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By carrying out a systematic investigation of linear, test quan-
tum fields ϕ̂(x) in cosmological space-times, we show that ϕ̂(x)
remain well-defined across the big bang as operator valued distri-

butions in a large class of Friedmann, Lemâıtre, Robertson, Walker
space-times, including radiation and dust filled universes. In par-
ticular, the expectation values ⟨ϕ̂(x) ϕ̂(x ′)⟩ are well-defined bi-
distributions in the extended space-time in spite of the big bang
singularity. Interestingly, correlations between fields evaluated at
spatially and temporally separated points exhibit an asymmetry
that is reminiscent of the Belinskii, Khalatnikov, Lifshitz behav-
ior. The renormalized products of fields ⟨ϕ̂2(x)⟩ren and ⟨T̂ab(x)⟩ren
also remain well-defined as distributions. Conformal coupling is not
necessary for these considerations to hold. Thus, when probed with
observables associated with quantum fields, the big bang (and the
big crunch) singularities are quite harmless.
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1. Introduction

The celebrated singularity theorems of general relativity are based on the
mathematical notion of geodesic incompleteness, which translates physically
to the statement that trajectories of test particles come to an abrupt end.
However, it has long been argued that the effect of space-time singularities
would be softened if one uses physically more appropriate probes such as
test fields. For example, the naked singularities of certain static, dilatonic,
extremal black holes have been shown to be tame when probed with quantum

test particles [1]: their dynamics continues to be well-defined even though
these space-times are of course geodesically incomplete. Similarly, it has been
shown that the evolution of classical test fields can be meaningfully defined
in presence of the naked singularity even in the super extremal Reissner-
Nordström solutions [2]. It has also been argued that evolution of quantum
fields does not break down at the Schwarzschild singularity [3], albeit the
reasoning relies on formal arguments that does not do full justice to the
difficult quantum field theoretic issues associated with an infinite number of
degrees of freedom.

In this paper we turn to the time-dependent metrics with space-like sin-
gularities that result dynamically. In the main body of the paper we will
focus on the simplest cases provided by spatially flat Friedmann, Lemâıtre,
Robertson, Walker (FLRW) cosmologies. The FLRW space-times are of
course geodesically incomplete and the tidal force on test particles diverges
because of the curvature singularity. Turning to classical test fields one finds
that smooth initial data generically yield solutions that diverge at the big
bang. In this sense the singularity is equally bad for classical fields. What
would happen if one uses test quantum probes instead? Because the geom-
etry is now time dependent, in contrast to the static situation considered,
e.g., in [1] now we have to use quantum fields rather than quantum particles
as probes. Are these singularities as disastrous for quantum fields as they are
for their classical analogs? Or, do they appear tame? Our goal is to present
a systematic investigation of this issue. Although we focus on certain FLRW
space-times in order to perform explicit analytical calculations in the main
body of the paper, as we indicate in the Discussion section and Appendix
B, the situation would be qualitatively similar in a much larger class.

In this analysis, the key conceptual and mathematical difference between
a classical field ϕ(x) and its quantum analog ϕ̂(x) turns out to be the follow-
ing. In physically interesting cases one expects ϕ(x) to be a suitably smooth
function that obeys its field equation in the corresponding smooth sense. The
field ϕ(x) senses the singularity via a blow up of its numerical value there. On
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the other hand, already in Minkowski space, the quantum field ϕ̂(x) is an op-
erator valued distribution (OVD) [4]. Therefore, we are led to ask whether it
continues to be well-defined as an OVD across the big-bang in FLRW space-
times. Do the smeared operators ϕ̂(f) :=

∫
d4V ϕ̂(x)f(x) remain well-defined

and continue to satisfy the field equation
∫

d4V ϕ̂(x) (□−m2)f(x) = 0 even
when the support of the test field f(x) includes the singularity? Here d4V
is, as usual, the space-time volume element determined by the FLRW met-
ric. Now, the volume element shrinks at the big bang (as well as at the
Schwarzschild singularity). Therefore, it is ‘easier’ for ϕ̂(x) (as well as the
classical solutions ϕ(x)) to be a well-defined distribution. A simple analogy is
provided by h(r⃗) := 1/r on R3: it is singular as a function but well-defined
as a distribution (satisfying the well known equation ∇⃗2 h(r⃗) = −4π δ(r⃗),
again in the distributional sense). We will find that, as operator-valued dis-
tributions, the space-time quantum fields ϕ̂(x) remain perfectly well-defined
across cosmological singularities (and satisfy the field equation in a distri-
butional sense). In particular, the expectation values ⟨ϕ̂(x)ϕ̂(x ′)⟩ are well-
defined bi-distributions (in the naturally extended space-time) in spite of the
curvature singularity at the big bang. Thus the usual nomenclature ‘field op-
erators’ and ‘2-point functions’ can be quite misleading in the investigation
of the effect of singularities; their distributional character makes a crucial
difference. In addition, we will find that, as one approaches the singularity,
there is an interesting effect: correlations between fields at spatially sep-
arated points behave differently from those between temporally separated
points, an asymmetry that is reminiscent of the Belinskii, Khalatnikov, Lif-
shitz behavior [5, 6].

Next one can ask for the behavior of the renormalized expectation values
of products of fields. The most commonly used are ⟨ϕ̂2(x)⟩ren and ⟨T̂ab(x)⟩ren.
It turns out that they also remain well defined as distributions across the big
bang (and the big crunch). Note that ϕ̂(f) are ‘dimension 1’ operators (that
do not directly ‘sense’ the Riemann curvature), ⟨ϕ̂2(x)⟩ren are ‘dimension 2’
observables (that are sensitive only to the scalar curvature in the spatially
flat FLRW models), while ⟨T̂ab(x)⟩ren are dimension 4 observables (sensitive
to products of curvature tensors). While all these observables continue to
be well-defined in the distributional sense, we will find that the lower the
physical dimension, the ‘tamer’ is the detailed distributional character in
conformal time.

The paper is organized as follows. In section 2 we recall the elements
of the quantum field theory in cosmological space-times that we will need
in our detailed analysis. In section 3 we probe the big bang singularity of
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the FLRW space-times that are sourced by radiation using a quantum field
ϕ̂(x). These space-times are rather special in that the Ricci scalar vanishes
there, which simplifies the analysis considerably. As a prelude to considering
more general FLRW space-times, in section 4 we make a detour to study the
behavior ϕ̂(x) in Minkowski space but in presence of certain time-dependent
potentials which diverge as 1/η2 at time η = 0. These results are then readily
transferred to the dust filled FLRW universe in section 5, and more general
FLRW space-times in Appendix B. In section 6 we collect the main results
and put them in a broader perspective. In Appendix A we collect some re-
sults [7–10] on tempered distributions (á la Schwartz) that clarify the origin
of ambiguities that often result in regularization procedures. In Appendix B
we briefly discuss various generalizations of the main results.

Finally, our conventions are as follows. We use the signature −,+,+,+
and define the curvature tensors via 2∇[a∇b]Kc = Rabc

dKd; Rac = Rabc
b

and R = gabRab. In the main body of the paper we will restrict ourselves
to scalar fields satisfying the Klein-Gordon equation and only briefly dis-
cuss more general examples in Appendix B. However, even there we will
only consider bosonic fields. We believe that tameness of the singularity will
persist also for fermionic fields although certain issues will require greater
attention (e.g. the relative orientation of frame fields on the two sides of the
big bang).

2. Preliminaries

In this section we collect the results that provide the conceptual framework
for the subsequent sections. This discussion will also serve to fix the notation.
In the first part, we discuss the algebra A of operators for linear fields
in globally hyperbolic space-times. This algebra can be constructed using
just the classically available structure. In the second part we recall the new
mathematical input needed to construct quasi-free representations of A, and
in the third part we summarize how this structure is generally specified for
quantum fields on FLRW space-times.

2.1. The operator Algebra

Let (M, gab) be a globally hyperbolic space-time. For definiteness, we will
focus on test quantum scalar fields ϕ̂(x) on this space-time satisfying (□−
m2)ϕ̂(x) = 0, although our considerations can be easily generalized to in-
clude the scalar fields that satisfy the conformally invariant equation, as
well as Maxwell and linearized gravitational fields. ϕ̂(x) is an OVD on M
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and the field operators ϕ̂(f) are obtained by smearing ϕ̂(x) with suitable test
fields f(x): ϕ̂(f) =

∫
M d4V ϕ̂(x)f(x), where d4V is the volume element on M

induced by gab. (The precise space of test functions will be specified in sec-
tion 2.3). The algebra A of interest is the (abstractly defined) free ⋆-algebra
generated by ϕ̂(f) satisfying the self-adjointness relation ϕ̂⋆(x) = ϕ̂(x), the
commutation relations

(1) [ϕ̂(x), ϕ̂(x ′)] = iℏ∆(x, x ′) Î ,

or, equivalently

(2) [ϕ̂(f1), ϕ̂(f2)] = iℏ

∫

M
d4V f1(x)

∫

M
d4V ′ ∆(x, x ′) f2(x

′) Î ,

and the field equations

(3) ϕ̂((□−m2)f) :=

∫

M
d4V ϕ̂(x) (□−m2)f(x) = 0

for all test functions f1(x), f2(x) and f(x). The distribution ∆(x, x ′) on the
right side of (1) is the difference between the advanced and retarded Green’s
functions, ∆(x, x ′) := (GAd −GRet)(x, x

′) [11]. Thus, the algebra A can be
constructed using structures that are already available on (M, gab).

Note that (3) implies that the map f → ϕ̂(f) has a huge kernel since
ϕ̂(f) = 0 if f is of the form (□−m2)g(x) for any test field g(x). It is often
convenient to remove this kernel as follows. Since ∆(x, x ′) satisfies the field
equation in both arguments, it follows that

(4) F (x) :=

∫

M
d4V ′∆(x, x ′)f(x ′)

is a solution to the field equations. This correspondence f(x) → F (x) from
the space of test functions to solutions of the field equation has the property
that if we replace the test field f(x) with f̃ = f + (□−m2)g, for any test
field g we have f̃ → F (x). Thus, at the classical level, the map (4) from test
fields to solutions removes the kernel.

Can we then remove the redundancy also in the quantum theory? The
answer is in the affirmative [12]. Recall that, restrictions of the commutator
Green’s function ∆(x, x ′) and its time derivative to a Cauchy surface t = t0
satisfy: (i) ∆(x, x ′) |t=t′=t0 = 0, and (ii) na∇a ∆(x, x ′) |t=t′=t0 = δ3(x⃗, x⃗ ′),
where na is the unit normal to the Cauchy surface. (These properties of
∆(x, x ′) and (1) imply that ϕ̂(x⃗) and its conjugate momentum π̂(x⃗) satisfy
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the standard canonical commutation relations). Next, note that the sym-
plectic inner product can be evaluated on any Cauchy surface. Therefore,
for any given x′ let us evaluate the symplectic product between a classical
solution ϕ(x) and ∆(x, x ′) at time t = t′ and obtain

Ω(ϕ(x),∆(x, x ′))(5)

:=

∫

t=t′
d3V

[
ϕ(x)(na∇a ∆(x, x ′)) − (na∇aϕ(x))∆(x, x ′)

]

= ϕ(x ′)

Replacing ϕ(x) with the OVD ϕ̂(x) and smearing both sides of the final
equality with a test function f(x ′) we obtain:

(6) Ω(ϕ̂(x), F (x)) = ϕ̂(f)

for all test functions f . Finally, let us set Φ̂(F ) := Ω(ϕ̂(x), F (x)). Then, the
commutation relations (2) are replaced by

(7) [Φ̂(F1), Φ̂(F2)] = iℏΩ(F1, F2) Î

bringing to forefront the relation between quantum commutators and the
symplectic structure on the classical phase space. Furthermore, since test
fields f(x) and f(x) + (□−m2)g(x) define the same solution F (x) for all
test fields g(x), the redundancy in the label is removed: Φ̂(F ) = 0 if and only
if F (x) = 0. To summarize, we can generate the algebra A either using the
field operators ϕ̂(f) smeared with test fields f (for which the map f → ϕ̂(f)
has a kernel) or with operators Φ̂(F ) associated with solutions F (for which
the map F → Φ̂(F ) is faithful). We will find both versions of field operators
are useful in probing the big bang singularity with quantum fields.

On Hilbert spaces of interest to our analysis, the operators ϕ̂(f) and
Φ̂(F ) are represented by unbounded self-adjoint operators. We note that
it is often convenient to work with their exponential versions Ŵ (F ) :=
exp i

ℏ
Φ̂(F ) which are represented by unitary operators. The Weyl algebra

W generated by Ŵ (F ) is particularly convenient because the vector space
of their linear combinations is closed under the product:

(8) Ŵ (F1)Ŵ (F2) = e−
i

2ℏ
Ω(F1,F2) Ŵ (F1 + F2) .

Thus W is spanned just by linear combinations of Ŵ (F ).
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2.2. Quasi-free Representations

While the algebras A and W can be constructed using structures that are
naturally available classically on general globally hyperbolic space-times [11,
12], one needs a new mathematical structure to find their representations
on Hilbert spaces. The most-commonly used representations are the ‘quasi-
free ones’ in which the Hilbert space has the structure of a Fock space and
the field operators ϕ̂(f) and Φ̂(F ) are represented by sums of creation and
annihilation operators associated with one particle states [13, 14]. In this
case, the necessary new element is a complex structure J on the space of
classical solutions F . Denote by ΓCov the covariant phase space of suitably
regular solutions F (x) to the classical field equation (□−m2)F (x) = 0. (The
regularity conditions will be spelled out in section 2.3.) Then a complex
structure J is a linear map on Γ satisfying J2 = −1. ΓCov is already endowed
with a symplectic structure Ω (of (5)). The complex structure J is required
to be compatible with Ω in the sense that g(F1, F2) := Ω(F1, JF2) is a
positive definite metric on ΓCov. Then the triplet (Ω, J, g) endows ΓCov with
the structure of a Kähler space. In particular, then,

(9) ⟨F1, F2⟩ =
1

2ℏ

(
g(F1, F2) + iΩ(F1, F2)

)

is an Hermitian inner product on the complex vector space (ΓCov, J). The
Cauchy completion H of (ΓCov, J, ⟨· , ·⟩) provides us with a 1-particle Hilbert
space. The symmetric Fock space F generated by H is the Hilbert space
that carries a quasi-free representation of A (and W). Specifically, with
each 1-particle state F (now regarded as an element of H), there is an
annihilation operator Â(F ) and a creation operator Â†(F ) on F , satisfying
the commutation relation

(10) [Â(F1), Â
†(F2)] = ⟨F1, F2⟩ Î .

The abstract field operators ϕ̂(f) = Φ̂(F ) are represented by concrete oper-
ators on F as follows:

(11) Φ̂(F ) = ℏ
(
Â(F ) + Â†(F )

)

For details see [12, 15].
In terms of the Weyl algebra W, the Gel’fand-Naimark-Segal (GNS)

[16, 17] construction provides a direct and more elegant avenue to introduce
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this representation. Given a positive linear function on a ⋆-algebra –in phys-
ical terms, an expectation value function E– the construction provides an ex-
plicit, step by step procedure to build a Hilbert space and represent elements
of the algebra as concrete operators on it such that all algebraic relations
are preserved. In the case of the Weyl algebra W then the task is to pro-
vide a linear, complex valued function E on W such that E(A⋆A) ≥ 0 for all
A ∈ W. Because of the property (8) of the Weyl operators, the task reduces
to finding a complex-valued function e on ΓCov such that E(W (F )) := e(F )
is a positive linear function on W. Given a complex structure J on ΓCov,
the required e is determined by the Hermitian product it defines on ΓCov:

(12) e(F ) = e−
1

2
⟨F,F ⟩ ≡ e−

1

4ℏ
Ω(F,JF ) .

2.3. FLRW Space-times

Let us now specialize to spatially flat FLRW space-times (M, gab) with spa-
tial topology R3. Since the space-time metric gab is conformally flat, we
have:

(13) gabdx
adxb = a2(η) g̊abdx

adxb ≡ a2(η)
(
− dη2 + dx⃗2

)
,

so that η is the conformal time coordinate, related to proper time t via
a(η)dη = dt, and (η, x⃗) are the Cartesian coordinates of the Minkowski met-
ric g̊ab. In the main text we will restrict ourselves to the massless scalar field
satisfying □ϕ(x⃗, η) = 0 on (M, gab), and in Appendix B we briefly discuss
more general scalar fields as well as higher spin fields. The overall conceptual
picture is the same in these more general cases.

Using the form (13) of gab, the Klein Gordon equation can be readily
cast in the form

(14) ϕ′′ − D̊2ϕ+ 2
a′

a
ϕ′ = 0

where primes refers to derivative with respect to conformal time η, and D̊2

is the spatial Laplacian defined by g̊ab. By exploiting spatial flatness, we can
carry out a Fourier decomposition

(15) ϕ(x⃗, η) =
1

(2π)3

∫
d3k ϕ(k⃗, η) ei k⃗·x⃗ .

Because ϕ(x⃗, η) is real, the Fourier transforms are subject to the ‘reality
condition’ ϕ⋆(k⃗, η) = ϕ(−k⃗, η). The equation of motion (14) implies that
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ϕ(k⃗, η) satisfies a second order ordinary differential equation in η for each
k. Let us introduce a basis e(k, η) of solutions to this equation:

(16) e′′(k, η) + 2
a′(η)

a(η)
e′(k, η) + k2e(k, η) = 0 ,

satisfying the normalization condition

(17) e(k, η) e⋆ ′(k, η) − e′(k, η) e⋆(k, η) =
i

a2(η)
,

for each k = |⃗k|. Expanding ϕ(k⃗, η) in this basis, we obtain

(18) ϕ(x⃗, η) =

∫
d3k

(2π)3
(
z(k⃗) e(k, η) + z⋆(−k⃗) e⋆(k, η)

)
ei k⃗·x⃗

for some complex-valued functions z(k⃗). We will assume that z(k⃗) belong to
the Schwartz space S̃ [7] consisting of smooth functions in the (3-
dimensional) momentum space that, together with all their derivatives, fall-
off faster than any polynomial as |⃗k| → ∞. Given a basis {e(k, η)}, then,
we obtain a convenient space of solutions to the Klein-Gordon equations via
(18). This will be our covariant phase space ΓCov. Note that, in contrast to
ϕ(k⃗), there is no relation between z(k⃗) and z(−k⃗). Therefore z(k⃗) serve as
complex (Bargmann) coordinates [18, 19] on the real phase space ΓCov.

The set of solutions e(k, η) eik⃗·x⃗ provides an orthonormal ‘positive fre-
quency basis’ in the 1-particle Hilbert space of states H, analogous to the

positive-frequency basis e−ikη√
2k
eik⃗·x⃗ in Minkowski space. Therefore, it also

provides us with a natural complex structure J on ΓCov:

(19) J ϕ(x⃗, η) =

∫
d3k

(2π)3
(
i z(k⃗) e(k, η) − i z⋆(−k⃗) e⋆(k, η)

)
ei k⃗·x⃗ .

Thus, the action of J on ϕ(x) multiplies the coefficients z(k⃗) of the posi-
tive frequency basis functions e(k, η) by i and the coefficients z⋆(k⃗) of the
‘negative frequency basis functions’ by −i, so that J ϕ(x⃗, η) is again a real
solution. We can define a new ‘positive frequency basis’ ẽ(k, η) by taking
linear combinations of e(k, η) with appropriately normalized coefficients;
the complex structure defined by ẽ(k, η) is again J . Thus, the invariant con-
tent in the choice of a positive frequency basis is captured by the complex
structure.

The normalization condition (17) implies that J is compatible with the
symplectic structure Ω on ΓCov. One can readily verify that the Hermitian
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inner product of Eq. (9) takes the form

(20) ⟨ϕ1(x⃗, η), ϕ2(x⃗, η)⟩ =
1

ℏ

∫
d3k

(2π)3
z⋆1(k⃗) z2(k⃗) .

The 1-particle Hilbert space H is the Cauchy completion of ΓCov with this
inner product. Thus, for a generic solution ϕ(x⃗, η) of (18) to belong to H,
z(k⃗) just has to be in L2(R3). In the Fock representation determined by the
complex structure J of (19), the OVD ϕ̂(x) is represented as

(21) ϕ̂(x⃗, η) =

∫
d3k

(2π)3
(
Â(k⃗) e(k, η) + Â†(−k⃗) e⋆(k, η)

)
ei k⃗·x⃗

where the annihilation and creation operators satisfy the commutation re-
lations:

(22) [Â(k⃗) , Â†(k⃗′)] = (2π)3 ℏ δ(k⃗, k⃗′) Î .

Field operators ϕ̂(f) will be obtained by smearing ϕ̂(x⃗, η) with test fields
f that are in the Schwartz space S on M̊ , i.e. that are C∞ w.r.t. (x⃗, η)
and, together with all their derivatives, fall off faster than any polynomial
as these Cartesian coordinates go to infinity. Thus, our distributions will be
the (operator-valued and ordinary) tempered distributions [7].

Remarks:

1. Literature on quantum field theory in Minkowski space-time generally
uses tempered distributions because the Schwartz space S is stable under
Fourier transform, i.e., the Fourier transform f̃(k) of a function f(x) ∈ S is
again in the Schwartz space. However, the construction of S is tied to the
use of Cartesian coordinates which are not available in general curved space-
times. Therefore, in quantum field theory in curved space-times, one works
with distributions that are smeared with a more restricted class, C∞

0 (M),
of test functions that are smooth and of compact support in space-time. We
chose to work with tempered distributions because in quantum field theory
on FLRW space-times, one does have geometrically defined ‘Cartesian’ co-
ordinates (η, x⃗) and it is convenient to go back and forth between fields on
spatially homogeneous, isotropic 3-manifolds and their Fourier transforms.
Since C∞

0 (R4) ⊂ S, the action of our tempered distributions is, in particular,
well defined on C∞

0 (R4).

2. As noted above, the components {z(k⃗)} of ϕ(x⃗, η) in the orthonormal
basis e(k, η) provides a convenient coordinate system on ΓCov. As a side
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remark, we note that Eq. (9) and (20) imply that these coordinates are
well-adapted to the symplectic structure: their Poisson brackets have the
form

(23) {z(k⃗), z⋆(k⃗′)} = −i (2π)3 δ(k⃗, k⃗′) and {z(k⃗), z(k⃗′)} = 0 ,

mirroring the commutation relations (22) between the creation and annihi-
lation operators.

In sections 3 and 4 we will show that, in the models we discuss in de-
tail, the phase space ΓCov admits a natural complex structure. In sections
3 - 5 we will explore in detail properties of the resulting quasi-free, Fock
representations across the big bang. To analyze this issue, we will use the
manifold M̊ underlying the full Minkowski space-time, so that each of the
Cartesian coordinates (x⃗, η) of the Minkowski metric g̊ab takes values on the
full real line R. M̊ is an extension of the manifold M underlying the FLRW
solution gab since η takes only positive values on M , η = 0 being the big
bang. Since we are interested in the big bang, we will assume that the scale
factor has the form a(η) = aβη

β with β > 0 and extend gab to all of M̊ using
gab = a2(|η|)̊gab. Thus gab will be a well-defined (at least C0) tensor field on
all of M̊ , but degenerate as a metric at η = 0 since a(η) vanishes there. The
question is: Do various observables associated with the quantum field ϕ̂(x)
remain well-defined across η = 0?

3. The Radiation filled universe

In this section, we focus on the FLRW space-time sourced only by a ra-
diation field. In this case, a(η) = a1η, whence the scalar curvature van-
ishes: R(η) = 6a′′(η)/a3(η) = 0. Therefore we can rewrite the massless Klein-
Gordon equation in a conformally covariant form (□−R/6)ϕ(x⃗, η) = 0.
Since the metric gab is conformally related to the Minkowski metric g̊ab
of (13), the analysis simplifies greatly, enabling us to discuss the regularity
of the quantum field ϕ̂(x) across the big bang in a setting that is devoid of
non-essential technical complications.

Note that if one were to consider a Maxwell field, the field strength
Fab would satisfy source-free equations with respect to gab if and only if it
satisfies them with respect to g̊ab. This conformal invariance implies that
regular solutions to the Maxwell equation in Minkowski space remain regular
also across the big bang in both classical and quantum field theory. By
contrast, the equation (□−R/6)ϕ(x⃗, η) = 0 is only conformally covariant :
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If ϕ◦(x) satisfies this equation with respect to the Minkowski metric g̊ab, then
it is ϕ(x) = a−1(η)ϕ◦(x) that satisfies it with respect to the radiation filled
FLRW metric gab. (Recall that symbols with a zero above them (or carrying
a superscript ◦) refer to the Minkowski space (M̊, g̊ab).) Since a(η) = 0 at
the big bang, generic classical solutions ϕ(x) diverge there. Therefore, in
contrast to the Maxwell case, the issue of whether the quantum field ϕ̂(x)
and observables associated with it are regular across the big bang is non-
trivial even though the scalar curvature R vanishes.

Our discussion is divided into two parts. In the first we discuss the regu-
larity of ϕ̂(x) as an OVD. In the second we investigate properties of various
expectation values – the 2-point bi-distribution ⟨ϕ̂(x)ϕ̂(x ′)⟩ and the renor-
malized products of operator-valued distributions ⟨ϕ̂2(x)⟩ren and ⟨T̂ab(x)⟩ren.

3.1. Field operators and the Big Bang

Let us begin with the massless Klein-Gordon field ϕ̂◦(x) on the full Minkowski
space-time (M̊, g̊ab). The ⋆-algebra A◦ is generated by the smeared operators
ϕ̂◦(f̊) (or, Φ̂◦(F̊ ) = Ω̊(ϕ̂◦, F̊ )) satisfying the field equation

(24)

∫
d4x ϕ̂◦(x) □̊f(x) = 0 for all test fields f in the Schwarz space S,

and the commutation relations

(25) [ϕ̂◦(x), ϕ̂◦(x ′)] = iℏ ∆̊(x, x ′) Î or [Φ̂◦(F̊ ), Φ̂◦(F̊ ′)] = iℏ Ω̊(F̊ , F̊ ′) Î .

As explained above, the Schwartz S associated with M̊ will consist of smooth
functions f that, together with all their derivatives, fall-off faster than any
polynomial as x ≡ (x⃗, η) go to infinity.

Conformal covariance considerations lead us to introduce a candidate
operator-valued distribution ϕ̂(x) = ϕ̂◦(x)/a(η) on the extended FLRW
space-time (M̊, gab = a2(η)̊gab). The question is whether it is well-defined
and has the desired properties even though a(η) vanishes at η = 0. Given a
test field f(x) ∈ S we have:

(26)

∫

M̊
d4V ϕ̂(x)f(x) =

∫

M̊
d4x ϕ̂◦(x) (a3(η)f(x)) ≡

∫

M̊
d4x ϕ̂◦(x)f̊(x)

where we have set f̊(x) = a3(η)f(x). Since a3(η) = a31η
3, it follows that f̊ is

also smooth and, together with all its derivatives, falls off faster than any
polynomial at infinity; i.e., f̊(x) ∈ S. (Put differently, a3(η)ϕ̂◦(x) is a well-
defined OVD because it is the product of a C∞ function a3(η) of η that
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grows only polynomially at infinity and an OVD ϕ̂◦(x).) Thus the right side
of (26) belongs to A◦, whence our ϕ̂(x) is a well-defined OVD on (M̊, gab).
(Note that vanishing of the volume element d4V = a4(η)d4x at η = 0 plays
a crucial role in this and subsequent arguments.) Next, let us consider the
field equation. For any test field f(x) ∈ S we have □f = (1/a3(η)) □̊(a(η)f).
Hence

(27)

∫

M̊
d4V ϕ̂(x)□f(x) =

∫

M̊
d4x ϕ̂◦(x) □̊(af) (x) = 0

where in the last step we have used the field equation (24) satisfied by ϕ̂◦

and the fact that a f ≡ (a1 η)f(x) ∈ S. Finally, for the commutator we have

Φ̂◦(F̊ ) := Ω̊(ϕ̂◦(x), F̊ (x))(28)

=

∫

η=η◦

d3x
[
ϕ̂◦(x) n̊a∇aF̊ (x) − F̊ (x)̊na∇aϕ̂

◦(x)
]

=

∫

η=η◦

d3V
[
ϕ̂(x)na∇aF (x) − F (x)na∇aϕ̂(x)

]

= Ω(ϕ̂(x), F (x)) = Φ̂(F )

where n̊a and na are unit normals to any space-like plane η = η0 ̸= 0 with
respect to g̊ab and gab respectively, and a(η)F (x) = F̊ (x). It then follows
that in the extended FLRW space-time we have the commutation relations

(29) [Φ̂(F ), Φ̂(F ′)] = iℏΩ(F, F ′) Î

on (M̊, gab). Since the symplectic inner product on the right can be defined
as an integral over any surface η = η◦ ̸= 0 and its value is independent of η◦,
by continuity we can take the limit to the big bang surface η = 0: although
individual fields diverge, the volume element d3V shrinks to zero just in
the right way to make the result well-defined (and non-zero). Using the
relation ϕ̂(x) = ϕ̂◦(x)/a(η) we can also evaluate the commutator between
OVDs directly:

(30) [ϕ̂(x), ϕ̂(x ′)] = iℏ
∆̊(x, x ′)
a(η)a(η′)

Î =: iℏ∆(x, x ′) Î .

The commutator ∆(x, x ′) is a well-defined distribution on all of (M̊, gab)
and coincides with the distribution (GAd −GRet) if η, η′ are both positive
or both negative. Its support is on the null cones of the extended manifold M̊
(which, due to conformal flatness, are meaningful in spite of the singularity).
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Thus ∆(x, x ′) is a natural generalization of the distribution (GAd −GRet)
across the singularity. To summarize, we have a well-defined OVD ϕ̂(x) on
(M̊, gab) satisfying all the requirements spelled out in section 2.1. We will
denote by A the ⋆-algebra generated by the smeared operators ϕ̂(f) –or,
equivalently by Φ̂(F )– and by W the corresponding Weyl algebra.

Next, given any test function f(x) on M̊ , we have

F (x) :=

∫

M̊
d4V ′∆(x, x ′) f(x ′)(31)

=
1

a(η)

∫

M̊
d4x ′∆̊(x, x ′) f̊(x ′) :=

1

a(η)
F̊ (x)

where, as before f̊(x ′) = a3(η)f(x ′). By its definition, F̊ (x) is a smooth
solution to the massless Klein-Gordon equation on (M̊, g̊ab) and F (x) is a
distributional solution to the massless Klein-Gordon equation on (M̊, gab).
It follows from (28) that

(32) Ω(F1(x), F2(x)) = Ω̊(F̊1(x), F̊2(x)).

Now, on Minkowski space (M̊, g̊ab) we can expand out F̊ (x) ∈ Γ̊cov as

(33) F̊ (x) =

∫
d3k

(2π)3

(
z(k⃗)

e−ikη

√
2k

+ z⋆(−k⃗)
eikη√

2k

)
eik⃗·x⃗ ,

where the coefficients z(k⃗) belong to the Schwartz space S̃; the complex
structure J on Γ̊cov is given by

(34) J̊ F̊ (x) =

∫
d3k

(2π)3

(
iz(k⃗)

e−ikη

√
2k

− iz⋆(−k⃗)
eikη√

2k

)
eik⃗·⃗k ;

and the Hermitian inner product is

(35) ⟨F̊1, F̊2⟩◦ =
1

ℏ

∫
d3k

(2π)3
z⋆1(k⃗) z2(k⃗) .

It is natural to define ΓCov (associated with (M̊, gab)) as the space of all
F (x) =

(
F̊ (x)/a(η)

)
with F̊ (x) ∈ Γ̊cov. Then the complex structure on Γ̊cov

naturally induces a complex structure on ΓCov: JF = (1/a(η)) J̊ F̊ . (Indeed,
this is the complex structure normally used for massless scalar fields in the
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radiation filled FLRW space-time.) Thus, we have:

F (x) =

∫
d3k

(2π)3

(
z(k⃗)

e−ikη

√
2k a1η

+ z⋆(−k⃗)
eikη√
2k a1η

)
eik⃗·x⃗ and,(36)

⟨F1, F2⟩ =
1

ℏ

∫
d3k

(2π)3
z⋆1(k⃗) z2(k⃗) .(37)

Consequently, although solutions F (x) ∈ ΓCov diverge at η = 0 as functions,
each of them yields a well-defined element of the 1-particle Hilbert space H
on (M̊, gab) because its norm is finite (and non-vanishing). This is analogous
to the fact that, in quantum mechanics on R3, although the wave function
ψ(x⃗) = e−r/r diverges at r = 0, it is nonetheless a well-defined quantum
state, i.e., element of L2(R3). Finally, note that if f(x) ∈ S, then the corre-
sponding solution F (x) (of Eq.(4)) has finite norm with respect to the inner
product (37).

Given the Hermitian inner product (37) on ΓCov, the Fock representation
of the Weyl algebra W can be readily constructed using the GNS construc-
tion [16, 17] following the procedure summarized at the end of section 2.2:
the required positive linear function E on W is determined by the linear
function e on ΓCov as in (12)

(38) e(F ) = e
− 1

2ℏ

∫
d3k

(2π)3
z⋆(k⃗) z(k⃗)

.

As one would expect from (33) and (36), on this Fock space, the OVD ϕ̂(x)
admits an explicit expansion in terms of annihilation and creation operators:

(39) ϕ̂(x) =
1

a1η
ϕ̂◦(x) =

1

a1η

∫
d3k

(2π)3

(
Â(k⃗)

e−ikη

√
2k

+ Â†(−k⃗)
eikη√

2k

)
eik⃗·x⃗.

In spite of the 1/η term in the expression, as we saw in Eq.(26), ϕ̂(f) :=∫
M̊d4V ϕ̂(x)f(x) is a well-defined operator on the Fock space for all test

fields f in the Schwartz space S.

3.2. Expectation values and the Big Bang

Let us now examine the 2-point bi-distributions in the vicinity of the big
bang, and then the renormalized expectation values of operator products
that have received considerable attention in the literature because of their
physical interest.
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3.2.1. The 2-point bi-distribution. Since ϕ̂(f) is a well-defined opera-
tor on the Fock space F for all f ∈ S, it is clear that the vacuum expectation
value ⟨ϕ̂(f1)ϕ̂(f2)⟩ is also well-defined for all f1, f2 ∈ S. The corresponding
2-point bi-distribution is given by

⟨ϕ̂(x) ϕ̂(x ′)⟩ =
1

a21ηη
′ ⟨ϕ̂

◦(x) ϕ̂◦(x ′)⟩
◦

=
ℏ

a21ηη
′

∫
d3k

(2π)3
e−ikt

2k
eik⃗·r⃗(40)

=
ℏ

a21ηη
′

1

4π2

( 1

r2 − (t− iϵ)2

)
,

where we have set t = η − η′ and r⃗ = x⃗− x⃗′. The iϵ prescription means
that the integral – representing the Minkowski space 2-point bi-distribution–
should be regarded as the boundary value of an analytical function in the
lower half of the complex t plane. Thus even in Minkowski space,
⟨ϕ̂◦(x) ϕ̂◦(x ′)⟩◦ is not a function of 2 variables but a bi-distribution: one

has to first integrate
(
r2 − (t− iϵ)2

)−1
against test functions and then take

the limit ϵ→ 0. Finally, although there is an overall multiplicative factor
1/ηη′ in the expression of ⟨ϕ̂(x) ϕ̂(x ′)⟩, as we saw above, the final result is a
well-defined bi-distribution on the entire (M̊, gab) because of the a4(η) factor
in the volume element d4V .

Although the Minkowskian ⟨ϕ̂◦(x) ϕ̂◦(x ′)⟩◦ is a bi-distribution, for points
x, x ′ that are space-like or time-like separated one often considers the func-
tion ℏ

4π2 ( 1
r2−t2 ) obtained by setting ϵ = 0 and interprets it as providing cor-

relations between fields evaluated at points x, x ′ in the vacuum state. By
inspection, this correlation function depends only on the space-time distance
between x and x ′ and falls off as the inverse power of the square of the dis-
tance, irrespective of whether the points are space-like separated or time-like
separated. This is taken as a signature of the long range character of correla-
tions of a massless scalar field in the Minkowski vacuum for both space-like
and time-like separations. In the extended FLRW space-time (M̊, gab), by
contrast, there is an asymmetry between space and time. It is therefore
of interest to probe how this asymmetry manifests itself in the correlation
functions, especially near the big bang.

To carry out this task we have to make a choice of space-like and time-
like separated points. We will use the simplest ansatz that is well-tailored
to probe the asymmetry. We will take the time-like separated points to be
(x⃗◦, η◦) and (x⃗◦, η ′) such that η′ > η◦ > 0 and the geodesic joining them –the
straight line in the (x◦, η) chart– has proper length D. Thus (a1/2)(η′2 −
η2◦) = D. We will take the space-like separated points to lie on a η = η◦
surface such that the straight line connecting them –the geodesic within this
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surface– has length D. Thus we will consider points (x⃗, η◦) and (x⃗ ′, η◦) such
that (a1η◦) |x⃗− x⃗ ′| ≡ (a1η◦) r = D. The question is: How are the 2-point
functions associated with these two pairs of points related? For space-like
separated points we have:

(41) ⟨ϕ̂(x⃗, η◦) ϕ̂(x⃗ ′, η◦)⟩ =
ℏ

4π2D2

and, for the time-like separated points we obtain

⟨ϕ̂(x⃗◦, η◦) ϕ̂(x⃗◦η
′)⟩(42)

= − ℏ

4π2a21

((2D

a1
+ η2◦

) 1

2
(
η◦ − (

2D

a1
+ η2◦)

1

2

)2)−1 1

η◦
.

We will now take the limit as η◦ → 0, keeping the separation D between the

points fixed. The first correlation function (41) is η◦ independent while the
second correlation function (42) diverges as 1/η◦. Therefore, for the ratio we
have

(43) lim
η◦→0+

⟨ϕ̂(x⃗, η◦) ϕ̂(x⃗ ′, η◦)⟩
⟨ϕ̂(x⃗◦, η◦) ϕ̂(x⃗◦η ′)⟩

= − lim
η◦→0+

2
√

2a1√
D

η◦ = 0

where we have used the fact that D is kept constant while taking the limit.
Thus, in contrast to the situation in Minkowski space –where this ratio of
correlation functions equals 1 everywhere– now the ratio vanishes as we
approach the singularity, being proportional to η◦. For any given value of
η◦, the coefficient 1/

√
a1D decreases as we increase the separations D; the

asymmetry is enhanced as the separation between points increases since
one probes a greater time dependent portion of space-time while calculating
(42). We can also consider the time-like separated points that lie on the two
sides of the singularity by taking η ′ > 0 and η = η◦ < 0. The result (43) for
the ratio is the same.

To summarize, the Minkowski space correlation function for two space-
like separated points is the same as that for two time-like separated points
if the physical distance between each pair is the same. In the radiation filled
FLRW model, by contrast, the ratio (43) goes to zero as one approaches
the singularity because, while the correlation function (41) between space-
like separated points is time independent if the distance between them is
kept fixed, the correlation function (42) between time-like separated points
is time dependent –diverging as 1/η◦ as η◦ → 0– if, again, the distance be-
tween them is kept fixed. This asymmetry reminds one of the BKL behavior
in classical general relativity [5, 6]. However, we should keep in mind that the
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conceptual settings are very different. In the classical analysis, one investi-
gates the behavior of the gravitational field using the full non-linear Einstein
equations, and the BKL behavior refers to the fact that the time derivatives
of the metric dominate over the spatial derivatives in an appropriate sense
as one approaches space-like singularities. Here we considered test, quantum

fields on a cosmological background and found that correlations between
time-like separated points dominate over those between space-like separated
points as one approaches the singularity, even when the distance between
points in each pair is kept fixed and equal.

3.2.2. Renormalized operator products. So far, we have considered
observables that can be constructed using the field operators ϕ̂(f). The big
bang singularity is tame if we probe it with these observables. We can also
consider products of the type ‘ϕ̂2(x).’ However, even in Minkowski space
these observables are singular because ϕ̂(x) itself is an OVD [4]. But, as
is well-known, one can renormalize their expectation values ⟨ϕ̂2(x)⟩ren. One
would expect these renormalized observables to provide sharper tools to
probe the singularity because the renormalization procedure digs deeper
into the ultraviolet behavior of the field. The most commonly used among
them are the product ⟨ϕ̂2(x)⟩ren and the stress-energy tensor ⟨T̂ab(x)⟩ren.
We will now investigate the behavior of both these observables near the big
bang singularity in the extended FLRW space-time (M̊, gab).

As is well-known, the renormalization procedure involves subtracting a
counter term that removes the ‘universal’ part of the divergence. A stan-
dard strategy is to use a point splitting procedure [23–26] and the DeWitt-
Schwinger subtraction term [24], constructed from curvature tensors of the
background space-time metric. There is extensive literature on calculations
of ⟨ϕ̂2(x)⟩ren and ⟨T̂ab(x)⟩ren that provides expressions of these observables
as smooth fields in FLRW space-times, i.e. for η > 0 or η < 0 in our notation
(see, in particular [27–30] and references therein). Since they involve curva-
ture tensors, they can diverge as η → 0. The question we wish to address
is whether these fields can nonetheless be regarded as well-defined distribu-
tions on (M̊, gab).

1 (Recall that the classical solutions F (x) of (36) diverge
at η = 0 but are nonetheless well-defined as distributions.)

1 Tempered distributions η−m corresponding to the singular functions η−m are
defined using successive derivatives of (the locally integrable function) ln |η| (just
as the Dirac δ distribution and its derivatives are defined by derivatives of the step
function even though it is not differentiable as a function). Appendix A discusses
of these distributions and their properties.
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Let us begin with ⟨ϕ̂2(x)⟩ren. For definiteness, following [27, 28] let us
point-split along a space-translation Killing field. Then we have t = η − η′ =
0, whence

(44) ⟨ϕ̂(x) ϕ̂(x ′)⟩ =
ℏ

4π2a21ηη
′(r2 − t2)

≡ ℏ

4π2a21η
2 r2

which of course diverges as we bring the points together, i.e., as r → 0.
Using the fact that ϕ̂ is a massless scalar field and that the scalar curvature
of the FLRW background vanishes, the expression of the DeWitt-Schwinger
counter term [29] simplifies:

(45) GDS(x, x ′) =
ℏ

8π2σ
+

ℏ

96π2σ
Rabσ

aσb

where 2σ is the signed square of the geodesic distance between x and x ′ and
σa = ∇aσ(x, x ′). For our choice of x and x ′, we have
(46)

σ(x, x ′) =
1

2
a2(η) r2 + O(r4) whence GDS(x, x ′) =

ℏ

4π2a21η
2 r2

+ O(r2) .

Therefore,

(47) ⟨ϕ̂2(x)⟩ren = lim
x ′→x

[
⟨ϕ̂(x)ϕ̂(x ′)⟩ − GDS(x, x ′)

]
= 0

whence the answer to the question we set out to address is trivially in the
affirmative. We can also choose to point-split in the time-like direction. Then
the intermediate steps are a bit more complicated –in particular, the term
Rabσ

aσb has a non-zero contribution in the r → 0 limit– but the final result
is the same. Vanishing of ⟨ϕ̂2(x)⟩ren could be anticipated on dimensional
grounds, since the only curvature scalar S such that ℏS has physical di-
mensions of ⟨ϕ̂2(x)⟩ren is the Ricci scalar and it vanishes identically in the
radiation filled FLRW space-time. (Recall that ⟨ϕ̂2(x)⟩ren is a dimension 2
observable.) We will find that the situation is non-trivial in the more gen-
eral models with non-zero scalar curvature, but ⟨ϕ̂2(x)⟩ren continues to be a
well-defined distribution on full (M̊, gab).

Let us now consider ⟨T̂ab(x)⟩ren. It follows from the detailed calculations
in [29] that for the massless scalar field in the radiation filled FLRW universe,
we have

(48) ⟨T̂ab(x)⟩ren =
ℏ

2880π2
(3)Hab where (3)Hab = RcdRacbd
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Using the explicit form a(η) = a1η we find

⟨T̂ab(x)⟩ren =
ℏ

720π2a21η
6
∇aη∇bη +

ℏ

576π2a21η
6
g̊ab(49)

= T1(η)∇aη∇bη + T2(η) g̊ab

where the 1-form ∇aη and the Minkowski metric g̊ab are well-defined on all of
M̊ . (Note that we have the well-known trace anomaly.) Thus, even though
the equation □ϕ̂ = 0 is conformally covariant, and ⟨ϕ̂2(x)⟩ren vanishes in
the radiation filled FLRW space-time just as it does in Minkowski space-
time, the observable ⟨T̂ab(x)⟩ren senses the difference between the two space-
times. The action of ⟨T̂ab(x)⟩ren on a generic test field fab(x) = f1(x)ηaηb +
f2(x)̊gab with f1(x), f2(x) ∈ S will be given by

(50) ⟨T̂ab(x)⟩ren : fab →
∫

M̊
d4x (a41 η

4)(T1f1 + 4T2f2) .

Since T1 and T2 fall off as 1/η6, we are left with the action of the distribution
1/η2 on the test functions f1 and f2. As explained in Appendix A, 1/η2 is a
tempered distribution, which can be defined as the second derivative of the
locally integrable function ln |η| in the distributional sense. To summarize,
then, ⟨T̂ab(x)⟩ren is a well-defined distributions on the extended space-time
(M̊, gab).

Remark: Our main emphasis is on probing the big bang singularity with
quantum fields from a mathematical physics perspective. Nonetheless, it is
worth noting that the radiation filled FLRW space-time is also of physical
interest since this model is sometimes taken to represent the universe before
the onset of inflation (see, e.g., [31]).

4. Quantum fields in a time dependent external potential

As we saw in Section 3, certain technical simplifications arise in the radi-
ation filled FLRW space-times because a(η) = a1η implies that the scalar
curvature R vanishes. Therefore, we are naturally led to ask: Do the main
features survive in more general FLRW models? As is well-known, in any
FLRW model, the wave equation □ϕ = 0 can be simplified by setting θ(x) =
a(η)ϕ(x): Then θ(x) satisfies a wave equation in Minkowski space-time but
with a time dependent potential. Let us consider scale factors of the form
a(η) = aβ η

β with β > 0 so that we have a big bang/big crunch singularity
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at η = 0. Then the FLRW metric is a solution to Einstein’s equation with
equation of state p = wρ with w = (2−β)

3β and θ(x) satisfies

(51)
(
□̊ + V (β, η)

)
θ(x) = 0, where V (β, η) =

β(β − 1)

η2

whence the new basis functions e̊(β)(k, η) := a(η)e(k, η) satisfy

(52) e̊′′(β)(k, η) +
(
k2 − β(β − 1)

η2
)
e̊(β)(k, η) = 0.

Note that the potential vanishes if β = 1 –i.e. for the radiation filled universe
we investigated in Section 3– thereby simplifying the analysis considerably.
β = 0 corresponds to Minkowski space. For values of β other than these
two, the η-dependence of the potential is universal; it diverges as ∼ 1/η2 at
η = 0. Thus, we are naturally led to investigate the effect of this singularity
in V (β, η) on properties of the quantum field θ̂(x) in Minkowski space-time

(M̊, g̊ab). Now the volume element is just d4x; it does not go to zero at η = 0.
Is θ̂(x) nonetheless a well-defined operator-valued distribution on (M̊, g̊ab)?
In this section, we will investigate this issue for β = 2 and use these results
in the next section to probe the big bang singularity in a dust filled universe
using the quantum field ϕ̂(x). For general values of β, the mode functions
e̊(β) do not have a simple closed form, whence explicit calculations become
quite involved, obscuring the underlying structure. However, as we discuss
in Appendix B, the conceptual considerations in the more general case are
essentially the same.

This section is divided in two parts. In the first we introduce quantum
algebra A◦

generated by operators θ̂(F ) associated with suitably regular
solutions F to (51) and a natural Fock representation. In the second, we
discuss the OVD θ̂(x) and the 2-point bi-distribution ⟨θ̂(x) θ̂(x ′)⟩. This con-
struction encounters a mild infrared issue [32] and requires, as usual, an
appropriate regularization. However, this issue is unrelated to the singular-
ity in the potential at η = 0; it exists even if we restrict ourselves to the
manifold M defined by 0 < η <∞. Indeed, this issue arises also in de Sitter
space-time (which corresponds to β = −1), where there is no singularity at
all.

4.1. The quantum algebra A
◦

and its quasi-free representation

Our discussion is divided into three parts. In the first we introduce the
covariant phase space Γ̊ cov of suitably regular solutions F̊(x) to (51); in the
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second we show that it admits a natural complex structure J; and in the
third we use the resulting Kähler space to construct a Fock representation
of the quantum algebra A◦

generated by Θ̂(F ).

4.1.1. The covariant phase space Γ̊
cov

. Since we have restricted our-
selves to the β = 2 case in this section, for notational simplicity we will
denote the solutions e̊(β)(k, η) to (52) by e̊(k, η). Note that the equation sat-
isfied by e̊(k, η) is exactly the same as that satisfied by e̊(β)(k, η) for β = −1
for which, as we noted above, the scale factor is the same as that in de Sit-
ter space-time, a(η) = 1/(Hη) with H−1 = a−1. Therefore, the well-known
basis functions in de Sitter space

(53) e̊(k, η) =
e−ikη

√
2k

(
1 − i

kη

)

and their complex conjugates provide us with two linearly independent so-
lutions to (52) for each k. Each e̊(k, η) is singular as a function at η = 0.
However, it is a tempered distribution on the full real line, defined using the
Cauchy principal value of integrals (see Appendix A). Thus, e̊(k, η) is also a
tempered distribution which, furthermore satisfies (52) in the distributional
sense.2 Therefore, we can follow the procedure of Section 2.3 to construct
the covariant phase space ΓCov. It will consist of solutions F̊(x) to (51) of
the type

(54) F̊(x) =

∫
d3k

(2π)3

(
z(k⃗) e̊(k, η) + z⋆(−k⃗) e̊⋆(k, η)

)
eik⃗·x⃗

where z(k⃗) belong to the Schwartz space S̃ associated with the 3-dimensional
momentum space. Note that although the expression of e̊(k, η) contains a
term that diverges as 1/k3/2 at k = 0, the integral is infrared finite because
of the k2 factor in d3k. The expression also contains a term that diverges
as 1/η at η = 0. However, for reasons explained above, each F (x) is a well-
defined tempered distribution on Minkowski space (M̊, g̊ab) that satisfies the
field equation (51) in the distributional sense.

Next, let us evaluate the symplectic inner product between two elements
F̊1(x) and F̊2(x) in Γ̊ cov. Since the symplectic current is conserved, we can

2 More precisely, using properties (A.3) of the tempered distributions η−m it is

straightforward to show that e̊(k, η) satisfies
∫
∞

∞
dη e̊(k, η)(Of) = 0 for all f such

that Of is in S. Here, O = (d2/dη2 + k2 − (2/η2)) is the symmetry reduced ‘wave
operator’ (see (52)).
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evaluate the symplectic structure using any Cauchy surface, say η = η◦ ̸= 0.
Using the unit normal n̊a to the Cauchy surface, we have

(55) Ω̊ (F̊1, F̊2) =

∫

η=η◦

d3x
(
F̊1 n̊

a∇aF̊2 − F̊2 n̊
a∇aF̊1

)
.

Let us substitute the expression (54) of F̊1(x) and F̊2(x) in (55) and simplify.
Since e̊(k, η◦) has a term that goes as 1/k3/2 the integrand of the symplec-
tic structure has terms that go as 1/k3 that would be infrared divergent.
However, because of anti-symmetry between F̊1(x) and F̊2(x) these terms
cancel. More precisely, in the intermediate step, we will replace the inte-

gral
∫

d3k(...) by
∫̂

d3k(...) := limℓ→∞
∫∞
1/ℓ dk k2

∮
d2Ω

k⃗
(...), carry out the

cancellation in the truncated integral and then take the limit. We obtain:

Ω̊ (F̊1, F̊2) =
̂∫ d3k

2π3
[(
z1(k⃗)̊e(k, η◦) + z⋆1(−k⃗)̊e⋆(k, η◦)

)
(56)

×
(
z2(−k⃗)̊e′(k, η◦) + z⋆2(k⃗)̊e′ ⋆(k, η◦)

)
− 1 ↔ 2

]

=

∫
d3k

2π3
[
z1(k⃗)z⋆2(k⃗) − z2(k⃗)z̄⋆1(k⃗)

]

×
(
e̊(k, η◦)̊e

′ ⋆(k, η◦) − e̊⋆(k, η◦)̊e
′(k, η◦)

)

= i

∫
d3k

2π3
[
z1(k⃗)z⋆2(k⃗) − z2(k⃗)z⋆1(k⃗)

]

where, in the last step we have used the normalization condition

(57) e̊(k, η◦) e̊′ ⋆(k, η◦) − e̊⋆(k, η◦) e̊′(k, η◦) = i

satisfied by the functions e̊(k, η). Since z1(k⃗) and z2(k⃗) are in S̃, the final
integral in (56) is well-defined. Thus, as in Section 3.1, even though the so-
lutions F (x) are distributional, Γ̊ cov carries a well-defined symplectic struc-
ture. (Note, incidentally, that the infrared regularization that is necessary
in an intermediate step has nothing to do with the distributional character
of F (x) since the regularization is needed on the η = η◦ ̸= 0 surface in a
neighborhood of which F (x) is smooth.)

4.1.2. A natural complex structure J̊ on Γ̊
cov

. We will now show
that Γ̊ cov carries a natural complex structure J̊, thanks to the fact that the
potential V (η) decays sufficiently fast as η → ±∞ (and is symmetric under
η → −η).

We begin with two observations. First, given a time instant η◦, one can
set a natural isomorphism Iη◦

from the phase space Γ̊ cov of solutions F̊(x)
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to (51) and the phase space Γ̊cov of solutions F̊ (x) to the massless Klein-
Gordon equation in Minkowski space using initial data: Iη◦

F̊(x) = F̊ (x) if

and only if F̊(x⃗, η◦) = F̊ (x⃗, η◦) and F̊
′
(x⃗, η◦) = F̊ ′(x⃗, η◦), where as usual the

prime denotes derivative with respect to the Minkowskian η. Second, given
any space-like plane η = η◦, the standard Minkowskian complex structure
J̊ on Γ̊cov has the following action on initial data:

(58) J̊(F̊ (x⃗, η◦), F̊
′(x⃗, η◦)) = (−∆̊− 1

2 F̊ ′(x⃗, η◦), ∆̊
1

2 F̊ (x⃗, η◦)) ,

where ∆̊ is the 3-dimensional, flat Laplacian. Therefore, there is a natural a
1-parameter family of complex structures, Jη◦

= I−1
η◦

J̊ Iη◦
on Γ̊ cov. Setting

(59) Jη◦

F̊(x) =
˜̊
F(x) =

∫
d3k

(2π)3

(
z̃(k⃗) e̊(k, η) + z̃⋆(−k⃗) e̊⋆(k, η)

)
eik⃗·x⃗

one finds

z̃(k⃗) = i
[ |̊e′ ⋆(k, η◦)|2

k
+ k|̊e(k, η◦)|2

]
z(k⃗)(60)

+ i
[ (̊e′ ⋆(k, η◦))2

k
+ k(̊e(k, η◦))

2
]
z⋆(−k⃗)

Thus, while on the Minkowskian phase space Γ̊cov, the complex structure J̊
just multiplies z(k⃗) by i, on Γ̊ cov, the complex structure Jη◦

sends z(k⃗) to

an η◦-dependent complex-linear combination of z(k⃗) and z⋆(k⃗). Using the
explicit expression (53) of e̊(k), we obtain

(61) z̃(k⃗) = i
[
1 +

1

2k4η4◦

]
z(k⃗) + i

[e2ikη◦

k2η2◦

] [
1 +

i

kη◦
+

1

2k2η2◦

]
z⋆(−k⃗) .

Therefore, in the limit η◦ → ±∞ –in which the potential V (η) = −2/η2 goes
to zero– the complex structures Jη◦

admit a simple limit J̊ on Γ̊ cov:

(62) J̊ F̊(x) =

∫
d3k

(2π)3

(
i z(k⃗) e̊(k, η) − i z⋆(−k⃗) e̊⋆(k, η)

)
eik⃗·x⃗ .

This construction has three noteworthy features: (i) The limits η◦ → ±∞ of
Jη◦

are well defined; (ii) The two limits provide the same complex structure

on Γ̊ cov; and, (iii) This complex structure J̊ is compatible with the symplec-
tic structure on Γ̊ cov. Thus, Γ̊ cov admits a natural Kähler structure. The
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resulting Hermitian inner product on Γ̊ cov is given by

(63) ⟨F̊1, F̊2⟩ =
1

ℏ

∫
d3k

(2π)3
z⋆1(k⃗) z2(k⃗) ,

which is formally the same expression as in the radiation filled universe.
We could have just posited the complex structure J̊ of (62) and the inner
product (63) on Γ̊ cov as a natural generalization of the result in Section
3. The construction we used brings out the fact that J̊ arises naturally by
considering the η → ±∞ limits, in spite of the presence of a time dependent
potential. Although one could have heuristically anticipated the result from
the form of the basis functions e̊(k, η) =

(
e−ikη/

√
2k

)(
1 − i/kη

)
since the

second factor goes to 1 in the limit η → ±∞, one cannot draw a definitive
conclusion from this fact since the phase factor in the first factor also oscil-
lates uncontrollably in these limits.

Remark: Note that Eq. (60) is not tied to the choice β = 2 in (52); it holds
for any β. Also, the argument that led us to the final form of the complex
structure (62) depends only on the asymptotic forms of the basis functions
e̊(k, η). These facts will be used in Appendix B in our discussion of more
general FLRW space-times.

4.1.3. The Fock representation determined by J̊. Starting with the
phase space Γ̊ cov, as before we can introduce the algebra A◦

generated by
abstractly defined operators Θ̂(F ) that are linear in F̊ and satisfy the com-
mutation relations

(64) [Θ̂(F̊1), Θ̂(F̊2)] = iℏ Ω̊ (F̊1, F̊2) Î .

The complex structure J̊ then leads us to the Fock representation of A◦

as
before. The 1-particle Hilbert space H̊ is the Cauchy completion of Γ̊ cov

under the inner product (63). Thus, for F̊ ∈ H̊, the z(k⃗) have to be only
square integrable; they need not be smooth nor fall off faster than any poly-
nomial. The carrier space of the representation is the symmetric Fock space
F̊ generated by H̊ and the abstract operators Θ̂(F̊) are again represented as
linear combinations of concrete, annihilation and creation operators on F̊ :

(65) Θ̂(F̊) = ℏ
(
Â(F̊) + Â†(F̊)

)
.

However, as we will now see, a subtle infrared issue arises in defining the
operator-valued distribution θ̂(x) on F̊ , which was absent in our discussion
of the radiation filled Friedmann universe in Section 3.
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4.2. The operator-valued distribution θ̂(x)

This section is divided into two parts. In the first we will discuss the in-
frared issue and in the second we will investigate the 2-point bi-distribution
⟨θ̂(x) θ̂(x ′)⟩. The infrared issue arises already in the η > 0 or η < 0 parts
of Minkowski space (M̊, g̊ab), where the potential V (η) is regular. Once
it is handled, θ̂(x) is a well-defined operator-valued distribution on all of
(M̊, g̊ab); the fact that the potential is singular at η = 0 does not create any
new obstructions.

4.2.1. The infrared issue. Motivated by considerations of Section 2, let
us consider a putative operator-valued distribution

(66) θ̂(x) =

∫
d3k

(2π)3

(
Â(k⃗) e̊(k, η) + Â†(−k⃗) e̊⋆(k, η)

)
eik⃗·x⃗ .

The question we wish to address is whether operators θ̂(f) smeared with
test functions f are well-defined on the Fock space F of Section 4.1.3 for all
f ∈ S. Since annihilation and creation operators in F are associated only
with solutions that have finite norm in the 1-particle Hilbert space H the
question reduces to: Does the solution F̊ determined by every test function
f(x) ∈ S have finite norm in H? To address this question let us first recall
that the operators θ̂(f) and Θ̂(F̊) are related by:

(67) θ̂(f) = Ω
(
θ̂(x), F̊(x)

)
=: Θ̂(F̊)

To make the structure of the argument transparent, let us first consider
test functions of the type f(x) = g(η)h(x⃗) although it will be clear from the
discussion that this restriction does not play an essential role. Then,

θ̂(f) =

∫
d3k

(2π)3
[
Â(k⃗)

∫
d3xh(x⃗)eik⃗·x⃗

∫
dη g(η)̊e(k, η) + HC

]

=

∫
d3k

(2π)3
[
Â(k⃗)h̃(k⃗)

∫
dη g(η)

e−ikη

√
2k

(
1 − i

kη

)
+ HC

]
,(68)

where h̃(k⃗) is the Fourier transform of h(x⃗) and hence in the Schwartz space
S̃ associated with the momentum space. Let us consider the two terms under
the η-integral and set:

(69) g̃⋆(k) :=

∫ ∞

−∞
dη g(η) e−ikη and Ĩ⋆g (k) :=

∫ ∞

−∞
dη

1

η

(
g(η) e−ikη

)
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where g̃(k) is the Fourier transform of g(η) in the 1-dimensional Schwartz
space and Ĩg(k) is the result of the action of the 1-dimensional tempered
distribution 1/η on a test function g(η) eikη. (For a discussion of tempered
distributions corresponding to η−m for any integer m, see Appendix A.)
Then the expression of θ̂(f) takes the form:

(70) θ̂(f) =

∫
d3k

(2π)3

[
h̃(k⃗)

( g̃⋆(k)√
2k

− i√
k3
Ĩ⋆g (k)

)
Â(k⃗) + HC

]

On the other hand, we also have:

(71) Θ̂(F̊) =

∫
d3k

(2π)3

[(
iz⋆(k⃗)

)
Â(k⃗) + HC

]
.

Therefore, the putative solution F̊(x) determined by the test function f(x)
is characterized by

(72) z(k⃗) = ih̃⋆(k⃗)
( g̃(k)√

2k
+

i√
k3
Ĩg(k)

)
.

Recall from (63) that F̊(x) belongs to the 1-particle Hilbert space H if and
only if z(k⃗) is square integrable. Let us first check the ultraviolet behavior.
Since h̃⋆(k⃗)g̃(k) falls off faster than any polynomial, the first term is clearly
tame in the ultraviolet. Next, note that the definition of Ĩ⋆g implies that it is
the anti-derivative with respect to k of the function −i g̃⋆(k) in the Schwartz
space. (The notion of anti-derivative of distributions is recalled in Appendix
A). Therefore we have

(73) Ĩ⋆g (k) = −i
∫ k

0
dk′ g̃⋆(k′) + Cg

where the constant Cg is determined by the action of the distribution 1/η.
Therefore Ĩg(k) is a smooth and bounded function of k, whence the sec-

ond term is also ultraviolet tame. However, because of the 1/
√
k3 term in

front of Ĩ⋆g (k) in (72), there is a potential infrared problem with the square-

integrability of z(k⃗). Now, if Cg were to vanish, since Ĩ⋆g (k) is smooth, it

would vanish (at least) as ∼ k at k = 0 and then z(k⃗) would be square-
integrable. Thus, θ̂(f) is well-defined for Cg = 0. Translating in terms of the

original test function f(x), we have: the operator θ̂(f) is well-defined (i.e.
without an infrared divergence) if and only if the spatial Fourier transform
f̃(k⃗, η) of f(x) satisfies:

∫
dη (1/η)f̃ (⃗0, η) = 0. This is a single (linear) con-

dition on test functions. Let us denote by S1 the subspace of S spanned
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by the f(x) satisfying this condition. S1 is of co-dimension 1 in S and the
action of θ̂(f) is well defined on the Fock space F̊ for every f ∈ S1. In the
language of distribution theory, we need to provide a single input to extend
this action of ϕ̂(x) to full S: specify (or, regulate) the z(k⃗) defined by any

one test functions f(x) that fails to lie in S1 (see Appendix A). In practice,
this is done by introducing an infrared cut-off 1/ℓ; but the cut-off can be
removed simply by taking the limit ℓ→ ∞ for all f(x) ∈ S1.

To summarize, as we saw in Section 4.1, we have a Fock representation
of the algebra A◦

generated by operators Θ̂(F̊). The smeared field operators
θ̂(f) have a well-defined action on this representation if f ∈ S1, a (infinite
dimensional) subspace of S with co-dimension 1. To extend this action for
all f ∈ S, we only need to provide an additional input which however, is
captured in a single parameter because the co-dimension of S1 in S is 1.
Note that this additional input is required because of a (well-controlled)
infrared divergence that arises already for η > 0 –the issue is unrelated to
issues stemming from the blow-up of the potential V (η) at η = 0.

4.2.2. The 2-point bi-distribution. Let us now consider the putative
bi-distribution ⟨θ̂(x) θ̂(x ′)⟩ constructed from (66):

(74) ⟨θ̂(x) θ̂(x ′)⟩ = ℏ

∫
d3k

(2π)3
1

2k
e−ik(η−η′)+ ik⃗·(x⃗−x⃗ ′)

(
1 − i

kη

)(
1 +

i

kη ′
)

By performing the angular integral, we obtain

⟨θ̂(x) θ̂(x ′)⟩ =
ℏ

4π2r

∫ ∞

0
dk e−ikt sin kr

(
1 +

it

kηη ′ +
1

k2ηη ′
)

=
ℏ

4π2r

(
I +

it

ηη ′ II +
1

ηη ′ III
)

(75)

where, as before, t = η − η ′ and r = |x⃗− x⃗ ′|. The integrals I, II and III
are ill-defined in the ultraviolet and one has to regulate them by the iϵ
prescription t→ t− iϵ. (As we saw in Section 3.2 this is already needed for
the field ϕ̂◦ in Minkowski space without any potential.) Then, we obtain
three distributions. First, as in (40), we have:

(76) I =
r

r2 − (t− iϵ)2
≡

( 1

r − (t− iϵ)
+

1

r + (t− iϵ)

)
.

Second, −iI is the derivative of II with respect to t whence, to obtain II we
have to calculate the anti-derivative of the distribution I (see Appendix A).
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Integrating −i I with respect to t (using the last expression of I) we obtain:

(77) II =
i

2
ln

|r − (t− iϵ)|
|r + (t− iϵ)| ≡ i

2

[
ln

|r − (t− iϵ)|
ℓ

− ln
|r + (t− iϵ)|

ℓ

]

where in the last step we have introduced ℓ for dimensional reasons; the
right side is independent of the choice of ℓ. Note that the integral∫

dk e−ikt (sin kr/k) defining II is infrared finite because of the sin kr term in
the numerator (and all integrals are ultraviolet finite because of the iϵ term).
The infrared issue we encountered in Section 4.2.1 arises in the evaluation of
the third term because now the integrand contains sin kr/k2 [32]. However,
since −iII is the derivative of III we can evaluate III by integrating the last
expression of −iII with respect to t. In this procedure ℓ now serves as the
infrared regulator. Adding the three terms, one obtains the bi-distribution:

(78) ⟨θ̂(x) θ̂(x ′)⟩ =
ℏ

4π2

[ 1

r2 − (t− iϵ)2
− 1

2ηη ′ ln
r2 − (t− iϵ)2

ℓ2
+

1 − γ

ηη ′

]

where, we have followed the conventions in the literature to fix the integra-
tion constants at each of the two steps (whence the presence of the Euler-
Mascheroni constant γ in the last term; it can be absorbed in 1/ℓ2). As
before, the iϵ prescription means that we have to first carry out the integral
against test functions and then take the limit as ϵ→ 0. Because of the pres-
ence of 1/ηη ′ terms (as well as the very first term which is present already
in Minkowski space without a potential!), the right side is singular as a func-
tion of x and x ′. However, ⟨θ̂(x) θ̂(x ′)⟩ is well-defined as a bi-distribution
(since that 1/η is a tempered distribution on the full η-real line).

Remark: If we specialize to t = 0 –i.e., let x and x ′ lie on a η = η◦ ̸= 0
surface– one can use the well-known fact that in 3-dimensions the Fourier
transform of 1/k is 1/(2π2 r2) in the distributional sense to carry out the
calculation using the 3-dimensional integral in (74) directly, without having
to perform the angular integral that led us to (75). This short calculation
provides an independent check on (78), albeit for a special case.

5. The dust filled universe

In this section we return to quantum fields in FLRW space-times. In the
radiation filled universe considered in Section 3, one might be tempted to
say that the tameness of quantum fields ϕ̂(f) and Φ̂(F ) simply trickles down
from the regularity of ϕ̂◦(x) in Minkowski space-time because of the con-
formal covariance of □ϕ̂(x) = 0 in this FLRW space-time (although, as
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we pointed out, it is not a priori obvious that ϕ̂(x) = a−1(η )ϕ̂◦(x) should
be tame in spite of the fact that a(η) vanishes at the big bang). Therefore,
it is useful to investigate whether this tameness continues to hold in more
general FLRW space-times. In the dust filled universe –where a(η) = a2η

2–
the scalar curvature does not vanish, whence one cannot use the confor-
mal covariance argument to relate ϕ̂ to the Klein Gordon field ϕ̂◦ satisfying
□̊ϕ̂◦ = 0 in Minkowski space. Do the quantum fields ϕ̂(f) and Φ̂(F ) still
continue to be tame across the big bang (and big crunch) singularity? We
will now show that the answer is in the affirmative. We will find that the
tameness is in fact somewhat enhanced for the renormalized products of
operators.

This section is divided into three parts. In the first we investigate the
field operators; in the second, the bi-distribution ⟨ϕ̂(x) ϕ̂(x ′)⟩; and in the
third, the renormalized products ⟨ϕ̂2(x)⟩ren and ⟨T̂ab(x)⟩ren.

5.1. Field operators

Although solutions F (x) to the wave equation in the dust filled FLRW
space-time are not simply related to the solutions F̊ (x) of the wave equa-
tion in Minkowski space-time, as we pointed out in the beginning of Sec-
tion 4, they are simply related to the solutions F̊(x) to the wave equation
(51) in Minkowski space-time, now in presence of a time dependent poten-
tial V (η) = −2/η2: F (x) := F̊(x)/a(η) satisfies □F = 0 (in a distributional
sense) if and only if F̊(x) satisfies (□− V (η)) F̊(x) = 0 (in a distributional
sense). Therefore, it is easy to analyze properties of Φ̂(F ) and ϕ̂(f) using
results on Θ̂(F̊) and θ̂(f) from Section 4. The arguments are completely par-
allel to those we used in Section 3 to draw conclusions about Φ̂(F ) and ϕ̂(f)
from properties of Φ̂(F̊ ) and ϕ̂◦(f) in Minkowski space-time. Therefore, our
discussion will be rather brief.

In view of our discussion in Section 4.1.2, is natural to use e(k, η) :=
e̊(k, η)/a(η) as the (‘positive-frequency’) basis functions. Then covariant
phase space ΓCov will consist of solutions F (x) to the wave equation in
the FLRW space-time of the form

(79) F (x) =

∫
d3k

(2π)3

(
z(k⃗) e(k, η) + z⋆(−k⃗) e⋆(k, η)

)
eik⃗·x⃗

where, as before, z(k⃗) belong to the Schwartz space S̃ associated with the
3-dimensional momentum space. It is easy to verify that the symplectic
structure is again given by (56) and the Hermitian inner product by (63)
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(with the obvious replacement of F̊1 and F̊2 by F1 and F2). Thus, F (x) →
F̊(x) = a(η)F (x) is a natural isomorphism from the phase space ΓCov to
the phase space Γ̊ cov of Section 4. In particular, the symplectic structure
Ω is the pull-back of the symplectic structure Ω̊: Ω(F1, F2) = Ω̊ (F̊1, F̊2).
Therefore, the Fock space F̊ of Section 4 carries a natural representation of
the algebra A generated by the field operators Φ̂(F ):

(80) Φ̂(F ) = Θ̂(F̊) so that [Φ̂(F1), Φ̂(F2)] = iℏΩ(F1, F2) Î

as in Section 3.1. Finally, the operator-valued distribution ϕ̂(x) is repre-
sented on F̊ as

(81) ϕ̂(x) =
1

a(η)
θ̂(x) =

∫
d3k

(2π)3

(
Â(k⃗) e(k, η) + Â†(−k⃗) e⋆(k, η)

)
eik⃗·x⃗

again as in section 3.1. However, now the infrared subtlety we found in
Section 4 trickles down to ϕ̂(x) as follows. We have

(82)

∫

M̊
d4V ϕ̂(x)f(x) =

∫

M̊
d4x θ̂(x) (a3(η)f(x)) ≡

∫

M̊
d4x θ̂(x)f◦(x) ,

and f◦(x) = a3(η)f(x) is guaranteed to be in S if f(x) is. Now, if f◦(x) ∈ S1

–i.e., if
∫

dη (1/η) f̃◦(⃗0, η) = 0, where f̃◦(k⃗, η) is the Fourier transform in x⃗

of f(x⃗, η)– the operator ϕ̂(f) is well-defined on F̊ as is. However, if it is
not, we need an infrared regulator ℓ. The key point is that the presence
of the big bang (or big crunch) singularity does not cause any additional
complication because the volume element (more than) compensates the 1/η
factor in e(k, η).

5.2. The bi-distribution ⟨φ̂(x) φ̂(x ′)⟩

With the infrared regulator in place ϕ̂(x) is a well-defined OVD on F̊. It
then trivially follows that

⟨ϕ̂(x) ϕ̂(x ′)⟩ =
1

a(η)a(η ′)
⟨θ̂(x) θ̂(x ′)⟩(83)

=
ℏ

4π2
1

a22 η
2η′ 2

[ 1

r2 − (t− iϵ)2

− 1

2ηη ′ ln
r2 − (t− iϵ)2

ℓ2
+

1 − γ

ηη ′

]
.
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is a bi-distribution on (M̊, gab). As in Section 3, it is well-defined in spite of
the presence of inverse powers of η and η′ because of the factor a4(η) = a42 η

8

in the volume element of gab relative to that of g̊ab.
As discussed in Section 3, for points x and x ′ that are space-like or

time-like separated, the bi-distribution is often used as a measure of cor-
relations between fields evaluated at two points. Therefore, it is of interest
to investigate the asymmetry between these correlations between space-like
and time-like separations in the vicinity of the big-bang singularity. The dif-
ference between the radiation filled and dust filled universe lies in the last
two terms in the square bracket (and of course the fact that a(η) now goes as
η2 rather than as η). We will find that these extra terms make a qualitative
difference near the singularity.

We will again use the simplest ansatz that is well-tailored to probe the
asymmetry. We will take the time-like separated points to be (x⃗◦, η◦) and
(x⃗◦, η ′) such that η′ > η◦ > 0 and the geodesic joining them –the straight
line in the (x◦, η) chart– has proper length D. Thus (a2/3)(η′3 − η3◦) = D.
We will take the space-like separated points to lie on a η = η◦ surface such
that the straight line connecting them –the geodesic within this surface–
has length D. Thus we will consider points (x⃗, η◦) and (x⃗ ′, η◦) such that
(a2η

2
◦) |x⃗− x⃗ ′| ≡ (a2η

2
◦) r = D. The question is: How are the correlations

associated with these two pairs of points related? For space-like separated
points we have:

(84) ⟨ϕ̂(x⃗, η◦) ϕ̂(x⃗ ′, η◦)⟩ =
ℏ

4π2

[ 1

D2
+

1

a22η
6◦

(
1 − γ − ln

D

a2η2◦ℓ

) ]
.

Note incidentally that, even away from the singularity, as D → ∞ for a fixed
η◦, the correlations do not decay as the distance D between the points goes
to ∞; in fact they diverge logarithmically due to the infrared behavior we
found in Section 4.1.1. (Even if one were to adjust the infrared cut-off ℓ so
that the logarithmic term is made to vanish for a given η◦, the correlations
would approach a non-zero constant at η = η◦.) For time-like separations,
we have

⟨ϕ̂(x⃗◦, η◦) ϕ̂(x⃗◦, η
′)⟩(85)

= − ℏ

4π2
1

a22 η
2◦η′ 2

[ 1

(η◦ − η ′)2
− 1

η◦η ′
(
1 − γ − ln

(η ′ − η◦)
ℓ

) ]

with η ′ = (3Da2
+ η3◦)

1

3 . Let us now take the ratio of the two correlation
functions and examine its behavior as we approach the singularity by sending
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η◦ to zero. We obtain:

lim
η◦→0+

⟨ϕ̂(x⃗, η◦) ϕ̂(x⃗ ′, η◦)⟩
⟨ϕ̂(x⃗◦, η◦) ϕ̂(x⃗◦η ′)⟩

(86)

= − lim
η◦→0+

3D

a2η3◦
ln
a2 η

2
o ℓ

D

[
1 − γ +

1

3
ln
a2ℓ

3

2D

]−1
= ∞ .

Thus, for the dust filled FLRW universe, the correlations between fields at
spatially separated points grow faster than those between time-like sepa-
rated points as one approaches the singularity, in striking contrast with the
radiation filled FLRW model.

What is the origin of this qualitative difference? It is clear from the cal-
culation above that the difference can be traced directly to the last two terms
in (83)– which are absent in the radiation filled universe due to conformal
covariance. Since conformal covariance is a peculiarity of the radiation domi-
nated universe, extra terms are present in generic FLRW universe. Therefore,
the qualitative behavior we found in this section is generic for FLRW models
under consideration. Since higher correlations between fields at points x and
x ′ heuristically corresponds to a lower gradient between x and x ′, for test
quantum fields in a generic FLRW universe ‘time-derivatives dominate over
space-derivatives near the space-like singularity’. In this sense, the generic
behavior is along the lines of the classical BKL behavior in the vicinity of
space-like singularities, although as emphasized in Section 3 there are also
deep conceptual differences between the two. Conceptually, our quantum
results are more closely related to the scaling of the ‘mutual information’ in
Gaussian states of test quantum fields that Bianchi and Satz found in the
approach to the big bang singularity [33].

5.3. Products of field operators

Finally, let us consider the distributions that result from the renormalized
expectation values of products of field operators. These distributions have
been discussed extensively in the older literature and the underlying proce-
dure was summarized in Section 3.2.2. Therefore we will only provide the
main results, focusing on the effect of the big bang and big crunch singularity
at η = 0.

Recall that to calculate ⟨ϕ̂2(x)⟩ren one uses the point-splitting proce-
dure that requires the 2-point bi-distribution ⟨ϕ̂(x) ϕ̂(x ′)⟩ and the DeWitt-
Schwinger counter-term. As in Section 3.2.2 let us follow the procedure of
[27, 28] and split points along a translational Killing field tangential to
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the η = const slices. Then we can use (84) for the required point-split bi-
distribution. The DeWitt-Schwinger counter-term is now given by

GDS(x, x ′) =
ℏ

8π2σ
− ℏ

48π2
(γ +

1

2
ln
µ2σ

2
) +

ℏ

96π2σ
Rabσ

aσb(87)

=
ℏ

4π2

[ 1

D2
+

1

a22η
6

(1

6
− γ − ln

µD

2

)
+ O(r)

]

where as before 2σ is the signed square of the geodesic distance between
x and x ′, σa = ∇aσ(x, x ′), r = |x⃗− x⃗ ′|, and µ is the DeWitt-Schwinger
ultraviolet cut-off. Therefore, ⟨ϕ̂2(x)⟩ren is given by

⟨ϕ̂2(x)⟩ren = lim
x→x ′

[
⟨ϕ̂(x)ϕ̂(x ′)⟩ − GDS(x, x ′)

]
(88)

=
ℏR

288π2

(
5 − 2 ln

2R

3a2ℓ3µ3

)
.

Regarded as a function, ⟨ϕ̂2(x)⟩ren diverges at the singularity η = 0 because
the scalar curvature is given by R = 12/(a22 η

6). However, it is a well-defined
tempered distribution on (M̊, gab) because the volume element of gab is given
by d4V = a42 η

8 d4x: Given a test field f(x), we have

(89) ⟨ϕ̂2(x)⟩ren : f(x) → ℏa22
24π2

∫

M̊
d4x η2

(
5 − 2 ln 8 + 6 ln a2ℓµ η

2
)
f(x) .

Thus, the action of ⟨ϕ̂2(x)⟩ren on a test function f(x) is the same as that of
a C1 function of η on that f(x).

Next, let us consider ⟨T̂ab(x)⟩ren. The renormalized stress energy tensor
for a massless Klein-Gordon field in a FLRW space-time with scale factor
a(η) = aβ η

β was calculated by Bunch and Davies3 in [34]:

3Note however that they use a metric with signature (+,−,−,−) and their con-
vention for the Riemann tensor is 2∇[a∇b]Kc = −2Rabc

dKd. Therefore, their deriva-
tive operator and scalar curvature is the same as ours while their metric, Riemann
and Ricci tensors and □ carry a negative sign relative to ours. The expression (90)
contains constants that are expressed as digamma functions of β that determines
our FLRW model. There are poles in the digamma functions for certain values of
the argument but the three terms in the first square bracket can be regularized by
introducing an infrared cut-off. See, e.g., [35].
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⟨T̂ab(x)⟩ren =
ℏ

69120π2
[
− 168∇a∇bR+ 288□Rgab(90)

− 24RacR
c
b + 12RcdRcd gab + 64RRab

]

− ℏ

1152π2
[

(21/20) +
1

β(β − 1)

]
R2 gab

− ℏ

1152π2
[

ln
(
|R|/µ2

)
+ ψ(1 + β) + ψ(2 − β)

]
(1)Hab

where ψ is the digamma function of its argument (and thus η independent)
and Hab is given by:

(91) (1)Hab = 2∇a∇bR − 2□Rgab − 2
(
RRab − (R2/4) gab

)
.

Because of the FLRW symmetries, the right side of ⟨T̂ab(x)⟩ren has only two
independent components whence we can again write it as

(92) ⟨T̂ab(x)⟩ren = T1(η)∇aη∇bη + T2(η) g̊ab

following Section 3.2.2. Since ∇aη and g̊ab are smooth, whether ⟨T̂ab(x)⟩ren is
a tempered distribution depends on the coefficients T1(η) and T2(η). Given
a test field fab(x) = f1(x)ηaηb + f2(x)̊gab, with f1(x) and f2(x) in S, we
have:

(93) ⟨T̂ab(x)⟩ren : fab →
∫

M̊
d4V̊ (a42 η

8) (T1f1 + 4T2f2) .

For a dust-filled universe, curvature tensor is such that each term in the first
two lines of (90) diverges (at most) as 1/η8 at η = 0. The most divergent
piece in (1)Hab also goes as 1/η8 while the scalar curvature R goes as 1/η6.
Therefore, the most divergent term in T1 and T2 goes as (1/η8) ln |η|. Be-
cause of the η8 term coming from the volume element, then, the right side
of (93) is given by the distributional action of a locally integrable function,
(ln |η|+ functions that are regular at η = 0), on test functions f1(x) and
f2(x). Therefore we conclude that ⟨T̂ab(x)⟩ren is well-defined as a tempered
distribution. Interestingly, whereas ⟨T̂ab(x)⟩ren for the radiation-filled uni-
verse features distributions that go as 1/η2, for the dust filled universe (and
for β > 2) ⟨T̂ab(x)⟩ren is a tamer distribution.
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6. Discussion

Within classical theories of gravity, space-like singularities are generally con-
sidered as absolute barriers that mark the beginning or end of space-time. In
particular, geodesics followed by test particles meet their end, and the tidal
forces between them grow unboundedly as they approach curvature singular-
ities. One can also use test classical fields to probe the space-time geometry
in the vicinity of space-like singularities. Again, these probes strongly sense
the presence of the singularity and diverge there (unless the space-time is
conformally flat and equations of motion satisfied by these fields are con-
formally invariant). Would quantum probes also sense this singularity? or,
would the quintessential quantum fuzziness somehow soften its potency, al-
lowing them to be regular across the singularity? These questions has been
raised in the literature by several authors over the past three decades. In
this paper we investigated the issue in considerable detail for the big bang
and big crunch singularities of FLRW cosmologies. There are some key dif-
ferences between our analysis and previous studies of effects of space-time
singularities on quantum probes. For example, in contrast to the analysis
of, e.g., [1, 2], the singularity results from dynamical evolution, is space-like,
and physically more interesting. Also, our probes are quantum fields rather
than quantum particles. Similarly, in contrast to the investigation of the
Schwarzschild singularity using quantum fields as probes of [3], we pay due
attention to mathematical issues that arise due to the presence of an infinite
number of degrees of freedom of quantum fields, without taking recourse to,
e.g., formal integrations on infinite dimensional spaces.

We found that, although classical fields ϕ(x) and the mode functions
e(k, η) that are commonly used in the analysis of the quantum fields ϕ̂(x)
do diverge at the big-bang, the quantum field ϕ̂(x) is well behaved across

the big bang and the big crunch as an operator valued tempered distribution.

They also satisfy (the expected commutation relations and) the field equa-
tion □ ϕ̂(x) = 0 in the distributional sense on the extended space-time.4

Note that even in Minkowski space-time (M̊, g̊ab), ϕ̂
◦(x) is not an opera-

tor but an operator valued tempered distribution. It has to be integrated
against a test function f(x) in the Schwartz space S to obtain an operator

4As we pointed out in sections 3 - 5, the classical solutions ϕ(x) and mode func-
tions e(k, η) are also well defined distributions. We could have worked with rescaled
fields ϕ(x) :=

√
gϕ(x) ≡ a4(η)ϕ(x). The rescaled field would have been well-defined

everywhere on the extended manifold M̊ . But it would carry a density of weight 1
making the discussion of the phase space ΓCov, and of the Kähler structure thereon,
rather awkward.
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ϕ̂◦(f) =
∫
M̊ d4x ϕ̂◦(x)f(x). Similarly, the expectation value ⟨ϕ̂◦(x)ϕ̂◦(x ′)⟩

◦

is a tempered bi-distribution. We showed in detail that in the radiation and
dust-filled FLRW universes (M̊, gab), operators ϕ̂(f) =

∫
M̊ d4V ϕ̂◦(x)f(x) are

well-behaved even when the test fields f(x) ∈ S have support that includes
the singularity. In essence, this is because, although the mode functions
e(k, η) do diverge at the big-bang η = 0, their divergence is (more than) com-
pensated by the fact that the volume element d4V = a4(η)d4x on (M̊, gab)
goes to zero at η = 0 sufficiently fast. Similarly, the classical solutions F (x)
–that define elements of the 1-particle Hilbert space H– diverge at η = 0,
if regarded as functions. However, they correspond to well-defined elements
of H since their norm with respect to Hermitian inner product on H is
finite, again because the volume element shrinks at the big bang. This is
analogous to the fact that, while the quantum mechanical wave function
ψ(x⃗) := (1/r)e−α r (with α > 0) diverges at the origin, it is an admissible
quantum state because its norm in L2(R3) is finite.

In the dust-filled universe (and more generally for a(η) = aβ η
β , with

β ≥ 2), there is a well-known infrared issue [32] that occurs away from the
singularity; it is mild in the sense that the action of ϕ̂(x) is already well
defined on an infinite dimensional subspace S1 of S with co-dimension 1
and we need an infrared cutoff only to extend this action to all of S. Once
this issue is handled away from the singularity, the presence of the singularity
does not introduce any further complication (because the potential problems
due to the presence of singularity refer to the ultraviolet behavior of the field
rather than infrared).

Similarly, we found that the 2-point bi-distribution ⟨ϕ̂(x) ϕ̂(x ′)⟩ is well-
behaved in spite of the singularity. When the points x and x ′ are space-like
or time-like separated, the bi-distribution provides correlation functions. We
found that, as one approaches the singularity, there is an interesting asymme-
try between the correlation functions associated with space-like and time-like
separated points, similar to the asymmetry one finds between spatial and
temporal derivatives of geometric fields in the BKL behavior. However, con-
ceptually, the two features are quite different. Our calculations refer to the
behavior of test quantum fields on a given FLRW space-time while the BKL
behavior refers to the Einstein dynamics of the gravitational field itself.

We also investigated the renormalized expectation values ⟨ϕ̂2(x)⟩ren and
⟨T̂ab(x)⟩ren of products of OVDs in these space-times. We found that they
continue to be well defined tempered distribution across the big bang and
big crunch. In the radiation-filled FLRW universe the scalar curvature van-
ishes, whence solutions ϕ̂(x) to □ ϕ̂(x) = 0 on (M̊, gab) are related to the
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solutions ϕ̂◦(x) of □̊ ϕ̂◦(x) = 0 in Minkowski space-time (M̊, g̊ab) simply by
ϕ̂(x) = ϕ̂◦(x)/a(η). One may therefore be tempted to think that the tame-
ness of observables associated with ϕ̂(x) in this space-time is not too sur-
prising. Indeed, this point served as a key motivation for us to investigate
the quantum field ϕ̂(x) in the dust filled universe where ϕ̂(x) is not related
to ϕ̂◦(x) in Minkowski space in any simple way. Not only are ϕ̂(x) and
⟨ϕ̂2(x)⟩ren also tame in the dust-filled universe but, surprisingly, ⟨T̂ab(x)⟩ren
is in fact better behaved than in the radiation-filled universe: As a distribu-
tion, it features only locally integrable functions on M̊ rather than ‘genuine’
distributions such as η−2.

We restricted the detailed analysis to the radiation and dust filled uni-
verses because in these cases the mode functions have a simple closed form,
making the analysis technically simpler and allowing us to obtain explicit
expressions of ϕ̂(x), ⟨ϕ̂(x) ϕ̂(x ′)⟩, ⟨ϕ̂2(x)⟩ren and ⟨T̂ab(x)⟩ren. These in turn
enabled us to focus on the conceptual issues that are central to the main
question. However, as we briefly discuss in Appendix B, the tameness of the
space-like singularity extends to scalar fields on more general space-times,
as well as to higher spin fields.

In this analysis, to ask whether observables are well-behaved across
the singularity, we needed to extend physical space-time (M, gab) –with
η > 0 and a singularity at η = 0– to the extended space-time (M̊, gab), with
η ∈ (−∞,∞). Conformal flatness of FLRW space-times provides a natural
extension M̊ of M . What would happen in non-conformally flat space-times
such as, for example, the Bianchi models or the Schwarzschild space-time? It
turns out that there is a generalization of the standard Hamiltonian formu-
lation of general relativity based on fields with only ‘internal SO(3) indices’
[36, 37], that is well-suited to provide the required extension. When the 3-
metric is invertible, this formulation is equivalent to the standard Arnowitt,
Deser, Misner (ADM) framework. However, even if the covariant 3-metric
becomes degenerate (causing its curvature to diverge) the equations satisfied
by the fields with only ‘internal indices’ do not break down. Thus, the new
framework provides a generalization of Einstein’s equations in the ADM form
that permits one to extend space-times across certain space-like singularities.
In the FLRW space-times, this extension coincides with the ‘obvious’ one.
However, it also enables one to extend certain non conformally-flat space-
times such as Kasner and Kantowski-Sachs universes [38–40]. Therefore one
can ask if test quantum fields remain well behaved on these extensions.

The Kantowski-Sachs space-time is especially interesting because it is
isometric to the Schwarzschild-interior (i.e., the portion of the Schwarzschild
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space-time inside the horizon). We have investigated this case. All 4 Killing
fields are now space-like and tangential to the homogeneous 3-manifolds
r = const (with r playing the role of time). One can introduce a basis of
solutions to □ϕ = 0 of the form eℓ(k, r) e

ikt Yℓ,m(θ, ϕ), where k ∈ R and
eℓ(k, r) are now the mode functions (analogs of e(k, η) in FLRW space-
times). For each choice of k and ℓ, eℓ(k, r) is subject to a second order
linear differential equation in r. We are able to write down an analytical
expression of the two independent solutions as an infinite convergent series.
One of the solutions is regular across the singularity while the other diverges,
but only logarithmically in r. Since the volume element vanishes as r2 at
r = 0, the basis functions are well-defined tempered distributions as in the
FLRW case. This enabled us to introduce a covariant phase space ΓCov with
a well-defined symplectic structure, just as in the FLRW space-times, and we
constructed the corresponding operator algebra, generated by Φ̂(F ) where
F (x) ∈ ΓCov. We could just choose a complex structure J on ΓCov and con-
struct the corresponding Fock representation on which Φ̂(F ) are represented,
as usual, by sums of creation and annihilation operators. In this sense, the
situation would be the same as in FLRW space-times; the Schwarzschild
singularity also appears to be rather tame when probed with quantum fields
Φ̂(F ). It should be possible to write down an operator-valued distribution
ϕ̂(x) so that the smeared ϕ̂(f) are also well-defined operators on the Fock
space. Detailed considerations may again show that we have to restrict the
test functions f to a subspace of the Schwartz space S of finite co-dimension
and then extend the action to full S with additional, well-motivated inputs.
The key open issue is the following: so far we do not have a principle or a
procedure (analogous to that of Section 4.1.2) to select a preferred complex
structure. Physically, one would like to introduce that complex structure
which corresponds to the Unruh vacuum. However, singling out this com-
plex structure is rather subtle because the Schwarzschild horizon is not a
part of the Kantowski-Sachs space-time. Once a physically well-motivated
complex structure is found, one would be able to analyze in detail the behav-
ior of the corresponding ⟨ϕ̂(x) ϕ̂(x ′)⟩, ⟨ϕ̂2(x)⟩ren and ⟨T̂ab(x)⟩ren across the
singularity. For more general black hole singularities, one would have to con-
sider evolution across singular Cauchy horizons, which are null rather than
space-like. However, there are already discussions of the required space-time
extensions in the literature (see, e.g., [41, 42]) and it would be very interest-
ing to investigate the evolution of quantum fields in these extensions, across
the Cauchy horizon.

To summarize then, the answer to the question we set out to investigate
is the following: the most interesting space-like singularities appear to be



✐

✐

“1-Ashtekar” — 2022/7/1 — 16:01 — page 1690 — #40
✐

✐

✐

✐

✐

✐

1690 A. Ashtekar, T. De Lorenzo, and M. Schneider

much tamer when probed with quantum fields than they are when probed
using classical particles or fields. Tidal forces between test particles and
observables constructed from classical fields do diverge at the singularity.
But these are not the appropriate tools near singularities. It is generally
believed that quantum fields would be physically more appropriate.

However, we would also like to emphasize that this analysis has been
carried out in a hybrid framework where the geometry is treated classically
and probes quantum mechanically. A full, self-consistent theory has to treat
both quantum mechanically, and allow them to interact in a consistent man-
ner. This is the burden of a satisfactory theory of quantum gravity. Results
such as ours can serve as guidelines in that they help sharpen the questions
of where the current incompleteness lies. It is not that we need quantum
gravity because the quantum theory of fields in curved space-times drasti-
cally fails at the physically most interesting singularities. Rather, this theory
is physically inappropriate in the deep Planck regime because it takes into
account only the quantum nature of matter and not of geometry. Therefore,
it is of great physical interest to know what in fact happens to quantum
geometry in generic situations in which the classical metric becomes singu-
lar in general relativity. Is quantum geometry nonetheless well-defined in a
distributional sense? There are hints from several different approaches that
quantum geometry is supported on 2 rather than 4 space-time dimensions
at the micro-level [43]. In particular, loop quantum gravity and spin foams
provide a detailed realization of such a quantum Riemannian geometry at
the Planck scale (see, e.g., [44, 45]). Our results may help bridge the gap
between these distributional quantum geometries and quantum field theory
in curved space-times.
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Appendix A. Distributions, the Cauchy principal value, and

anti-derivatives

For convenience of the reader, in this Appendix we will recall some standard
results on tempered distributions from [7–10] which cannot be easily found
in the physics literature.
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The Schwarz space on Rn consists of all C∞ functions f such that xkDmf
is bounded on Rn for every integer k and m. Here xk denotes products of
order k of the Cartesian coordinates on Rn and Dm denotes any combination
of derivatives of orderm w.r.t. these coordinates. S is endowed the a family of
semi-norms Pk,m = supx∈Rn | xkDmf(x) |. This family induces a topology
on S. A tempered distribution ϕ on Rn is a continuous linear map from S
to C in this topology.

A locally integrable function e(x) on Rn defines a tempered distribution
via:

(A.1) e(x) : f(x) →
∫

Rn

dnx e(x) f(x) for all f(x) ∈ S .

In particular then, the function e(x) = ln |x| is a tempered distribution on R.
Derivatives of a given tempered distribution to arbitrary orders define other
tempered distributions. These considerations provide tempered distributions
x−m (with m a positive integer) via:

x−m =
(−1)m−1

(m− 1)!

dm ln |x|
dxm

;(A.2)

i.e., x−m : f(x) → − 1

(m− 1)!

∫
dx ln |x| dmf

dxm
.

This definition of x−m is completely analogous to the definition of the more
familiar distribution δm(x) –the m-th derivative of the Dirac distribution–
which is is defined as the (m+ 1)th derivative of the locally integrable but
non-differentiable step function. Finally, in practice, it is extremely useful
that x−m ‘interact’ with the operation of taking derivatives and of multipli-
cation by functions xn in the familiar way:

(A.3)
d

dx
x−m = −m x−m−1; and, if m > 1, then x x−m = x−m+1 .

(For m = 1, one has x x−1 = 1, i.e., x x−1 : f(x) →
∫
f(x)dx.) These prop-

erties are useful in checking that distributions –such as the basis eβ(k, η)–
satisfy the desired equations such as (52).

Since the distribution defined by the function 1/η featured explicitly in
some discussions in the main text, let us discuss the distribution x−1 further.
In this case, the definition given above corresponds just to taking the Cauchy
principal value of the integral:

(A.4) x−1 : f(x) → lim
ϵ→0+

∫

R\[−ϵ,ϵ]
dx

1

x
f(x) ,
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which can be re-expressed in forms that are often more directly useful in
practice:
(A.5)

x−1 : f(x) →
∫ ∞

0
dx

1

x

(
f(x) − f(−x)

)
=

∫ ∞

−∞
dx

1

x

(
f(x) − f(0)

)
.

(The first expression in (A.5) brings out the fact that x−1 sends even test
functions to zero, while the second makes the finiteness of the result of
the action of the distribution manifest.) One can show directly that the
right sides of (A.4) and (A.5) are well-defined for all f ∈ S, and this linear
mapping is continuous. Thus, the Cauchy principal value yields a tempered
distribution which is the same as that defined in (A.2) for m = 1. For higher
values of m, the definition (A.2) of x−m is a natural generalization of the
Cauchy principal value in the sense that

(A.6) x−m : f(x) →
∫ ∞

−∞
dx

1

xm

(
f(x) −

m−1∑

n=0

xn

n!

dnf

dxn

)
.

In the main text, 1/η and 1/η2 are the tempered distributions given by this
construction.

This construction made use of the fact that the derivative of a tempered
distribution is again a tempered distribution. It is natural to ask if one
can invert the operation and take the anti-derivatives of tempered distribu-

tions. The answer is in the affirmative and, as with integrals of functions,
there is again a freedom to add an ‘integration constant’. Let us consider
a distribution e(x) on R. We wish to define its anti-derivative I(x) such
that dI/dx = e(x). It is natural to set

∫
dx I(x) (df/dx) = −

∫
dx e(x)f(x).

This prescription determines the action of the desired distribution I(x) on
test fields f1(x) which can be written as f1(x) = df/dx for some f ∈ S.
These f1(x) constitute a co-dimension 1 sub-space S1 of S.5 To extend
the action of I(x) to full S, one can proceed as follows [7]. Choose any
f◦(x) ∈ S that is not in S1 and just define the action of the extended I(x)
on this f◦(x) to be a constant, say c◦. Now, any test function f(x) ∈ S can
be uniquely written as f(x) = b◦f◦(x) + f1(x) where b◦ is a constant and
f1 ∈ S1. Hence the action of e(x) on any f(x) is determined by linearity:
e(x) : f → b◦ c◦ −

∫
dx I(x)f1(x). One can check that the final answer is

5It is characterized by the fact that test functions f1(x) in S1 satisfy a single con-
dition

∫
dx f1(x) = 0. In terms of Fourier transforms, the space S̃1 is the subspace

on S̃ such that f̃1(k) |k=0 = 0.
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independent of the choice of the initial f◦(x). Furthermore, the action can be
shown to be continuous on S, whence it provides an extension of the action
of I(x) from S1 to full S as a tempered distribution. co is the ‘integration
constant’ that captures the freedom in the definition of the anti-derivative.
In section 4.2.1 we encountered this freedom through the ‘integration con-
stant’ Cg in the expression (73) of the anti-derivative Ĩ⋆g (k) of g̃ w.r.t. k,
which was ultimately fixed through an infrared cutoff ℓ.

Remark: For completeness, we note that one can also promote the func-
tions x−m to distributions through their algebraic property that x−m is the
inverse of xm (see e.g., [7, 9, 10]). One is then led to the problem of defin-
ing the division of a distribution by a function in S: Is there a well-defined
distribution e(x) on R that corresponds to the division of the (trivial) dis-
tribution e◦(x) = 1 by xm? The answer is in the affirmative but the solution
to the equation xme(x) = 1 is not unique. The general solution has a m
parameter family of ambiguities, encoded in the constants ci:

(A.7) e(x) = x−m +

m−1∑

i=0

ci δ
(i)(x)

where δ(i)(x) denotes the ith derivative of the Dirac distribution. The ori-
gin of this freedom is the following. It is clear that the obvious action
f →

∫
dxx−m f(x) is well-defined on the co-dimension m subspace Sm of

S consisting of test functions which vanish at x = 0 together with their
first (m− 1) derivatives, so that their Taylor expansion around x = 0 starts
with the term fmx

m. The problem is that of extending the action of the
desired distribution to the full Schwartz space S. This can be achieved by
the obvious generalization of the procedure outlined above in our discussion
of anti-derivatives and results in the freedom to choose the ci in (A.7). In
the main body of the paper we chose the Cauchy principal value to define
1/η and 1/η2 as tempered distributions. This corresponds to setting c0 = 0
for 1/η, which is motivated by the natural requirement that this distribu-
tion should send even test functions to zero (since 1/η changes sign under
η → −η). Similarly, with our choice, the distribution 1/η2 sends odd test
functions to zero.

Appendix B. More general models

In this Appendix we will provide a brief overview of directions in which the
framework presented in the main body of the paper can be generalized. In
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each case, we will outline the main steps that are necessary for these exten-
sions and indicate why we expect the ‘tameness’ of cosmological singularities
to persist.

• General FLRW space-times: In the main body of the paper we analyzed
in detail the massless scalar fields in the radiation and dust filled FLRW
universes. Let us now consider more general conformal factors a(η) = aβ η

β .
Since our focus is on the big bang, we are led to assume β > 0. For brevity,
we will only sketch the line of reasoning and overlook technical subtleties
–e.g., associated with properties of Hankel functions for exceptional values
of their order– that would have required detours.

The basis functions selected by our complex structure J̊ of section 4.1.2
are given by the Hankel functions of second kind:

(B.8) eβ(k, η) =
(πη)

1

2

2a(η)
H

(2)

β− 1

2

(kη)

Let us first consider the case when β is a positive integer. For β ≥ 2, the
expression of eβ(k, η) has a finite number of terms that are singular at η = 0,
all of the type η−m wherem is a positive integer. Let us denote by eβ(k, η) the
tempered distribution obtained by replacing each η−m in the singular terms
by the tempered distribution η−m. This eβ(k, η) is a tempered distribution

on the extended space-time (M̊, gab) and satisfies the equation of motion
(16) in virtue of properties (A.3) (see footnote 2).

Therefore, as in sections 4.1 and 5.1, we can introduce the phase space
ΓCov using solutions F (x) of the type

(B.9) F (x) =

∫
d3k

(2π)3

(
z(k⃗) eβ(k, η) + z⋆(−k⃗) e⋆β(k, η)

)
eik⃗·x⃗

where, as before, z(k⃗) belong to the Schwartz space S̃ associated with the
3-dimensional momentum space. As in the main text, each F (x) is a well
defined distribution on the extended space-time M̊ . In fact, for any given k
the leading order divergence in the basis functions eβ(k, η) goes as η(1−2β) as
η → 0 while the volume element shrinks as η4β . Therefore, in the action of
F (x) on a test function f(x) ∈ S, the integrand (w.r.t. the volume element
d4x which is regular at η = 0) is well defined on all of M̊ , vanishing as η1+2β .

Starting with ΓCov, we can again construct the algebra A generated by
the field operators Θ̂(F ) and represent it on the Fock space F selected by
the basis functions eβ(k, η). The question is whether there is a corresponding

operator valued distribution ϕ̂(x). As in section 4.2.1, this question can
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be rephrased as: Is there a 1-particle state F (x) corresponding to every
test function f(x) in the Schwartz space? By repeating the analysis of that
section step by step, one finds that there is an infrared issue for β ≥ 2
because of the infrared behavior of the basis functions [32]. More precisely,
the situation can be summarized as follows. The asymptotic expansion of
the Hankel function near kη = 0 implies that the leading order divergences
of eβ(k, η) w.r.t. k goes as k(

1

2
−β). Since, near k = 0, the behavior of z(k)

constructed from a generic test function f(x) ∈ S is the same as that of
eβ(k, η), the integrand in

∫
d3k |z(k⃗)|2 goes as k1−2β . Because the volume

element in the momentum space goes as k2, the z(k) constructed from a
generic test function fails to be square integrable if β ≥ 2. Thus, for β ≥ 2,
a test function f(x) defines a solution F (x) in the 1-particle Hilbert space
only if it belongs to a subspace of S with finite co-dimension (in which
Fourier transforms of the test functions vanish as kn at k = 0, with n >
(2β − 4)). One again needs a regulator ℓ to ‘tame’ this infrared behavior.
Once it is introduced, ϕ̂(x) becomes a well-defined OVD on the Fock space
F . Therefore, the bi-distribution ⟨ϕ̂(x) ϕ̂(x ′)⟩ is again well-defined. As in
section 4, the infrared regulator is already needed away from the big bang
singularity; the presence of the singularity does not make the behavior worse.
To summarize, there is no ultraviolet difficulty in introducing the OVD ϕ̂(x).

To probe the behavior of observables ⟨ϕ̂2(x)⟩ren and ⟨T̂ab(x)⟩ren, let us
begin by examining the η dependence of the Ricci curvature. Since gab =
a2β η

2β g̊ab, one finds

Rab =
2β(β + 1)

η2
∇aη∇bη +

β(2β − 1)

η2
g̊ab; and

R =
6β(β − 1)

a2βη
2+2β

(B.10)

Consequently, the leading order divergence in ⟨ϕ̂2(x)⟩ren, regarded as a func-
tion, is given by [34]

(B.11) ⟨ϕ̂2(x)⟩ren ∼ R lnR ∼ β(β − 1)
1

η(2β+2)
ln |η| .

Since the volume element goes as ∼ a4β η
4β , the action of ⟨ϕ̂2(x)⟩ren on a test

function f(x) is given by the action of a locally integrable, continuous func-
tion that vanishes at η = 0 like β(β − 1) η(2β−2) ln |η|. Next, let us consider
the components of the renormalized stress energy tensor [34]. Regarded as
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functions, their leading order divergence is given by:

⟨T̂ab(x)⟩ren = T1(x)∇aη∇bη + T2(x)̊gab,(B.12)

with T1(x) ∼ T2(x) ∼ 1

η(2β+4)
ln(|η|)

Since the volume element goes as ∼ a4β η
4β , the action of ⟨T̂ab(x)⟩ren on a test

field f1(x)ηaηb + f2(x)gab is given by the distributional action of a locally
integrable function η2β−4 ln |η| on the test functions f1(x) and f2(x). Thus,
⟨ϕ̂2(x)⟩ren and ⟨T̂ab(x)⟩ren are well-defined distributions on (M̊, gab).

Finally, let us consider non-integer values of β. There is a tempered dis-
tribution |η|−β (corresponding to functions |η|−β) for each real number β

that is not a positive integer. The previous strategy of taking derivatives of
a known distribution does not work. But one can define |η|−β using the fact

that |η|−β is a homogeneous function of degree −β, although the procedure
to define these homogeneous distributions [9] is more complicated. One notes
that for Reβ < 1, the function |η|−β is locally integrable and therefore de-
fines a tempered distribution. Thus we have a map from the ‘Reβ < 1 part’
of the complex β plane to the space of tempered distribution. It admits a
unique meromorphic extension in β, that provides a tempered distribution
|η|−β for non-integral values of β (the extension has simple poles at positive

integer values of β). For our purposes, details of this procedure are not nec-
essary; it suffices to note that these tempered distributions exist and satisfy
the analogs of (A.3)

(B.13)
d

dη
|η|−β = −β |η|−β−1 and |η||η|−β = |η|−β+1 .

Let us denote by eβ(k, η) the tempered distribution obtained by replacing

each |η|−β in the singular terms by the tempered distribution η−β . This

eβ(k, η) is a tempered distribution on the extended space-time (M̊, gab) and

satisfies the equation of motion (16) in virtue of properties (B.13). There-
fore, one can proceed as in the case when β is an integer and construct the
covariant phase space, the algebra A, and its Fock representation. Discussion
of the bi-distribution ⟨ϕ̂(x) ϕ̂(x ′)⟩ and observables ⟨ϕ̂2(x)⟩ren and ⟨T̂ab(x)⟩ren
is completely analogous. These observables are again well defined on the ex-
tended space-time (M̊, gab) in the distributional sense.

• Other scalar field equations: In the main body we focused on the
minimally coupled, massless scalar field for technical simplicity. The most
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straightforward extension will be to the conformally coupled massless scalar
field. The required analysis would be parallel to that of the radiation-filled
universe of Section 3. In a general FLRW space-time, if F (x) satisfies (□−
R
6 )F (x) = 0, then F̊ := a(η)F would satisfy □̊ F̊ (x) = 0. Therefore, one can
construct the phase space ΓCov of interest simply by rescaling the fields
F̊ (x) ∈ Γ̊cov satisfying the wave equation in Minkowski space by 1/a(η). As
in Section 3, one can then introduce the operator algebra A generated by
Φ̂(F ) and represent these operators on the Fock space F̊ of Minkowski space-
time, construct the OVD ϕ̂(x) and the bi-distribution ⟨ϕ̂(x) ϕ̂(x ′)⟩ simply by
conformally rescaling their Minkowski space analogs. Again, because the vol-
ume element goes as d4V = a4(η) dV̊ , ⟨ϕ̂(x) ϕ̂(x ′)⟩ would be a well-defined
bi-distribution on (M̊, gab). One would then be able to use the expressions
of ⟨ϕ̂2(x)⟩ren and ⟨T̂ab(x)⟩ren from [29].

These considerations can be easily generalized to conformally coupled
scalar fields on general conformally flat space-times, where the conformal fac-
tor is allowed to have any (smooth) space-time dependence. Thus, let us con-
sider the Minkowski space-time (M̊, g̊ab) and introduce on it a conformally
flat metric gab = Ω2(x)̊gab such that the conformal factor Ω(x) goes to zero
continuously on a Cauchy surface of (M̊, g̊ab) –say, the η = 0 hyperplane–
but is smooth elsewhere. Then, for the conformally coupled wave equation
the analysis would be very similar as in the above discussion since each
solution F̊ (x) to the wave equation in Minkowski space-time would again
define a (distributional) solution F (x) = Ω−1F̊ (x) on (M̊, gab). Construction
of the phase space ΓCov and the operator algebra A will go through. Since
ΓCov would be naturally isomorphic to the phase space Γ̊cov in Minkowski
space-time, one can use the complex structure J̊ on Γ̊cov to induce a complex
structure J on ΓCov. Because of the Ω4(x) factor in the volume element d4V ,
the operator valued distribution ϕ̂(x) would again be well-defined and have
a natural action on the Minkowski Fock space F̊ .

Finally, let us consider the Klein-Gordon equation with mass m. Then,
the potential V (η) of Eq. (51) in Section 4 acquires an extra term and
becomes Ṽ (η) = V (η) −m2a2(η) ≡ β(β − 1)/η2 −m2a2(η). This makes the
explicit calculations difficult. However, since the extra mass dependent term
vanishes at η = 0 where V (η) diverges, one would expect that the main
results on the well-defined character of various distributions across η = 0
would not be altered by additional mass contribution to this potential, al-
though there would be significant differences at early and late times where
the new term would dominate. In particular, our arguments of Section 4.1.2
for selecting the complex structure J̊ will not go through and new input
will be needed to select the complex structure. But this issue refers to the
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quantization of the scalar field already on (M, gab) –i.e. for η > 0– and is
unrelated to the principal issue for this paper –the behavior of the quantum
field across η = 0 on (M̊, gab). Once a complex structure is chosen, operators
Φ̂(F ) would be well-defined also the resulting Fock space.

• Higher spins: Finally, let us consider higher spins. Since the Maxwell
equation is conformally invariant and the FLRW metrics are conformally
flat, every solution F̊ab to Maxwell’s equations on (M̊, g̊ab) is a solution also

on the extended FLRW space-time (M̊, gab). Therefore, the OVD
ˆ̊
Fab in

Minkowski space itself defines the required OVD on (M̊, gab) and it is triv-
ially well-defined across the η = 0 surface. Next consider linearized source-
free solutions to Einstein’s equations on FLRW backgrounds. Recall that
each of the two polarization modes satisfies the massless wave equation on
these backgrounds. Therefore, analysis of the paper is directly applicable to
spin 2 fields.
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[10] S.  Lojasiewicz, Sur le problèm de la division, Stud. Math. (1959) 19,
87–136.

[11] A. Lichnerowicz, Propagateurs, commutateurs et anticommutateurs
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