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Symplectic duality and implosions

Andrew Dancer, Amihay Hanany, and Frances Kirwan

We discuss symplectic and hyperkähler implosion and present can-
didates for the symplectic duals of the universal hyperkähler im-
plosion for various groups.

1. Introduction

Implosion is an abelianisation construction that originated in symplectic
geometry [14] and for which a hyperkähler analogue was developed in a series
of papers [5–8]. In particular a complex-symplectic analogue of the universal
symplectic implosion for a compact simple group was introduced, which in
the An case (ie the group SU(n+ 1)) is in fact hyperkähler as a stratified
space. The universal implosion for K carries a complex-symplectic action of
KC × TC where TC is the complexification of the maximal torus T . In the An

case this is the complexification of an action of K × T which preserves the
hyperkähler structure (that is, it is isometric and triholomorphic). There is
also an action of Sp(1) that rotates complex structures.

This data suggests that there should be a symplectic dual of the im-
plosion. In this paper we present candidates for the symplectic duals in the
An and Dn cases, including some computational evidence. We also include
a discussion of implosions and their links to quiver varieties and the Moore-
Tachikawa category, which we hope will be of interest to string theorists and
algebraic geometers.

Acknowledgements. We thank BIRS for its hospitality during the work-
shop “The analysis of gauge-theoretic moduli spaces” in September 2017. We
thank Hiraku Nakajima for discussions during that workshop.

2. Symplectic implosion

In this section we review the symplectic implosion construction of Guillemin,
Jeffrey and Sjamaar [14]

The idea is that given a space M with Hamiltonian action of a compact
group K, one can form the imploded space Mimpl with a Hamiltonian action
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of the maximal torus T of K, such that the symplectic reduction M of K
agrees with the reduction of Mimpl by T as long as we reduce at levels in
the closed positive Weyl chamber. We can summarise this, using the usual
notation for symplectic quotients, as:

M�ξK = Mimpl�ξT : ξ ∈ t̄
∗
+

Fortunately the problem of constructing symplectic implosions can be re-
duced to the case M = T ∗K, which in this sense plays a universal role for
Hamiltonian spaces with K action. The key point here is that T ∗K has a
Hamiltonian K ×K action so when we form the implosion (T ∗K)impl with
respect to, say, the right K action, the implosion has a K × T action, be-
cause the left K action survives the implosion process. Now the implosion
of a general symplectic manifold X with Hamiltonian K-action can be ob-
tained by reducing X × (T ∗K)impl by the diagonal K action, producing a
space Ximpl with T action. The reduction of X by K, at any element ξ of a
chosen closed positive Weyl chamber in the dual k∗ of the Lie algebra of K,
coincides with the reduction of Ximpl by T at ξ. In this sense the implosion
abelianises the K action on X.

The space (T ∗K)impl is referred to therefore as the universal symplectic

implosion for K. It is explicitly constructed as a symplectic stratified space,
by considering the product K × t̄

∗
+ of the group and the closed positive Weyl

chamber, and then performing certain collapsing operations as follows.
To motivate this, recall that the universal implosion should carry a

Hamiltonian K × T action. The reductions by T at points in the closed
positive Weyl chamber should coincide with the reductions of T ∗K by the
right K factor in the K ×K action on T ∗K. These reductions are exactly
the coadjoint orbits of K : the K action on these coadjoint orbits is induced
by the left K action on T ∗K, or equivalently by the K factor in the K × T
action on (T ∗K)impl.

Now, for K × t̄
∗
+ the T moment map is projection onto the t̄

∗
+ factor

so the reduction at level ξ is just (K × {ξ})/T ∼= K/T . This gives the cor-
rect picture for ξ in the open Weyl chamber, but not for ξ in the lower-
dimensional faces of the chamber.

If we stratify the product K × t̄
∗
+ by the faces of the Weyl chamber, then

the choice of stratum corresponds to a choice of stabiliser C for ξ, and the
coadjoint orbit of ξ is now K/C. Therefore to obtain the coadjoint orbits on
reduction by T , we must quotient each stratum by the commutator [C,C].
Now the reduction by T at level ξ is (K × {ξ})/T.[C,C] = K/StabK(ξ) as
required.
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Hence the implosion is the symplectic stratified space obtained from
K × t̄

∗
+ by stratifying by the faces of the Weyl chamber and quotienting by

the commutator of the stabiliser associated to each stratum. In particular
no collapsing occurs on the open Weyl chamber as C is then abelian. This
yields the top stratum K × t∗+.

3. Nonreductive quotients

As often is the case with constructions in symplectic geometry, there is
an alternative description of the universal symplectic implosion in terms of
algebraic geometry.

We recall that geometric invariant theory (GIT) defines the quotient
X//G of an affine variety X over C by the action of a complex reductive
group G to be the affine variety Spec(O(X)G) associated to the algebra
O(X)G of G-invariant regular functions on X. This is well-defined because
in this situation the algebra O(X)G is finitely generated.

Moreover the inclusion of O(X)G in O(X) induces a natural G-invariant
morphism from X to X//G. When G is reductive this morphism is always
surjective, and points of X become identified in X//G if and only if the
closures of their G-orbits meet in the semistable locus of X.

IfG is nonreductive then this picture can break down because the algebra
of invariants is not necessarily finitely generated so Spec(O(X)G) need not
define an affine variety. Even if the algebra of invariants is finitely generated,
so that the GIT quotient exists, the natural morphism X → X//G is not
necessarily surjective, and its image is in general not a subvariety of the GIT
quotient but only a constructible subset [10] (ie a finite union of intersections
of open sets and closed sets).

It was shown in [14] that the universal symplectic implosion for a com-
pact group K can be identified with the nonreductive GIT quotient KC//N .
Here KC, the complexification of K, is a complex affine variety, and N de-
notes the maximal unipotent subgroup of KC. Although N is not reductive,
the algebra of invariants O(KC)

N is finitely generated so KC//N exists as
an affine variety. In fact KC//N may be viewed as the canonical affine com-
pletion of the quasi-affine variety KC/N , which embeds naturally as an open
subset of KC//N with complement of codimension at least two. The restric-
tion map from O(KC//N) to O(KC/N) is thus an isomorphism, and both
algebras can be identified with the algebra of N -invariant regular functions
on KC.

Moreover, there is a natural description of KC//N as a stratified space,
where the strata may be identified with KC/[P, P ] and P ranges over the
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2rankK standard parabolics of KC. The top stratum, corresponding to choos-
ing P to be the Borel subgroup B, is the quasi-affine variety KC/N . This
stratification agrees with the symplectic stratification of section 2. In par-
ticular, using the Iwasawa decomposition KC = KAN , we may view the
top stratum as KA, the open subset of the implosion corresponding to the
interior of the positive Weyl chamber for K.

The simplest example as discussed in [14], is K = SU(2). Now the N
action on KC = SL(2,C) is:

(

x11 x12
x21 x22

)

7→

(

x11 x12
x21 x22

)(

1 n
0 1

)

=

(

x11 x12 + nx11
x21 x22 + nx21

)

with invariant ring freely generated by x11 and x21, so KC//N = C2. There
are two strata, the top one SL(2,C)/N = C2 − {0} and the bottom one {0}.
(As the closed Weyl chamber for SU(2) is [0,∞), these coincide with the
symplectic strata SU(2)× (0,∞) and (SU(2)× {0})/SU(2)).

So we see, as in the general case, that the implosion provides an affine
completion of the quasi-affine top stratum. Notice that the canonical mor-

phism KC → KC//N = C2 defined by

(

x11 x12
x21 x22

)

7→

(

x11
x21

)

is not sur-

jective, but instead has image the constructible set C2 − {0}.
In this case the strata actually fit together to form a smooth variety, but

if K has a simple factor of rank greater than one, the implosion is always
singular.

This picture has been generalised by Kirwan [16] to the case of quotients
KC//UP where UP is the unipotent radical of a parabolic subgroup P . This
nonreductive quotient still exists as a variety and there is an interpretation
in terms of a generalised version of the symplectic implosion construction
of section 2. These spaces are referred to as partial symplectic implosions.
They have an action of KC × LP where LP is the reductive Levi subgroup
of P (recall P is the semidirect product UP ⋊ LP ).

4. Hyperkähler implosion

In [5] we considered an analogue of the universal implosion for hyperkähler
geometry. The starting point is the observation by Kronheimer [21] that
T ∗KC carries a complete hyperkähler metric that is preserved by an action
of K ×K. This action is not only isometric but also triholomorphic, that is,
it is preserves each individual complex structure I, J,K.
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Kronheimer’s construction proceeds by identifying T ∗KC with the mod-
uli space of solutions to Nahm’s equations

dTi

dt
+ [T0, Ti] = [Tj , Tk],

where (ijk) is a cyclic permutation of (123), for smooth maps Ti : [0, 1] → k.
The moduli space is formed by quotienting by the gauge group of maps
g : [0, 1] → K such that g(0) = g(1) = Id.

The residual gauge action by gauge transformations not necessarily equal
to the identity at the endpoints 0, 1 gives rise to the hyperkähler K ×K
action.

Note also that there is an isometric SO(3) action given by rotating the
triple (T1, T2, T3) of Nahm matrices. This action is not triholomorphic but
acts transitively on the 2-sphere of complex structures.

The identification of the Kronheimer moduli space with T ∗KC involves of
course a choice of complex structure I. However all such complex structures
are equivalent under the SO(3) action. Note also that the I-holomorphic
symplectic structure defined by the holomorphic parallel 2-form ωJ + iωK is
just the standard KC ×KC-invariant holomorphic symplectic structure that
T ∗KC has as the cotangent bundle of a complex manifold. (We shall usu-
ally use the term complex-symplectic structure for holomorphic symplectic
structure in this paper).

T ∗KC is thus the hyperkähler analogue of the symplectic K ×K-space
T ∗K = KC. As the universal symplectic implosion is the nonreductive quo-
tient KC//N , it makes sense in the hyperkähler setting to consider a suitable
reduction of T ∗KC by N , more specifically the complex-symplectic quotient
(in the sense of geometric invariant theory) of T ∗KC by N .

As the complex-symplectic structure on T ∗KC is the standard one, its
associated moment map is just projection onto the k∗C factor of T ∗KC =
KC × k∗C. The zero locus for this moment map is therefore KC × n◦ where n◦

is the annihilator in k∗C of the Lie algebra n of N .
We are therefore led to define the universal hyperkähler implosion for

K to be the geometric invariant theory (GIT) quotient (KC × n◦)�N where
N is a maximal unipotent subgroup of the complexified group KC. It is
sometimes convenient to choose an invariant inner product, and identify the
annihilator n◦ with the opposite Borel subalgebra b).

As N is nonreductive, it is a nontrivial result that the algebra of N -
invariants is finitely generated and hence the quotient exists as an affine
variety. This was shown in the case K = SU(n) in [5] and in general follows
from results of Ginzburg-Riche [13] (see the discussion in [8] for example).
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The universal hyperkähler implosion carries a complex-symplectic action
of KC × TC where T is the standard maximal torus of K. The KC action
is just left translation on the KC factor, while the the TC action is right
translation on the KC factor together with the adjoint action on the n◦

factor. Of course the fact we are restricting to n◦ means that the right KC

action on KC × k∗C is broken to a TC action.
A naive guess might be that, by analogy with the symplectic case, the

complex-symplectic torus reductions of the implosion will give us the coad-
joint orbits for the complex Lie algebra kC. However this cannot be exactly
right, as only semisimple coadjoint orbits in the complex Lie algebra are
closed. The complex-symplectic quotients by the torus action are instead
the Kostant varieties; that is, the varieties in k∗C obtained by fixing the val-
ues of the invariant polynomials for this Lie algebra [4, 18]. The Kostant
varieties are in general stratified spaces whose strata are distinct complex
coadjoint orbits. The minimal stratum is the semisimple orbit and the top
stratum is the regular orbit, which is open and dense in the Kostant va-
riety with complement of codimension at least 2. (For KC = SL(n,C) the
elements of the regular orbit are characterised by the minimal polynomial
being equal to the characteristic polynomial, the latter being fixed by the
choice of Kostant variety).

Note that, just as the symplectic implosion has real dimension dimRK +
rank K, so the hyperkähler implosion has complex dimension equal to
dimCKC + rank KC, consistent with the fact that the Kostant varieties have
complex dimension dimCKC − rank KC.

5. Hyperkähler quiver diagrams

The description in the previous section is rather abstract and although it
makes plain the complex-symplectic structure, it is less clear that this actu-
ally comes from a hyperkähler metric.

In [5] we considered the case when K = SU(n). In this situation the uni-
versal hyperkähler implosion can be identified with a hyperkähler quotient
using quiver diagrams, and thus can be seen to be genuinely a stratified
hyperkähler space rather than just a complex-symplectic one.

We shall consider quivers Q = (Q0, Q1) where Q0 is the set of vertices
and Q1 the set of edges. For each edge e ∈ Q1, we denote o(e) and i(e) the
outgoing and incoming vertices of the edge. To each vertex j we associate a
complex vector space Vj of dimension Nj .
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1 2 3 4 5

6

Figure 1: Quiver for the nilpotent cone of A5.

In the simplest case one can associate to the quiver the flat quaternionic
space

M = ⊕e∈Q1
hom(Vi(e), Vo(e))⊕ hom(Vo(e), Vi(e))

and the group K =
∏

j∈Q0
U(Vj), with its natural action on M :

αe 7→ go(e)αeg
−1
i(e), βe 7→ gi(e)βeg

−1
o(e) (e ∈ Q1),

In more physical language, to each edge joining vertices labelled by dimen-
sions Ni and Nj we associate the hypermultiplets HNiNj transforming in the
bifundamental representation of U(Ni)× U(Nj). Fixing a complex structure
and identifying this with hom(CNi ,CNj )⊕ hom(CNj ,CNi) as above corre-
sponds physically to decomposing the hypermultiplet into chiral and antichi-
ral multiplets.

This action preserves the hyperkähler structure so one may form the
hyperkähler reduction M�/K. More generally, one may hyperkähler reduce
by a subgroup K1 of K, so that the quotient M�/K1 retains a residual
hyperkähler action of NK(K1)/K1 where NK(K1) denotes the normaliser
of K1 in K. In particular, one may define a normal subgroup K1 of K by
choosing a subset Q ⊂ Q0 and defining K1 = KQ :=

∏

j∈Q U(Vj). That is,
we ‘turn off’ the action at the nodes in Q0 −Q. The hyperkähler quotient
now has a residual action of K/KQ

∼=
∏

j /∈Q U(Vj).
The vertices j ∈ Q where the group still acts are called gauge nodes and

the vertices j ∈ Q0 −Q where the action has been turned off are the flavour
nodes. The gauge nodes are denoted by circles and the flavour nodes by
square boxes.

Example 5.1. Consider the An diagram with dimension vector (1, 2, . . . , n)
where the n-dimensional node is a flavour node. (The figure shows the n = 6
case)
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So we hyperkähler reduce by U(1)× . . .× U(n− 1) and leave the resid-
ual action U(n). The hyperkähler quotient is known by the work of Kobak-
Swann [17] (see also [19]) to be the nilpotent variety for An−1 = SL(n,C)

♢

This motivated the quiver description of hyperkähler implosion for K =
SU(n) developed in [5]. The implosion is required to have a SU(n)× T
action with hyperkähler reduction by T giving the Kostant varieties, in
particular reduction at level zero giving the nilpotent variety. It is natu-
ral therefore to consider the same quiver as above, but with the action of
H =

∏n−1
j=1 SU(j), rather than K =

∏n−1
j=1 U(j). The resulting hyperkähler

quotient M�/H is a stratified hyperkähler space with a residual action of
the torus T = K/H as well as a commuting action of SU(n).

We can also consider the implosion as a complex-symplectic quotient. It
is the geometric invariant theory quotient, of the zero locus of the complex
moment map µC for the H action, by the complexification

HC =

n−1
∏

j=1

SL(j,C)

of H,
The complex moment map equation µC = 0 is equivalent to the equations

(5.2) βi+1αi+1 − αiβi = λC

i+1I (i = 0, . . . , n− 2),

for (free) complex scalars λC
1 , . . . , λ

C
n−1. The complex numbers λi combine to

give the complex-symplectic moment map for the residual action of KC/HC

which we can identify with the maximal torus TC of KC.
Note that, as usual with linear hyperkähler quotients at level zero, we

also have an Sp(1) action on the implosion that rotates the complex struc-
tures. If we view the quaternionic summands hom(Vi, Vi+1)⊕ hom(Vi+1, Vi)
associated to each edge of the quiver as quaternionic space HNiNi+1 then
the quiver group H may be viewed as acting on HNiNi+1 on the left while
the quaternionic structure is acting on the right by −i,−j,−k etc. Now
multiplication by unit quaternions on the right gives an isometric action,
rotating complex structures, and commuting with the action of H. It there-
fore acts on the hyperkähler moment map µ : M → h∗⊗R3 by rotation on
R3 and hence preserves the hyperkähler quotient at level zero. Moreover, as
the level is zero and the moment map is homogeneous quadratic, we have
a scaling action of the positive reals. We can summarise this as saying the
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SU(n)-implosion has a conical structure, and as such is expected to fit into
the symplectic duality framework discussed in section 7.

For other classical groups we do not as yet have a quiver description
of the implosion. This is because the analogues of the quiver description
of the nilpotent varieties involve orthosymplectic quivers, that is, quivers
where the groups attached to the vertices are alternately orthogonal and
symplectic groups [17]. Unlike the unitary groups, we cannot write these
groups as extensions of tori by subgroups, so we cannot mimic the above
construction by considering quivers with just the subgroups acting.

6. Moore-Tachikawa category

In [22] Moore and Tachikawa proposed a category whose objects were com-
plex semisimple or reductive groups and where morphisms between G1

and G2 are complex-symplectic manifolds with G1 ×G2 action. (Strictly
speaking a morphism is a triple (X,G1, G2) where X is such a complex-
symplectic manifold, ie the ordering of the objects is specified). There is
also supposed to be a commuting circle action acting on the complex-
symplectic form with weight 2. Composition of morphisms X ∈ Mor(G1, G2)
and Y ∈ Mor(G2, G3) proceeds by forming the product X × Y with G1 ×
(G2 ×G2)×G3 action and then taking the complex-symplectic quotient by
the diagonal G2 action. The resulting quotient is complex-symplectic with
residual G1 ×G3 action so lies in Mor(G1, G3) as required. The Kronheimer
space T ∗KC is complex-symplectic with KC ×KC action and defines the
identity element in Mor(G,G) with G = KC.

In this picture the implosion for K may be viewed as an element of
Mor(KC, TC). The process of imploding a complex-symplectic manifold with
KC action to obtain a manifold with TC action, as described in section 2
but in the complex-symplectic case, is now exactly that of composition of
morphisms with the implosion, to obtain a map:

Mor(1,KC) → Mor(1, TC)

Note that one could enrich the data of complex-symplectic manifolds to
hyperkähler manifolds in these definitions, using the fact that the complex-
symplectic quotient by G2 coincides with the hyperkähler quotient by the
maximal compact subgroup of G2. However now T ∗KC is no longer exactly
the identity, as pointed out by Moore-Tachikawa. The metric is shifted by
a factor representing the length of the interval on which the Nahm data is
defined to produce the Kronheimer space.
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7. Symplectic duality

It is conjectured that there is a duality between certain complex-symplectic
(that is, holomorphic symplectic) varieties, that physically may be inter-
preted as duality (the notion of duality is explained below and is differ-
ent than other forms of dualities in physics) between Higgs and Coulomb
branches of a 3d N = 4 theory.

The complex-symplectic varieties concerned usually in fact have a hy-
perkähler structure, and arise either as hyperkähler cones or as deformations
thereof. In many cases the Higgs branch cone occurs as the zero level set of a
hyperkähler quotient construction M�/G (the moduli space of vacua), while
the deformations occur by moving the level set away from zero. In physics
the resulting deformation parameters are called Fayet-Iliopoulos parameters.

For symplectic duality constructions we want the complex-symplectic
varieties to have a circle action that acts on the complex symplectic form
with weight 2 (in terms of the hyperkähler structure, the circle action fixes
one complex structure I but rotates the J,K so the I-holomorphic form ωJ +
iωK is scaled rather than being invariant under the action).

As mentioned in §5, linear hyperkähler quotients at level zero have a
Sp(1) action rotating the complex structures. Making a deformation that
breaks this Sp(1) down to the circle action fixing the specific complex struc-
ture I corresponds to changing the level set to (λ, 0, 0) where λ ∈ g∗ As the
level set at which the hyperkähler reduction is performed must lie in the
centre of G, the number of deformation parameters is the dimension of the
center of G.

On the Coulomb side, the deformation parameters are the masses. The
duality is supposed to interchange the rank of the hyperkähler isometry
group of a space and the number of deformation parameters for its dual.
More precisely, the Cartan algebra of the flavour group of the Higgs branch
is identified with the space of mass parameters, and the Cartan algebra of
the flavour group of the Coulomb branch with the space of Fayet-Iliopoulos
parameters.

Nakajima (see [23] for example) has suggested that in the case when the
Higgs branch is a hyperkähler quotient M�/G by a compact group G, the
Coulomb branch should be birational to T ∗(T∨

C
)/W , the quotient by the

Weyl group of the cotangent bundle of the complexified dual maximal torus
of G. We therefore expect

dimR(Coulomb branch) = 4 rank G.
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Physically, the birational equivalence represents quantum corrections to the
classical description of the Coulomb branch.

One example where the theory is completely worked out is hypertoric

manifolds, that is, hyperkähler quotients of flat quaternionic space by tori.
(See [2] for example). As in [1] we consider quotients of Hd by a subtorus
N of T d. The torus is defined by vectors u1, . . . , ud ∈ Rn : explicitly we
define n = LieN to be the kernel of the map β : Rd = LieT d → Rn defined
by β : ei 7→ ui, where e1, . . . , ed is the standard basis for Rd. On the Lie
algebra level, we have an exact sequence

0 → n → R
d β
→ R

n → 0

On the Lie group level we have:

1 → N → T d → Tn → 1

The hypertoric M = Hd�/N has real dimension 4d− 4(d− n) = 4n. and ad-
mits a residual action of the quotient torus Tn = T d/N . The number of
deformation parameters for M is rank N = d− n and the rank of the isom-
etry group is n.

Now the dual hypertoric variety is defined to be the hyperkähler quotient
of Hd by the dual torus T̂n

1 → T̂n → T̂ d → N̂ → 1

Now the number of deformation parameters is n and the rank of the isometry
group is rank N̂ = rankN = d− n, in accordance with the principle of sym-
plectic duality. The dimension of the dual hypertoric is 4(d− n), illustrating
how dimension can change under duality.

As usual in toric or hypertoric geometry, this duality can be viewed as a
combinatorial phenomenon, in this case known as Gale duality. Given a vec-
tor space V of dimension n with spanning vectors u1, . . . , ud, we can form the
space of linear dependency relations {(α1, . . . , αd) :

∑d
i=1 αiui = 0}. This is a

d− n dimensional vector space W with d distinguished elements w1, . . . , wd

in the dual vector space W ∗ defined by wi : (αi, . . . , αd) 7→ αi. This dual-
ity, interchangeing n and d− n, implements the above duality between the
hypertorics of dimension 4n and 4(d− n).

In this case, both the Higgs and Coulomb branches are given by finite-
dimensional hyperkähler quotients. However there are cases where one space
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is given by such a construction but its dual is not–we call these non-

Lagrangian theories.

Various relations between a quiver variety and its symplectic dual have
been developed in the physics literature.

The crucial concept here is that of a balanced node. In the case of a
unitary quiver with dimensions Nj at nodes j, the balance of a node j is

−2Nj +
∑

k adjacent to j

Nk

and we say the node is balanced if the balance is zero.
For a nice physical theory we would like all the gauge nodes to have

balance greater than or equal to −1. If this holds and there is a node with
balance equal to −1 the quiver is called minimally unbalanced, while if all
nodes have nonnegative balance with at least one of positive balance, we say
it is positively balanced.

In the case of unitary quivers, the balanced gauge nodes should form the
Dynkin diagram of the semisimple part of (a subgroup of) the hyperkähler
isometry group of the dual space. (Unbalanced nodes give abelian symme-
tries). This refines the earlier idea that deformation parameters coming from
the unitary gauge nodes should give an abelian algebra of symmetries in the
dual–if the nodes are balanced then the associated abelian symmetry group
is realised as the maximal torus of a larger semisimple group.

For example, in the nilpotent variety quiver of Example 5.1 all nodes
except the final flavour node are balanced. This gives an An−1 Dynkin dia-
gram which should give SU(n) symmetry group of the dual. In fact the dual
is still the nilpotent variety.

Example 7.1. Consider the quiver diagram in Figure 2 corresponding to
the hyperkähler quotient Hd�/U(1) where we have 1 gauge node (with di-
mension 1) and 1 flavour node (with dimension d)

This is a hypertoric, with symplectic dual Hd�/T d−1. The latter space
gives the cyclic Kleinian singularity C2/Zd or its deformations, the Ad−1

multi-instanton metrics whose topology is generated by a chain of d− 1
rational curves with self-intersection −2.

If d ̸= 2 than we have no balanced nodes in the diagram, but if d = 2
then the gauge node is balanced. This reflects the fact that for d = 2 the
dual space is Eguchi-Hanson which has a triholomorphic SU(2) action, an
enlargement of the triholomorphic U(1) action that occurs for general d. ♢
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1

d

Figure 2: U(1) with d flavors.

One can study the varieties occuring in symplectic duality by finding the
Hilbert series of their coordinate ring (the chiral ring in physics terminology).
This series counts the dimension md of the degree d parts of the ring

HS(t) =

∞
∑

d=0

mdt
d.

The variable t is called the fugacity.
Cremonesi-Hanany-Zaffironi [3] have derived a formula, the monopole

formula to compute the Hilbert series of the Coulomb branch of a quiver
variety obtained as a hyperkähler reduction of a flat quaternionic space by a
group G. We are counting monopole operators whose gauge field has a Dirac
monopole singularity, with associated magnetic charge living in the weight
lattice ΓĜ of the Langlands dual Ĝ. Their formula involves contributions
from the stabiliser groups of each element of the lattice:

(7.2) HS(t) =
∑

m∈ΓĜ/WĜ

t2∆(m)PG(m, t)

Here

PG(m, t) =
∏

i

1

1− t2di(m)

where the di(m) are the exponents of the stabiliser group Gm = StabG(m)–
that is, the degrees of the generators (Casimirs) for the ring of invariants of
Gm under the adjoint representation. We can also interpret PG(m, t) as the
Poincaré polynomial of the classifying space BGm.

The term ∆(m) is given by

∆(m) = −
∑

α∈R+

|α(m)|+
1

2

∑

b

|b(m)|
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where R+ denotes the set of positive roots in G, and the second sum is taken
over the weights in the given representation M .

Plethystic techniques have been developed (eg [11]) to compute from
the Hilbert series the generators, relations and higher-order syzygies of the
chiral ring.

Note that the t2 term of the Hilbert series is expected to give the di-
mension of the global symmetry group.

8. Duals of implosions

We now consider what kind of space would be dual to the SU(n) implosion.
The latter space has an action of SU(n)× Tn−1, so this suggests we look at
a quiver whose balanced nodes give the Dynkin diagram An−1 and whose
unbalanced nodes give the torus factor.

We consider the quiver from Example 5.1 that gives the nilpotent variety.
Now replace the flavour node (box) with dimension n by a bouquet of n U(1)
nodes attached to the (n− 1)-dimensional gauge node. This ensures that the
(n− 1)-dimensional node remains balanced, as well as the gauge nodes lower
down the chain. So the balanced nodes do form the An−1 Dynkin diagram as
required, giving a SU(n) action on the dual. The U(1) nodes are unbalanced
(for n ̸= 3) and generate a Tn−1 action on the dual (it is Tn−1, not Tn,
as one U(1) ‘decouples’, ie acts trivially. This is the diagonally embedded
U(1) →֒ U(1)n ×

∏n−1
k=1 Z(U(k)), where Z denotes the centre). Note that the

balance of the U(1) nodes is always at least −1, and is positive for n ≥ 4.

Example 8.1. If n = 2 this is just an A3 diagram with dimension 1 at each
node. As the diagonal U(1) acts trivially this represents the trivial hyper-
toric H2�/T 2 and its dual is H2�/{1} = H2. This is correct as the universal
hyperkähler implosion for SU(2) is indeed H2. ♢

Example 8.2. If n = 3 we have a star-shaped quiver (affine D̃4 Dynkin
diagram) with dimension 2 at the central node and dimension 1 at the
four nodes radially connected to it (one from the tail of the truncated A2

diagram and three from the bouquet). Uniquely in this case all nodes (even
the bouquet ones) are balanced, so we expect, after decoupling, an SO(8)
symmetry in its dual.

This is correct, as the SU(3) universal hyperkähler implosion may be
identified with the Swann bundle of the quaternionic Kähler Grassmannian
G̃r4(R

8) = SO(8)/S(O(4)×O(4)) of oriented 4-planes in R8. The SO(8)



✐

✐

“1-Hanany” — 2022/6/10 — 14:29 — page 1381 — #15
✐

✐

✐

✐

✐

✐

Symplectic duality and implosions 1381

symmetry of the quaternionic Kähler base lifts to a symmetry of the hy-
perkähler Swann bundle (see Example 8.7 of [5] for a discussion). ♢

As the SU(n) implosion has been described as a reduction by a product
of special unitary groups in 5, we expect it has no deformation parameters.
This checks with the fact that the proposed dual has no residual hyperkähler
isometries, as all nodes are gauge and not flavour nodes.

In fact, we expect for general groups that the implosion has no deforma-
tion parameters, as we obtain it as the nonreductive quotient (KC × n◦)�N
and the maximal unipotent group N has trivial maximal torus so no char-
acters.

For a global symmetry of SU(n)× U(1)n−1 we expect the coefficient
of the t2 term in the Hilbert series to be n2 − 1 + n− 1 = n2 + n− 2. In
addition, due to the balance of n− 3 of each U(1) node in the Bouquet,
there are generators of the chiral ring which arise from the U(1) nodes
that contribute 2 per each U(1) at order tn−1. These correspond to one
monopole operator of positive charge and one with negative charge under
the corresponding U(1) global symmetry. We expect the Hilbert series to
get contributions

HSn = (n2 + n− 2)t2 + 2ntn−1 + . . .

Let us see how this fits in examples. For n = 2 we get 4t that represent
the 4 generators of H2. They contribute 6 more quadratic bilinears that
enhance the global symmetry from SU(2)× U(1) to Sp(2). For n = 3 the
affine D̃4 quiver indeed confirms that the global symmetry is enhanced from
SU(3)× U(1)2 to SO(8). For n > 3 perturbative computations confirm the
t2 coefficient.

One can further refine the expression for the Hilbert Series in equation
(7.2) by introducing a fugacity zi for each magnetic charge mi of U(1)i in the
bouquet for i = 1 . . . n, resulting in a function of n+ 1 variables HS(t, zi).
This expression can be further integrated

(1− t2)n−1
∏

i

∮

|zi|=1

dzi
zi

HS(t, zi)

resulting in the expression for the Hilbert series of the nilpotent cone of
SL(n) which takes a particularly simple form

∏n
i=1(1− t2i)

(1− t2)n2
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This constitutes a non trivial test of the proposed quiver for the SU(n)
implosion.

We can also check that this is consistent with Nakajima’s picture.
The rank of the group U(1)n−1 ×

∏n−1
i=1 U(i) by which we quotient in the

bouquet quiver is 1
2(n+ 2)(n− 1) = 1

2(n
2 + n− 2) and the real dimension

of the implosion is

dimR SL(n,C) + dimR(T
n−1
C

) = 2(n2 + n− 2).

Going in the reverse direction, the implosion is produced as a hyperkähler
quotient by

∏n−1
i=1 SU(i) which has rank 1

2(n− 1)(n− 2). The quaternionic
dimension of the bouquet quiver variety is

n(n− 1) +

n−2
∑

i=1

i(i+ 1)− (n− 1 +

n−1
∑

i=1

i2)

which works out as 1
2(n− 1)(n− 2) as desired.

For example, if n = 3 then we have the affine D̃4 Dynkin diagram, giv-
ing one of Kronheimer’s examples [20] of real dimension 4, ie quaternionic
dimension 1. This corresponds to the fact that the SU(3) implosion is a
hyperkähler quotient of a linear space by SU(2).

We also make some remarks on partial hyperkähler implosions, ie com-
plex symplectic quotients of T ∗KC by the unipotent radical UP of a parabolic
P . (It as as yet a conjecture that these exist as algebraic varieties, that is,
that the algebra of UP -invariants in KC × u◦P is finitely generated).

In the case K = SU(n), of course, the parabolics are indexed by or-
dered partitions n = n1 + . . .+ nr and the corresponding Levi subgroup is
S(GL(n1,C)× . . .×GL(nr,C)).

As SL(n,C)/P = SU(n)/S(U(n1)× . . .× U(nr)), we see that

dimR P = n2 − 2 +

r
∑

i=1

n2
i

and

dimR UP = n2 −
r

∑

i=1

n2
i
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so the dimension of the partial implosion should be

dimR(SL(n,C)× u◦P )//UP = 2(n2 − 2 +

r
∑

i=1

n2
i )

Note that as
∑r

i=1 ni = n, the sum
∑r

i=1 n
2
i has the same parity as n2 so

the expression inside the bracket above is even, as required.
If all ni = 1 of course P is the Borel and we recover the dimension of

the standard implosion as above.

A natural candidate for the dual would be the quiver diagram we obtain
by taking the basic diagram for the nilpotent quiver, excising the dimension
n flavour node, and then attaching r legs, each of them an Ani

quiver with
the dimension ni node next to the dimension n− 1 node of the original
diagram.

So the remaining nodes of the original diagram are all balanced, giving an
SU(n) symmetry in the implosion. Moreover on each leg, all nodes except
the dimni ones are balanced, yielding SU(ni) symmetries for i = 1, ..., r.
Also, the r unbalanced nodes (ie the dimni ones of the attached legs) would
yield, after decoupling, r − 1 Abelian symmetries. These nodes have balance
n− ni − 2 which is always at least −1 and is positive unless our partition is
n = (n− 2) + 2, (n− 2) + 1 + 1 or (n− 1) + 1.

So overall, we would get SU(n)× S(U(n1)× ...× U(nr)) symmetry, as
required.

The group by which we perform the hyperkähler quotient is

G = S(U(1)× . . . U(n− 1)×
r
∏

i=1

U(1)× . . .× U(ni))

which has rank
1

2
(n2 − 2 +

r
∑

i=1

n2
i )

So the real dimension of the implosion is 4 times the rank of G, in accordance
with Nakajima’s picture. The dimensions and symmetry groups therefore
work out correctly–we hope to further investigate this picture in a future
work.

9. Orthosymplectic examples

For other classical groups we have to revisit the notion of balance, as well as
the prescription for finding the symmetry group of the dual (see eg [15], [12]).
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In the case of orthosymplectic quivers (where we use the physics notation
USp(n) = Sp(n/2)), there are 2 cases to consider:

(i) that of an orthogonal node labelled by SO(N), with neighbours
USp(Nj) = Sp(Nj/2). The balancing condition is

2N = 2 +
∑

Nj

where the sum is taken over all nodes adjacent to the SO(N) one.

(ii) a symplectic mode USp(N) with neighbours SO(Nj). Now the bal-
ancing condition is

2N = −2 +
∑

Nj

Let us consider the Dn case. The quiver defining the nilpotent variety
is a chain with 2n− 2 gauge nodes SO(2), USp(2), SO(4), . . . , USp(2n− 2)
and then a flavour node SO(2n). The gauge nodes are all balanced, yielding
in the orthosymplectic situation a SO(2n) symmetry in the dual space.

For the dual of the implosion, we can mimic the construction in the An

case, removing the flavour node and replacing it with a bouquet of n SO(2)
nodes. This keeps the USp(2n− 2) gauge node (and the preceding gauge
nodes) balanced, so we still have an SO(2n)-symmetry in the implosion as
required. The unbalanced nodes now yield a Tn symmetry in the implosion,
which again is correct. As in the An case, we have no flavour nodes, reflecting
the fact we do not expect deformation parameters in the implosion.

We can carry out a check using the calculations of Zhenghao Zhong
[26] of the Hilbert series for the Coulomb branch of these quivers for n =
3, 4, 5, 6, 7. The t2 coefficient, which is expected to give the dimension of the
global symmetry group, is 18, 32, 50, 72, 98 in this cases. So in each of these
cases we obtain

2n2 = n+ 2n(2n− 1)/2 = rank SO(2n) + dim SO(2n)

as expected for the complex dimension of the symmetry group of the SO(2n)
implosion.

The rank of the group by which we are performing the hyperkähler quo-
tient is n+ 2

∑n−1
i=1 i = n2, and the real dimension of the SO(2n)-implosion

is 4n2, in accordance with our expectation.

So for Dn although the original implosion does not appear to have a
quiver description (ie is non-Lagrangian) the dual does arise as a quiver
variety.
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