2 = x3 + t(t2 − 2)x2 + t2 x,

with the discriminant

∆ ∼ t4
(

t2(t2 − 2)2 − 4t2
)

(50)

= t8 (t2 − 4).
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In the homogeneous form, the discriminant is

(51) ∆ ∼ t8s14 (t2 − 4s2).

From equations (49) and (51), we deduce that the alternate fibration (49)
has a type I∗8 fiber at [t : s] = [1 : 0], a type I∗2 fiber at [t : s] = [0 : 1], and two
type I1 fibers at [t : s] = [2 : 1], [−2 : 1]. Thus, the alternate fibration (49)
has singularity type D12D6, and we find that this fibration is also extremal.
We conclude that the alternate fibration (49) yields fibration no. 8 in Table
A1 in Appendix A of the attractive K3 surface S[2 0 2].

The Mordell–Weil group of the fibration (49) is isomorphic to Z2 (see
[41, 131]); therefore, the gauge group on F-theory compactification on the
fibration (49) is

(52) SO(24)× SO(12)/Z2.

The attractive K3 surface S[2 0 2] has another extremal fibration with the
singularity type D2

8A
2
1 [131]. (This is fibration no.9 in Table A1 in Appendix

A.) As deduced in [23], the Weierstrass equation of this extremal fibration
is given as follows:

(53) y2 = x3 − 3t2s2 (t4 + s4 − t2s2)x+ (t2 + s2) t3s3 (2t4 − 5t2s2 + 2s4),

with the discriminant

(54) ∆ ∼ t10s10 (t− s)2 (t+ s)2.

Type I∗4 fibers are at [t : s] = [1 : 0], [0 : 1], and type I2 fibers are at [t : s] =
[1 : 1], [1 : −1].

As shown in [23], extremal fibration (53) can be seen as deformation
of the stable degeneration in which two extremal rational elliptic surfaces
X[4∗, 1,1] are glued together. Gluing of two extremal rational elliptic surfaces
X[4∗, 1,1] yields an elliptic K3 surface, which we denote by S3, the singular
fibers of which are two type I∗4 fibers and four type I1 fibers. In a limit at
which two pairs of type I1 fibers collide, type I1 fibers collide and they are
enhanced to a type I2 fiber. In this limit, K3 surface S3 deforms to yield
the attractive K3 surface with the extremal fibration (53) [23]. Therefore,
extremal fibration (53) can be seen as deformation of the stable degeneration,
as a result of coincident 7-branes over which type I1 fibers lie.
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The Mordell–Weil group of the fibration (53) is isomorphic to Z2 × Z2

[41, 131]; therefore, the gauge group on F-theory compactification on the
fibration (53) is [23]

(55) SO(16)× SO(16)× SU(2)2/Z2 × Z2.

We saw previously in Section 3.2.1 that the attractive K3 surface S[4 0 2]

admits an extremal fibration with the singularity type E2
7A3A1, and the

Weierstrass equation of this fibration is given by (32), with

α =
5

32
(56)

β = − 7

128

γ = ε = − 9

64

δ = ζ = − 9

128
.

By plugging these into the equation (46), we obtain an alternate fibration
given by:

(57) y2 = x3 + (t3 − 15

32
t+

7

64
)x2 + (

9

64
)2(t− 1

2
)2 x,

with the discriminant

(58) ∆ ∼ (t− 1

2
)7(4t+ 1)2(t+ 1).

From the equations (57) and (58), we find that the alternate fibration has a
type I∗8 fiber at t = ∞, a type I∗1 fiber at t = 1

2 , a type I2 fiber at t = −1
4 ,

and a type I1 fiber at t = −1. Thus, the alternate fibration (57) has the
singularity type D12D5A1, and this is also extremal. This result agrees with
the elliptic fibrations with a section of the attractive K3 surface S[4 0 2]

obtained in [132].
The Mordell–Weil group of the alternate fibration (57) is isomorphic to

Z2 [41, 132]. Therefore, the gauge group on F-theory compactification on
the fibration (57) is

(59) SO(24)× SO(10)× SU(2)/Z2.
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4. Jacobian Calabi–Yau 3-folds and F-theory

compactifications

In this section, we fiber elliptic K3 surfaces over P1 to yield elliptically fibered
Calabi–Yau 3-folds13 with a global section, and we study six-dimensional
F-theory compactifications with N = 1 supersymmetry on the constructed
Calabi–Yau 3-folds. K3 fibers in this construction include an elliptic K3
surface that belongs to the F-theory side of the moduli of eight-dimensional
non-geometric heterotic strings with unbroken e7e7 algebra, discussed in Sec-
tion 3.2.2.

To be clear, we first consider genus-one fibered K3 surfaces lacking a
global section, built as double covers of P1 × P1 ramified along a (4,4) curve.
The built genus-one fibered K3 surfaces do not have a global section, but
they have a bisection [75]. We consider higher-dimensional analogs of these
K3 surfaces to yield genus-one fibered Calabi–Yau 3-folds, built as double
covers of P1 × P1 × P1 ramified along a tridegree (4,4,4) surface. As we show
in Section 4.1, the constructed Calabi–Yau 3-folds are genus-one fibered, but
they lack a global section. These Calabi–Yau 3-folds still have a bisection
[65]. The pullback of O(1) class in P1 yields a bisection [78].

Taking the Jacobian fibrations of these Calabi–Yau genus-one fibrations
yields elliptically fibered Calabi–Yau 3-folds with a global section. The re-
sulting elliptic Calabi–Yau 3-folds are also K3 fibered, and when we tune
the coefficients of the defining equation, we obtain Calabi–Yau 3-folds, K3
fibers of which are the attractive K3 surface S[2 0 2] that belongs to the F-
theory side of the moduli of non-geometric heterotic strings with unbroken
e7e7 algebra.

We deduce the non-Abelian gauge groups on F-theory compactifications
on the Jacobian Calabi–Yau 3-folds. We also perform a consistency check
of the obtained gauge groups, by considering the symmetry that the elliptic
fibers possess. Highly enhanced gauge groups arise when we choose specific
coefficients of the defining equations of the Jacobian Calabi–Yau 3-folds. We
determine the Mordell–Weil groups of some specific Calabi–Yau 3-folds, and
we deduce the global structures of the gauge groups for F-theory on these
spaces. We obtain some models without a U(1) gauge field. Furthermore, we
deduce viable candidate matter spectra on F-theory on the constructed ellip-
tically fibered Calabi–Yau 3-folds that satisfy the six-dimensional anomaly
cancellation condition.

13In [137–139] the elliptic fibrations of 3-folds were discussed.
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4.1. Calabi–Yau 3-folds as double covers, Jacobian fibrations,
and the discriminant locus

Double covers of the product of projective lines, P1 × P1 × P1, ramified over
a (4, 4, 4) surface have the trivial canonical bundles, K = 0; therefore, they
describe Calabi–Yau 3-folds. Fiber of projection onto P1 × P1 is a double
cover of P1 branched over four points, namely, it is an elliptic curve. Thus,
projection onto P1 × P1 gives a genus-one fibration. Fiber of projection onto
P1 is a double cover of P1 × P1 ramified along a (4, 4) curve, which yields
a genus-one fibered K3 surface. Therefore, projection onto P1 yields a K3
fibration. These K3 surfaces do not have a section, but they have a bisection
[75].

In this note, we consider in particular the double covers of P1 × P1 × P1

given by the following equations:

(60) τ2 = f1(t)g1(u)x
4 + f2(t)g2(u),

where x is the inhomogeneous coordinate on the first P1, and t and u are the
inhomogeneous coordinates on the second and the third P1 in the product
P1 × P1 × P1. Here f1, f2 are polynomials in the variable t of degree four,
and g1, g2 are polynomials of degree four in the variable u. By splitting the
polynomials f1, f2, g1, g2 into linear factors, equation (60) can be rewritten
as follows:

(61) τ2 = Π4
i=1(t− αi) ·Π4

j=1(u− βj) · x4 +Π8
k=5(t− αk) ·Π8

l=5(u− βl).

K3 fiber of this genus-one fibered Calabi–Yau 3-fold is given by

(62) τ2 = Π4
i=1(t− αi) · x4 +Π8

k=5(t− αk).

As shown in [75], K3 fiber (62) is genus-one fibered, but it does not have a
global section. K3 fiber (62) has a bisection [75].

Using an argument similar to that in [76], we can show that the Calabi–
Yau 3-fold (61) indeed lacks a rational section. Suppose it admits a rational
section. Then, it restricts to a K3 fiber, and this gives a global section to
the K3 fiber, leading to a contradiction. By an argument similar to those in
[75, 76, 78], the genus-one fibered Calabi–Yau 3-fold (61) has a bisection14.

14Thus, a discrete Z2 symmetry [65] arises in six-dimensional F-theory compact-
ifications on the genus-one fibered Calabi–Yau 3-folds (61).
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We can consider a special situation in which

(63) α1 = α2 = α3, α4 = α8, α5 = α6 = α7.

This yields a genus-one fibered Calabi–Yau 3-fold
(64)
τ2 = (t− α1)

3(t− α4) ·Π4
j=1(u− βj) · x4 + (t− α5)

3(t− α4) ·Π8
l=5(u− βl),

and K3 fiber given by

(65) τ2 = (t− α1)
3(t− α4)x

4 + (t− α5)
3(t− α4).

This is the genus-one fibered K3 surface (44) lacking a section, which we
discussed in Section 3.2.215.

The Jacobian fibrations of the genus-one fibered Calabi–Yau 3-folds (61)
yield elliptically fibered Calabi–Yau 3-folds with a section. The Jacobian
fibrations are given by [140]

(66) τ2 =
1

4
x3 −Π8

i=1(t− αi) ·Π8
j=1(u− βj) · x.

Projection onto P1 × P1 gives an elliptic fibration, and projection onto P1

yields a K3 fibration. K3 fiber of the projection onto P1 is given by

(67) τ2 =
1

4
x3 −Π8

i=1(t− αi) · x.

When parameters α are tuned as in (63), the Weierstrass equation of
the Jacobian fibration becomes

(68) τ2 =
1

4
x3 − (t− α1)

3(t− α5)
3(t− α4)

2 ·Π8
j=1(u− βj)x,

and K3 fiber (67) becomes

(69) τ2 =
1

4
x3 − (t− α1)

3(t− α5)
3(t− α4)

2 x.

This is the Jacobian fibration of the K3 fiber (65), and this is the extremal
fibration (38) of the attractive K3 surface S[2 0 2]

16, which belongs to the

15As we stated previously in Section 3.2.2, α1, α4, α5 in equation (65) are super-
fluous parameters, and they can be mapped to 0, 1,∞ under certain automorphism
of the base P1.

16Using a coordinate transformation, equation (69) can be replaced with

τ2 = x3 + 4(t− α1)
3(t− α4)

2(t− α5)
3 x.
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F-theory side of the moduli of the non-geometric heterotic strings with un-
broken e7e7 algebra.

The obtained Jacobian Calabi–Yau 3-folds (66) yield fibrations of K3
surfaces (67) over P1, and this family includes fibrations of the extremal K3
surface S[2 0 2], which we discussed in Section 3.2.2, over P1.

The discriminant of the Calabi–Yau Jacobian fibration (66) is given by
the following equation:

(70) ∆ ∼ Π8
i=1(t− αi)

3 ·Π8
j=1(u− βj)

3.

The discriminant locus of the Jacobian Calabi–Yau 3-fold (66) is given by
the vanishing of the discriminant (70). Genus-one fibered Calabi–Yau 3-fold
(61) and the Jacobian fibration (66) have the identical discriminant loci, and
the identical configurations of the singular fibers.

From the equation (70), we find that the discriminant components of
the Jacobian Calabi–Yau 3-fold (66) are given as follows:

Ai = {t = αi} (i = 1, · · · , 8)(71)

Bj = {u = βj} (j = 1, · · · , 8).

In F-theory on the Jacobian Calabi–Yau 3-fold (66), 7-branes are wrapped
on these components. Components Ai are isomorphic to {pt} × P1, and com-
ponents Bj are isomorphic to P1 × {pt}. Therefore, these are isomorphic to
P1. The types of the singular fibers and the non-Abelian gauge groups on
the 7-branes will be discusses in Section 4.2.

4.2. Non-Abelian gauge groups

We determine the non-Abelian gauge groups on F-theory on the Jacobian
Calabi–Yau 3-folds constructed in Section 4.1. We also check the consistency
of the obtained gauge groups.

4.2.1. Singular fibers of the Jacobian Calabi–Yau 3-folds, and non-
Abelian gauge groups. From the Weierstrass equation (66) of the Jaco-
bian Calabi–Yau 3-fold and the discriminant (70), we find that for a generic
situation in which the coefficients α’s and β’s are mutually distinct, the
types of the singular fibers on the components Ai, i = 1, · · · , 8, and Bj ,
j = 1, · · · , 8, are III. In this case, the gauge algebra that arises on F-theory
compactification on the Jacobian Calabi–Yau 3-fold (66) is su(2)16.

As stated previously, we can send α1, α4, α5 to 0, 1,∞, and this yields (38).
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When two of the coefficients, αi and αk, become coincident, a pair of
type III fibers on the components Ai and Ak collides, and it is enhanced to
a type I∗0 fiber. Because the polynomial

(72) x3 −Π8
j=1(u− βj) · x

splits into the linear factor and the quadratic factor as:

(73) x
(

x2 −Π8
j=1(u− βj)

)

,

type I∗0 fiber is semi-split [117]. The non-Abelian gauge group (as a local
factor) that arises on the 7-branes wrapped on the component Ai is thus
enhanced to SO(7) in this situation 17 .

When three of the coefficients, αi, αk and αl, become coincident, type
III fibers on the components Ai, Ak, Al collide, and they are enhanced to
a type III∗ fiber. Further enhancement breaks the Calabi–Yau condition,
as stated in [75, 76]. An argument similar to that stated previously equally
applies to β’s and the components Bj . The results are presented in Table 3
below.

As discussed in Section 4.1, K3 fiber becomes most enhanced when pa-
rameters α are tuned as:

(75) α1 = α2 = α3, α4 = α8, α5 = α6 = α7.

In this case, the gauge algebra that arises on F-theory compactification on
the Jacobian Calabi–Yau 3-fold (68) is e27 ⊕ so(7)⊕ su(2)8. K3 fiber becomes
the attractive K3 surface S[2 0 2] with the singularity type E2

7D4 (69) in this
situation, and this attractive K3 surface was discussed in Section 3.2.2. The
singularity type of the Jacobian Calabi–Yau 3-fold (66) is most enhanced,

17In a special situation in which there are four pairs of identical β’s, e.g. β1 = β5,
β2 = β6, β3 = β7, β4 = β8, the polynomial splits into three linear factors:

(74) x
(

x−Π4
j=1(u− βj)

) (

x+Π4
j=1(u− βj).

)

In this special situation, type I∗0 fiber over the component Ai becomes split, and the
gauge group that forms on the 7-branes wrapped on the component Ai is enhanced
to SO(8).
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Component Fiber type non-Abel. Gauge Group

A1,··· ,8 III SU(2)

A1,··· ,8 I∗0 SO(7)

A1,··· ,8 III∗ E7

B1,··· ,8 III SU(2)

B1,··· ,8 I∗0 SO(7)

B1,··· ,8 III∗ E7

Table 3: Fiber types and the gauge groups on the discriminant components.

when the following equalities hold among coefficients β’s further:

(76) β1 = β2 = β3, β4 = β8, β5 = β6 = β7.

In this case, the Weierstrass equation of the Jacobian Calabi–Yau 3-fold
becomes
(77)

τ2 =
1

4
x3 − (t− α1)

3(t− α5)
3(t− α4)

2 · (u− β1)
3(u− β5)

3(u− β4)
2 x.

The types of the singular fibers over the components, A1, A5, B1, B5, are
enhanced to type III∗, and the types of the singular fibers over the com-
ponents A4 and B4 are enhanced to type I∗0 . In this situation, the gauge
algebra on the F-theory compactification of the Jacobian Calabi–Yau 3-fold
(77) is enhanced to: e47 ⊕ so(7)2.

We determine the Mordell–Weil groups of F-theory models on the Ja-
cobian Calabi–Yau 3-folds (68). We deduce that they do not have a U(1)
gauge field, and we also deduce the global structures of the gauge groups
formed in the models.

We saw previously that the Weierstrass equation of the Jacobian Calabi–
Yau 3-fold becomes (68):

(78) τ2 =
1

4
x3 − (t− α1)

3(t− α5)
3(t− α4)

2 ·Π8
j=1(u− βj)x,
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when the K3 fibers are most enhanced, namely when K3 fibers become the
attractive K3 surface S[2 0 2] with the singularity type E2

7D4. The Mordell–
Weil group of this extremal K3 surface is known [41, 131], and it is iso-
morphic to Z2. (See fibration no.4 in Table A1 in Appendix A.) Using an
argument similar to those given in [76, 78], we consider the specialization to
the K3 fiber to deduce that the Mordell–Weil group of the Jacobian Calabi–
Yau 3-fold (78) is isomorphic to that of the K3 fiber. Therefore, we find
that the Mordell–Weil group of the Jacobian Calabi–Yau 3-fold J(Y ) (78)
is isomorphic to Z2:

(79) MW (J(Y )) ∼= Z2.

Thus, the global structure of the gauge group forming on the 7-branes is
given as follows:

(80) E2
7 × SO(7)× SU(2)8/Z2.

The F-theory on the Jacobian Calabi–Yau 3-folds (78) does not have a U(1)
gauge field.

4.2.2. Consistency check of the gauge groups. By an argument sim-
ilar to those given in [75, 76], smooth genus-one fibers of the Calabi–Yau
double covers (60) are invariant under the following transformation:

(81) x→ e
2πi

4 · x.

We find from this that genus-one fibers of the Calabi–Yau double covers (60)
possess complex multiplication of order 4; therefore, the generic genus-one
fiber of the Calabi–Yau double cover (60) has j-invariant 1728. This requires
the singular fibers to have j-invariant 1728 [75, 76]. Because the types of the
singular fibers of Calabi–Yau genus-one fibration and those of the Jacobian
fibration are identical, this means that the singular fibers of the Jacobian
Calabi–Yau 3-fold (66) also have j-invariant 1728.

According to Table 1 in Section 2.1, the types of the singular fibers with
j-invariant 1728 are: III, III∗, and I∗0 . (j-invariant of type I

∗
0 fiber can take

the value 1728.) Thus, the Jacobian Calabi–Yau 3-fold (66) can have the
singular fibers, only of types III, I∗0 and III∗. This agrees with the results
obtained in Section 4.2.1. The monodromies of orders 2 and 4 characterize
the non-Abelian gauge groups that form on F-theory compactifications of
the Jacobian Calabi–Yau 3-folds (66).
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4.3. Matter spectra

In this section, we deduce the candidate matter spectra on six-dimensional
F-theory on the Jacobian Calabi–Yau 3-folds constructed in Section 4.1. As
we stated previously, 7-branes are wrapped on the discriminant components
given by

t = αi (i = 1, . . . , 8)(82)

u = βj (j = 1, . . . , 8).

7-branes wrapping the components are isomorphic to P1. 7-branes intersect
at the points (t, u) = (αi, βj), i, j = 1, . . . , 8, in the base surface, and matter
arises at these points.

The base surface B of the Jacobian Calabi–Yau 3-folds constructed in
Section 4.1 is isomorphic to P1 × P1, B ∼= P1 × P1, thus the number of tensor
multiplets that arise in F-theory compactification on the Jacobian Calabi–
Yau 3-folds is [3]

T = h1,1(B = P1 × P1)− 1 = 2− 1(83)

= 1.

The six-dimensional anomaly cancellation condition [141–144] then requires
that

(84) H − V = 273− 29 = 244.

In the equation (84), V and H represent the numbers of vector multiplets
and hypermultiplets, respectively, in the 6D model.

For simplicity, we only consider the case in which K3 fibers are most
enhanced, namely K3 fibers become the extremal K3 surface with the sin-
gularity type E2

7D4. This corresponds to the case where the coefficients α
satisfy the relations (63)

(85) α1 = α2 = α3, α4 = α8, α5 = α6 = α7.

As we saw in Section 4.2.1, for this situation the Mordell–Weil rank of the
Jacobian Calabi–Yau 3-folds is 0, and the Mordell–Weil group is isomorphic
to Z2.

We will derive candidate matter representations in 6D F-theory on the
Jacobian Calabi–Yau 3-folds for several situations where some pairs or
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triplets of β’s coincide in Sections 4.3.1 - 4.3.6. A situation where multi-
ple β’s coincide corresponds to that multiple 7-branes wrapped on {u = β}
coincide. In this situation, the singularity type of the Jacobian Calabi–Yau
3-fold becomes enhanced.

We make a remark here that, while we will derive candidate matter spec-
tra arising in 6D F-theory in Sections 4.3.1 - 4.3.6, they are only candidates
of the matter representations of the 6D theory arising from the intersection
of 7-branes on the Jacobian Calabi–Yau 3-folds. They do not necessarily
yield the actual matter representations, which can only be obtained by ana-
lyzing the resolution of the singularities. We do not determine whether the
derived candidate matter representations in this note yield the actual matter
representations.

We yield several possibilities for matter representations through the col-
lision of the singularities in Sections 4.3.1 - 4.3.6. They are all consistent
with the anomaly cancellation condition, and they all fall within the struc-
ture of matter representations arising from codimension two singularities in
F-theory discussed by the authors in [46].

The collision of singularities of the following types appear in Sections
4.3.1 - 4.3.6: (D4, A1), (E7, A1), (D4, D4), (E7, D4), and (E7, E7). Matter
transforming in the 56-dimensional quaternionic fundamental representa-
tion of E7 is denoted as 1

256 in this note. Matter transforming in ρ⊕ ρ in
the quaternionic representation, where ρ is an irreducible complex repre-
sentation, yields a hypermultiplet; matter transforming in an quaternionic
irreducible representation is referred to as a 1

2 -hypermultiplet [42]. 1
2 in 1

256
indicates to count 1/2 of the quaternionic dimension of the representation.
We find that a 1

2 -hypermultiplet 1
256 arises 18 through incomplete resolution

[46] of the E8 at the collision of type (E7, A1) as we will discuss in Section
4.3.1. We expect that matter representation arising at the collision of sin-
gularities of type (D4, A1) includes 7 owing to an analysis in [145]. Because
7⊗ 7 decomposes as [146] 27⊕ 21⊕ 1, we expect that matter representa-
tion arising at the collision of singularities of type (D4, D4) includes some
combination of 27, 21 (and 1).

We yield the Weierstrass equations of the Jacobian Calabi–Yau 3-folds
in Sections 4.3.1 - 4.3.6. Utilizing these equations, one obtains descriptions
of the local geometries around the collisions of singularities. The associated
matter representations can be obtained via the local analysis of codimension

18A pair of 1
2 -hypermultiplets associated with a quadratic parameter for an E7

singularity was discussed in [145].
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two singularities as discussed in [46] through the simultaneous resolution of
singularities [147].

For example, the local geometry of the Jacobian Calabi–Yau 3-fold
around the codimension two singularity at the collision of singularities of
type (E7, A1) encountered in Sections 4.3.1 - 4.3.5 is locally given by the
Weierstrass equation of the following form:

(86) y2 = x3 − t3ux.

A codimension one E7 singularity arises along the locus t = 0, and a codi-
mension two singularity appears at u = 0 with singularity enhancement
E7 → E8. Matter representation arising from the codimension two singular-
ity at the collision of singularities of type (E7, A1) can be obtained through a
singularity resolution, and a 1

2 -hypermultiplet arises through the incomplete
resolution of singularity as we will mention in Section 4.3.1.

4.3.1. Case where a pair of β coincide. First, we consider the case
where a pair of β coincide:

(87) β1 = β2.

Then the equation of the Jacobian Calabi–Yau 3-fold (66) becomes

(88) τ2 =
1

4
x3 − (t− α1)

3(t− α5)
3(t− α4)

2 · (u− β1)
2 ·Π8

j=3(u− βj) · x

and the discriminant is given as follows

(89) ∆ ∼ (t− α1)
9(t− α5)

9(t− α4)
6 · (u− β1)

6 ·Π8
j=3(u− βj)

3.

The gauge algebra forming in F-theory compactification is e
2
7 ⊕ so(7)2 ⊕

su(2)6 19. Therefore, we have

(90) V = 133× 2 + 21× 2 + 6× 3 = 326.

19Because the Mordell–Weil group of the Calabi–Yau elliptic fibration (68) is
isomorphic to Z2, the global structure of the gauge group forming in F-theory
compactification on the Calabi–Yau 3-fold (88) is E2

7 × SO(7)2 × SU(2)6/Z2. Using
an argument similar to that given here, the global structures of the gauge groups
formed in F-theory compactifications in Sections 4.3.2 - 4.3.6 are found to be global
Z2-quotients.



✐

✐

“4-Kimura” — 2022/6/4 — 0:33 — page 1301 — #35
✐

✐

✐

✐

✐

✐

Unbroken E7 × E7 nongeometric heterotic strings 1301

The anomaly cancellation condition (84) requires that

(91) H = V + 244 = 326 + 244 = 570.

Matter arises at the 21 intersections

(92) (αi, βj) (i = 1, 4, 5, j = 1, 3, 4, 5, 6, 7, 8).

Parameters α1, α4, α5 can be sent to fixed values, e.g., 0, 1,∞, under an auto-
morphism of the first P1 in the base P1 × P1. Therefore, these are superfluous
and are not actual parameters of the complex structure deformation. Among
parameters of the complex structure deformation β1, β3, β4, β5, β6, β7, β8,
three of these can be fixed to specific values under an automorphism of
the second P1 in the base P1 × P1. Thus, the number of the effective pa-
rameters of the complex structure deformation is four. The number of the
neutral hypermultiplets arising from the complex structure deformations is
therefore given by

(93) H0 = 1 + 4 = 5.

Here, H0 is used to denote the number of the neutral hypermultiplets. It
follows that the sum of the dimensions of the representations of matter
arising at the 21 intersections (αi, βj), i = 1, 4, 5, j = 1, 3, 4, 5, 6, 7, 8, must
be

(94) 570− 5 = 565

to cancel the anomaly.
E7 angularity and D4 singularity collide at two intersections (t, u) =

(α1, β1), (α5, β1), and D4 singularities collide at the intersection (t, u) =
(α4, β1). E7 singularity and A1 singularity collide at the 12 intersections
(t, u) = (αi, βj), i = 1, 5, j = 3, . . . , 8. D4 singularity and A1 singularity col-
lide at the six intersections (t, u) = (α4, βj), j = 3, . . . , 8. When the types
of colliding singularities are fixed, from a symmetry argument, the repre-
sentations of matter arising at the intersections at which the fixed types of
singularities collide should be identical.

If we assume that 56⊕ 7⊕ 1 arises at the two intersections where E7

angularity and D4 singularity collide, 27⊕ 1⊕ 1 arises at the intersection
where D4 singularities collide, 1

256⊕ 2 arises at the 12 intersections where
E7 singularity and A1 singularity collide and 7⊕ 1 arises at the six intersec-
tions where D4 singularity and A1 singularity collide, then the net dimension
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of the matter representations arising at the intersections of the 7-branes is

(95) (56 + 7 + 1)× 2 + (27 + 1 + 1) + (28 + 2)× 12 + (7 + 1)× 6 = 565.

Therefore, these matter representations yield a candidate of consistent mat-
ter spectrum on F-theory compactification on the Calabi–Yau 3-fold (88)
that satisfies the anomaly cancellation condition. Here 1

256 denotes the 1
2 -

hypermultiplet of 56 of E7
20. Having 1

256⊕ 1 instead of 1
256⊕ 2 at the 12

intersections (t, u) = (αi, βj), i = 1, 5, j = 3, . . . , 8, and 7⊕ 2⊕ 1 instead of
7⊕ 1 at the six intersections (t, u) = (α4, βj), j = 3, . . . , 8 also yields another
viable candidate of matter spectrum. Additionally, having matter represen-
tation 56⊕ 7⊕ 1⊕ 1, instead of 56⊕ 7⊕ 1, at the intersections where E7

angularity and D4 singularity collide, matter representation 21, instead of
27⊕ 1⊕ 1, at the intersection where two D4 singularities collide, and mat-
ter representation 7⊕ 2, instead of 7⊕ 1, at the intersections where D4

singularity and A1 singularity collide also yields another viable candidate
matter spectrum.

It is known that there are codimension two singularities where the ap-
parent Kodaira singularity type does not need a complete resolution to yield
a smooth Calabi–Yau manifold [46]. This actually happens for the collision
of singularities of type (E7, A1) that we described here. We saw that a 1

2 -
hypermultiplet 1

256 yields a candidate matter arising at the collision of sin-
gularities of type (E7, A1). Analyzing the resolution of the singularity at the
collision, one learns that 1

2 -hypermultiplet 1
256 is an actual matter arising

at the collision of type (E7, A1), and the 1
2 -hypermultiplet arises when the

E8 at the collision is incompletely resolved owing to the mechanism similar
to that discussed in [46].

20The appearance of 1
2 -hypermultiplets of 56 of E7 in F-theory compactification

was discussed in [2, 3, 117]. The base of elliptically fibered Jacobian Calabi–Yau
3-folds (88), P1 × P1, is isomorphic to Hirzebruch surface F0. Weierstrass coefficient
f of the Weierstrass equation y2 = x3 + f x+ g of Jacobian Calabi–Yau 3-fold (88)
is given by

f = (t− α1)
3(t− α5)

3(t− α4)
2 · (u− β1)

2 ·Π8
j=3(u− βj).

Candidate 1
2 -hypermultiplets 1

256 localized at the twelve intersections have an in-
terpretation as localized at the intersections of E7 loci t = α1,5 and the zeroes of
Π8

j=3(u− βj) [117].



✐

✐

“4-Kimura” — 2022/6/4 — 0:33 — page 1303 — #37
✐

✐

✐

✐

✐

✐

Unbroken E7 × E7 nongeometric heterotic strings 1303

4.3.2. Case where three pairs of the parameters β coincide. Next,
we discuss the case where three pairs of the parameters β coincide:

β1 = β2(96)

β3 = β4

β5 = β6.

The equation of the Calabi–Yau 3-fold (68) becomes

τ2 =
1

4
x3 − (t− α1)

3(t− α5)
3(t− α4)

2(97)

· (u− β1)
2(u− β3)

2(u− β5)
2 ·Π8

j=7(u− βj) · x

and the discriminant is given as follows

∆ ∼ (t− α1)
9(t− α5)

9(t− α4)
6(98)

· (u− β1)
6(u− β3)

6(u− β5)
6 ·Π8

j=7(u− βj)
3.

The gauge algebra forming in F-theory compactification is: e27 ⊕ so(7)4 ⊕
su(2)2. Thus, anomaly cancellation condition (84) requires that H = 133×
2 + 21× 4 + 3× 2 + 244 = 600. Using an argument similar to that given in
Section 4.3.1, it turns out that the actual number of the parameters of the
complex structure deformation is two, and we obtain the number of the
neutral hypermultiplets arising from the complex structure deformations as
H0 = 1 + 2 = 3. The net representation dimensions of matter arising from
the intersections of 7-branes must be 597(= 600− 3) owing to the anomaly
cancellation condition.

E7 angularity and D4 singularity collide at six intersections (t, u) =
(αi, βj), i = 1, 5, j = 1, 3, 5, and D4 singularities collide at the three intersec-
tions (t, u) = (α4, βj), j = 1, 3, 5. E7 singularity and A1 singularity collide at
the four intersections (t, u) = (αi, βj), i = 1, 5, j = 7, 8. D4 singularity and
A1 singularity collide at the two intersections (t, u) = (α4, βj), j = 7, 8.

We assume that 56⊕ 7⊕ 1 arises at the six intersections where E7 angu-
larity and D4 singularity collide, 27⊕ 1⊕ 1 arises at the three intersection
where D4 singularities collide, 1

256 arises at the four intersections where
E7 singularity and A1 singularity collide and 7 arises at the two intersec-
tions where D4 singularity and A1 singularity collide, then a computation
shows that this yields a consistent matter candidate on F-theory on the
Jacobian Calabi–Yau 3-fold (97). Having 56⊕ 7, instead of 56⊕ 7⊕ 1, at
the six intersections where E7 angularity and D4 singularity collide, and
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7⊕ 2⊕ 1, instead of 7, at the two intersections where D4 singularity and
A1 singularity collide, also yields another viable candidate matter spectrum.
Furthermore, having 56⊕ 7, instead of 56⊕ 7⊕ 1, at the six intersections
where E7 angularity and D4 singularity collide, 1

256⊕ 1, instead of 1
256, at

the four intersections where E7 singularity and A1 singularity collide and
7⊕ 1, instead of 7, at the two intersections where D4 singularity and A1

singularity collide, yields another viable candidate matter spectrum. In ad-
dition to these, having 56⊕ 7⊕ 1⊕ 1⊕ 1, instead of 56⊕ 7⊕ 1, at the six
intersections where E7 angularity and D4 singularity collide, 21, instead
of 27⊕ 1⊕ 1, at the three intersections where two D4 singularities collide,
1
256⊕ 2, instead of 1

256, at the four intersections where E7 singularity and
A1 singularity collide and 7⊕ 2, instead of 7, at the two intersections where
D4 singularity and A1 singularity collide, yields another viable candidate
matter spectrum.

4.3.3. Case a triplet of parameters β coincide. We then consider the
case a triplet of parameters β coincide:

(99) β1 = β2 = β3.

In this situation, the equation of the Calabi–Yau 3-fold (68) becomes

(100) τ2 =
1

4
x3 − (t− α1)

3(t− α5)
3(t− α4)

2 · (u− β1)
3 ·Π8

j=4(u− βj) · x

and the discriminant is given as follows

(101) ∆ ∼ (t− α1)
9(t− α5)

9(t− α4)
6 · (u− β1)

9 ·Π8
j=4(u− βj)

3.

The gauge algebra forming in F-theory compactification is: e
3
7 ⊕ so(7)⊕

su(2)5. 7-branes intersect in eighteen points at (t, u) = (αi, βj), i = 1, 4, 5,
j = 1, 4, 5, 6, 7, 8. Using an argument similar to that given in Section 4.3.1, we
obtain that the net representation dimensions of matter arising from these
intersections must be 675 owing to the anomaly cancellation condition.

E7 angularities collide at the two intersections (t, u) = (αi, β1), i = 1, 5,
and D4 singularity and E7 singularity collide at the intersection (t, u) =
(α4, β1). E7 singularity and A1 singularity collide at the ten intersections
(t, u) = (αi, βj), i = 1, 5, j = 4, · · · , 8. D4 singularity and A1 singularity col-
lide at the five intersections (t, u) = (α4, βj), j = 4, · · · , 8.

We assume that 133 arises at the two intersections where two E7 angu-
larities collide, 56⊕ 7⊕ 1 arises at the intersection where D4 and E7 singu-
larities collide, 1

256⊕ 2 arises at the ten intersections where E7 singularity
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and A1 singularity collide and 7⊕ 2 arises at the five intersections where
D4 singularity and A1 singularity collide. Then, one can confirm that the
anomaly cancels and this yields a consistent matter candidate on F-theory
on the Jacobian Calabi–Yau 3-fold (100).

4.3.4. Case a triplet and a pair of parameters β coincide. We now
consider the case a triplet and a pair of parameters β coincide:

β1 = β2 = β3(102)

β4 = β8.

In this situation, the equation of the Jacobian Calabi–Yau 3-fold (68) be-
comes:

τ2 =
1

4
x3 − (t− α1)

3(t− α5)
3(t− α4)

2(103)

· (u− β1)
3(u− β4)

2 ·Π7
j=5(u− βj) · x.

The discriminant is given as follows
(104)

∆ ∼ (t− α1)
9(t− α5)

9(t− α4)
6 · (u− β1)

9(u− β4)
6 ·Π7

j=5(u− βj)
3.

The gauge algebra forming in F-theory compactification is: e37 ⊕ so(7)2 ⊕
su(2)3. 7-branes intersect in fifteen points at (t, u) = (αi, βj), i = 1, 4, 5, j =
1, 4, 5, 6, 7. We find that the net representation dimensions of matter arising
from these intersections must be 691 owing to the anomaly cancellation
condition.

E7 angularities collide at the two intersections (t, u) = (αi, β1), i = 1, 5,
and D4 singularity and E7 singularity collide at the three intersection points
(t, u) = (α4, β1), (αi, β4), i = 1, 5. D4 singularities collide at the intersection
point (t, u) = (α4, β4). E7 singularity and A1 singularity collide at the six
intersections (t, u) = (αi, βj), i = 1, 5, j = 5, 6, 7. D4 singularity and A1 sin-
gularity collide at the three intersections (t, u) = (α4, βj), j = 5, 6, 7.

We assume that 133 arises at the two intersections where two E7 angu-
larities collide, 56⊕ 7⊕ 1 arises at the three intersection points where D4

and E7 singularities collide, 27⊕ 1⊕ 1 arises at the intersection point where
two D4 singularities collide, 1

256⊕ 2 arises at the six intersections where E7

singularity and A1 singularity collide and 7⊕ 1 arises at the three intersec-
tions where D4 singularity and A1 singularity collide. Then, the anomaly
cancels and this yields a consistent matter candidate on F-theory on the
Jacobian Calabi–Yau 3-fold (103). There are a few possibilities whether to
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include 1 for matter representations at the intersections where two E7 an-
gularities collide and at the intersections where E7 angularity and D4 sin-
gularity collide, and whether to include 2 or 1 for matter representation at
the intersections where D4 and A1 singularities collide, and whether matter
arising at the intersection where two D4 singularities collide includes 27 or
21 for other viable candidate matter spectra.

4.3.5. Case a triplet and two pairs of parameters β coincide. We
consider the case a triplet and two pairs of parameters β coincide:

β1 = β2 = β3(105)

β4 = β8

β5 = β6.

In this situation, the equation of the Jacobian Calabi–Yau 3-fold (68) be-
comes:

τ2 =
1

4
x3 − (t− α1)

3(t− α5)
3(t− α4)

2(106)

· (u− β1)
3(u− β4)

2(u− β5)
2(u− β7) · x.

The discriminant is given as follows
(107)

∆ ∼ (t− α1)
9(t− α5)

9(t− α4)
6 · (u− β1)

9(u− β4)
6(u− β5)

6(u− β7)
3.

The gauge algebra forming in F-theory compactification is: e37 ⊕ so(7)3 ⊕
su(2). 7-branes intersect in twelve points at (t, u) = (αi, βj), i = 1, 4, 5, j =
1, 4, 5, 7. We find that the net representation dimensions of matter arising
from these intersections must be 707 owing to the anomaly cancellation
condition.

E7 angularities collide at the two intersections (t, u) = (αi, β1), i = 1, 5,
and E7 singularity and D4 singularity collide at the five intersection points
(t, u) = (αi, βj), i = 1, 5, j = 4, 5, (α4, β1). D4 singularities collide at the two
intersection points (t, u) = (α4, βj), j = 4, 5. E7 singularity and A1 singular-
ity collide at the two intersections (t, u) = (αi, β7), i = 1, 5. D4 singularity
and A1 singularity collide at the intersection (t, u) = (α4, β7).

We assume that 133 arises at the two intersections where two E7 angu-
larities collide, 56⊕ 7 arises at the five intersection points where E7 and D4

singularities collide, 27⊕ 1⊕ 1 arises at the two intersection points where
two D4 singularities collide, 1

256⊕ 2 arises at the two intersections where
E7 singularity and A1 singularity collide, and 7⊕ 1 arises at the intersection
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where D4 singularity and A1 singularity collide. Then, the anomaly cancels
and this yields a consistent matter candidate on F-theory on the Jacobian
Calabi–Yau 3-fold (106). There are a few possibilities whether to include
1 for matter representations at the intersections where two E7 angularities
collide, at the intersections where E7 angularity and D4 singularity collide,
whether to include 1 or 2, or not to include these, for matter representation
at the intersections where E7 and A1 singularities collide and at the inter-
section where D4 and A1 singularities collide, and whether matter arising
at the intersection where two D4 singularities collide includes 27 or 21, for
other viable candidate matter spectra.

4.3.6. Case two triplets and a pair of parameters β coincide. We
finally discuss the case two triplets and a pair of parameters β coincide:

β1 = β2 = β3(108)

β4 = β8

β5 = β6 = β7.

In this situation, the equation of the Jacobian Calabi–Yau 3-fold (68) be-
comes:
(109)

τ2 =
1

4
x3 − (t− α1)

3(t− α5)
3(t− α4)

2 · (u− β1)
3(u− β5)

3(u− β4)
2 · x.

The discriminant is given as follows

(110) ∆ ∼ (t− α1)
9(t− α5)

9(t− α4)
6 · (u− β1)

9(u− β5)
9(u− β4)

6.

The gauge algebra forming in F-theory compactification is: e47 ⊕ so(7)2. The
parameters of the complex structure deformation, β1, β4, β5, can be sent to
fixed values under an automorphism of P1. Therefore, the number of the
effective parameters of the complex structure deformation is zero, and the
complex structure is fixed for this situation.

7-branes intersect in nine points at (t, u) = (αi, βj), i = 1, 4, 5, j = 1, 4, 5.
We find that the net representation dimensions of matter arising from these
intersections must be 817 owing to the anomaly cancellation condition.

E7 angularities collide at the four intersections (t, u) = (αi, βj), i = 1, 5,
j = 1, 5, and E7 singularity andD4 singularity collide at the four intersection
points (t, u) = (α4, βj), j = 1, 5, (αi, β4), i = 1, 5. D4 singularities collide at
the intersection point (t, u) = (α4, β4).

We assume that 133 arises at the four intersections where two E7 an-
gularities collide, 56⊕ 7⊕ 1 arises at the four intersection points where E7



✐

✐

“4-Kimura” — 2022/6/4 — 0:33 — page 1308 — #42
✐

✐

✐

✐

✐

✐

1308 Yusuke Kimura

and D4 singularities collide, and 27⊕ 1⊕ 1 arises at the intersection point
where two D4 singularities collide. Then, the anomaly cancels and this yields
a consistent matter candidate on F-theory on the Jacobian Calabi–Yau 3-
fold (109). Analogous to other cases that we discussed previously, there are a
few possibilities whether to include 1 for matter representation at the inter-
sections where two E7 angularities collide, and for matter representation at
the intersections where E7 and D4 singularities collide, and whether matter
arising at the intersection where two D4 singularities collide includes 27 or
21, to yield other viable candidate matter spectra.

4.3.7. Summary and discussion of the obtained candidate matter
representations. We have deduced candidate matter spectra on F-theory
on the constructed elliptically fibered Calabi–Yau 3-folds. We have observed
that it is natural to expect that 133 (or 133⊕ 1) arises at the collision
of two E7 singularities 21, to cancel the anomaly22. Under this assumption,
we observed that matter representation arising at the collision of E7 and
A1 singularities should include the 1

2 -hypermultiplet 1
256 of E7. If matter

representation at this intersection includes 56, the net dimension of matter
representations exceeds the number required by the anomaly cancellation
condition by a large amount. We learned that 1

2 -hypermultiplet 1
256 is an

actual matter arising at the singularity at the collision of type (E7, A1),
and 1

256 arises when the E8 at the collision is incompletely resolved. There
appear a few possibilities for matter representation at the collision of E7 and
D4 singularities, such as whether to include 1. We observed a few possibilities
for matter representation at the collision of two D4 singularities, such as
27⊕ 1⊕ 1 or 21. There are also a few possibilities for matter at the collision
of E7 and A1 singularities, such as 1

256,
1
256⊕ 1, or 1

256⊕ 2, and similarly
for the collision of D4 and A1 singularities.

5. Conclusions

In this study, we have investigated the points in the eight-dimensional moduli
of non-geometric heterotic strings with unbroken e7e7 algebra, at which the
ranks of the non-Abelian gauge groups on the F-theory side are enhanced
to 18. The gauge groups at these points do not allow for the perturbative

21The authors of [148] discussed the collision of two E7 singularities in the context
of four-dimensional conformal matter in F-theory.

22A similar observation was made for the collision of two E6 singularities for
elliptically fibered Calabi–Yau 3-folds of “Fermat-types” in [39], where it was argued
that 78⊕ 1 is expected to arise at this intersection.
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interpretation on the heterotic side. We demonstrated in this study that
these theories can be seen as deformations of the stable degenerations owing
to an effect of coincident 7-branes. This effect corresponds to the insertion
of 5-branes from the heterotic viewpoint. We also discussed the application
to SO(32) heterotic strings.

K3 surfaces on the F-theory side of the moduli become extremal, when
the non-Abelian gauge groups are enhanced to rank 18. We studied the
Weierstrass equations of the extremal K3 surfaces that appear on the F-
theory side of the eight-dimensional moduli of non-geometric heterotic strings
with unbroken e7e7. The points in the moduli at which the ranks of the non-
Abelian gauge groups are enhanced to 17 on the F-theory side also do not
allow for the perturbative interpretations of the gauge groups on the het-
erotic side. It can be interesting to study these points in the moduli, and
this can be a direction of future study.

We have also built elliptically fibered Calabi–Yau 3-folds, by fibering
an elliptic K3 surface, which belongs to the F-theory side of the eight-
dimensional moduli of non-geometric heterotic strings with unbroken e7e7

algebra, over P1. We analyzed six-dimensional F-theory compactifications
on the built elliptic Calabi–Yau 3-folds. When we tune the parameters for
the defining equations of these elliptic Calabi–Yau 3-folds, highly enhanced
gauge groups form on the 7-branes. Eight-dimensional F-theory compact-
ified on the extremal K3 fibers S[2 0 2] of these specific tuned Calabi–Yau
spaces has non-geometric heterotic duals. Determining whether this duality
extends to six-dimensional theories, namely whether F-theory compactifi-
cations on the total Calabi–Yau 3-folds have dual non-geometric heterotic
strings, is a likely direction of future study.

We have also deduced viable candidate matter spectra on F-theory on
the constructed elliptically fibered Calabi–Yau 3-folds, for the case when
K3 fibers are most enhanced (63). There are certain ambiguities such as
whether matter arising at intersections of 7-branes includes 1, or 2, or does
not include these. There is also an ambiguity of whether matter arising at the
collision of D4 singularities includes 27 or 21. Except for these ambiguities,
the possibility of candidate matter spectra appears unique. We have observed
that either 133 or 133⊕ 1 arises where two E7 singularities collide. We
have also observed that matter arising where E7 and A1 singularities collide
should include the 1

2 -hypermultiplet, 1
256 of E7, to cancel the anomaly. We

found that the 1
2 -hypermultiplet 1

256 arises as an actual matter from the
collision of singularities of type (E7, A1) through incomplete resolution of
the singularity in our construction of elliptically fibered Calabi–Yau 3-folds.
Confirming the actual matter spectra by analyzing the resolution of the
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singularities of the Jacobian Calabi–Yau 3-folds is also a likely direction of
future study.
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Appendix A. Elliptic fibrations of attractive K3 S[2 0 2]

[131] classified the types of the elliptic fibrations of the attractive K3 surface
with the discriminant four, S[2 0 2], and computed the Mordell–Weil groups
of the fibrations. We present in Table A1 the types of the elliptic fibrations
and the Mordell–Weil groups of the attractive K3 surface S[2 0 2] determined
in [131].

Elliptic fibrations of

S[2 0 2]
type of singularity MW group

No.1 E2
8A

2
1 0

No.2 E8D10 0

No.3 D16A
2
1 Z2

No.4 E2
7D4 Z2

No.5 E7D10A1 Z2

No.6 A17A1 Z3

No.7 D18 0

No.8 D12D6 Z2

No.9 D2
8A

2
1 Z2 ⊕ Z2

No.10 A15A3 Z4

No.11 E6A11 Z⊕ Z3

No.12 D3
6 Z2 ⊕ Z2

No.13 A2
9 Z5

Table A1: List of the singularity types of the elliptic fibrations of K3 surface
S[2 0 2], and the Mordell–Weil groups of the fibrations.
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Appendix B. Types of the singular fibers of extremal

rational elliptic surfaces

The types of the singular fibers of the extremal rational elliptic surfaces [133]
are presented in Table B1. The complex structures of the extremal rational
elliptic surfaces are uniquely specified by the types of the singular fibers,
except rational elliptic surfaces with two type I∗0 fibers, X[0∗, 0∗](j) [133].

Extremal rational

elliptic surface

Type of

singular fiber

Type of

singularity

X[II, II∗] II, II∗ E8

X[III, III∗] III, III∗ E7A1

X[IV, IV ∗] IV , IV ∗ E6A2

X[0∗, 0∗](j) I∗0 , I
∗
0 D2

4

X[II∗, 1,1] II∗ I1 I1 E8

X[III∗, 2,1] III∗ I2 I1 E7A1

X[IV ∗, 3,1] IV ∗ I3 I1 E6A2

X[4∗, 1,1] I∗4 I1 I1 D8

X[2∗, 2,2] I∗2 I2 I2 D6A
2
1

X[1∗, 4,1] I∗1 I4 I1 D5A3

X[9,1,1,1] I9 I1 I1 I1 A8

X[8,2,1,1] I8 I2 I1 I1 A7A1

X[6,3,2,1] I6 I3 I2 I1 A5A2A1

X[5,5,1,1] I5 I5 I1 I1 A2
4

X[4,4,2,2] I4 I4 I2 I2 A2
3A

2
1

X[3,3,3,3] I3 I3 I3 I3 A4
2

Table B1: List of the types of the singular fibers of extremal rational elliptic
surfaces.
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[21] M. Cvetič, A. Grassi, D. Klevers, M. Poretschkin and P. Song, “Origin
of Abelian gauge symmetries in heterotic/F-theory duality,” JHEP
1604 (2016) 041 arXiv:1511.08208 [hep-th].

[22] S. Mizoguchi and T. Tani, “Looijenga’s weighted projective space,
Tate’s algorithm and Mordell-Weil Lattice in F-theory and heterotic
string theory”, JHEP 11 (2016) 053 arXiv:1607.07280 [hep-th].

[23] Y. Kimura, “Structure of stable degeneration of K3 surfaces into pairs
of rational elliptic surfaces”, JHEP 03 (2018) 045 arXiv:1710.04984

[hep-th].

[24] A. Malmendier and D. R. Morrison, “K3 surfaces, modular forms,
and non-geometric heterotic compactifications”, Lett. Math. Phys. 105
(2015) no.8, 1085–1118 arXiv:1406.4873 [hep-th].



✐

✐

“4-Kimura” — 2022/6/4 — 0:33 — page 1314 — #48
✐

✐

✐

✐

✐

✐

1314 Yusuke Kimura

[25] K. S. Narain, “New heterotic string theories in uncompactified dimen-
sions <10”, Phys. Lett. 169B (1986) 41–46.

[26] J. McOrist, D. R. Morrison and S. Sethi, “Geometries, non-geometries,
and fluxes”, Adv. Theor. Math. Phys. 14 (2010) no.5 1515–1583
arXiv:1004.5447 [hep-th].

[27] S. Hellerman, J. McGreevy and B. Williams, “Geometric construc-
tions of nongeometric string theories”, JHEP 01 (2004) 024 arXiv:

hep-th/0208174.

[28] A. Kumar, “K3 surfaces associated with curves of genus two”, Int.
Math. Res. Not. 2008 (2008).

[29] A. Clingher and C. F. Doran, “Note on a geometric isogeny of K3
surfaces”, Int. Math. Res. Not. 2011 (2011) 3657–3687.

[30] A. Clingher and C. F. Doran, “Lattice polarized K3 surfaces and Siegel
modular forms”, Adv. Math. 231 (2012) 172–212.

[31] A. Clingher, A. Malmendier and T. Shaska, “Six line configurations
and string dualities” arXiv:1806.07460 [math.AG].

[32] J. Gu and H. Jockers, “Nongeometric F-theory-heterotic duality”,
Phys. Rev. D91 (2015) 086007 arXiv:1412.5739 [hep-th].
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