
✐

✐

“2-Beneish” — 2022/7/9 — 2:12 — page 1703 — #1
✐

✐

✐

✐

✐

✐

ADV. THEOR. MATH. PHYS.
Volume 25, Number 7, 1703–1734, 2021

Module constructions for certain

subgroups of the largest Mathieu group

Lea Beneish

For certain subgroups of M24, we give vertex operator algebraic
module constructions whose associated trace functions are mero-
morphic Jacobi forms. These meromorphic Jacobi forms are canon-
ically associated to the mock modular forms of Mathieu moonshine.
The construction is related to the Conway moonshine module and
employs a technique introduced by Anagiannis–Cheng–Harrison.
With this construction we are able to give concrete vertex alge-
braic realizations of certain cuspidal Hecke eigenforms of weight
two. In particular, we give explicit realizations of trace functions
whose integralities are equivalent to divisibility conditions on the
number of Fp points on the Jacobians of modular curves.
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1. Introduction

Moonshine refers to unexpected connections between finite simple groups
and modular forms. The first such instance was observed by McKay and
Thompson in the 1970s and involves the monster group M and the modular
j-invariant. This observation led to the monstrous moonshine conjecture
of Thompson [41] and Conway–Norton [13]. This conjecture postulates the
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existence of an infinite-dimensional graded module

V ♮ =
⊕

n

V ♮
n

such that for each g in the monster group, the graded trace function

Tg(τ) :=

∞∑

n=−1

tr(g | V ♮
n)q

n

is the unique modular function that generates the genus zero function field
arising from a specific subgroup Γg of SL2(R), normalized such that Tg(τ) =
q−1 +O(q) (where τ ∈ H and q = e2πiτ )[13].

In the next few years, Frenkel, Lepowsky, and Meurman [26–28] con-
structed V ♮ as a vertex operator algebra (VOA). Then in 1992, Borcherds
used the theory of vertex operator algebras and generalized Kac–Moody
algebras (also known as Borcherds–Kac–Moody algebras [3]) to show that
V ♮ has the properties conjectured by Conway and Norton and thus proved
the monstrous moonshine conjecture [4].

Since the proof of the monstrous moonshine conjecture, several other
examples of moonshine phenomena have been discovered. Most significant
for this work is the 2010 observation by Eguchi, Ooguri, and Tachikawa [22]
of a connection between the largest Mathieu groupM24 and the elliptic genus
of K3 surfaces. More precisely, they noticed that the low order multiplicities
of superconformal algebra characters in the K3 elliptic genus are simple
linear combinations of irreducible representations of M24. This led them to
conjecture that there exists an infinite-dimensional graded M24-module

K♮ =
⊕

n

K♮
n

whose trace functions, denoted Hg(τ), are certain mock modular forms. We
refer to [5, 23] for background on mock modular forms. In analogy with the
work of Conway–Norton, work of Cheng, Eguchi–Hikami, and Gaberdiel–
Hohenegger–Volpato [6, 21, 29, 30] determined the mock modular forms
Hg(τ) and then in 2012 Gannon [31] proved the existence of the associated
module K♮.

The analogy between the monster and M24 extends further when one
considers the relationship between these groups and even unimodular
positive-definite lattices of rank 24. The Leech lattice Λ [33, 34] was proven
by Conway [11] to be the unique such lattice with no root vectors. It is
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closely related to the monster. In fact, the Leech lattice was involved in
both the construction of the monster by Griess [32], and in the construction
of the monster module [26–28]. The group M24 is closely related to another
such lattice, the (unique up to isomorphism) even unimodular lattice with
rank 24 and root system A24

1 [35]; M24 can be realized as the automorphism
group of that lattice modulo the normal subgroup generated by reflections
in roots. Cheng, Duncan, and Harvey [9] conjectured that this relationship
generalizes. More precisely, they formulated the umbral moonshine conjec-
ture, stating that M24 moonshine belongs to a class of 23 moonshines, each
corresponding to one of the 23 Niemeier lattices with root systems of full
rank [35]. The existence of these umbral moonshine modules was proven
in 2015 by Duncan, Griffin, and Ono [16]. There has been recent progress
in constructing umbral moonshine modules by Anagiannis–Cheng–Harrison,
Cheng–Duncan, Duncan–Harvey, and Duncan–O’Desky (see [1, 8, 17, 20]),
however the umbral moonshine theory does not yet include explicit module
constructions in all of its cases.

With the intention to further develop the analogy between the monster
and M24, in [2] the author associated weight 2 quasimodular forms Qg(τ) to
the elements of M24. These Qg(τ) come from the holomorphic projection of
η3(τ)Ĥg(τ) where Ĥg(τ) is the completion of the mock modular form Hg(τ).
The author proves the existence of an M24 module with the Qg(τ) as trace
functions [2, Theorem 1]. An application of this is that the integrality of these
functions is equivalent to certain divisibility conditions on the number of Fp

points on Jacobians of modular curves [2, Corollary 1.1]. Extending this, the
author finds trace functions for modules of cyclic groups of arbitrary prime
order with similar arithmetic connections [2, Theorem 2]. For the cyclic
groups of prime order, the author constructs related modules explicitly in
terms of vertex operator algebras[2, Theorem 3]. However, that construction
came at the expense of the divisibility conditions. A major objective of this
work is to amend that and give a vertex operator algebra construction for
modules whose trace functions exhibit divisibility conditions.

In this work, we offer a modification of the functions Qg(τ) and give
a module construction that retains the arithmetic information mentioned
above. Namely, we add χ(g)

(
η3(τ)µ(τ, z) + 2F2(τ)

)
to Qg(τ), where η(τ)

is the Dedekind eta function, µ(τ, z) is an Appell–Lerch sum, χ(g) is the
number of fixed points of g in the 24-dimensional permutation representation
of M24, and F2(τ) is defined to be

F2(τ) :=
∑

r>s>0
r−s odd

sqrs/2.
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This allows us to define the following meromorphic Jacobi forms

Mg(τ, z) := Qg(τ) + χ(g)
(
η3(τ)µ(τ, z) + 2F2(τ)

)
,

associated to each element g ∈M24. In Proposition 2.3, we prove the exis-
tence of a module for which suitable expansions of the Mg(τ, z) are trace
functions. Because of their relation to Qg(τ), these trace functions contain
arithmetic information.

Although on the surface, the relationship between Hg(τ) and Mg(τ, z)
may seem distant, we claim it is natural. We show that one can equivalently
define Mg(τ, z) by writing Mg(τ, z) = Hg(τ)η

3(τ) + χ(g)η3(τ)µ(τ, z). This
type of expression is an example of a canonical decomposition of a mero-
morphic Jacboi form into a “finite” part and “polar” part established by
Zwegers in [42] and Dabholkar, Murthy, and Zagier in [14]. The relationship
between meromorphic Jacobi forms and umbral moonshine was first dis-
cussed by Cheng, Duncan, and Harvey in [10]. A special case of this is that
the mock modular forms Hg(τ) occur as the “finite parts” of meromorphic
Jacobi forms.

Finding a construction of a module whose trace functions are meromor-
phic Jacobi forms associated to vector valued mock modular forms in umbral
moonshine is considered a natural alternative to finding a construction of a
module whose trace functions are the vector valued mock modular forms.
In fact, to describe this, Duncan and O’Desky coined the term “meromor-
phic module problem” in [20] when they solved this problem for the cases of
umbral moonshine corresponding to the Niemeier lattices with root systems
A⊕4

6 and A⊕2
12 (and partially for the cases corresponding to A⊕8

3 and A⊕6
4 ).

For g ∈M24 such that [g] ̸= 3B, 4C, 6B, 12B, 21A, 21B, 23A, or 23B,
(where we use the ATLAS notation in [12] for conjugacy classes of M24), we

give concrete constructions of modules whose trace functions are M̃g(τ, z),

where the M̃g(τ, z) are defined to be the Fourier expansions of Mg(τ, z) in
the domain 0 < −Im(z) < Im(τ).

Main Theorem. For subgroups of M24 consisting only of elements g ∈
M24 such that [g] ̸= 3B, 6B, 12B, 21A, 21B, 23A, or 23B, and such that
each element fixes a 4-dimensional space in the 24-dimensional permutation
representation of M24, we have the following module construction:

Ã(p)tw ⊗W(b)tw ⊗ T
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is an infinite-dimensional, bigraded, virtual module with trace functions as
follows:

lim
γ→−1

tr
(
ĝzp̃(0)γJ12(0)yJ(0)qL(0)−c/24 | Ã(p)tw ⊗W(b)tw ⊗ T

)
= M̃g(τ, z).

We describe this construction in two steps. First we construct a related
module, Ã(p)tw ⊗W(b)tw ⊗ V s♮

tw , which is the tensor product of a Clifford
module, a Weyl module, and a Conway module of [18]. For their definitions
and the definitions of the operators that we take the trace of, see Section 3.
This gives module constructions for subgroups of M24 that do not contain
elements in the conjugacy classes 3B, 4C, 6B, 12B, 21A, 21B, 23A, or 23B
and such that the 24-dimensional permutation representation of M24 has
a fixed 4-dimensional space when restricted to that subgroup. For exam-
ple, this gives a module construction for group L3(4) ≃ M21, one of the
simple subgroups of M24. This does not, however, give a module construc-
tion for M11 because the 24-dimensional permutation representation ofM24

restricted to M11 only fixes a 3-dimensional space.
To remedy cases such as M11 and arrive at the module constructions

given in the Main Theorem, we apply a method of Anagiannis, Cheng, and
Harrison [1]. For these subgroups, we still require that each element of the
subgroup fixes a 4-space but not that the whole subgroup fixes the same
4-space (we still require that the subgroup does not contain elements in
the aforementioned conjugacy classes). Here we use Ã(p)tw and W(b)tw as
before (defined in Section 3) and T is a modification of V s♮

tw which we define
in Section 4. This, for example, gives module constructions for M22 : 2 a
maximal subgroup of M24, for the smallest sporadic simple group M11, and
for groups 24 : A7 and A8 which are maximal subgroups of M23.

The module construction for M11 gives an explicit realization of the
trace functions M̃g(τ, z) whose integrality is equivalent to divisibility con-
ditions on the number of Fp points on the Jacobian of the modular curve
X0(11), denoted J0(11). The same is true withM22 : 2 and 24 : A7 for J0(14)
and with A8 for J0(15).

Note that our module gives an explicit construction of the restriction
of the Mathieu moonshine module to the subgroup 24 : A7, which has also
played a prominent role in the symmetry surfing program initiated by
Taormina and Wendland in [36–40]. It would be interesting to compare our
method to theirs.

This paper is organized as follows. In Section 2, we describe the mero-
morphic Jacobi forms and show that there exists a virtual M24 module
for which suitable expansions of these meromorphic Jacobi forms are the
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trace functions. In Section 3, we construct modules for subgroups of M24

that exclude certain conjugacy classes and such that the 24-dimensional
permutation representation of M24 restricted to that subgroup has a fixed
4-dimensional space. In Section 4, we prove the Main Theorem by applying
a method of Anagiannis, Cheng, and Harrison [1] to modify the construction
in Section 3 so that we can replace the condition that the subgroup must fix
a 4-space with the condition that only each element in that subgroup fixes
a 4-space.

Acknowledgements

The author is grateful to John Duncan for suggesting the topic and for his
valuable advice and comments on earlier drafts. The author would also like
to thank Jackson Morrow for comments on an earlier draft.

2. The functions

In this section we describe the meromorphic Jacobi forms Mg(τ, z). We will
explicitly construct modules for which suitable expansions of the Mg(τ, z)
are the trace functions. The module constructions can be found in Sections 3
and 4, but first we prove the existence of an overarching virtualM24-module.

In order to define the meromorphic Jacobi forms, we recall a few defini-
tions. Let η(τ) be the Dedekind eta function, defined by

(2.1) η(τ) := q1/24
∏

n>0

(1− qn).

We have the usual Jacobi theta function θ1(τ, z), defined as

(2.2) θ1(τ, z) := −iq
1

8 y
1

2

∏

n>0

(1− y−1qn−1)(1− yqn)(1− qn),

where q = e2πiτ and y = e2πiz. The Appell-Lerch sum µ(τ, z) is given by

(2.3) µ(τ, z) :=
−iy1/2

θ1(τ, z)

∑

n∈Z
(−1)n

ynqn(n+1)/2

1− yqn
.

We recall that χ(g) is the number of fixed points of g in the 24-
dimensional permutation representation of M24, the mock modular forms
of weight 1/2 associated to g ∈M24 from Mathieu moonshine are denoted
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by Hg(τ), and F2(τ) is defined as follows

(2.4) F2(τ) :=
∑

r>s>0
r−s odd

sqrs/2.

The quasimodular forms Qg(τ), for g ∈M24, that are the holomorphic
projection of the completion of the Hg(τ) multiplied by η3(τ) (i.e.

πhol(Ĥg(τ)η
3(τ)) from [2]) can be defined as

(2.5) Qg(τ) := Hg(τ)η
3(τ)− 2χ(g)F2(τ).

We now define

(2.6) ϕ−2,1(τ, z) := −
θ21(τ, z)

η6(τ)
,

and

(2.7) ϕ0,1(τ, z) :=
1

2
ZK3(τ, z),

where, from [22], we have

(2.8) ZK3(τ, z) := 24µ(τ, z)
θ21(τ, z)

η3(τ)
+He(τ)

θ21(τ, z)

η3(τ)
.

More generally, for g ∈M24, we define the following weak Jacobi forms:

(2.9) Zg(τ, z) := χ(g)µ(τ, z)
θ21(τ, z)

η3(τ)
+Hg(τ)

θ21(τ, z)

η3(τ)
.

In [19], Duncan and Mack-Crane associate weak Jacobi forms ϕg(τ, z) of
weight zero and index one to symplectic derived equivalences of projective
complex K3 surfaces that fix a stability condition in the distinguished space
identified by Bridgeland. They identify such automorphisms with elements
of Aut(Λ) (the Conway group Co0) fixing a sublattice of rank greater than
or equal to 4. Since M24 is a subgroup of Co0, it is natural to compare the
ϕg(τ, z) to the weak Jacobi forms Zg(τ, z) associated to g ∈M24, and in
fact, these ϕg(τ, z) are equal to Zg(τ, z) for g in all but 7 of the 26 conjugacy
classes ofM24 (those conjugacy classes are: 3B, 4C, 6B, 12B, 21A, 21B, 23A
and 23B). For an explicit expression of ϕg(τ, z), see equation (4.10).

These ϕg(τ, z) are closely related to weight two modular forms Fg(τ) (not
to be confused with F2(τ), which is not modular). We take the expression
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given in Proposition 9.3 of [19] as the definition of Fg(τ):

(2.10) Fg(τ) =
ϕg(τ, z)

ϕ−2,1(τ, z)
−

1

12
χ(g)

ϕ0,1(τ, z)

ϕ−2,1(τ, z)
.

We refer to equation (9.19) of [19] for another definition of Fg(τ).
We begin with the following proposition in which we combine a result

of Dabholkar, Murthy, and Zagier [14], a result of Duncan and Mack-Crane
[19], and the functions Qg(τ) that were defined by the author in [2].

Proposition 2.1. For g ∈M24 such that [g] ̸= 3B, 4C, 6B, 12B, 21A, 21B,
23A and 23B we have

η6(τ)ϕg(τ, z)

θ21(τ, z)
= χ(g)

(
η3(τ)µ(τ, z) + 2F2(τ)

)
+Qg(τ)

Proof. From equation (8.52) in [14] we have following:

(2.11) η−3(τ)
ϕ0,1(τ, z)

ϕ−2,1(τ, z)
= −

12

θ1(τ, 2z)
Av(2)

[
1 + y

1− y

]
− h(2)(τ).

We note that 2h(2)(τ) = He(τ) and Av(2)
[
1+y
1−y

]
= θ1(τ, 2z)µ(τ, z), (see

Example 2, Section 8.5 of [14]) and so we equivalently have

(2.12) η−3(τ)
ϕ0,1(τ, z)

ϕ−2,1(τ, z)
= −

12

θ1(τ, 2z)
θ1(τ, 2z)µ(τ, z)−

1

2
He(τ),

which can be rearranged as follows:

(2.13)
ϕ0,1(τ, z)

ϕ−2,1(τ, z)
= −12η3(τ)µ(τ, z)−

1

2
η3(τ)He(τ).

Now, from Proposition 9.3 of [19], we have that

(2.14) ϕg(τ, z) =
1

12
χ(g)ϕ0,1(τ, z) + Fg(τ)ϕ−2,1(τ, z),

which is equivalent to

(2.15)
ϕg(τ, z)

ϕ−2,1(τ, z)
=

1

12
χ(g)

ϕ0,1(τ, z)

ϕ−2,1(τ, z)
+ Fg(τ).
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Substituting the right hand side of equation (2.13) for
ϕ0,1(τ, z)

ϕ−2,1(τ, z)
we

obtain

(2.16)
ϕg(τ, z)

ϕ−2,1(τ, z)
=

1

12
χ(g)

(
−12η3(τ)µ(τ, z)−

1

2
η3(τ)He(τ)

)
+ Fg(τ).

Then we use the identity ϕ−2,1(τ, z) = −
θ21(τ, z)

η6(τ)
to rewrite the above as

follows:

−η6(τ)ϕg(τ, z)

θ21(τ, z)
=

1

12
χ(g)

(
−12η3(τ)µ(τ, z)−

1

2
η3(τ)He(τ)

)
(2.17)

+ Fg(τ),

and simplifying further, we find

(2.18)
−η6(τ)ϕg(τ, z)

θ21(τ, z)
= −χ(g)η3(τ)µ(τ, z)−

χ(g)

24
η3(τ)He(τ) + Fg(τ).

We recall the formula (from Appendix B of [16], also in [6, 7, 21, 29, 30])
relating Hg(τ) and He(τ), for g ∈M24:

(2.19) Hg(τ)η
3(τ) =

χ(g)

24
He(τ)η

3(τ)− Fg(τ).

This formula gives us that

(2.20)
−η6(τ)ϕg(τ, z)

θ21(τ, z)
= −χ(g)η3(τ)µ(τ, z)−Hg(τ)η

3(τ),

or equivalently,

(2.21)
η6(τ)ϕg(τ, z)

θ21(τ, z)
= χ(g)η3(τ)µ(τ, z) +Hg(τ)η

3(τ).

Combining this with the quasimodular forms associated to M24 in equa-
tion (2.5), we can write

(2.22)
η6(τ)ϕg(τ, z)

θ21(τ, z)
= χ(g)(η3(τ)µ(τ, z) + 2F2(τ)) +Qg(τ).

□
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Lemma 2.2. For g ∈M24 such that [g] ̸= 3B, 4C, 6B, 12B, 21A, 21B,
23A and 23B, the Fg(τ) in equation (2.19) (and Appendix B of [16]) are the
same as the Fg(τ) in equation (9.19) of [19].

Proof. For clarity, in the proof of this lemma exclusively, we will write F̃g(τ)
when referring to the Fg(τ) in [19] and we will write Fg(τ) for the Fg(τ) in

[16]. We will show that F̃g(τ) = Fg(τ).
From Eguchi, Ooguri, and Tachikawa we have the following expression

for the K3 elliptic genus

(2.23) ZK3(τ, z) = 24µ(τ, z)
θ21(τ, z)

η3(τ)
+He(τ)

θ21(τ, z)

η3(τ)
.

Rearranging the terms of the above equation, we find that

(2.24)
ZK3(τ, z)η

3(τ)

θ21(τ, z)
= 24µ(τ, z) +He(τ),

and then multiplying by η3(τ) and solving for He(τ)η
3(τ) we have

(2.25) He(τ)η
3(τ) =

ZK3(τ, z)η
6(τ)

θ21(τ, z)
− 24µ(τ, z)η3(τ).

We can then substitute the right side of the equation above for He(τ)η
3(τ)

in equation (2.19) and we obtain:

(2.26) Hg(τ)η
3(τ) =

χ(g)

24

(
ZK3(τ, z)η

6(τ)

θ21(τ, z)
− 24µ(τ, z)η3(τ)

)
− Fg(τ).

Finally, we solve for Fg(τ) as follows:

(2.27) Fg(τ) =
χ(g)

24

ZK3(τ, z)η
6(τ)

θ21(τ, z)
− χ(g)µ(τ, z)η3(τ)−Hg(τ)η

3(τ).

On the other hand, we recall the expression in Proposition 9.3 of [19]:

(2.28) F̃g(τ) =
ϕg(τ, z)

ϕ−2,1(τ, z)
−

1

12
χ(g)

ϕ0,1(τ, z)

ϕ−2,1(τ, z)
.
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We make the substitutions ϕ−2,1(τ, z)=−
θ21(τ, z)

η6(τ)
and ϕ0,1(τ, z)=

1

2
ZK3(τ, z)

and arrive at:

(2.29) F̃g(τ) =
−ϕg(τ, z)η

6(τ)

θ21(τ, z)
+
χ(g)

24

ZK3(τ, z)η
6(τ)

θ21(τ, z)
.

For g ∈M24 such that Zg(τ, z) = ϕg(τ, z), we can substitute ϕg(τ, z) for the
right hand side of the equation below:

(2.30) Zg(τ, z) = χ(g)µ(τ, z)
θ21(τ, z)

η3(τ)
+Hg(τ)

θ21(τ, z)

η3(τ)
.

Thus we have

F̃g(τ) = −
η6(τ)

θ21(τ, z)

(
χ(g)µ(τ, z)

θ21(τ, z)

η3(τ)
+Hg(τ)

θ21(τ, z)

η3(τ)

)
(2.31)

+
χ(g)

24

ZK3(τ, z)η
6(τ)

θ21(τ, z)
,

which simplifies to

(2.32) F̃g(τ) =
χ(g)

24

ZK3(τ, z)η
6(τ)

θ21(τ, z)
− χ(g)µ(τ, z)η3(τ)−Hg(τ)η

3(τ).

Therefore, we see that F̃g(τ) = Fg(τ). □

Now we have described everything we need to define the functions
Mg(τ, z) as follows:

(2.33) Mg(τ, z) := Hg(τ)η
3(τ) + χ(g)η3(τ)µ(τ, z).

We next show that there exists anM24-module for which suitable expansions
of the Mg(τ, z) are the graded trace functions. We define M̃g(τ, z) to be the
expansion of Mg(τ, z) in the domain 0 < −Im(z) < Im(τ) (τ ∈ H, z ∈ C).

Proposition 2.3. There exists a virtual bigraded M24-module

V =
⊕

n,r∈Z
n≥0

Vn,r

such that

M̃g(τ, z) =
∑

n,r

tr(g | Vn,r)y
rqn.
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Proof. For this proof, we restrict to the domain 0 < −Im(z) < Im(τ). First

we show that the M̃g(τ, z) have integral coefficients. Gannon [31] shows that
the functions Hg(τ) have integral coefficients (in all of H, and thus in the
domain we specify). It follows from the definition of η(τ) that η3(τ) has
integral coefficients. It remains to show that χ(g)η3(τ)µ(τ, z) has integral
coefficients (and from the definition we know the χ(g) are integers). Because
the specified expansion of µ(τ, z) is one of the N = 4 characters [22], its
expansion is known to have integral coefficients. Thus we conclude that the
M̃g(τ, z) have integral coefficients.

Next we show that the multiplicities mM
i (n) of the M24 irreducible rep-

resentations in the class functions defined by the coefficients of M̃g(τ, z) are
integral.

Gannon shows that the multiplicity generating function

(2.34)
∑

n>0

mH
i (n)qn =

1

|M24|

∑

g∈M24

Hg(τ)χi(g)

(with χi an irreducible character of M24) has integral coefficients. We need
to show that the coefficients mM

i (n) are integral, where

(2.35)
∑

n>0

mM
i (n)qn =

1

|M24|

∑

g∈M24

[
Hg(τ)η

3(τ)− χ(g)µ(τ, z)η3(τ)
]
χi(g).

To do this, we can split the right hand side of equation (2.35) into two

parts. First consider
1

|M24|

∑
g∈M24

Hg(τ)η
3(τ)χi(g). This differs from (2.34)

only from multiplying by η3(τ), which does not change the integrality. So

it suffices to show that
1

|M24|

∑
g∈M24

χ(g)µ(τ, z)η3(τ)χi(g) has integral coef-

ficients.
This is the same as showing that

µ(τ, z)η3(τ)
1

|M24|

∑

g∈M24

χ(g)χi(g) = µ(τ, z)η3(τ)⟨χ, χi⟩

has integral coefficients. We already know that µ(τ, z)η3(τ) has integral coef-
ficients (see above). The integrality of ⟨χ, χi⟩ can be seen from the fact that
χ(g) is a character of a module, and so ⟨χ, χi⟩ is the multiplicity of χi in χ,
which is necessarily integral. Thus the mM

i (n) from (2.35) are integral. □

Remark. In what follows, we will give module constructions such that the
graded trace functions on those modules are equal to M̃g(τ, z). The condition
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that τ ∈ H, z ∈ C be such that 0 < −Im(z) < Im(τ) is necessary to ensure
convergence of the graded dimension functions of the modules. In particular,
this is what will allow us to identify the series expansions as their graded
dimension functions. We will adopt this restriction of the domain for the
rest of the paper.

3. Module construction I

In this section, for g ∈M24 such that [g] ̸= 3B, 4C, 6B, 12B, 21A, 21B,
23A, or 23B, we explicitly construct a module whose trace functions are the
M̃g(τ, z) (see Proposition 2.3). This will lead to module constructions for
certain subgroups of M24 with no elements in any of the above conjugacy
classes. We also require that the 24-dimensional permutation representation
ofM24 has a fixed 4-dimensional subspace when restricted to that subgroup.

We use the fact that when g ∈M24, the following holds: By definition
of Qg(τ), we see that Mg(τ, z) = Qg(τ) + χ(g)

(
η3(τ)µ(τ, z) + 2F2(τ)

)
, and

by Proposition 2.1 of Section 2, for g not in the excluded conjugacy classes
as above, we have

(3.1) Mg(τ, z) =
ϕg(τ, z)η

6(τ)

θ21(τ, z)
.

We will split this equation into three factors as follows:

(3.2) Mg(τ, z) = (ϕg(τ, z))
(
η4(τ)

)( η2(τ)

θ21(τ, z)

)
.

We postpone the discussion about how to recover the first factor of
Mg(τ, z) for now. The next two lemmas indicate how to recover the second
and third of the three factors in Equation 3.2.

In order to recover the second factor in (3.2), we need a module with
graded dimension function η4(τ). This can be achieved using a Clifford mod-
ule vertex superalgebra. For this construction we follow Duncan and Har-
vey [17]. We note that the description below can also be found in [2]. In
this setting, let p be a one dimensional complex vector space with a non-
degenerate symmetric bilinear form. Let p̂ := p[t, t−1]t

1

2 and p̂tw := p[t, t−1],
for a ∈ p we write a(r) for atr with the bilinear form extended so that
⟨a(r), b(s)⟩ = ⟨a, b⟩δr+s,0.

We define Cliff(p̂) to be the Clifford algebra attached to p̂. Let p̂+ :=
p[t]t

1

2 and let ⟨p̂+⟩ be the subalgebra of the Clifford algebra Cliff(p̂) generated
by p̂+. Take Cv to be a ⟨p̂+⟩ module such that 1v = v and p(r)v = 0 for
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r > 0. Then we define

(3.3) A(p) := Cliff(p̂)⊗⟨p̂+⟩ Cv,

and A(p) has the structure of a vertex superalgebra such that

Y (u

(
−
1

2

)
v, z) =

∑

n∈Z
u(n+

1

2
)z−n−1

for u ∈ p. A(p) has the structure of a vertex operator superalgebra with
central charge 1

2 when we equip it with the Virasoro element

ω := p

(
−3

2

)
p

(
−1

2

)
v,

for p ∈ p such that ⟨p, p⟩ = −2.
Let Cliff(p̂tw) be the Clifford algebra attached to p̂tw. Define p̂>tw := p[t]t

and let ⟨p̂>tw⟩ be the subalgebra of this Clifford algebra generated by p̂>tw.
Similarly, define p̂−tw := p[t−1] and ⟨p̂−tw⟩. Take Cvtw to be a p̂>tw module
such that 1vtw = vtw and a(r)vtw = 0 for a ∈ p and r > 0 . For p ∈ p (as
before) such that ⟨p, p⟩ = −2, we have that p(0)2 = 1 in Cliff(p). Define
v+
tw := (1 + p(0))vtw so that p(0)v+

tw = v+
tw. Then we define

(3.4) A(p)+tw := Cliff(p̂tw)⊗⟨p̂>

tw⟩ Cv
+
tw,

so that A(p)+tw is isomorphic (as a ⟨p̂−tw⟩-module) to
∧
(p(−n) | n > 0)v+

tw

(where
∧
(x1, x2 . . . ) :=

∧
(⊕∞

i=1Cxi)).
By the reconstruction theorem described in [24] we can see that A(p)tw

is a twisted module for A(p) with fields Ytw : A(p)⊗A(p)tw → A(p)tw((z
1

2 ))
such that Ytw

(
u
(−1

2

)
v, z

)
=

∑
n∈Z

u(n)z−n− 1

2 for u ∈ p. Since A(p)+tw is a sub-

module of A(p)tw (generated by v+
tw), it can be verified that A(p)+tw is a

twisted module for A(p) so that the above map can be restricted to A(p)+tw.
In fact, A(p) is a canonically twisted A(p)-module, by which we mean the
twisted module for A(p) with respect to its parity involution (see also [18]).

Let L2(0) be the L(0) operator for the Clifford module vertex superal-
gebra and c2 its central charge. Then we can see that

tr
(
p(0)qL2(0)− c2

24 | A(p)+tw

)
= η(τ).

We would like a module with graded dimension equal to η4(τ) so we will
consider a tensor product of these A(p)+tw (we have from [25] that the tensor
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product of vertex superalgebras is naturally a vertex superalgebra and that
the tensor product of twisted modules is a twisted module for the tensor
product of vertex superalgebras).

To do this, we define

(3.5) Ã(p) := A(p1)⊗ · · · ⊗A(p4)

and

(3.6) Ã(p)tw := A(p1)
+
tw ⊗ · · · ⊗A(p4)

+
tw

where each A(pi)
+
tw is isomorphic to

∧
(pi(−n) | n > 0)v+

tw. Then we can
define

(3.7) Ỹtw : Ã(p) ⊗ Ã(p)+tw → Ã(p)+tw((z
1

2 ))

where for ui ∈ A(pi),

(3.8)

Ỹtw(u1 ⊗ · · · ⊗ u4, z) = Ytw(u1, z)⊗ · · · ⊗ Ytw(u4, z)

=
∑

n∈Z4

u1(n1)⊗ · · · ⊗ u4(n4)z
−n1···−n4−2,

with n = (n1, . . . , n4), and finally

p̃(0) := p1(0)⊗ · · · ⊗ p4(0).

This completes the proof of the following lemma in which we record the
second factor of equation (3.2).

Lemma 3.1.

tr
(
p̃(0)qL2(0)− c2

24 | Ã(p)tw

)
= η4(τ).

For the third factor, we require a module with graded dimension function

given by the expansion of
η2(τ)

θ21(τ, z)
in our usual domain (τ ∈ H, z ∈ C such

that 0 < −Im(z) < Im(τ)). To this end, we use a twisted module over a
Weyl module vertex operator algebra. We follow Duncan and O’Desky for
this construction [20]. In this setting, let b be a 4-dimensional vector space
with a non-degenerate antisymmetric bilinear form. Let b̂ := b[t, t−1]t

1

2 and
b̂tw := b[t, t−1], for b ∈ b we write b(r) for btr with the bilinear form extended
as in the case of the Clifford module vertex operator algebra.
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Let Weyl(b̂) be the Weyl algebra associated to b̂ and its antisymmetric
bilinear form. Define b̂+ := b[t]t

1

2 and b̂− := b[t−1]t
1

2 so that b̂ = b̂+
⊕

b̂−

is a polarization for the antisymmetric bilinear form so that b̂± is isotropic.
Let Cv be the unique unital ⟨b̂+⟩-module such that bv = 0 for every b ∈ b̂+.

We define the Weyl module vertex algebra associated to b and the anti-
symmetric bilinear form to be the unique vertex superalgebra structure on

(3.9) W(b) := Weyl(b̂)⊗⟨b̂+⟩ Cv

such that Y (b
(−1

2

)
v, z) =

∑
n∈Z

b(n+ 1
2)z

−n−1 for b ∈ b.

Let {b±i } be a basis for b± such that ⟨⟨b∓i , b
±
j ⟩ = ±δij where ⟨⟨·, ·⟩ is the

antisymmetric bilinear form on b. Then define

ω :=
1

2

∑

i

(
b+i

(
−3

2

)
b−i

(
−1

2

)
− b+i

(
−1

2

)
b−i

(
−3

2

))
v.

Then equipped with Virasoro element ω, W(b) has the structure of a
Weyl module vertex operator algebra.

Similarly, for b+ defined to be the span of {b+i } and b− defined to be

the span of {b−i }, we can define b̂+tw := b+ ⊕ tb[t] and b̂−tw := b− ⊕ t−1b[t−1].

Let Cvtw be the unique unital ⟨b̂+tw⟩-module such that bvtw = 0 for every
b ∈ b̂+tw. Then W(b)tw has the structure of a twisted W(b)-module:

(3.10) W(b)tw := Weyl(b̂tw)⊗⟨b̂+
tw⟩ Cvtw

such that Ytw(b
(−1

2

)
, z) =

∑
n∈Z

b(n)z−n− 1

2 for b ∈ b.W(b)tw is the unique (up

to equivalence) irreducible canonically twisted W(b)-module.
Denote the central charge of W(b) by c3. We also denote by L3(n) the

coefficient of z−n−2 in Y (ω, z) or Y (ω, z)tw. Letting

ȷ :=
∑

i

b+i

(
−1

2

)
b−i

(
−1

2

)
v,

we denote by J3(n) the coefficient of z−n−1 in Y (ȷ, z) or Y (ȷ, z)tw. Thus we
have a bigrading on both W(b) and W(b)tw. We focus on the latter, W(b)tw,
which has bigraded dimension as follows:

tr
(
yJ3(0)qL3(0)− c3

24 | W(b)tw

)
(3.11)

= y−1q−
1

6

∏

n>0

(1− y−1qn−1)−2(1− yqn)−2.
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Remark. For the above equation to make sense we should expand the right
hand side in the domain to which we have restricted, 0 < −Im(z) < Im(τ).

In other words, each factor of the form
1

(1−X)
should be interpreted as

∑
n≥0

Xn.

Lemma 3.2.

−tr
(
yJ3(0)qL3(0)− c3

24 | W(b)tw

)
=

η2(τ)

θ21(τ, z)

Proof. The equation for θ1(τ, z) (see Section 2) implies the following equa-

tion for
1

θ21(τ, z)
:

(3.12)
1

θ21(τ, z)
= −y−1q−

1

4

∏

n>0

(1− y−1qn−1)−2(1− yqn)−2(1− qn)−2,

Noting that η2(τ) = q
1

12

∏
n>0

(1− qn)2 we see that

(3.13)
η2(τ)

θ21(τ, z)
= −y−1q−

1

6

∏

n>0

(1− y−1qn−1)−2(1− yqn)−2,

and the expansion of this in our specified domain is equal to the graded
dimension of W(b)tw (see (3.11)). □

To recover the first factor of (3.2) we need a module with graded dimen-
sion function ϕg(τ, z). For this we use the canonically twisted V s♮-module,

V s♮
tw , where V

s♮ is the unique self-dual, rational, C2-cofinite vertex operator
superalgebra of CFT type with central charge 12 such that L(0)u = 1

2u for
u ∈ V s♮ implies u = 0 (cf. Theorem 5.15 [15] and Theorem 4.5 [18]).

For full details of the construction of V s♮
tw , we refer the reader to Duncan

and Mack-Crane [18]. In what follows we give a brief summary. To define
V s♮
tw here, we start with the construction of Clifford algebra modules (see

above), but this time instead of starting with a one-dimensional complex
vector space, we take a to be a 24-dimensional complex vector space with
a non-degenerate symmetric bilinear form. Let â := a[t, t−1]t

1

2 and âtw :=
a[t, t−1], for a ∈ a we write a(r) for atr with the bilinear form extended as
before. We define a polarization â = â+ ⊕ â− of â by setting â+ := a[t]t

1

2 and

â− := a[t−1]t
−1

2 . Let Cv be the unique unital ⟨â+⟩-module such that av = 0
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for every a ∈ â+. Then we can define A(a) to be the Cliff(â)-module:

(3.14) A(a) := Cliff(â)⊗⟨â+⟩ Cv,

where as ⟨â−⟩-modules, we have the isomorphism A(a) ≃
∧
(â−)v.

A(a) has the structure of a vertex superalgebra such that

Y (a

(
−
1

2

)
v, z) =

∑

n∈Z
a(n+

1

2
)z−n−1

for a ∈ a. The super space structure A(a) = A(a)0 ⊕A(a)1 is given by the
parity decomposition on

∧
(â−)v.

For {ei} an orthonormal basis for a, the Virasoro element

ω = −
1

4

dima∑

i=1

ei

(
−
3

2

)
ei

(
−
1

2

)
v,

gives A(a) the structure of a vertex operator superalgebra.
Similarly, for a = a+ ⊕ a− a polarization of a with respect to its non-

degenerate symmetric bilinear form, we can define â+tw := a+ ⊕ ta[t] and
â−tw := a− ⊕ t−1a[t−1]. Let Cvtw be the unique unital ⟨â+⟩-module such that
uvtw = 0 for u ∈ â+. Then

(3.15) A(a)tw := Cliff(âtw)⊗⟨â+
tw⟩ Cvtw

has the structure of a twisted A(a)-module such that

Ytw(a

(
−
1

2

)
, z) =

∑

n∈Z
a(n)z−n− 1

2

for a ∈ a. This is the unique (up to equivalence) irreducible canonically
twisted A(a)-module. We again have the isomorphism A(a)tw ≃

∧
(â−tw)vtw

as ⟨â−tw⟩-modules.
We will also define a decomposition of A(a)tw. For this we first define

z ∈ Spin(a) to be the unique lift of −Ida ∈ SO(a) to Spin(a) such that zvtw =
vtw. The element z acts on A(a)tw with order two and we denote by A(a)jtw
the eigenspace for this action with eigenvalue (−1)j . We can decompose
A(a)tw into eigenspaces A(a)tw = A(a)0tw ⊕A(a)1tw. For more on the lift to
the spin group, we refer the reader to [18]. For the rest of the construction



✐

✐

“2-Beneish” — 2022/7/9 — 2:12 — page 1721 — #19
✐

✐

✐

✐

✐

✐

Module constructions for certain subgroups 1721

we refer to [19]. Taking a = Λ⊗Z C, we define

(3.16) V s♮ = A(a)0 ⊕A(a)1tw, V s♮
tw = A(a)1 ⊕A(a)0tw.

Denote the central charge of V s♮ by c1, and denote by L1(n) the coefficient
of z−n−2 in Y (ω, z) or Y (ω, z)tw.

We will define an additional operator J1(n) in order to define a bi-
grading on V s♮

tw . To define this operator, first let Π be a 4-dimensional sub-
space of Λ⊗Z C and let {x, y, z, w} be an orthonormal basis for Π. We then
define a±1 = 1√

2
(x± iy) and a±2 = 1√

2
(z ± iw) so that ⟨a±1 , a

∓
1 ⟩ = ⟨a±2 , a

∓
2 ⟩ =

1. Then we let

ȷ :=
1

2
a−1

(
−
1

2

)
a+1

(
−
1

2

)
v +

1

2
a−2

(
−
1

2

)
a+2

(
−
1

2

)
v,

and we denote by J1(n) the coefficient of z−n−1 in Y (ȷ, z) or Y (ȷ, z)tw. The
operators L1(0) and J1(0) then equip V s♮

tw with a bigrading as follows:

(3.17) (V s♮
tw)n,r = {v ∈ V s♮

tw | (L1(0)−
c
24)v = nv, J1(0)v = rv}.

Taking a = Λ⊗Z C allows us to identify Co0 (and therefore M24) with a
subgroup of SO(a). By Proposition 3.1 of [18], for any subgroup G of SO(a)
which is isomorphic to Co0, there exists a unique lift of G to Spin(a) such
that the non-trivial central element is z. We denote this lift by Ĝ and for
g ∈ G, we denote the lift of g to Ĝ by ĝ. The spin group acts naturally on
V s♮ and V s♮

tw so we can now state the following lemma:

Lemma 3.3. For g ∈ G fixing a 4-space in the 24-dimensional permutation
representation of M24, we have

(3.18) ϕg(τ, z) = −tr
(
zĝyJ1(0)qL1(0)− c1

24 | V s♮
tw

)
.

Define the operators L(0) := L1(0) + L2(0) + L3(0) and J(0) := J1(0) +
J3(0) and the central charge c := c1 + c2 + c3. Combining Lemmas 3.1, 3.2,
and 3.3 we can state the following theorem:

Theorem 3.4. Ã(p)tw ⊗W(b)tw ⊗ V s♮
tw is an infinite dimensional, bigraded,

virtual module with trace functions as follows:

(3.19) tr
(
ĝzp̃(0)yJ(0)qL(0)−

c

24 | Ã(p)tw ⊗W(b)tw ⊗ V s♮
tw

)
= M̃g(τ, z).
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This gives a module construction for any subgroup G of M24 for which
the 24-dimensional permutation representation of M24 restricted to G fixes
at least a four dimensional space.

Example. Ã(p)tw ⊗W(b)tw ⊗ V s♮
tw is a (virtual) module for the group

L3(4) ≃ M21, one of the simple subgroups of M24. One can see via the
following fusion of conjugacy classes

{1A, 2A, 3A, 4B, 4B, 4B, 5A, 5A, 7A, 7B}

that the 24-dimensional representation of M24 restricts to L3(4) as 4ψ1 +
1ψ2 (where ψi are irreducible representations of L3(4) and ψ1 is the triv-
ial representation). In particular, we see the permutation representation
restricted to L3(4) fixes a four dimensional space.

4. Module construction II

The construction described in the previous section does not apply in cases
where the restriction of the 24-dimensional permutation representation to a
subgroup of M24 does not fix a 4-space. In what follows we give a similar
module construction for such subgroups. However, for these subgroups, we
still require that each element of the subgroup fixes a 4-space. Note that this
is a weaker requirement than asking that the subgroup itself fixes a 4-space,
because not every element of the subgroup necessarily fixes the same 4-space.
For this construction we apply a method of Anagiannis, Cheng, Harrison [1].
In our context, the idea of the method is to view the theta quotients and
the eta quotients in ϕg(τ, z) (the graded trace functions of V s♮

tw) as coming
from dimensions of different spaces (see (4.10)).

We begin by constructing another module T which we show has the same
the trace functions as those from V s♮

tw (recall that V s♮
tw = A(a)1 ⊕A(a)0tw).

We define f := C4 and equip it with both a non-degenerate symmetric
bilinear form ⟨·, ·⟩ and a non-degenerate antisymmetric bilinear form ⟨⟨·, ·⟩.
For convenience we make the choice in such a way that a decomposition
f = f+

⊕
f− serves as a polarization for both bilinear forms. Then we may

define

B = A(f)⊗W(f) and Btw = A(f)tw ⊗W(f)tw,(4.1)

where A(f) and W(f) are defined, as before, to be a Cliff(̂f)-module and a
Weyl(̂f)-module associated to f, each endowed with a vertex superalgebra
(resp. vertex algbebra) structure.
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For A(f) we let {f±i } be a basis for f± such that ⟨f∓i , f
±
j ⟩ = δij where

⟨·, ·⟩ is the non-degenerate symmetric bilinear form on f. We can then define

the elements ȷ :=
∑

i f
+
i (−1

2)f
−
i (−1

2)v and ω :=
1

2

∑
i

(
f+i

(−3
2

)
f−i

(−1
2

)
−

f+i
(−1

2

)
f−i

(−3
2

) )
v and we denote the corresponding operators by J11(0)

and L11(0) and the central charge by c11.
Similarly, for W(f) we assume that the antisymmetric bilinear form

⟨⟨·, ·⟩ on f is chosen so that ⟨⟨f∓i , f
±
j ⟩ = ±δij . We define the elements ȷ :=

∑
i f

+
i (−1

2 )f−i (−1
2 )v and ω :=

1

2

∑
i

(
f+i

(−3
2

)
f−i

(−1
2

)
− f+i

(−1
2

)
f−i

(−3
2

))
v

and denote the corresponding operators J12(0) and L12(0) and the central
charge c12.

Lastly, A(a), for a = Λ⊗Z C, along with the conformal vector associated
to it has already been defined in the previous section, but here we will rename
the L(0) operator and the central charge associated to A(a) as L13(0) and
c13, respectively. We do not define the element ȷ or the operator J(0) for
A(a) because we are no longer assuming that all g in our subgroup fix a
single 4-space in a.

We can now make the definition:

T := (B ⊗A(a))1 ⊕ (B ⊗A(a))0tw

and we can compute the trace of g ∈M24 (for g that fix a 4-space, and are
in the allowed conjugacy classes) acting on T .

We let λ±1
i be the eigenvalues for g acting on a. Since we are restricting

to g ∈M24 fixing a 4-space of a, we can assume that for two i we have

λ±1
i = 1. We also define νi to be square roots of the λi and ν =

12∏
i=1

νi. Before

we can compute the trace of ĝzyJ1(0)qL1(0)− c1
24 on T we require a few more

definitions.
We recall the product formulas of the Jacobi theta functions

(4.2) θ1(τ, z) := −iq
1

8 y
1

2

∏

n>0

(1− y−1qn−1)(1− yqn)(1− qn),

(4.3) θ2(τ, z) := q
1

8 y
1

2

∏

n>0

(1 + y−1qn−1)(1 + yqn)(1− qn),

(4.4) θ3(τ, z) :=
∏

n>0

(1 + y−1qn−1/2)(1 + yqn−1/2)(1− qn),
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and

(4.5) θ4(τ, z) :=
∏

n>0

(1− y−1qn−1/2)(1− yqn−1/2)(1− qn).

We then recall the definition

(4.6) ηg(τ) := q
∏

n>0

12∏

i=1

(1− λ−1
i qn)(1− λiq

n),

and note that

(4.7)
ηg(τ/2)

ηg(τ)
= q−

1

2

∏

n>0

12∏

i=1

(1− λ−1
i qn−

1

2 )(1− λiq
n− 1

2 ).

We also define

(4.8) Cg = ν

12∏

i=1

(1− λ−1
i )

and

(4.9) Dg = ν
′

10∏

i=1

(1− λ−1
i ),

where ν
′

is the product
∏10

i=1 νi (where we choose the labelling so that λ
±
i = 1

for i = 11 and i = 12).
With these definitions, we are able to give the following explicit expres-

sion for ϕg(τ, z) from Proposition 9.2 of [19]:

ϕg(τ, z) = −
1

2

(
θ24(τ, z)

θ24(τ, 0)

η−g(τ/2)

η−g(τ)
−
θ23(τ, z)

θ23(τ, 0)

η−g(τ/2)

η−g(τ)

)
(4.10)

+
1

2

(
Dgηg(τ)

θ21(τ, z)

η6(τ)
+ C−gη−g(τ)

θ22(τ, z)

θ22(τ, 0)

)
.

In the next few lemmas, we show that the trace of ĝzyJ1(0)qL1(0)−c1/24 on T
is equal to ϕg(τ, z).

Lemma 4.1. Let g ∈M24 such that ĝ fixes a 4-dimensional space of a. Let
z denote the parity involution, let c1 be the central charge, let L1(0) and
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J11(0) and J12(0) be operators as before, then

− lim
γ→−1

tr
(
ĝzyJ11(0)γJ12(0)qL1(0)− c1

24 | (B ⊗A(a))1
)

(4.11)

= −
1

2

(
θ24(τ, z)

θ24(τ, 0)

η−g(τ/2)

η−g(τ)
−
θ23(τ, z)

θ23(τ, 0)

η−g(τ/2)

η−g(τ)

)
.

Proof. We begin by recalling the projection operator P 1(g) = 1
2(g − zg).

This will allow us to compute the graded trace (4.11) on (B ⊗A(a))1 by
using the traces of ĝzyJ1(0)qL1(0)− c1

24 and ĝyJ1(0)qL1(0)− c1
24 on B ⊗A(a).

We will first compute the traces of ĝqL1(0)− c

24 and ĝzqL1(0)− c

24 on A(a).
The traces are as follows:

tr
(
ĝqL13(0)− c13

24 | A(a)
)

(4.12)

= q−
1

2

∏

n>0

(1 + qn−
1

2 )4
10∏

i=1

(1 + λiq
n− 1

2 )(1 + λ−1
i qn−

1

2 ),

and

tr
(
ĝzqL13(0)− c13

24 | A(a)
)

(4.13)

= q−
1

2

∏

n>0

(1− qn−
1

2 )4
10∏

i=1

(1− λiq
n− 1

2 )(1− λ−1
i qn−

1

2 ).

Note that ĝ acts trivially on the components of B because f is fixed by
ĝ. So we compute the traces on the components of B as follows:

(4.14) tr
(
yJ11(0)qL11(0)− c11

24 | A(f)
)
= q−

1

12

∏

n>0

(1 + y−1qn−
1

2 )2(1 + yqn−
1

2 )2,

(4.15) tr
(
zyJ11(0)qL11(0)− c11

24 | A(f)
)
= q−

1

12

∏

n>0

(1− y−1qn−
1

2 )2(1− yqn−
1

2 )2,

(4.16) tr
(
γJ12(0)qL12(0)− c12

24 | W(f)
)
= q

1

12

∏

n>0

(1− γ−1qn−
1

2 )−2(1− γqn−
1

2 )−2,

and

(4.17) tr
(
zγJ12(0)qL12(0)− c12

24 | W(f)
)
= q

1

12

∏

n>0

(1 + γ−1qn−
1

2 )−2(1 + γqn−
1

2 )−2.
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Define the operators L1(0) := L11(0) + L12(0) + L13(0) and the central
charge c1 := c11 + c12 + c13.

We can then combine eps. (4.12), (4.14), (4.16) and take the limit as
γ → −1 to compute

tr
(
ĝzqL1(0)− c1

24 yJ11(0)γJ12(0) | B ⊗A(a)
)

(4.18)

= q−
1

2

∏

n>0

(1 + y−1qn−
1

2 )2(1 + yqn−
1

2 )2
10∏

i=1

(1 + λ−1
i qn−

1

2 )(1 + λiq
n− 1

2 )

=
θ23(τ, z)

θ23(τ, 0)

η−g(τ/2)

η−g(τ)
.

Similarly, we combine eqs. (4.13), (4.15), (4.17) and take the limit as
γ → −1, to get:

tr
(
ĝzqL1(0)− c1

24 yJ11(0)γJ12(0) | B ⊗A(a)
)

(4.19)

= q−
1

2

∏

n>0

(1− y−1qn−
1

2 )2(1− yqn−
1

2 )2
10∏

i=1

(1− λ−1
i qn−

1

2 )(1− λiq
n− 1

2 )

=
θ24(τ, z)

θ24(τ, 0)

ηg(τ/2)

ηg(τ)
.

Now that we have computed the traces of ĝzyJ1(0)qL1(0)−c1/24 and
ĝyJ1(0)qL1(0)−c1/24 on B ⊗A(a), we can compute the projection onto (B ⊗
A(a))1 as follows:

tr
(
ĝzqL1(0)− c1

24 yJ11(0)γJ12(0) | (B ⊗A(a))1
)

=
1

2

(
tr
(
ĝzqL1(0)−c1/24yJ11(0)γJ12(0) | B ⊗A(a)

)

− tr
(
ĝqL1(0)−c1/24yJ11(0)γJ12(0) | B ⊗A(a)

))
.

Thus, letting γ → −1, we have:

tr
(
ĝzqL1(0)− c1

24 yJ11(0)γJ12(0) | (B ⊗A(a))1
)

(4.20)

→
1

2

(
θ24(τ, z)

θ24(τ, 0)

ηg(τ/2)

ηg(τ)
−
θ23(τ, z)

θ23(τ, 0)

η−g(τ/2)

η−g(τ)

)
.

□
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Lemma 4.2. Let g ∈M24 such that ĝ fixes a 4-dimensional space of a. Let
z denote the parity involution, let c1 be the central charge, let L1(0) and
J11(0) and J12(0) be operators as before, then

− lim
γ→−1

tr
(
ĝzyJ11(0)γJ12(0)qL1(0)− c1

24 | (B ⊗A(a))0tw

)
(4.21)

= −
1

2

(
Dgηg(τ)

θ21(τ, z)

η6(τ)
+ C−gη−g(τ)

θ22(τ, z)

θ22(τ, 0)

)
.

Proof. We begin by recalling the projection operator P 0(g) = 1
2(g + zg).

This will allow us to compute the graded trace (4.21) on (B ⊗A(a))0tw by
using the traces of ĝzyJ1(0)qL1(0)− c1

24 and ĝyJ1(0)qL1(0)− c1
24 on (B ⊗A(a))tw.

We will first compute the traces of ĝqL1(0)−c/24 and ĝzqL1(0)−c/24 on
A(a)tw. The traces are as follows:

tr
(
ĝqL13(0)− c13

24 | A(a)tw

)
(4.22)

= νq
∏

n>0

(1 + qn−1)2(1 + qn)2
10∏

i=1

(1 + λiq
n)(1 + λ−1

i qn−1),

tr
(
ĝzqL13(0)− c13

24 | A(a)tw

)
(4.23)

= νq
∏

n>0

(1− qn−1)2(1− qn)2
10∏

i=1

(1− λiq
n)(1− λ−1

i qn−1).

Note that ĝ acts trivially on the components of Btw because f is fixed
by ĝ. So we compute the traces on the components of Btw as follows:

(4.24) tr
(
yJ11(0)qL11(0)− c11

24 | A(f)tw

)
= yq

1

6

∏

n>0

(1 + y−1qn−1)2(1 + yqn)2,

(4.25) tr
(
zyJ11(0)qL11(0)− c11

24 | A(f)tw

)
= yq

1

6

∏

n>0

(1− y−1qn−1)2(1− yqn)2,

tr
(
γJ12(0)qL12(0)− c12

24 | W(f)tw

)
(4.26)

= γ−1q−
1

6

∏

n>0

(1− γ−1qn−1)−2(1− γqn)−2,



✐

✐

“2-Beneish” — 2022/7/9 — 2:12 — page 1728 — #26
✐

✐

✐

✐

✐

✐

1728 Lea Beneish

and

tr
(
zγJ12(0)qL12(0)− c12

24 | W(f)tw

)
(4.27)

= γ−1q−
1

6

∏

n>0

(1 + γ−1qn−1)−2(1 + γqn)−2.

As before, we have the operators L1(0) := L11(0) + L12(0) + L13(0) and the
central charge c1 := c11 + c12 + c13.

We combine eqs. (4.22), (4.24), (4.26) and let γ → −1 to compute

tr
(
ĝqL1(0)− c1

24 yJ11(0)γJ12(0) | (B ⊗A(a))tw

)
(4.28)

= −yνq
∏

n>0

10∏

i=1

(1 + λiq
n)(1 + λiq

n−1)(1 + y−1qn−1)2(1 + yqn)2

= −C−gη−g(τ)
θ22(τ, z)

θ22(τ, 0)
,

and similarly, we combine eqs. (4.23), (4.25), (4.27) and take the limit as
γ → −1 to compute

tr
(
ĝzqL1(0)− c1

24 yJ11(0)γJ12(0) | (B ⊗A(a))tw

)
(4.29)

= −yνq
∏

n>0

10∏

i=1

(1− λiq
n)(1− λiq

n−1)(1− y−1qn−1)2(1− yqn)2

= Dgηg(τ)
θ21(τ, z)

η6(τ)
.

We note that letting γ → −1 in equation (4.29) does not cause any problems
with convergence because the double pole that results from taking this limit
in the n = 1 term of (1− qn−1)−2 from eq. (4.27) is canceled by the double
zero coming from the n = 1 term (1− qn−1)2 in eq. (4.23).

Now that we have computed the traces of ĝzyJ1(0)qL1(0)− c1
24 and

ĝyJ1(0)qL1(0)− c1
24 on (B ⊗A(a))tw, we can compute the projection onto (B ⊗

A(a))0tw as follows:
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tr
(
ĝzqL1(0)− c1

24 yJ11(0)γJ12(0) | (B ⊗A(a))0tw

)
(4.30)

=
1

2

(
tr
(
ĝzqL1(0)− c1

24 yJ11(0)γJ12(0)

| (B ⊗A(a))tw

)

− tr
(
ĝqL1(0)− c1

24 yJ11(0)γJ12(0) | (B ⊗A(a))tw

))
.

Thus, letting γ → −1, we get

tr
(
ĝzqL1(0)− c1

24 yJ11(0)γJ12(0) | (B ⊗A(a))0tw

)
(4.31)

→
1

2

(
Dgηg(τ)

θ21(τ, z)

η6(τ)
+ C−gη−g(τ)

θ22(τ, z)

θ22(τ, 0)

)
.

□

Lemma 4.3. Let ĝ, z, J11(0), J12(0), L1(0), let c1 be as before, then we
have

− lim
γ→−1

tr
(
ĝzqL1(0)− c1

24 yJ11(0)γJ12(0) | T
)

(4.32)

= −
1

2

(
θ24(τ, z)

θ24(τ, 0)

ηg(τ/2)

ηg(τ)
−
θ23(τ, z)

θ23(τ, 0)

η−g(τ/2)

η−g(τ)

)

−
1

2

(
Dgηg(τ)

θ21(τ, z)

η6(τ)
+ C−gη−g(τ)

θ22(τ, z)

θ22(τ, 0)

)

= ϕg(τ, z).

We omit the proof of this lemma because the statement follows from the
two lemmas immediately before it.

Now we have shown that the module T recovers the trace functions
ϕg(τ, z).

Define the operators L(0) := L1(0) + L2(0) + L3(0) and J(0) := J11(0) +
J3(0) and the central charge c := c1 + c2 + c3. Combining Lemmas 3.1, 3.2,
and 4.3 we can state the following theorem.

Theorem 4.4. Ã(p)tw ⊗W(b)tw ⊗ T is an infinite dimensional, bigraded,
virtual module with trace functions as follows:
(4.33)

lim
γ→−1

tr
(
ĝzp̃(0)γJ12(0)yJ(0)qL(0)−

c

24 | Ã(p)tw ⊗W(b)tw ⊗ T
)
= M̃g(τ, z).
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Example. Ã(p)tw ⊗W(b)tw ⊗ T is a (virtual) module for the groupM22 : 2,
one of the maximal subgroups of M24. One can see via the following fusion
of conjugacy classes:

{1A,2A, 3A, 4B, 4B, 5A, 6A, 7A, 7B, 8A, 11A,

2A, 2B, 4A, 4B, 6A, 8A, 10A, 12A, 14A, 14B}

and from looking at the cycle structure of each of these conjugacy classes
that each element of M22 : 2 fixes a 4-dimensional space. (Although all of
M22 : 2 only fixes a 2-dimensional space).

Example. Ã(p)tw ⊗W(b)tw ⊗ V s♮
tw is a (virtual) module for the group

24 : A7, one of the maximal subgroups of M23. One can see this via the
following fusion of conjugacy classes:

{1A, 2A, 2A, 4B, 3A, 3A, 6A, 4B, 8A, 5A, 6A, 7A, 14A, 7B, 14B}

and from looking at the cycle structure of each of these conjugacy classes
that each element of 24 : A7 fixes a 4-dimensional space. (Although all of
24 : A7 only fixes a 3-dimensional space).

Example. Ã(p)tw ⊗W(b)tw ⊗ T is a (virtual) module for the group A8,
one of the maximal subgroups of M23. One can see via the following fusion
of conjugacy classes:

{1A, 2A, 2A, 3A, 3A, 4B, 4B, 5A, 6A, 6A, 7A, 7B, 15A, 15B}

and from looking at the cycle structure of each of these conjugacy classes
that each element of A8 fixes a 4-dimensional space. (Although all of A8

only fixes a 3-dimensional space).

Example. Ã(p)tw ⊗W(b)tw ⊗ T is a (virtual) module for the smallest spo-
radic group M11, one of the subgroups ofM24. One can see via the following
fusion of conjugacy classes:

{1A, 2A, 3A, 4B, 5A, 6A, 8A, 8A, 11A, 11A}

and from looking at the cycle structure of each of these conjugacy classes
that each element of M11 fixes a 4-dimensional space. (Although all of M11

only fixes a 3-dimensional space).
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Remark. The module for M11 restricts in particular to a module for
Z/11Z. This gives an explicit realization of the module in [2] for which
the integrality of its trace functions is equivalent to divisibility conditions
on the number of Fp points on J0(11) because of the cusp forms in the
expressions (see equation 3.2 and Appendix A of [2]).

Similarly the modules for M22 : 2 and 24 : A7 give explicit realizations
of modules for which the integrality of their trace functions are equivalent to
divisibility conditions on the number of Fp points on J0(14) and the module
for A8 gives an explicit realization of a module for which the integrality of
its trace functions is equivalent to divisibility conditions on the number of
Fp points on J0(15).
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