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We study the recently introduced family of confluent Virasoro fu-
sion kernels Ck(b,θ, σs, ν). We study their eigenfunction properties
and show that they can be viewed as non-polynomial generaliza-
tions of both the continuous dual q-Hahn and the big q-Jacobi
polynomials. More precisely, we prove that: (i) Ck is a joint eigen-
function of four different difference operators for any positive in-
teger k, (ii) Ck degenerates to the continuous dual q-Hahn poly-
nomials when ν is suitably discretized, and (iii) Ck degenerates to
the big q-Jacobi polynomials when σs is suitably discretized. These
observations lead us to propose the existence of a non-polynomial
generalization of the q-Askey scheme. The top member of this non-
polynomial scheme is the Virasoro fusion kernel (or, equivalently,
Ruijsenaars’ hypergeometric function), and its first confluence is
given by the Ck.
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1. Introduction

The Askey–Wilson polynomials are a four-parameter family of q-hyper-
geometric series [1]. They satisfy one three-term recurrence relation and
one difference equation of Askey–Wilson type. Moreover, they form the top
element of a five-level hierarchy of q-orthogonal polynomials called the q-
Askey scheme [6, 7]. Each element of this scheme is a family of orthogonal
polynomials satisfying one three-term recurrence relation and one difference
equation. The families at a given level of the scheme arise as limits of the
families at the level above. In particular, the two families at the second
level of the q-Askey scheme are the continuous dual q-Hahn and the big
q-Jacobi polynomials, and both of them arise as limits of the Askey–Wilson
polynomials [7, 9], see Figure 1 (left).

In this article, we propose a non-polynomial version of the q-Askey
scheme motivated by two-dimensional conformal field theory, see Figure 1
(right). The top element of the proposed scheme is the Virasoro fusion kernel.
The second level is made up of a family of confluent Virasoro fusion kernels
which was recently introduced in [10]. The members of the non-polynomial
scheme are associated with a quantum deformation parameter q which is
related to the central charge c of the Virasoro algebra by

q = e2iπb
2

, c = 1 + 6Q2, Q = b+ b−1.(1.1)

Moreover, each member is a joint eigenfunction of four difference operators.
The proposed scheme is a generalization of the q-Askey scheme in the sense
that its members reduce to members of the q-Askey scheme in appropriate
limits when certain variables are discretized, see Figure 2. In this paper, we
consider in detail the first two levels of the non-polynomial scheme and their
relation to the first two levels of the q-Askey scheme; results on lower levels
will be presented elsewhere.

In the first part of the paper (Sections 2-3), we study the Virasoro

fusion kernel F
[

θ1 θt
θ∞ θ0

;
σs

σt

]

as well as the confluent Virasoro fusion kernels

Ck(b,θ, σs, ν) which were introduced in [10] as confluent limits of F . The Vi-
rasoro fusion kernel F plays a fundamental role in the conformal bootstrap
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Askey–Wilson
polynomials

Continuous
dual q-Hahn
polynomials

Big q-Jacobi
polynomials

Virasoro
fusion kernel

confluent
Virasoro

fusion kernels

Figure 1. First two levels of the q-Askey scheme (left) and of the non-
polynomial scheme (right).

approach to two-dimensional conformal field theories [12, 14]. It was first
constructed in [12, 13] and later revisited in [23] where it was interpreted
as b-6j symbols associated to the quantum group Uq(sl2(R)), with b charac-
terizing the central charge of the Virasoro algebra according to (1.1). The
function F satisfies two different pairs of difference equations, the first pair
involving operators acting on σs and the second pair operators acting on
σt. On the other hand, the kernels Ck form a family of functions indexed by
the integer k ≥ 1. They are obtained from F by letting the variables θ1, θ∞,
and σt tend to infinity in a prescribed way, see Section 3, and this confluent
limit can be viewed as the first degeneration limit in the non-polynomial
scheme. We show in Theorem 3.2 and Theorem 3.4 that, just like F , each
of the kernels Ck is a joint eigenfunction of two different pairs of difference
operators, with the operators in the first pair acting on ν and the operators
in the second pair acting on σs. These difference equations are obtained by
studying the confluent limits of the difference equations satisfied by F .

In the second part of the paper (Sections 4-6), we study the relation
between the non-polynomial scheme and the q-Askey scheme. In the con-
fluent limit, the parameter σs is left unchanged while σt is sent to infinity.
As a result, the two pairs of difference equations satisfied by Ck are of dif-
ferent nature: the first pair is of the form satisfied by the continuous dual
q-Hahn polynomials, while the second pair is of the form satisfied by the big
q-Jacobi polynomials. This suggests that there is a relationship between the
Ck and these polynomials. This relationship is made precise in Theorem 5.4
and Theorem 6.2, which together with Theorem 4.2 form the main results
of the second part of the paper. Theorem 4.2 shows that F reduces (up
to normalization) to the Askey–Wilson polynomials when the variable σs
is suitably discretized. Similarly, Theorem 5.4 and Theorem 6.2 show that
Ck(b,θ, σs, ν) reduces (again up to normalization) to the continuous dual
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q-Hahn polynomials when ν is suitably discretized and to the big q-Jacobi
polynomials when σs is suitably discretized. Depending on whether k is an
odd or an even integer, the resulting polynomials are associated with the
quantum deformation parameter q or its inverse q−1.

The main results in Sections 4-6 are summarized in Figure 2. In Figure 2,
the limits from elements of the non-polynomial scheme to elements of the
q-Askey scheme are indicated by dashed arrows; we refer to these limits as
polynomial limits, since the limiting functions are polynomials. The limits
within the two schemes are indicated by solid arrows. It is important to
note that the diagram in Figure 2 commutes: The confluent limit which
was considered (with an entirely different goal in mind) in [10] to define the
confluent Virasoro fusion kernels Ck descends to the degeneration limits of
the q-Askey scheme in the polynomial limit.

Virasoro fusion kernel
confluent Virasoro

fusion kernels

Askey–Wilson
polynomials

Continuous dual
q-Hahn polynomials

big-q Jacobi
polynomials

Eq. (3.8)

Eq. (B.8)

Eq. (B.15)

Theorem
4.2

Theorem 5.4

Theorem 6.2

Figure 2. Illustration of the relationship between the non-polynomial scheme
introduced in this paper and the q-Askey scheme. The diagram summarizes
the main results of Sections 4-6. The solid and dashed arrow correspond to
confluent and polynomial limits, respectively.

In the context of the q-Askey scheme, it is usually assumed that 0 <
q < 1, or at least that |q| < 1 [6]. However, in the non-polynomial setting
it is natural to assume that q lies on the unit circle; according to (1.1),
this corresponds to b > 0 and a central charge c satisfying c > 1. Thus, even
though we expect many of our results to analytically extend to other values
of q, we will focus on the case when q lies on the unit circle. It is interesting
to note that although the orthogonal polynomials in the q-Askey scheme are
typically not defined (at least not in the standard way) when q is a root
of unity, no such restriction is necessary for the non-polynomial scheme.
Consequently, we only need to impose the assumption that q is not a root
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of unity in the second part of the paper where the polynomial limits are
considered.

Sometimes the family of continuous q-Hahn polynomials are included
in the second level of the q-Askey scheme, along with the continuous dual
q-Hahn and the big q-Jacobi polynomials. However, since the continuous
q-Hahn polynomials are related to the Askey–Wilson polynomials by simple
phase shifts (see [6, Eq. (14.1.17)]), they can be obtained from the Virasoro
fusion kernel in the same way as the Askey–Wilson polynomials. We will
therefore not discuss them further in this paper.

1.1. Relation to earlier work

Our construction of a non-polynomial scheme with the Virasoro fusion ker-
nel as its top member has been inspired by results presented in [18] and
[15]. First, it was shown in [18] that the Ruijsenaars hypergeometric func-
tion R(a+, a−, c; v, v̂) (also referred to as the R-function) reduces to the
Askey–Wilson polynomials in a certain limit when either v or v̂ is suitably
discretized. The key to the proof of this fact in [18] is that, in this limit, one
of the four difference equations satisfied by the R-function reduces to the
three-term recurrence relation satisfied by the Askey–Wilson polynomials.
Second, it was recently understood in [15] that, up to normalization, the Vi-
rasoro fusion kernel F is equal to the R-function when the parameters of the
two functions are appropriately identified. By combining these two results,
it follows that the Virasoro fusion kernel also reduces to the Askey–Wilson
polynomials in an appropriate limit. This observation is made precise in
Theorem 4.2, which therefore can be viewed as a reformulation of the result
from [18] expressed in the language of the Virasoro fusion kernel using the
identification put forth in [15]. However, in Section 4 we give a direct and
self-contained proof of Theorem 4.2 based on the idea of [18], because this
is easier than to explain how the assertion follows from [18] and [15].

To the best of our knowledge, no attempt has previously been made to
derive an Askey type scheme with the R-function or the Virasoro fusion
kernel as its top member. A non-polynomial generalization of the q-Askey
scheme whose top member is the Askey–Wilson function was constructed in
[8]. It is however not clear if there is any relation between the non-polynomial
scheme presented here and the scheme of [8]. The Askey–Wilson function
is a non-polynomial generalization of the Askey–Wilson polynomials [8]; it
is a joint eigenfunction of two difference operators of Askey–Wilson type
[2, 4] and it was shown in [2] that it is proportional to a trigonometric
Barnes integral, whose building block is the q-Gamma function Γq [19]. In
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particular, the function Γq, and consequently the Askey–Wilson function, are
well defined only for |q| < 1. On the other hand, the R-function, which was
introduced in [17] and studied in greater detail in [18, 20, 21], is proportional
to a hyperbolic Barnes integral [2], whose building block consists of the
hyperbolic gamma function G(a+, a−, z) [19], and it is defined for more
general values of q = eiπa+/a− in the complex plane. The R-function can
be expressed as a sum of two terms, where each term is proportional to a
product of two Askey–Wilson functions [2, Theorem 6.5].

1.2. Organization of the paper

We recall the definition and eigenfunction properties of the Virasoro fusion
kernel F in Section 2. Eigenfunction properties of the confluent Virasoro
fusion kernels Ck are derived in Section 3. In Section 4, we consider the
reduction of F to the Askey–Wilson polynomials. In Section 5, we show
that a renormalized version of Ck reduces to the continuous dual q-Hahn
polynomials when ν is suitably discretized. In Section 6, we prove that a
renormalized version of Ck reduces to the big q-Jacobi polynomials when
σs is suitably discretized. Section 7 contains some conclusions and perspec-
tives. In Appendix A, the definition of q-hypergeometric series is recalled. In
Appendix B, we review the properties of the first two levels of the q-Askey
scheme that are needed for the proofs in Sections 4-6.

2. The Virasoro fusion kernel

The Virasoro fusion kernel, denoted by F , is defined by

F
[

θ1 θt
θ∞ θ0

;
σs

σt

]

=
∏

ϵ,ϵ′=±1

gb (ϵθ1 + θt + ϵ′σt) gb (ϵθ0 − θ∞ + ϵ′σt)

gb (ϵθ0 + θt + ϵ′σs) gb (ϵθ1 − θ∞ + ϵ′σs)

×
∏

ϵ=±1

gb(
iQ
2 + 2ϵσs)

gb(− iQ
2 + 2ϵσt)

×
∫

F

dx
∏

ϵ=±1

sb (x+ ϵθ1) sb (x+ ϵθ0 + θ∞ + θt)

sb

(

x+ iQ
2 + θ∞ + ϵσs

)

sb

(

x+ iQ
2 + θt + ϵσt

) ,

(2.1)

where sb(z) and gb(z) are the special functions defined by

(2.2) sb(z) = exp

[

i

∫ ∞

0

dy

y

(

sin 2yz

2 sinh b−1y sinh by
− z

y

)]

, |Im z| < Q

2
,
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and
(2.3)

gb(z) = exp

{
∫ ∞

0

dt

t

[

e2izt − 1

4 sinh bt sinh b−1t
+

1

4
z2
(

e−2bt + e−
2t

b

)

− iz

2t

]}

,

Im z > −Q
2
.

In order to specify the contour of integration F in (2.1), we need to first
recall some properties of gb(z) and sb(z). These functions are related to the
functions G and E in [18, Eq. (A.3)] and [18, Eq. (A.43)] by

sb(z) = G(b, b−1; z), gb(z) =
1

E(b, b−1;−z) ;(2.4)

thus it follows from [18] that

• sb and gb satisfy the relation sb(z) = gb(z)/gb(−z) and
• the function gb(z) has no zeros, but it has poles located at

(2.5) zk,l = − iQ
2

− ikb− ilb−1, k, l = 0, 1, 2, . . . .

Consequently, the function sb(z) is a meromorphic function of z ∈ C with
zeros {zm,l}∞m,l=0 and poles {pm,l}∞m,l=0 located at

zm,l =
iQ

2
+ imb+ ilb−1, m, l = 0, 1, 2, . . . , (zeros),

pm,l = − iQ
2

− imb− ilb−1, m, l = 0, 1, 2, . . . , (poles).
(2.6)

The multiplicity of the zero zm,l in (2.6) is given by the number of dis-
tinct pairs (mi, li) ∈ Z≥0 × Z≥0 such that zmi,li = zm,l. The pole pm,l has
the same multiplicity as the zero zm,l. In particular, if b2 is an irrational
real number, then all the zeros and poles in (2.6) are distinct and simple.
We deduce that the integrand in (2.1) has eight semi-infinite sequences of
poles in the complex x-plane. Assuming that b > 0, there are four downward
sequences starting at x = ±θ1 − iQ

2 and x = ±θ0 − θ∞ − θt − iQ
2 , and four

upward sequences starting at x = −θ∞ ± σs and x = −θt ± σt. The contour
F in (2.1) is any curve from −∞ to +∞ which separates the four upward
from the four downward sequences of poles. We can ensure the existence of
such a contour by imposing the following restrictions on the parameters.
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Assumption 2.1 (Restrictions on the parameters). Throughout the
paper, we assume that

(2.7) b > 0, (θ0, θt, θ1, θ∞) ∈ R
4.

Let us temporarily also assume that σs, σt ∈ R. Then Assumption 2.1
implies that F can be chosen to be any curve from −∞ to +∞ lying in the
open strip Imx ∈ (−Q/2, 0). Moreover, with this choice of F, the integrand
in (2.1) has exponential decay as Rex→ ±∞, so the integral in (2.1) is well-
defined. The decay of the integrand follows from the following asymptotic
formula which is a consequence of [18, Theorem A.1] and (2.4): For each
ϵ > 0,

± ln sb(z) = − iπz
2

2
− iπ

24
(b2 + b−2) +O(e

− 2π(1−ϵ)

max(b,b−1)
|Re z|

), Re z → ±∞,

(2.8)

uniformly for (b, Im z) in compact subsets of (0,∞)× R. Note that Assump-
tion 2.1 is made primarily for simplicity; we expect all our results to admit
analytic continuations to more general values of the parameters. In the fol-
lowing subsection we use that F can be defined for complex values of σs and
σt by analytic continuation.

2.1. First pair of difference equations

Define a translation operator e±ib∂σs which formally acts on a meromorphic
function f(σs) by e±ib∂σsf(σs) = f(σs ± ib). Define the difference operator
HF acting on the variable σs by

HF

[

θ1 θt
θ∞ θ0

; b, σs

]

= H+
F

[

θ1 θt
θ∞ θ0

; b, σs

]

eib∂σs(2.9)

+H+
F

[

θ1 θt
θ∞ θ0

; b, −σs

]

e−ib∂σs +H0
F

[

θ1 θt
θ∞ θ0

; b, σs

]

,

where
(2.10)

H+
F

[

θ1 θt
θ∞ θ0

; b, σs

]

=
4π2Γ(1+2b2−2ibσs)Γ(b2−2ibσs)Γ(−2ibσs)Γ(1+b2−2ibσs)

∏

ϵ,ϵ′=±1 Γ

(

bQ
2 −ib(σs+ϵθ1+ϵ′θ∞)

)

Γ

(

bQ
2 −ib(σs+ϵθ0+ϵ′θt)

)
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and

(2.11) H0
F

[

θ1 θt
θ∞ θ0

; b, σs

]

= −2 cosh (2πb(θ1 + θt +
ib
2 ))

+ 4
∑

k=±1

∏

ϵ=±1 cosh (πb(ϵθ∞ − ib
2 − θ1 − kσs)) cosh (πb(ϵθ0 − ib

2 − θt − kσs))

sinh
(

2πb(kσs +
ib
2 )
)

sinh (2πbkσs)
.

It was shown in [15, Proposition 4.3] that the Virasoro fusion kernel F is a
joint eigenfunction of two copies of HF :

HF

[

θ1 θt
θ∞ θ0

; b, σs

]

F
[

θ1 θt
θ∞ θ0

;
σs

σt

]

= 2 cosh (2πbσt) F
[

θ1 θt
θ∞ θ0

;
σs

σt

]

,(2.12a)

HF

[

θ1 θt
θ∞ θ0

; b−1, σs

]

F
[

θ1 θt
θ∞ θ0

;
σs

σt

]

= 2 cosh
(

2πb−1σt
)

F
[

θ1 θt
θ∞ θ0

;
σs

σt

]

.(2.12b)

2.2. Second pair of difference equations

Define the dual difference operator H̃F acting on the variable σt by

H̃F

[

θ0 θt
θ∞ θ1

; b, σt

]

= H̃+
F

[

θ0 θt
θ∞ θ1

; b, σt

]

eib∂σt(2.13)

+ H̃+
F

[

θ0 θt
θ∞ θ1

; b, −σt

]

e−ib∂σt +H0
F

[

θ0 θt
θ∞ θ1

; b, σt

]

,

where

H̃+
F

[

θ0 θt
θ∞ θ1

; b, σt

]

=
4π2 Γ(1−b2+2ibσt)Γ(1+2ibσt)Γ(2ibσt−2b2)Γ(2ibσt−b2)

∏

ϵ,ϵ′=±1 Γ(
1−b2

2
+ib(σt+ϵθ0+ϵ′θ∞))Γ( 1−b2

2
+ib(σt+ϵθ1+ϵ′θt))

.

(2.14)

It was shown in [15, Proposition 4.4] that F also satisfies the dual pair of
difference equations

H̃F

[

θ0 θt
θ∞ θ1

; b, σt

]

F
[

θ1 θt
θ∞ θ0

;
σs

σt

]

= 2 cosh (2πbσs) F
[

θ1 θt
θ∞ θ0

;
σs

σt

]

,(2.15a)

H̃F

[

θ0 θt
θ∞ θ1

; b−1, σt

]

F
[

θ1 θt
θ∞ θ0

;
σs

σt

]

= 2 cosh
(

2πb−1σs
)

F
[

θ1 θt
θ∞ θ0

;
σs

σt

]

.(2.15b)

3. Difference equations for the confluent Virasoro

fusion kernels

In the previous section, we recalled the definition of the Virasoro fusion
kernel and its eigenfunction properties. In this section, we describe the limit
of the Virasoro fusion kernel leading to the family of confluent Virasoro
fusion kernels Ck, and we show that the kernel Ck satisfies two different pairs
of difference equations for each k.
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3.1. Confluent Virasoro fusion kernels

The confluent Virasoro fusion kernels {Ck}∞k=1 were introduced in [10] as
confluent limits of the Virasoro fusion kernel. Let θ = (θ0, θt, θ∗) ∈ R3 be a
vector of parameters and let ∆(x) be the function defined by

(3.1) ∆(x) =
Q2

4
+ x2.

The kernel Ck is defined for any integer k ≥ 1 by [10, Eq. (5.5)]

Ck (b,θ, ν, σs) = P (k) (θ, ν, σs)

∫

C

dx I(k) (x,θ, ν, σs),(3.2)

where the prefactor P (k) is given by1

(3.3) P (k) (θ, ν, σs) =
(

e2iπ(⌊
k

2
⌋− 1

2
)b
)∆(θ0)+∆(θt)−∆(σs)+

θ2∗
2
−2ν2

×
∏

ϵ=±1

gb (ϵσs − θ∗) gb (ϵσs − θ0 − θt) gb (ϵσs + θ0 − θt)

gb

(

− iQ
2 + 2ϵσs

)

gb
(

ν − θ∗
2 + ϵθ0

)

gb
(

−θt + ϵ(ν + θ∗
2 )
)

,

and the integrand I(k) is given by

(3.4) I(k) (x,θ, ν, σs) = e(−1)k+1iπx( iQ

2
+ θ∗

2
+θt+ν) sb

(

x+ θ∗
2 − θt + ν

)

sb
(

x+ iQ
2

)

×
∏

ϵ=±1

sb
(

x+ ϵθ0 + ν − θ∗
2

)

sb
(

x+ iQ
2 + ν − θ∗

2 − θt + ϵσs
) .

The integration contour C in (3.2) is defined as follows. As a function of
x ∈ C, the numerator in the integrand has three decreasing semi-infinite se-
quences of poles, while the denominator has three increasing semi-infinite
sequences of zeros. The contour C in (3.2) is any curve from −∞ and +∞
which separates the increasing from the decreasing sequences. In addition
to the restrictions that b > 0 and (θ0, θt, θ1, θ∞) ∈ R4 imposed by Assump-
tion 2.1, we temporarily also assume that (θ∗, ν, σs) ∈ R3. In this case, the

1Complex powers are defined on the universal cover of C \ {0}, i.e.,

(e2iπ(⌊
k
2 ⌋−

1
2 )b)α = e2iπα(⌊

k
2 ⌋−

1
2 )bα.
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contour of integration C can be any curve from −∞ to +∞ lying within the
strip Imx ∈ (−Q/2, 0). Moreover, with this choice of C, the integral in (3.2)
converges. Indeed, it follows from the asymptotic formula (2.8) for sb that
the integrand I(k) obeys the estimate

I(k) (x,θ, ν, σs) = O(e−πQ|Rex|), Rex→ ±∞,(3.5)

uniformly for (b, Imx, θ0, θt, θ∗, ν, σs) in compact subsets of R>0 × R× C5.
As in the case of F , the functions Ck are defined for more general values of
the variables by analytic continuation.

The kernels Ck are confluent limits of the Virasoro fusion kernel (2.1).
Indeed, define the function M by

(3.6) M
[

θ0 θt
θ∞ θ1

;
σt

σs

]

= eiπ(∆(σt)−∆(θ1)−∆(θt)) F
[

θ0 θt
θ∞ θ1

;
σt

σs

]

,

where F is defined by (2.1). Moreover, define the normalization factor
Lk(Λ, ν, σs) for Λ > 0 and k ≥ 1 by

(3.7) Lk(Λ, ν, σs) = e−iπ(−∆( θ∗+Λ

2 )−∆(θt)+∆(Λ

2
−ν))

×
(

e2iπ(k−1)ibΛ
)

(

∆(θ0)+∆(θt)−∆(σs)+
θ2∗
2
−2ν2

)

.

Then, for any integer k ≥ 1,
(3.8)

lim
Λ→+∞

(

Lk(ϵΛ, ν, σs)M
[

θ0 θt
ϵΛ−θ∗

2

ϵΛ+θ∗
2

;
ϵΛ

2
−ν

σs

])

=

{

C2k (b,θ, ν, σs) , ϵ = +1,

C2k−1 (b,θ, ν, σs) , ϵ = −1.

The relation between F and Ck was not stated in this form in [10], but
equation (3.8) is convenient for our present purposes and can be deduced
from [10, Section 6.1].

In the remainder of this section, we show that the four difference equa-
tions in (2.12) and (2.15) satisfied by the Virasoro fusion kernel survive in
the confluent limit (3.8); this leads to four difference equations satisfied by
Ck for each k. Since we seek to use (3.8), we rewrite the difference equa-
tions (2.12) and (2.15) for F in terms ofM using (3.6). Define the difference
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operators HM and H̃M by

HM

[

θ0 θt
θ∞ θ1

; b, σt

]

= e2πb(σt+
ib

2
)H+

F

[

θ0 θt
θ∞ θ1

; b, σt

]

eib∂σt

+ e2πb(−σt+
ib

2
)H+

F

[

θ0 θt
θ∞ θ1

; b, −σt

]

e−ib∂σt

+H0
F

[

θ0 θt
θ∞ θ1

; b, σt

]

,(3.9a)

H̃M

[

θ1 θt
θ∞ θ0

; b, σs

]

= H̃F

[

θ1 θt
θ∞ θ0

; b, σs

]

.(3.9b)

It follows from (2.12) and (2.15) that M satisfies the pair of difference equa-
tions

HM

[

θ0 θt
θ∞ θ1

; b, σt

]

M
[

θ0 θt
θ∞ θ1

;
σt

σs

]

= 2 cosh (2πbσs) M
[

θ0 θt
θ∞ θ1

;
σt

σs

]

,(3.10a)

H̃M

[

θ1 θt
θ∞ θ0

; b, σs

]

M
[

θ0 θt
θ∞ θ1

;
σt

σs

]

= 2 cosh (2πbσt) M
[

θ0 θt
θ∞ θ1

;
σt

σs

]

,(3.10b)

as well as the pair of difference equations obtained by replacing b→ b−1 in
(3.10).

3.2. First pair of difference equations

The first pair of difference equations for Ck is found by applying the limit
(3.8) to the difference equation (3.10a). Equation (3.10a) can be written as

(3.11)
(

Lk(ϵΛ, ν, σs)HM

[

θ0 θt
θ∞ θ1

; b, σt

]

Lk(ϵΛ, ν, σs)
−1
)

Lk(ϵΛ, ν, σs)M
[

θ0 θt
θ∞ θ1

;
σt

σs

]

= 2 cosh (2πbσs) Lk(ϵΛ, ν, σs)M
[

θ0 θt
θ∞ θ1

;
σt

σs

]

.

Introduce the difference operator HCk
by

(3.12) HCk
(b, ν) = H+

Ck
(ν)eib∂ν +H−

Ck
(ν)e−ib∂ν +H0

Ck
(ν),

where

H+
Ck
(ν) =

4π2e−4πb⌊ k−1

2
⌋(ib+2ν)

∏

ϵ=±1 Γ
(

bQ
2 + ib

(

ϵθ0 +
θ∗
2 − ν

)

)

Γ
(

bQ
2 + ib

(

ϵθt − θ∗
2 − ν

)

) ,

H−
Ck
(ν) =

4π2e−4πb(⌊ k

2
⌋− 1

2)(ib−2ν)

∏

ϵ=±1 Γ
(

bQ
2 + ib

(

ϵθ0 − θ∗
2 + ν

)

)

Γ
(

bQ
2 + ib

(

ϵθt +
θ∗
2 + ν

)

) ,

(3.13)
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and

H0
Ck
(ν) = 4e(−1)kπb(θ0+θt+2ν) cosh(πb( ib2 + θ0 +

θ∗
2 − ν))

× cosh(πb( ib2 − θ∗
2 + θt − ν))

+ 4e(−1)k+1πb(θ0+θt−2ν) cosh(πb( ib2 + θt +
θ∗
2 + ν))

× cosh(πb( ib2 − θ∗
2 + θ0 + ν))

− 2 cosh(2πb( ib2 + θ0 + θt)).

(3.14)

The next lemma shows that HCk
is the limit as Λ → +∞ of the operator in

round brackets on the left-hand side of (3.11) evaluated with

(3.15) θ∞ =
ϵΛ− θ∗

2
, θ1 =

ϵΛ + θ∗
2

, σt =
ϵΛ

2
− ν.

Lemma 3.1. For each integer k ≥ 1,

(3.16) lim
Λ→+∞

(

Lk(ϵΛ, ν, σs)HM

[

θ0 θt
ϵΛ−θ∗

2

ϵΛ+θ∗
2

; b, ϵΛ

2
−ν

]

Lk(ϵΛ, ν, σs)
−1
)

=

{

HC2k
(b, ν), ϵ = +1,

HC2k−1
(b, ν), ϵ = −1.

Proof. Let us consider the case ϵ = +1. Using (3.9a), we can write

Lk(Λ, ν, σs)HM

[

θ0 θt
Λ−θ∗

2

Λ+θ∗
2

; b, Λ

2
−ν

]

Lk(Λ, ν, σs)
−1

= H0
F

[

θ0 θt
Λ−θ∗

2

Λ+θ∗
2

; b, Λ

2
−ν

]

+ eπbΛ
Lk(Λ, ν, σs)

Lk(Λ, ν − ib, σs)
H+

F

[

θ0 θt
Λ−θ∗

2

Λ+θ∗
2

; b, Λ

2
−ν

]

eπb(ib−2ν)e−ib∂ν

+ e−πbΛ Lk(Λ, ν, σs)

Lk(Λ, ν + ib, σs)
H+

F

[

θ0 θt
Λ−θ∗

2

Λ+θ∗
2

; b, −Λ

2
+ν

]

eπb(ib+2ν)eib∂ν ,

(3.17)

where the coefficients H+
F and Lk are given in (2.10) and (3.7), respectively,

and H0 is defined in (2.11). It is straightforward to verify that (3.17) can be
brought to the following form:

Lk(Λ, ν, σs)HM

[

θ0 θt
Λ−θ∗

2

Λ+θ∗
2

; b, Λ

2
−ν

]

Lk(Λ, ν, σs)
−1

= H0
F

[

θ0 θt
Λ−θ∗

2

Λ+θ∗
2

; b, Λ

2
−ν

]

+X+1(Λ, ν) H
+
C2k

(ν) eib∂ν

+X−1(Λ, ν) H
−
C2k

(ν) e−ib∂ν ,

(3.18)
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where H±
Ck
(ν) are given in (3.13) and the coefficients Xj(Λ, ν), j = ±1, are

defined by

(3.19) Xj(Λ, ν) = (jibΛ)−2b(b−2ijν)

× Γ(b(b+ij(Λ−2ν)))Γ(b2+ij(Λ−2ν)b+1)Γ(2b2+ij(Λ−2ν)b+1)Γ(jib(Λ−2ν))
∏

ϵ=±1 Γ(
bQ

2
−jib(ϵθ0+ θ∗

2
−Λ+ν))Γ( bQ

2
+bij( θ∗

2
+ϵθt+Λ−ν))

.

It remains to compute the limit Λ → +∞ of (3.18). First, the asymptotic
formula

(3.20) Γ(z + a) ∼
√
2π zz+a− 1

2 e−z, z → ∞, z + a ∈ C \ R≤0, |a| < |z|

shows that

(3.21) lim
Λ→+∞

X±1(Λ, ν) = 1.

Second, the first term on the right-hand side of (3.18) takes the form

H0
F

[

θ0 θt
Λ−θ∗

2

Λ+θ∗
2

; b, Λ

2
−ν

]

=− 2 cosh(2πb( ib2 + θ0 + θt))

+ J+1(Λ, ν) cosh(πb(− ib
2 − θ0 − θ∗

2 + ν))

× cosh(πb(− ib
2 + θ∗

2 − θt + ν))

+ J−1(Λ, ν) cosh(πb(− ib
2 − θ0 +

θ∗
2 − ν))

× cosh(πb( ib2 + θ∗
2 + θt + ν)),

(3.22)

where the coefficients Jj(Λ, ν), j = ±1, are defined by
(3.23)

Jj(Λ, ν) = 4j
cosh(πb(− ib

2
−θ0+

θ∗j

2
−jΛ+jν)) cosh(πb(− ib

2
−θt−

θ∗j

2
−jΛ+jν))

sinh(πb(Λ−2ν)) sinh(πb(ib+jΛ−2jν)) .

The limit of Jj as Λ → +∞ is easily computed by expressing the hyperbolic
functions in terms of exponentials:

(3.24) lim
Λ→+∞

Jj(Λ, ν) = 4ejπb(θ0+θt+2jν), j = ±1.

It follows from (3.22) and (3.24) that

(3.25) lim
Λ→+∞

H0
F

[

θ0 θt
Λ−θ∗

2

Λ+θ∗
2

; b, Λ

2
−ν

]

= H0
C2k

(ν).

Using (3.21) and (3.25), we can compute the limit of (3.18) as Λ → +∞.
Comparing the result with (3.12), we obtain (3.16) for ϵ = +1. The case
ϵ = −1 is treated in a similar way. □
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We can now state the first pair of difference equations for Ck.

Theorem 3.2 (First pair of difference equations for Ck). For each
integer k ≥ 1, the confluent fusion kernel Ck (b,θ, ν, σs) defined in (3.2) sat-
isfies the following pair of difference equations:

HCk
(b, ν) Ck (b,θ, ν, σs) = 2 cosh (2πbσs) Ck (b,θ, ν, σs) ,(3.26a)

(

b−4ν2

HCk
(b−1, ν)b4ν

2
)

Ck (b,θ, ν, σs)(3.26b)

= 2 cosh (2πb−1σs) Ck (b,θ, ν, σs) ,

where HCk
is given in (3.12).

Proof. We only have to prove (3.26a), because the confluent fusion kernel
satisfies

(3.27) Ck
(

b−1,θ, ν, σs
)

= b−2(∆(θ0)+∆(θt)−∆(σs)+
θ2∗
2
−2ν2)Ck (b,θ, ν, σs) .

We will present two different proofs of (3.26a). The first proof has the advan-
tage of being constructive and is based on Lemma 3.1; this is the approach
we first used to arrive at (3.26). The second proof is more direct and avoids
the use of Lemma 3.1 and of confluent limits, but it assumes that the struc-
ture of (3.26) is already known.

First proof of (3.26a). With the help of (3.8) and (3.16), we can easily
compute the limit Λ → +∞ of equation (3.11) for any integer k ≥ 1 and
ϵ = ±1. This gives (3.26a).

Second proof of (3.26a). Let us rewrite the integral representation (3.2)
for Ck as follows:

(3.28) Ck (b,θ, ν, σs) =
∫

C

dx Xk(x, ν)Yk(x, σs)Zk(x),

where the dependence of the functions Xk, Yk, Zk on θ is omitted for sim-
plicity. Performing the change of variables x→ x− ν in (3.2), we find that
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Xk, Yk, Zk are given by

Xk(x, ν) = b−2ν2

e−4iπν2(⌊ k

2
⌋− 1

2
)

× e(−1)kiπν( iQ

2
−x+ θ∗

2
+θt+ν) sb(x+

iQ

2
−ν)−1

∏

ϵ=±1 gb(ν−
θ∗
2
+ϵθ0)gb(ϵ( θ∗

2
+ν)−θt)

,

Yk(x, σs) = b−∆(σs)e−2iπ∆(σs)(⌊ k

2⌋− 1

2)

×
∏

ϵ=±1

gb(ϵσs−θ∗)gb(ϵσs−θ0−θt)gb(ϵσs+θ0−θt)

gb(2ϵσs−
iQ

2 )sb(x+
iQ

2
− θ∗

2
−θt+ϵσs)

,

Zk(x) = eiπ(−1)k+1x( θ∗
2
+θt+

iQ

2 )b∆(θ0)+∆(θt)+
θ2∗
2 e

2iπ(⌊ k

2⌋− 1

2)
(

∆(θ0)+∆(θt)+
θ2∗
2

)

× sb(x− θ0 − θ∗
2 )sb(x+ θ0 − θ∗

2 )sb(x+ θ∗
2 − θt).(3.29)

As a consequence of the relations

(3.30)
gb
(

z + ib
2

)

gb
(

z − ib
2

) =
b−ibz

√
2π

Γ
(

1
2 − ibz

) ,
sb(z +

ib
2 )

sb(z − ib
2 )

= 2 coshπbz,

the following identity follows from long but straightforward computations:

(3.31)
HCk

(b, ν)Xk (x, ν)

Xk (x, ν)
= 2 cosh (πb(2x− θ∗ − 2θt)) + ψk(x, ν),

where

(3.32) ψk(x, ν) = −4ie
(−1)kπb

(

θt+ν+ iQ

2
+
θ∗
2

)

cosh
(

πb(x+ ib
2 + θ∗

2 − θt)
)

sinh (πb(x+ ib− ν))

×
∏

ϵ=±1

cosh (πb(x+ ib
2 + ϵθ0 − θ∗

2 )).

Using (3.31), we obtain

HCk
(b, ν) Ck (b,θ, ν, σs) =

∫

C

dx 2 cosh (πb(2x− θ∗ − 2θt))Xk(x, ν)Yk(x, σs)Zk(x)

+

∫

C

dx ψk(x, ν)Xk(x, ν)Yk(x, σs)Zk(x).(3.33)
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Moreover, the identity satisfied by sb in (3.30) implies that the building
blocks Xk, Yk, Zk of the integral possess the following properties:

Xk(x− ib, ν)

Xk(x, ν)
= 2ie(−1)k+1πbν sinh(πb(x− ν)),(3.34a)

Yk(x− ib, σs)

Yk(x, σs)
= 2 cosh (2πbσs)− 2 cosh (πb(2x− θ∗ − 2θt)),(3.34b)

Zk(x− ib)

Zk(x)
= e(−1)k+1 πb

2
(θ∗+2θt+iQ)

8 cosh (πb(x− ib

2
−θ0−

θ∗
2
)) cosh (πb(x− ib

2
+θ0−

θ∗
2
)) cosh (πb(x− ib

2
+ θ∗

2
−θt)

.(3.34c)

Performing the change of variables x→ x− ib in the second integral in (3.33)
and using (3.34b), we obtain

HCk
(b, ν)Ck (ν, σs) =

∫

C

dx 2 cosh (πb(2x− θ∗ − 2θt))Xk(x, ν)Yk(x, σs)Zk(x)

−
∫

C

dx 2 cosh (πb(2x− θ∗ − 2θt))

× ψk(x− ib, ν)Xk(x− ib, ν)Yk(x, σs)Zk(x− ib)

+ 2 cosh (2πbσs)(3.35)

×
∫

C

dx ψk(x− ib, ν)Xk(x− ib, ν)Yk(x, σs)Zk(x− ib).

On the other hand, the identities (3.34a) and (3.34c) imply that

(3.36) ψk(x− ib, ν)Xk(x− ib, ν)Zk(x− ib) = Xk(x, ν)Zk(x).

Equation (3.36) ensures that the first two lines in (3.35) cancel and thus
(3.26a) follows from (3.35). □

3.3. Second pair of difference equations

To derive the second pair of difference equations satisfied by Ck, we rewrite
(3.10b) as

(3.37)
(

e−πbΛLk(Λ, ν, σs)H̃M

[

θ1 θt
θ∞ θ0

; b, σs

]

Lk(Λ, ν, σs)
−1
)

Lk(Λ, ν, σs)M
[

θ0 θt
θ∞ θ1

;
σt

σs

]

= 2e−πbΛ cosh (2πbσt)Lk(Λ, ν, σs)M
[

θ0 θt
θ∞ θ1

;
σt

σs

]

.
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It is easy to observe that

(3.38) lim
Λ→+∞

2e−πbΛ cosh (2πbσt)|σt=
ϵΛ

2
−ν =

{

e−2πbν , ϵ = +1,

e2πbν , ϵ = −1.

Introduce the dual difference operator H̃Ck
by

(3.39) H̃Ck
(b, σs) = H̃+

Ck
(σs)e

ib∂σs + H̃+
Ck
(−σs)e−ib∂σs + H̃0

Ck
(σs),

where

H̃+
Ck
(σs) = 2πe−2πb(σs+

ib

2 )(⌊ k−1

2 ⌋+⌊ k

2⌋− 1

2)

× Γ(1+2ibσs)Γ(1−b2+2ibσs)Γ(−2b(b−iσs))Γ(−b(b−2iσs))
∏

ϵ1=±1{Γ( 1−b2

2
−ib(ϵ1θ∗−σs))

∏

ϵ2=±1 Γ(
1−b2

2
−ib(ϵ1θ0+ϵ2θt−σs))} ,

(3.40)

and

H̃0
Ck
(σs) = −e(−1)kπb(ib+θ∗+2θt) + Vk(σs, θt) + Vk(−σs, θt),(3.41)

with

(3.42) Vk(σs, θt) = 2e(−1)k+1πb(σs−
ib

2 ) cosh(πb( ib2 + θ∗ − σs))

×
∏

ϵ=±1 cosh
(

πb
(

− ib
2 − θt + σs + ϵθ0

))

sinh(πb(2σs − ib)) sinh(2πbσs)
.

The next lemma shows that H̃Ck
is the limit as Λ → +∞ of the operator in

round brackets on the left-hand side of (3.37) with the parameters chosen
as in (3.15).

Lemma 3.3. For each integer k ≥ 1,

(3.43) lim
Λ→+∞

(

e−πbΛLk(Λ, ν, σs)H̃M

[

ϵΛ+θ∗
2

θt
ϵΛ−θ∗

2
θ0
; b, σs

]

Lk(Λ, ν, σs)
−1

)

=

{

H̃C2k
(b, σs), ϵ = +1,

H̃C2k−1
(b, σs), ϵ = −1.
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Proof. The proofs for ϵ = +1 and ϵ = −1 involve similar computations, so
we only give the proof for ϵ = +1. Using (3.9b) and (3.7), we can write

e−πbΛLk(Λ, ν, σs)H̃M

[

Λ+θ∗
2

θt
Λ−θ∗

2
θ0
; b, σs

]

Lk(Λ, ν, σs)
−1

= e−πbΛχ(Λ, σs)H̃
+
C2k

(σs) + e−πbΛχ(Λ,−σs)H̃+
C2k

(−σs)

+ e−πbΛH0
F

[

Λ+θ∗
2

θt
Λ−θ∗

2
θ0
; b, σs

]

,

(3.44)

where H0 is given in (2.11) and

(3.45) χ(Λ, σs) =
2πeπb(σs+

ib

2 )(ibΛ)−b(b−2iσs)

Γ
(

1−b2

2 − ib(Λ− σs)
)

Γ
(

1−b2

2 + ib(Λ + σs)
) .

The asymptotics (3.20) of the gamma function implies that

lim
Λ→+∞

χ(Λ,±σs) = eπbΛ.

Moreover, using that

e−πbΛH0
F

[

Λ+θ∗
2

θt
Λ−θ∗

2
θ0
; b, σs

]

= −2e−πbΛ cosh(πb(ib+ θ∗ + 2θt + Λ))

+ 2e−πbΛeπb(σs−
ib

2
) cosh (πb( ib2 + Λ− σs)V2k(σs, θt)

+ 2e−πbΛe−πb(σs+
ib

2
) cosh (πb( ib2 + Λ+ σs)V2k(−σs, θt),

(3.46)

where Vk is given in (3.42), it is easy to verify that

(3.47) lim
Λ→+∞

e−πbΛH0
F

[

Λ+θ∗
2

θt
Λ−θ∗

2
θ0
; b, σs

]

= H̃0
C2k

(σs).

Recalling the definition (3.39) of H̃Ck
, this proves (3.43) for ϵ = +1. □

The following theorem follows from Lemma 3.3 and (3.37) in the same
way that Theorem 3.2 followed from Lemma 3.1 and (3.11).
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Theorem 3.4 (Second pair of difference equations for Ck). For each
integer k ≥ 1, the confluent fusion kernel Ck (b, ν, σs) defined in (3.28) sat-
isfies the following pair of difference equations:

H̃Ck
(b, σs) Ck (b,θ, ν, σs) = e(−1)k+12πbνCk (b,θ, ν, σs) ,(3.48a)

(

b−2∆(σs)H̃Ck
(b−1, σs)b

2∆(σs)
)

Ck (b,θ, ν, σs)(3.48b)

= e(−1)k+12πb−1νCk (b,θ, ν, σs) ,

where H̃Ck
is given in (3.39).

Remark 3.5. As in the case of Theorem 3.2, it is possible to give a direct
proof of Theorem 3.4 which avoids the use of confluent limits.

Remark 3.6. The two difference operators (3.12) and (3.39) possess dif-
ferent analytic properties: the coefficients in (3.12) are holomorphic, while
the coefficients in (3.39) are meromorphic. It is therefore nontrivial that the
confluent fusion kernels are eigenfunctions of both of them.

4. From the Virasoro fusion kernel to the Askey–Wilson

polynomials

4.1. A renormalized version of F

It was shown in [15, Theorem 1] that a renormalized version of the Virasoro
fusion kernel is equal to Ruijsenaars’ hypergeometric function. In what fol-
lows, we rewrite the result of [15] in a form suitable for our present needs.
Introduce the normalization factor N by

(4.1) N = K
gb

(

−2σt − iQ
2

)

gb

(

2σt − iQ
2

)

gb

(

−2σs +
iQ
2

)

gb

(

2σs +
iQ
2

)

×
∏

ϵ1=±1

∏

ϵ2=±1

gb (−θt + ϵ1θ0 + ϵ2σs) gb (−θ1 + ϵ1θ∞ + ϵ2σs)

gb (θ0 + ϵ1θ∞ + ϵ2σt) gb (θt + ϵ1θ1 + ϵ2σt)
,

where
(4.2)

K = sb

(

iQ
2 + 2θt

)

sb

(

iQ
2 + θ0 + θ1 + θ∞ + θt

)

sb

(

iQ
2 + θ0 + θ1 − θ∞ + θt

)

.



✐

✐

“5-Roussillon” — 2022/6/24 — 18:34 — page 1617 — #21
✐

✐

✐

✐

✐

✐

The family of confluent Virasoro fusion kernels 1617

It was shown in [15, Theorem 1] that the renormalized Virasoro fusion kernel
Fren defined by

(4.3) Fren

[

θ1 θt
θ∞ θ0

;
σs

σt

]

= NF
[

θ1 θt
θ∞ θ0

;
σs

σt

]

is equal to Ruijsenaars’ hypergeometric function under a certain parameter
correspondence. One advantage of renormalizing F is that Fren is symmetric
under the exchange (σs, θ0) ↔ (σt, θ1). Therefore, the four difference equa-
tions satisfied by Fren can be written in a more symmetric form as follows.
Define the difference operator Hren by

Hren

[

θ1 θt
θ∞ θ0

; b, σs

]

= C
[

θ1 θt
θ∞ θ0

; b, σs

]

e−ib∂σs(4.4)

+ C
[

θ1 θt
θ∞ θ0

; b, −σs

]

eib∂σs +H0
F

[

θ1 θt
θ∞ θ0

; b, σs

]

,

where H0
F is defined by (2.11) and

(4.5)

C
[

θ1 θt
θ∞ θ0

; b, σs

]

=
4
∏

ϵ=±1 cosh(πb(−
ib

2
−θt+σs+ϵθ0)) cosh(πb(− ib

2
−θ1+σs+ϵθ∞))

sinh(2πbσs) sinh(πb(−2σs+ib)) .

It follows from (2.12), (2.15), and (4.3) that the renormalized Virasoro fusion
kernel Fren satisfies the following four difference equations [15]:

Hren

[

θ1 θt
θ∞ θ0

; b, σs

]

Fren

[

θ1 θt
θ∞ θ0

;
σs

σt

]

= 2 cosh (2πbσt)Fren

[

θ1 θt
θ∞ θ0

;
σs

σt

]

,(4.6a)

Hren

[

θ1 θt
θ∞ θ0

; b−1, σs

]

Fren

[

θ1 θt
θ∞ θ0

;
σs

σt

]

= 2 cosh (2πb−1σt)Fren

[

θ1 θt
θ∞ θ0

;
σs

σt

]

,(4.6b)

Hren

[

θ0 θt
θ∞ θ1

; b, σt

]

Fren

[

θ1 θt
θ∞ θ0

;
σs

σt

]

= 2 cosh (2πbσs)Fren

[

θ1 θt
θ∞ θ0

;
σs

σt

]

,(4.6c)

Hren

[

θ0 θt
θ∞ θ1

; b−1, σt

]

Fren

[

θ1 θt
θ∞ θ0

;
σs

σt

]

= 2 cosh (2πb−1σs)Fren

[

θ1 θt
θ∞ θ0

;
σs

σt

]

.(4.6d)

4.2. From Fren to An

Let An be the Askey–Wilson polynomials defined in (B.1). In this subsection,
we show that Fren reduces to the polynomials An in a certain limit. As a
consequence, the Virasoro fusion kernel can be viewed as a non-polynomial
generalization of the Askey–Wilson polynomials with quantum deformation
parameter q related to the central charge c of the Virasoro algebra according
to (1.1). In addition to Assumption 2.1, we need the following assumption.
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Assumption 4.1 (Restriction on the parameters). Assume that b > 0
is such that b2 is irrational, and that, for ϵ, ϵ′ = ±1,

σs, σt, θ1, θ0 ̸= 0, θ∞ − θt + ϵσs + ϵ′σt ̸= 0, θ∞ + θt + ϵθ0 + ϵ′θ1 ̸= 0.
(4.7)

Assumption 4.1 implies that the four increasing and the four decreasing
sequences of poles of the integrand in (2.1) are vertical and do not overlap.
The assumption that b2 is irrational implies that all the poles of the integrand
are simple. It is necessary to assume that b2 is irrational because otherwise
q = e2iπb

2

is a root of unity and then the Askey–Wilson polynomials are not
well-defined in general, see Remark B.1.

As described in the introduction, the next theorem follows by combining
one of the results in [18] with the observation of [15] that Fren = R.

Theorem 4.2 (Virasoro fusion kernel → Askey–Wilson polynomi-

als). Suppose that Assumptions 2.1 and 4.1 are satisfied. Define σ
(n)
s ∈ C

for n ≥ 0, by

(4.8) σ(n)s = iQ
2 + θ0 + θt + ibn.

Under the parameter correspondence

(4.9)
α = −e2πb( ib

2
+θ1+θt), β = −e2πb( ib

2
+θ0−θ∞), γ = −e2πb( ib

2
−θ1+θt),

δ = −e2πb( ib

2
+θ0+θ∞), q = e2iπb

2

,

the renormalized fusion kernel defined in (4.3) satisfies, for each integer
n ≥ 0,

(4.10) lim
σs→σ

(n)
s

Fren

[

θ1 θt
θ∞ θ0

;
σs

σt

]

= An(e
2πbσt ;α, β, γ, δ, q),

where An are the Askey–Wilson polynomials defined in (B.1).

Proof. It is easier to give a direct proof than to explain how the assertion
follows from [18] and [15]. In fact, there are two different ways to prove (4.10).

The first approach consists of taking the limit σs → σ
(n)
s in the integral

representation (2.1) for F for each n; the second approach only computes this
limit for n = 0 and then instead uses the limit of one of the four difference
equations (4.6) to extend the result to other values of n. We choose to use
the second approach.
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We first prove (4.10) for n = 0. The definition of An as a hypergeometric
series involves a q-Pochhammer symbol of the form (q−n; q)k in the numera-
tor, see (B.1) and (A.2). If n = 0, only the first term of this q-hypergeometric
series is nonzero, because (1; q)k = 0 for each k ≥ 1. Since (x; q)0 = 1 for all
x and q by definition, we conclude that A0 = 1. Thus, to prove (4.10) for
n = 0, we need to show that the left-hand side of (4.10) equals 1 when n = 0.
By (2.1) and (4.3), we have

Fren

[

θ1 θt
θ∞ θ0

;
σs

σt

]

= P1(σs)

∫

F

dx I1(x, σs),(4.11)

where

P1(σs) = K
∏

ϵ1=±1

(

sb(ϵ1σt − θ0 − θ∞)

sb(ϵ1σs + θ1 − θ∞)

∏

ϵ2=±1

sb(ϵ1σs + ϵ2θ0 − θt)

)

,

I1(x, σs) =
∏

ϵ=±1

sb (x+ ϵθ1) sb (x+ ϵθ0 + θ∞ + θt)

sb

(

x+ iQ
2 + θ∞ + ϵσs

)

sb

(

x+ iQ
2 + θt + ϵσt

) .

The function P1(σs) has a simple zero at σ
(0)
s = iQ

2 + θ0 + θt originating
from the factor sb (σs − θ0 − θt). Let us consider the integrand I1. In the

limit σs → σ
(0)
s , the pole of sb(x+ iQ

2 + θ∞ + σs)
−1 located at x = −θ∞ − σs

moves downwards, crosses the contour of integration F, and collides with
the pole of sb(x+ θ0 + θ∞ + θt) located at x = xf := − iQ

2 − θ0 − θ∞ − θt.

Hence, before taking the limit σs → σ
(0)
s , we choose to deform the contour

of integration F into a contour F′ which passes below xf ; this gives
(4.12)

Fren

[

θ1 θt
θ∞ θ0

;
σs

σt

]

= −2iπP1(σs)Res
x=xf

(I1(x, σs)) + P1(σs)

∫

F′

dx I1(x, σs).

Using the relation

(4.13) Res
z=− iQ

2

sb(z) =
i

2π
,

a straightforward computation yields

−2iπRes
x=xf

I1(x, σs) =
sb(−2θ0−

iQ

2 )sb(−θ0−θ1−θ∞−θt−
iQ

2 )sb(−θ0+θ1−θ∞−θt−
iQ

2 )
sb(−θ0−θ∞−σt)sb(−θ0−θ∞+σt)sb(−θ0−θt−σs)sb(−θ0−θt+σs)

.

(4.14)

The right-hand side of (4.14) has a simple pole at σs = σ
(0)
s due to the factor

sb(−θ0 − θt + σs)
−1. Moreover, in the limit σs → σ

(0)
s , the second term in
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(4.12) vanishes thanks to the zero of P1(σs). Thus,

(4.15) lim
σs→σ

(0)
s

Fren

[

θ1 θt
θ∞ θ0

;
σs

σt

]

= −2iπ lim
σs→σ

(0)
s

P1(σs)Res
x=xf

I1(x, σs).

A straightforward computation shows that the right-hand side equals 1; this
proves (4.10) for n = 0.

For each integer n ≥ 0, let Pn denote the left-hand side of (4.10), i.e.,

(4.16) Pn = lim
σs→σ

(n)
s

Fren

[

θ1 θt
θ∞ θ0

;
σs

σt

]

.

The same kind of contour deformation argument used to establish the case
n = 0 shows that the limit in (4.16) exists for all n. The function Pn depends
on σt as well as the four parameters θ0, θ1, θt, θ∞. To show that Pn equals
the Askey–Wilson polynomial An on the right-hand side of (4.10) for n ≥ 1,
we consider the limit of the difference equation (4.6a). Using the parameter
correspondence (4.9), it is straightforward to verify that

(4.17) lim
σs→σ

(n)
s

Hren

[

θ1 θt
θ∞ θ0

; b, σs

]

= RAn
, n ≥ 0,

where RAn
is the recurrence operator defined in (B.4). Hence, taking the

limit of the first difference equation (4.6a) for Fren as σs → σ
(n)
s , we see that

Pn satisfies

RAn
Pn = (z + z−1)Pn, n ≥ 0,(4.18)

where z = e2πbσt . Thus the Pn satisfy the same recurrence relation (B.3)
as the Askey–Wilson polynomials evaluated at z = e2πbσt . Since we have
already shown that P0 = A0 = 1, equation (4.18) with n = 0 implies that
P1 = A1 (note that there is no term with P−1 in (4.18) for n = 0 because the
coefficient a−n defined in (B.5) vanishes for n = 0). Assuming that Pn = An

for all n ≤ N , equation (4.18) with n = N shows that PN+1 = AN+1; thus
Pn = An for all n ≥ 0 by induction, where An is evaluated at z = e2πbσt .
This completes the proof of (4.10). □

Remark 4.3. The result of Theorem 4.2 can be generalized as follows.
Instead of considering the limit of Fren as σs approaches one of the points
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σ
(n)
s defined in (4.8), we can consider the limit

(4.19) σs → σ(n,m)
s := σ(n)s +

im

b
,

for any integers n,m ≥ 0. In this limit, the Virasoro fusion kernel reduces to
a product of two Askey–Wilson polynomials of the form An ×Am. The first
polynomial An is expressed in terms of the quantum deformation parameter
q = e2iπb

2

, while the second polynomial Am is expressed in terms of q̃ =
e2iπb

−2

. In the case m = 0 treated in Theorem 4.2, the second polynomial
reduces to A0 = 1.

Remark 4.4 (Limits of the other three difference equations). We
saw in the proof of Theorem 4.2 that the first difference equation (4.6a) for
Fren reduces to the recurrence relation (B.3) for the Askey–Wilson polyno-

mials as σs → σ
(n)
s . A similar argument using that, under the parameter

correspondence (4.9),

(4.20) − e2πb(
ib
2 +θ0+θt)Hren

[

θ0 θt
θ∞ θ1

; b, σt

]

= ∆An
,

where ∆An
is the operator defined in (B.7), shows that the third difference

equation (4.6c) reduces to the difference equation (B.6) for the Askey–Wilson

polynomials as σs → σ
(n)
s . On the other hand, the fourth difference equation

(4.6d) is trivially satisfied in the limit σs → σ
(n)
s . Indeed, let Pn be the limit

of Fren as in (4.16). Recalling that An is a polynomial of order n in z + z−1,
we deduce from (4.10) that Pn is an nth order polynomial in cosh(2πbσt).
In particular, e±ib−1∂σtPn = Pn so that the operator on the left-hand side of

(4.6d) becomes a multiplication operator in the limit σs → σ
(n)
s . The identity

C
[

θ0 θt
θ∞ θ1

; b−1, σt

]

+ C
[

θ0 θt
θ∞ θ1

; b−1, −σt

]

+H0
F

[

θ0 θt
θ∞ θ1

; b−1, σt

]

= 2 cosh (2πb−1σ(n)s )

then shows that (4.6d) is trivially satisfied in the limit σs → σ
(n)
s . Finally, the

limit of the second difference equation (4.6b) is of a different nature: since
it involves the shifts σs → σs ± ib−1 induced by the operators e±ib−1∂σs , a
proper description of its limit involves the more general family of functions
An ×Am mentioned in Remark 4.3.
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5. From Ck to the continuous dual q-Hahn polynomials

In this section, we show that (up to normalization) the confluent fusion
kernel Ck (b,θ, ν, σs) degenerates, for each k ≥ 1, to the continuous dual q-
Hahn polynomials Hn when ν is suitably discretized.

5.1. A renormalized version of Ck

Define the renormalized version Cren
k of the confluent fusion kernel Ck by

(5.1) Cren
k (b,θ, ν, σs) = N1(ν, σs)N2(θ) Ck (b,θ, ν, σs) ,

where

N1(ν, σs) = eiπν(−1)k(−θ0+θt−ν−iQ)
(

b e2iπ(⌊ k

2⌋− 1

2)
)−∆(θ0)−∆(θt)+∆(σs)−

θ2∗
2
+2ν2

×
∏

ϵ=±1

gb

(

2ϵσs − iQ
2

)

gb
(

ϵ
(

θ∗
2 − ν

)

− θ0
)

gb
(

θt + ϵ
(

θ∗
2 + ν

))

gb (θ∗ + ϵσs) gb (−θt − σs + ϵθ0) gb (−θt + σs + ϵθ0)

(5.2)

and

(5.3) N2(θ) = e
(−1)k+1iπ

(

θ∗
2 −θ0−

iQ
2

)(

θt−
θ∗
2
−
iQ
2

)

sb

(

iQ
2 −2θt

)

sb

(

−
iQ
2 −θ0−θ∗+θt

) .

Using the representation (3.2) and the identity sb(x) = gb(x)/gb(−x), we
find that Cren

k is given by the following expression:

(5.4) Cren
k (b,θ, ν, σs) = Pk (θ, ν, σs)

∫

C

dx I(k) (x,θ, ν, σs) ,

where I(k) is given in (3.4) and

(5.5) Pk (θ, ν, σs) = N2(θ) e
iπν(−1)k(−θ0+θt−ν−iQ)

× sb(σs − θ∗)sb(−σs − θ∗)

sb
(

θ0 − θ∗
2 + ν

)

sb
(

θ∗
2 − θt + ν

)

sb
(

− θ∗
2 − θt − ν

) .

It is easy to see that Cren
k = Cren

k+2 for each integer k ≥ 1 and that

(5.6) Cren
k (b,θ, ν, σs) = Cren

k

(

b−1,θ, ν, σs
)

, k ≥ 1.
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5.2. From C
ren
k

to Hn

Define {νn}∞n=0 ⊂ C by

(5.7) νn = θt − iQ
2 − θ∗

2 − inb.

The main result of this section (Theorem 5.4) states that the continuous
dual q-Hahn polynomials Hn defined in (B.8) emerge from Cren

k when ν is
discretized according to (5.7). We will need the following two lemmas for
the proof.

Lemma 5.1. For any integer m ≥ 0, the following identities hold:

sb(x+ imb)

sb(x)
= e

m2iπb2

2 eπbmx
(

−e−iπb2e−2πbx; e−2iπb2
)

m
,(5.8a)

sb(x+ im
b )

sb(x)
= e

m2iπb−2

2 e
πmx

b

(

−e−iπb−2

e−
2πx

b ; e−2iπb−2
)

m
,(5.8b)

where (a; q)m denotes the q-Pochhammer symbol defined in (A.1).

Proof. The identity (5.8a) follows by applying the difference equation for sb
in (3.30) recursively. The identity (5.8b) is obtained by sending b→ b−1 in
(5.8a) and using the symmetry sb−1(x) = sb(x). □

Lemma 5.2. Let Σn,k denote the sum

Σn,k =

n
∑

m=0

α−mβ−mq−mn
(

αmβmqm(n−1)
)δk,1

( q1−m

q−n ,
q1−m

γz , q
1−m

γz−1 ; q
)

m
( q1−m

q , q
1−m

βγ , q
1−m

αγ ; q
)

m

,

(5.9)

where δk,1 = 1 if k = 1 and δk,1 = 0 if k ̸= 1. Then, for any integer n ≥ 1,

Σn,k =























3ϕ2

(

q−n, γz, γz−1

βγ, αγ

∣

∣

∣

∣

∣

q;αβqn

)

, k = 1,

3ϕ2

(

q−n, γz, γz−1

βγ, αγ

∣

∣

∣

∣

∣

q; q

)

, k = 2.

(5.10)
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Proof. Let n ≥ 1 be an integer. Using the general identity (see [11, Eq.
17.2.9])

(

q1−m

a
; q

)

m

=
(a; q)m

(−a)mqm(m−1)

2

(5.11)

with, in turn, a = q−n, a = γz, and a = γz−1, we find

(q1−m

q−n
,
q1−m

γz
,
q1−m

γz−1
; q
)

m
=

(q−n; q)m (γz; q)m
(

γz−1; q
)

m

(−q−n)m(−γz)m(−γz−1)mq
3m(m−1)

2

.

Similarly, applying (5.11) with a = q, a = βγ, and a = αγ, we find

1
(

q1−m

q , q
1−m

βγ , q
1−m

αγ ; q
)

m

=
(−q)m(−βγ)m(−αγ)mq 3m(m−1)

2

(q; q)m(βγ; q)m(αγ; q)m
.

Thus

( q1−m

q−n ,
q1−m

γz , q
1−m

γz−1 ; q
)

m
(

q1−m

q , q
1−m

βγ , q
1−m

αγ ; q
)

m

= αmβmqm(n+1)

(

q−n, γz, γz−1; q
)

m

(q, βγ, αγ; q)m
.(5.12)

It follows that

Σn,1 =

n
∑

m=0

(

q−n, γz, γz−1; q
)

m

(q, βγ, αγ; q)m
αmβmqmn,

Σn,2 =

n
∑

m=0

(

q−n, γz, γz−1; q
)

m

(q, βγ, αγ; q)m
qm.

Since one of the entries of the Pochhammer symbols in the numerators is
q−n, we can replace the upper limit of summation with infinity without
changing the values of the sums. Hence (5.10) follows from the definition
(A.2) of 3ϕ2. □

In addition to Assumption 2.1, we make the following assumption.

Assumption 5.3 (Restriction on the parameters). Assume that b > 0
is such that b2 is irrational, and that

σs, θ0 ̸= 0, θ∗
2 − ν + θt ± σs ̸= 0, θt − θ∗ ± θ0 ̸= 0.(5.13)
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Assumption 5.3 implies that the three increasing and the three decreas-
ing sequences of poles of the integrand in (5.4) are vertical and do not
overlap. It also implies that all the poles of the integrand are simple. The
assumption that b2 is irrational ensures that q = e2iπb

2

is not a root of unity;
this is needed in order for the continuous dual q-Hahn polynomials to be
well defined, see Remark B.1.

We now present the main result of this section.

Theorem 5.4 (confluent Virasoro fusion kernels → continuous dual
q-Hahn polynomials). Suppose that Assumptions 2.1 and 5.3 are sat-
isfied. Let n ≥ 0 be an integer. For each integer k ≥ 1, the renormalized
confluent fusion kernel Cren

k defined in (5.4) reduces to the continuous dual
q-Hahn polynomial Hn defined in (B.8) in the limit ν → νn as follows:

(5.14) lim
ν→νn

Cren
k (b,θ, ν, σs) =

{

Hn(e
2πbσs ;α−1, β−1, γ−1, q−1), k odd,

Hn(e
2πbσs ;α, β, γ, q), k even,

where νn ∈ C is defined in (5.7) and

(5.15)
α = −e−2πb(θ0−θt+

ib
2 ), β = −e2πb(θ0+θt−

ib
2 ),

γ = −e−2πb(θ∗+
ib
2 ), q = e−2iπb2 .

Proof. Since Cren
k = Cren

k+2, it is enough to prove the result for k = 1 and k = 2.
Thus let k ∈ {1, 2}. Let m, l ≥ 0 be integers and define xm,l ∈ C by

(5.16) xm,l = − iQ
2 − θ∗

2 + θt − imb− il

b
− ν.

The integrand I(k) defined in (3.4) contains the factor

(5.17)
sb(x+ θ∗

2 − θt + ν)

sb(x+ iQ
2 )

.

The function sb(x+ θ∗
2 − θt + ν) has a simple pole located at x = xm,l for

any integers m, l ≥ 0. In the limit ν → νn, the pole xn,0 moves upwards,
crosses the contour C, and collides with the pole of sb(x+ iQ

2 ) located at
x = 0. Therefore, before taking the limit ν → νn, we deform C into a contour
C
′ which passes just below xn,0. As C is deformed into C

′, the integral in
(5.4) picks up residue contributions from all the poles x = xm,l which satisfy
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Imxm,l ≥ Imxn,0, i.e., from all the poles xm,l such that (m, l) satisfies mb+
l
b ≤ nb. We find

∫

C

dx I(k) (x,θ, ν, σs) = −2iπ
∑

m,l≥0

mb+
l
b≤nb

Res
x=xm,l

(

I(k) (x,θ, ν, σs)
)

(5.18)

+

∫

C′

dx I(k) (x,θ, ν, σs) .

Using Lemma 5.1 and the residue of the function sb in (4.13), a straightfor-
ward computation shows that residue of I(k) at the simple pole x = xm,l is
given by

−2iπ Res
x=xm,l

I(k) (x,θ, ν, σs) = e
iπ

2 (b
2m(m+1)+ l(l+1)

b2
+2ml+m+l)

× e
iπ(−1)k

2 ( θ∗
2
+θt+ν+ iQ

2 )(2ibm+ i(2l+1)

b
+ib+θ∗−2θt+2ν)

× sb(−ibm− il

b
−θ0−θ∗+θt−

iQ

2 )sb(−ibm− il

b
+θ0−θ∗+θt−

iQ

2 )
sb(−ibm− il

b
−θ∗+σs)sb(−ibm− il

b
−θ∗−σs)sb(−ibm− il

b
− θ∗

2
+θt−ν)

× 1
(

e
2iπl

b2 ; e−
2iπ

b2

)

l (e2iπmb2 ; e−2iπb2)m
.(5.19)

Because of the factor sb(−ibm− il
b − θ∗

2 + θt − ν)−1 in (5.19), we deduce

from the properties (2.6) of sb that the function Resx=xm,l
I(k) (x,θ, ν, σs)

has a simple pole at ν = νn if the pair (m, l) satisfies m ∈ [0, n] and l = 0,
but is regular at ν = νn for all other choices ofm ≥ 0 and l ≥ 0. On the other
hand, because of the factor sb(

θ∗
2 − θt + ν)−1 appearing in (5.5), Pk(θ, ν, σs)

has a simple zero at ν = νn. Hence the product

Pk(θ, ν, σs)Resx=xm,l
I(k)(x, b,θ, ν, σs)

is nonzero in the limit ν → νn only if m ∈ [0, n] and l = 0. We deduce that

lim
ν→νn

Cren
k (b,θ, ν, σs) = Cren

k (b,θ, νn, σs)(5.20)

= −2iπ lim
ν→νn

Pk (θ, ν, σs)

n
∑

m=0

Res
x=xm,0

I(k) (x, b,θ, ν, σs) .
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More explicitly, for k = 1, 2, we find that

Cren
k (b,θ, νn, σs) = eπbn(θ∗+θt−θ0)e−2πbnδk,1(θ∗+θt−θ0)

× sb(θ0 − θ∗ + θt − iQ
2 )

sb(−ibn+ θ0 − θ∗ + θt − iQ
2 )

sb(
iQ
2 − 2θt)

sb(ibn+ iQ
2 − 2θt)

×
n
∑

m=0

e−2πbmδk,1(ibn−2θt)eiπbm(Q

2
+2iθt+b(n+m

2
))

(e2iπb2m; e−2iπb2)m

× sb(−ibm− θ0 − θ∗ + θt − iQ
2 )

sb(−θ0 − θ∗ + θt − iQ
2 )

sb(−ibm+ θ0 − θ∗ + θt − iQ
2 )

sb(θ0 − θ∗ + θt − iQ
2 )

× sb(−θ∗ − σs)

sb(−ibm− θ∗ − σs)

sb(σs − θ∗)

sb(−ibm− θ∗ + σs)

sb(ibn+ iQ
2 )

sb(−ibm+ ibn+ iQ
2 )
.(5.21)

Using (5.8), a long but straightforward computation gives

Cren
k (b,θ, νn, σs) = eiπn

2

eπbn(4θt−i(n+1)Q)e−2πbnδk,1(−θ0+θ∗+θt)

×
(

e2πb(ibn−θ0+θ∗−θt); e−2iπb2
)

n
(

e2πb(2θt−ib); e−2iπb2
)

n

×
n
∑

m=0

e2πbm(ib(n+1)−2θt)e−2πbmδk,1(ibn−2θt)

×
(

e−2iπb2e2iπb2(m−n),−eπb(2(θ∗−σs)+ib(2m−1)),−eπb(2(θ∗+σs)+ib(2m−1));e−2iπb2
)

m
(

e2iπb2m,e2πb(ibm−θ0+θ∗−θt),e2πb(ibm+θ0+θ∗−θt);e−2iπb2
)

m

.

(5.22)

Recalling the parameter correspondence (5.15) and letting z = e2πbσs , equa-
tion (5.22) can be rewritten as

Cren
k (b,θ, νn, σs) = eiπn

2

αnβnq
n(n−1)

2

( q1−n

γβ ; q
)

n

(αβ; q)n

(

αn/2γ−n/2
)−2δk,1Σn,k,

(5.23)

where Σn,k denotes the sum in (5.9). Utilizing (5.11) with a = γβ, we can
write (5.23) as

Cren
k (b,θ, νn, σs) =

αn (γβ; q)n
γn(αβ; q)n

(

αn/2γ−n/2
)−2δk,1Σn,k.(5.24)
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Hence the proof of equation (5.14) reduces to proving the following identity:

αn (γβ; q)n
γn(αβ; q)n

(

αn/2γ−n/2
)−2δk,1Σn,k =

{

Hn(z;α
−1, β−1, γ−1, q−1), k = 1,

Hn(z;α, β, γ, q), k = 2.

(5.25)

Let us first prove (5.25) for k = 1. Recalling the definition (B.8) of Hn

and applying the identity (see [11, Eq. 17.2.7])

(a; q−1)n = (a−1; q)n(−a)nq−
n(n−1)

2(5.26)

multiple times, we find

Hn(z;α
−1, β−1, γ−1, q−1) = 3ϕ2

(

qn, α−1z, α−1z−1

(αβ)−1, (αγ)−1

∣

∣

∣

∣

q−1; q−1

)

=

∞
∑

m=0

(qn, α−1z, α−1z−1; q−1)m
((αβ)−1, (αγ)−1, q−1; q−1)m

q−m

=

∞
∑

m=0

(q−n, αz, αz−1; q)m
(αβ, αγ, q; q)m

qmn

β−mγ−m

= 3ϕ2

(

q−n, αz−1, αz
αβ, αγ

∣

∣

∣

∣

q;βγqn
)

.

In view of Lemma 5.2, it follows that (5.25) can be rewritten as follows when
k = 1:

(γβ; q)n
(αβ; q)n

3ϕ2

(

q−n, γz, γz−1

βγ, αγ

∣

∣

∣

∣

q;αβqn
)

= 3ϕ2

(

q−n, αz−1, αz
αβ, αγ

∣

∣

∣

∣

q;βγqn
)

.

(5.27)

Applying the identity (see [11, Eq. 17.9.10])

3ϕ2

(

q−n, b, c
d, e

∣

∣

∣

∣

q;
deqn

bc

)

=
(e/c; q)n
(e; q)n

3ϕ2

(

q−n, c, d/b
d, cq1−n/e

∣

∣

∣

∣

q; q

)

,

to the left-hand side of (5.27) with

b = γz, c = γz−1, d = αγ, e = βγ,

and to the right-hand side of (5.27) with

b = αz, c = αz−1, d = αγ, e = αβ,
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we deduce that the two sides of (5.27) are indeed equal. This proves (5.25)
for k = 1.

For k = 2, Lemma 5.2 and the definition (B.8) of Hn imply that (5.25)
can be written as

αn(γβ; q)n
γn(αβ; q)n

3ϕ2

(

q−n, γz, γz−1

βγ, αγ

∣

∣

∣

∣

q; q

)

= 3ϕ2

(

q−n, αz, αz−1

αβ, αγ

∣

∣

∣

∣

q; q

)

.(5.28)

This equation is obtained by setting b = αz, c = αz−1, d = αγ, and e = αβ
in the general identity (see [11, Eq. 17.9.8])

(de/(bc); q)n
(e; q)n

(

bc

d

)n

3ϕ2

(

q−n, d/b, d/c
d, de/(bc)

∣

∣

∣

∣

q; q

)

= 3ϕ2

(

q−n, b, c
d, e

∣

∣

∣

∣

q; q

)

.

(5.29)

This proves (5.25) also for k = 2 and completes the proof of the theorem. □

5.3. Limits of the difference equations for Ck as ν → νn

In this subsection, we explain how the recurrence relation and the differ-
ence equation for the continuous dual q-Hahn polynomials emerge from the
difference equations for Ck in the limit ν → νn.

We first formulate the difference equations in terms of Cren
k . Using the re-

lation (5.1) between Cren
k and Ck, the four difference equations for Ck derived

in Theorem 3.2 and Theorem 3.4 can be expressed as difference equations
for Cren

k . Define the renormalized difference operators

HCren
k
(b, ν) = N1(ν, σs)HCk

(b, ν)N1(ν, σs)
−1,(5.30a)

H̃Cren
k
(b, σs) = N1(ν, σs)H̃Ck

(b, σs)N1(ν, σs)
−1,(5.30b)

where the difference operators HCk
and H̃Ck

are respectively defined in (3.12)
and (3.39), and N1 is given in (5.2). Using the identity (3.30) satisfied by
the function gb, it can be verified that N1 satisfies the difference equations
(5.31)
N1(ν, σs)

N1(ν + ib, σs)
= U(ν, θ∗),

N1(ν, σs)

N1(ν − ib, σs)
= e(−1)k2πb(ib+θ0−θt)U(−ν,−θ∗),
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where

(5.32) U(ν, θ∗) = −e2πb(2ν+ib)(2⌊ k

2⌋−1)eπb(−1)k(−2ib−θ0+θt−2ν)

×
Γ
(

bQ
2 + ib

(

θ0 +
θ∗
2 − ν

)

)

Γ
(

1−b2

2 + ib
(

θ0 + ν − θ∗
2

))

Γ
(

bQ
2 − ib

(

θ∗
2 + θt + ν

)

)

Γ
(

1−b2

2 + ib
(

θ∗
2 − θt + ν

)) .

Using the identities (5.31), we find that HCren
k
(b, ν) is given explicitly by

HCren
k
(b, ν) = H+

Cren
k
(ν)eib∂ν +H−

Cren
k
(ν)e−ib∂ν +H0

Ck
(ν),(5.33)

where H0
Ck
(ν) is given in (3.14) and

(5.34) H±
Cren
k
(ν) = −4e∓πb(−1)k(θ0−θt∓2ν)

× cosh
(

πb
(

ib
2 + θ0 ∓ θ∗

2 ± ν
))

cosh
(

πb
(

ib
2 − θt ± θ∗

2 ± ν
))

.

The difference operator H̃Cren
k
(b, σs) is computed in a similar way. The

normalization factor N1 also satisfies the identities

(5.35)
N1(ν, σs)

N1(ν, σs + ib)
= V (σs),

N1(ν, σs)

N1(ν, σs − ib)
= V (−σs),

where

V (σs) = eπb(2σs+ib)(2⌊ k

2⌋−1) Γ(b2−2ibσs)Γ(−2ibσs)Γ
(

1−b2

2
+ib(σs−θ∗)

)

Γ(2ibσs−2b2)Γ(2ibσs−b2)Γ( bQ

2
−ib(θ∗+σs))

×
∏

ϵ=±

Γ
(

1−b2

2
+ib(ϵθ0+θt+σs)

)

Γ( bQ

2
+ib(ϵθ0+θt−σs))

.
(5.36)

Using (5.35), it is straightforward to verify that H̃Cren
k
(b, σs) takes the form

H̃Cren
k
(b, σs) = −Vk(−σs,−θt)eib∂σs − Vk(σs,−θt)e−ib∂σs + H̃0

Ck
(σs),(5.37)

where H̃0
Ck
(σs) is given in (3.41) and Vk is defined in (3.42).

The next lemma summarizes the difference equations satisfied by Cren
k .

Lemma 5.5 (Difference equations for Cren
k ). Let HCren

k
and H̃Cren

k
be

the difference operators defined in (5.33) and (5.37), respectively. For each
integer k ≥ 1, the renormalized confluent fusion kernel Cren

k satisfies the pair
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of difference equations

HCren
k
(b, ν) Cren

k (b,θ, ν, σs) = 2 cosh (2πbσs) Cren
k (b,θ, ν, σs) ,(5.38a)

H̃Cren
k
(b, σs) Cren

k (b,θ, ν, σs) = e(−1)k+12πbνCren
k (b,θ, ν, σs) ,(5.38b)

as well as the pair of difference equations obtained by replacing b→ b−1 in
(5.38).

Proof. The lemma follows immediately from (5.30) together with Theo-
rems 3.2 and 3.4. □

The next proposition describes how the recurrence relation and the dif-
ference equation for the continuous dual q-Hahn polynomials appear in the
limit ν → νn.

Proposition 5.6. Let k ≥ 1 and n ≥ 0 be integers. In the limit ν → νn,
the difference equations (5.38a) and (5.38b) for Cren

k reduce to the three-
term recurrence relation (B.9) and the difference equation (B.12) for the
continuous dual q-Hahn polynomials, respectively. More precisely,

(5.39) RHn

(

α(−1)k , β(−1)k , γ(−1)k ; q(−1)k
)

Cren
k (b,θ, νn, σs)

= 2 cosh (2πbσs) Cren
k (b,θ, νn, σs) ,

and

(5.40) ∆Hn

(

α(−1)k , β(−1)k , γ(−1)k ; q(−1)k , e(−1)k2πbσs

)

Cren
k (b,θ, νn, σs)

=
(

q(−1)k+1n − 1
)

Cren
k (b,θ, νn, σs) ,

where the parameters are related according to (5.15), RHn
is the recurrence

operator defined in (B.10), and ∆Hn
is the difference operator defined in

(B.13).

Proof. We first prove that the difference equation (5.38a) reduces to the
three-term recurrence relation (5.39) in the limit ν → νn. It follows from the
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definition (5.7) of νn that

(5.41) lim
ν→νn

e±ib∂νCren
k (b,θ, ν, σs) = Tn∓1Cren

k (b,θ, νn, σs) ,

where Tn±1 acts on Cren
k as Tn±1Cren

k (b,θ, νn, σs) = Cren
k (b,θ, νn±1, σs). More-

over, it can be verified that

lim
ν→νn

H−
Cren
k
(ν)e−ib∂νCren

k (b,θ, ν, σs)(5.42)

= b+n

(

α(−1)k , β(−1)k , γ(−1)k ; q(−1)k
)

Tn+1Cren
k (b,θ, νn, σs) ,

lim
ν→νn

H+
Cren
k
(ν)eib∂νCren

k (b,θ, ν, σs)(5.43)

= b−n

(

α(−1)k , β(−1)k , γ(−1)k ; q(−1)k
)

Tn−1Cren
k (b,θ, νn, σs) ,

and

lim
ν→νn

H0
Ck
(ν) = α+ α−1 − b+n

(

α(−1)k , β(−1)k , γ(−1)k ; q(−1)k
)

(5.44)

− b−n

(

α(−1)k , β(−1)k , γ(−1)k ; q(−1)k
)

,

where b+n and b−n are the coefficients defined in (B.11). Hence,

(5.45) HCren
k
(b, νn)Cren

k (b,θ, νn, σs)

= RHn

(

α(−1)k , β(−1)k , γ(−1)k ; q(−1)k
)

Cren
k (b,θ, νn, σs) ,

so (5.39) follows from (5.38a).
We now prove that in the limit ν → νn, the difference equation (5.38b)

reduces to (5.40). Observe that the function H̃0
Ck
(σs) in (3.41) is an even

function of θt, i.e.,

H̃0
Ck
(σs) = −e(−1)kπb(ib+θ∗+2θt) + Vk(σs, θt) + Vk(−σs, θt)

= −e(−1)kπb(ib+θ∗−2θt) + Vk(σs,−θt) + Vk(−σs,−θt).
(5.46)
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Using (5.15), (5.37) and (5.46), we can rewrite the limit of (5.38b) as ν → νn
as follows:

Vk(σs,−θt) Cren
k (b,θ, νn, σs − ib)

+ Vk(−σs,−θt) Cren
k (b,θ, νn, σs + ib)

−
(

Vk(σs,−θt) + Vk(−σs,−θt)− e(−1)k2πb
(

ib
2 +

θ∗
2 −θt

)

)

× Cren
k (b,θ, νn, σs)

= e
(−1)k2πb

(

ib
2 + θ∗

2
−θt+ibn

)

Cren
k (b,θ, νn, σs) .(5.47)

We notice that

(5.48) Vk(σs,−θt) = e
(−1)k2πb

(

ib
2 +

θ∗
2 −θt

)

× h
(

α(−1)k , β(−1)k , γ(−1)k ; q(−1)k , e(−1)k2πbσs

)

,

where h(α, β, γ; q, z) is defined in (B.14). Moreover, writing z = e2πbσs and
recalling that q = e−2iπb2 , we observe that the translation σs → σs ± ib corre-
sponds to the multiplication z → q∓1z. Using these observations, a straight-
forward computation shows that (5.47) implies (5.40). □

5.4. An alternative proof of Theorem 5.4

The proof of Theorem 5.4 presented in Section 5.2 is based on a direct
evaluation of the limit ν → νn in the integral representation (3.2) for Cren

k .
This approach has the advantage that it is direct, but it employs several
identities for q-functions and some rather involved algebra. An alternative
approach is based on the recurrence relation (5.39). This approach, which
is similar to the approach adopted in the proof of Theorem 4.2, is in fact
the approach we originally used to arrive at Theorem 5.4. In this alternative
approach, the proof of Theorem 5.4 involves two steps. First, the residue
computation that led to (5.20) is carried out in the special (and relatively
simple) case of n = 0; this yields

(5.49) Cren
k (b,θ, ν0, σs) = 1, k ≥ 1,

and shows that (5.14) holds for n = 0. Second, the functions

Cren
k (b,θ, νn, σs) and Hn(e

2πbσs ;α(−1)k , β(−1)k , γ(−1)k , q(−1)k)
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obey the same recurrence relation (cf. (B.9) and (5.39)). Since (5.14) holds
for n = 0, equation (5.39) with n = 0 implies that

(5.50) Cren
k (b,θ, ν1, σs) = H1(e

2πbσs ;α(−1)k , β(−1)k , γ(−1)k , q(−1)k),

thus (5.14) holds for n = 1. More generally, assuming that (5.14) holds for
all n ≤ N , equation (5.39) shows that (5.14) holds also for n = N + 1. By
induction, (5.14) holds for all n ≥ 0. This completes the alternative proof of
Theorem 5.4.

6. From Ck to the big q-Jacobi polynomials

In this section, we show that (up to normalization) the confluent Virasoro
fusion kernel Ck (b,θ, ν, σs) degenerates, for each k ≥ 1, to the big q-Jacobi
polynomials Jn when σs is suitably discretized.

6.1. Another renormalized version of Ck

Define the renormalized version Ĉren
k of the confluent fusion kernel Ck by

(6.1) Ĉren
k (b,θ, ν, σs) = N3(ν, σs)N4(θ) Ck(b,θ, ν, σs),

where

N3(ν, σs) = eiπν(−1)k(θ0−θt−ν−iQ)
(

be2iπ(⌊ k

2⌋− 1

2)
)−∆(θ0)−∆(θt)+∆(σs)−

θ2∗
2
+2ν2

×
∏

ϵ=±1

gb

(

2ϵσs − iQ
2

)

gb
(

θ0 + ϵ
(

θ∗
2 − ν

))

gb
(

ϵ
(

θ∗
2 + ν

)

− θt
)

gb (ϵσs − θ∗) gb (−θ0 + ϵθt + σs) gb (−θ0 + ϵθt − σs)

(6.2)

and

(6.3) N4(θ) = sb

(

−2θ0 +
iQ
2

)

sb

(

−θ0 − θ∗ + θt +
iQ
2

)

× eiπ(−1)k(θ0+ θ∗
2
− iQ

2 )(
θ∗
2
+θt+

iQ

2 ).

It follows from (3.2) and (6.1) that the function Ĉren
k admits the integral

representation

(6.4) Ĉren
k (b,θ, ν, σs) = P̂ (k) (θ, ν, σs)

∫

C

dx I(k) (x,θ, ν, σs) ,
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where I(k) is given in (3.4) and

(6.5) P̂ (k) (θ, ν, σs) = N4(θ)e
iπν(−1)k(θ0−θt−ν−iQ)

× sb
(

θ0 +
θ∗
2 − ν

)

sb(θ0 − θt − σs)sb(θ0 − θt + σs).

In particular, Ĉren
k is invariant under each of the shifts k → k + 2 and b→

b−1.

6.2. From Ĉ
ren
k

to Jn

Define {σ(n)s }∞n=0 ⊂ C by

(6.6) σ(n)s = iQ
2 + θt − θ0 + inb.

The main result of this section (Theorem 6.2) states that the big q-Jacobi
polynomials Jn defined in (B.15) emerge from Ĉren

k when σs is discretized
according to (6.6). The proof will require Lemma 5.1 and the following
lemma.

Lemma 6.1. Let Σn,k denote the sum

Σn,k =

n
∑

m=0

q−m
(

xβγ−1
)mδk,2

(

q−m+n+1, q
−m−n

αβ , q
1−m

x ; q
)

m
( q−m

α , q
−m

γ , q−m; q
)

m

,(6.7)

where δk,2 = 1 if k = 2 and δk,2 = 0 if k ̸= 2. Then, for any integer n ≥ 1,

Σn,k =

{

Jn(x
−1;α−1, β−1, γ−1; q−1), k = 1,

Jn(x;α, β, γ; q), k = 2.
(6.8)

Proof. Let n ≥ 1 be an integer. Using the identity (5.11) with, in turn, a =
q−n, a = αβqn+1, and a = x, we find

(

q−m+n+1,
q−m−n

αβ
,
q1−m

x
; q
)

m
=

(q−n; q)m
(

αβqn+1; q
)

m
(x; q)m

(−q−n)m(−αβqn+1)m(−x)mq 3m(m−1)

2

.

Similarly, applying (5.11) with a = αq, a = γq, and a = q, we find

1
(

q−m

α , q
−m

γ , q−m; q
)

m

=
(−αq)m(−γq)m(−q)mq 3m(m−1)

2

(αq; q)m (γq; q)m (q; q)m
.
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Thus
(

q−m+n+1, q
−m−n

αβ , q
1−m

x ; q
)

m
( q−m

α , q
−m

γ , q−m; q
)

m

=
γmq2m

βmxm

(

q−n, αβqn+1, x; q
)

m

(αq, γq, q; q)m
.

It follows that

Σn,2 =

n
∑

m=0

(

q−n, αβqn+1, x; q
)

m

(αq, γq, q; q)m
qm

= 3ϕ2

(

q−n, αβqn+1, x
αq, γq

∣

∣

∣

∣

q; q

)

= Jn(x;α, β, γ; q),

which proves (6.8) for k = 2. Similarly, it follows that

Σn,1 =

n
∑

m=0

(

q−n, αβqn+1, x; q
)

m

(αq, γq, q; q)m

γmqm

βmxm
.

Applying the identity (5.26) six times, this can be rewritten as

Σn,1 =

∞
∑

m=0

(qn, (αβqn+1)−1, x−1; q−1)m
((αq)−1, (γq)−1, q−1; q−1)m

q−m

= 3ϕ2

(

qn, (αβqn+1)−1, x−1

(αq)−1, (γq)−1

∣

∣

∣

∣

q−1; q−1

)

= Jn(x
−1;α−1, β−1, γ−1; q−1)

which proves (6.8) also for k = 1. □

The following theorem is the main result of this section.

Theorem 6.2 (confluent Virasoro fusion kernels → big q-Jacobi
polynomials). Suppose that Assumptions 2.1 and 5.3 are satisfied. Let n ≥
0 be an integer. For each integer k ≥ 1, the renormalized confluent fusion
kernel Ĉren

k defined in (6.1) reduces to the big q-Jacobi polynomial Jn defined

in (B.15) in the limit σs → σ
(n)
s as follows:

(6.9) lim
σs→σ

(n)
s

Ĉren
k (b,θ, ν, σs) =

{

Jn(x
−1;α−1, β−1, γ−1; q−1), k odd,

Jn(x;α, β, γ; q), k even,

where

(6.10)
α = e4πbθ0 , β = e−4πbθt , γ = e2πb(θ0+θ∗−θt),

x = −eπb(−ib+2θ0+θ∗)e−2πbν , q = e−2iπb2 .
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Proof. Since Ĉren
k = Ĉren

k+2, it is enough to prove the result for k = 1 and k = 2.
Thus let k ∈ {1, 2}. Let m, l ≥ 0 be integers and define xm,l ∈ C by

(6.11) xm,l = − iQ
2 + θ0 +

θ∗
2 − ν − imb− il

b .

The integrand I(k) defined in (3.4) contains the factor

(6.12)
sb
(

x− θ0 + ν − θ∗
2

)

sb
(

x+ iQ
2 + ν − θ∗

2 − θt + σs
) .

The function sb
(

x− θ0 − θ∗
2 + ν

)

has a simple pole located at xm,l for any in-

tegers m, l ≥ 0. In the limit σs → σ
(n)
s , the pole of sb

(

x+ iQ
2 − θ∗

2 − θt + ν +

σs
)−1

located at x = θ∗
2 + θt − ν − σs moves downwards, crosses the contour

C, and collides with the pole of sb
(

x− θ0 − θ∗
2 + ν

)

located at xn,0. There-

fore, before taking the limit σs → σ
(n)
s , we deform the contour C into a

contour C
′ which passes just below xn,0. As C is deformed into C

′, the in-
tegral in (6.4) picks up residue contributions from all the poles xm,l which
satisfy Imxm,l ≥ Imxn,0, i.e., from all the poles xm,l such that (m, l) satisfies
mb+ l

b ≤ nb. The integral in (6.4) becomes

∫

C

dx I(k) (x,θ, ν, σs) = −2iπ
∑

m,l≥0

mb+
l
b≤nb

Res
x=xm,l

(

I(k) (x,θ, ν, σs)
)

(6.13)

+

∫

C′

I(k) (x,θ, ν, σs) .

Utilizing Lemma 5.1, it can be verified that the residues of I(k) at the simple
poles xm,l are given by

−2iπ Res
x=xm,l

(

I(k) (x,θ, ν, σs)
)

= eiπ(
l

b
+bm)( l

2b
+ bm

2
+Q

2 )eiπ(−1)k+1( θ∗
2
+θt+ν+ iQ

2 )(−
il

b
−ibm+θ0+

θ∗
2
−ν− iQ

2 )

× 1
(

e
2iπl

b2 ; e−
2iπ

b2

)

l (e2iπmb2 ; e−2ib2π)m

× sb(− il

b
−ibm+2θ0−

iQ

2 )sb(−
il

b
−ibm+θ0+θ∗−θt−

iQ

2 )
sb(− il

b
−ibm+θ0+

θ∗
2
−ν)sb(− il

b
−ibm+θ0−θt−σs)sb(− il

b
−ibm+θ0−θt+σs)

.

(6.14)

Because of the factor sb(− il
b − ibm+ θ0 − θt + σs)

−1, we deduce from the

properties (2.6) of sb that the function Resx=xm,l

(

I(k) (x,θ, ν, σs)
)

has a
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simple pole at σs = σ
(n)
s if the pair (m, l) satisfies m ∈ [0, n] and l = 0, but

is regular at σs = σ
(n)
s for all other choices of m ≥ 0 and l ≥ 0. On the other

hand, because of the factor sb(θ0 − θt + σs) appearing in (6.5), P̂ (k) (θ, ν, σs)

has a simple zero at σs = σ
(n)
s . Hence the product

P̂ (k) (θ, ν, σs) Res
x=xm,l

(

I(k) (x,θ, ν, σs)
)

is nonzero in the limit σs → σ
(n)
s only if m ∈ [0, n] and l = 0. We deduce

that

(6.15) lim
σs→σ

(n)
s

Ĉren
k (b,θ, ν, σs) = Ĉren

k

(

b,θ, ν, σ(n)s

)

= −2iπ lim
σs→σ

(n)
s

P̂ (k) (θ, ν, σs)

n
∑

m=0

Res
x=xm,0

(

I(k) (x,θ, ν, σs)
)

.

Employing (6.5) and (6.14), we obtain

Ĉren
k

(

b,θ, ν, σ(n)s

)

=

n
∑

m=0

eπbm(
ibm

2
+(−1)k+1( θ∗

2
+θt+ν)+iQδk,1)

× 1

(e2ib2mπ; e−2ib2π)m

sb

(

ibn+ iQ
2

)

sb

(

−ibm+ ibn+ iQ
2

)

×
sb

(

−ibm+ 2θ0 − iQ
2

)

sb

(

2θ0 − iQ
2

)

sb

(

−ibn+ 2θ0 − 2θt − iQ
2

)

sb

(

−ibm− ibn+ 2θ0 − 2θt − iQ
2

)

×
sb

(

−ibm+ θ0 + θ∗ − θt − iQ
2

)

sb

(

θ0 + θ∗ − θt − iQ
2

)

sb
(

θ0 +
θ∗
2 − ν

)

sb
(

−ibm+ θ0 +
θ∗
2 − ν

) .

(6.16)

Lemma 5.1 allows us to express (6.16) in terms of q-Pochammer symbols as
follows:

Ĉren
k

(

b,θ, ν, σ(n)s

)

=

n
∑

m=0

e−2πbm(δk,2( θ∗
2
+θt+ν+ iQ

2 )−iQ)

× (e2ib
2(m−n−1)π;e−2ib2π)m(e2bπ(bi(m+n)−2θ0+2θt);e−2ib2π)m(−ebπ(bi(2m−1)−2θ0−θ∗+2ν);e−2ib2π)m

(e2ib2mπ;e−2ib2π)m(e2ibπ(bm+2iθ0);e−2ib2π)m(e2bπ(bim−θ0−θ∗+θt);e−2ib2π)m
.

(6.17)
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Recalling the parameter correspondence (6.10), we arrive at

Ĉren
k

(

b,θ, ν, σ(n)s

)

= Σn,k,(6.18)

where Σn,k is the sum defined in (6.7). The theorem now follows from
Lemma 6.1. □

6.3. Limits of the difference equations for Ck as σs → σ(n)
s

In this subsection, we explain how the recurrence and the difference equation
for the big q-Jacobi polynomials emerge from the difference equations for Ck
in the limit σs → σ

(n)
s .

We first formulate the difference equations in terms of Ĉren
k . Using the re-

lation (6.1) between Ĉren
k and Ck, the four difference equations for Ck derived

in Theorem 3.2 and Theorem 3.4 can be expressed as difference equations
for Ĉren

k . Define the renormalized difference operators

HĈren
k

(b, ν) = N3(ν, σs)HCk
(b, ν)N3(ν, σs)

−1,(6.19a)

H̃Ĉren
k

(b, σs) = N3(ν, σs)H̃Ck
(b, σs)N3(ν, σs)

−1,(6.19b)

where the difference operatorsHCk
and H̃Ck

are respectively defined by (3.12)
and (3.39), and the normalization factor N3 is given by (6.2). Using the
identity (3.30) satisfied by the function gb, it can be verified that N3 satisfies
the following difference equations:

(6.20)

N3(ν, σs)

N3(ν + ib, σs)
= S(θ∗, ν),

N3(ν, σs)

N3(ν − ib, σs)
= e(−1)k+12πb(−ib+θ0−θt)S(−θ∗,−ν),

where

S(θ∗, ν) = −e4πb(2ν+ib)(⌊ k

2⌋− 1

2)eπb(−1)k(−2ib+θ0−θt−2ν)(6.21)

× Γ( bQ

2
−ib(θ0+ν− θ∗

2 ))Γ(
bQ

2
−ib( θ∗

2
−θt+ν))

Γ( 1−b2

2
−ib(θ0+ θ∗

2
−ν))Γ( 1−b2

2
+ib( θ∗

2
+θt+ν))

.

Using (6.20), we find that the difference operator in the left-hand side of
(6.19a) is given by

(6.22) HĈren
k

(b, ν) = H+

Ĉren
k

(b, ν)eib∂ν +H0
Ck
(ν) +H−

Ĉren
k

(b, ν)e−ib∂ν ,
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where H0
Ck
(ν) is defined by (3.14) and

H±

Ĉren
k

(b, ν) = −4e±πb(−1)k(θ0−θt±2ν)

× cosh
(

πb
(

ib
2 − θ0 ∓ θ∗

2 ± ν
))

cosh
(

πb
(

ib
2 + θt ± θ∗

2 ± ν
))

.(6.23)

Moreover, it can be showed in a similar way that N3 satisfies the difference
equations

(6.24)
N3(ν, σs)

N3(ν, σs + ib)
= R(σs),

N3(ν, σs)

N3(ν, σs − ib)
= R(−σs),

where

R(σs) = e4πb(σs+
ib

2 )(⌊ k

2⌋− 1

2) Γ(b2−2ibσs)Γ(−2ibσs)
Γ(2ibσs−b2)Γ(2ibσs−2b2)

Γ
(

1−b2

2
+ib(θ∗+σs)

)

Γ( bQ

2
+ib(θ∗−σs))

×
∏

ϵ=±

Γ
(

1−b2

2
+ib(θ0+ϵθt+σs)

)

Γ( bQ

2
+ib(θ0+ϵθt−σs))

.
(6.25)

Using (6.24), we find that the difference operator in the left-hand side of
(6.19b) takes the form

(6.26) H̃Ĉren
k

(b, σs) = H̃+

Ĉren
k

(b, σs)e
ib∂σs + H̃0

Ck
(σs) + H̃+

Ĉren
k

(b,−σs)e−ib∂σs ,

where H̃0
Ck

is defined by (3.41) and

H̃+

Ĉren
k

(b, σs) = −2eπb(−1)k(σs+
ib

2 )
cosh

(

πb
(

ib
2 − θ∗ + σs

))

sinh (2πbσs) sinh (πb(ib+ 2σs)
(6.27)

×
∏

ϵ=±1

cosh
(

πb
(

ib
2 − θ0 + σs + ϵθt

))

.

Lemma 6.3 (Difference equations for Ĉren
k ). Let HĈren

k

and H̃Ĉren
k

be

the difference operators defined in (6.19). For each integer k ≥ 1, the renor-
malized confluent fusion kernel Ĉren

k satisfies the pair of difference equations

HĈren
k

(b, ν) Ĉren
k (b,θ, ν, σs) = 2 cosh (2πbσs) Ĉren

k (b,θ, ν, σs),(6.28a)

H̃Ĉren
k

(b, σs) Ĉren
k (b,θ, ν, σs) = e(−1)k+12πbν Ĉren

k (b,θ, ν, σs),(6.28b)

as well as the pair of difference equations obtained by replacing b→ b−1 in
(6.28).
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Proof. The lemma follows immediately from (6.19) together with Theorem
3.2 and Theorem 3.4. □

The next proposition describes how the recurrence relation and the dif-
ference equation for the big q-Jacobi polynomials emerge from (6.28) in the

limit σs → σ
(n)
s .

Proposition 6.4. Let k ≥ 1 and n ≥ 0 be integers. In the limit σs → σ
(n)
s ,

the difference equations (6.28a) and (6.28b) for Ĉren
k reduce to the three-

term recurrence relation (B.16) and the difference equation (B.19) for the
big q-Jacobi polynomials, respectively. More precisely,

RJn
(α(−1)k , β(−1)k , γ(−1)k ; q(−1)k) Ĉren

k

(

b,θ, ν, σ(n)s

)

(6.29)

= x(−1)k Ĉren
k

(

b,θ, ν, σ(n)s

)

,

and

∆Jn
(α(−1)k , β(−1)k , γ(−1)k ; q(−1)k , x(−1)k) Ĉren

k

(

b,θ, ν, σ(n)s

)

(6.30)

= q(−1)k+1n
(

1− q(−1)kn
)(

1− α(−1)kβ(−1)kq(−1)kn+1
)

× x2(−1)k Ĉren
k

(

b,θ, ν, σ(n)s

)

,

where the parameters are related according to (6.10), RJn
is the recurrence

operator defined in (B.17), and ∆Jn
is the difference operator defined in

(B.20).

Proof. We first prove that in the limit σs → σ
(n)
s the difference equation

(6.28b) reduces to the three-term recurrence relation (6.29). It follows from

the definition (6.6) of σ
(n)
s that

(6.31) lim
σs→σ

(n)
s

e±ibσs Ĉren
k

(

b,θ, ν, σs
)

= Tn±1Ĉren
k

(

b,θ, ν, σ(n)s

)

,

where Tn±1 acts on Ĉren
k as Tn±1Ĉren

k

(

b,θ, ν, σ
(n)
s

)

= Ĉren
k

(

b,θ, ν, σ
(n±1)
s

)

.
Moreover, it can be verified that the following identities hold:

lim
σs→σ

(n)
s

H̃+

Ĉren
k

(

b,±σs
)

e±ib∂σs Ĉren
k

(

b,θ, ν, σs
)

(6.32)

= −e(−1)kπb(ib−2θ0−θ∗)c±n
(

α(−1)k , β(−1)k , γ(−1)k ; q(−1)k
)

Tn±1Ĉren
k

(

b,θ, ν, σ(n)s

)

,
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H̃0
Ck

(

σ(n)s

)

= −e(−1)kπb(ib−2θ0−θ∗)(6.33)

×
(

1− c+n
(

α(−1)k , β(−1)k , γ(−1)k ; q(−1)k
)

− c−n
(

α(−1)k , β(−1)k , γ(−1)k ; q(−1)k
)

)

,

where c±n are defined in (B.18). Finally, it follows from (6.32) and (6.33),
together with

(6.34) e(−1)k+12πbν = −e(−1)kπb(ib−2θ0−θ∗)x(−1)k

that the limit σs → σ
(n)
s of the difference equation (6.28b) reduces to

H̃Ĉren
k

(b, σ(n)s )Ĉren
k

(

b,θ, ν, σ(n)s

)

(6.35)

= −e(−1)k(ib−2θ0−θ∗)RJn
(α(−1)k , β(−1)k , γ(−1)k ; q(−1)k)

× Ĉren
k

(

b,θ, ν, σ(n)s

)

= −e(−1)k(ib−2θ0−θ∗)x(−1)k Ĉren
k

(

b,θ, ν, σ(n)s

)

.

This shows that (6.28b) reduces to (6.29) as σs → σ
(n)
s .

We now show that the difference equation (6.28a) reduces to the differ-
ence equation (6.30) satisfied by the big q-Jacobi polynomials in the limit

σs → σ
(n)
s . Observe that the potentialH0

Ck
(ν) and the coefficients H±

Ĉren
k

(b, ν),

which are defined in (3.14) and (6.23) respectively, are related as follows:

(6.36) H0
Ck
(ν) = −2 cosh

(

2πb
(

θt − θ0 +
ib
2

))

−H+

Ĉren
k

(b, ν)−H−

Ĉren
k

(b, ν).

Therefore, the limit σs → σ
(n)
s of the difference equation (6.28a) can be writ-

ten as

H+

Ĉren
k

(b, ν)Ĉren
k

(

b,θ, ν + ib, σ(n)s

)

+H−

Ĉren
k

(b, ν)Ĉren
k

(

b,θ, ν − ib, σ(n)s

)

(6.37)

−
(

H+

Ĉren
k

(b, ν) +H−

Ĉren
k

(b, ν)
)

Ĉren
k

(

b,θ, ν, σ(n)s

)

=
(

2 cosh
(

2πb
(

θt − θ0 +
ib
2

))

+ 2 cosh (2πbσ(n)s )
)

× Ĉren
k

(

b,θ, ν, σ(n)s

)

.
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We observe that the following identities hold:

H±

Ĉren
k

(b, ν) = −e
(−1)k+12πb

(

θ0−θt−
ib
2

)

(6.38)

× x2(−1)k+1

d±
(

α(−1)k , β(−1)k , γ(−1)k , q(−1)k , x(−1)k
)

,

where d± are defined in (B.21). Moreover, under the parameter correspon-
dence (6.10) we have

2 cosh
(

2πb
(

θt − θ0 +
ib
2

))

+ 2 cosh (2πbσ
(n)
s )

−e(−1)k+12πb
(

θ0−θt−
ib
2

)

x2(−1)k+1

(6.39)

= q(−1)k+1n
(

1− q(−1)kn
)

×
(

1− α(−1)kβ(−1)kq(−1)k(n+1)
)

x2(−1)k .

Finally, according to (6.10), a shift ν → ν ± ib implies a multiplication x→
q±1x. Thus, using (6.38) and (6.39), is straightforward to see that (6.37)
reduces to (6.30). □

Remark 6.5 (An alternative proof of Theorem 6.2). The proof of
Theorem 6.2 presented in Section 6.2 is based on a direct evaluation of the

limit σs → σ
(n)
s in the integral representation (6.4) for Ĉren

k (b,θ, ν, σs). An
alternative approach is based on the recurrence relation (6.29). This approach
is the one we originally used to arrive at Theorem 6.2. In this alternative
approach, the proof of Theorem 6.2 involves two steps. First, the residue
computation that led to (6.15) is carried out in the special case of n = 0;
this yields

(6.40) Ĉren
k (b,θ, ν, σ(0)s ) = 1, k ≥ 1,

and shows that (6.9) holds for n = 1. Second, since the functions

Ĉren
k (b,θ, ν, σ(n)s ) and Jn(x

(−1)k ;α(−1)k , β(−1)k , γ(−1)k ; q(−1)k)

satisfy the same three-term recurrence relation (see (6.29) and (B.16)), an
inductive argument shows that (6.9) holds also for n ≥ 1.

7. Conclusions and perspectives

We have studied the family of confluent Virasoro fusion kernels Ck(b,θ, σs, ν)
defined in (3.2). We have shown in Theorems 3.2 and 3.4 that Ck is a joint
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eigenfunction of four difference operators for each k. Furthermore, we have
proved in Theorems 5.4 and Theorem 6.2 that Ck(b,θ, σs, ν) reduces (up
to normalization) to the continuous dual q-Hahn polynomials when ν is
suitably discretized and to the big q-Jacobi polynomials when σs is suitably
discretized. We have also shown that the Virasoro fusion kernel F reduces
(up to normalization) to the Askey–Wilson polynomials when σs is suitably
discretized (Theorem 4.2). As described in the introduction, these results
have led us to propose the existence of a non-polynomial version of the q-
Askey scheme with the Virasoro fusion kernel as its top member. Our results
have been summarized in Figure 2.

Let us point out that the confluent Virasoro fusion kernels Ck(b,θ, σs, ν)
are not independent for different values of k. In fact, the kernels Ck can
be viewed as infinite dimensional generalizations of the connection matrices
which relate the solutions of the confluent hypergeometric equation at the
singular points z = 0 and z = ∞ in different Stokes sectors [10]. However, the
confluent hypergeometric equation possesses two independent Stokes matri-
ces, and any two consecutive connection matrices are related by a Stokes
matrix. We conjecture that two consecutive confluent Virasoro fusion ker-
nels are related by the following integral transform:

(7.1) Ck+1(b,θ, σs, νn+1) =

∫

R

dνn Sn

[

θt
θ∗ θ0

;
νn+1

νn

]

Ck(b,θ, σs, νn),

where the kernel Sn

[

θt
θ∗ θ0

;
νn+1

νn

]

is the Stokes kernel which was introduced

in [10, Eq.(5.9)].
Finally, it would be interesting to understand the difference operators

introduced in this article from the viewpoint of integrable systems. It was
shown in [15] that under a certain parameter correspondence the differ-
ence operator Hren defined in (4.4) corresponds to the quantum relativistic
hyperbolic Calogero-Moser Hamiltonian tied to the root system BC1. Rela-
tivistic Toda system were found in [16] and various Toda limits of relativistic
Calogero-Moser systems were studied in [3]. In particular, a Toda limit of
a one-parameter specialization of Ruijsenaars’ hypergeometric function was
considered in [22], and similar functions were obtained in [5] from a quan-
tum group perspective. Both of these works seem to involve one-parameter
specializations of the family of confluent Virasoro fusion kernels studied in
this article. It would be interesting to understand this better.
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Appendix A. q-hypergeometric series

The q-Pochammer symbols (a; q)n and (a1, a2, ..., am; q)n are defined by

(a; q)n =

n−1
∏

k=0

(1− aqk) and (a1, a2, ..., am; q)n =

m
∏

j=1

(aj ; q)n.(A.1)

The q-hypergeometric series s+1ϕs is a q-deformation of the hypergeometric
series. It is defined by

s+1ϕs

[

a1, ...as+1

b1...bs
; q, z

]

=

∞
∑

k=0

(a1, ..., as+1; q)k
(b1, ..., bs, q; q)k

zk.(A.2)

The series terminates if one of the ai in the numerator is equal to q−n for
some integer n ≥ 1. Otherwise, the series converges for |z| < 1.

Appendix B. The first two levels of the q-Askey scheme

B.1. Askey–Wilson polynomials

The Askey–Wilson polynomials An are the most general polynomials of the
q-Askey scheme. They are defined by

(B.1) An(z;α, β, γ, δ, q) = 4ϕ3

(

q−n, αβγδqn−1, αz, αz−1

αβ, αγ, αδ

∣

∣

∣

∣

q; q

)

The normalization used in (B.1) for the Askey–Wilson polynomials is related
to the standard normalization of [7, Eq. (3.1.1)] by

(B.2) pn

(

z+z−1

2 ;α, β, γ, δ, q
)

= α−n(αβ, αγ, αδ; q)n An(z;α, β, γ, δ, q).

The right-hand side of (B.2) is symmetric in its four parameters α, β, γ, δ,
whereasAn(z;α, β, γ, δ, q) is only symmetric in β, γ, δ. Since pn(x;α, β, γ, δ, q)
is a polynomial of order n in x, An is a polynomial of order n in z + z−1.
The polynomials An satisfy the three-term recurrence relation

(B.3) (RAn
An)(z;α, β, γ, δ, q) = (z + z−1)An(z;α, β, γ, δ, q),

where the operator RAn
is given by

(B.4) RAn
= a+n Tn+1 + (α+ α−1 − a+n − a−n ) + a−n Tn−1,
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with Tn±1pn(x) = pn±1(x) and

a+n =
(1− αβqn) (1− αγqn) (1− αδqn)

(

1− αβγδqn−1
)

α (1− αβγδq2n−1) (1− αβγδq2n)
,

a−n =
α (1− qn)

(

1− βγqn−1
) (

1− βδqn−1
) (

1− γδqn−1
)

(1− αβγδq2n−2) (1− αβγδq2n−1)
.

(B.5)

They also satisfy the difference equation

(B.6) (∆An
An)(z;α, β, γ, δ, q) =

(

q−n + αβγδqn−1
)

An(z;α, β, γ, δ, q),

where the q-difference operator ∆An
is defined by

(∆An
f)(z) =

(

1 + αβγδ
q

)

f(z)

+
(1− αz)(1− βz)(1− γz)(1− δz)

(1− z2)(1− qz2)
(f(qz)− f(z))

+
(α− z)(β − z)(γ − z)(δ − z)

(1− z2)(q − z2)
(f(q−1z)− f(z)).

(B.7)

We next describe the second level in the q-Askey which consists of the
continuous dual q-Hahn and the big q-Jacobi polynomials. These families of
polynomials arise as a limit of the Askey–Wilson polynomials.

B.2. Continuous dual q-Hahn polynomials

The continuous dual q-Hahn polynomials, denoted by Hn(z;α, β, γ, q), are
obtained from the Askey–Wilson polynomials by setting δ = 0 in (B.1):

(B.8) Hn(z;α, β, γ, q) = An(z;α, β, γ, 0, q) = 3ϕ2

(

q−n, αz, αz−1

αβ, αγ

∣

∣

∣

∣

q; q

)

.

The polynomials Hn satisfy the three-term recurrence relation

(B.9) (RHn
(α, β, γ; q)Hn) (z;α, β, γ, q) = (z + z−1) Hn(z;α, β, γ, q),

where the operator RHn
is defined by

RHn
(α, β, γ; q) = b+n (α, β, γ; q)Tn+1(B.10)

+
(

α+ α−1 − b+n (α, β, γ; q)− b−n (α, β, γ; q)
)

+ b−n (α, β, γ; q)Tn−1
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with

(B.11)
b+n (α, β, γ; q) = α−1(1− αβqn)(1− αγqn),

b−n (α, β, γ; q) = α(1− qn)(1− βγqn−1).

They also satisfy the difference equation

(B.12) (∆Hn
(α, β, γ; q, z)Hn) (z;α, β, γ, q) = (q−n − 1)Hn(z;α, β, γ, q),

where the q-difference operator ∆Hn
≡ ∆Hn

(α, β, γ; q, z) is defined by

(∆Hn
f) (z) = h(α, β, γ; q, z)f(qz) + h(α, β, γ; q, z−1)f(q−1z)

−
(

h(α, β, γ; q, z) + h(α, β, γ; q, z−1)
)

f(z),
(B.13)

with

(B.14) h(α, β, γ; q, z) =
(1− αz)(1− βz)(1− γz)

(1− z2)(1− qz2)
.

B.3. Big q-Jacobi polynomials

The big q-Jacobi polynomials Jn(x;α, β, γ; q) arise from the Askey–Wilson
polynomials in a more subtle way:

Jn(x;α, β, γ; q) = lim
λ→0

An

(

x

λ
;λ,

αq

λ
,
γq

λ
,
λβ

γ
, q

)

(B.15)

= 3ϕ2

(

q−n, αβqn+1, x
αq, γq

∣

∣

∣

∣

q; q

)

.

The polynomials Jn satisfy the three-term recurrence relation

(B.16) RJn
(α, β, γ; q)Jn(x;α, β, γ; q) = xJn(x;α, β, γ; q),

where the operator RJn
is defined by

(B.17) RJn
(α, β, γ; q) = c+n Tn+1 +

(

1− c+n − c−n
)

+ c−n Tn−1,

with

(B.18)



















c+n =

(

1− αqn+1
) (

1− αβqn+1
) (

1− γqn+1
)

(1− αβq2n+1) (1− αβq2n+2)
,

c−n = −αγqn+1 (1− qn)
(

1− αβγ−1qn
)

(1− βqn)

(1− αβq2n) (1− αβq2n+1)
.
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They also satisfy the difference equation

(B.19) (∆Jn
(α, β, γ; q, x)Jn)(x;α, β, γ; q)

= q−n(1− qn)(1− αβqn+1)x2Jn(x;α, β, γ; q),

where the q-difference operator ∆Jn
≡ ∆Jn

(α, β, γ; q, x) is defined by

(B.20) (∆Jn
f)(x) = d+(α, β, γ, q, x)f(qx)− (d+(α, β, γ, q, x)

+ d−(α, β, γ, q, x))f(z) + d−(α, β, γ, q, x)f(q−1x),

with

(B.21)
d+(α, β, γ, q, x) = αq(x− 1)(βx− γ),

d−(α, β, γ, q, x) = (x− αq)(x− γq).

Remark B.1. In the definitions of the polynomials An, Hn, and Jn, we
assume that q is not a root of unity, because otherwise the polynomials are
in general not well-defined. Indeed, the q-hypergeometric series on the right-
hand sides of (B.1), (B.8), and (B.15) involve the ratio (q−n; q)k/(q; q)k of
q-Pochhammer symbols, and this ratio is indeterminate for all sufficiently
large k if q is a root of unity.
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