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and a vacuum spacetime near spatial infinity. Our definition does
not involve any regularity assumptions; it even applies to singular
or generalized “quantum” spacetimes. A positive mass theorem is
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1. Introduction and outline of results

In Newtonian physics, the total energy is obtained simply by adding the
energies of all particles and fields of the system, including the energy of
the gravitational field. In general relativity, however, the situation is much
more difficult due to the nonlinearity of the gravitational interaction. Nev-
ertheless, as shown by Arnowitt, Deser and Misner [1], it is possible to
define total energy and momentum of an isolated gravitational system, ex-
pressed in terms of the asymptotics of the metric tensor near infinity. Since
in the present paper we restrict attention throughout to the static situa-
tion, we also recall the definition by Arnowitt, Deser and Misner (ADM)
only in this setting. Let M be a Lorentzian manifold which is the topo-
logical product M = R× N . We denote the spacetime points by x = (t,x)
with t ∈ R and x ∈ N . Next, we assume that the Lorentzian metric is time
independent (in other words, we assume that ∂t is a Killing field), that the
induced metric g on N is Riemannian, and that the second fundamental
form vanishes on N (this is sometimes referred to as the time-symmetric
case). Finally, we assume that (N , g) is asymptotically flat. Stated for sim-
plicity in three spatial dimensions and with one asymptotic end, this means
that there is a compact set K ⊂ N such that N \K is diffeomorphic to the
region R3 \BR(0) outside a closed ball of radius R. In the chart defined by
this diffeomorphism, the metric should be of the form

(1.1) gαβ(x) = δαβ + aαβ(x) , x ∈ R
3 \BR(0) ,

where aαβ decays at infinity as

aαβ = O(1/|x|) , ∂γaαβ = O(1/|x|2) and ∂γδaαβ = O(1/|x|3) .

Under these assumptions, the total energy is also referred to as the total
mass or ADM mass. It is defined by

(1.2) MADM =
1

16π
lim

R→∞

3
∑

α,β=1

∫

SR

(∂βgαβ − ∂αgββ) ν
α dΩ ,

where dΩ is the area form on the coordinate sphere SR, and ν is the normal
vector to SR (both defined in the coordinate chart).

In Newtonian physics, the fact that the energies of all particles and all
energy densities of fields are positive implies that the total energy is also
positive. Again, in general relativity the connection is much more involved. It
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is made precise by the positive mass theorem proved by Schoen and Yau [44].
It states that if a suitable local energy condition is fulfilled, which in the static
case reduces to the condition that the scalar curvature of g is non-negative,

scal ≥ 0 ,

then the total mass non-negative. Moreover, if the total mass vanishes,
then (N , g) is flat. The positive mass theorem makes a profound statement
on the nature of the gravitational interaction. We remark that it can be
generalized to higher dimensions; see for example the recent papers [38, 45]
and the references therein.

The theory of causal fermion systems is a recent approach to fundamen-
tal physics where spacetime is no longer modelled by a Lorentzian manifold
but may instead have a nontrivial, possibly discrete structure on a micro-
scopic length scale (which can be thought of as the Planck scale). In the
setting of causal fermion systems, the physical equations are formulated via
a variational principle, the causal action principle. In [18, Chapter 4] it is
shown that in a specific limiting case, the so-called continuum limit, the
Euler-Lagrange (EL) equations of the causal action principle give rise to
the Einstein equations, up to possible higher order corrections in curvature
(which scale in powers of (δ2 Riem), where δ is the Planck length and Riem
is the curvature tensor). In this limiting case, spacetime goes over to a
Lorentzian manifold, whereas the gravitational coupling constant G ∼ δ2 is
determined by the length scale δ of the microscopic spacetime structure.

The derivation of the Einstein equations in [18, Chapter 4] has two disad-
vantages. First, it is rather technical, because it relies on the detailed form of
the regularized light-cone expansion of the kernel of the fermionic projector.
Consequently, the derivation does not give a good intuitive understanding
of the underlying mechanisms. Second and more importantly, the Einstein
equations are recovered only in the continuum limit, but the methods do not
give any insight into the geometric meaning of the EL equations for more
general “quantum” spacetimes.

In view of theses disadvantages, it is an important task to study the na-
ture of the gravitational interaction as described by the causal action prin-
ciple without referring to limiting cases, but instead by analyzing directly
the corresponding EL equations. One step in this direction is the recent pa-
per [8], where the connection between area change and matter flux is worked
out for two-dimensional surfaces propagating in a null Killing direction. In
the present paper we go a step in a different, somewhat complementary
direction which aims at understanding gravity for static systems directly
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from the causal action principle. We succeed in giving a general definition of
the total mass for static causal fermion systems. Moreover, a positive mass
theorem is proved which states that if a suitable local energy condition is
fulfilled, then the total mass is positive. We also explain how the ADM mass
is recovered as a limiting case.

More precisely, our results are stated as follows. In the theory of causal
fermion systems, a physical system (consisting of spacetime and all struc-
tures therein) is described by a Borel measure ρ on a set of linear oper-
ator F ⊂ L(H) on a Hilbert space H (for details see the preliminaries in
Section 2.2). Spacetime M is defined as the support of this measure,

M := supp ρ .

In the static situation to be considered here, there is a global time coordi-
nate t ∈ R, i.e.

M = R×N ∋ x = (t,x) .

Moreover, the system should be time independent. This is made precise
by a one-parameter group (Ut)t∈R of unitary transformations which leaves
the measure ρ invariant (for details see Definition 3.1). In particular, the
measure ρ can be written as

(1.3) dρ = dt dµ

where µ is a Borel measure on N . The dynamics of a causal fermion sys-
tem is described by a variational principle, the causal action principle (see
Section 2.2). In the static case, it reduces to minimizing the action S given
by

S(µ) =

∫

G

dµ(x)

∫

G

dµ(y) Lκ(x,y)

under variations of the measure µ, leaving the total volume fixed. Here
in G := F/R we divided out the action of the group (Ut)t∈R, and the La-
grangian Lκ is of the form

Lκ = L+ κ T with given functions L, T : G× G → R
+
0 ,

and κ > 0 is a Lagrange parameter (for details see Sections 2.2 and 3.2).
The functions L and T are symmetric, i.e.

L(x,y) = L(y,x) and T (x,y) = T (y,x) for all x,y ∈ G .
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The causal action principle in the static case is a specific example of a causal
variational principle (for the general context see Section 2.1).

A minimizer µ of the above variational principle satisfies the

(1.4) Euler-Lagrange (EL) equations ℓκ|N ≡ inf
G
ℓκ = 0 ,

where the function ℓκ is defined by

(1.5) ℓκ : G → R
+
0 , ℓκ(x) = ℓ(x) + κ t(x)

with

ℓ(x) :=

∫

N
L(x,y) dµ(y)− s(1.6)

t(x) :=

∫

N
T (x,y) dµ(y) ,(1.7)

and s is a positive parameter which for convenience is chosen such that the
infimum in (1.4) is zero.

Using the above notions, the total mass can be introduced as follows.
Let µ and µ̃ be two measures which are jointly static (meaning that they
are both static with respect to the same one-parameter group (Ut)t∈R; for
details see Definition 3.1) and are both minimizers or critical points of the
static causal action principle for the same values of the parameters κ and s

(for details on the definition of critical measures see the paragraph after (2.9)
in Section 2.1). We define the functions ℓ̃ and t̃ by adding tildes to µ, ℓ and t

in (1.6) and (1.7). In order to compare the measures µ and µ̃, we relate them
by the Lagrangian. To this end, we introduce the functions

(1.8)















n : N → R
+
0 ∪ {∞} , n(x) =

∫

Ñ
Lκ(x,y) dµ̃(y)

ñ : Ñ → R
+
0 ∪ {∞} , ñ(x) =

∫

N
Lκ(x,y) dµ(y)

and define the correlation measures ν and ν̃ by

(1.9) dν(x) = n(x) dµ(x) and dν̃(x) = ñ(x) dµ̃(x) .
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Definition 1.1. The measures µ̃ and µ are asymptotically close if they
are both σ-finite with infinite total volume,

(1.10) µ̃(Ñ) = µ(N) = ∞ ,

but
∫

N

∣

∣n(x)− s
∣

∣ dµ(x) <∞ and

∫

Ñ

∣

∣ñ(x)− s
∣

∣ dµ̃(x) <∞ .

We begin with the most general definition of the total mass.

Definition 1.2. Assume that µ and µ̃ are asymptotically close. Then the
total mass M of µ̃ relative to µ is defined by

M(µ̃, µ) := lim
ΩրN

lim
Ω̃րÑ

(

− s

(

µ̃(Ω̃)− µ(Ω)
)

+

∫

Ω̃
dµ̃(x)

∫

N\Ω
dµ(y) Lκ(x,y)−

∫

Ω
dµ(x)

∫

Ñ\Ω̃
dµ̃(y) Lκ(x,y)

)

,(1.11)

where the notation Ω ր N means that we take an exhaustion of N by sets
of finite µ-measure.

Here the limits exist and are independent of the choice of the exhaustions
(see Proposition 4.1).

This definition is extremely general because it does not involve any
smoothness or continuity assumptions. It even applies to singular or dis-
crete measures. It is not necessary (and would not even be possible in this
generality) to specify the dimension of spacetime. Clearly, in order to com-
pare this notion of total mass with the ADM mass, we need to specialize the
setting. We now explain step by step how this can be done. Along the way,
we will also explain the structure of the formula (1.11).

The first step is to assume that µ or µ̃ is a continuous measure in the
sense that it is non-atomic (for details see Definition 4.2). In this case,
in (1.11) one may restrict attention to sets Ω and Ω̃ with the same mea-
sure, making it possible to write the total mass as

(1.12) M(µ̃, µ) = lim
ΩnրN, Ω̃nրÑ with µ(Ωn)=µ̃(Ω̃n)<∞

×

(
∫

Ω̃n

dµ̃(x)

∫

N\Ωn

dµ(y) Lκ(x,y)−

∫

Ωn

dµ(x)

∫

Ñ\Ω̃n

dµ̃(y) Lκ(x,y)

)

,
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Ñ := supp µ̃

N := suppµ

G
Ω̃n

Ωn

yx

x
y

Figure 1: The surface layer integral defining the total mass.

where (Ωn)n∈N and (Ω̃n)n∈N are exhaustions of N and Ñ , respectively (for
details see Proposition 4.3).

Let us briefly explain the structure of the above formulas for the total
mass. The double integrals in (1.11) and (1.12) are so-called surface layer in-
tegrals, which generalize surface integrals to the setting of causal variational
principles (see [25, Section 2.3], [28, Section 7.1] or Sections 2.1.3 and 2.1.5
in the preliminaries). The main point is that of the two arguments x and y
of the Lagrangian Lκ, one lies in the interior region (Ωn or Ω̃n), whereas the
other lies in the exterior region of the other spacetime (Ñ \ Ω̃n and N \ Ωn,
respectively), as is indicated by the arrows in Figure 1. Since Lκ typically
decays if its arguments are far apart, the main contribution to the inte-
grals is obtained when both x and y are close to the boundaries ∂Ωn ⊂ N
or ∂Ω̃n ⊂ Ñ . Therefore, each of the two double integrals (1.11) and (1.12)
can be thought of as an integral over a “thin strip” around the boundaries
of ∂Ωn ⊂ N or ∂Ω̃n ⊂ Ñ . Moreover, it is important that in (1.11) and (1.12)
we take the difference of these double integrals. This is needed for getting a
connection to the general conservation law as first derived in [22, Section 4
and Appendix A].

Using this intuitive picture, it is evident that the expressions (1.11)
and (1.12) depend only on the geometry (as encoded in the measures µ
and µ̃) near infinity, but not on the geometry in any compact subset. This
statement will be made mathematically precise in Theorem 4.6 in Sec-
tion 4.2. However, it is important to observe that the inner volume does
come into play, as one sees from the term µ̃(Ω̃)− µ(Ω) in (1.11) and the
constraint µ̃(Ω̃n) = µ(Ωn) in (1.12). Therefore, our definition of the total
mass can be understood as a limit of surface layer integrals to be evaluated
on the boundaries of large subsets Ω ⊂ N and Ω̃ ⊂ Ñ which have the same
volume.

At first sight, the fact that the inner volume comes into play seems to
be a major difference to the ADM mass (1.2), which is computable purely
from the geometric data near infinity. However, as will be explained later in
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this introduction (after the statement of Theorem 1.10), for causal fermion
systems constructed in a Lorentzian spacetime (so-called static Dirac system;
see Section 2.3), the inner volume drops out of the computation, giving
formulas for M purely in terms of the geometry near infinity. This can be
understood non-technically as follows: The main contribution to the surface
layer integral in (1.11) is s times the difference of the volumes of Ω̃ and Ω. If
this contribution vanishes, the next-to-leading contribution comes into play.
This next-to-leading order contribution gives the total mass. For static Dirac
systems, it can be computed purely from the geometric data at infinity,
without referring to the volumes of Ω̃ or Ω. This argument will be made
precise in Proposition 6.3 and Appendix A.

In order to avoid confusion, we point out that the “volume” considered
here refers to the spatial volume measure µ obtained by rewriting the space-
time volume measure ρ in the form (1.3) (and similarly for µ̃). In examples of
spacetimes described by static Lorentzian manifolds (like the Schwarzschild
geometry), this measure does not agree with the volume element of the in-
duced Riemannian metric on N , but it coincides instead with the volume
form of spacetime contracted with the Killing field. This will be explained
in more detail in Section 6.

We next outline our positivity results for the mass. In order to prove
our results, we need to impose stronger assumptions on the asymptotics at
infinity, We first state these assumptions and explain the afterward.

Definition 1.3. The measure µ has one asymptotic end of dimen-
sion k ∈ N if there is a relatively compact open set I ⊂ N and a diffeomor-
phism

(1.13) Φ : N \ I → R
k \BR

(where BR is the open ball of radius R > 0) with the property that the push-
forward of µ is of the form

d(Φ∗µ)(x) = h(x) dkx

with a smooth function h ∈ C∞(Rk \BR,R
+) with limx→∞ h(x) = 1.

A sequence (xn)n∈N in N tends to infinity, xn → ∞, if almost all
elements of the sequence are in N \ I, and if the image sequence Φ(xn)
tends to infinity in Rk. A function g on N converges at infinity if the se-
quence f(xn) converges for every xn which tends to infinity. The limit is
denoted by limN∋x→∞ g(x).



✐

✐

“3-Finster” — 2022/7/1 — 15:26 — page 1743 — #9
✐

✐

✐

✐

✐

✐

A positive mass theorem for static causal fermion systems 1743

For simplicity, we shall restrict attention to one asymptotic end. But all our
methods and results could be extended in a straightforward way to several
asymptotic ends.

Definition 1.4. The measure µ is a vacuum measure of dimension k ∈ N

if it satisfies the following conditions:

(i) It has one asymptotic end of dimension k (see Definition 1.3).

(ii) The function ℓ is constant on N ,

(1.14) ℓ(x) =: ℓ∞ for all x ∈ N .

Definition 1.5. The measure µ̃ is asymptotically flat of dimension k ∈
N if it satisfies the following conditions:

(i) It is asymptotically close to a vacuum measure µ of dimension k ∈ N

(see Definitions 1.1 and 1.4).

(ii) It has one asymptotic end of dimension k (see Definition 1.3). The
following limit exists,

lim
Ñ∋x→∞

ℓ̃(x) =: ℓ̃∞ ∈ R .

The function ℓ̃− ℓ̃∞ is integrable, i.e.
∫

Ñ

∣

∣ℓ̃(x)− ℓ̃∞
∣

∣ dµ̃(x) <∞ .

(iii) There is a mapping F : N → Ñ such that

µ̃ = F∗(µ)

(where F∗µ is the push-forward measure defined by (F∗µ)(Ω̃) =
µ(F−1(Ω̃))). When restricted to N \ I (with I as in Definition 1.4),
this mapping is a diffeomorphism to its image. Moreover, it tends
to the identity at infinity in the sense that the surface layer integral
in (1.12) can be linearized to obtain

M(µ̃, µ) = lim
ΩրN

∫

Ω
dµ(x)

∫

N\Ω
dµ(y)

(

Lκ

(

F (x),y
)

− Lκ

(

x, F (y)
)

)

(1.15)

= lim
ΩրN

∫

Ω
dµ(x)

∫

N\Ω
dµ(y)

(

D1,w −D2,w

)

Lκ(x,y)
)

(1.16)
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for a suitable vector field w ∈ Γ(N,TG) on G along N .

We remark for clarity that (1.15) follows immediately from (1.12) using
the definition of the push-forward measure (together with the fact that
the limits in (1.12) exist). The directional derivatives in (1.16) act on the
first and second argument of the Lagrangian, respectively. We also note
that, setting Ĩ = F (I), the mapping Φ̃ := Φ ◦ F−1|Ñ\Ĩ is a diffeomorphism

from Ñ \ Ĩ to Rk \BR with the property that it changes the measure µ̃
according to

d(Φ̃∗µ̃)(x) = h̃(x) dkx with lim
x→∞

h̃(x) = 1 .

The assumptions so far can be regarded as the analogs of the decay condi-
tions for the metric in (1.1) in the setting of asymptotically flat Riemannian
manifolds. We next introduce another important assumption, which means
in words that both measures µ and µ̃ should be extendable to families of crit-
ical measures (µτ )τ and (µ̃τ )τ for a variable value of the parameter κ = κ(τ).

Definition 1.6. The measure µ is κ-extendable if the following condi-
tions hold:

(i) There is a family of measures (µτ )τ∈(−1,1) of the form

µτ = (Fτ )∗µ ,

each of which satisfies the EL equations (1.4) with a parameter κ(τ)
and

F0 = idN and κ′(0) 6= 0 .

(ii) For every x ∈ N , the curve Fτ (x) is differentiable at τ = 0, giving rise
to a vector field

(1.17) v :=
d

dτ
Fτ

∣

∣

∣

τ=0
∈ Γ(N,TG) .

For a convenient normalization, we always choose the parametrization such
that

(1.18)
d

dτ
log κ(τ)

∣

∣

∣

τ=0
= −1 .

We remark that all our results hold as well for families of critical measures if
one merely replaces the EL equations (1.4) in (i) by the weak EL equations
(see (2.9) in Section 2.1 with ℓ carrying an additional subscript κ).
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Definition 1.7. Let µ̃ be asymptotically flat with respect to the vacuum
measure µ. Then µ̃ is said to be κ-scalable if both µ̃ and µ are κ-extendable
and if, for suitable choices of the mappings Fτ and F̃τ in Definition 1.6, the
vector field w in (1.16) is related to the vector fields v and ṽ in (1.17) by

(1.19) w = g
(

ṽ − v
)

with a constant g ∈ R, referred to as the gravitational coupling constant.

We can now state our main result.

Definition 1.8. The asymptotically flat measure µ̃ satisfies the local en-
ergy condition if

(1.20) ℓ̃(x) ≥ ℓ̃∞ for all x ∈ Ñ .

Theorem 1.9. (Positive mass theorem) Assume that µ̃ is asymptoti-
cally flat (see Definition 1.5) and κ-scalable (see Definition 1.7). Then the
total mass can be written as

(1.21) M(µ̃, µ) = g

∫

Ñ

(

ℓ̃− ℓ̃∞
)

dµ̃ .

If µ̃ satisfies the local energy condition and the gravitational coupling con-
stant g is positive, then the total mass is non-negative,

M(µ̃, µ) ≥ 0 .

Moreover, if the total mass vanishes, then µ̃ is a vacuum measure (see Def-
inition 1.4).

For the proof of this theorem, we consider a linear integral equation,
referred to as the equations of linearized gravity (see (5.3) in Section 5.1).
These equations are obtained by linearizing the EL equations of the causal
action principle in the parameter κ. Working with linear equations is inspired
by the spinor proof of the positive energy theorem (see [42, 46]). The reason
why these spinorial methods extend to the setting of causal fermion systems
can be understood from the fact that in interesting examples (see the static
Dirac systems described below), the causal fermion system is built up of
solutions of the Dirac equation. The integral formula (1.21) for the total
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mass can be regarded as the analog of the formula

MADM = c(k)

∫

N

(

|∇ψ|2 +
scal

4
|ψ|2

)

dµN ,

where ψ is the Witten spinor.
Clearly, the above theorem leaves the following questions open:

(a) How is M(µ̃, µ) related to the ADM mass in (1.2)?

(b) Why is the measure µ̃ κ-scalable (see Definition 1.7)?

(c) Why is the gravitational constant as defined in (1.19) positive?

(d) Why is the local energy condition satisfied?

(e) Why do vacuum measures (see Definition 1.4) describe a flat space-
time?

In order to address these questions, we need to be more specific and focus
on causal fermion systems constructed in a static Lorentzian spacetime, re-
ferred to as static Dirac systems (for details see [18, Section 1.2], [19] or
Section 2.3 in the preliminaries). For such systems, we can answer ques-
tion (a) as follows:

Theorem 1.10. For a static Dirac system describing a four-dimensional
spacetime which is asymptotically Schwarzschild (for details see the beginning
of Section 6), the total mass is proportional to the ADM mass

M = cMADM ,

where the constant c can be computed from the Lagrangian in the regularized,
spherically symmetric Minkowski vacuum via the formula

(1.22) c =
1

4π

∫

M

|y|2 Lκ

(

0, (t,y)
)

dt d3y > 0 .

Our method of proof also explains why for static Dirac systems, the total
mass is computable purely from the knowledge of the metric near infinity.

In order to address the other questions (b)–(e), one must make use of
the scaling behavior of static Dirac systems as worked out in Section 7, based
on previous results in [18, §4.2.5], [20] and [8, Appendix A]. The relevant
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length scales are given by

(1.23)







Compton length m−1

Planck length δ
regularization length ε ,

where m denotes the mass of the Dirac particles. Moreover, the measure µ
determines a length scale as the radius of a ball of µ-volume one (here we fix
the freedom in rescaling µ by specifying s as well as the parameter c of the
local trace; for details see Section 3.4). Working on this fixed length scale,
we have three dimensionless parameters m, δ and ε.

(b) For static Dirac systems, the relation (1.19) can be derived as fol-
lows. In Definition 1.7 we consider a family (µτ )τ∈(−1,1) of critical
measures for a decreasing value of κ, (1.18). In this family, the param-
eters in (1.23) will in general change; we denote them by m(τ), δ(τ)
and ε(τ). Similarly, the family (µ̃τ )τ∈(−1,1) of measures which describes

curved spacetime, involves the parameters m̃(τ), δ̃(τ) and ε̃(τ). Since
these parameters are constant in spacetime, their τ -dependence can be
determined asymptotically near infinity, where spacetime goes over to
Minkowski space. In other words, the τ -dependence of these param-
eters is the same in curved and in flat spacetime, i.e. m̃(τ) = m(τ),
δ̃(τ) = δ(τ) and ε̃(τ) = ε(τ). Therefore, taking the difference of the
jets ṽ and v which describe the infinitesimal variations in curved and
flat spacetime, respectively, on the right side of (1.19) the variation
of the parameters m, δ and ε drops out. But the fact that ṽ changes
these parameters in the spacetime described by µ̃ has the effect that
this spacetime is modified depending on the distribution of matter and
gravity. This can be understood most easily in the case of the so-called
natural scaling of δ where the dimensionless parameter mδ remains
constant. In this case, the system remains unchanged in Planck units
where the gravitational constant is fixed. However, in these units the
length scale determined by µ̃ changes. In other words, the gravitational
system is fixed, but the volume µ̃ changes. Since the µ̃-volume is fixed
in the definition of the total mass, this implies that in Planck units,
the radius of the set Ω̃ in (1.16) changes. This in turn gives rise to a
change of the total mass, explaining (1.19). This argument is given in
more detail and for more general scalings in Section 7.
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(c) Working out the above scalings in more detail, in Section 7 we find
that the gravitational constant has the same sign as

d

dτ

(

mδ2
)
∣

∣

τ=0

(again for variations normalized according to (1.18)). Moreover, we
know from the general structure of the causal action principle that the
parameter m decreases. Therefore, the gravitational coupling constant
is positive for a natural scaling of δ. More generally, the gravitational
coupling constant is positive if the scaling of δ does not differ too much
from natural scaling. More details are given in Remark 7.1.

(d) One method to deal with the local energy condition in Definition 1.8 is
to proceed as in general relativity by taking it as a condition motivated
from physical observations which is to be verified case by case for
different types of matter. But in the context of causal fermion systems,
one can go a step further and try to explain the inequality (1.20) from
the minimality of the causal action. In Remark 7.2, this argument
is worked out for homogeneous matter distributions. More generally,
this argument shows that the energy conditions hold for all matter
densities which are nearly constant on the Compton scale. However,
at present we cannot rule out the possibility that the energy density
might be negative on microscopic scales.

(e) For static Dirac systems, it can be analyzed in detailed what the vac-
uum condition (1.14) means. By direct computation, one verifies that
curvature increases ℓ. Therefore, the condition (1.14) is satisfied only
for systems in flat Minkowski space. This argument is given in more
detail in Remark 7.3.

The paper is organized as follows. Section 2 provides the necessary pre-
liminaries on causal variational principles and causal fermion systems. In
Section 3 we specialize causal fermion systems to the static case and ex-
plain how they fit to the general setting of causal variational principles. In
Section 4 we prove that the total mass is well-defined and independent of
exhaustions, the inner geometry and the identifications of the Hilbert spaces
of the two causal fermion systems. In Section 5 we introduce the equations
of linearized gravity and use them to prove Theorem 1.9. In Section 6 we
compute the total mass in the example of an asymptotically Schwarzschild
spacetime and prove Theorem 1.10. In Section 7 we work out the relevant



✐

✐

“3-Finster” — 2022/7/1 — 15:26 — page 1749 — #15
✐

✐

✐

✐

✐

✐

A positive mass theorem for static causal fermion systems 1749

scalings. Moreover, we discuss the sign of the gravitational coupling con-
stant (Remark 7.1), show that homogeneous perturbations of Minkowski
space must satisfy the local energy condition (Remark 7.2) and specify the
assumptions under which a vacuum measure describes a flat spacetime (Re-
mark 7.3). In the appendices, we work out the scaling behavior of the to-
tal mass for static Dirac systems (Appendix A) and analyze the fermionic
projector and the relevant surface layer integrals for linearized gravity (Ap-
pendix B).

2. Preliminaries

We now recall the basics on causal variational principles in the setting needed
here. More details can be found in [26, 28]. We use a slightly different nota-
tion in order to get consistency with the causal variational principle in the
static case as will be introduced in Section 3.

2.1. Causal variational principles in the non-compact setting

We consider causal variational principles in the non-compact setting as in-
troduced in [26, Section 2]. Thus we let G be a (possibly non-compact)
smooth manifold of dimension m ≥ 1 and µ a (positive) Borel measure
on G (the universal measure). Moreover, we are given a non-negative func-
tion L : G× G → R

+
0 (the Lagrangian) with the following properties:

(i) L is symmetric: L(x,y) = L(y,x) for all x,y ∈ G.

(ii) L is lower semi-continuous, i.e. for all sequences xn → x and yn′ → y,

L(x,y) ≤ lim inf
n,n′→∞

L(xn,yn′) .

The causal variational principle is to minimize the action

(2.1) S(µ) =

∫

G

dµ(x)

∫

G

dµ(y) L(x,y)

under variations of the measure µ, keeping the total volume µ(G) fixed (vol-
ume constraint).

If the total volume µ(G) is finite, one minimizes (2.1) over all regular
Borel measures with the same total volume. If the total volume µ(G) is
infinite, however, it is not obvious how to implement the volume constraint,
making it necessary to proceed as follows. We make the following additional
assumptions:
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(iii) The measure µ is locally finite (meaning that any x ∈ G has an open
neighborhood U with µ(U) <∞) and regular (meaning that the mea-
sure of a set can be recovered by approximation from inside with com-
pact and from outside with open sets).

(iv) The function L(x, .) is µ-integrable for all x ∈ G, giving a lower semi-
continuous and bounded function on G.

Given a regular Borel measure µ on G, we vary over all regular Borel mea-
sures µ̃ with

∣

∣µ̃− µ
∣

∣(G) <∞ and
(

µ̃− µ
)

(G) = 0

(where |.| denotes the total variation of a measure). These variations of
the causal action are well-defined. The existence theory for minimizers is
developed in [30]. It is shown in [26, Lemma 2.3] that a minimizer satisfies
the Euler-Lagrange (EL) equations which state that for a suitable value of
the parameter s > 0, the lower semi-continuous function ℓ : G → R

+
0 defined

by

(2.2) ℓ(x) :=

∫

G

L(x,y) dµ(y)− s

is minimal and vanishes on the support of µ,

(2.3) ℓ|N ≡ inf
G
ℓ = 0 .

For further details we refer to [26, Section 2].

2.1.1. The weak Euler-Lagrange equations and jet spaces. We
denote the support of µ by N ,

(2.4) N := suppµ ⊂ G .

The EL equations (2.3) are nonlocal in the sense that they make a statement
on ℓ even for points x ∈ G which are far away from N . It turns out that for
the applications in this paper, it is preferable to evaluate the EL equations
locally in a neighborhood of N . This leads to the weak EL equations intro-
duced in [26, Section 4]. We here give a slightly less general version of these
equations which is sufficient for our purposes. In order to explain how the
weak EL equations come about, we begin with the simplified situation that
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the function ℓ is smooth. In this case, the minimality of ℓ implies that the
derivative of ℓ vanishes on N , i.e.

(2.5) ℓ|N ≡ 0 and Dℓ|N ≡ 0

(where Dℓ(p) : TpG → R is the derivative). In order to combine these two
equations in a compact form, it is convenient to consider a pair u := (a, u)
consisting of a real-valued function a on N and a vector field u on TG
along N , and to denote the combination of multiplication and directional
derivative by

(2.6) ∇uℓ(x) := a(x) ℓ(x) +
(

Duℓ
)

(x) .

Then the equations (2.5) imply that ∇uℓ(x) vanishes for all x ∈ N . The
pair u = (a, u) is referred to as a jet.

In the general lower-continuous setting, one must be careful because the
directional derivative Duℓ in (2.6) need not exist. Our method for dealing
with this problem is to restrict attention to vector fields for which the di-
rectional derivative is well-defined. Moreover, we must specify the regularity
assumptions on a and u. To begin with, we always assume that a and u are
smooth in the sense that they have a smooth extension to the manifold G.
Thus the jet u should be an element of the jet space

J :=
{

u = (a, u) with a ∈ C∞(N,R) and u ∈ Γ(N,TG)
}

,

where C∞(N,R) and Γ(N,TG) denote the space of real-valued functions
and vector fields on N , respectively, which admit a smooth extension to G.

Clearly, the fact that a jet u is smooth does not imply that the func-
tions ℓ or L are differentiable in the direction of u. This must be ensured by
additional conditions which are satisfied by suitable subspaces of J which
we now introduce. First, we let Γdiff be those vector fields for which the
directional derivative of the function ℓ exists,

Γdiff =
{

u ∈ C∞(N,TG)
∣

∣ Duℓ(x) exists for all x ∈ N
}

.

This gives rise to the jet space

(2.7) Jdiff := C∞(N,R)⊕ Γdiff ⊂ J .

For the jets in Jdiff, the combination of multiplication and directional deriva-
tive in (2.6) is well-defined. We choose a linear subspace Jtest ⊂ Jdiff with the
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property that its scalar and vector components are both vector spaces,

Jtest = Ctest(N,R)⊕ Γtest ⊆ Jdiff ,

and the scalar component is nowhere trivial in the sense that

(2.8) for all x ∈ N there is a ∈ Ctest(N,R) with a(x) 6= 0 .

Then the weak EL equations read (for details cf. [26, (eq. (4.10)])

(2.9) ∇uℓ|N = 0 for all u ∈ Jtest .

The purpose of introducing Jtest is that it gives the freedom to restrict at-
tention to the portion of information in the EL equations which is relevant
for the application in mind. For example, if one is interested only in the
macroscopic dynamics, one can choose Jtest to be composed of jets pointing
in directions where the microscopic fluctuations of ℓ are disregarded.

We finally point out that the weak EL equations (2.9) do not hold only
for minimizers, but also for critical points of the causal action. With this in
mind, all methods and results of this paper do not apply only to minimizers,
but more generally to critical points of the causal variational principle. For
brevity, we also refer to a measure with satisfies the weak EL equations (2.9)
as a critical measure.

We conclude this section by introducing a few jet spaces and specifying
differentiability conditions which will be needed later on. We begin with
the spaces Jℓ, where ℓ ∈ N0 ∪ {∞} can be thought of as the order of dif-
ferentiability if the derivatives act simultaneously on both arguments of the
Lagrangian:

Definition 2.1. For any ℓ ∈ N0 ∪ {∞}, the jet space Jℓ ⊂ J is defined as
the vector space of test jets with the following properties:

(i) For all y ∈ N and all x in an open neighborhood of N , directional
derivatives

(2.10)
(

∇1,v1
+∇2,v1

)

· · ·
(

∇1,vp
+∇2,vp

)

L(x,y)

(computed componentwise in distinguished charts around x and y; for
details see [31, Section 5.2]) exist for all p ∈ {1, . . . , ℓ} and all v1, . . . ,
vp ∈ Jℓ.
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(ii) The functions in (2.10) are µ-integrable in the variable y, giving rise
to locally bounded functions in x. More precisely, these functions are in
the space

L∞
loc

(

M,L1
(

M,dρ(y)
)

; dρ(x)
)

.

(iii) Integrating the expression (2.10) in y over N with respect to the mea-
sure µ, the resulting function (defined for all x in an open neighborhood
of N) is continuously differentiable in the direction of every jet u ∈ Jtest.

Here and throughout this paper, we use the following conventions for partial
derivatives and jet derivatives:

◮ Partial and jet derivatives with an index i ∈ {1, 2}, as for example
in (2.10), only act on the respective variable of the function L. This
implies, for example, that the derivatives commute,

∇1,v∇1,uL(x,y) = ∇1,u∇1,vL(x,y) .

◮ The partial or jet derivatives which do not carry an index act as par-
tial derivatives on the corresponding argument of the Lagrangian. This
implies, for example, that

∇u

∫

G

∇1,v L(x,y) dµ(y) =

∫

G

∇1,u∇1,v L(x,y) dµ(y) .

We point out that (in contrast to the method and conventions used in [26])
jets are never differentiated.

In order for all integral expressions to be well-defined, we impose through-
out that the space Jtest has the following properties (for details see [27,
Section 3.5]).

Definition 2.2. Let m ∈ N. The jet space Jtest is surface layer regular
if Jtest ⊂ J2 (see Definition 2.1) and if for all u, v ∈ Jtest and all p ∈ {1, 2}
the following conditions hold:

(i) The directional derivatives

(2.11) ∇1,u

(

∇1,v +∇2,v

)p−1
L(x,y)

exist.

(ii) The functions in (2.11) are µ-integrable in the variable y, giving rise
to locally bounded functions in x. More precisely, these functions are in



✐

✐

“3-Finster” — 2022/7/1 — 15:26 — page 1754 — #20
✐

✐

✐

✐

✐

✐

1754 F. Finster and A. Platzer

the space

L∞
loc

(

L1
(

N, dµ(y)
)

, dµ(x)
)

.

(iii) The u-derivative in (2.11) may be interchanged with the y-integration,
i.e.

∫

N
∇1,u

(

∇1,v +∇2,v

)p−1
L(x,y) dµ(y)

= ∇u

∫

N

(

∇1,v +∇2,v

)p−1
L(x,y) dµ(y) .

2.1.2. The linearized field equations. Usually, linearized fields are ob-
tained by considering a family of nonlinear solutions and linearizing with
respect to a parameter τ which describes the field strength. The analogous
notion in the setting of causal fermion systems is a linearization of a family
of measures (µ̃τ )τ∈[0,1)] which all satisfy the weak EL equations (2.9) (for
fixed values of the parameters κ and s). It turns out to be fruitful to con-
struct this family of measures by multiplying a given critical measure µ by
a weight function fτ and then “transporting” the resulting measure with a
mapping Fτ . More precisely, we consider the ansatz

µ̃τ = (Fτ )∗
(

fτ µ
)

,(2.12)

where fτ ∈ C∞(N,R+) and Fτ ∈ C∞(N,G) are smooth mappings, and
(Fτ )∗µ denotes the push-forward (defined for a subset Ω ⊂ G by ((Fτ )∗µ)(Ω)
= µ(F−1

τ (Ω)); see for example [6, Section 3.6]).
The property of the family of measures (µ̃τ )τ∈[0,1) of the form (2.12) to

satisfy the weak EL equation for all τ means infinitesimally in τ that the
jet v defined by

(2.13) v = (b, v) :=
d

dτ
(fτ , Fτ )

∣

∣

τ=0

satisfies the linearized field equations. We now recall the main step of the
construction. Using the definition of the push-forward measure, we can write
the weak EL equations (2.9) for the measure µ̃τ as

∇u

(
∫

N
L
(

Fτ (x), Fτ (y)
)

fτ (y) dµ− s

)

= 0 .

Since the function ℓ vanishes on the support, we may multiply by fτ (x) to
obtain

(2.14) ∇u

(
∫

N
fτ (x) L

(

Fτ (x), Fτ (y)
)

fτ (y) dµ− fτ (x) s

)

= 0 .
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At this point, the technical complication arise that one must specify the
τ -dependence of the jet spaces, and moreover the last transformation makes
it necessary to transform the jet spaces. Here we do not enter the details
but refer instead to the rigorous derivation in [21, Section 3.3] or to the
simplified presentation in the smooth setting in the textbook [28, Chapter 6].
Differentiating (2.14) with respect to τ gives the linearized field equations

(2.15) 〈u,∆v〉|N = 0 for all u ∈ Jtest ,

where

(2.16) 〈u,∆v〉(x) := ∇u

(
∫

N

(

∇1,v +∇2,v

)

L(x,y) dµ(y)−∇v s

)

.

We denote the vector space of all solutions of the linearized field equations
by Jlin ⊂ J1.

2.1.3. A conserved surface layer integral for linearized solutions.
In the setting of causal fermion systems, the usual integrals over hypersur-
faces in spacetime are undefined. Instead, one considers so-called surface
layer integrals, being double integrals of the form

(2.17)

∫

Ω
dµ(x)

∫

N\Ω
dµ(y) (· · · ) L(x,y) ,

where Ω is a Borel subset of N , and (· · · ) stands for a differential operator
acting on the Lagrangian. The structure of such surface layer integrals can
be understood most easily in the special situation that the Lagrangian is
of short range in the sense that L(x,y) vanishes unless x and y are close
together. In this situation, we get a contribution to the double integral (2.17)
only if both x and y are close to the boundary ∂Ω. With this in mind, surface
layer integrals can be understood as an adaptation of surface integrals to
the setting of causal variational principles (for a more detailed explanation
see [25, Section 2.3]).

Surface layer integrals were first introduced in [25] in order to formu-
late Noether-like theorems for causal variational principles. In particular, it
was shown that there is a conserved surface layer integral which generalizes
the Dirac current conservation in relativistic quantum mechanics (see [25,
Section 5]). More recently, in [26] another conserved surface layer integral
was discovered which gives rise to a symplectic form on the solutions of
the linearized field equations (see [26, Sections 3.3 and 4.3]). A systematic
study of conservation laws for surface layer integrals is given in [27]. The
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conservation law which is most relevant for our purposes is summarized in
the next lemma. For a compact subset Ω ⊂ N and a jet u ∈ J1 we introduce
the surface layer integral

(2.18) γΩµ (v) :=

∫

Ω
dµ(x)

∫

N\Ω
dµ(y)

(

∇1,u −∇2,u

)

L(x,y)

Lemma 2.3. For every compact Ω ⊂ N and any linearized solution u ∈ Jlin,

(2.19) γΩµ (v) =

∫

Ω
∇u s dµ .

Proof. In view of the anti-symmetry of the integrand,
∫

Ω
dµ(x)

∫

Ω
dµ(y)

(

∇1,u −∇2,u

)

L(x,y) = 0 .

Adding this equation to the left side of (2.19), we obtain

∫

Ω
dµ(x)

∫

N\Ω
dµ(y)

(

∇1,u −∇2,u

)

L(x,y)

=

∫

Ω
dµ(x)

∫

N
dµ(y)

(

∇1,u −∇2,u

)

L(x,y)

=

∫

Ω
dµ(x)

(

2∇u

(

ℓ(x) + s

)

−
(

∆u
)

(x)−∇u s

)

,

where in the last line we used the definitions of ℓ and ∆ (see (2.2) and (2.16)).
Applying the weak EL equations (2.9) and the linearized field equations (2.15)
gives the result. �

2.1.4. Inner solutions. We again define N as the support of µ, (2.4).
Furthermore we make the following simplifying assumption:

Definition 2.4. Spacetime N := suppµ has a smooth manifold struc-
ture if the following conditions hold:

(i) N is a k-dimensional smooth, oriented and connected submanifold
of G.

(ii) In a chart (x, U) of N , the universal measure is absolutely continuous
with respect to the Lebesgue measure with a smooth, strictly positive
weight function,

(2.20) dµ = h(x) dkx with h ∈ C∞(N,R+) .
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Let v ∈ Γ(N,TN) be a vector field. Then, under the above assumptions, its
divergence div v ∈ C∞(N,R) can be defined by the relation

∫

N
div v η(x) dµ = −

∫

N
Dvη(x) dµ(x) ,

to be satisfied by all test functions η ∈ C∞
0 (N,R). In a local chart (x, U),

the divergence is computed by

div v =
1

h
∂α

(

h vα
)

(where, using the Einstein summation convention, we sum over α = 1, . . . , k).
The jets of the form v := (div v, v) are of particular significance. The reason
is that, applying the Gauss divergence theorem, integrating its jet derivative
of a compactly supported function gives zero, i.e. for for every f ∈ C1

0 (N,R)

∫

N
∇vf dµ =

∫

N

(

div v f +Dvf
)

dµ =

∫

N
div

(

fv
)

dµ = 0 .

Integrating by parts formally, one finds that these jets satisfy the linearized
field equations,

〈u,∆v〉N = ∇u

(
∫

N

(

∇1,v +∇2,v

)

L(x,y) dµ(y)−∇v s

)

= ∇u

(
∫

N
∇1,vL(x,y) dµ(y)−∇v s

)

= ∇u∇vℓ(x) = ∇v

(

∇uℓ(x)
)

−∇Dvu
ℓ(x) = 0 .

In the last step we used that ∇Dvu
ℓ(x) vanishes by the EL equations. More-

over, the function ∇uℓ vanishes identically on M in view of the weak EL
equations. Therefore, it is differentiable in the direction of every vector field
on M , and this directional derivative is zero.

The above formal computation has two shortcoming. First, it is a-priori
not clear whether integrating by parts gives boundary terms. Moreover, we
need to be careful because the individual derivatives do not need to exist.
This is why, in order to give the above computation a mathematical meaning,
we need to impose additional technical assumptions. We now specify these
assumptions and prove that the resulting jets are indeed solutions of the
linearized field equations. For technical simplicity, we restrict attention to
the case that µ has a smooth manifold structure (see Definition 2.4) and one
asymptotic end (see Definition 1.3); for a more general presentation see [22,
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Section 3]. In preparation, we let Γx be the subspace of the tangent space
spanned by the test jets,

(2.21) Γx :=
{

u(x) | u ∈ Γtest
}

⊂ TxF .

Similar to our assumption that the scalar components of the test jets is
nowhere trivial (2.8), it is sensible and useful to assume that this subspace
of the tangent space contains all the tangent vectors to M ,

(2.22) TxM ⊂ Γx for all x ∈M .

We introduce a Riemannian metric gx on Jx. This Riemannian metric also
induces a pointwise scalar product on the jets. Namely, setting

(2.23) Jx := R⊕ Γx ,

we obtain the scalar product on Jx

(2.24) 〈v, ṽ〉x : Jx × Jx → R , 〈v, ṽ〉x := b(x) b̃(x) + gx
(

v(x), ṽ(x)
)

.

We denote the corresponding norm by ‖.‖x. We assume that this Riemannian
metric is adapted in the asymptotic end in the sense that its restriction
to TN is equivalent to the Euclidean metric in the asymptotic end, i.e. in
the chart Φ in Definition 1.3 there is a constant C > 0 such that
(2.25)

1

C

k
∑

j=1

∣

∣uj
∣

∣

2
≤ gx(u, u) ≤ C

k
∑

j=1

∣

∣uj
∣

∣

2
for all x ∈ N \ I and u ∈ TxN .

Definition 2.5. An inner solution is a jet v of the form

v = (div v, v) with v ∈ Γ(N,TN) .

We make the following regularity and decay assumptions:

(i) The vector field v can be extended to a vector field ṽ ∈ Γ(U, TF) defined
in a neighborhood U of N such that the directional derivative (D1,ṽ +
D2,ṽ)L(x,y) exists for all x ∈ U and y ∈ N and is integrable in y, i.e.

∫

N

∣

∣

∣

(

D1,ṽ +D2,ṽ

)

L(x,y)
∣

∣

∣
dµ(y) <∞ for all x ∈ U .

Moreover, the directional derivative Dṽℓ(x) exists for all x ∈ U and is
continuous in U .



✐

✐

“3-Finster” — 2022/7/1 — 15:26 — page 1759 — #25
✐

✐

✐

✐

✐

✐

A positive mass theorem for static causal fermion systems 1759

(ii) The integral
∫

N
L(x,y) ‖v(y)‖y dµ(y)

is finite and bounded locally uniformly in a neighborhood of N (where
‖.‖y is again the norm corresponding to the scalar product (2.24)
adapted in the asymptotic end according to (2.25)).

(iii) For any test jet u ∈ Jtest, the directional derivative Dvu (computed in
the same charts used for computing the higher derivatives in Defini-
tion 2.1) is again in Jtest.

The vector space of all inner solutions is denoted by Jin.

Note that (i) implies that every inner solution is in J1 ∩ Jdiff (see (2.7) and
Definition 2.1).

The name “inner solution” is justified by the following lemma:

Lemma 2.6. Every inner solution v ∈ Jin is a solution of the linearized
field equations, i.e.

〈u,∆v〉|N = 0 for all u ∈ Jtest

µ .

Proof. We choose a monotone decreasing function η ∈ C∞
0 (R) with

η[0,1] ≡ 1 and supp η ⊂ (−2, 2) .

For n ∈ N, we introduce the compactly supported cutoff functions

ηn(x) :=

{ 1 if x ∈ I

η

(

‖Φ(x)‖Rk −R

n

)

if x ∈ N \ I

(where R is the radius of the ball in (1.13)). By construction, the functions ηn
are monotone increasing and exhaust N in the sense that for any compact
set K ⊂ N there is N with ηn|K ≡ 1 for all n ≥ N . Moreover, using (2.25),
the derivatives tend uniformly to zero, i.e.

(2.26) lim
n→∞

sup
x∈N

‖Dηn(x)‖x = 0 .

Our first goal is to prove that for any x ∈ U ,

(2.27)

∫

N

(

D1,ṽ +∇2,v

)

L(x,y) dρ(y) = Dṽ

(

ℓ+ s
)

(x) .
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Making use of Definition 2.5 (i), we know from Lebesgue’s dominated con-
vergence theorem that for any x ∈ U ,

A(x) :=

∫

N

(

D1,ṽ +∇2,ṽ

)

L(x,y) dµ(y)

= lim
n→∞

∫

N

(

D1,ṽ +∇2,ṽ

)

L(x,y) ηn(y) dµ(y) .

Now we can integrate by parts to obtain
(2.28)

A(x) = lim
n→∞

(

Dṽ

∫

N
L(x,y) ηn(y) dµ(y)−

∫

N
L(x,y)

(

Dvηn(y)
)

dµ(y)

)

(here one needs to pull out the derivative Dṽ before the integral, because
the Lagrangian need not be differentiable; the integral, on the other hand, is
well-defined because the last integral is). The last integral can be estimated
by
(2.29)
∣

∣

∣

∣

∫

N
L(x,y)

(

Dvηn(y)
)

dµ(y)

∣

∣

∣

∣

≤ sup
N

‖Dvηn‖

∫

N
‖v(y)‖y L(x,y) dµ(y) .

According to Definition 2.5 (ii), the obtained integral is bounded locally
uniformly in x. Using (2.26), we conclude that the last integral in (2.28)
tends to zero as n→ 0, locally uniformly in x.

As a consequence, also the first integral in (2.28) converges as n→ 0,
locally uniformly in x. In order to prove (2.27), it remains to show that this
limit is given by

(2.30) lim
n→∞

(

Dṽ

∫

N
L(x,y) ηn(y) dµ(y)

)

= Dṽ

(

ℓ+ s
)

(x) .

Assume conversely that this equation does not hold for all x ∈ U . Then
by continuity (note that the left side of (2.30) is continuous as a locally
uniform limit of continuous function, as is the right side by Definition 2.5 (i)),
the equation (2.30) is violated in an open set. Therefore, we may choose a
path γ : [t0, t1] → U along the integral curves of ṽ such that

∫ t1

t0

lim
n→∞

(

Dṽ

∫

N
L
(

γ(t),y
) (

1− ηn(y)
)

dµ(y)

)

dt 6= 0 .
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Due to the locally uniform convergence, we may interchange the integral
and the limit to conclude that

lim
n→∞

∫

N
L(x,y)

(

1− ηn(y)
)

dµ(y)
∣

∣

∣

x=γ(t1)

x=γ(t0)
6= 0 .

On the other hand, using assumption (iv) on page 1750, the limits on the
left vanish using Lebesgue’s dominated convergence theorem. This is a con-
tradiction. Hence (2.30) holds. This concludes the proof of (2.27).

We rewrite (2.27) as

∆ṽ(x) = ∇
ṽ
ℓ(x) for all x ∈ U

(where the scalar component of v can be extended to U arbitrarily). The
next and final step is to show that for any u ∈ Jtest and x ∈ N , the jet
derivative ∇u of this equation exists and vanishes. To this end, we write the
jet derivative of the right side as

∇2ℓ|x(u, v) = ∇
v(x)

(

∇uℓ(x)
)

−∇Dvu
ℓ(x)

(where the first summand on the right is an iterated directional deriva-
tive). The last summand vanishes because of the weak EL equations, using
thatDvu ∈ Jtest (see Definition 2.5 (iii)). In order to treat the first summand,
we note that the function ∇uℓ vanishes identically on N by the weak EL
equations. Therefore, this function is differentiable in the direction of every
vector field on N , and this directional derivative is zero. This concludes the
proof. �

We next show that for any function a on N one can find an inner so-
lution whose scalar component coincides with a. If N were compact, the
analogous statement would be the infinitesimal version of Moser’s theorem
(see for example [40, Section XVIII, §2]). Here we give a detailed proof
if N is non-compact with one asymptotic end, based on [40, Theorem 1.2 in
Section XVIII].

Lemma 2.7. Assume that N := supp ν has a smooth manifold structure
(see Definition 2.4) and one asymptotic end (see Definition 1.3). Then for
any a ∈ C∞(N) there is a vector field v ∈ Γ(N,TN) such that div v = a.
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Proof. We choose a partition of unity (φn)n∈N of N supported in annuli of
our coordinate system Φ. More precisely,

suppφ1 ⊂ I ∪ Φ−1
(

BR+2

)

and

suppφn ⊂ Φ−1
(

BR+n+1 \BR+n−1

)

for n ≥ 2 .

Due to the smoothness assumption (2.20), the measure µ can be represented
by a volume form ψ ∈ Λk(N), i.e.

µ(U) =

∫

U
ψ for all compact U ⊂ N .

Likewise, the measure aµ can be represented by a volume form ω ∈ Λk(N),
i.e.

∫

U
a(x) dµ(x) =

∫

U
ω

(again valid for all compact U ⊂ N). We now proceed inductively: We choose
a real number c1 such that

∫

N

(

φ1 ω − c1 φ1 ψ
)

= 0 .

According to [40, Theorem 1.2 in Section XVIII], there is a compactly sup-
ported (k − 1)-form η1 ∈ Λk−1

0 (N) such that

φ1 ω − c1 φ1 ψ = dη1 .

In the induction step from n to n+ 1 we choose cn+1 ∈ R such that
∫

N

(

φn+1 ω + cn φn ψ − cn+1 φn+1 ψ
)

= 0 .

Then there exists ηn+1 ∈ Λk−1
0 (N) with

φn+1 ω + cn φn ψ − cn+1 φn+1 ψ = dηn+1 .

By applying [40, Theorem 1.2 in Section XVIII] on the manifold chosen as
the above annuli, one sees that the support of the ηn can be arranged to
also lie in these annuli, i.e.

supp η1 ⊂ I ∪ Φ−1
(

BR+2

)

and

supp ηn ⊂ Φ−1
(

BR+n+1 \BR+n−1

)

for n ≥ 2

(here we make use of the fact that all the annuli are connected).
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Being locally finite, we can carry out the sum over n. The summands
involving φnψ cancel. We conclude that

η :=

∞
∑

n=1

ηn satisfies dη =

∞
∑

n=1

φn ω = ω .

Finally, we need to identify η with a vector field such that div v dµ =
dη. To this end, we choose a Riemannian metric g on N . By a conformal
transformation we can arrange that the corresponding volume form coincides
with the measure µ. Now we choose the vector field as

vα = gαβ (∗ η)β ,

where ∗ : Λk−1(N) → Λ1(N) is the Hodge star. This concludes the proof. �

We point out that in general, the vector field v constructed in this lemma
is not compactly supported, even if the function a is. In particular, if the
integral of a is non-zero, then the Gauss divergence theorem implies that
the flux of v through large coordinate spheres must be non-zero.

In what follows, we always assume that the vector field constructed
in this lemma satisfies all the regularity and decay assumptions in Defi-
nition 2.5. We then obtain a corresponding inner solution

v := (a, v) ∈ Jin .

In view of Lemma 2.7, given any jet we can arrange by adding a suitable
inner solution that the scalar component of the jet vanishes. With this in
mind, in what follows we may always restrict attention to jets with vanishing
scalar component. However, one must keep in mind that the resulting vector
components will not be zero near infinity. Indeed, the asymptotics of these
vector fields will encode the total mass.

2.1.5. A nonlinear surface layer integral. We finally mention another
surface layer integral which was first introduced in [22]. Instead of working
with linearized solutions, we directly compare the perturbed measure µ̃,
which takes into account the nonlinear interaction, with a vacuum mea-
sure µ.
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Definition 2.8. We let µ and µ̃ be two Borel measures on G and set N :=
suppµ, Ñ := supp µ̃. Given compact subsets Ω ⊂ N and Ω̃ ⊂ Ñ , the non-
linear surface layer integral γΩ̃,Ω(µ̃, µ) is defined by

γΩ̃,Ω(µ̃, µ) =

∫

Ω̃
dµ̃(x)

∫

N\Ω
dµ(y) L(x,y)−

∫

Ω
dµ(x)

∫

Ñ\Ω̃
dµ̃(y) L(x,y) .

In [22, Section 4 and Appendix A] a conservation law for this nonlinear
surface layer integral was derived, and it was used in order to rewrite the
dynamics with a norm-preserving linear operator on Fock spaces. This non-
linear surface layer integral was also our starting point when searching for
the right definition of the total mass. Indeed, the total mass in (1.11) can
be written in the short form

(2.31) M(µ̃, µ) := lim
ΩրN

lim
Ω̃րÑ

(

− s

(

µ̃(Ω̃)− µ(Ω)
)

+ γΩ̃,Ω(µ̃, µ)

)

.

2.2. Causal fermion systems and the causal action principle

We now recall the basic definitions of a causal fermion system and the causal
action principle. The connection to causal variational principles will be made
in the static setting in Section 3.3.

Definition 2.9. (causal fermion system) Given a separable complex
Hilbert space H with scalar product 〈.|.〉H and a parameter n ∈ N (the
“spin dimension”), we let F ⊂ L(H) be the set of all symmetric1 operators
on H of finite rank, which (counting multiplicities) have at most n positive
and at most n negative eigenvalues. On F we are given a positive measure ρ
(defined on a σ-algebra of subsets of F), the so-called universal measure. We
refer to (H,F, ρ) as a causal fermion system.

A causal fermion system describes a spacetime together with all structures
and objects therein. In order to single out the physically admissible causal
fermion systems, one must formulate physical equations. To this end, we
impose that the universal measure should be a minimizer of the causal ac-
tion principle, which we now introduce. For any x, y ∈ F, the product xy
is an operator of rank at most 2n. However, in general it is no longer a

1Here by a symmetric operator A we mean that 〈Au|v〉H = 〈u|Av〉H for all u, v ∈
H. Representing the operator in an orthonormal basis, the resulting matrix is Her-
mitian. For bounded operators as considered here, the notions “symmetric” and
“self-adjoint” coincide.
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symmetric operator because (xy)∗ = yx, and this is different from xy un-
less x and y commute. As a consequence, the eigenvalues of the opera-
tor xy are in general complex. We denote these eigenvalues counting alge-
braic multiplicities by λxy1 , . . . , λ

xy
2n ∈ C (more specifically, denoting the rank

of xy by k ≤ 2n, we choose λxy1 , . . . , λ
xy
k as all the non-zero eigenvalues and

set λxyk+1, . . . , λ
xy
2n = 0). We introduce the Lagrangian and the causal action

by

Lagrangian: L(x, y) =
1

4n

2n
∑

i,j=1

(

∣

∣λxyi
∣

∣−
∣

∣λxyj
∣

∣

)2
(2.32)

causal action: S(ρ) =

∫∫

F×F

L(x, y) dρ(x) dρ(y) .(2.33)

The causal action principle is to minimize S by varying the measure ρ under
the following constraints:

volume constraint: ρ(F) = const(2.34)

trace constraint:

∫

F

tr(x) dρ(x) = const(2.35)

boundedness constraint:

∫∫

F×F

|xy|2 dρ(x) dρ(y) ≤ C ,(2.36)

where C is a given parameter, tr denotes the trace of a linear operator on H,
and the absolute value of xy is the so-called spectral weight,

|xy| :=

2n
∑

j=1

∣

∣λxyj
∣

∣ .

This variational principle is mathematically well-posed if H is finite-
dimensional. For the existence theory and the analysis of general proper-
ties of minimizing measures we refer to [5, 15, 16]. In the existence theory
one varies in the class of regular Borel measures (with respect to the topol-
ogy on L(H) induced by the operator norm), and the minimizing measure
is again in this class. With this in mind, here we always assume that

(2.37) ρ is a regular Borel measure .

Let ρ be a minimizing measure. Spacetime is defined as the support of
this measure,

M := supp ρ .
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Thus the spacetime points are symmetric linear operators on H. These oper-
ators contain a lot of additional information which, if interpreted correctly,
gives rise to spacetime structures like causal and metric structures, spinors
and interacting fields. We refer the interested reader to [18, Chapter 1].

The only results on the structure of minimizing measures which will be
needed in what follows concern the treatment of the trace constraint and the
boundedness constraint. As a consequence of the trace constraint, for any
minimizing measure ρ the local trace is constant in spacetime, i.e. there is a
real constant c 6= 0 such that (see [5, Theorem 1.3] or [18, Proposition 1.4.1])

(2.38) trx = c for all x ∈M .

Restricting attention to operators with fixed trace, the trace constraint (2.35)
is equivalent to the volume constraint (2.34) and may be disregarded. The
boundedness constraint, on the other hand, can be treated with a Lagrange
multiplier. More precisely, in [5, Theorem 1.3] it is shown that for every
minimizing measure ρ, there is a Lagrange multiplier κ > 0 such that ρ is a
critical point of the causal action with the Lagrangian replaced by

Lκ(x, y) := L(x, y) + κ |xy|2 ,

leaving out the boundedness constraint.

2.3. Constructing causal fermion systems in static Lorentzian
spacetimes

2.3.1. Construction in globally hyperbolic spacetimes. We now re-
call how, starting from a globally Lorentzian spacetime, one can construct
corresponding causal fermion systems. The general method is to choose H

as a subspace of the solution space of the Dirac equation, as we now explain
(for more details see [19]). Let (M, g) be a smooth, globally hyperbolic
Lorentzian manifold of dimension k ≥ 2. For the signature of the metric we
use the convention (+,−, . . . ,−). As proven in [4], M admits a smooth foli-
ation (Nt)t∈R by Cauchy hypersurfaces. Thus M is topologically the prod-
uct of R with a k − 1-dimensional manifold. In the case k = 4 of a four-
dimensional spacetime, this implies that M is spin (for details see [3, 41]).
For a general spacetime dimension we need to impose that M is spin. We
let SM be the spinor bundle on M and denote the smooth sections of the
spinor bundle by C∞(M, SM). Similarly, C∞

0 (M, SM) denotes the smooth
sections with compact support. The sections of the spinor bundle are also
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referred to as wave functions. The fibres SxM are endowed with an inner
product of signature (n, n) with n = 2[k/2]−1 (where [·] is the Gauß bracket;
for details see again [3, 41]), which we denote by ≺.|.≻x. The Lorentzian
metric induces a Levi-Civita connection and a spin connection, which we
both denote by ∇. Every vector of the tangent space acts on the corre-
sponding spinor space by Clifford multiplication. Clifford multiplication is
related to the Lorentzian metric via the anti-commutation relations. Denot-
ing the mapping from the tangent space to the linear operators on the spinor
space by γ, we thus have

γ : TxM → L(SxM) with γ(u) γ(v) + γ(v) γ(u) = 2 g(u, v) 11Sx(M) .

We also write Clifford multiplication in components with the Dirac matri-
ces γj . The connections, inner products and Clifford multiplication satisfy
Leibniz rules and compatibility conditions; we refer to [3, 41] for details.

Combining the spin connection with Clifford multiplication gives the
geometric Dirac operator denoted by

D := iγj∇j : C∞(M, SM) → C∞(M, SM) .

Given a real parameter m (the “rest mass”), the Dirac equation reads

(2.39) (D −m)ψ = 0 .

We mainly consider solutions in the class C∞
sc (M, SM) of smooth sections

with spatially compact support. On such solutions, one has the scalar prod-
uct

(2.40) (ψ|φ)m = 2π

∫

N

≺ψ | γ(ν)φ≻x dµN(x) ,

where N denotes any Cauchy surface and ν its future-directed normal (due
to current conservation, the scalar product is in fact independent of the
choice of N ; for details see [32, Section 2]). Forming the completion gives
the Hilbert space (Hm, (.|.)m).

Next, we choose a closed subspace H ⊂ Hm of the solution space of the
Dirac equation. The induced scalar product on H is denoted by 〈.|.〉H. There
is the technical difficulty that the wave functions in H are in general not
continuous, making it impossible to evaluate them pointwise. For this reason,
we need to introduce an ultraviolet regularization on the length scale ε,
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described mathematically by a linear

(2.41) regularization operator Rε : Hm → C0(M, SM) .

In the simplest case, the regularization can be realized by a convolution
on a Cauchy surface or in spacetime (for details see [32, Section 4] or [18,
Section §1.1.2]). For us, the regularization is not just a technical tool, but
it realizes the concept that we want to change the geometric structures on
the microscopic scale. With this in mind, we always consider the regularized
quantities as those having mathematical and physical significance. Different
choices of regularization operators realize different microscopic spacetime
structures.

Given Rε, for any spacetime point x ∈ M we consider the sesquilinear
form

bx : H ×H → C , bx(ψ, φ) = −≺(Rεψ)(x)|(Rεφ)(x)≻x .

This sesquilinear form is well-defined and bounded because Rε maps to
the continuous wave functions and because evaluation at x gives a linear
operator of finite rank. Thus for any φ ∈ H, the anti-linear form bx(., φ) :
H → C is continuous. By the Fréchet-Riesz theorem, there is a unique χ ∈ H

such that bx(ψ, φ) = 〈ψ|χ〉H for all ψ ∈ H. The mapping φ 7→ χ is linear
and bounded. We thus obtain a unique bounded linear operator F ε(x) on H

which is characterized by the relation

(2.42) (ψ |F ε(x)φ) = −≺(Rεψ)(x)|(Rεφ)(x)≻x for all ψ, φ ∈ H .

Taking into account that the inner product on the Dirac spinors at x has
signature (n, n), the local correlation operator F ε(x) is a symmetric operator
on H of rank at most 2n, which (counting multiplicities) has at most n
positive and at most n negative eigenvalues. Varying the spacetime point,
we obtain a mapping

F ε : M → F ⊂ L(H) ,

where F again denotes all symmetric operators of rank at most four with at
most two positive and at most two negative eigenvalues. Finally, we intro-
duce the

universal measure dρ := (F ε)∗ dµM

as the push-forward of the volume measure on M under the mapping F ε

(thus ρ(Ω) := µM((F ε)−1(Ω))).
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In this way, we obtain a measure ρ on the set F ⊂ L(H) of linear oper-
ators on a Hilbert space H. The basic concept is to work exclusively with
these objects, but to drop all other structures (like the Lorentzian metric g,
the structure of the spinor bundle SM and the manifold structure of M).
This leads us to the structure of a causal fermion system of spin dimension n,
as defined abstractly in Definition 2.9 above.

For clarity, we close with a few comments on the underlying physical
concepts. The vectors in the subspace H ⊂ Hm have the interpretation as
those Dirac wave functions which are realized in the physical system under
consideration. Therefore, the vectors in H are referred to as the physical
wave functions. If we describe for example a system of one electron, then
the wave function of the electron is contained in H. Moreover, H includes
all the wave functions in H− which form the so-called Dirac sea (for an
explanation of this point see for example [17]). The name causal fermion
system is motivated by the fact that Dirac particles are fermions. According
to (2.42), the local correlation operator F ε(x) describes densities and cor-
relations of the physical wave functions at the spacetime point x. Working
exclusively with the local correlation operators and the corresponding push-
forward measure ρ means in particular that the geometric structures are
encoded in and must be retrieved from the physical wave functions. Since
the physical wave functions describe the distribution of matter in spacetime,
one can summarize this concept by saying that matter encodes geometry.

2.3.2. Construction in static spacetimes. By a static spacetime we
here mean a globally hyperbolic spacetime where the foliation (Nt)t∈R can
be chosen such that the timelike vector field ∂t is a Killing field which is
orthogonal to the hypersurfaces Nt. A typical example is the Schwarzschild
geometry. Since all Cauchy surfaces Nt are isometric, we may restrict at-
tention to one of them and omit the subscript t. In a static spacetime, it is
most convenient to write the Dirac equation (2.39) in the Hamiltonian form

(2.43) i∂tψ = Hψ ,

where H, the Dirac Hamiltonian, is an elliptic operator acting on the spatial
sections Γ(N , SM). For convenience, we choose its domain as the smooth,
compactly supported spinors,

D(H) = C∞
0 (N , SM) .
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Identifying the initial data on N with the corresponding solution of the
Cauchy problem, this domain is a subspace of the Hilbert space Hm intro-
duced after (2.40). Moreover, the scalar product (2.40) can be expressed in
terms of the functions on N by

(2.44) (ψ|φ)N = 2π

∫

N

≺ψ | γ(ν)φ≻x dµN(x) .

As a consequence of current conservation, the Dirac Hamiltonian H with
domain D(H) is a symmetric operator on Hm. Using finite propagation
speed, the general method by Chernoff [7] yields that the Dirac Hamiltonian
is essentially self-adjoint (for details in the more general case with boundary
conditions see [33]). We denote the unique self-adjoint extension again by H.
The spectral theorem gives a decomposition

(2.45) H =

∫

σ(H)
ω dEω ,

where E is a projection-valued measure. In simple terms, the spectral pa-
rameter ω ∈ R is the frequency of the usual separation with a plane wave
ansatz,

ψ(t, ~x) = e−iωt ψω(~x) .

Consequently, the solution space Hm splits into the direct sum of the solu-
tions of positive and negative frequency,

Hm = H+ ⊕H− with H+ := E[0,∞)(Hm), H− := E(−∞,0)(Hm) .

In this paper we always choose the subspace H used in the above construc-
tion of the causal fermion system as a subspace which differs from H− by a
finite-dimensional subspace. More precisely, we assume that there are finite-
dimensional subspaces Hp ⊂ H+ and Hap ⊂ H− ∩H⊥ such that

(2.46) H ⊕Hap = H− ⊕Hp .

We refer to the resulting causal fermion systems as static Dirac systems. We
remark that the choice (2.46) means that we consider a system involving a
finite number of particles and anti-particles (whose states span Hp and Ha,
respectively).

We finally point out that in general, the static causal fermion systems
obtained in this way are not minimizers of the causal action. But, as worked
out in detail in [18], they are critical points of the causal action in a limiting
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case where ε→ 0, referred to as the continuum limit, provided that the
classical field equations (Maxwell, Yang-Mills and Einstein equations) hold.
Therefore, static Dirac systems are suitable examples for understanding the
connection between the total mass of static causal fermion systems and the
ADM mass.

3. The causal action principle in the static case

We now specialize the setting of causal fermion systems to the static case
(Section 3.1). Adapting the causal action principle to static causal fermion
systems and imposing a regularity condition, we get into the setting of causal
variational principles (Sections 3.2 and 3.3). We finally explain the scaling
freedom for static causal fermion systems (Section 3.4).

3.1. Static causal fermion systems

In this paper, we shall restrict attention to causal fermion systems which
are time independent in the following sense.

Definition 3.1. Let (Ut)t∈R be a strongly continuous one-parameter group
of unitary transformations on the Hilbert space H (i.e. s-limt′→tUt′ = Ut

and UtUt′ = Ut+t′). The causal fermion system (H,F, ρ) is static with
respect to (Ut)t∈R if it has the following properties:

(i) Spacetime M := supp ρ ⊂ F is a topological product,

M = R×N .

We write a spacetime point x ∈M as x = (t,x) with t ∈ R and x ∈ N .

(ii) The one-parameter group (Ut)t∈R leaves the universal measure invari-
ant, i.e.

ρ
(

UtΩU−1
t

)

= ρ(Ω) for all ρ-measurable Ω ⊂ F .

Moreover,

Ut′ (t,x) U
−1
t′ = (t+ t′,x) .

Before going on, we point out that we here restrict attention to spacetimes
of infinite lifetime. Alternatively, one could also consider static and time-
periodic spacetimes, in which caseM would be the topological product S1 ×
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N . We also remark that our definition of “static” even applies to spacetimes
like the Kerr geometry which are not static but stationary. In fact, in the
above generality without a Lorentzian metric, it is a-priori not clear how to
distinguish between static and stationary spacetimes. Since in this paper, we
have static spacetimes like the Schwarzschild geometry in mind, it is more
appropriate and more modest to refer to our spacetimes as being static. But
clearly, the same definition could also be used when extending our work to
stationary spacetimes.

Given a static causal fermion system, we also consider the set of opera-
tors

N := {(0,x)} ⊂ F .

The universal measure induces a measure µ on N defined by

µ(Ω) := ρ
(

[0, 1]× Ω
)

.

The fact that the causal fermion system is static implies that ρ([t1, t2]× Ω) =
(t2 − t1)µ(Ω), valid for all t1 < t2. This can be expressed more conveniently
as

(3.1) dρ = dt dµ .

3.2. The causal action principle in the static setting

The causal action principle can be formulated in a straightforward man-
ner for static causal fermion systems. The only point to keep in mind is
that, when considering families of measures, these measures should all be
static with respect to the same group (Ut)t∈R of unitary operators (see Def-
inition 3.1). In order to make this point clear, right from the beginning we
choose a group of unitary operators (Ut)t∈R onH. We denote the equivalence
classes of F under the action of the one-parameter group by

F/R := {Ut xU
−1
t | x ∈ F, t ∈ R} .
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We denote the elements of F/R just as the spatial points by x and y. Next,
we define the following functions:

static Lagrangian L(x,y) :=

∫ ∞

−∞
L
(

(0,x), (t,y)
)

dt(3.2)

static boundedness function T (x,y) :=

∫ ∞

−∞

∣

∣(0,x) (t,y)
∣

∣

2
dt(3.3)

static κ-Lagrangian Lκ(x,y) := L(x,y) + κ T (x,y) .(3.4)

Due to the unitary invariance of the Lagrangian, this definition does not
depend on the choice of representatives. Moreover, the static Lagrangian is
again symmetric because

L(x,y) =

∫ ∞

−∞
L
(

(0,x),Ut (0,y)U
−1
t

)

dt =

∫ ∞

−∞
L
(

Ut (0,y)U
−1
t , (0,x)

)

dt

=

∫ ∞

−∞
L
(

U−1
t Ut (0,y)U

−1
t Ut, U

−1
t (0,x)Ut

)

dt

=

∫ ∞

−∞
L
(

(0,y), U−1
t (0,x)Ut

)

dt =

∫ ∞

−∞
L
(

(0,y), (−t,x)
)

dt

=
{

t→ −t
}

=

∫ ∞

−∞
L
(

(0,y), (t,x)
)

dt = L(y,x) ,(3.5)

and similarly for T (x, y). For a measure ρ which is static with respect
to (Ut)t∈R, we introduce the

static causal action: S(ρ) =

∫

F/R
dµ(x)

∫

F/R
dµ(y) Lκ(x,y) .(3.6)

The static causal action principle is to minimize S by varying the measure ρ
with in the class of measures which are static with respect to (Ut)t∈R under
the following constraints:

volume constraint: µ(F/R) = const(3.7)

trace constraint:

∫

F/R
tr(x) dµ(x) = const .(3.8)

Note that the boundedness constraint is taken into account by the Lagrange
multiplier term κT (x, y) in (3.4).
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3.3. The regular setting as a causal variational principle

We now explain how to get to the setting of causal variational principles
introduced in Section 2.1. The main differences between the static causal
action principle and the setting of causal variational principles is that the
set F/R does not need to be a manifold and that there is the additional
trace constraint (3.8). As explained after (2.38), the trace constraint can be
treated by restricting attention to operators of fixed trace. In order to give
the set of operators a manifold structure, we assume that ρ is regular in the
sense that all operators in its support have exactly n positive and exactly n
negative eigenvalues. This leads us to introduce the set Freg as the set of all
operators F on H with the following properties:

(i) F is symmetric, has finite rank and (counting multiplicities) has ex-
actly n positive and n negative eigenvalues.

(ii) The trace is constant, i.e. tr(F ) = c > 0.

If H is finite-dimensional, the set Freg has a smooth manifold structure (see
the concept of a flag manifold in [37] or the detailed construction in [24,
Section 3]). Assuming that the action of the group (Ut)t∈R on G is proper
and has no fixed points, the quotient is again a manifold. Thus setting

G = Freg/R ,

we get into the setting of causal variational principles as introduced in Sec-
tion 2.1. We now verify that also the technical assumptions are satisfied.

Proposition 3.2. Assume that H is finite-dimensional and that the action
of the group (Ut)t∈R on G is proper and has no fixed points. Then for every
minimizing measure, the conditions (i)–(iv) in Section 2.1 on page 1749 are
satisfied for the static κ-Lagrangian.

Proof. The symmetry property (i) was already verified for the static La-
grangian (3.4) in (3.5). Since the eigenvalues of a matrix depend continuously
on the matrix entries (see for example [39, §II.1]), the Lagrangian Lκ(x, y) is
continuous in both arguments. However, this does not mean that the static
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Lagrangian (3.4) is also continuous. But Fatou’s lemma yields

Lκ(x,y) =

∫ ∞

−∞
Lκ

(

(0,x), (t,y)
)

dt =

∫ ∞

−∞
lim
x′→x

Lκ

(

(0,x′), (t,y)
)

dt

≤ lim inf
x′→x

∫ ∞

−∞
Lκ

(

(0,x′), (t,y)
)

dt = lim inf
x′→x

Lκ(x
′,y) ,

showing that the static κ-Lagrangian is lower semi-continuous. This
proves (ii).

In order to prove (iii) and (iv), we make use of the EL equations (2.3),
which we write as

(3.9)

∫

N
Lκ(x,y) dµ(y) ≤ s for all x ∈ G .

The regularity of µ follows immediately from the regularity of ρ in (2.37).
Using that the trace of x is non-zero, the Lagrangian Lκ(x, x) is strictly
positive on the diagonal (for details see [15, Proposition 4.3]). By continu-
ity of the Lagrangian, also the static Lagrangian is strictly positive on the
diagonal, Lκ(x,x) > 0. By lower semi-continuity of the static Lagrangian,
there is ε > 0 and an open neighborhood U of x where Lκ(x, .) is larger
than ε. Combining this fact with the positivity of the Lagrangian, the in-
equality (3.9) gives rise to the estimate

s ≥

∫

U
Lκ(x,y) dµ(y) ≥ ε µ(U) ,

showing that µ is locally finite. This proves (iii). Next, it is obvious from (3.9)
that Lκ(x, .) is µ-integrable and that the resulting function is bounded. It
remains to prove that this function is lower semi-continuous. To this end,
we can argue similar as in the proof of (ii) above:

∫

G

Lκ(x,y) dµ(y) ≤

∫

G

lim
x′→x

Lκ(x
′,y) dµ(y) ≤ lim

x′→x

∫

G

Lκ(x
′,y) dµ(y)

where in the first step we used that the static κ-Lagrangian is lower semi-
continuous and applied again Fatou’s lemma. This concludes the proof of (iv).

�

In the infinite-dimensional setting, the set Freg is an infinite-dimensional
Banach manifold (for details see [31]). For technical simplicity, here we shall
not enter the details of the infinite-dimensional analysis. Instead, our method
is to restrict attention to a finite-dimensional submanifold of Freg. Clearly,
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this submanifold must contain the supports of both measures ρ and ρ̃, and
the unitary group (Ut)t∈R must map the submanifold to itself. Moreover, the
vector fields of the jets needed for the analysis must all be tangential to this
submanifold. Restricting the Lagrangian to this submanifold, all the results
of Proposition 3.2 must hold. Then we simply choose G as the equivalence
classes of this submanifold under the action of the group (Ut)t∈R. This pro-
cedure will be illustrated in Section 6 in the example of static Dirac systems
in asymptotically Schwarzschild spacetimes.

3.4. Freedom in rescaling solutions of the Euler-Lagrange
equations

Let ρ be a critical measure of the static causal action principle for given
values of the parameters c and κ. Then for a suitable Lagrange multiplier s >
0, the equations (2.38) and (2.3) hold. For clarity, we add a subscript κ to ℓ
and write (2.2) as

ℓκ(x) := ℓ(x) + κ t(x) ,

where

ℓ(x) :=

∫

M
Lκ(x,y) dρ(y)− s(3.10)

t(x) :=

∫

M
T (x,y) dρ(y) .(3.11)

There is a two-parameter family of rescalings which again give critical
measures. Indeed, the new measure µ̂ defined by

(3.12) µ̂(Ω) = σ µ
(Ω

λ

)

with λ, σ > 0

again satisfies the EL equation with new Lagrange multipliers

ĉ = λ c and ŝ = σ λ4 s .

This rescaling freedom could be fixed for example by imposing that

c = s = 1 .

Note that the Lagrange multiplier κ remains unchanged; it is a dimensionless
parameter which characterizes the solution independent of the values of c
and s.
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4. General properties of the total mass

In this section we work out a few general properties of the total mass as
introduced in Definition 1.2.

4.1. Independence of the exhaustion

We first verify that the total mass does not depend on the choice of the
exhaustions of N and Ñ .

Proposition 4.1. Assume that µ and µ̃ are asymptotically close (see Def-
inition 1.1). Then the limits Ω ր N and Ω̃ ր Ñ in (1.11) exist and are
independent of the exhaustions. The total mass is finite. It can also be writ-
ten as the difference of the spatial integrals

(4.1) M(µ̃, µ) =

∫

Ñ

(

ñ(x)− s
)

dµ̃(x)−

∫

N

(

n(x)− s
)

dµ(x) .

Proof. Using that the Lagrangian is symmetric, the integral expression in
Definition 1.2 can be rewritten with the help of the correlation measures (1.9)
as

∫

Ω̃
dµ̃(x)

∫

N\Ω
dµ(y) Lκ(x,y)−

∫

Ω
dµ(x)

∫

Ñ\Ω̃
dµ̃(y) Lκ(x,y)

=

∫

Ω̃
dµ̃(x)

∫

N
dµ(y) Lκ(x,y)−

∫

Ω
dµ(x)

∫

N
dµ̃(y) Lκ(x,y)

= ν̃
(

Ω̃
)

− ν(Ω) ,

where in the last step we used the definition of the correlation measures (1.9).
We thus obtain the compact formula for the total mass

M(µ̃, µ) = lim
ΩրN

lim
Ω̃րÑ

(

− s
(

µ̃(Ω̃)− µ(Ω)
)

+ ν̃
(

Ω̃
)

− ν(Ω)
)

= lim
ΩրN

lim
Ω̃րÑ

(
∫

Ω̃

(

ñ(x)− s
)

dµ̃(x)−

∫

Ω

(

n(x)− s
)

dµ(x)

)

(4.2)

with n and ñ as defined in (1.8). Since µ and µ̃ are asymptotically close, the
integrands in (4.2) are in L1. Therefore, the limits Ω ր N and Ω̃ ր Ñ exist
by Lebesgue’s dominated convergence theorem. We thus obtain (4.1). �

We next recall the definition of non-atomic measures (see for exam-
ple [36, Section 40]).
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Definition 4.2. A Borel set Ω ⊂ M is called an atom of the Borel mea-
sure µ if µ(Ω) > 0 and if every Borel subset K ⊂ Ω with µ(K) < µ(Ω) has
measure zero. A Borel measure is said to be non-atomic if it has no atoms.

Proposition 4.3. If µ or µ̃ is non-atomic, then the total mass (see Defi-
nition 1.2) can be written equivalently in the form (1.12).

Proof. Clearly, for every exhaustions (Ωn)n∈N of N and (Ω̃n)N∈N of Ñ which
satisfy the condition µ(Ωn) = µ̃(Ω̃n) <∞ for all n ∈ N, the formula (1.11)
reduces to (1.12). In view of the independence of the choice of exhaustions
(Proposition 4.1), it remains to show that there are exhaustions (Ωn)n∈N
and (Ω̃n)n∈N with µ(Ωn) = µ̃(Ω̃n) <∞ for all n.

To this end, assume for example that µ is non-atomic. Let (Un)n∈N
and (Ũn)n∈N be exhaustions of N and Ñ , respectively, by sets of finite vol-
ume. In view of (1.10), the volumes of these sets tends to infinity. Therefore,
we can choose subsequences (for simplicity we again denoted by (Un)n∈N
and (Ũn)n∈N) such that

µ(U1) ≤ µ̃(Ũ1) ≤ µ(U2) ≤ µ̃(Ũ2) ≤ · · · .

Since µ is a non-atomic and regular Borel measure, we can find measurable
sets Vn with

Un ⊂ Vn ⊂ Un+1 and µ(Vn) = µ̃(Ũn) .

Clearly, the sequence (Vn)n∈N is again an exhaustion of N by sets of finite
measure. Therefore, the sets Ωn := Vn and Ω̃n := Ũn have all the required
properties. �

4.2. Independence of the inner geometry

We now want to verify and make precise that the total mass in Definition 1.2
depends only on the geometry near infinity and on the inner volume, but
not on the inner geometry. To this end, we shall introduce a more general
notion of total mass which only involves the geometry outside an arbitrarily
chosen compact set (see Definition 4.4). Then we shall prove that this notion
of mass coincides with the total mass of Definition 1.2.

We describe the “inner regions” of our spacetimes by relatively compact
open subsets I ⊂M and Ĩ ⊂ M̃ . In order to disregard the geometry of these



✐

✐

“3-Finster” — 2022/7/1 — 15:26 — page 1779 — #45
✐

✐

✐

✐

✐

✐

A positive mass theorem for static causal fermion systems 1779

subsets, we modify the surface layer integral of Definition 2.8 to

γΩ̃,Ω

Ĩ,I
(µ̃, µ) :=

∫

Ω̃
dµ̃(x)

∫

N\(I∪Ω)
dµ(y) L(x,y)−

∫

Ω
dµ(x)

∫

Ñ\(Ĩ∪Ω̃)
dµ̃(y) L(x,y) ,

where Ω and Ω̃ are now subsets of N \ I and Ñ \ Ĩ, respectively.

Definition 4.4. The total mass M on Ñ \ Ĩ relative to N \ I is defined
in generalization of (2.31) by

(4.3) MĨ,I

(

µ̃, µ
)

:= lim
ΩրN\I

lim
Ω̃րÑ\Ĩ

(

− s

(

µ̃(Ω̃)− µ(Ω)
)

+ γΩ̃,Ω

Ĩ,I
(µ̃, µ)

)

,

where the sets Ω and Ω̃ form exhaustions of N \ I and Ñ \ Ĩ by sets of finite
volume, respectively.

This version of total mass can again be rewritten in terms of correlation
measures. Indeed, introducing the correlation measures νĨ on N \ I and ν̃I
on Ñ \ Ĩ by

dνĨ(x) = nĨ(x) dµ(x) and dν̃I(x) = ñI(x) dµ̃(x)

with functions

(4.4)















nĨ : N → R
+
0 ∪ {∞} , nĨ(x) =

∫

Ñ\Ĩ
L(x,y) dµ̃(y)

ñI : Ñ → R
+
0 ∪ {∞} , ñI(x) =

∫

N\I
L(x,y) dµ(y) ,

a short computation yields

γΩ̃,Ω

Ĩ,I
(µ̃, µ) = ν̃I(Ω̃)− νĨ(Ω) .

We now generalize the result of Proposition 4.1:

Proposition 4.5. Assume that µ and µ̃ are asymptotically close. Then the
limits Ω ր N \ I and Ω̃ ր Ñ \ Ĩ in (4.3) exist and are independent of the
exhaustions. The total mass on Ñ \ Ĩ relative to N \ I is finite. It can be
written as

(4.5) MĨ,I(µ̃, µ) =

∫

Ñ\Ĩ

(

ñI(x)− s
)

dµ̃(x)−

∫

N\I

(

nĨ(x)− s
)

dµ(x) .
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Proof. Following the proof of Proposition 4.1, it suffices to show that the
functions nĨ − s and ñI − s are integrable. We only consider the latter func-
tion, because the proof for the first function is analogous. Thus our task is
to show that

∫

N\I

∣

∣nĨ − s
∣

∣ dµ <∞ .

Comparing (4.4) with (1.8), we can rewrite the function in the integrand as

(4.6) nĨ(x)− s =
[

n(x)− s
]

−

∫

Ĩ
L(x,y) dµ̃(y) .

The square bracket is integrable because µ and µ̃ are asymptotically close
(see Definition 1.1). Integrating the last summand, the fact that the La-
grangian is non-negative makes it possible to apply Tonelli’s theorem,

∫

N

∣

∣

∣

∣

∫

Ĩ
L(x,y) dµ̃(y)

∣

∣

∣

∣

dµ(x) =

∫

Ĩ

(
∫

N
L(x,y) dµ(x)

)

dµ̃(y) ∈ R
+
0 ∪ {∞} .

According to condition (iv) in Section 2.1 on page 1750, the x-integration
gives a lower semi-continuous and bounded function on G. Since Ĩ is compact
and µ̃ is locally finite, the y-integral exists and is finite. We conclude that
the last summand in (4.6) is integrable over N , concluding the proof. �

We can now state and prove the main result of this section.

Theorem 4.6. Assume that µ and µ̃ are asymptotically close. Then the
total mass depends only on the volumes of the relatively compact open sub-
sets I ⊂ N and Ĩ ⊂ Ñ . More precisely,

MĨ,I(µ̃, µ) = M
(

µ̃, µ
)

+ s

(

µ̃(Ĩ)− µ(I)
)

.

Proof. We rewrite (4.5) as follows,

MĨ,I(µ̃, µ) =

∫

Ñ\Ĩ

(

ñ(x)− s
)

dµ̃(x)−

∫

N\I

(

n(x)− s
)

dµ(x)

−

∫

Ñ\Ĩ
dµ̃(x)

∫

I
dµ(y) L(x,y) +

∫

N\I
dµ(x)

∫

Ĩ
dµ̃(y) L(x,y)

= M(µ̃, µ)−

∫

Ĩ

(

ñ(x)− s
)

dµ̃(x) +

∫

I

(

n(x)− s
)

dµ(x)

−

∫

Ñ\Ĩ
dµ̃(x)

∫

I
dµ(y) L(x,y) +

∫

N\I
dµ(x)

∫

Ĩ
dµ̃(y) L(x,y) .
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We now transform the last line: Since the Lagrangian is symmetric and non-
negative, by Tonelli’s theorem we may interchange the orders of integration.
Moreover, using again the symmetry of the Lagrangian, we may replace the
integration range Ñ \ Ĩ by Ñ and N \ I by N . Then the last line becomes

−

∫

I
n(y) dµ(y) +

∫

Ĩ
ñ(y) dµ̃(y) .

Collecting all the terms gives the result. �

4.3. Independence of the identification of Hilbert spaces

In Section 1, the total mass was introduced for two measures ρ and ρ̃ de-
fined on a set of linear operators F on a Hilbert space ρ. In most appli-
cations, however, the two spacetimes are described by two causal fermion
systems (H,F, ρ) and (H̃, F̃, ρ̃) which are defined on two different Hilbert
spaces H and H̃. Both spacetimes are static in the sense that ρ is static with
respect to a group unitary transformations (Ut)t∈R onH (see Definition 3.1),
whereas ρ̃ is static with respect to a unitary group (Ũt)t∈R on H̃. In order
to get into the setting of the introduction, the two Hilbert spaces must be
identified by a unitary transformation V : H → H̃, in such a way that the
spacetimes become jointly static, i.e.

(4.7) Ũt = V Ut V
−1 for all t ∈ R .

In Section 6.2, this construction will be explained in more detail in the
example of the Schwarzschild geometry. Here our point of interest is that
the condition (4.7) does not determine V uniquely. Indeed, V is unique only
up to the transformations V → VW , where W is a unitary transformation
on H which is static in the sense that it commutes with the time evolution,

(4.8) UtW =W Ut for all t ∈ R .

We now prove that, within the class of asymptotically flat spacetimes,
the total mass does not depend on the choice of W . To this end, we let
(H,F, ρ) and (H,F, ρ̃) be two causal fermion systems which are both static
with respect to a group (Ut)t∈R of unitary transformations of H (see Defini-
tion 3.1). Given a unitary transformation W on H which is static (4.8), the
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unitarily transformed static measure Wρ̃ defined by

(4.9) (Wρ̃)(Ω) := ρ̃
(

W−1ΩW
)

for Ω ⊂ F

is again static, making it possible to decompose it similar to (3.1) as

d(Wρ̃) = dt d(Wµ̃) .

Theorem 4.7. If both µ̃ and Wµ̃ are asymptotically flat with respect to the
vacuum measure µ (see Definition 1.4 and 1.5), then the total masses of µ̃
and Wµ̃ coincide,

M(µ̃, µ) = M
(

Wµ̃, µ
)

.

The proof of this theorem is based on the unitary invariance of the
causal action. In preparation of the proof, we must introduce the neces-
sary concepts. The causal action principle is unitarily invariant in the fol-
lowing sense. Let W ∈ U(H) be a unitary transformation. Given a mea-
sure ρ on F, we can unitarily transform the measure similar to (4.9) by
setting (Wρ)(Ω) := ρ(W−1ΩW ). Since the eigenvalues of an operator are
invariant under unitary transformations, a universal measure ρ is a mini-
mizer or critical point of the causal action principle if and only if Wρ is.
Next, we specialize again to the setting that all objects are static with re-
spect to a unitary group (Ut)t∈R. Then, as explained in Sections 3.1 and 3.2,
we can work with the static causal action principle. If alsoW is static (in the
sense (4.8)), the resulting static measure Wµ defined by d(Wρ) = dt d(Wµ)
is a critical point of the static causal action if and only if µ is. This fact can
be used to construct solutions of the linearized field equations, as we now
explain. Let µ be a critical static measure. Moreover, let (Ws)s∈[0,τmax] be
a smooth and strongly continuous family of static unitary transformations
with generator

A := −i
d

ds
Ws

∣

∣

s=0
.

Lemma 4.8. Assume that the jet

(4.10) u := (0, u) with u(x) := i
[

A,x
]

has the property

(4.11) Dvu ∈ Jtest for all v ∈ Jtest

(where the directional derivatives are computed in the distinguished charts
mentioned in Definition 2.1). Then the jet u is a solution of the linearized



✐

✐

“3-Finster” — 2022/7/1 — 15:26 — page 1783 — #49
✐

✐

✐

✐

✐

✐

A positive mass theorem for static causal fermion systems 1783

field equations, i.e.

(4.12) ∇v

∫

N
(D1,u +D2,u)L(x,y) dµ(y) = 0 for all v ∈ Jtest .

Proof. One method of proof would be to differentiate through the EL equa-
tions. However, this would involve a transformation of the space of test jets
(similar as explained for example in [27, Section 3.1]). Here we prefer to
show that the integrand of (4.12) vanishes identically. Indeed, due to the
unitary invariance of the Lagrangian,

L
(

Uτ xU−1
τ , Uτ yU−1

τ

)

= L(x,y) .

Differentiating with respect to s gives

(D1,u +D2,u)L(x,y) dρ(y) = 0 .

Hence the integrand in (4.12) vanishes for all x,y ∈ F/R. As a consequence,
the integral in (4.12) vanishes for all x ∈ F/R. Consequently, also its deriva-
tive in the direction of u vanishes. Using our convention that the jet deriva-
tives act only on the Lagrangian (see the end of Section 2.1), the directional
derivative differs from the derivative by the term DDvuℓ(x). This term van-
ishes in view of (4.11) and the weak EL equations (2.9). �

Due to the commutator in (4.10), we refer to jets of this form as static
commutator jets. For more details on commutator jets we refer to [23].

Proof of Theorem 4.7. Since both µ̃ andWµ̃ are asymptotically flat with re-
spect to µ, their total mass can be expressed via (1.16) in terms of a vector
field w near infinity. The freedom to perform static unitary transformations
means for the jets that w can be changed by infinitesimal unitary transforma-
tions, which by (4.10) correspond to static commutator jets. Therefore, the
freedom to perform static unitary transformations of µ̃ means that in (1.16)
we have the freedom to transform w according to w → w + u with u a static
commutator jet. Since u is a linearized solution without scalar component
(see Lemma 4.8), we can apply the conservation law of Lemma 2.3 to con-
clude that u does not contribute to the surface layer integral (1.16). �
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5. The positive mass theorem

The goal of this section is to prove Theorem 1.9. In preparation, we need
to derive and analyze the equations of linearized gravity which were already
mentioned in words in the introduction.

5.1. The equations of linearized gravity

We saw in Section 2.1.2 that, given a family (µ̃τ )τ∈[0,1) of solutions of the
EL equations of the form (2.12) for fixed values of the parameters κ and s,
the infinitesimal generator v of this family is a solution of the linearized field
equations (see (2.13) and (2.15)). Keeping the parameter s fixed is a matter
of convenience, because the rescaling freedom in Section 3.4 makes it possible
to give this parameter an arbitrary value. However, the situation is differ-
ent for the parameter κ, which is dimensionless and scaling invariant. For
this reason, it is interesting to also consider families (µ̃τ )τ∈[0,1) where κ(τ)
depends on τ . It is most convenient to arrange by a reparametrization of τ
that

(5.1)
d

dτ
log κ(τ)

∣

∣

τ=0
= −1 .

Moreover, as will become clear below, it is preferable to also choose s as a
function of τ . Writing the EL equations (2.14) for the κ-Lagrangian in (3.4),

∇u

(
∫

N
fτ (x)

(

Lκ

(

Fτ (x), Fτ (y)
)

+ κ(τ) T (x,y)
)

fτ (y) dµ(y)(5.2)

− fτ (x) s(τ)

)

= 0 ,

differentiating with respect to τ and evaluating at τ = 0 gives in generaliza-
tion of (2.15) the equation

〈u,∆v〉|N = −κ′(0)∇ut+ s′(0)∇u1 for all u ∈ Jtest ,

where ∆ is defined by (2.16), but for the κ-Lagrangian,

〈u,∆v〉(x) := ∇u

(
∫

N

(

∇1,v +∇2,v

)

Lκ(x,y) dµ(y)−∇v s

)

,

and with t as in (1.7).
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By assumption, the measure µ is asymptotically flat and satisfies the EL
equations. Using these properties, we know according to Definition 1.5 (ii)
that the function ℓ has a limit at infinity. Moreover, the EL equations (1.4)
and (1.5) imply that the same is true for the function t. We set

t∞ := lim
x→∞

t(x) > 0 .

We apply (5.1) and choose s′(0) as

s′(0) = −κ(0) t∞ < 0 .

We thus obtain the inhomogeneous linearized field equations

〈u,∆v〉|N = κ∇u

(

t− t∞
)
∣

∣

N
for all u ∈ Jtest .

Using the EL equations, we can rewrite the inhomogeneity in terms of ℓ,

〈u,∆v〉|N = −∇u

(

ℓ− ℓ∞
)
∣

∣

N
for all u ∈ Jtest .

By adding a suitable inner solution (see Section 2.1.4) we can arrange that
the jet v = (0, v) has no scalar component. We refer to the resulting equation

(5.3) 〈u,∆v〉|N = −∇u

(

ℓ− ℓ∞
)
∣

∣

N
for all u ∈ Jtest

as the equations of linearized gravity. We point out that the solution v of the
equations of linearized gravity will in general not be unique. For example,
one can add to v any divergence-free vector field on N . But this has no effect
on the following conservation law:

Proposition 5.1. For a jet v ∈ J1 without scalar component which satisfies
the equations of linearized gravity (5.3), the surface layer integral (2.18)
(again for the κ-Lagrangian) is computed for an exhaustion of N by

lim
ΩրN

γΩµ (v) =

∫

N

(

ℓ− ℓ∞
)

dµ .
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Proof. A direct computation using (5.3) yields

γΩµ (v) =

∫

Ω
dµ(x)

∫

M\Ω
dµ(y)

(

D1,v −D2,v

)

Lκ(x,y)

=

∫

Ω
dµ(x)

∫

M
dµ(y)

(

D1,v −D2,v

)

Lκ(x,y)

=

∫

Ω

(

2Dvℓ(x)− (∆v)(x)
)

dµ(x) =

∫

Ω

(

ℓ− ℓ∞
)

dµ .

Taking the limit Ω ր N gives the result. �

5.2. Proof of the positive mass theorem

We are now in the position to prove our positive mass theorem.

Proof of Theorem 1.9. Using (1.19) in (1.16) gives

M(µ̃, µ) = g lim
ΩրN

γΩµ
(

ṽ − v
)

,

where we used the notation (2.18). For the computation of the surface layer
integral γΩµ (ṽ) at infinity, we can work just as well with the measure µ̃, i.e.

M(µ̃, µ) = g lim
ΩրN

(

γ
F (Ω)
µ̃

(

ṽ
)

− γΩµ (v)
)

.

This makes it possible to apply Proposition 5.1 to obtain

M(µ̃, µ) = g

∫

Ñ

(

ℓ̃− ℓ̃∞
)

dµ̃− g

∫

N

(

ℓ− ℓ∞
)

dµ .

The last integral vanishes because µ is a vacuum measure (see Definition
1.4 (ii)). This concludes the proof. �

6. Example: Asymptotically Schwarzschild spacetimes

In this section we establish the correspondence between the total mass and
the ADM mass by proving Theorem 1.10.
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6.1. Construction of static Dirac systems

Let (M, g) be a four-dimensional static globally hyperbolic Lorentzian man-
ifold M with one asymptotic end which is asymptotically Schwarzschild.
Thus we assume that the manifold is the topological product

M = R× N .

Moreover, denoting the coordinates by x = (t,x) with t ∈ R and x ∈ N , we
assume that the metric takes the form

ds2 = L(x)2 dt2 − gN ,

where L(x) is the lapse function and gN is a complete Riemannian metric
on N . Finally, we assume that outside a compact set K ⊂ N , the met-
ric coincides with the Schwarzschild metric. Thus choosing polar coordi-
nates x = (r, ϑ, ϕ) on N \K, the line element becomes

(6.1) ds2 =

(

1−
2MS

r

)

dt2 −

(

1−
2MS

r

)−1

dr2 − r2
(

dθ2 + sin2 θ dϕ2
)

.

We now recall a few basics on the Dirac equation in the Schwarzschild
geometry (for details and explicit formulas see [34] or [43]). For our pur-
pose, it is most convenient to write the Dirac equation in the Hamiltonian
form (2.43) and to take its spectral decomposition (2.45). The essential spec-
trum is determined from the asymptotic behavior of the metric at infinity.
Therefore,

σess(H) = (−∞,−m] ∪ [m,∞) .

In addition, there could be a point spectrum in [−m,m] describing bound
states of the system.

Following the general procedure in Section 2.3, we now construct static
Dirac systems. The Dirac sea is defined as the negative spectral subspace of
the essential spectrum,

H− := E(−∞,m](Hm) .

Following the general procedure in (2.46), we choose H as a subspace which
differs from H− by a finite-dimensional subspace. As a consequence, the
kernel of the fermionic projector of our system differs from that of the Dirac
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sea by smooth contributions,

P (x, y) = P sea(x, y) + (smooth contributions) .

Moreover, describing bound states, these smooth contributions decay rapidly
near spatial infinity. Due to this rapid decay, the smooth contributions drop
out when computing the surface layer integral near infinity. With this in
mind, we may disregard the smooth contributions and simply choose

(6.2) H = H− .

Moreover, for technical simplicity we choose the regularization operator (2.41)
as a spatial convolution operator in the asymptotic end, i.e. for all x ∈
N \K,

(6.3)

Rε : Hm → C0(M, SM) ∩Hm ,

(Rεψ)(x) =

∫

N

hε
(

|x− y|
)

ψ(y) dµ(y) ,

where hε ∈ C∞
0 (R3,R+

0 ) is a mollifier and |x− y| denotes the Euclidean
norm in our coordinate system near infinity (for the general context of this
regularization method see [32, Section 4]). As already mentioned at the end
of Section 2.3.2, the resulting static causal fermion systems are critical points
of the causal action principle in the continuum limit, provided that the Ein-
stein equations are satisfied. With this in mind, in what follows we assume
that the static causal fermion systems satisfy the weak EL equations (2.9)
(for the κ-Lagrangian).

6.2. Identifying the Dirac solution spaces

In preparation of the computation of the total mass, we need to identify
the Dirac solution spaces in Minkowski space and in our asymptotically flat
spacetime. This needs to be done in such a way that both spacetimes are
jointly static (meaning that they are both static with respect to the same
one-parameter group (Ut)t∈R in Definition 3.1). In order to distinguish the
spacetimes, we again denote all objects of the asymptotically flat spacetime
with a tilde, whereas the objects without a tilde refer to Minkowski space.
Clearly, the corresponding one-parameter groups are the time evolution op-
erators, i.e.

Ut = e−itH : H → H and Ũt = e−itH̃ : H̃ → H̃ ,
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where H and H̃ are both chosen as the respective Dirac seas (6.2). Since
both Hamiltonians have the same essential spectrum and no point spectrum,
they can be mapped to each other by a unitary transformation, i.e. there is
a

(6.4) unitary V : H → H̃ with H̃ = V HV −1 .

Identifying H and H̃ by this unitary transformation, the one-parameter
groups (Ut)t∈R and (Ũt)t∈R are also mapped to each other. In this way, the
corresponding causal fermion systems become jointly static. Dividing out
the group action, we get into the setting of causal variational principles.

We point out that the above unitary transformation V is not unique,
because it involves the freedom in unitarily transforming the Dirac solu-
tions for every fixed energy. However, we proved in Theorem 4.7 that the
total mass does not depend on the choice of V . With this in mind, in what
follows we may choose the unitary transformation V in a convenient way. A
particularly convenient choice of identification is obtained by a perturbative
treatment, as we now explain (for other identifications of the Hilbert spaces
see [43]).

6.3. Perturbative description near infinity

Since the metric g̃ is asymptotically flat, its effect can be treated asymp-
totically in first order perturbation theory. To this end, we decompose the
Dirac Hamiltonian in the gravitational field as

H̃ = H +∆H

and treat ∆H as a static perturbation in the Dirac equation for fixed en-
ergy ω. One must keep in mind that changing the metric also modifies the
spatial integration measure in the scalar product (2.44). Compensating for
this fact by a a local rescaling of the Dirac wave functions, one can work in
a fixed Hilbert space (for details on this procedure see [12, Appendix A]).
This has the advantage that we get a natural identification of H and H̃.
Then the above-mentioned non-uniqueness of the identification operator V
reduces to the gauge freedom of the Dirac operator (for details see [11]).
For a specific gauge, the Dirac operator is given explicitly in [34]. For the
details of the perturbative treatment of the operator ∆H we refer again
to [12, Appendix A] or, more generally, to [18, Appendix F]. The perturba-
tion expansion is gauge covariant, meaning that gauge invariant quantities
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like the closed chain do not depend on the choice of the gauge. The methods
in [12] or, more generally, in [13] (for an introduction see [18, Section 2.2])
also give explicit formulas for the kernel of the fermionic projector. Non-
perturbatively, these formulas correspond do the Hadamard expansion of
the bi-distribution P (x, y) (see for example the textbook [2]). In the pres-
ence of a regularization (6.3), the resulting regularized Hadamard expansion
is worked out in [29].

In order to illustrate these results, we now state a few formulas which will
be needed later on and make the connection to the jet formalism. Working
with jets corresponds to linear perturbations by gravity. Thus we consider
a metric g of the form

gij = ηij + hij ,

where η is the Minkowski metric and hij is the linear perturbation. The
gravitational field modifies the light cones. The corresponding modification
of the singularities of the unregularized kernel P (x, y) on the light cone is
described by the formula

(6.5) ∆P (x, y) = −
1

2

∫ 1

0
dα hij |αy+(1−α)x ξ

j ∂

∂yi
P (x, y) ,

where we set ξ = y − x. This formula is derived in [12, Appendix A]. A more
geometric way of understanding this formula is to integrate the geodesic
equation; for details see Appendix B. In the static and spherically symmetric
situation, the formula (6.5) remains valid for the regularized kernel (for
details see again Appendix B),

(6.6) ∆P ε(x, y) = −
1

2

∫ 1

0
dα hij |αy+(1−α)x ξ

j ∂

∂yi
P ε(x, y) .

In addition to this effect of the “deformation of the light cone,” there are
effects by curvature. This becomes apparent in the formulas of the light cone
expansion by terms which involve the Riemann tensor and its derivatives.
Here we do not need the detailed form of these expressions. It suffices to
keep in mind that these contributions are less singular on the light cone
than (6.6).

In the jet formalism, the linear perturbation by gravity is described
by a jet v. Note that the volume form in the Schwarzschild geometry in
Schwarzschild coordinates does not depend on the mass, because

(6.7) dρ̃ =
√

| det g̃| d4x = dt dµ with dµ := r2 dr dω ,
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where dω := dϕ d cosϑ is the volume measure on the unit sphere. Therefore,
the jet describing the linear perturbation by gravity has no scalar compo-
nent,

(6.8) v = (0, v) .

The perturbation in (6.6) is obtained by perturbing the wave functions at
both points x and y in the same way, i.e.

∆P ε(x, y) =
(

D1,v +D2,v

)

P ε(x, y) .

The surface layer integral needed for the computation of the total mass
(see (1.16)) has a different form, because it involves the difference D1 −D2

of jet derivatives (this comes about because the arguments x and y in the
formula for the total mass (1.11) lie in different spacetimes, one with and
one without gravitational field). Therefore, one must extend the perturbative
treatment to the case where the wave functions are perturbed only at x, but
not at y or vice versa. This case is treated in [14, Appendix F] and [20,
Section 5.1]. It amounts to replacing the bounded line integral in (6.5) by
suitable unbounded line integrals. In the static and spherically symmetric
case, the resulting formulas simplify to (for more details see Appendix B)

D1,vP
ε(x, y) =

1

4

∫ ∞

−∞
dα ǫ(α) hij |αy+(1−α)x ξ

j ∂

∂xi
P ε(x, y)

D2,vP
ε(x, y) =

1

4

∫ ∞

−∞
dα ǫ(α− 1) hij |αy+(1−α)x ξ

j ∂

∂yi
P ε(x, y) ,

(6.9)

where ǫ is the sign function. Clearly, there are again additional contributions
involving curvature and its derivatives, but they are all less singular on the
light cone.

Let us come back to the freedom in identifying the Hilbert spaces H

and H̃ as already mentioned after (6.4). The above perturbative procedure
gives a canonical way to identify the Hilbert spaces in linearized gravity.
However, it does not give a canonical identification of the Hilbert space H

and H̃ for two spacetimes whose gravitational fields coincide only asymptoti-
cally. Namely, in this case, the perturbative treatment is admissible only near
spatial infinity. Consequently, it only gives an identification of the Hilbert
spaces in the asymptotic ends. In general, this identification does not extend
canonically to a unitary transformation which also preserves the Hamilto-
nians (6.4). In view of Theorem 4.7, the resulting non-uniqueness of the
identifications has no effect on the total mass.
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In more technical terms, the just-mentioned non-uniqueness of the iden-
tification of H and H̃ becomes manifest in the fact that the unbounded
line integrals in (6.9) are well-defined only in the asymptotic region where
gravity can be treated linearly. One method of extending (6.9) to the space-
time regions with strong gravity is to replace the line integrals by integrals
along null geodesics and hij by a first order variation of the metric. But this
procedure is not canonical. Here we do not need to worry about this issue
because we already know from Theorem 4.7 that the total mass does not
depend on the identification of Hilbert spaces. Correspondingly, we shall see
in Proposition 6.3 below that the unbounded line integrals will drop out of
our computations.

6.4. Implementing the volume constraint

After the above preparations, we can enter the computation of the total
mass. It is most convenient to work with the formula (1.16). Thus we consider
exhaustions Ωn of N and Ω̃n of Ñ , subject to the volume constraint in (1.12)

(6.10) µ(Ωn) = µ̃(Ω̃n) <∞ .

Due to the independence of the choice of the exhaustion (Proposition 4.1)
we may choose the sets as coordinate balls, i.e.

(6.11) Ωn = I ∪ Φ−1
(

BRn

)

and Ω̃n = Ĩ ∪ Φ̃−1
(

BR̃n

)

(where we used the notation in Definition 1.3). For convenience, we choose
the coordinates in the asymptotic end as the spatial part of the Schwarzschild
coordinates (6.1) with mass MS = 0 (for µ) and MS 6= 0 (for µ̃).

Since the inner volumes µ(I) and µ̃(Ĩ) will in general be different, the
volume constraint (6.10) forces us to also choose the radii differently, i.e.
Rn 6= R̃n. But, using that the volume form is independent of the mass
(see (6.7)), the radii will coincide asymptotically in the sense that their
difference decays quadratically,

|Rn − R̃n| .
1

R2
n

.

Working again with the identification of the spacetimes used in the pertur-
bative description in the previous section, the mapping from Ωn to Ω̃n can
be described near infinity by an infinitesimal volume-preserving diffeomor-
phism, i.e. by a divergence-free vector field u. We combine the corresponding



✐

✐

“3-Finster” — 2022/7/1 — 15:26 — page 1793 — #59
✐

✐

✐

✐

✐

✐

A positive mass theorem for static causal fermion systems 1793

inner solution u = (0, u) with the jet v in (6.8),

(6.12) w := v + u .

The resulting jet w describes the change of the metric near infinity, tak-
ing into account the volume constraint (6.10). Therefore, it can be used to
compute the total mass via (1.16). We note for clarity that, while the jet v
is given explicitly by (6.9), the inner solution u is not known, because it
depends on the difference of the inner volumes of µ and µ̃. We will come
back to this issue in Section 6.6.

6.5. Reduction of the surface layer integral to a spacetime
integral

Our task is to compute the surface layer integral in (1.16) for the jet w
in (6.12). We write this surface layer integral in the short form

M(µ̃, µ) = lim
R→∞

∫ R

Rmin

dr

∫ ∞

R
dr′ A(r, r′) with(6.13)

A(r, r′) = r2 r′2
∫

S2

dω

∫

S2

dω′
(

D1,w −D2,w

)

L(x,y) ,(6.14)

where Rmin is any radius for which the sphere is contained in the domain of
the coordinate chart at infinity (for example, one could choose Rmin = R1

with R1 as in (6.11)). Since the jet w is a solution of the linearized field
equations without scalar component, the surface layer integral (6.13) does
not depend on R. Using this conservation law, we can follow the proce-
dure in [20, Lemma 4.2] (a similar method was first used in [25, proof of
Lemma 5.5]) to rewrite the surface layer integral as an average of integrals
over all of space:

Lemma 6.1. The surface layer integral satisfies the relation

∫ R

Rmin

dr

∫ ∞

R
dr A(r, r′) = lim

L→∞

1

2L

∫ R+L

R
dr

∫ ∞

Rmin

dr′ (r′ − r)A(r, r′) .
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Proof. We closely follow [20, proof of Lemma 4.2]. Since the surface layer
integral does not depend on R, we may take an average over R,

∫ R

Rmin

dr

∫ ∞

R
dr′ A(r, r′) =

1

L

∫ L

0
dℓ

∫ R+ℓ

Rmin

dr

∫ ∞

R+ℓ
dr′ A(r, r′)

=
1

L

∫ L

0
dℓ

∫ ∞

Rmin

dr

∫ ∞

Rmin

dr Θ
(

R+ ℓ− r) Θ(r′ −R− ℓ)A(r, r′)

=
1

L

∫ ∞

Rmin

dr

∫ ∞

Rmin

dr A(r, r′)

(
∫ L

0
Θ
(

R+ ℓ− r) Θ(r′ −R− ℓ) dℓ

)

.

Computing the integral over the Heaviside functions involves different cases.
A straightforward calculation yields

∫ R

Rmin

dr

∫ ∞

R
dr′ A(r, r′) =

1

L

∫ R

Rmin

dr

∫ R+L

R
dr′ (r′ −R)A(r, r′)

(6.15)

+
1

L

∫ R

Rmin

dr

∫ ∞

R+L
dr′ L A(r, r′)(6.16)

+
1

L

∫ R+L

R
dr

∫ R+L

r
dr′ (r′ − r)A(r, r′)(6.17)

+
1

L

∫ R+L

R
dr

∫ ∞

R+L
dr′ (L− r +R)A(r, r′) .(6.18)

At this point, we make use of the fact that the causal Lagrangian is of short
range in the sense that A(r, r′) decays at least cubically in r′ − r, i.e.

∣

∣A(r, r′)
∣

∣ ≤
c

|r′ − r|3
for all r, r′ > R

and a suitable constant c > 0 (for details see [20] and [8, Appendix A]). As
a consequence, the double integrals in (6.15), (6.16) and (6.18) are bounded
uniformly in L. Therefore, in the limit L→ ∞ only the summand (6.17)
contributes, i.e.
(6.19)

∫ R

Rmin

dr

∫ ∞

R
dr′ A(r, r′) = lim

L→∞

1

L

∫ R+L

R
dr

∫ R+L

r
dr′ (r′ − r)A(r, r′) .

Rewriting the boundaries of integration in the last integral with the help
of a Heaviside function, we may exchange the integrals and use that the
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integrand is symmetric,

∫ R+L

R
dr

∫ R+L

r
dr′ (r′ − r)A(r, r′)

=

∫ R+L

R
dr

∫ R+L

R
dr′ Θ(r′ − r) (r′ − r)A(r, r′)

=

∫ R+L

R
dr′

∫ R+L

R
dr Θ(r′ − r) (r′ − r)A(r, r′)

=

∫ R+L

R
dr

∫ r

R
dr′ (r′ − r)A(r, r′) .

Using this relation, we can write (6.19) as

∫ R

Rmin

dr

∫ ∞

R
dr A(r, r′) = lim

L→∞

1

2L

∫ R+L

R
dr

∫ R+L

R
dr′ (r′ − r)A(r, r′) .

Finally, changing the integration range of the last integral to (Rmin,∞)
modifies the integrals only by a contribution which vanishes in the limit L→
∞. This gives the result. �

In view of this lemma, it suffices to compute the following expression for
large R,

M(R) :=

∫ ∞

Rmin

(r −R)A(R, r) dr

=
R2

4π

∫ ∞

Rmin

r2 dr

∫

S2

dω (r −R)
(

D1,w −D2,w

)

L(x,y) ,

where, choosing polar coordinates, the points x and y have the form

(6.20) x = (R,N) and y = (r, ω) ,

and N ∈ S2 is the north pole. Including the time integral, we obtain

(6.21) M(R) =
R2

4π

∫

M

(r −R)
(

D1,w −D2,w

)

L
(

x, y
)

dρ(y) ,

where x = (0,x) and y = (t,y). Our findings are summarized as follows:

Proposition 6.2. Assume that integral expression M(R) in (6.21) exists
and converges in the limit R→ ∞. Then it coincides with the total mass,

M = lim
R→∞

M(R) .
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6.6. Computation of the spacetime integral

The remaining task is to compute the spacetime integral in (6.21). The first
order variation of the kernel of the fermionic projector in the presence of a
gravitational field was computed in [12, Appendix B]. These formulas also
apply in our setting. Since the curvature tensor involves second derivatives
of the metric, its components decay at least cubically,

Riem = O
(

R−3
)

.

As a consequence, the contributions to (6.21) involving curvature or deriva-
tives of curvature vanish in the limit R→ ∞. Therefore, it suffices to con-
sider the contributions by the infinitesimal diffeomorphism as given in (6.9).
Moreover, we must also take into account the inner solution u in (6.12).

Proposition 6.3. The volume constraint (6.10) can be taken into account
in the computation of the spacetime integral in (6.21) by setting the inner
solution u to zero and by computing the jet-derivatives instead of (6.9) by

D1,wP
ε(x, y) = 0

D2,wP
ε(x, y) = −

1

2

∫ 1

0
dα hij |αy+(1−α)x ξ

j ∂

∂yi
P ε(x, y) .

Proof. We use a scaling argument which is based on the observation that
contributions by the inner solution u to the surface layer integral (6.13)
involve a scaling factor s. This can be seen in various ways: One way is
to note that inner solutions describe infinitesimal diffeomorphisms and that
the corresponding volume change shows up in (1.11) with a prefactor s.
Another way is to evaluate the conservation law of Lemma 2.3 for an inner
solution u = (div u, u),

∫

Ω
dµ(x)

∫

N\Ω
dµ(y)

(

∇1,u −∇2,u

)

L(x,y) = s

∫

Ω
div u dµ .

Alternatively, this surface layer integral can be computed using integra-
tion by parts (for details see [22, eq. (3.3) in Proposition 3.4]). Such an
integration-by-parts method can also be applied in (6.21), showing that the
contribution of the inner solution to M(R) again involves a factor s.
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Using that the EL equations (2.3) hold for all x ∈ N , we can com-
pute (2.2) asymptotically near infinity to obtain

s =

∫

M

Lκ

(

0, (t,y)
)

dt d3y ,

where Lκ is the Lagrangian in the Minkowski vacuum. Comparing with the
constant c in (1.22), one sees that the total mass is by at least one scaling
factor ε smaller than the contribution by the inner solution. This will also
become clear in the computations leading to (6.23) below, whereas a general
scaling argument is given in Appendix A.

Combining these results, we conclude that the inner solutions compen-
sate precisely all the contributions by the jet v in (6.9) toM(R) which involve
a scaling factor s. Since these jets describe an infinitesimal diffeomorphism,
their contribution to (6.21) can be written as
(6.22)

M(R) ≍
R2

4π

∫

M

(r −R)

(

vj(x, y)
∂

∂xj
− vj(y, x)

∂

∂yj

)

L
(

x, y
)

dρ(y) ,

where vj(x, y) is given by the line integral in (6.9). We now expand vj(x, .)
and vj(., x) in Taylor series about x for y along a null line through x. A direct
computation shows that the zero order term of this expansion gives precisely
the contributions to (6.22) which involve a scaling factor s. Subtracting these
contributions gives the result. �

We remark that in Proposition B.1, it is shown by explicit computation that
the unbounded line integrals in (6.9) do not contribute to the surface layer
integrals, provided that the linear perturbation of the metric does not change
the volume form. This gives an alternative, more computational proof of the
above proposition for linearized gravity.

In view of this result, we may keep the point x fixed. The change of the
metric, however, can be described by the following change of coordinates:

Lemma 6.4. Choosing in Minkowski space the coordinates

t̃ = t+ t
MS

R
, r̃ = r − (r −R)

MS

R
, ϑ̃ = ϑ , ϕ̃ = ϕ ,

the new metric coincides with the Schwarzschild metric near x.
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Proof. A short computation gives

t = t̃− t̃
MS

R
+ O

(

M2
S

)

, r = r̃ + (r̃ −R)
MS

R
+ O

(

M2
S

)

∂t

∂t̃
= 1−

MS

R
,

∂r

∂r̃
= 1 +

MS

R

g̃00 = 1−
2MS

R
, g̃11 = 1 +

2MS

R
,

giving agreement with the Schwarzschild metric linearly in MS. �

In order to clarify the signs, we write this coordinate transformation as
a diffeomorphism,

Φ : (t, r, ω) 7→ (t̃, r̃, ω) .

Then

g̃ij ũ
i ũj = ηij u

iuj ,

where g̃ and η are the Schwarzschild and Minkowski metrics, respectively.
Therefore, the Lagrangian in the Schwarzschild metric can be written as
L(x,Φ−1(y)), where L denotes is the Lagrangian of the vacuum. Hence

D2,wL(x, y) = L
(

x,Φ−1(y)
)

− L(x, y) + O
(

M2
S

)

,

and using that

Φ−1(t, r, ω)− (t, r, ω) =
MS

R

(

− t, (r −R), 0
)

+ O
(

M2
S

)

,

we conclude that

D2,wL(x, y) =
MS

R

(

− t
∂

∂t
+ (r −R)

∂

∂r

)

L(x, y) + O
(

M2
S

)

.

Hence, to first order in MS,

M(R) =
R2

4π

∫

M

(r −R)
(

D1,w −D2,w

)

L
(

x, y
)

dρ(y)

= −
R2

4π

∫

M

(r −R)D2,wL
(

x, y
)

dρ(y)
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= −
RMS

4π

∫ ∞

−∞
dt

∫ ∞

0
dr (r −R) r2

×

∫

S2

dω
(

− t
∂

∂t
+ (r −R)

∂

∂r

)

L
(

x, (t, r, ω)
)

(∗)
= −

RMS

4π

∫ ∞

−∞
dt

∫ ∞

0
dr

∫

S2

dω L
(

x, (t, r, ω)
)

×
( ∂

∂t

(

t (r −R) r2
)

−
∂

∂r

(

(r −R)2 r2
)

)

=
RMS

4π

∫ ∞

−∞
dt

∫ ∞

0
dr

∫

S2

dω L
(

x, (t, r, ω)
)

r (r −R)
(

2 (r −R) + r
)

,

where in (∗) we integrated by parts. Carrying out the time integration ac-
cording to (3.2) and again choosing polar coordinates (6.20), we obtain

M(R) =
RMS

4π

∫ ∞

0
dr

∫

S2

dω L(x,y) r (r −R)
(

2 (r −R) + r
)

.

From now on, we can work in Minkowski space. Assuming spherical
symmetry, the Lagrangian depends only on the Euclidean distance, which
with the law of cosines is given by

|x− y|2 = R2 − r2 − 2Rr cosϑ = (r −R)2 + 2Rr
(

1− cosϑ
)

.

In order to obtain a clean expansion in powers of 1/R, it is useful to trans-
form to the new coordinates

ℓ(r) = r −R and σ(ϑ) =
√

2Rr
(

1− cosϑ
)

.

Then

dℓ = dr and σ dσ = Rr d cosϑ .

Using that dω = 2π d cosϑ, the integral transforms to

M(R) =
RMS

4π

∫ ∞

−∞
dℓ

∫ ∞

0

2πσ

Rr
dσ L(x,y) r (r −R)

(

2 (r −R) + r
)

=
MS

4π

∫ ∞

−∞
dℓ

∫ ∞

0
2πσ dσ L

[

ℓ2 + σ2
]

ℓ
(

2 ℓ+ (ℓ+R)
)

,

where the square brackets indicate that the Lagrangian depends only on ℓ2 +
σ2. The linear term in ℓ drops out by symmetry,

M(R) =
MS

4π

∫ ∞

−∞
dℓ

∫ ∞

0
2πσ dσ L

[

ℓ2 + σ2
]

3ℓ2 .
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Now we can regard ℓ and σ as cylindrical coordinates in R3. Again using
spherical symmetry, we obtain

M(R) =
MS

4π

∫

R3

|y|2 L
[

y2
]

d3y .

Again writing out the time integration and applying Proposition 6.2, we
conclude that the total mass is given by

(6.23) M =
MS

4π

∫

M

|y|2 L
(

0, (t,y)
)

d4y .

This concludes the proof of Theorem 1.10.

7. Scaling behavior of Dirac systems

In this section we work out the scaling behavior for static Dirac systems and
analyze the questions (b)–(e) posed in the introduction on page 1746. We
begin by discussing the length scales in (1.23) in more detail. First of all,
these length scales are related to each other by

ε . δ ≪
1

m
.

At first sight, it might seem natural to identify the regularization length ε
with the Planck scale δ. However, as is explained in detail in [18, Chap-
ter 4], it is preferable to regard ε and δ as two different parameters, where
typically ε≪ δ.

We first recall the scalings in theMinkowski vacuum as worked out in [20]
and [8, Appendix A]. The scaling of the function t in (3.11) can be obtained
in a straightforward way from a dimensional argument,

t(x) ≃
σ λ4

ε8
,

where σ and λ are the parameters describing the rescaling freedom (see (3.12)
in Section 3.4). The contributions to the Lagrangian are less obvious because
of our limited knowledge about the structure of physical spacetime on the
Planck scale. Nevertheless, the Lagrangian can be written as

ℓ(x) + s ≃ σ λ4
(

(εm)p

ε8
+

1

δ8

(δ

ε

)ŝ
)
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with parameters p and ŝ, which from general considerations are known to
be in the range

p ≥ 5 and ŝ ∈ {0, 2} .

We next explain how to choose the parameters σ and λ used in the
rescaling. It is most convenient to work in the units of length determined by
the measure µ̃. In order to keep this length scale fixed, we must not rescale
the volume, meaning that σ must be kept fixed. For simplicity, we choose

σ = 1 for all τ .

Moreover, the local trace must be kept constant (2.38). As is worked out in
detail in [18, Section 2.5] and [8, Appendix A.3], this trace scales like

tr(x) = Tr
(

P (x, x)
)

≃
λm

ε2
.

This leads us to choose λ ≃ ε2/m. In this way, the freedom in scaling the
measure is exhausted. Moreover, the above formulas for t(x) and ℓ(x) + s

simplify to

(7.1) t(x) ≃
1

m4
and ℓ(x) + s ≃

(

(εm)p

m4
+

1

m8

(ε

δ

)8−ŝ
)

.

In curved spacetime, the functions ℓ(x) and t(x) vary in spacetime,
but the parameters in (1.23) as well as the Lagrange parameters s, κ and
the parameter c in (2.38) are still constants. Moreover, we always consider
critical measures. The resulting weak EL equations (2.9) (again for the κ-
Lagrangian; see also (5.2)) read

∇u

(

ℓ+ κ t
)

|N = 0 .

In Definition 1.6 we consider a family (µτ )τ∈(−1,1) of critical static measures
for a decreasing value of κ. The crucial question is how the parameters m
and δ change when we decrease κ for a measure describing the Minkowski
vacuum. The parameter κ is the Lagrange multiplier corresponding to the
boundedness constraint. Therefore, decreasing κ corresponds to weakening
the boundedness constraint by increasing the parameter C in (2.36). This
has the effect that the functional in (2.36) becomes larger, whereas the
causal action (2.33) becomes smaller. For a translation invariant system like
Minkowski space, this means that t(x) increases, whereas ℓ(x) + s decreases.
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In view of the left side of (7.1), this means that the mass of the Dirac
particles decreases,

(7.2)
d

dτ
logm

∣

∣

∣

τ=0
< 0 .

The scaling behavior of δ is less obvious because of the unknown parame-
ters p and ŝ in (7.1). In view of the fact that the parameter δ was introduced
in [18, Chapter 4] in order to compensate for the fact that the neutrino
masses differ from the masses of the charged leptons, it is natural to assume
that it scales in the same way as 1/m, i.e.

(7.3)
d

dτ
log

(

mδ
)

∣

∣

∣

τ=0
= 0 .

This natural scaling of δ means that when κ is decreased, the Compton
length and the Planck length are increased by the same factor. When con-
sidering a gravitating system, the natural scaling of δ has the convenient
property that the interaction remains unchanged, only the size of the whole
system changes. Keeping in mind that the length scale is determined by
the measure, one can also say that, assuming natural scaling of δ, only the
measure µ̃ and the regularization length ε are rescaled, but otherwise the sys-
tem remains unchanged. Although the natural scaling of δ seems reasonable
and sensible, it is not compelling, neither for mathematical nor for physical
reasons. With our present knowledge, it is conceivable that for families of
minimizers of the causal action, the parameter δ might have a different or
more complicated scaling behavior.

Having the above scalings in mind, the relation (1.19) has a direct mean-
ing: The vector field v changes the parameters m, δ and ε for the measure
describing the Minkowski vacuum. Likewise, the vector field ṽ describes
a variation of the gravitating system. Since asymptotically at infinity, the
gravitating system goes over to Minkowski space, the parameters m, δ and ε
of the gravitating system change just as in Minkowski space. As a conse-
quence, the effect of the change of these parameters drops out when taking
the difference of v and ṽ in (1.19). What remains is the change of the grav-
itating system, which in turn changes the strength of the gravitational field
at infinity as described by the vector field w in (1.19). This consideration
also explains why static Dirac systems are κ-scalable in the sense of Defini-
tion 1.7, thus answering question (b) on page 1746.

The above scaling analysis also makes it possible to address the ques-
tions (c)–(e) on page 1746. Making these considerations mathematically
precise goes beyond the scope of this paper. Instead, we merely discuss these
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questions in remarks which explain connections to be explored in more detail
in the future.

Remark 7.1. Why is the gravitational force attractive? Having ex-
plained how the relation (1.19) comes about, we can now consider the sign of
the gravitational coupling constant. As explained above, the jet ṽ describes
a change of the gravitating system due to a variation of the parameters m,
ε and δ, on the length scale determined by the measure µ̃. Clearly, in view
of (1.16) we only need to be concerned about the behavior near spatial infin-
ity. Thus the question is how the strength of the gravitational field changes
near infinity if the parameters m, ε and δ are varied infinitesimally. Clearly,
increasing m makes the gravitational field stronger. In general relativity,
the strength of the gravitational field is given by Gm (having the dimension
of length). Keeping in mind that G ∼ δ2, in the causal fermion system the
corresponding quantity is mδ2. Thus for a static spacetime which is asymp-
totically Schwarzschild, the change of the gravitational field is given by the
quantity

d

dτ
log

(

mδ2
)

∣

∣

∣

τ=0
.

Consequently, the gravitational constant g in (1.19) has the same sign as this
quantity. If δ has the natural scaling, then this sign is positive in view of (7.2)
and (7.3). More generally, the gravitational constant is positive, provided
that the parameter mδ does not decrease too fast if κ is decreased. This
seems a very sensible and natural assumption. However, exactly as explained
after (7.3) for the natural scaling, there seems no compelling mathematical
argument which explains the sign of g. ♦

Remark 7.2. Why is the local energy condition satisfied? It is
sensible to assume that the measure µ describing the Minkowski vacuum is
a minimizer of the causal action principle. Writing the action as

S =

∫

N
dµ(x)

∫

M
dρ(y) L(x, y) =

∫

N

(

ℓ(x) + s
)

dρ(x) ,

the function ℓ(x) + s can be regarded as the action per spatial volume. Like-
wise, in an asymptotically flat spacetime, the function ℓ̃(x)− ℓ̃∞ tells about
how the action per volume at x differs from the action per volume in the
vacuum. With this in mind, the positivity of this function as imposed by the
local energy condition in Definition 1.8 seems to be a direct consequence of
the minimality of the causal action in the vacuum. Although being correct
in principle, it seems that this argument cannot be made precise in a simple
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way. The basic difficulty is that comparing the actions per volume in a rig-
orous way makes sense only in the homogeneous setting where these actions
per volume are constant. Using a rescaling method where one “zooms into”
spacetime on smaller and smaller scales, one can construct a homogeneous
measure for which ℓ̃ coincides with ℓ̃(x) of our curved spacetime. But in this
limiting case, the rest mass m tends to zero. As a consequence, the contri-
bution by matter to the function ℓ̃ also tends to zero, which also means that
the information on the sign of the energy density gets lost. This considera-
tion shows that, in order to relate the sign of ℓ̃(x)− ℓ̃∞ to the minimality of
the causal action in the vacuum, one needs to enter a quantitative analysis
of the scaling behavior of different contributions to ℓ̃(x).

In view of these difficulties, here we are content with the following weaker
statement:

Assume that a contribution by matter to ℓ̃(x) has the property
that the same contribution can be arranged for a homogeneous
physical system (i.e. for a system where ℓ̃(x) is constant). Then
this contribution to ℓ̃(x)− ℓ̃∞ is necessarily non-negative.

For the resulting homogeneous systems, the minimality of ℓ for the vacuum
immediately gives the result. Typical examples for contributions to ℓ̃ which
can be “homogenized” in the above sense are the energy-momentum tensor
of Dirac particles (where in the corresponding homogeneous system one
replaces the Dirac wave functions of matter by a plane wave) or the energy-
momentum tensor for a Maxwell field (in which case for the homogeneous
system one takes a plane electromagnetic wave). In this formulation, our
argument explains why the local energy condition is satisfied for classical
matter on large scales. But we cannot exclude the possibility that there
might be quantum fluctuations on microscopic scales which violate the local
energy condition. ♦

Remark 7.3. Why do vacuum measures describe flat spacetime?
For static Dirac systems, there is a direct way of understanding why a
vacuum measure according to Definition 1.4 describes Minkowski space. In-
deed, as is shown explicitly in [12, Appendix A], the curvature tensor enters
the kernel of the fermionic projector P (x, y). As a consequence, the curva-
ture tensor has an effect on the eigenvalues λxyi of the closed chain which
enter the Lagrangian (2.32). The contributions involving the Ricci tensor
are worked out in more detail in [18, §4.5.2]. Even without working out the
detailed form of the resulting contributions, it is clear from the formulas
in [12, Appendix A] that also the components of the Weyl tensor come into
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play. Since the Lagrangian is non-negative and vanishes in the continuum
limit, the resulting curvature contributions are strictly positive. Therefore,
the condition (1.14) is satisfied if and only if the curvature tensor vanishes
identically. ♦

Appendix A. Scaling behavior of the total mass for static

Dirac systems

The goal of this section is to show that for static Dirac systems, the total
mass scales like

M(µ̃, µ) .
ε

lmacro

s ,

where lmacro denotes the length scale on which the gravitational field changes.
In order to derive this scaling behavior, we deform spacetime such as to ob-
tain a spacetime with zero total mass. Then we analyze how the total mass
changes along the path describing the deformation. Before entering the con-
struction, we point out that the spacetimes along the deformed spacetimes
are in general not static. Therefore, this appendix is the only place in this
paper where we consider the time-dependent setting as introduced in Sec-
tion 2.2.

We let ρ̃ = dt dµ̃ be the static spacetime of interest. We assume that the
corresponding spacetime is of the form M = R×N , where N is a surface of
constant time. Typically, the measure ρ̃ will be a causal fermion system con-
structed from a static Lorentzian spacetime as explained in Section 2.3, but
this is not essential for the following construction. We first deform the mea-
sure µ̃ such as to obtain a family of measures (µ̃τ )τ∈[0,1) with the following
properties:

(i) For τ = 0, we get back the static measure describing our spacetime of
interest, i.e.

µ̃0 = µ̃ .

(ii) In the limit τ ր 1 and outside a compact set, the measures µ̃τ should
go over to a measure describing a spatial hyperplane in Minkowski
space.

(iii) The deformation should be smooth in the sense that

Ñτ = Fτ (N) with F ∈ C∞([0, 1)× Ñ ,F) .

This deformation is illustrated in Figure A1. The next step is to extend the
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FτÑ

Ñτ

Figure A1: Deformation of the initial data.

measures µ̃τ to critical measures ρ̃τ in spacetime. To this end, one can pro-
ceed in two alternative ways: One method is to solve the classical field equa-
tions (Einstein equations coupled to Dirac and possibly other fields) with
initial data Ñτ , and then to define ρ̃τ as in Section 2.3 as the push-forward
of the volume measure under the local correlation map. Alternatively, one
can also solve directly the EL equations of the causal action using the results
and methods in [9]: Generalizing (2.12) to the time-dependent setting, we
make the ansatz

ρ̃τ = (Fτ )∗
(

fτ ρ
)

,

where f and F are smooth,

f ∈ C∞
(

[0, 1)×M → R
+
)

and F ∈ C∞
(

[0, 1)×M → F
)

.

Next, using that

ρ̃τ = ρ̃0 +

∫ τ

0

˙̃ρs ds ,

it suffices to solve the linearized field equations for each τ for the jet

vτ (x) =
d

dτ

(

fτ , Fτ

)

.

As shown in [9], this Cauchy problem can be solved with energy methods.
Before going on, we point out that the above procedure does not work if
the solutions develop singularities, as is the case for example if a black hole
forms. Thus, our deformation method requires that the deformed initial
data admits solutions of the Cauchy problem which exist for a time which
is sufficiently large for the surface layer integrals to be well-defined. This
requirement seems sensible for most applications in mind.

Our next step is to incorporate the volume constraint by arranging that
the weight function fτ vanishes identically, i.e.

ρ̃τ = (Fτ )∗ρ̃ with F ∈ C∞([0, 1)×M,F) .
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This can be arranged by Moser’s theorem (i.e. by integrating the infinitesi-
mal version of Lemma 2.7 or similarly [22, Proposition 3.6] in the hyperbolic
setting).

After these preparation, we can analyze how the total mass changes along
the curve (ρ̃τ )τ∈[0,1]. At τ = 0, we can compute the total mass via (1.16),
which in the spacetime setting we write as

M = lim
VրM

∫

V ∩N
dµ(x)

∫

M\V
dρ(y)

(

D1,w −D2,w

)

L(x, y) ,

and V is chosen of the form R× Ω with Ω ⊂ N . Since the system is static,
we can incorporate the time integral equivalently in the first argument. We
thus obtain the alternative formula for the total mas

M =
1

2
lim

VրM

(
∫

V ∩N
dµ(x)

∫

M\V
dρ(y) +

∫

V
dρ(x)

∫

N\V
dµ(y)

)

(

D1,w −D2,w

)

L(x, y) ,

which is indeed preferable for the following consideration. Applying the fun-
damental theorem of calculus and using that the total mass vanishes in the
limit τ ր 1, we obtain

M = −
1

2
lim

VրM

∫ 1

0
dτ

(
∫

V ∩N
dµ(x)

∫

M\V
dρ(y) +

∫

V
dρ(x)

∫

N\V
dµ(y)

)

×
(

D1,vτ
−D2,vτ

)

L(x, y) ,

where vτ is the vector field vτ = dw/dτ . Since only the asymptotics near
spatial infinity enters, this surface layer integral can be computed just as
well using the perturbed measures,

M(V ) = −
1

2
lim

ṼրM̃

∫ 1

0
dτ

(
∫

Ṽ ∩Ñ
dµ̃τ (x)

∫

M\V
dρ̃τ (y) +

∫

Ṽ
dρ̃τ (x)

∫

Ñ\Ṽ
dµ̃τ (y)

)

×
(

D1,vτ
−D2,vτ

)

L
(

Fτ (x), Fτ (y)
)

.

This has the advantage that the jets vτ are defined globally. Using that the
integrand is anti-symmetric, we obtain

(
∫

Ṽ ∩Ñ
dµ̃τ (x)

∫

M\V
dρ̃τ (y) +

∫

Ṽ
dρ̃τ (x)

∫

Ñ\Ṽ
dµ̃τ (y)

)

(

D1,vτ
−D2,vτ

)

L
(

Fτ (x), Fτ (y)
)

=

(
∫

Ṽ ∩Ñ
dµ̃τ (x)

∫

M
dρ̃τ (y) +

∫

Ṽ
dρ̃τ (x)

∫

Ñ
dµ̃τ (y)

)

×
(

D1,vτ
−D2,vτ

)

L
(

Fτ (x), Fτ (y)
)
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=

(

−

∫

Ṽ ∩Ñ
dµ̃τ (x)

∫

M
dρ̃τ (y) +

∫

Ṽ
dρ̃τ (x)

∫

Ñ
dµ̃τ (y)

)

×
(

D1,vτ
−D2,vτ

)

L
(

Fτ (x), Fτ (y)
)

,

where in the last step we used the EL equations and the linearized field
equations. The last expression is anti-symmetrized in the time integrals. As
a consequence, we only get a contribution if either vτ or Fτ are differentiated
with respect to time. This gives the desired scaling factor ε/lmacro.

Appendix B. Explicit treatment of a linearized

gravitational field

We now explain geometrically how the formulas (6.5), (6.6) and (6.9) for the
kernel of the fermionic projector in the presence of linearized gravity come
about. Moreover, we analyze how the line integrals of the metric perturba-
tion enter the surface layer integral which defines the total mass. Clearly,
in curved spacetime the boundary of the light cone is generated by null
geodesics. Perturbing the geodesic equation

γ̈i(α) = −Γi
jk

(

γ(α)
)

γ̇j(α) γ̇k(α)

to first order about the straight line αy + (1− α)x gives

γ̈i(α) = −Γi
jk|αy+(1−α)x ξ

jξk ,

with the linearized Christoffel symbols given by

(B.1) Γi
jk =

1

2
ηil

(

∂jhlk + ∂khlj − ∂lhjk
)

(where we again set ξ = y − x). Integrating by parts twice and keeping the
geodesic fixed at α = −∞, one sees that

∆γi|x = −

∫ 0

−∞
α γ̈i(α) dα =

∫ 0

−∞
α Γi

jk

∣

∣

αy+(1−α)x
ξjξk dα

=
1

2

∫ 0

−∞
α
(

2 ∂jh
i
k − ∂ihjk

)
∣

∣

αy+(1−α)x
ξjξk dα ,(B.2)

where in the last step we used (B.1).
The transformation x 7→ x+∆γ|x describes an infinitesimal diffeomor-

phism. Therefore, in a a suitable gauge and ignoring curvature terms, the
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transformation of the kernel of the fermionic projector is described by an
infinitesimal coordinate transformation,

∆P (x, y) =

(

∆γi|x
∂

∂xi
+∆γi|y

∂

∂yi

)

P (x, y)

= −

(

∆γi|x −∆γi|y

)

∂

∂yi
P (x, y) ,(B.3)

where in the last step we used that the kernel P (x, y) in the Minkowski
vacuum depends only on the difference vector y − x.

The above formulas can be further simplified. We begin with the unregu-
larized kernel. In this case, we know from Lorentz invariance that the partial
derivatives of P (x, y) are proportional to the vector ξ. Contracting (B.2)
with ξ, we obtain

(B.4) ∆γi|x ξi =
1

2

∫ 0

−∞
α ∂jh

i
k

∣

∣

αy+(1−α)x
ξjξkξi dα .

Rewriting the directional derivative ξj∂j as an α-derivative, we can integrate
by parts to obtain

(B.5) ∆γi|x ξi = −
1

2

∫ 0

−∞
hik

∣

∣

αy+(1−α)x
ξk ξi dα .

Using this formula in (B.3) gives

∆P (x, y) = −
1

2

(
∫ 0

−∞
−

∫ 1

−∞

)

dα hik
∣

∣

αy+(1−α)x
ξk

∂

∂yi
P (x, y)

=
1

2

∫ 1

0
dα hik

∣

∣

αy+(1−α)x
ξk

∂

∂yi
P (x, y) .(B.6)

We thus obtain (6.5).
Before going on, we make a few remarks. Clearly, keeping the geodesic

fixed at α = −∞ was an arbitrary choice. If instead we would have kept the
geodesic fixed at α = +∞, the unbounded line integrals would have to be
modified according to the replacement rules

∫ 0

−∞
→ −

∫ ∞

0
and

∫ 1

−∞
→ −

∫ ∞

1
.

However, this has no effect on expressions involving bounded line integrals
like (B.6). We also remark that the appearance of unbounded line integrals
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in (B.5) motivates the line integrals in (6.9). The only additional ingredient
needed in order to derive (6.9) is that the way causality is incorporated
in the so-called causal perturbation expansion (see [10] or the more recent
paper [35]) has the consequence that one must always take the arithmetic
mean of the expressions obtained in the cases when the geodesic is fixed
at α = −∞ and α = +∞.

We next consider the case with regularization. Since the regularized ker-
nel P ε(x, y) is not Lorentz invariant, the method used after (B.4) no longer
applies. But we can derive similar results in the static and spherically sym-
metric situation as follows. The first summand in the integrand in (B.2)
contains a derivative ξj∂j which we can again rewrite as an α-derivative
and integrate by parts. The second summand in (B.2), however, is not of
this form. In order to study this summand in more detail, we consider its
contribution to one of the terms in (B.3),
(B.7)

∆γi|x
∂

∂yi
P ε(x, y) ≍ −

1

2

∫ 0

−∞
dα α ∂ihjk

∣

∣

αy+(1−α)x
ξjξk

∂

∂yi
P ε(x, y) .

Using spherical symmetry and homogeneity, we can write the unregularized
kernel of the vacuum as

(B.8) P ε(x, y) = P ε
[

ξiξi, ξ
0
]

.

Moreover, since hjk is static, the index i in (B.7) is non-zero. Therefore, the
partial derivatives do not act on the second argument of the kernel in (B.8).
Consequently, the product rule gives again a factor ξi, making it possible to
integrate by parts exactly as explained after (B.4). We conclude that

∆γi|x
∂

∂yi
P ε

[

ξiξi, ξ
0
]

= −
1

2

∫ 0

−∞
dα hik

∣

∣

αy+(1−α)x
ξk

∂

∂yi
P ε

[

ξiξi, ξ
0
]

.

Using this formula in (B.3) gives (6.6).
We finally analyze how the terms (6.9) contribute to the surface layer

integral (1.16) describing the total mass. Since the jets in (6.9) describe an
infinitesimal diffeomorphism, their contribution to (1.16) can be written in
analogy to (6.22) as
(B.9)

M(µ̃, µ) ≍ lim
ΩրN

∫

Ω
dµ(x)

∫

R×(N\Ω)
dρ(y)

(

vj(x, y)
∂

∂xj
− vj(y, x)

∂

∂yj

)

Lκ(x,y)
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with

(B.10) vj(x, y) :=
1

4

∫ ∞

−∞
dα ǫ(α) hjk|αy+(1−α)x ξ

k .

Proposition B.1. The contribution to the mass given by (B.9) and (B.10)
vanishes if the perturbation of the metric hij is compactly supported and
trace-free.

Proof. It suffices to consider the summand involving the x-derivative in (B.9),
because the other summand can be treated in the same way. Thus our task
is to analyze the integral expression

I :=

∫

Ω
d3x

∫

N\Ω
d3y

∫ ∞

−∞
dα ǫ(α) hjk

∣

∣

αy+(1−α)x

∫ ∞

−∞
dξ0 ξk

∂

∂xj
Lκ(x, y) .

The first step is to transform the integral over y to an integral over z :=
αy + (1− α)x,

I =
{

z− x = α (y − x) , d3z = α3 d3y
}

=

∫ ∞

−∞
dα ǫ(α)

∫

R3

d3z

α3
hjk(z)

×

∫

Ω
d3x χN\Ω(y)

∫ ∞

−∞
dξ0 ξk

∂

∂xj
Lκ(x, y)

∣

∣

∣

y=x+ z−x

α

.

Next, for the x-integration we choose polar coordinates around z, i.e.

(B.11) x = z+ r ζ with r ∈ R
+ and ζ ∈ S2 .

We thus obtain

(B.12) I =

∫

R3

d3z hjk(z)

∫

S2

d2ζ Jk
j (z, ζ)

with

Jk
j (z, ζ) :=

∫ ∞

−∞
dα

ǫ(α)

α3

∫ ∞

0
r2 dr χΩ(x) χN\Ω(y)

∫ ∞

−∞
dξ0 ξk

∂

∂xj
Lκ(x, y) ,

where x and y are given by (B.11) and

y = x+
z− x

α
= z+

(

1−
1

α

)

(x− z) = z+
(

1−
1

α

)

r ζ .
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z

Ω
N \ Ω

x

y

ζ r = |x− z|

R = ±|y − z|

x0

Figure B1: The unbounded line integrals in the surface layer integral.

Finally, we transform from the integration variable α to R defined by

y = z+Rζ and thus R =
(

1−
1

α

)

r .

Then

Jk
j (z, ζ) =

{

α =
r

r −R
, dα =

α2

r
dR

}

=

∫ ∞

0
r2 dr

∫ ∞

−∞

dR

r α
ǫ(r −R) χΩ(x) χN\Ω(y)

∫ ∞

−∞
dξ0 ξk

∂

∂xj
Lκ(x, y)

=

∫ ∞

0
dr

∫ ∞

−∞
dR |r −R| χΩ(x) χN\Ω(y)

∫ ∞

−∞
dξ0 ξk

∂

∂xj
Lκ(x, y) .

The integrals over r and R are integrals along the straight line z + ζ R, as
shown in Figure B1. Let us assume that the ray z + ζ R+ intersects the
boundary of Ω only once at a point x0 = z + r0 ζ (this is clearly the case if
we chose Ω as a ball or a convex set). Moreover, assume that z lies inside Ω.
Then, introducing the new integration variables τ = r − r0 and τ ′ = R− r0,
we obtain

Jk
j (z, ζ) =

∫ 0

−r0

dτ

∫ ∞

0
dτ ′

(

τ ′ − τ
)

∫ ∞

−∞
dξ0 ξk

∂

∂xj
Lκ(x, y)

∣

∣

∣

x = x0 + τζ

y = x0 + τ ′ζ

.

If the set Ω is chosen as a ball whose radius tends to infinity, this simplifies
to

Jk
j (z, ζ) =

∫ 0

−∞
dτ

∫ ∞

0
dτ ′

(

τ ′ − τ
)

∫ ∞

−∞
dξ0 ξk

∂

∂xj
Lκ(x, y)

∣

∣

∣

x = x0 + τζ

y = x0 + τ ′ζ

.
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Moreover, we can evaluate these integrals for the regularized Lagrangian in
Minkowski space. In particular, using that the Lagrangian depends only on
the difference vector ξ = y − x, one of the line integrals can be carried out,

Jk
j (z, ζ) = −

∫ 0

−∞
dτ

∫ ∞

0
dτ ′

(

τ ′ − τ
)

∫ ∞

−∞
dξ0 ξk

∂

∂ξj
Lκ[ξ]

∣

∣

∣

∣

ξ=
(

ξ0,(τ ′−τ)ζ
)

=

{

β = τ ′ − τ
dβ = dτ ′

}

= −

∫ 0

−∞
dβ

∫ 0

−β
dτ β

∫ ∞

−∞
dξ0 ξk

∂

∂ξj
Lκ[ξ]

∣

∣

∣

∣

ξ=(ξ0,βζ)

= −

∫ 0

−∞
dβ β2

∫ ∞

−∞
dξ0 ξk

∂

∂ξj
Lκ[ξ]

∣

∣

∣

ξ=(ξ0,βζ)
.

Let us consider the different cases for the tensor indices. If j = 0, we can
integrate by parts in y0 to obtain

Jk
0 (z, ζ) = δk0

∫ ∞

0
dβ β2

∫ ∞

−∞
dξ0 Lκ[ξ]

∣

∣

∣

∣

ξ=(ξ0,βζ)

.

We next compute the trace,

Jk
k (z, ζ) = −

∫ ∞

0
dβ β2

∫ ∞

−∞
dσ β ξk

∂

∂ξk
Lκ[ξ]

∣

∣

∣

ξ=β (σ,ζ)

= −

∫ ∞

0
dβ β2

∫ ∞

−∞
dσ β2

∂

∂β
Lκ[ξ]

∣

∣

∣

ξ=β (σ,ζ)

= −

∫ ∞

0
dβ β4

∂

∂β

∫ ∞

−∞
dσ0 Lκ[ξ]

∣

∣

∣

ξ=β (σ,ζ)

= 4

∫ ∞

0
dβ β3

∫ ∞

−∞
dσ0 Lκ[ξ]

∣

∣

∣

ξ=β (σ,ζ)
.

Comparing the above formulas, we conclude that

Jk
k (z, ζ) = 4 J0

0 (z, ζ) .

Using spherical symmetry, it follows that

Jk
j (z, ζ) = c(z)

(

δk0 δ
0
j + 3 ζkζj

)
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with a scalar function c(z). As a consequence, integrating over ζ in (B.12)
gives

I = 4π

∫

R3

d3z hjk(z) c(z) δ
k
j = 0 ,

because hjk(z) is assumed to be trace-free. �
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