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Masses, sheets and rigid SCFTs

Aswin Balasubramanian and Jacques Distler

We study mass deformations of certain three dimensional N = 4
Superconformal Field Theories (SCFTs) that have come to be
called T ρ[G] theories. These are associated to tame defects of the
six dimensional (0, 2) SCFT X[j] for j = A,D,E. We describe these
deformations using a refined version of the theory of sheets, a sub-
ject of interest in Geometric Representation Theory. In mathe-
matical terms, we parameterize local mass-like deformations of the
tamely ramified Hitchin integrable system and identify the subset
of the deformations that do admit an interpretation as a mass de-
formation for the theories under consideration. We point out the
existence of non-trivial Rigid SCFTs among these theories. We
classify the Rigid theories within this set of SCFTs and give a
description of their Higgs and Coulomb branches. We then study
the implications for the endpoints of RG flows triggered by mass
deformations in these 3d N = 4 theories. Finally, we discuss con-
nections with the recently proposed idea of Symplectic Duality and
describe some conjectures about its action.
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1. Introduction

In their pioneering work, Seiberg and Witten determined the low energy
effective theory on the Coulomb branch for pure SU(2) N = 2 gauge theory
and for SU(2) N = 2 SQCD with Nf ≤ 4 using constraints from supersym-
metry and electric magnetic duality of the abelian theory at a generic point
of the Coulomb branch [120, 121]. Subsequent studies into the structure
of Coulomb branches of other N = 2 theories have used various different
strategies. One approach involves obtaining 4d N = 2 theories from higher
dimensional field theories. This has the advantage that it “geometrizes”
many subtle aspects of the 4d gauge theory and allows one to construct a
large family of 4d N = 2 theories in a uniform way.

An important feature of the theory on the Coulomb branch of a 4dN = 2
theory is that it is governed by an associated complex integrable system
[49, 105]. Complex Integrable systems that arise in this fashion are called
Seiberg-Witten integrable systems (see [50] for a review). The base manifold
of a complex integrable system is naturally a special Kähler manifold [55]
and in the case of a Seiberg-Witten integrable system, it is identified with
the Coulomb branch of the four dimensional theory. The total space of the
integrable system, on the other hand, is identified with the Coulomb branch
of the three dimensional theory obtained by compactifying the 4d theory on
a circle [122].

An example of a large family of 4d N = 2 theories that can be con-
structed by dimensional reduction are the theories of Class S. These are
theories that are obtained by twisted compactifications of the six dimen-
sional (0, 2) SCFTs X[j] of type j ∈ A,D,E together with its codimension
two (or four dimensional) defects on a punctured Riemann surface Cg,n

where the defects are inserted at the punctures [60, 62]. This list of theo-
ries includes several familiar Lagrangian theories and numerous theories for
which a UV Lagrangian is not known. The range of theories that can be
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obtained using such a construction can be explored in a systematic manner
and it has been in [35] and subsequent works in the Tinkertoys program for
Class S theories.

A key virtue of these theories is that the associated Seiberg-Witten inte-
grable system is Hitchin’s integrable system corresponding to the Lie algebra
j and the Riemann surface Cg,n. This is clearly an instance where a construc-
tion from higher dimensions greatly aids in understanding the geometry
underlying the four dimensional theory. In the presence of codimension two
defects, one actually studies the ramified Hitchin system. As we recall below,
the codimension two defects of theory X[j] fall into two major categories,
tame and wild. They manifest themselves as tame or wild singularities in
the Hitchin system. The present paper is concerning the behaviour of the
tame defects of the 6d theory under mass deformations.

Let us now recall some basic properties of a large class of tame codi-
mension two defects of the six dimensional (0, 2) SCFT X[j] that have been
studied by [36]. In general, these are to be understood as modifications of
the six dimensional theory along a four dimensional submanifold. Ideally,
one would like to understand these defects directly in their native home,
namely the six dimensional theory. But, the lack of a Lagrangian descrip-
tion for the non-abelian phase of the six dimensional theory makes such a
direct approach difficult. The approach that we take here, following what
has become standard practice, is to study the behaviour of these defects un-
der dimensional reductions. At least three different dimensional reductions
from six dimensions are directly relevant for the current paper. The first
reduction can be used to associate a Nahm label to the defect (as in [36], see
§2.1 below). The second reduction can be used to associate a Hitchin label
to the defect [62] (see §2.2 below). In both cases, a gauge theory appears
in five dimensions. We will denote the gauge group on the Nahm side to be
G and the gauge group on the Hitchin side to be G∨ in keeping with the
notation used in [36]. Here, we use G to denote the compact Lie group and
g to denote the underlying complex Lie algebra.

If the dimensional reduction on the circle does not involve an outer-
automorphism twist, then G and G∨ are both simply laced and have the
same underlying complex Lie algebra g = j. We will denote the corresponding
complex groups as GC and G∨

C
. For the purposes of this paper, the precise

global form of the gauge group will not matter. Our considerations will
mostly be at the Lie algebra level. When the outer-automorphism twist o is
non-trivial, g and j are related as below [36],
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j o g g∨

A2n−1 Z2 Cn Bn

Dn Z2 Bn−1 Cn−1

D4 Z3 G2 G2

E6 Z2 F4 F4

The third dimensional reduction that is relevant for the paper is the
one applicable to the construction of class S[j] theories using a (partially
twisted) compactification of the six dimensional theory X[j] on a Riemann
surface Cg,n of genus g with n punctures [60, 62]. The third reduction is also
the setting for the AGT correspondence [1] which, among other things, sets
up a map between codimension two defects and certain primaries of Toda[j]
theories [6, 75, 86].

In the limit where mass parameters are turned off, a pair of nilpotent
orbits (ON ,OH) offer an efficient description of the defect [6, 36]. As we
review in §2.1, the nilpotent orbit ON , the Nahm label, is a nilpotent in
the Lie algebra g while OH , the Hitchin label, is a nilpotent orbit in g∨.
For the known tame defects, the Hitchin label is restricted to be a special
nilpotent orbit while the Nahm label can be any nilpotent orbit. For a com-
plete description of the local 4d Coulomb branch data associated to a tame
defect, one has to additionally identify the Sommers-Achar group C(OH)
associated to the defect. The map from ON to (OH , C(OH)) is known. For
the untwisted defects, this is a refinement of Spaltenstein’s duality map and
more generally, it is Sommers’ refinement [126] of the duality map due to
Barbasch-Vogan (see [6, 36] for more detailed discussions and references).

One would like to extend this understanding further to the case of non-
zero hypermultiplet masses for several reasons. The most important reason
is perhaps the fact that this will help us determine Seiberg-Witten curves
for class S theories with nonzero hypermultiplet masses. Starting with the
mass deformed form of the curve, one can arrive at the Seiberg-Witten curve
for several other theories by taking various limits of large masses. This set
of theories includes, for example, asymptotically free theories. For defects in
Type A, mass deformations are well understood [36, 60, 62]. The primary
motivation for the current work is to understand mass deformations for Class
S theories outside of type A.

In this present paper, we study only the local aspects of this problem.
By this, we mean the effect of a mass deformation on a single tame defect.
In fact, we will only present the solution to a corresponding problem about
3d N = 4 SCFTs. These SCFTs arise when the four dimensional defect
is wrapped on a circle. The resulting three dimensional defect in 5d SYM
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can be described by a coupling to a 3d N = 4 SCFT living on the world
volume of the defect. For the tame defects that we study, these SCFTs
are the T ρ[G] theories introduced by Gaiotto-Witten in their study of S-
duality for conformal 1/2 BPS boundary conditions in 4d N = 4 SYM [64].
Our reasons for restricting to the problem in three dimensions are two fold.
First, we find several interesting structures already in the three dimensional
problem of mass deformations which are perhaps best elucidated separately.
Second, there are additional subtleties that enter the description of the four
dimensional Coulomb branch. We comment briefly on how to incorporate
them in §7.3 but we leave a fuller discussion for a later work.

Already in [36], a proposal for the study of mass deformations outside
of type A was put forward and this involves using nilpotent orbit induction
and the theory of sheets to studying mass deformations. The present work
can be taken to be a precise realization of this proposal. But, we encounter
some surprising new results in the process. Specifically, we find that there is
a richer variation in RG flows (triggered by mass deformations) between the
3d SCFTs associated to non-Type A defects. Elucidating the ways in which
these RG flows (and their endpoints) can be different outside of type A is
a major goal of this paper. We do this in §5.4 where we observe that each
defect belongs to one of three deformation classes : Smoothable, Malleable
or Rigid and then describe the end point of a mass deformation for each of
the defects.

For our purposes, we find it useful to first re-interpret known results
about local hyper-Kähler geometry of the tamely ramified Hitchin System
using the theory of sheets and use this to describe all mass-like deformations
of tame Hitchin system. Then, we further specialize to those deformations
that do admit an interpretation as a mass deformation for the codimension
two defects of the six dimensional X[j] SCFT. We give a more detailed
outline of this strategy in the §2.4.

The paper is organized in the following way. In §2, we recall properties
of the defects in the massless limit and give a summary of our strategy for
approaching the problem of mass deformations in §2.4. In §3, we review as-
pects of the local geometry of the ramified Hitchin system and discuss the
conditions that need to be obeyed by a mass-like deformation of the tame
Hitchin system. In §4, we give a detailed review of the theory of sheets in
complex Lie algebras. After the detailed review, we give an explicit param-
eterization of mass-like deformations of the tame Hitchin system using the
theory of sheets.

In §5, we identify the subset of mass-like deformations that further ad-
mit an interpretation as a mass deformation for a codimension two defect of
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theory X[j] and give a description of the geometric consequences of a mass
deformation associated to a defect. In the process of giving this description,
we introduce the idea of a Rigid SCFT and explain its relation to a refine-
ment of the theory of sheets. We also slot the defects under study into some
natural groups (deformation classes).

In §6, we describe mass deformed defects for various simply laced g

in explicit fashion. In §7, we provide further discussion highlighting some
important aspects of our results with the help of examples from §6. In §8, we
raise the question of when the 3d SCFTs under study have UV Lagrangians
and make some comments towards answering this question.

In §9, we explore connections to works centered on the idea of Symplectic
Duality. We argue that symplectic duality for the T ρ[G] theories leads to a
duality between slices (to nilpotent orbits) in the Lie algebra g and a certain
refined version of (special) sheets in the Lie algebra g∨. We explain this
argument in the form of two conjectures in §9.1.1 and §9.1.2.

Finally, in Appendix §A, we have summarized some aspects of the struc-
ture theory of nilpotent orbits that we could not explain as part of the main
text. We have also provided a quick guide in §A.3 to several terms that
appear in the body of the paper. And in Appendix §B, we have described
mass deformed twisted defects for certain low rank cases.

2. Review and outline of strategy

2.1. The Nahm label

To associate a Nahm label to the defect, we consider a dimensional reduction
from six to five dimensions by formulating the theory on a circle transverse
to the defect. One obtains N = 2 SYM with a gauge group that we take to
be G, a compact simple Lie group. The resulting defect in five dimensions
is now co-dimension one. More accurately, it is a special case of a codi-
mension one defect that can be identified with a boundary condition in the
five dimensional theory. When this setup is further compactified down to
four dimensions, one obtains 4d SYM with gauge group G and a conformal
1/2 BPS boundary condition. This boundary condition is the one that cor-
responds to a ‘pure Nahm pole’ in the terminology of [65]. Associated to
this boundary condition is a sl2 embedding ρ : sl2 → g. By the Jacobson-
Morozov theorem, picking ρ is equivalent to picking a nilpotent orbit in the
Lie algebra g. Let us denote the nilpotent orbit associated to the embedding
ρ by ON . This nilpotent orbit constitutes the ‘Nahm label’ for the defect.
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The Nahm label is convenient to identity one of the components of the
moduli space of vacua associated of the CFT to the defect. Once we have
compactified the defect, one is describing a three dimensional defect which
has 3d N = 4 SUSY on its world volume. In this compactified setting, one
can attach a Higgs branch to the defect. For a defect with a Nahm label
ON , the Higgs branch is a particular stratum inside the nilpotent cone Ng.
This stratum can be described as the intersection SON

⋂

N , where SON
is

the Slodowy slice to the nilpotent orbit ON . We refer to [6, 36] for more
elaborate recollections of these matters.

The construction of Slodowy’s slice proceeds as follows. Pick a standard
triple (e, f, h) for sl2 and then consider the space

(2.1) SON
= ρ(e) + Zg(ρ(f)),

where ρ(e) is the image under ρ of the nilpositive element and Zg(ρ(f)) is
the centralizer (in g) of the image of the nilnegative element f . Under the
g-action, this space sweeps a stratum inside the Lie algebra g and this is
called the Slodowy slice to the orbit ON . The intersection SON

⋂

N appears
naturally as the moduli space of solutions to Nahm’s equations on a semi-
infinite line with the pure Nahm pole boundary condition at the boundary
and fixed regular values at infinity. The problem of finding the solution space
to Nahm’s equations can be cast as a hyper-Kähler quotient construction.
Thus, the resulting moduli space of solutions carries a natural hyper-Kähler
structure. Taken together with the natural hyper-Kähler metric that is ob-
tained in this construction, this moduli space constitutes the Higgs branch
MHiggs that one attaches to the defect. If considers the moduli space that
is fibered over the boundary values, one obtains a different moduli space
M̂Higgs. In a distinguished complex structure and for a specific pattern of

boundary values, M̂Higgs is a hyper-Kähler resolution of MHiggs [16, 17].
We will not discuss this resolution of singularities in this paper.

But, the following aspect of the Higgs Branch will play an important role
for us. Let f be the joint (Lie algebra) centralizer of the triple (ρ(e), ρ(f), ρ(h))
in the Lie algebra g. And let F be a compact group group associated to the
complex Lie algebra f. The group F acts on the Higgs branch MHiggs by
hyper-Kähler isometries.1 It is natural to call this a flavour symmetry since

1We regret the similarity in notation for the nilnegative element f in sl2 and
the Lie algebra f ⊂ g of the Flavour symmetry group F . We have continued to use
what are standard labels in the literature. The context should clarify any potential
confusion between the two.
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in Lagrangian theories, flavour symmetries appear precisely as hyper-Kähler
isometries of Higgs branches.

2.2. The Hitchin label

To identify the Hitchin label associated to the defect, we take a compact-
ification to five dimensions on a circle that the defect wraps. This leads
to a three dimensional defect in N = 2 SYM with gauge group G∨, the
GNO/Langlands dual group associated to G. This three dimensional de-
fect involves coupling the 5d theory to a 3d N = 4 SCFT. For the defects
that we study, these 3d N = 4 SCFTs turn out to be the T ρ[G] theories of
Gaiotto-Witten [64].

For studying the properties of a single defect, it is convenient to special-
ize to the case where the transverse space to the defect is topologically a
punctured disc. Describing the behaviour of the field of the 5d theory near
the defect turns out to be equivalent to describing a boundary condition for
the ramified Hitchin system for the group G∨ near the puncture[62]. We re-
view some very basic facts here and give a more elaborate discussion about
the Hitchin system in §2.3 and §3.1.

In the massless limit, the defect induces a singular behaviour in the
Higgs field ϕ belonging to a Hitchin system (for the group G∨) that is of the
following form,

(2.2) ϕ =
a

z
+ (. . .),

where a is a nilpotent element in the Lie algebra g∨, z = 0 is the location
of the defect on the Riemann surface C and (. . .) contains terms that are
strictly regular. There is a gauge equivalence that identifies any two defects
whose residues a, a′ happen to be conjugates in g∨. So, the gauge invariant
data fixing the singularity type of the Higgs field is the adjoint orbit to
which the nilpotent element a belongs. Let this nilpotent orbit be OH . This
constitutes the ‘Hitchin label’ for the defect. In type A, this is a complete de-
scription of the Hitchin label. Outside of type A, two further considerations
enter the description of the Hitchin boundary condition. First, it becomes
necessary to restrict to the case where OH is a special nilpotent orbit [6, 36].2

Second, specifying the contribution of a defect to the graded dimension of
the four dimensional Coulomb branch requires some additional data. A way

2The tame defects with Hitchin labels being a special nilpotent orbit are the ones
for which the local Higgs branch and the associated flavour symmetry F are known.
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to specify this data is by the identification Sommers-Achar group associated
the defect [36].

2.3. The Hitchin integrable system

One of the defining properties of theories of the N = 2 theories of class S is
that their Seiberg-Witten solution is encoded in the geometry of the Hitchin
system. Here, we recall some basic aspects of the Hitchin system. For this
discussion, we will restrict to the case of g = slN .

The Hitchin system for a Lie algebra g [79] describes pairs (A, ϕ) that
obeys the equations

FA + [ϕ, ϕ†] = 0,

∂̄Aϕ = 0.
(2.3)

The moduli space of solutions to the above equations is usually termed the
Hitchin moduli space MH . This space is hyper-Kähler. The Hitchin moduli
space has several possible presentations. One of them is as the space of
Higgs bundles. These are pairs (E, ϕ) where E is a holomorphic bundle and
ϕ : E → E ⊗K is an End(E) valued one form. A second presentation is as a
moduli space of flat GC-connections on a vector bundle V over the Riemann
surface C. Consider a connection of the form,

(2.4) ∇ = ∇A + ϕ+ ϕ†,

where ϕ+ ϕ† is an End(V ) valued one form. Now, demanding that ∇ be
flat 3 amounts to demanding that Hitchin’s equations (2.3) are obeyed. The
hermitian adjoint ϕ† is taken with respect to a hermitian metric h on E.
The metric h is completely specified by a solution to Hitchin’s equation.
In this way, one can use solutions to Hitchin’s equations to go between the
Higgs bundle picture and the flat connections picture. This translation be-
tween the Higgs bundle picture and the flat connection picture is called the
non-abelian Hodge correspondence [125]. For the case of a Riemann sur-
face without punctures, the result is obtained by combining the results of
Hitchin[79]-Simpson [123] relating Higgs bundles obeying a stability con-
dition to harmonic maps and of Corlette [39]-Donaldson [51] which relates
harmonic metrics and moduli spaces of flat connections. See [128] for a recent
review of this circle of ideas. For our present discussion, we actually need the

3More generally, one could considered connections of the form ∇ = ∇A + ζϕ+
ζ−1ϕ† for a ζ ∈ C⋆.
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version of the correspondence for a punctured Riemann surface Cg,n with
tame singularities at the punctures [124]. The tameness constraint translates
to the condition that both ∇(0,1) and ϕ have simple poles at the punctures
as in Eq (2.2) above. It also implies a particular behaviour for the hermitian
metric h on the bundle E (of rank r, say) near the punctures [18, 125]. Let
αi be the residue of ∇(0,1). Then, the metric h locally takes the following
form,

(2.5) h = diag(| z |−2α1 , | z |−2α2 , . . . | z |−2αr).

Given the metric h, the connection ∇0,1 can be recovered as the (0, 1) part of
the Chern connection d+ h−1∂h associated to h. Away from the punctures,
the metric is extended in a smooth way that is consistent with Hitchin’s
equations. The relation between the residues of ∇(0,1) and ϕ is somewhat
subtle. On the one hand, the nilpotent parts of Res(∇(0,1)) and Res(ϕ) are
identical but there is a non-canonical relationship between their semi-simple
parts [124]. To keep matters simple, we only discuss Res(ϕ) in what follows
with the understanding that one can always deduce Res(∇(0,1)) using the
table of formulas in [124]. In this context, see also the discussion in §4 of
[111].

The precise map between the Higgs bundle picture and the flat connec-
tions picture necessarily involves a careful specification of stability condi-
tions on both sides. In the tamely ramified case, this, in turn, depends on
the assignment of parabolic weights to each of the punctures[124]. In our
discussions, which will remain purely local, we will not be explicit about
stability conditions. But, they will enter the picture if one were to make
statements globally.

When described as the space of Higgs bundles, the Hitchin moduli space
has the structure of a complex integrable system [78]. This is seen by study-
ing the Hitchin map

(2.6) µH : MH → B

where B =
⊕k

i=2H
0(Σ,Kdi). Locally, the map µH takes the pair (E, ϕ) to

the coefficients pk of the characteristic polynomial of ϕ,

(2.7) µH : (E, ϕ) 7→ (p2(ϕ), p3(ϕ) . . . pk(ϕ)).

If b is a smooth point of the base B, the fibers fb = µ−1
H (b) of the map

µH are complex tori. In unramified case, the complex dimension of moduli
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space of stable Higgs bundles MH(Cg, g), g ≥ 2 is given by

(2.8) dim(MH) = dim(g)(2g − 2).

The dimension of the Hitchin base B is half the dimension of MH ,

(2.9) dim(B) = dim(g)(g − 1)

In the presence of co-dimension two defects, the appropriate integrable
system to consider is the ramified Hitchin system. The integrable system
structure of the ramified Hitchin system has been studied in [25, 48, 104].
See [44] for a recent survey. The present paper is concerned with the local
geometry of the tamely ramified Hitchin system and we will delve into more
of the details in §3.1. For the moment, we note that the presence of the tame
defects modifies the dimension in the following way,4

(2.10) dim(MH) = dim(g)(2g − 2) +
∑

i

dim(Oi
H)

where Oi
H are the Hitchin labels associated to each tame defect. The dimen-

sion of the base B increases such that the relation dim(B) = 1
2 dim(MH)

still holds.
The presence of tame defects (or equivalently, simple poles for the Higgs

field) can be interpreted as the appearance of source terms in Hitchin’s
equations (2.3) (see, for ex [49]).

With the addition of the source terms, the equations take the following
form,

F + [ϕ, ϕ†] =
∑

i

µRδ(z − zi)

∂̄Aϕ =
∑

i

µCδ(z − zi)
(2.11)

where the parameters µR, µC are certain linear combinations of Res(ϕ) and
Res(∇) and zi are the locations of the defects. Locally, such source terms
can be interpreted as the result of coupling the Hitchin system without the
singularity to the adjoint orbit (see discussion in §3 of [68] and §3.1.6 of [62]
for this interpretation).

4One can prove this using the Riemann-Roch theorem. The local contribution
can also deduced by studying the tame Hitchin system on a punctured disk and
noticing that the local moduli space is nothing but the adjoint orbit of the residue.
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We now clarify a point of terminology. When we speak of the tamely
ramified Hitchin system, we mean the meromorphic Hitchin system in which
the Higgs field has simple poles and the residues at these poles are fixed ad-
joint orbits. When the residue data is not fixed, one obtains only a Poisson
structure on the total space of the meromorphic Hitchin system [25, 104].
But, upon fixing the residue, the total space is restricted to being a symplec-
tic leaf of the larger Poisson manifold and we obtain a complex integrable
system whose total space is now equipped with a holomorphic symplectic
form. A closely related notion is that of a parabolic Hitchin system where a
parabolic structure is fixed at each puncture and only residues that respect
this parabolic structure are allowed. In our discussions, we do not need to fix
a parabolic structure and hence, we avoid referring to the parabolic Hitchin
system or parabolic Higgs bundles. We clarify this further in §3.1 where we
study the local geometry of the tame Hitchin system.

The Seiberg-Witten curve is the spectral curve associated to the Hitchin
system and the Seiberg-Witten differential is the canonical 1-form on T ⋆Cg,n,
restricted to the SW curve. We denote it by λdz, where (λ, z) are co-ordinates
for T ⋆Cg,n.

For the case g = sln, the spectral curve S is a n-sheeted cover S → C
defined by

(2.12) detN (ϕ(z)− λ(z)I) = λN + λN−2p2 + . . .+ pn = 0

where pi for i = 2, . . . , n are the invariant symmetric polynomials of degree
i. In particular, p2 =

1
2Tr(ϕ

2) and pn = det(ϕ).
When hypermultiplet masses are set to zero, the corresponding ramified

Hitchin systems describes the geometry of the Coulomb of a super-conformal
field theory (SCFT). The dimension of the integrable system is a measure
of the massless degrees of freedom of this SCFT. It is known, for example,
that there is a direct relationship between the dimension of the integrable
system and the trace anomalies (a, c) [13].

2.4. Our strategy

In this section, we explain our strategy for studying mass deformations of
tame defects. It entails breaking up the problem into two steps. The first
involves classifying all mass-like deformations of the tame Hitchin system.
The second step involves identifying those mass-like deformations that do
correspond to actual mass deformations of T ρ[G] theories. We now explain
both these steps in more detail.



✐

✐

“1-Balasubramanian” — 2022/9/6 — 21:18 — page 1965 — #13
✐

✐

✐

✐

✐

✐

Masses, sheets and rigid SCFTs 1965

2.4.1. Step 1 : Classifying mass-like deformations. An intriguing
feature of mass deformed Seiberg-Witten integrable systems is the fact that
the cohomology class of the holomorphic symplectic form [Ω] varies linearly
with the hypermultiplet mass parameters mi. This was already noted in the
study of the SU(2) Nf = 4 theory in [121] (§17) and this property was sub-
sequently studied in the dimensionally reduced theory in three dimensions
in [122]. It turns out that demanding that [Ω] ∝ mi is highly constraining
and goes a long way in determining the form of the Seiberg-Witten solution
of the mass deformed theory [121]. Following these works, we take our first
requirement for a mass-like deformation to be

(2.13) [Ω]m ̸=0 ∝ mi

It is known that the local geometry of the ramified Hitchin system pro-
vides families of holomorphic symplectic manifolds in which [Ω] has precisely
the required linear dependence and so, it follows that they are suitable can-
didates to describe mass deformations [49].

Now, the above condition constraints how the geometry of the Coulomb
branch can vary once we have a non-zero mass-like deformation. But, we
also need some way to relate it to the undeformed Coulomb branch. For
this, we also impose the following natural condition :

(2.14) dim(OaM
) = dim(Oa0

) .

It is clear that any mass deformation should obey this condition. This is be-
cause we expect hypermultiplet masses to parameterize a family of Coulomb
branches that are of the same dimension as the Coulomb branch of the origi-
nal theory with zero hypermultiplet masses. We will call (2.14) the dimension
condition.

If the two conditions above in Eqs (2.13) (2.14) are obeyed, then we
call the corresponding deformation of the integrable system to be a mass-
like deformation of the integrable system (MH ,Ω). We classify all mass-
like deformations of the tame Hitchin system (for Lie algebra g∨) in §4.
These deformation will turn out to be labeled by a pair (l∨,O) where l∨

is a Levi subalgebra of g∨ and O is a nilpotent orbit in l∨. The mass-like
parameters themselves will turn to be valued in Z(l∨), the center of the
Levi subalgebra and they parameterize a sheet of the Lie algebra g∨. Sheets
offer a particular stratification of the Lie algebra g∨. They are defined in the
following way. Let Ud be the union of all adjoint orbits of a fixed dimension
d. Then, the irreducible components of Ud are called sheets. The Levi l∨
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corresponding to a mass-like deformation of the integrable system is obtained
as the centralizer of the semi-simple part of the non-nilpotent orbits that
belong to a sheet. An account of how sheets arise in the study of the Hitchin
system is provided in §3. A longer introduction to the theory of sheets is
contained in §4.

2.4.2. Step 2 : The Flavour condition. There is one further condition
for a mass-like deformation to be an actual mass deformation. Let us denote
mi ∈ Z(l∨) to be the mass-like deformation parameters of the complex in-
tegrable system. For this to correspond to an actual mass deformation,5 it
should obey the additional condition that the vector space dual of the space
of deformation can be identified with the Cartan subalgebra of the Flavour
group h(F ). In other words, we require that

(2.15) m⋆
i ∈ h(F )

This is the third and final condition that must be obeyed and it follows from
the fact that the masses and the flavour current Lie in the same multiplet of
the superconformal algebra osp(4 | 4) (see §5.2). We call (2.15) the Flavour
condition. As we reviewed in §2.1, the flavour symmetry is the group of
continuous hyper-Kähler isometries of the local Higgs branch and can be
inferred directly from the Nahm label. The Flavour Condition implies that
the Levi l∨sheet associated to the deformation of the integrable systems is
the Langlands dual to Bala-Carter Levi lBC of the Nahm nilpotent orbit.
Let us see how this comes about. From the structure theory of nilpotent
orbits, it follows that the Bala-Carter Levi lBC is the largest Levi-subalgebra
that obeys property that h(F ) ∩ h(L) = {∅}, where L is the compact group
corresponding to the complex Lie algebra l.

Let l∨sheet be the Levi associated to a mass-like deformation of the inte-
grable system. It follows that the mass-like parameters are valued in the cen-
ter of the Levi subalgebra Z(l∨sheet). First, let us assume Z(l∨sheet) ∩ h(lBC) ̸=
{∅}. Then, using 2.15, we see that our assumption contradicts the statement
that lBC is the Bala-Carter Levi for the Nahm orbit ON . So, this implies
that we need to have Z(l∨sheet) ∩ h(lBC) = {∅} for any mass deformation.

Second, if l were a proper Levi subalgebra of lBC , then this deformation
would not be a maximal mass deformation. While this is entirely consistent,
it is not interesting from the point of view of classification. To classify mass
deformations, it makes sense to first classify the maximal ones. The partial

5We confine ourselves to instances of a maximal mass deformation.
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mass deformations can then be obtained as further restrictions on the max-
imal mass deformations. So, we need to consider the largest deformation
for which Z(l∨sheet) ∩ h(lBC) = {∅} holds. There is a unique solution (up to
conjugacy),

(2.16) l∨sheet = l∨BC .

Since the condition (2.16) follows from (2.15), we will interchangeably
refer to (2.16) or (2.15) as the Flavour Condition.

It is important to note that turning on a maximal mass deformation
does not imply that the Higgs branch of the resulting theory in the IR is
trivial. We will meet several examples in which a non-trivial Higgs branch
remains after a maximal mass deformation. Such residual Higgs branches are
always rigid in the sense that they can’t be further lifted by another mass
deformation. They are the Higgs branches of what we call Rigid SCFTs.
In the theories we are studying, we find that there are no “dangerously
irrelevant” operators which become mass deformation operators in the IR
along a RG flow triggered by a maximal mass deformation. If there had been
such operators, then the theory after a maximal mass deformation would
have admitted further mass deformation by the operator that became a
relevant operator along the RG flow. It has been conjectured by the authors
of [2] that such marginality crossings do not occur in 3d N = 4 theories.
Our results are consistent with this conjecture being true.

The main result of this paper is the identification of the unique solution
to the above three conditions (Eqns 2.13, 6.11 and 2.15) for all known tame
defects of the 6d theory. To identify these solutions, we find it convenient to
first impose conditions (2.13) and (2.14) and classify all possible mass-like
deformations of the tamely ramified Hitchin system. Then, we impose (2.16)
and restrict to those deformation that do admit an interpretation as mass
deformations. Imposing (2.16) leads to a refinement of the usual theory of
sheets. We explain this refinement in §5.

In several instances, we also find that there exist mass-like deformations
for the tame Hitchin system with special nilpotent residue that do not actu-
ally correspond to mass deformations of any T ρ[G] theory. In other words,
there exist deformations that obey condition 2.13 and 2.14 but do not obey
condition 2.16 (or, equivalently, condition 2.15). Every such deformation
corresponds to a non-special sheet attached to a special nilpotent orbit. We
believe the existence of such deformations of the tame Hitchin system is, by
itself, an interesting observation.
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The existence of such deformations of the integrable system is revealed
only through a study of the Hitchin system outside of type A since non-
special sheets exist only outside of type A. We explain this notion and give
many examples of such deformations in §7.2. We do not, at present, know
if the deformations corresponding to non-special sheets could be given the
interpretation of a mass deformation of a different set of 3d N = 4 SCFTs.

3. Local geometry of the Hitchin system

As reviewed in the earlier sections, our study of the properties of a single
defect has the goal of obtaining a systematic understanding of mass defor-
mations in an arbitrary Class S theory built out of these tame defects. In
the presence of tame defects, the dimension of the 3d Coulomb Branch in-
creases according to (2.10). Mass deformations deform the geometry of the
Coulomb Branch in a way that preserves its dimension. In this section, we
will see that the condition that the dimension of the Coulomb Branch be
preserved leads to an interesting constraint on how the residue of the Higgs
field can vary.

Important background references for this section include [19, 111] where
the local structure of the tame Hitchin system was studied and [67] where
these local moduli spaces were further studied in the context of of Surface
operators in N = 4 SYM and the tamely ramified geometric Langlands pro-
gram. The local moduli spaces are obtained by solving Hitchin’s equations
locally and they are endowed with a natural hyper-Kähler structure. As in
the global case, the resulting setup is an infinite dimensional hyper-Kähler
quotient construction. In some special cases, it becomes possible to also sup-
ply certain finite dimensional hyper-Kähler quotient constructions for these
local moduli spaces (see, for example,[89, 110]). These finite dimensional
quotients will not play a major role in this paper but we comment on some
of them in §8.

In the mathematical literature on Higgs bundles, the term strongly
parabolic Higgs bundles is used to describe the cases where the residue at
the punctures is nilpotent and the term weakly parabolic Higgs bundles is
used for the case where the residue is non-nilpotent [96]. See also [21], [20]
for useful background material on parabolic Higgs bundles. In this paper,
we will uniformly use the term tamely ramified Hitchin System to denote
both situations (following [67]). As we will see, studying mass deformations
amounts to studying how the geometry changes as one varies this residue
from nilpotent to non-nilpotent values.
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3.1. The local moduli space

First, we follow [19, 67] and relate the local geometry of the ramified Hitchin
system at the point of ramification to symplectic resolutions/deformations
of nilpotent orbits. Consider the ramified Hitchin system for the group G∨

that controls the physics of Coulomb branch of a theory of class S. We study
the local geometry of this Hitchin system near the point of ramification.
We choose polar co-ordinates (r, θ) near the point of ramification such that
(z − zi) = reiθ, where zi is the location of the defect. The most general S1θ
invariant solution to Hitchin’s system of equations would have following
behaviour near the ramification point

A = a(r)dθ + h(r)
dr

r
,

ϕ = b(r)dθ + c(r)
dr

r
.

(3.1)

Now, by choosing s = −log(r) and D
Ds = d

ds + [h, ·], Hitchin’s equations can
be recast as Nahm’s equations for the functions a(r), b(r), c(r).

Da

Ds
= [b, c]

Db

Ds
= [c, a]

Dc

Ds
= [a, b]

(3.2)

By a gauge transformation, one could choose to set h(r) to zero. The
pole boundary condition for the Hitchin system at r = 0 now becomes a
condition at s → +∞ for the Nahm system (3.2). The reader must note that
the Nahm system appearing here is different from the one that is relevant
for the Higgs branch associated to the defect in §2.1. For one thing, this
Nahm system is for the group G∨. Additionally, the boundary conditions
imposed are different. Let us denote the boundary values of a(r), b(r), c(r)
by

α = a(0)

β = b(0)

γ = c(0)

(3.3)



✐

✐

“1-Balasubramanian” — 2022/9/6 — 21:18 — page 1970 — #18
✐

✐

✐

✐

✐

✐

1970 A. Balasubramanian and J. Distler

We will denote by Mloc(α, β, γ) the moduli space of solutions to the
Nahm system (3.2) with the above boundary conditions (3.3). The combi-
nation β + iγ is the precisely the residue of the Higgs field Res(ϕ). Since we
have denoted this residue by a in (2.2), we set a = β + iγ.

Nahm’s equations can be recast as an infinite dimensional hyper-Kähler
quotient [93–95]. The resulting moduli space Mloc is a finite dimensional
hyper-Kähler manifold. This implies that there are three complex structures
I, J,K that obey the quaternionic identities I2 = J2 = K2 = IJK = −1.
Correspondingly, there exist three Kähler form ωI , ωJ , ωK and a Riemannian
metric g. This Riemannian metric is Kähler with respect to each of the
pairs (I, ωI), (J, ωJ), (K,ωK). The complex structures I, J,K can be used to
parameterize the full CP1 worth of complex structures that exist on Mloc.
In any fixed complex structure (say I), one can also build a holomorphic
symplectic form ΩI = ωJ + iωK that is non-degenerate. Singular manifolds
that admit a non-degenerate holomorphic symplectic form are known as
Symplectic Singularities. So, it follows that hyper-Kähler singularities are
necessarily Symplectic Singularities in the sense of [9].

It is sometimes the case that there exists a family of hyper-Kähler struc-
tures on a manifold. To discuss such a family, it is convenient to fix ourselves
to one complex structure, say I. Now, the family of hyper-Kähler structures
could correspond to varying the (cohomology class of) ωI while leaving
ΩI fixed, varying (cohomology class of) the holomorphic symplectic form
ΩI while leaving ωI fixed or varying both ωI and ΩI . In the present con-
text, such families of hyper-Kähler structures will arise when one varies the
boundary conditions in Nahm’s equations. Such families of hyper-Kähler
structures were first constructed by Kronheimer in [93]. It will turn out
that the existence of mass deformations is related to the existence of such
families of hyper-Kähler structures. One can, additionally, build a twistor
space using the entire CP1 worth of complex structures that is available for
a fixed hyper-Kähler structure. For the case of semi-simple adjoint orbits,
such twistor spaces have been studied by [119].

When studying solutions to Nahm’s equations, it is often convenient
to fix a complex structure and then cast (3.2) as a pair of equations for
m = (a+ ih)/2, n = (b+ ic)/2,

1

2

dm

ds
+ [m,n] = 0

1

2

d

ds
(m+m) + [m,m] + [n, n] = 0

(3.4)
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The boundary values reached bym(s), n(s) as s → ∞ arem(∞) = α, n(∞) =
β + iγ.

Now, we want to consider how the moduli space changes when the bound-
ary values α, β, γ vary in a fixed sheet of the complex Lie algebra. Sheets are
relevant for us because these are precisely the deformations of the Hitchin
system that will turn out to satisfy the conditions (2.13 and 2.14) required
for being a mass-like deformation. We will briefly introduce sheets below
and delve into the theory in greater detail in §4.

3.2. Sheets : A first look

For present purposes, it is sufficient to recall some basic definitions about
sheets in complex Lie algebras. Let Ud be the union of adjoint orbits of
complex dimension d in a complex Lie algebra g. The irreducible components
of Ud are called sheets. As we will review in the next section, a sheet
in a Lie algebra always contains exactly one nilpotent orbit. A sheet may
additionally contain non-nilpotent orbits. When a sheet contains orbits that
are semi-simple, then the corresponding sheet is called a Dixmier sheet.
When studying sheets, it is often simpler to first consider the case of Dixmier
sheets and then generalize to an arbitrary sheet.

Let Oe denote the unique nilpotent orbit in a Dixmier sheet and let e
be a nilpotent element in this orbit. Let s denote a semi-simple element in
one of the infinite number of semi-simple orbits in this Dixmier sheet. Let
P be one of the parabolic subgroups associated to the Dixmier sheet. Such
a choice of P is usually termed a choice of a polarization for the nilpotent
orbit Oe. Let us denote this moduli space by Mloc(α, β + iγ) since this is
the local moduli space for the tame Hitchin system.

Then, from the works of [19, 90] (see also [67]), it follows that the moduli
space of solutions to (3.4) has the following structure,

Mloc(0, s) = GC/L

Mloc(s, e) = T ∗(GC/P )

Mloc(0, e) = Oe

(3.5)

where L is the Levi subgroup corresponding to the centralizer of β + iγ, l ≡
Zg(β + iγ). The parabolic subalgebra p has a decomposition p = l+ n where
l is a reductive subalgebra and n is its radical. The radical n is nilpotent
and is thus called the nilradical of p. The algebra l is called the Levi factor
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of the parabolic subalgebra. 6 The condition that p be a polarization for
the nilpotent orbit Oe further implies that the nilpotent orbit Oe occurs as
a dense orbit in the nilradical n of p. In the context of surface operators
in N = 4 SYM, the parameters (α, β, γ) are usually called Gukov-Witten
parameters and the compact group associated to the Lie algebra l is called
the Levi type of the surface operator [67].

Our choice of boundary conditions breaks SU(2) symmetry acting on the
space of complex structures to a U(1). This U(1) leaves fixed a particular
complex structure and this is usually called the complex structure I. In
this complex structure, the map µ = T ∗(GC/P ) → n is a resolution of the
singularities of n. The construction automatically produces a holomorphic
symplectic form ΩI = ωJ + iωK which is non-degenerate on the singular and
the resolved spaces. Such resolutions are termed symplectic resolutions [56].
We have recovered a particular symplectic resolution of a nilpotent orbit n
using the local geometry of the Hitchin system and sheets.

While the subject of solutions to Nahm’s equations (with the above
boundary conditions) has been well studied over the years, we believe that
a transparent use of the language of sheets clarifies several subtle aspects.
In any case, our starting point of wanting to describe the local geometry of
the Hitchin system when the residue is deformed naturally leads us to use
the theory of sheets.

The canonical symplectic form on T ∗(GC/P ) can be the viewed as the
real part of a holomorphic symplectic form on the semi-simple orbit of,
say, α+ iβ. Note that for a given sheet, there can exist different choices of
parabolics P . In the mathematical literature, this freedom is often denoted
as a choice of a polarization [77]. A given Richardson orbit may have different
Dixmier sheets associated to it. But, once we fix a Dixmier sheet, then the
hyper-Kähler metric on Mloc(s, s, s) is fixed. But, on the other hand, the
choice of a polarization is not fixed. The choice of a polarization is encoded
in the breaking of the SU(2)R symmetry to a U(1)R and the choice of the
real slice in which the real mass m1 is taken to live. From a holomorphic
symplectic point of view, the choice of this Parabolic enters the geometry in
a crucial way. But aspects of the geometry like the hyper-Kähler structure on
the associated semi-simple orbit GC/LC depend only on the choice of a Levi

6That such a decomposition exists follows from Levi’s Theorem. If there are two
or more such decompositions, then the corresponding Levi factors are conjugate.
So, it makes sense to speak of the Levi factor of a parabolic subalgebra. For proofs
of these statements, see Chap III of [83].
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and not on the choice of a particular Parabolic P whose Levi decomposition
contains the Levi L.

While we will almost exclusively study deformations of symplectic sin-
gularities, we wish to point out that these results are in agreement with a
theorem of B. Fu that Richardson orbits are the only orbits that can have
symplectic resolutions [56]. Fu’s proof [56] proceeds in two steps. First, he
shows that any symplectic resolution of the closure of a nilpotent orbits has
to be a Springer map µ : T ⋆(GC/P ) → Ō for some P . Then, he uses prior
results to classify the orbit closures for which the Springer map is a resolu-
tion. The orbits which occur in the image of the Springer map are precisely
the Richardson orbits. So, the ones that admit symplectic resolutions are a
necessarily a subset of the Richardson orbits. For Richardson orbits that fail
to have symplectic resolutions, the Springer map µ : T ⋆(GC/P ) → Ō still
exists but it fails to be one-to-one away from the singularities of O.7 This
failure is related the possibility of nontrivial component groups for central-
izers of a Richardson orbit O. The more striking failure is the complete
absence of a symplectic resolution (or a symplectic deformation) for the
other (non-Richardson) nilpotent orbits.

To incorporate these cases, we turn to instances where we have a sheet
that does not contain any semi-simple elements. In other words, it is not
a Dixmier sheet. As we explain in §4, this can happen outside of Type A.
If (α′, β′, γ′) are non-nilpotent values in a non-Dixmier sheet, then we first
apply the additive Jordan-Chevalley Decomposition to these elements

α′ = αss + αn

β′ = βss + βn

γ′ = γss + γn

(3.6)

such that [αss, αn] = 0 and so on. This ensures that dim(Oα′) = dim(Oαss
) +

dim(Oαn
). In this case, Mloc(α′, e) is not smooth since α′ is not semi-simple.

Instead, it still has a singularity which can locally be described using a
Hitchin system associated to a group L∨ where L∨ is a centralizer of the
semi-simple part of α′. The local geometry of this singularity is encoded in
M loc

L∨ (αn, βn, γn). This can be argued based on the fact that the boundary
values can be thought of as inducing a boundary symmetry breaking. In
the realization of the defect theories as boundary conditions in 4d N = 4
SYM or as codimension two defects in 5dN = 2 SYM, this breaks the gauge

7Recall that a resolution µ : M̃ → M is a birational map such that M̃ is smooth
and µ is one-to-one away from the singularities of M .
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symmetry at the boundary to the stabilizer of the semi-simple part of the
boundary values (α, β, γ). At the end of the RG flow in the boundary that
is triggered by these semi-simple parts, what remains can be described by
the Hitchin system associated to ML∨ .

We will denote M loc
L∨ (αn, βn, γn) as the residual singularity. By virtue

of the fact that it is obtained as the moduli space of solutions to a Nahm
system (now for L∨), it is automatically hyper-Kähler.

3.3. The holomorphic symplectic structure

Let us briefly focus on the moduli space Mloc(0, s = β + iγ) = GC/L. The
construction of this moduli space as the space of solutions to the com-
plex Nahm’s equations endows it with a holomorphic symplectic form, the
Kirillov-Kostant-Souriau (KKS) symplectic form ΩKKS [19, 90]. The sym-
plectic form ΩKKS exists canonically on any co-adjoint orbit. Using the
Killing form, we identify adjoint and co-adjoint orbits and hence think of
them interchangeably. On a co-adjoint orbit, ΩKKS can be described explic-
itly in the following way. First, we recall that there is the following action of
G on the dual of the Lie algebra g⋆. For any R ∈ g⋆, X ∈ g, the co-adjoint
action C(g) acts in the following way,

(3.7) ⟨C(g)R,X⟩ = ⟨R,Ad(g−1X)⟩.

Let O be an orbit of this co-adjoint action and let r ∈ O be a repre-
sentative of this orbit. Then, the orbit can be viewed as the homogeneous
space G/Z(r), where Z(r) is the centralizer (in G) of the element r. The
tangent space to this orbit is g/z(r), where z(r) is the complex Lie algebra
associated to Z(r). Now, given two tangent vectors x.r and y.r on the orbit
(for x, y ∈ g, we have the following two form,

(3.8) ΩKKS(x.r, y.r) = r([x, y])

This is in fact a closed, non-degenerate over the entire orbit O. When
the orbit is one of semi-simple elements, it is of the form GC/L for some
Levi subgroup L and its tangent space is g/l, where l is a Levi subalgebra.
When we fix the centralizer but vary the semi-simple element such its eigen-
values change, then the resulting new orbit can be related to the original
orbit in a straightforward way. These two orbits share an underlying real
manifold GC/L but the holomorphic symplectic form ΩKKS is different. In
particular, ΩKKS varies linearly with the eigenvalues. This follows from its
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definition (3.8). In our present case, it means thatMloc(0, s) is endowed with
a holomorphic symplectic form which varies linearly with the eigenvalues of
s = β + iγ. This is precisely what we expect of a mass-like deformation of a
Seiberg-Witten integrable system. Since ΩKKS is non-degenerate, we have

rank(ΩKKS) = dim(O)

= dim(g)− dim(z(f))
(3.9)

An aside about notation : Let α, β, γ be semi-simple elements of the
Lie algebra and let λα, λβ , λγ(∈ h/W ) to be the eigenvalues of α, β, γ. In this
case, one could parameterize the moduli space varying just as a function of
the eigenvalues. But, when α, β, γ are non semi-simple elements of the Lie
algebra, the eigenvalues would make sense only for the semi-simple parts
of α, β, γ. A particular extreme case is if β + iγ is nilpotent. This is a case
that will be important to us. In this case, the eigenvalues λβ+iγ would all
be identically zero independent of which nilpotent orbit β + iγ is valued
in. So, in this case, the eigenvalues of the boundary values cease to be a
useful way to keep track of what happens at the boundary and hence of
the moduli space. In the literature, one sometimes finds that the boundary
values α, β, γ and the eigenvalues of their semi-simple parts are sometimes
given the same labels. We find this confusing and will choose to always draw
a clear distinction between the two.

While the geometry in complex structure I looks different for different
choices of P that share the same Levi factor L, the hyper-Kähler structure
on the semi-simple orbits in a fixed sheet does not depend on the choice
of the parabolic P . This observation is essentially contained in [67] but
we believe it is better elucidated in the language of sheets. The choice of
the parabolic P is encoded in a reality condition that one imposes on the
complex eigenvalues of the semi-simple orbits. As we recalled above, we
have the standard KKS holomorphic symplectic form ΩKKS on any simple-
simple orbit. Let ΩKKS = ωI + iωJ . Now, imposing a reality condition on
the eigenvalues allows one to write obtain a real symplectic form on a semi-
simple orbit. For example, if the eigenvalues are purely real, we obtain ωI

as a real symplectic form. Once such a real symplectic form is obtained, it
is possible to exhibit a symplectomorphism between the semi-simple orbit
with the real symplectic form and the cotangent bundle T ⋆(GC/P ) with its
canonical symplectic form ωcan [3, 106], where P is a parabolic corresponding
to the real semi-simple element.
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4. Sheets and mass-like deformations of the Hitchin system

We saw in §3 that the theory of sheets enters the study of the local geometry
of the Hitchin System in a crucial way. In this section, we expand on this
by first introducing sheets in more detail and then using sheets to classify
all mass-like deformations of the tame Hitchin system. One of the striking
features is that the theory of sheets is substantially simpler in Lie algebras of
type A. One has to study sheets in more general Lie algebras to appreciate
the various subtle aspects of the theory. In this section, we only present the
usual theory of sheets. This will be sufficient for the purposes of classifying
mass-like deformations of the Hitchin system. But, in the next section, where
we study mass deformations of the T ρ[G] theories, we will need to make
an important modification to the usual theory of sheets. We will leave the
explanation of this modification to §5.

4.1. Theory of sheets

As before, let Ud be the union of adjoint orbits of complex dimension d in a
complex Lie algebra g. The irreducible components of Ud are called sheets.
They were first introduced and studied in [22, 23]. Useful reviews of the
theory can be found in [52, 118]. In this section, we will keep the discussion
completely general and consider sheets for any complex Lie algebra g. But,
we will end up applying this theory to the Langlands dual algebra g∨ in §5.

To understand what kinds of sheets can occur in a Lie algebra, consider
the Jordan-Chevalley decomposition 8 for an arbitrary element ã in the Lie
algebra.

(4.1) ã = ass + an,

where ass is the semi-simple part and an is the nilpotent part and the decom-
position is defined such that they obey the important condition [ass, an] = 0.
It immediately follows that dim(Oã) = dim(Oass

) + dim(Oan
). An arbitrary

element in the Lie algebra could have a JC decomposition that is either
purely semi-simple, a mix of semi-simple and nilpotent parts or purely nilpo-
tent. These three possibilities will be important for us.

8For GLn, this is the usual Jordan Decomposition for matrices. In the setting
of arbitrary algebraic groups, the decomposition can be described directly us-
ing root data and in this more general setting, it is called the Jordan-Chevalley
decomposition[81].
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It is known that any sheet in a complex Lie algebra contains a unique
nilpotent orbit [23]. So, to classify sheets, we take as the starting point the
classification of nilpotent orbits in g and then we then look for the sheets
that contain each of these nilpotent orbits. Away from the nilpotent orbit,
we have the following three possibilities,

(a) Dixmier sheets: These are sheets which contain semi-simple elements,

(b) Mixed sheets : These are sheets where the non-nilpotent elements have
non-zero semi-simple and nilpotent parts,

(c) Rigid sheets: The sheet contains a unique orbit which is a nilpotent
orbit.

At the boundary of each of these types of sheets, we have the following type
of nilpotent orbits,

(a) Richardson orbits: They occur at the boundary of a Dixmier sheet,

(b) Induced but not Richardson orbits: They occur at the boundary of a
mixed sheet,

(c) Rigid orbits : The unique orbit in a rigid sheet.

Each of the above three possibilities will turn out to be important for the
study of deformations of the Hitchin system. But we will first describe how
to classify all sheets that occur in a complex algebra and then return to the
Hitchin system in §4.3.

In Fig 1, we give a schematic presentation of what it means to move
along a sheet.

4.2. Classification of sheets and orbit induction

To classify all sheets, we will need to describe the ways in which one can
deform a given nilpotent orbit to a non-nilpotent orbit such that the dimen-
sion of the orbit is preserved. A systematic way to study such possibilities
is through the study of orbit induction [102]. A nilpotent orbit Oe in g is
said to be induced from a nilpotent orbit Ol in a proper Levi subalgebra
l iff there exists a sheet containing the orbit Oe that additionally has non-
nilpotent elements with a Jordan decomposition of the form ãss + ãn where
is the Levi l is the centralizer in g of the adjoint orbit Oãss

and ãn ∈ Ol, a
nilpotent orbit in the Levi subalgebra l. We express the existence of such an
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an
ã = ãss + ãn, [ãss, ãn] = 0

Figure 1: A schematic view of a sheet in a complex Lie algebra. The
boundary of a sheet is a nilpotent orbit containing the element an. Points
away from the boundary are non-nilpotent orbits that obey the condition
dim(Oan

) = dim(Oã). Along a sheet, the eigenvalues λi
ass

of ass increase in
magnitude. If it is a Dixmier sheet, then ãn = 0 and the sheet contains semi-
simple elements.

orbit induction by,

(4.2) Oe = Indgl (Ol)

For every sheet, we thus obtain a pair (l,O), where l is a Levi subalgebra
and O is a nilpotent orbit in l. The pair (l,O) is called the sheet label. To
classify all sheets, one proceeds in the following way. First, we make use of
the fact that nilpotent orbits in any complex Lie algebra are classified [37].
For the classical Lie algebras, the classification is in the form of partition
labels. More generally, one can classify nilpotent orbits using the Bala-Carter
method [4, 5]. Using this classification and the explicit knowledge of how
orbit induction works, one can deduce the sheets attached to each nilpotent
orbit. This was first done for classical Lie algebras by Kempken-Spaltenstein
[88, 127] and for exceptional Lie algebras by Elashvili ([127], [52]). In classical
Lie algebras, it is possible to provide explicit combinatorial description of
orbit induction. We recall this in §A.2. In the exceptional cases, no such
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combinatorial algorithm exists and one has to work case by case using the
tables in [52].

We will now highlight some important lessons that one learns from car-
rying out the explicit classification of sheets in a complex Lie algebra. We
encourage the reader to deduce these for herself using §A.2 and the tables
in [52].

(a) Dixmier sheets: There are a large class of sheets which contain semi-
simple orbits. These are called Dixmier sheets. From the definition, it
follows that these have sheet labels of the form (l, 0) where 0 denotes
the trivial (zero) orbit in l. The nilpotent orbits occurring at their
boundaries are precisely the Richardson nilpotent orbits. It turns out
that every sheet in Lie algebras of type A is a Dixmier sheet. When
the residue of the Higgs field is valued in a Dixmier sheet, the local
moduli space is completely smoothed. This follows from discussion in
§3.

(b) Mixed sheets and the residual singularity: More generally, mixed sheets
have sheet labels (l,O) for some non-trivial nilpotent orbit O. When
the residue of the Higgs field is valued in a mixed sheet, the local
moduli space is partially smoothed. A residual singularity remains and
local form of this residual singularity is the orbit closure O in the Lie
algebra l. This follows from the discussion in §3 where we introduced
the term residual singularity.

(c) Rigid sheets: Rigid sheets are those which contain a single nilpotent
orbit as its only constituent. They exist whenever there are nilpotent
orbits which do not have any non-nilpotent orbits of the same di-
mension. They turn out to exist in every Lie algebra other than slN .
Constituents of rigid sheets are called rigid nilpotent orbits. For ex-
ample, the minimal nilpotent orbit in Cartan types B,C,D,E, F,G is
always rigid.

(d) Sheets can meet : One of the basic properties of a sheet in a complex Lie
algebra is that it has a unique nilpotent orbit occurring at its bound-
ary. The converse, however, need not be true. It is possible to have the
same nilpotent orbit at the boundary of two or more sheets. In other
words, it is possible to have distinct sheets meeting at their bound-
aries. Such examples do not occur in Lie algebras of type A but they
are fairly common in other types. This makes the study of mass-like
deformations of Hitchin systems dramatically more interesting outside
of Cartan type A.
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(e) Richardson orbits and non-Dixmier sheets: While it is true that ev-
ery Dixmier sheet has a Richardson nilpotent orbit at its boundary,
not every sheet attached to a Richardson orbit is Dixmier. Since non-
Dixmier sheets do not occur in type A, this too is a phenomenon that
occurs only in Lie algebras outside of type A.

(f) Special Sheets vs Non-Special sheets: We call a sheet attached to an
orbit OH a special sheet if the residual singularity under such a defor-
mation is a special orbit in a Levi subalgebra in the sense of Lusztig
(see [37]). The zero orbit is always a special orbit. So, it follows that all
Dixmier sheets are special sheets. Similarly, we denote a sheet attached
to an orbit OH to be a non-special sheet if the residual singularity
is a non-special nilpotent orbit in a Levi subalgebra. It is possible to
show that non-special nilpotent orbits are attached only to non-special
sheets attached and that every special nilpotent orbit is attached to
at least one special sheet.9

But one finds that certain special nilpotent orbits do occur at the
boundary of some non-special sheets. This observation will play a cru-
cial role for us when we identify those mass-like deformation of the
Hitchin that do turn out to be related to mass deformations of T ρ[G]
theories. Since this is an important point, we will return to it in §7.2.

(g) Stratification by sheets is not Whitney: Unlike the stratification of the
nilpotent cone by nilpotent orbits, the stratification of the Lie algebra
g by sheets does not obey the so called frontier condition [107]. The
frontier condition requires that the closure of stratum is a union of
smaller strata. But, the closure of a sheet need not be a union of
smaller sheets. This is because the closure of a sheet can meet other
sheets but not fully contain them. Since the frontier condition is one
of the requirements for a stratification to be a Whitney stratification,
it follows that the stratification of g by sheets is not Whitney.

Such a breakdown of the frontier condition occurs already in type
A (see M. Bulois’s appendix in [32] and §6.1). The presence of rigid
nilpotent orbits leads to more such examples outside of type A. For
example, the closure of a rigid nilpotent orbit could contain several
other non-rigid nilpotent orbits. But, the closure does not contain the
entire sheet(s) attached to these non-rigid nilpotent orbits.

9To show this, one can use a compatibility property between orbits induction
and the Springer correspondence due to [102] and then use properties of special
representations of the Weyl group [98]. This is recalled in greater detail in [6].
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4.3. Classifying mass-like deformations of the tame Hitchin
system

Having reviewed the classification of sheets, we can return to the original
problem in §3.1 that motivated the study of sheets in the first place. We
would like to parameterize all deformation of the tame Hitchin system (for
the lie algebra g∨) that obey the conditions 2.13 and 2.14 and can thus be
called a mass-like deformation of the complex integrable system. We argued
in §3.1 that deforming the residue of the Higgs field of the Hitchin system in
such a way that it varies along a fixed sheet of the Lie algebra leads precisely
to a mass-like deformation. In this section, we have learned how to classify
all sheets in any given Lie algebra. Such sheets are parameterized by sheet
labels (l∨,O) for certain Levi subalgebras l∨ and nilpotent orbits O in the
Levi subalgebras. Given a tame Hitchin system of type g∨ on a punctured
disc where the Higgs field has a simple pole with the residue living in a
nilpotent orbit OH , then the set of all mass-like deformations are classified
by the set of all sheets whose boundary is the nilpotent orbit OH . If (l∨,O)
is the sheet label for one of those sheets, then the following should hold,

(4.3) OH = Indg
∨

l∨ (O)

In practice, one uses (4.3) to enumerate all the possible mass-like deforma-
tions. We will take this as the starting point for §5 where we will further
identify the subset of the mass-like deformations that admit an interpreta-
tion as a mass deformation of the T ρ[G] theories.

4.4. A finite group action on mass-like parameters

But, before turning to a study of mass deformations of T ρ[G] theories, we
take a short detour to make note of an important feature enjoyed by all
mass-like deformations of the tame Hitchin integrable system. From the
description of the mass-like deformations, it follows that there is a natural
finite group that acts on the space of mass-like deformations and we will
explicitly identify this finite group. This finite group Q is identified in the
following way. First, note that the normalizer of L∨ in G∨, denoted by
NG∨(L∨), acts naturally on every nilpotent orbit in l∨. Denote by Q, the
following finite group

(4.4) Q = NG∨(L∨,O)/L∨
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where NG∨(L∨,O) denotes the subgroup in NG∨(L∨) that stabilizes the
nilpotent orbit O. For a sheet parameterized by (l∨,O), this finite group acts
on the eigenvalues of the semi-simple parts of the non-nilpotent elements in
the sheet. In other words, Q acts on Z(l∨) [97].

In special cases, this is straightforward to see. For example, when l∨

is the trivial Levi subalgebra, then Q = NG∨(T )/T , for a Cartan torus T .
But, NG∨(T )/T is nothing but W (G∨), the Weyl group. So, we recover the
statement that, for the principal/regular sheet in a Lie algebra g∨, the eigen-
values of the regular semi-simple elements carry a natural W (G∨) action.
The other extreme case is when L∨ = G∨, corresponding to the zero orbit (or
the trivial sheet). Here, we have Q = {Id}, the trivial subgroup of W (G∨).
For all the other sheets that contain non-nilpotent elements, the finite group
Q will be a non-trivial proper subgroup of W (G∨).

From the point of view of the complex integrable system, any mass-like
deformation that is parameterized by an element mi ∈ Z(l∨) is equivalent
to a deformation with a parameter λmi, where λ ∈ Q.

5. Mass Deformations of T ρ[G] theories

In the previous section, we studied mass-like deformations of the tame
Hitchin system on a punctured disc and obtained an explicit classification of
such deformation using sheets. In this section, we investigate which among
these mass-like deformations admit an interpretation as a mass deformation
of one of the T ρ[G] theories. As noted in the Introduction, a relation be-
tween the theory of sheets and mass deformed T ρ[G] theories was already
proposed in [36]. This proposal fully describes mass deformations in type
A. What follows can be taken to be a precise realization of this proposal
outside of type A.

5.1. Recollections about 3d N = 4 SCFTs

Here, we recall some important aspects of 3d N = 4 theories SCFTs. The
3d N = 4 superconformal algebra is osp(4 | 4). The R-symmetry group is
Spin(4) ≃ SU(2)H × SU(2)C . Typically, a 3d N = 4 SCFT has an exact
moduli space of vacua of the form Hi × Ci, where H0 (called the Higgs
branch) is the component of the moduli space on which SU(2)C acts trivially
while C0 (called the Coulomb branch) is the component on which SU(2)H
acts trivially. The other components of the moduli space of vacua that are of
the form Hi × Ci, i ̸= 0 are usually termed mixed branches. They carry non-
trivial actions of both SU(2)H and SU(2)C . Due to the existence of eight
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real supercharges, both the Higgs and Coulomb branches, when non-trivial,
are guaranteed to be hyper-Kähler spaces.

In theories with UV Lagrangians, the classical Higgs branch is param-
eterized by vacuum expectation values of the hypermultiplet scalars. The
geometry on the Higgs branch, including the Riemannian metric on it, is
not corrected in the quantum theory. The case of the Coulomb branch is
quite different. When we have a UV gauge theory flowing in the IR to a
3d N = 4 SCFT, the classical Coulomb branch is parameterized by vacuum
expectation values of the vector multiplet scalars and the vacuum expecta-
tion values of the dual photons [82]. In the quantum theory, the VEVs of
dual photons are replaced by VEVs of monopole operators [24]. At a generic
point of the Coulomb branch, the gauge group is Higgsed to U(1)r, where
r is the rank of the gauge group. Both the Higgs and Coulomb branches
are singular spaces. A singularity in the vacuum moduli space in the IR
effective field theory signals a break down of the EFT and the appearance
of additional massless states.

Several examples of 3d N = 4 theories have been studied and their Higgs
and Coulomb branches have been identified using various techniques. See
[45, 73, 80] for some of the early work in this direction. Subsequent works
are too numerous to admit a full recollection here. But we note that a
common theme in the literature has been the identification of the Higgs
and Coulomb branches using geometric realizations of the 3d N = 4 theories
using String/M-theory. The verification of dualities like 3d Mirror symmetry,
which, among other things, exchanges the Higgs and Coulomb branches, has
been another important motivation for the study of 3d N = 4 SCFTs. In
such investigations, it is useful to be able to calculate certain observables
on both sides of the duality to check that they match. Among the natural
observables to calculate on the quantum Coulomb branch are its ring of
holomorphic functions, called the chiral ring and the exact hyper-Kähler
metric. For a large class of examples that includes the T ρ[G] theories, this
chiral ring has been studied in detail using the Hilbert Series technique in
[33, 40–42, 70, 71]. More recently, there has also been progress in providing
a mathematically precise definition of the Coulomb branch chiral ring for
many of these theories [28, 112, 114].

Some of these known N = 4 SCFTs have UV Lagrangian descriptions
while there many that are not known to have a UV Lagrangian. In the
instances where UV Lagrangians are not known, one can still study the IR
theory if there is an independent way to identify its Higgs and Coulomb
branches. This is the approach we take in this paper to study the T ρ[G]
theories. However, when one has a UV Lagrangian, it is desirable to have



✐

✐

“1-Balasubramanian” — 2022/9/6 — 21:18 — page 1984 — #32
✐

✐

✐

✐

✐

✐

1984 A. Balasubramanian and J. Distler

a general prescription for deriving the geometry of the quantum Coulomb
branch together with its hyper-Kähler metric. Such a prescription has been
provided recently in [29]. Their prescription involves a map between the
VEVs in the UV non-abelian gauge theory to the VEVs of scalars in the IR
theory, an abelian gauge theory. This map, called an abelianization map, is
then used in conjunction with localization techniques to define the hyper-
Kähler metric on the IR moduli space for gauge theories with unitary gauge
groups [29]. One expects to have a generalization of this for the case with
SO/USp gauge groups as well. The theories that we consider in this paper
are known to have UV Lagrangians in some special cases. For instance, the
T ρ[SU(N)] theories can be described as certain Quiver gauge theories with
fundamental and bi-fundamental matter. For G = SO/USp, T ρ[G] admit
Lagrangian descriptions for certain ρ. We provide a short summary of these
results in §8.1. But, we note here that for general G and ρ, there is no known
Lagrangian description for the T ρ[G] theories. In arriving at the results in
this paper, we have not assumed the existence of a UV Lagrangian. In the
instances where the T ρ[G] do have Lagrangians,10 it would be interesting to
obtain these results using these Lagrangians descriptions.

5.2. Relevant deformations for 3d N = 4 SCFTs

In this paper, we want to study not just the superconformal theory T ρ[G] but
the theory T ρ[G] together with a possibly non-zero mass deformation. From
[38], we note that the possible N = 4 preserving relevant deformations of
any N = 4 SCFTs fall into the following three categories (see also [15, 47]).

(a) Mass deformations : These are the relevant deformations in the
B1[(2, 0), 1] multiplet of osp(4 | 4). They occur in the same multiplet as
the flavour current for Higgs branch. They are charged under SU(2)C
and neutral under SU(2)H .

(b) Twisted Mass deformations : These are the deformations in the
B1[(0, 2), 1] multiplet of osp(4 | 4). They occur in the same multiplet
as the flavour current for Coulomb branch. They are charged under
SU(2)H and neutral under SU(2)C .

10In purely mathematical terms, this amounts to a question of when certain non-
compact hyper-Kähler spaces can be obtained using finite dimensional hyper-Kähler
quotient constructions.



✐

✐

“1-Balasubramanian” — 2022/9/6 — 21:18 — page 1985 — #33
✐

✐

✐

✐

✐

✐

Masses, sheets and rigid SCFTs 1985

(c) Universal Mass Deformation : These are the deformations in the mul-
tiplet A2[(0, 0), 1] of osp(4 | 4). They occur in the same multiplet as
the stress tensor.

In the present paper, we are focused only on mass deformations of the
T ρ[G] theories and their effect on the geometry of the vacuum moduli spaces.
Twisted mass deformation and the universal mass deformation of T ρ[G] do
not play any role in our discussion.

5.3. Deformations of hyper-Kähler Singularities
and 3d N = 4 SCFTs

As we noted in §5.1, the vacuum moduli spacesH0 and C0 are singular hyper-
Kähler spaces. The most singular stratum (usually termed the SCFT point)
is common to the two moduli spaces. Each of the moduli spaces is an example
of a symplectic singularity [9]. These are singular space that admit a non-
degenerate holomorphic symplectic form Ω. These singularities and their
possible resolutions and deformations is an actively studied mathematical
subject. We refer to [57, 84, 116] for some surveys of the mathematical
literature.

When a mass deformation is added to UV Lagrangian, the flow to the IR
is modified and this affects the geometry of the IR vacuum moduli space. The
resulting Higgs branch is smaller and the Coulomb branch is less singular
than the one for the case without mass deformation. When the resulting
Coulomb Branch is smooth, it implies that the mass deformation followed
by a flow to the IR leaves us with a family of free theories parameterized by
the smoothed Coulomb Branch. The Higgs branch is fully lifted in this case.
But, as we will see in several examples, this possibility of fully lifting the
Higgs branch by a mass deformation does not always exist for a 3d N = 4
SCFT.

The flavour symmetry F acts as continuous hyper-Kähler isometries of
the Higgs branch. The mass deformations is valued in the Cartan subalgebra
h(F ). More accurately the mass parameters of a 3d N = 4 SCFT form a
SU(2)C triplet (m1,m2,m3) where each of the mi are valued in the Cartan
subalgebra h(F ). If we fix ourselves to one of the complex structures of
C0, this breaks the SU(2)C R-symmetry to a U(1)C . Then the masses are
naturally split into a real mass m1 which is not charged under the U(1)C
and a complex mass mC = m2 + im3 which is charged under the U(1)C .
We confine ourselves to the study of the effect of a non-zero complex mass
deformation mC. The case of more general mass deformation can always to
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related to a case with a pure complex mass deformation by a suitable SU(2)C
rotation on the space of mass deformation parameters. This is equivalent to
a choice of a distinguished complex structure on the deformed geometry. We
will call this distinguished complex structure to be the complex structure J .

In mathematical terms, a complex mass deformation can be interpreted
as a deformation of a holomorphic symplectic structure in the following
way. Recall that any hyper-Kähler manifold is equipped with a family of
holomorphic symplectic forms Ωζ , where ζ ∈ CP1 is a co-ordinate on the
associated twistor space. Let ΩJ correspond to the holomorphic symplectic
form in the complex structure J . As the complex mass parameter is varied,
we obtain a family of Coulomb branches C0[mC] that are fibered over the
space of mass parameters S. Computing the de-Rham cohomology class
[ΩmC

] over the space of mass parameters gives a map P : S → H2(C0). This
map P is often called a period map [85] and is used to study the moduli
space of complex structure deformations of (C0,Ω).

Based on the study of Coulomb branches in Lagrangian theories, we
expect the [ΩmC

] to vary in the following way,

[ΩmC
] =

∑

i

ma[Ca]

lim
mC→0

[ΩmC
] = [Ω0]

(5.1)

where ma are natural co-ordinates on S, a = 1, 2, . . . , rank(F ) and [Ci] are
some standard representatives for H2(C0) and Ω0 is the holomorphic sym-
plectic structure on the singular, undeformed Coulomb branch. The decom-
position (5.1) is not unique and should be understood up to the action of
W (F ), the Weyl group of F , on S and the action of any non-trivial dualities
under which [Ω] is expected to be invariant [120, 122]. Now, (5.1) gives an
embedding of the space of mass parameters S into the space of complex
structure deformations of (C0,Ω0).

5.3.1. Deformation quantization. Although we do not consider this in
this paper, we note in passing an interesting feature of these vacuum moduli
spaces. Since the moduli spaces in question are holomorphic symplectic, it is
possible to consider the question of whether the Poisson structure on these
manifolds can be further deformed in a way that mimics passage from classi-
cal mechanics to quantum mechanics. Such a deformation is usually termed
a deformation quantization of the holomorphic symplectic space in question.
At least three seemingly distinct such quantizations have been studied from
a physical standpoint. The first is a 3d analog of the Ωϵ background [29, 129],
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the second is a deformation that becomes available at the superconformal
fixed point [10]11 and the third is the quantization arising from studying
sphere partition functions [46]. It would be of interest to study each of these
deformation quantizations for Coulomb branches of an arbitrary T ρ[G] the-
ory. The Coulomb branches of the Rigid SCFTs that we introduce in the
§5.4 below would be particularly interesting examples to study in the above
frameworks. Quantizations also play an important role in the original for-
mulation of Symplectic Duality in [26]. We discuss the relation between our
setup and that in [26] in §9.

5.4. T ρ[G] theories under mass deformations

We finally turn to discussing the behaviour of T ρ[G] theories under mass
deformations. We take as a starting point the classification in §4.3 of mass-
like deformations of the tame Hitchin integrable system by sheets in the Lie
algebra g∨. However, in order for such a deformation to be an actual mass
deformation of a T ρ[G] theory, it has to additionally obey the Flavour Con-
dition 2.15. This constraint follows from the fact that mass deformations
occur in the same superconformal multiplet as the flavour current (we re-
viewed this in §5.2 ). This is the final step in identifying the mass deformed
geometry of the Coulomb branch. For every defect (ON ,OH), the geometry
of the mass deformed SCFT is captured by a triplet (ON ,OH , (l∨,Ol∨

H )),
where (ON ,OH) are the Nahm and Hitchin labels as before and (l∨,Ol∨

H ) is
the label for a special sheet/sub-sheet attached to the Hitchin orbit OH . We
summarize here all the steps involved in arriving at this triplet.

1) We first identify the Bala-Carter Levi lBC associated to the Nahm
orbit ON which is a nilpotent orbit in g.

2) If ON corresponds to a nilpotent orbit of principal Levi type (see
§A.3.8 for the definition), then the mass deformed Coulomb branch is
described by the sheet in the dual Lie algebra g∨ with label (l∨BC , 0). In
this case, one can verify that imposing the Flavour condition does not
lead to any further restrictions of the space of allowed mass parameters.
The massless limit of the Coulomb branch is given by the Richardson
nilpotent orbit at the boundary of the sheet (l∨BC , 0). One can also
check that this obeys OH = dBV (ON ) as conjectured in [36].

3) If ON is not of principal Levi type, we look at all sheets attached to
OH = dBV (ON ) and identify the sheet whose associated Levi is l∨BC .

11We thank Wolfger Peelaers for a related discussion.
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If such a sheet exists, we observe that it is unique. This sheet then
describes the mass deformed Coulomb branch of T ρ[G].

4) If such a sheet does not exist in step 3 above, then we find that it
is always possible to find a unique inclusion l∨sheet ⊂ l∨BC such that
Z(l∨BC) ⊂ Z(l∨sheet). In these instances, the deformed Coulomb branch
is a subspace of an ordinary sheet and not the entire sheet. We call
such subspaces sub-sheets. The appearance of sub-sheets is the basic
reason why the story of mass deformations leads to a slight refinement
of the usual theory of sheets.

5) Corresponding to the sheet or sub-sheet from step 2, 3 or 4, we find
that

(5.2) OH = Indg
∨

l∨ (Ol∨

H ),

for an unique special nilpotent orbit Ol∨

H in the Lie algebra l∨BC . So, it
follows that the sheet/sub-sheet that we identified at the end of step 4
is actually a special sheet/sub-sheet (in accordance with what is means
for a sheet to be a special sheet as defined in §4). This is how we arrive
at the third entry (l∨,Ol∨

H ) in the triplet (ON ,OH , (l∨,Ol∨

H )).

By carrying out the above steps for all simple G, we find that T ρ[G] fall
into the following three deformations classes.

(a) Theories where the flavour symmetry F is non-trivial and the sheet
label for the mass deformation is of the form (l∨, 0). The Coulomb
branches of these theories are completely smoothed by turning on
all the available mass parameters. We denote such theory to be a
Smoothable SCFT.

(b) Theories for which F is trivial. We denote such a theory to be a Rigid
SCFT. The Higgs branch of a Rigid SCFT (among the T ρ[G] theories)
is always a Slodowy Slice to a distinguished nilpotent orbit in g.

(c) Theories where the flavour symmetry F is non-trivial and the sheet
label for the mass deformation is of the form (l∨,O) for some non-
zero nilpotent orbit O in the Levi l∨. The Coulomb branches of such
theories have a residual singularity even after all the available mass
deformations and turned on (and we flow to the IR). We denote such
theory to be a Malleable SCFT. In these cases, RG flow after a full
mass deformation leaves behind (in the IR) a non-trivial smaller SCFT
that is Rigid.
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T ρ[G]

IR Free

Coulomb branch
is smooth

A rigid
SCFT
T ρ̃[L]

A residual
singularity

remains in the
Coulomb branch

T ρ[G]
is Rigid

Coulomb branch
is unchanged

Smoothable, m ̸= 0 Malleable, m ̸= 0 Rigid

Figure 2: The three deformation classes into which T ρ[G] theories fall and
the corresponding IR end points under a full mass deformation m ∈ h(F )
(when F is non-trivial).

We illustrate the existence of the three deformation classes in a schematic
way in Fig 2. For rigid and malleable T ρ[G] theories, our identification of
the mass deformed Coulomb branch depends on the conjecture about the
massless Coulomb branch in [36]. However, for smoothable cases, our results
can be viewed a proof of this conjecture.

While our focus in this paper has been about T ρ[G] theories, much of
the geometry carries over to more general 3d N = 4 theories. In particular,
the Coulomb branches of any 3d N = 4 theory is a symplectic singularity
and depending on the behaviour of this symplectic singularity under defor-
mations, the theory can be slotted into one of the above deformation classes.

The separation of the defects into the three deformation classes is best
understood by way of working out explicit examples. We do this in §6 and
§B in the form of tables. To compile the tables, we begin with the pair of
nilpotent orbits (ON ,OH) describing the massless limit and then impose
the conditions (2.13),(2.14) and (2.15). We recall these conditions here for
convenience. We will denote the residue of the Higgs field before mass defor-
mation to be a0 and the residue after mass deformation to be aM . We will
denote the corresponding adjoint orbits in g∨ by Oa0

and OaM
.
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Now, condition (2.13) requires that

(5.3) [Ω]m ̸=0 ∝ mi

and the dimension condition (2.14) requires that

(5.4) dim(OaM
) = dim(Oa0

)

and finally, the Flavour Condition (2.16) (which is equivalent to 2.15) re-
quires that

(5.5) l∨ = l∨BC

We find that the above conditions have a unique solution and it is this
solution that is depicted in the tables in §6 and Appendix B. From this
solution, one also observes, on a case-by-case basis, that Ol∨

H = dBV (O
l
N )

where Ol
N is the distinguished nilpotent orbit in l that is part of the Bala-

Carter label for the Nahm orbit ON . We did not impose this in the three
conditions above. So, the fact that this comes out automatically is a highly
non-trivial observation. What we have just discovered for ourselves is the
Spaltenstein-Barbasch-Vogan theorem about how orbit induction interacts
with the order-reversing duality and Bala-Carter theory (see Theorem 8.3.1
in [37]). What we have seen here is a physical interpretation of this theorem.

5.5. A physically motivated refinement of the theory of sheets

In the usual mathematical theory, the parameterization of sheets is done by
pairs (l∨,O), where O is a rigid nilpotent orbit in the Levi subalgebra l∨.
However, in the context of the present paper, it is Rigid SCFTs that play
a role analogous to the one played by rigid orbits in the usual theory. Since
Rigid SCFTs can have Coulomb branches that are non-rigid orbits, we are
led to a slight refinement of the usual theory of sheets. We will retrieve an
ordinary sheet label (l,O) as the residual singularity only if the residual
singularity happens to involve a rigid Hitchin orbit (in the usual structure
theory sense). In the more general situation, mass deformations will turn out
to be parameterized by a sub-sheet and not an entire sheet. So, by a refined
theory of sheets, we really mean a theory of sheets attached directly to the
pair (ON , OH), where ON is any nilpotent orbit, OH is a special nilpotent
orbit such that OH = dBV (ON ) and l∨sheet/sub-sheet = l∨BC , where lBC is the
Bala-Carter Levi associated to ON .
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If one compares the stratification of g∨ by spaces of mass deformations to
the stratification of g∨ by sheets, we observe that the stratification by spaces
of mass deformations is a finer stratification. This is why we have termed
this a refinement of the usual theory of sheets. In our setup, we needed to
only consider this refinement for special sheets attached to special nilpotent
orbits. It would be interesting to know if a natural refinement also exists for
non-special sheets attached to special/non-special nilpotent orbits.

In the usual theory, rank(sheet) plays an important role since it counts
the number of distinct eigenvalues of the semi-simple part of any non-
nilpotent orbit in a sheet. In our setup, the role of rank(sheet) in the usual
theory of sheets is replaced by rank(F ), where F is the flavour symmetry
associated to the defect. In instances where a non-trivial sub-sheet parame-
terizes the mass deformed Coulomb branch, the following holds

(5.6) rank(F ) = rank(sub-sheet) < rank(sheet).

From the examples in §6, one observes that it is entirely possible for
a full mass deformation to leave behind a residual SCFT with a Coulomb
Branch that is not a rigid nilpotent orbit (see §6.3.1 for a specific case in
E6). But, it will always be true that we have rank(F ) = 0 for the residual
SCFT. It is this condition that defines a Rigid SCFT.

5.6. A finite group action on mass parameters

In §4.4, we noted that the space of mass-like deformations of the tame
Hitchin system admits a natural action of a finite group Q. This finite group
can be obtained as Q = NG∨(L∨,O)/L∨, where (l∨,O) is the sheet label as-
sociated to the mass-like deformation and NG∨(L∨,O) is the subgroup of the
normalizer NG∨(L∨) that leaves fixed the nilpotent orbit O. For describing
actual mass deformations, we have seen that it might be necessary to restrict
to a sub-sheet of a full sheet. So, in general, the sheet label corresponding to
a mass deformation could be a pair (l∨,O), where O is not a rigid orbit. One
can define a finite group Q in an identical fashion in these instances and Q
will act in a similar on the space of actual mass parameters mi ∈ Z(l∨). In
the case of an actual mass deformation, this finite group action is nothing
but the action of W (F ), the Weyl group of the Flavour symmetry group F
on the space of mass parameters mi. One can derive this fact by nothing
that the definition of Q together with the Flavour Condition §2.16 implies
that that Q is equivalent, as a Coxeter group, to W (F ). Such finite group
actions (and their categorifications) play an important role in the relation
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between 3d N = 4 theories and Symplectic Duality. We discuss this further
in §9.

5.7. Mass deformations and the local AGT correspondence

In the relation between sphere partition functions of 4d Class S[j] SCFTs
and 2d Toda correlations functions, known as the Alday-Gaiotto-Tachikawa
(AGT) correspondence [1], one of the important elements in the dictionary
is a map from each codimension two defect of the six dimensional theory
and certain semi-degenerate primaries of the 2d Toda CFT [86]. This is
the local content of the AGT correspondence. It was first noted in [6] that
these semi-degenerate primaries can be described by null vectors at level
one precisely when the Nahm label associated to the defect is principal
Levi type. Using this observation, the primary map was described for such
defects in [6]. See also [75] in this regard. But, we have just observed that
such defects are precisely the ones which correspond smoothable SCFTs.
In other words, these are the SCFTs that admit a mass deformation such
that the resulting IR theory is free. So, the smoothable SCFTs admit the
most straightforward primary map. This further raises a natural question of
what the Toda primaries associated to Malleable and Rigid SCFTs are. A
closely related phenomenon is that fact that, to every such semi-degenerate
primary labeled by the Nahm orbit ON , one can associated a pair of W-
algebras, W (g,ON ) and W (g∨,OH), where OH is the corresponding Hitchin
orbit, using quantum Hamiltonian reduction for the corresponding Jacobson-
Morozov sl2 embeddings ρN , ρH . It would be intriguing to study such pairs of
W-algebras corresponding to the Rigid SCFTs among T ρ[G]. It would also
be interesting to compare this with other associations between 3d N = 4
SCFTs and Vertex Operator Algebras [43, 63].

5.8. More about deformation classes of T ρ[G] theories

In this section, we outline in a bit more detail the relationship of the de-
formation class of a T ρ[G] theory and notions that appear in the structure
theory of nilpotent orbits in complex semi-simple Lie algebras.12 A phys-
ically minded reader can skip this section and proceed to the subsequent
section where examples are treated.

In what follows, we use several properties of nilpotent orbits. The cor-
responding definitions are recalled in §A.3. We will additionally use ‘pL’

12For this section, we benefited from conversations with Pramod Achar.



✐

✐

“1-Balasubramanian” — 2022/9/6 — 21:18 — page 1993 — #41
✐

✐

✐

✐

✐

✐

Masses, sheets and rigid SCFTs 1993

to denote nilpotent orbits that are of principal Levi type (see A.3.8 for the
definition) and ‘npL’ to denote nilpotent orbits that not of principal Levi
type.

• Type I: These are the Smoothable SCFTs. Mass deformations exist
for these SCFTs and a full mass deformation leads to a trivial SCFT
in the IR.

Within this class, we find the following sub-classes
– Type Ia: (ON ,OH) = (pL +Special, Richardson, a Dixmier sheet

of OH).
– Type Ib: (ON ,OH) = (pL+Non-Special, Richardson, a Dixmier

sheet of OH).
For defects of type I, sub-sheets do not occur in the description of the
mass deformed Coulomb branch.

• Type II: These are the Malleable SCFTs. Mass deformations exist
these SCFTs but a full mass deformation leads to a non-trivial Rigid
SCFT in the IR.

Within this class, we find the following sub-classes
– Type IIa: (ON , OH) = (npL +Special, Special Induced, special

mixed sheet/sub-sheet)
– Type IIb: (ON , OH) = (npL + Non-Special, Special Induced, spe-

cial mixed sheet/sub-sheet)
– Type IIc: (ON , OH) = (npL +Special, Richardson, special mixed

sheet/sub-sheet)
– Type IId: (ON , OH) = (npL + Non-Special, Richardson, special

mixed sheet/sub-sheet)

• Type III: These are the Rigid SCFTs. By definition, no mass defor-
mations exist for these theories.

Within this class, we find the following sub-classes
– Type IIIa: (ON , OH) = (Distinguished, Rigid)
– Type IIIb: (ON , OH) = (Distinguished, special Induced)
– Type IIIc: (ON , OH) = (Distinguished, Richardson)

Using the Spaltenstein-Barbasch-Vogan Theorem (Theorem 8.3.1 in [37]),
it is possible to prove that the above list exhausts all possible pairs (ON , OH)
which obey OH = dBV (ON ). A nice corollary of this result is a simple char-
acterization of Smoothable SCFTs using Nahm data. Looking at the list
above, we note that the Smoothable SCFTs are precisely the ones which
have a principal Levi type orbit as its Nahm orbit! Under the duality, these
get paired with Dixmier sheets attached to Richardson nilpotent orbits. The
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other sub-classes appearing in the list above do not appear to imply the
existence of additional physical information. For example, from a physical
standpoint, the Rigid SCFTs of type IIIa are no different from Rigid SCFTs
of type IIIb. The existence of these types is just another reflection of the fact
that the natural notion of Rigidity arising in the physics of T ρ[G] theories
is different from the usual mathematical notion of a rigid nilpotent orbit.

6. Examples

We finally turn to providing several explicit examples. We collect the exam-
ples in the form of several tables in this section and in §B. From the tables
collected in this section and §B, one can read off the mass deformed Hitchin
data in the following way.

1) From the refined Sheet label (l∨,Ol∨

H ), one can read off a Levi subalge-
bra l∨ of g∨ and Ol∨

H is a special nilpotent orbit in this Levi subalgebra.

2) The Hitchin residue aM for the mass deformed case (if it exists) has
the following Jordon decomposition

(6.1) aM = ass + an, [ass, an] = 0,

where ass is a semi-simple element in g∨ that actually sits in Z(l∨), the
center of the Levi subalgebra l∨ and an is a representative of the nilpotent
orbit Ol∨

H .
To simplify notation, we use ass to denote both a generic element in

Z(l∨) and the corresponding element in g∨ which is obtained by the natural
inclusion Z(l∨) →֒ g∨ (Similarly for an : It denotes both an element in l∨

and its natural inclusion in g∨).
One can check that the dimension condition is obeyed using the following

formulas.

dim(OaM
) = dim(Og∨

ass
) + dim(Ol∨

H )(6.2a)

dim(Og∨

ass) = dim(g∨)− (dim(l∨ss) + dim(Z(l∨)))(6.2b)

6.1. Type A

We start with the tame defects in type A. Mass deformations for these
are well understood [60, 62]. We nevertheless review what is known in the
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language of the present paper. Nilpotent orbits in the Lie algebra An−1 are
labeled by partitions of n. Let [pi] be such a partition label for a nilpotent
orbit of An−1. Any element of the orbit O[pi] can be cast in its Jordan
canonical form. The parts pi correspond to the sizes of the Jordan blocks.
Let [ri] = [pi]

t denote the transpose partition. The complex dimension of a
nilpotent orbit corresponding to the partition [pi] is given by [37],

(6.3) dimC(O[pi]) = dim(sln)− (
∑

i

r2i − 1).

It is also helpful to recall the Flavour symmetry acting on the Slodowy
Slice to an orbit O[pi]. It is given by [36],

(6.4) F = S(
∏

i

U(ri)).

In any Lie algebra An−1, every sheet is a Dixmier sheet. Dixmier sheets
carry labels of the form (l, 0) for some Levi subalgebra l. In a Dixmier sheet,
the boundary is a Richardson nilpotent orbit. Every (non-zero) nilpotent
orbit in An occurs at the boundary of a Dixmier sheet. In other words, all
nilpotent orbits in An are Richardson. Furthermore, every nilpotent orbit in
type A belongs to a unique sheet. This simplifies the study of mass defor-
mations remarkably. In type A, every defect is Smoothable in sense of the
terminology introduced in §5.4.

The dimension of the semi-simple orbits in a Dixmier sheet can be cal-
culated using the formula (6.2b).

Now, we can describe the mass deformed in the language of sheets. Let
the Nahm label for the defect be pN = [pi]. The Hitchin label for the defect
is pH = [pi]

T .
The Hitchin nilpotent orbit [pi]

T is at the boundary of the Dixmier sheet
(l[pi], 0), where l[pi] is the Levi factor of the standard parabolic corresponding
to the partition [pi]. This is a consequence of the fact that Indgl[pi]

(0) = [pi]
T

(see A.2 for the summary of orbit induction ). It is straightforward to
check that Flavour condition is automatically obeyed for every sheet. So,
it does not amount to an additional restriction. Hence, there is no refine-
ment of sheets in type A. Once the sheet corresponding to the mass de-
formation is know, the mass deformed Hitchin system is straightforward to
write down. One has to merely require that the residue of the Higgs field
Res(ϕ) ∈ Z(l[pi]), where Z(l[pi]) denotes the center of the Levi subalgebra
associated to [pi].
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To illustrate all of this in greater detail, we include below the data for
mass deformed defects in the Lie algebra A6. In Fig 3, we depict the nilpotent
orbits of A6 together with the sheets they are part of.

6.1.1. g = A6.

ON OH dim(OH) dim(Og∨

ass
) F (l∨,Ol∨

H ) dim(Z(l∨))

[17] [7] 42 42 SU(7) (0, 0) 6
[2, 15] [6, 1] 40 40 SU(5)× U(1) (A1, 0) 5
[22, 13] [5, 2] 38 38 SU(4)× U(1) (A1 +A1, 0) 4
[3, 14] [5, 12] 36 36 SU(4)× U(1) (A2, 0) 4
[23, 1] [4, 3] 36 36 SU(3)× U(1) (3A1, 0) 3
[3, 2, 12] [4, 2, 1] 34 34 SU(3)× U(1) (A2 +A1, 0) 3
[4, 13] [4, 13] 30 30 SU(3)× U(1) (A3, 0) 3
[3, 22] [32, 1] 30 30 SU(2)× U(1) (A2 + 2A1, 0) 2
[32, 1] [3, 22] 32 32 SU(2)× SU(2) (2A2, 0) 2
[4, 2, 1] [3, 2, 12] 28 28 SU(2)× U(1) (A3 +A1, 0) 2
[5, 12] [3, 14] 22 22 SU(2)× U(1) (A4, 0) 2
[4, 3] [23, 1] 24 24 U(1) (A3 +A2, 0) 1
[5, 2] [22, 13] 20 20 U(1) (A4 +A1, 0) 1
[6, 1] [2, 15] 12 12 U(1) (A5, 0) 1
[7] [17] 0 - - (A6, 0) 0

Let us look a couple of examples from table 6.1.1 in some more de-
tail. As a first example, consider the defect with Nahm label [6, 1]. The 3d
SCFT T [6,1][sl7] corresponding to this defect has a Higgs branch which is
the Slodowy slice to the subregular orbit [6, 1]. It carries a U(1) Flavour
symmetry. So, we expect a mass deformation of rank one. The dual Hitchin
orbit is the minimal nilpotent orbit [2, 15]. The dimension of the minimal
nilpotent orbit is 12 (calculated using 6.3). Now, there is a Dixmier sheet
(A5, 0) whose boundary is precisely the minimal nilpotent orbit [2, 15]. One
can check this using the fact that

(6.5) IndA6

A5
(0) = [2, 15].

To help check the above statement about orbit induction, we have sum-
marized orbit induction in §A.2.

The dimension of the semi-simple orbits in this sheet can be calculated
using (6.2b),

(6.6) dim(Og∨

ass
) = (48)− (35 + 1) = 12,



✐

✐

“1-Balasubramanian” — 2022/9/6 — 21:18 — page 1997 — #45
✐

✐

✐

✐

✐

✐

Masses, sheets and rigid SCFTs 1997

where we have used the fact that dim(A6) = 48, dim(A5) = 35 and
dim(Z(lA5

)) = rank(A6)− rank(A5) = 1. We see that dim(Og∨

ass
) is exactly

equal to the dimension of the nilpotent orbit [2, 15].13 This shows that the
sheet (A5, 0) does correspond to a mass-like deformation.

To further confirm that this sheet parameterizes the mass deformed
Coulomb branch of the theory T [6,1][sl7], we also note that A5 is indeed
the Bala-Carter Levi of the Nahm orbit [6, 1].14 Finally, for clarity, we also
note that

(6.7) rank(F ) = dim(Z(lA5
)) = 1.

This, however, is not an independent check. The condition (6.7) was guar-
anteed to be satisfied once we ensured that A5, the Levi appearing in the
sheet label, is the BC Levi of the Nahm orbit [6, 1]. So, we conclude that we
have correctly identified the mass deformed family of Coulomb branches.

As a second example, consider the defect corresponding to the 3d SCFT
T [3,22][sl7]. Its Higgs branch is the Slodowy Slice to [3, 22] intersected with
the nilpotent cone and its Coulomb branch is the nilpotent orbit [32, 1].
The Flavour symmetry acting on the Higgs branch is SU(2)× U(1). So, we
expect a rank two mass deformation.

Using (6.3), we see that dim([32, 1]) = 32. Using known facts about orbit
induction (see §A.2), one can see that

(6.8) IndA6

A2+2A1
(0) = [32, 1].

This shows that the nilpotent orbit [32, 1] is Richardson and occurs at the
boundary of the Dixmier sheet (A2 + 2A1, 0). The dimension of the semi-
simple orbits in this sheet can be calculated using (6.2b),

(6.9) dim(Og∨

ass
) = (48)− (14 + 2) = 32,

where we have used the fact that dim(A2+2A1)=14 and dim(Z(lA2+2A1
))=

2. We again notice that dim(Og∨

ass
) is exactly equal to the dimension of the

nilpotent orbit [32, 1]. As a final check, we note that A2 + 2A1 is the BC Levi
of the Nahm orbit [3, 22]. This guarantees that rank(F ) = dim(Z(lA2+2A1

)) =
2, as required.

13The fact that there is a family of semi-simple orbits with the same dimension
as the minimal nilpotent orbit is a special feature of Lie algebras of type A.

14We have summarized the procedure to deduce the Bala-Carter Levi in §A.1.
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To get a better overall perspective on all the mass deformed defects at
once, we depict the sheets attached each of the nilpotent orbits in A6 in Fig
(3) together with the closure ordering on the nilpotent orbits.

[7] (0, 0) “Principal sheet”

[6, 1] (A1, 0)

[5, 2] (2A1, 0)

[5, 12](A2, 0) [4, 3] (3A1, 0)

[4, 2, 1] (A2 +A1, 0)

[4, 13](A3, 0)

[32, 1] (2A2, 0)

[3, 22] (A2 + 2A1, 0)

[3, 2, 12] (A3 +A1, 0)

[3, 14](A4, 0) [23, 1] (A3 +A2, 0)

[22, 13] (A4 +A1, 0)

[2, 15] (A5, 0)

[17]

Figure 3: This diagram shows the sheets for the Lie algebra sl7 and the
nilpotent orbits that occur at their boundary. In this case, every sheet is a
special sheet. Each dashed line is a sheet. The solid lines encode the closure
ordering on the nilpotent orbits. They do not imply closure ordering for the
entire sheet(s) attached to the nilpotent orbits.

6.1.2. Sheet closures vs nilpotent orbit closures. Before moving to
examples in other Cartan types, we wish to discuss a feature that reveals
that the stratification of g by sheets is quite subtle. Already in type A,
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we encounter the feature that containment relations among sheets is not
the same as the closure ordering among the nilpotent orbits occurring at
their boundaries. For example, consider two Dixmier sheets S = (l, 0) and
S′ = (l′, 0) and let O and O′ be the Richardson nilpotent orbits occurring
at their respective boundaries. Now, S ⊂ S′ iff the opposite inclusion l′ ⊂ l

holds between the Levi subalgebras (see, for example, the Appendix of [32]).
This is a stronger condition than O ⊂ O′. There are several examples in
which O ⊂ O′ but l′ ̸⊂ l. As an example from Figure 3, note that while
O[22,13] ⊂ O[23,1], A3 +A2 is not a subalgebra of A4 +A1. So, we see the
closure of a sheet is not necessarily a union of smaller sheets. In other words,
the stratification of g by sheets does not obey the frontier condition [107].
It would be interesting to explore if this failure of the frontier condition has
any physical consequences.

6.2. Type D

For defects of type D, we provide the general solution at first and then use
examples from D4 and D5 to explain some new features that were not seen
for defects in type A.

6.2.1. g = Dn. Let [pi] be the partition label for the Nahm orbit asso-
ciated to the defect. Let [qi] be the partition label for the Hitchin orbit
associated to the defect. As we reviewed earlier, [qi] is the Barbasch-Vogan
dual 15 to [pi],

(6.10) O[qi] = dBV (O[pi]).

Let [ri] be [pi]
T , the transpose of [pi] and let [si] be [qi]

T , the transpose
of [qi]. The dimension of the Coulomb branch of T [pi][Dn] is given by the
dimension of the nilpotent orbit O[qi]. This can be calculated using

(6.11) dim(O[qi] = dim(so2n)−
1

2
(
∑

i

s2i −
∑

i∈odd

mi),

where mi is the multiplicity of the number i in the partition [qi].

15For type D, the Barbasch-Vogan dual is the same as the Spaltenstein dual.
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The Flavour symmetry associated to the defect can be deduced from the
Nahm orbit [pi] using ([36])

(6.12) F =
∏

i∈odd

SO(ti)×
∏

i∈even

Sp(ti/2),

where ti is the multiplicity of the number i in the partition [pi].
One of the features that is new for defects in type D is the possibility

of Special Pieces. These refer to collections of defects which have different
3d Higgs branches but have identical 3d Coulomb branches [36]. The Higgs
branches of such defects will be Slodowy Slices to certain orbits Oi

N , for i ∈
1, 2, . . . , k all of which obey dBV (O

i
N ) = OH for a fixed special nilpotent orbit

OH . We will denote such a collection of defects by the notation {Oi
N}, i ∈

1, 2, . . . , k. Here, the number k denotes the size of the special piece. As we
explain below, the mass deformations for defects that belong to a special
piece {Oi

N} will end up being related to special sheets attached to the same
nilpotent orbit OH .

To determine the special sheet associated to the mass deformation of
T [pi][Dn], we first calculate the BC Levi lBC of the Nahm orbit. This can
be done using the procedure summarized in §A.1. Then, from among the
special sheets attached to the orbit [qi], we pick the one whose sheet label
contains the lBC as the Levi. In some instances, it may be required to place
an additional restriction on the special sheet. Such an additional restriction
happens whenever there is no special sheet with lBC as its sheet Levi but
there is a special sheet with a restriction such that the Levi associated to
such a restriction is the Bala-Carter Levi lBC . This restricted special sheet
is what we denoted a refined sheet in §5 . By inspection, we observe any
non-special sheet attached to the special nilpotent orbit [qi] does not ever
have the BC Levi of one Nahm orbits in Oi

N as part of its sheet label (or a
refined sheet label). From this, we conclude that non-special sheets do not
obey the Flavour condition.

Defects in type D can fall into any one of the three possible deformation
classes of §5.4. We now use examples from D4 and D5 that bring out some
of these features.

6.2.2. g = D4. Below, we described the mass deformed SCFTs T ρ[so8]
in a table. When compared with the theories T ρ[An], we see some new
features appearing here. Let us first consider the 3d SCFT T [5,3][so8]. The
Higgs branch of this theory is the Slodowy slice to the orbit [5, 3] intersected
with nilpotent cone. This Higgs branch has a trivial Flavour symmetry since



✐

✐

“1-Balasubramanian” — 2022/9/6 — 21:18 — page 2001 — #49
✐

✐

✐

✐

✐

✐

Masses, sheets and rigid SCFTs 2001

orbit [5, 3] is a distinguished nilpotent orbit. 16 If the partition label for a
nilpotent orbit does not have repeated parts, then the label corresponds to a
distinguished orbit. Since the Higgs branch has a trivial Flavour symmetry,
this is an example of a Rigid SCFT. The corresponding Coulomb branch
is the minimal nilpotent orbit [22, 14]. This is a nilpotent orbit of complex
dimension 10. If there were to be a sheet attached to [22, 14], then it should be
possible to find non-nilpotent orbit whose dimension is 10. A straightforward
calculation shows that this is impossible. It is possible to check that the
smallest semi-simple orbits in D4 have dimension 12. Any mixed orbit would
have to have an even larger dimension. So, this rules out the possibility that
[22, 14] has any nearby orbits of the same dimension. In other words, [22, 14]
is a rigid orbit. This, in turn, implies that there are no mass-like deformations
of the tame Hitchin system on a punctured disc with a nilpotent singularity
of type [22, 14]. This is in complete agreement with the fact that the Flavour
symmetry F is trivial for this defect.

As a second example, consider the pair of defects with Nahm label
{[32, 12], [3, 22, 1]}. They constitute a special piece since the dual Hitchin la-
bel is [32, 12] for both defects. The flavour symmetry associated to T [32,12][so8]
is U(1)2 and flavour symmetry associated to T [3,22,1][so8] is SU(2). The Bala-
Carter Levis of [32, 12], [3, 22, 1] are A2, A1 +D2 (respectively).

There are two sheets attached to the nilpotent orbit [32, 12]. Both of
these are Dixmier sheets (and hence special) and their sheet labels are
(l(A2), 0) and (l(A1+D2), 0). The sheet labels imply that the centralizer of the
semi-simple elements in these sheets are, respectively, the Levi subalgebras
l(A2),l(A1+D2). The Levis occurring in the sheet labels are precisely the BC
Levis of the two Nahm orbits. So, imposing the Flavour Condition picks out
the (l(A2), 0) sheet as the mass deformed Coulomb branch of T [32,12][so8] and

the (l(A1+D2), 0) sheet as the mass deformed Coulomb branch of T [3,22,1][so8].
In Fig (4), we depict all the special sheets in the Lie algebra so8 together

with the nilpotent orbits occurring at their boundaries and the closure or-
dering on those nilpotent orbits. In so8, there are no non-special sheets with
special nilpotent orbits at their boundaries. When there is more than one
special sheet attached to the same Hitchin orbit, we additionally add a nu-
merical label to both the sheet and corresponding dual Nahm orbit.

16See §A.3 for a definition of a distinguished nilpotent orbit.
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ON OH dim(OH) dim(Og∨

ass
) F (l∨,Ol∨

H ) dim(Z(l∨))

[18] [7, 1] 24 24 Spin(8) (0, 0) 4
[22, 14] [5, 3] 22 22 SU(2)3 (A1, 0) 3
[3, 15] [5, 13] 20 20 Sp(2) (D2, 0) 2
[24]I [42]I 20 20 Sp(2) (A1 +A1, 0) 2
[24]II [42]II 20 20 Sp(2) (A1 +A1, 0) 2

1[3, 2
2, 1] [32, 12] 18 18 SU(2) (A1 +D2, 0) 1

2[3
2, 12] [32, 12] 18 18 U(1)2 (A2, 0) 2

[5, 13] [3, 15] 12 12 SU(2) (D3, 0) 1
[42]I [24]I 12 12 SU(2) (A3, 0) 1
[42]II [24]II 12 12 SU(2) (A3, 0) 1
[5, 3] [22, 14] 10 0 - (D4, [2

2, 14]) 0
[7, 1] [18] 0 0 - (D4, [1

8]) 0

6.2.3. g = D5. Some of the new features that appeared in D4 continue
to appear in the case of D5. For example, the theory T [7,3][so10] corresponds
to a Rigid SCFT. Its Higgs branch is the Slodowy slice to the subregular
orbit [7, 3] and its Coulomb branch is the minimal nilpotent orbit [22, 16],
a rigid nilpotent orbit. We also have the special pieces with Nahm labels
{[32, 14], [3, 22, 13]} and {[5, 3, 12], [5, 22, 1]}. The details for the special piece
{[32, 14], [3, 22, 13]} closely parallel the special piece from D4.

The special piece {[5, 3, 12], [5, 22, 1]}, on the other hand, reveals a new
feature. The dual Hitchin orbit for this special piece is [32, 14]. There are
two sheets that have the orbit [32, 14] at its boundary. These sheets can be
identified using the following facts about orbit induction,

IndD5

D4
([22, 14]) = [32, 14],

IndD5

A1+D3
[0] = [32, 14].

(6.13)

It follows that [32, 14] occurs at the boundary of two sheets (lA1+D3
, 0) and

(lD4
, [22, 14]). The former is a Dixmier sheet while the latter is not. Both

sheets are, however, special sheets.
The Bala-Carter Levis associated to the Nahm orbits {[5, 3, 12], [5, 22, 1]}

are, respectively, D4, A1 +D3. So, imposing the Flavour condition identifies
the sheet (lA1+D3

, 0) as the one corresponding to the mass deformation of
T [5,22,1][so10] and (lD4

, [22, 14]) as the sheet corresponding to the mass defor-
mation of T [5,3,12][so10]. When a non-Dixmier sheet parameterizes the mass
deformed Coulomb branches, there is a residual singularity in the IR theory
(see discussion in §5.4). In the case of T [5,22,1][so10], the residual singularity
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[7, 1] (0, 0) “Principal sheet”

[5, 3] (A1, 0)

[5, 13] (D2, 0)

[42]′(A1 +A1, 0)

[42]′′ (A1 +A1, 0)

[32, 12] 1(A1 +D2, 0)2(A2, 0)

[24]′(A3, 0)

[24]′′ (A3, 0)

[3, 15] (D3, 0)

[22,14]

[18]

Figure 4: This diagram shows the twelve special sheets for the Lie algebra
so8 and the nilpotent orbits that occur at their boundary. Each dashed line
is a sheet. The rigid nilpotent orbits are shown in bold. They form sheets
by themselves. As before, the solid lines encode just the closure ordering on
the nilpotent orbits.

is the nilpotent orbit [22, 14] in so8. This is an indication that upon mass
deforming and flowing to the IR, we hit a non-trivial SCFT. In this case,
it is the SCFT T [5,3][so8]. 3d N = 4 that flow (in the IR) to a smaller but
non-trivial SCFT upon mass deformation are the ones that we denoted as
Malleable SCFTs. The discussion above shows that T [5,3,12][so10] is a mal-
leable SCFT.

We collect the defects in D5 along with sheets corresponding to each of
them in the table below. In Fig (5), we depict all the special sheets in so8.
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ON OH dim(OH) dim(Og∨

ass
) F (l∨,Ol∨

H ) dim(Z(l∨))

[110] [9, 1] 40 40 Spin(10) (0, 0) 5
[22, 16] [7, 3] 38 38 SU(4)xSU(2) (A1, 0) 4
[3, 17] [7, 13] 36 36 Spin(7) (D2, 0) 3
[24, 12] [52] 36 36 Sp(2)× U(1) (A1 +A1, 0) 3

1[3
2, 14] [5, 3, 12] 34 34 SU(2)2 × U(1) (A2, 0) 3

2[3, 2
2, 13] [5, 3, 12] 34 34 SU(2)× SU(2) (A1 +D2, 0) 2

[32, 22] [42, 12] 32 32 SU(2)× U(1) (A2 +A1, 0) 2
[33, 1] [33, 1] 30 30 SU(2) (A2 +D2, 0) 1
[5, 15] [5, 15] 28 28 Sp(2) (D3, 0) 2
[42, 12] [32, 22] 28 28 SU(2)× U(1) (A3, 0) 2

3[5, 3, 1
2] [32, 14] 26 16 U(1) (D4, [2

2, 14]) 1

4[5, 2
2, 1] [32, 14] 26 26 SU(2) (A1 +D3, 0) 1

[52] [24, 12] 20 20 U(1) (A4, 0) 1
[7, 13] [3, 17] 16 16 SU(2) (D4, 0) 1
[7, 3] [22, 16] 14 - - (D5, [2

2, 16]) 0
[9, 1] [110] 0 0 - (D5, [1

10]) 0

[9, 1] (0, 0)

[7, 3] (A1, 0)

[7, 13](D2, 0) [52] (2A1, 0)

[5, 3, 12] 1(A2, 0)2(A1 +A2, 0)

[42, 12](A2 +A1, 0)

[5, 15] (D3, 0)[33, 1](A2 +D2, 0)

[32, 22](32, 22)

[32, 14] 3(D4, [2
2, 14])4(A1 +D3, 0)

[24, 12](A4, 0) [3, 17] (D4, 0)

[22,16]

[110]

Figure 5: This diagram shows the special sheets for the Lie algebra so10.
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6.3. Type E

In this section, we describe the mass deformed defects in E6, E7, E8. In order
to be able to describe the mass deformed defects, it is important to first
identify the sheets attached to each of the special nilpotent orbits. Unlike
the case of nilpotent orbits in classical Lie algebras, there is no general
algorithm. One has to proceed case-by-case.

One can deduce this information using the known results about orbit
induction for nilpotent orbit in exceptional Lie algebras. These were first
obtained by Elashvili and were included in [127]. They have also been sum-
marized in [52].17 Results about dimension of nilpotent orbits in the ex-
ceptional Lie algebras is available in [37] and the their associated Flavour
symmetries (when these orbits occur as the Nahm label) can be deduced
from the tables in [34] and has been summarized in [36].

6.3.1. g = E6. In E6, we have a total of 20 defects out of which 16 are
smoothable, 2 are malleable and 2 are rigid. The sheets corresponding to
the mass deformation of the corresponding T ρ[E6] theories are summarized
below. The special sheets in E6 together with the nilpotent orbits at their
boundaries are depicted in Fig (6).

In E6, many of the features noted in examples in type D exist. We have
two rigid SCFTs TE6(a1)[E6] and TE6(a3)[E6]. And we have three non-trivial
special pieces,

dBV ({3A1, A2}) = E6(a3)

dBV ({A5, E6(a3)}) = A2

dBV ({2A2 +A1, A3 +A1, D4(a1)}) = D4(a1).

(6.14)

But, we a further feature present in E6 that was not seen in D4, D5.
This is the possibility of a Rigid SCFT whose Coulomb branch is not a rigid
orbit. The theory T [E6(a3)][E6] is an example of such a rigid SCFT. The
Higgs branch of the theory is the Slodowy slice to E6(a3), a distinguished
orbit. Hence, it has a trivial Flavour symmetry. The dual Hitchin orbit, on
the other hand, is A2. This orbit is not a rigid orbit. It does occur at the
boundary of a Dixmier sheet (A5, 0). But, this mass-like deformation does

17We warn the reader that the notation used for nilpotent orbits in [127] is,
sometimes, different from the one used in [52]. Whenever there is a conflict, we
have adopted the notation used in [52].
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not obey the Flavour condition for the defect T [E6(a3)][E6].
18 So, this in an

instance where although the Coulomb branch admits mass-like deformations,
they do not correspond to an honest mass deformation since the Flavour
condition obstructs it. This is why the notion of a Rigid SCFT is different
from the notion of a rigid orbit.

In this particular case, the Flavour condition was that F is trivial. But,
even in cases where F is non-trivial, certain mass-like deformations may
not satisfy the Flavour condition (only a subset might satisfy). It is for this
reason that we denoted the stratification of g arising from the study of mass
deformation to be a refinement of the usual theory of sheets where every
stratum is necessarily labeled by (l,O) for a rigid orbit O in l.

ON OH dim(OH) dim(Og∨

ass
) F (l∨,Ol∨

H ) dim(Z(l∨))

0 E6 72 72 E6 (0, 0) 6
A1 E6(a1) 70 70 A5 (A1, 0) 5
2A1 D5 68 68 B3 + T1 (2A1) 4

13A1 E6(a3) 66 66 A2 +A1 (3A1, 0) 3

2A2 E6(a3) 66 66 2A2 (A2, 0) 4

A2 +A1 D5(a1) 64 64 A2 + T1 (A2 +A1, 0) 3
A2 + 2A1 A4 +A1 62 62 A1 + T1 (A2 + 2A1, 0) 2

2A2 D4 60 60 G2 (2A2) 2
A3 A4 60 60 B2 + T1 A3 3

12A2 +A1 D4(a1) 58 58 A1 (2A2 +A1, 0) 1

2A3 +A1 D4(a1) 58 58 A1 + T1 (A3 +A1, 0) 2

3D4(a1) D4(a1) 58 48 T2 (D4, [2
2, 14]) 2

A4 A3 52 52 A1 + T1 (A4, 0) 2
D4 2A2 48 48 A2 (D4, 0) 2

A4 +A1 A2 + 2A1 50 50 T1 (A4 +A1, 0) 1
D5 2A1 32 32 T1 (D5, 0) 1

D5(a1) A2 +A1 46 32 T1 (D5, [2
2, 16]) 1

1A5 A2 42 42 A1 (A5, A2) 1

2E6(a3) A2 42 - - (E6, A2) 0

E6(a1) A1 22 - (E6, A1) 0
E6 0 0 0 - (E6, 0) 0

6.3.2. g = E7. In E7, we have a total of 44 defects out of which 31 are
smoothable, 8 are malleable and 5 are rigid. The sheets corresponding to
the mass deformation of the corresponding T ρ[E7] theories are summarized

18Instead, this Dixmier sheet corresponds to the mass deformation of the defect
TA5 [E6] whose Coulomb branch is also the orbit A2. As noted, the Nahm orbits
{E6(a3), A5} are part of the same special piece.
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E6 (0, 0)

E6(a1) (A1, 0)

D5 (2A1, 0)

E6(a3) 1(3A1, 0)2(A2, 0)

D5(a1) (A2 +A1, 0)

A4 +A1(A2 + 2A1, 0) D4 (2A2, 0)

A4(A3, 0)

D4(a1)

1(2A2 +A1, 0)2(A3 +A1, 0)

3(D4, [2
2, 14])

A3(A4, 0)

2A2 (D4, 0)A2 + 2A1(A4 +A1, 0)

A2 +A1 (D5, [2
2, 16])

A2 1(A5, 0)2(E6,A2)

2A1 (D5, 0)

A1

0

Figure 6: This diagram shows the special sheets for the Lie algebra E6.

below. The features noted in D4, D5, E6 continue to exist in this case and it
should be possible to find the examples from the data collected in the table
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below. Additionally, in E7, there exist certain non-special sheets attached
to special nilpotent orbits. But, we discuss these case separately in §7.2.

ON OH dim(OH ) dim(Og∨

ass
) F (l∨,Ol∨

H ) dim(Z(l∨))

0 E7 126 126 E7 (0, 0) 7
A1 E7(a1) 124 124 D6 (A1, 0) 6
2A1 E7(a2) 122 122 B4 + A1 (2A1, 0) 5

3A′

1 E7(a3) 120 120 C3 + A1 (3A′

1, 0) 4
A2 E7(a3) 120 120 A5 (A2, 0) 5

(3A1)
′′ E6 120 120 F4 (3A′′

1 , 0) 4
4A1 E6(a1) 118 118 C3 (4A1, 0) 3

A2 + A1 E6(a1) 118 118 A3 + T1 (A2 + A1, 0) 4
A2 + 2A1 E7(a4) 116 116 3A1 (A2 + 2A1, 0) 3
A2 + 3A1 A6 114 114 G2 (A2 + 3A1, 0) 2

A3 D6(a1) 114 114 B3 + A1 (A3, 0) 4
2A2 D5 + A1 114 114 G2 + A1 (2A2, 0) 3

2A2 + A1 E7(a5) 112 112 2A1 (2A2 + A1, 0) 2
(A3 + A1)

′ E7(a5) 112 112 3A1 ((A3 + A1)
′, 0) 3

D4(a1) E7(a5) 112 102 3A1 (D4, [2
2, 14]) 3

(A3 + A1)
′′ D5 112 112 3A1 ((A3 + A1)

′′, 0) 3
A3 + 2A1 E6(a3) 110 110 2A1 (A3 + 2A1, 0) 2

D4(a1) + A1 E6(a3) 110 100 2A1 (D4 + A1, [2
2, 14]) 2

A3 + A2 D5(a1) + A1 108 108 A1 + T1 (A3 + A2, 0) 2
D4 A′′

5 102 102 C3 (D4, 0) 3
A3 + A2 + A1 A4 + A2 106 106 A1 (A3 + A2 + A1, 0) 1

A4 D5(a1) 106 106 A2 + T1 (A4, 0) 3
A4 + A1 A4 + A1 104 104 T2 (A4 + A1, 0) 2
D4 + A1 A4 100 100 B2 (D4 + A1, 0) 2

D5(a1) A4 100 86 A1 + T1 (D5, [2
2, 16]) 2

A4 + A2 A3 + A2 + A1 100 100 A1 (A4 + A2, 0) 1
A′′

5 D4 96 96 2A1 (A′′

5 , 0) 2

D5(a1) + A1 A3 + A2 98 84 A1 (D5, [2
2, 16]) 1

A′

5 D4(a1) + A1 96 96 2A1 (A′

5, 0) 2
E6(a3) D4(a1) + A1 96 54 A1 (E6, 2A2 + A1) 1

D5 (A3 + A1)
′′ 86 86 2A1 (D5, 0) 2

A5 + A1 D4(a1) 94 94 A1 (A5 + A1, 0) 1

D6(a2) D4(a1) 94 - A1 (D6, [2
4, 14]) 1

E7(a5) D4(a1) 94 - - (E7, D4(a1)) 0
D5 + A1 2A2 84 84 A1 (D5 + A1, 0) 1

D6(a1) A3 84 66 A1 (D6, [2
2, 18]) 1

A6 A2 + 3A1 84 84 A1 (A6, 0) 1
E7(a4) A2 + 2A1 82 - - (E7, A2 + 2A1) 0
E6(a1) A2 + A1 76 54 T1 (E6, A1) 1

E6 (3A1)
′′ 54 54 A1 (E6, 0) 1

D6 A2 66 66 A1 (D6, 0)) 1
E7(a3) A2 66 - - (E7, A2)) 0
E7(a2) 2A1 52 - - (E7, 2A1)) 0
E7(a1) A1 34 - - (E7, A1) 0

E7 0 0 - - (E7, 0) 0

6.3.3. g = E8. In E8, we have a total of 69 defects out of which 40 are
smoothable, 19 are malleable and 10 are rigid. The sheets corresponding to
the mass deformation of the corresponding T ρ[E8] theories are summarized
below. As in the case of E7, there exist certain non-special sheets attached
to special orbits in E8. We discuss them in §7.2.
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ON OH dim(OH ) dim(Og∨

ass
) F (l∨,Ol∨

H ) dim(Z(l∨))

0 E8 240 240 E8 (0, 0) 8
A1 E8(a1) 238 238 E7 (A1, 0) 7
2A1 E8(a2) 236 236 B6 (2A1, 0) 6
3A1 E8(a3) 234 234 F4 + A1 (3A1, 0) 5
A2 E8(a3) 234 234 E6 (A2, 0) 6
4A1 E8(a4) 232 232 C4 (4A1, 0) 4

A2 + A1 E8(a4) 232 232 A5 (A2 + A1, 0) 5
A2 + 2A1 E8(b4) 230 230 B3 + A1 (A2 + 2A1, 0) 4

A3 E7(a1) 228 228 B5 (A3, 0) 5
A2 + 3A1 E8(a5) 228 228 G2 + A1 (A2 + 3A1, 0) 3

2A2 E8(a5) 228 228 2G2 (2A2, 0) 4
2A2 + A1 E8(b5) 226 226 G2 + A1 (2A2 + A1, 0) 3
A3 + A1 E8(b5) 226 226 B3 + A1 (A3 + A1, 0) 4

D4(a1) E8(b5) 226 216 D4 (D4, [2
2, 14]) 4

2A2 + 2A1 E8(a6) 224 224 B2 (2A2 + 2A1, 0) 2
A3 + 2A1 E8(a6) 224 224 B2 + A1 (A3 + 2A1, 0) 3

D4(a1) + A1 E8(a6) 224 214 3A1 (D4 + A1, [2
2, 14]) 3

A3 + A2 D7(a1) 222 222 B2 + T1 (A3 + A2, 0) 3
A3 + A2 + A1 E8(b6) 220 220 2A1 (A3 + A2 + A1, 0) 2

D4(a1) + A2 E8(b6) 220 210 A2 (D4 + A2, [2
2, 14]) 2

A4 E7(a3) 220 220 A4 (A4, 0) 4
D4 E6 216 216 F4 (D4, 0) 4

A4 + A1 E6(a1) + A1 218 218 A2 + T1 (A4 + A1, 0) 3
2A3 D7(a2) 216 216 B2 (2A3, 0) 2

A4 + 2A1 D7(a2) 216 216 A1 + T1 (A4 + 2A1, 0) 2
A4 + A2 D5 + A2 214 214 2A1 (A4 + A2, 0) 2
D4 + A1 E6(a1) 214 214 C3 (D4 + A1, 0) 2

D5(a1) E6(a1) 214 200 A3 (D5, [2
2, 16]) 3

A4 + A2 + A1 A6 + A1 212 212 A1 (A4 + A2 + A1, 0) 1
D4 + A2 A6 210 210 A2 (D4 + A2, 0) 2

D5(a1) + A1 E7(a4) 212 198 2A1 (D5 + A1, [2
2, 16]) 2

A5 D6(a1) 210 210 G2 + A1 (A5, 0) 2
E6(a3) D6(a1) 210 168 G2 (E6, A2) 2

D5 D5 200 200 B3 (D5, 0) 3
A4 + A3 E8(a7) 208 208 A1 (A4 + A3, 0) 1

D5(a1) + A2 E8(a7) 208 - A1 (D5 + A2, [2
2, 16]) 1

A5 + A1 E8(a7) 208 208 2A1 (A5 + A1, 0) 2
E6(a3) + A1 E8(a7) 208 166 A1 (E6 + A1, A2) 1

D6(a2) E8(a7) 208 - 2A1 (D6, [2
4, 14]) 1

E7(a5) E8(a7) 208 114 A1 (E7, D4(a1)) 1
E8(a7) E8(a7) 208 - − (E8, E8(a7)) -
D5 + A1 E6(a3) 198 198 2A1 (D5 + A1, 0) 2

D6(a1) E6(a3) 198 180 2A1 (D6, [2
2, 18]) 2

E7(a4) D5(a1) + A1 196 114 A1 (E7, A2 + 2A1) 1
A6 D4 + A2 198 198 2A1 (A6, 0) 2

A6 + A1 A4 + A2 + A1 196 196 A1 (A6 + A1, 0) 1
E6(a1) D5(a1) 190 168 A2 (E6, A1) 2
D5 + A2 A4 + A2 194 194 T1 (D5 + A1, 0) 1

D7(a2) A4 + 2A1 192 156 T1 (D7, [2
4, 16]) 1

E6(a1) + A1 A4 + A1 188 166 T1 (E6 + A1, A1 + 0) 1
E6 D4 168 168 G2 (E6, 0) 2
D6 A4 180 180 B2 (D6, 0) 1

E7(a3) A4 180 114 A1 (E7, A2) 1
A7 D4(a1) + A2 184 184 A1 (A7, 0) 1

E8(b6) D4(a1) + A2 184 - − (E8, D4(a1) + A2) -

D7(a1) A3 + A2 178 156 T1 (D7, [2
2, 110]) 1

E6 + A1 D4(a1) 166 166 A1 (E6 + A1, 0) 1
E7(a2) D4(a1) 166 - A1 (E7, 2A1) 1
E8(b5) D4(a1) 166 - − (E8, D4(a1)) -

D7 2A2 156 156 A1 (D7, 0) 1
E8(a5) 2A2 156 - − (E8, 2A2) -
E7(a1) A3 148 114 A1 (E7, A1) 1
E8(b4) A2 + 2A1 146 - − (E8, A2 + 2A1) -
E8(a4) A2 + A1 136 - − (E8, A2 + A1) -

E7 A2 114 114 A1 (E7, 0) 1
E8(a3) A2 114 - − (E8, A2) -
E8(a2) 2A1 92 - − (0, E8, 2A1) -
E8(a1) A1 58 - − (E8, A1) -

E8 0 0 - − (E8, 0) -
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For twisted defects, which are classified by nilpotent orbits in non-simply
laced Lie algebras, we have included the tables detailing their mass defor-
mations in the Appendix §B. In the next section, we take up some further
examples to discuss non-special sheets and special pieces.

7. Further discussion

7.1. Special pieces and sheets

In the examples treated in §6, we have already encountered collections of
defects called special pieces. Let us briefly recall what these are and refer to
[36] for further details. A special piece is a collection of tame defects with
Nahm labels {Oi

N}, i = 1, 2, . . . , k such that the Coulomb branch of the each
of the 3d SCFTs T ρi [G] is the same special nilpotent orbit OH that is related
to {Oi

N} by

(7.1) dBV (O
i
N ) = OH , i = 1, 2, . . . , k.

Among the collection of defects {Oi
N}, there is a unique defect whose

Nahm orbit is a special nilpotent orbit. This special orbit is the smallest
special orbit whose closure contains every other non-special orbit belonging
to the special piece [101, 127]. We will refer to this special orbit as the
anchor of the special piece {Oi

N}. The singularities within a special piece
have a rich structure. They can be studied using the results of [91, 92] for the
classical Lie algebras and in the exceptional cases, this has been described
more recently in the work of [59]. We also refer to [59] for a more detailed
review of the mathematical literature on special pieces.

From our perspective, special pieces are of interest because mass de-
formations of the collection {T ρi [G]} offers an extremely interesting test of
our proposal that mass deformations are always related to special sheets
attached to the Hitchin orbit OH . In every instance, we find that there
is a unique special sheet (or) a restriction of a special sheet that satisfies
the Flavour Condition and we identify this as these as the mass deformed
Coulomb branch(es). We arrived at this result using the classification of
nilpotent orbits, known results about nilpotent orbits occurring at bound-
aries of sheets and the additional physical input from the Flavour Condition.
From a conceptual standpoint, it might be interesting to look for way to ar-
rive at this result that does not utilize the classification as an intermediate
step. In the rest of this section, we include several examples to illustrate the
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non-trivial nature of the interaction between our proposal for mass defor-
mations and special pieces.

We begin with a special piece whose mass deformation was already dis-
cussed in [36] and was also discussed in §6.2.2. We depict this special piece
in Fig 7.

1[3
2, 12]F = U(1)2

2[3, 2
2, 1]F = SU(2)

[32, 12] 1(A2, 0)2(A1 +D2, 0)

g g∨

Figure 7: This diagram shows the duality in g = D4 between Slodowy Slice
to orbits in the special piece {[32, 12], [3, 22, 1]} and the special sheets at-

tached to [32, 12].

In Fig 8, we depict the special piece in E6 that contains three defects.
Finally, in Figs 9 and 10, we depict two special pieces arising in E8.

1D4(a3)F = U(1)2

2A3 +A1F = SU(2)× U(1)

32A2 +A1F = SU(2)

D4(a1)

3(2A2 +A1, 0)2(A3 +A1, 0) 1(D4, [2
2, 14])

g g∨

Figure 8: This diagram shows the duality in g = E6 between Slodowy slices
to orbits in the special piece {D4(a1), A3 +A1, 2A2 +A1} and the special
sheets attached to D4(a1).
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1E7(a3)F = SU(2)

2D6F = SO(5)

A4

1(E7, A2)2(D6, 0)

g g∨

Figure 9: This diagram shows the duality in g = E8 between Slodowy slices
to orbits in the special piece {E7(a3), D6} and the special sheets attached
to A4. As ordinary sheets, (E7, A2) is actually a sub-sheet of (D6, 0) but we
treat them as two different refined sheets.

.

1E8(a7)F = 0

2E7(a5)F = A1

4D6(a1) F = 2A13E6(a3) +A1F = A1

5D5(a1) +A2 F = A1

6A5 +A1F = 2A1

7A4 +A3 F = A1

E8(a7)7(A4 +A3, 0)

6(A5 +A1, 0)

5(D5 +A2, [2
2, 16])

4(D6, [2
4, 14])

3(E6 +A1, A2)

2(E7, D4(a1))

1(E8,E8(a7))

g g∨

Figure 10: This diagram shows the duality in g = E8.

7.2. Special sheets vs non-special sheets

Examples of non-special sheets attached to special orbits
A special orbit that is not special rigid will have atleast one special sheet

attached to it. But, it could also have non-special sheets attached to it. Here
are some examples from the classical Lie algebras. We illustrate some of
these examplein Fig 11

1) Consider the special orbit OH = [5, 32, 1] in g∨ = so(12).
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We have g = so(12) and dim(OH) = 50. This special orbit has two
sheets attached to it and only one of it is a special sheet.
a) Special Sheet : (A2 +D2, 0)

We claim that this corresponds to the mass deformation of a smooth-
able SCFT T [33,13][so12]. First, one can check that the Bala-Carter
Levi of [33, 13] is indeed (A2 +D2), as required by the Flavour
condition. The Flavour symmetry associated to this defect is F =
and we have dBV ([3

3, 13]) = [5, 32, 1]. This confirms that we have
identified the mass deformed Coulomb branch correctly.

b) Non-Special Sheet : (A1 +D4, [3, 2
2, 1])

Let us assume that this non-special sheet could correspond to a
mass deformation of a T ρ[so12] theory. Then, the Flavour condition
requires that the Bala-Carter Levi associated to ρ should be (A1 +
D4). We have two possibilities

(7.2) [7, 22, 1] , [5, 3, 22]

First, we consider the defect with Nahm orbit [7, 22, 1]. Note that
[7, 22, 1] is an orbit that is of principal Levi type19. So, it corre-
sponds to a smoothable SCFT and the sheet associated to its mass
deformation should be a Dixmier sheet. But, (A1 +D4, [3, 2

2, 1]) is
not a Dixmier sheet. Furthermore, we have that

(7.3) dBV ([7, 2
2, 1]]) = [32, 16].

But the nilpotent orbit at the boundary of the (A1 +D4, [3, 2
2, 1])

sheet is [5, 32, 1]. So, this rules out the possibility that (A1 +D4,
[3, 22, 1]) could parameterize the mass deformation of T [7,22,1][so12].
Next, we consider T [5,3,22]. The Coulomb branch of this theory is
the closure of the nilpotent orbit [42, 14] since we have

(7.4) dBV ([5, 3, 2
2]) = [42, 14].

This, again, is not the nilpotent orbit at the boundary of the
(A1 +D4, [3, 2

2, 1]) sheet. So, we conclude that this sheet does not
correspond to a mass deformation of any T ρ[so12] theory.

2) Consider the special orbit E8(b4) in g∨ = E8.

19See §A.3 for a recollection of definitions.
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We have g∨ and dim(E8(b4) = 230. This special orbit has two sheets
attached to it. One of them is a special sheet while the other is not a
special sheet.
a) Special Sheet : (A2 + 2A1, 0)

This sheet parameterizes the mass deformed Coulomb branch of
TA2+2A1 [E8].

b) Non-Special Sheet : (D4 +A1, [3, 2
2, 1])

This sheet does not correspond to the mass deformation of any
T ρ[E8] theory.

3) As a further example in E8, consider the special orbit E8(b6).
We again have g∨ = E8 and dim(E8(b6)) = 220. This special orbit

has three sheets attached to it. One of them is a Dixmier sheet (and
hence, a special sheet), one is a special sheet that is not a Dixmier
sheet and the other is a non-special sheet. We will see that the two
special sheets correspond to mass deformations of some T ρ[E8] theory
while the non-special sheet does not.
a) Special (and Dixmier) sheet : (A3 +A2 +A1, 0)
b) Special (non-Dixmier) sheet : (D4 +A1, [2

2, 14])
c) Non-special Sheet : (E6 +A1, 2A2 +A1)

4) Finally, let us also consider an example from non-simply laced Lie
algebras. Take the twisted defect of the 6d theory with Hitchin orbit
OH = [32, 1] in g∨ = so(7).

We have g = sp(6) and dim(OH) = 14. This special orbit has two
sheets attached to it. One of the sheets is a special sheet and the other
is a non-special sheet.
a) Special Sheet : (A1 +B1, 0)

This corresponds to the mass deformation of the smoothable SCFT
T [23][sp6].

20

b) Non-Special Sheet : (B2, [2
2, 1])

This sheet does not correspond to the mass deformation of any
T ρ[sp6] theory.

We collect all of the examples discussed in this section in Fig 11.

20See §B.2 for a summary of mass deformations of all T ρ[sp6] theories.
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g∨ = so12

[. . .]

[7, 22, 1]

[5, 32, 1](A2 +D2, 0)

(A1 +D4, [3, 2
2, 1])

[7, 15]

[5, 3, 22]

[. . .]

[. . .]

g∨ = so7

[7]

[5, 12]

[32, 1](B2, [2
2, 1]) (A1 +B1, 0)

[3, 22]

[3, 14]

[17]

g∨ = e8

[. . .]

E8(a4)

E8(b4)

(D4 +A1, [3, 2
2, 1])

(A2 + 2A1, 0)

[. . .] [. . .][. . .]

D2(a1)

E7(a3)

E8(b6)

(E6 +A1, 2A2 +A1)

(A3 +A2 +A1, 0)

(D4 +A2, [2
2, 14])E6(a1) +A1

[..]

Figure 11: This diagram shows some examples of non-special sheets (de-
noted by white arrows) whose boundaries are special nilpotent orbits. We
find that non-special sheets do not correspond to mass deformations of a
T ρ[G] theory.
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7.3. Mass deformations and A(OH) data

As outlined in the introductory section, our original motivation was to un-
derstand the effect of a mass deformation on the Coulomb branch of an
arbitrary Class S theory. The description of the mass deformation of the
three dimensional T ρ[G] theories is one step in the direction of a description
of the mass deformation of the four dimensional theories. But, a few further
steps are necessary to obtain a complete description of the mass deformed
Coulomb branch of a generic Class S SCFT that is built using tame defects.

Here, we only mention the additional considerations that are purely local
to the defect. In [36], it was realized that a precise description of the four
dimensional Coulomb branch in the massless limit requires a study of the
Sommers-Achar group associated to the T ρ[G] theory. This is a subgroup
of the A(OH) group, a finite group that is a quotient of the component
group A(OH) associated to the Hitchin orbit OH . One may wonder how
these Sommers-Achar groups interact with mass deformations and the the-
ory of sheets. To understand this, we need to understand the role played by
the Sommers-Achar group in the description of the 3d T ρ[G] theories. We
postpone such a study for a later work.

7.4. Infinite families

To complete this section, we note here examples of certain infinite families of
Rigid and Malleable SCFTs. If one is studying a large class of CFTs in any
dimension, a natural question to ask if these CFTs admit interesting “large
N” limits. These are limits in which the number of degrees of freedom in the
CFT grows in the some controlled fashion. It is typically the case that there
are several large N limits that one could consider and this is certainly the
case here. We present a few representative examples to show the existence
of large N limits in which every SCFT in the sequence is either Rigid or
Malleable. In the table, we also indicate the nilpotent orbit whose closure is
the Coulomb branch of these theories.

Theories Coulomb branch Deformation Class

T [2N−3,3][SO2N ], N = 4, . . . [22, 12N−4] in so2n Rigid

T [2N−5,5][SO2N ], N = 6, . . . [24, 12N−8] in so2n Rigid

T [2N−5,3,12][SO2N ], N = 5, . . . [32, 12N−6] in so2n Malleable

T [2N−7,3,12][SO2N ], N = 7, . . . [32, 22, 12N−10] in so2n Malleable

The deformation type of these families can be determined in a way that
is identical to the method outlined in §6. The existence of the above families



✐

✐

“1-Balasubramanian” — 2022/9/6 — 21:18 — page 2017 — #65
✐

✐

✐

✐

✐

✐

Masses, sheets and rigid SCFTs 2017

shows that the deformation class of the SCFT is a property that survives in
a suitable large N limit. If an AdS dual exists for these large N limits, then
it makes sense to ask how these properties of the SCFT are encoded in the
dual geometry. So far, large N limits appear to have been studied for T ρ[G]
theories only for the case where G is of type A and for very special choices
of ρ like ρ = [1N ] [69].

8. Quiver gauge theories for T ρ[G] ?

8.1. Searching for UV lagrangians

In light of the deformations classes introduced in the previous section, it is
natural to wonder under what circumstances can a UV Lagrangian detect
the Rigid (or Malleable) nature of the IR SCFT that the theory flows to?21

Note here that being Rigid (or Malleable) is a property of the IR SCFT.
A priori, it is not clear whether a UV Lagrangian can always detect such a
property of the IR SCFT.

To probe this question in a systematic manner, one would have to begin
by identifying the subset of T ρ[G] theories that do admit a Lagrangian de-
scription. For a 3d N = 4 SCFT, providing a Lagrangian description entails
describing a UV Lagrangian theory which flows under RG flow to the IR
SCFT. The simplest case to hope for would be that this RG flow is one in
which the only relevant couplings are the gauge couplings of the UV gauge
theory. A more involved scenario would be the case of a RG flow in which
(a subset of the) masses and twisted masses of the gauge theory are also
turned on. If a 3d N = 4 SCFT occurs as the end point of at least one RG
flow from a UV Lagrangian (with or without masses/twisted masses being
turned on), we will say that the corresponding SCFT admits a Lagrangian
description.

When G is of type A, it is known that such UV descriptions are provided
by certain quiver gauge theories with unitary gauge groups [64]. When G is
of type B,C,D, it is possible, for certain ρ, to provide such a UV description
using SO/Sp quiver gauge theories [70] and/or using unitary quivers [31].
And forG exceptional, it is known that a quiver gauge theory description can
be provided when the Coulomb branch is a small enough nilpotent orbit [71].
If we have a UV gauge theory which flows to a T ρ[G] SCFT when the masses
and twisted masses are set to zero, then it follows that the Higgs branch of
the SCFT has a description as a finite dimensional hyper-Kähler quotient.

21We thank Shiraz Minwalla for a discussion on this question.
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For the theories under question, the Higgs branches are Slodowy slices in the
Nilpotent Cone of G. The realization of these slices as solutions of Nahm’s
equation (for the group G) only provides an infinite dimensional hyper-
Kähler quotient construction. Outside of type A, the mathematical question
of which Slodowy Slices admit finite dimensional hyper-Kähler quotients
appears to have been settled only in special cases. See [76, 103] for some
mathematical works in this direction.

Since we are studying 3d N = 4 theories, one can choose to study a
corresponding question for the 3d Mirror theories in which nilpotent orbits
are realized as Higgs branches and Slodowy Slices would be the Coulomb
branches. In this duality frame, the constructions of [41, 70] (see [89] for re-
lated mathematical work) provide UV Lagrangian description. While such a
description is useful for many purposes, it is not helpful to make transparent
the continuous global symmetry acting as isometries on the Slodowy Slice.
But, we have noted that rigidity of a T ρ[G] theory is best detected in terms
of the data on the Slodowy Slice side. So, even if some of the Rigid SCFTs
can be detected using Higgs branch quiver constructions for nilpotent orbits,
this would not exhaust the list of Rigid SCFTs that we are interested in.
One would have to necessarily supplement this using data on the Slodowy
Slice side.22

8.2. Little string quivers

More recently, a proposal has been put forward in [74, 75] that every T ρ[G]
theory has a UV description in terms of a Quiver gauge theory with only
Unitary gauge groups. The starting point for the construction of [74, 75] are
defect operators arising in Little String theory. They argue that the world-
volume theory on these defects, when wrapped on an S1, are certain Dynkin
Quiver Gauge theories, a name that refers to the fact that the gauge nodes
of the quiver are always organized according to the Dynkin diagram of G.
Since the Little String theories flow to the X[j] SCFTs in the IR, these
defect theories should flow to the T ρ[G] SCFTs. In the rest of this section,
we investigate this conjecture of [74, 75].

We find that for certain defects, the Little String Quivers reproduce the
expected dimension of the Higgs and Coulomb branches. In certain other
cases, it is possible to identify a set of masses or FI parameters (twisted
masses) in the UV theory that, when turned on, would lead to a flow to a IR
SCFT with Higgs and Coulomb branches of the correct expected dimension.

22We thank A. Hanany and N. Mekareeya for a conversation on this question
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In the remaining cases, we were not able to find a way to reconcile the
expected the dimension of the Coulomb branch of a T ρ[G] theory and the
actual dimension of the Coulomb branch of the LSQs proposed in [74, 75].
We illustrate these by studying the LSQs for G = D4, E6.

For each LSQ, the quaternionic dimension of the Coulomb branch is
the sum of the ranks of the U(n) gauge groups in the quiver. The virtual
(quaternionic) dimension of the Higgs branch is nh − nv. In general the gauge
symmetry of a quiver gauge theory might not be completely broken even at
a generic point of the Higgs branch. In such a case, the virtual dimension
would differ from the actual dimension of the Higgs branch by the rank of
the unbroken (abelian) gauge group. For the LSQ quivers, each gauge node
is balanced and there is always at least one fundamental hypermultiplet.
Thus the gauge symmetry can be Higgsed completely, and the virtual and
actual dimensions of the Higgs branch coincide.

Following [117], we define the height of a nilpotent orbit by

h(O) = w⃗(O) · m⃗,

where w⃗(O) is the weighted Dynkin diagram of O and m⃗ are the Dynkin
labels of the labeled Dynkin diagram.

For h(OH) ≤ 3, we find that the Higgs and Coulomb branch dimensions
of the LSQ agree on the nose with those of T ρ[G]. So the LSQ is a plausible
realization of T ρ[G]. In the E6 theory, there are 2 such defects. These are the
defects with Nahm orbits beingON = E6(a1) andD5. In the E7 theory, there
are 5 such defects : ON = E7(a1), E7(a2), E7(a3), E6 and E6(a1). Curiously,
the nilpotent orbits with h(OH) ≤ 3 are precisely the spherical nilpotent
orbits [117].

For h(OH) ≥ 4, there is invariably a mismatch, so the LSQ cannot be a
realization of T ρ[G]. Nevertheless, it could serve as a UV fixed point which
flows to T ρ[G] under an RG flow induced by turning on some combination
of hypermultiplet masses and Fayet-Iliopoulos parameters. Turning on hy-
permultiplet masses reduces the dimension of the Higgs branch and deforms
the geometry of the Coulomb branch. Turning on FI parameters reduces the
dimension of the Coulomb branch and deforms the geometry of the Higgs
branch. In both cases, the branch dimensions are strictly non-increasing
when one turns on these relevant pertubations (a result which can be shown
rigorously by moving out along one or the other of the branches and applying
the analysis of §4.4 of [38]).
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In a Lagrangian field theory (like these LSQs)23, turning on an FI param-
eter decreases the Coulomb branch dimension by 1. Since there are rank(G)
(= number of gauge nodes in the quiver) FI parameters available to turn on,
this indicates that we can only flow to an IR SCFT whose Coulomb branch
dimension, dCoul, satisfies

(8.1) 0 ≤ dimCoul(LSQ)− dCoul ≤ rank(G)

We find a smattering of additional LSQs, with 4 ≤ h(OH) ≤ 8 which could
plausibly flow to the corresponding T ρ[G]. For most orbits (indeed, for all
orbits with h(OH) > 8 in the exceptional cases), either the Higgs branch
dimension of T ρ[G] is greater than that of the LSQ, or the difference in
Coulomb branch dimensions does not obey (8.1), and there is no candidate
for an RG flow from the LSQ to T ρ[G].

Before turning to examples in D4 and E6, we note here that the height of
a nilpotent orbit has also played an important role in recent works [71, 72].
In unpublished work, A. Hanany and G. Ferlito [54] have also considered
the behaviour of Dynkin quivers at various heights.

8.2.1. Little string quivers for D4. There are 11 non-trivial defects in
total. We consider the Little String Quiver (LSQ) proposed for each defect
and compute the values of the expected and actual Higgs and Coulomb
branch dimensions. We also compute the height of the Hitchin nilpotent
orbit for each defect. We label each defect by the pair (ON ,OH) . We refer
to pg. 56 of [75] for the LSQ Diagrams.

23We are making a tacit assumption, here, which should be spelled out. We are
using the phrase “LSQ” to denote both the Lagrangian field theory and the SCFT
it flows to (with the only relevant coupling being the gauge coupling, e) in the IR.
When |mi/e| ≪ 1, turning on the mass parameters (or FI terms) in the Lagrangian
field theory, or turning on the corresponding relevant perturbations of the SCFT,
should flow to the same (new) IR SCFT. On the other hand, when |mi/e| ≫ 1,
we can analyze the effect of turning on the (twisted) masses semiclassically in the
Lagrangian field theory. We are assuming that, with N = 4 supersymmetry, there
is no phase transition in extrapolating from |mi/e| ≫ 1 to |mi/e| ≪ 1.
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ON OH h(OH ) Little String Quiver

(dHiggs, dCoul)

LSQ

(dHiggs, dCoul)

Tρ[D4] Reachable?

[18] [7, 1] 6
5 34

3

3 1

1

(9, 15) (12, 12)

No.

dHiggs(T
ρ[D4]) > dHiggs(LSQ)

[22, 14] [5, 3] 6
5 34

3

3 1

1

(6, 12) (7, 11)

No.

dHiggs(T
ρ[D4]) > dHiggs(LSQ)

[24]I [42]I 6

4 3 2

1

2

2
(5, 11) (6, 10)

No.

dHiggs(T
ρ[D4]) > dHiggs(LSQ)

[24]II [42]II 6 same as above (5, 11) (6, 10)

No.

dHiggs(T
ρ[D4]) > dHiggs(LSQ)

[3, 15] [5, 13] 6 same as above (5, 11) (6, 10)

No.

dHiggs(T
ρ[D4]) > dHiggs(LSQ)

[3, 22, 1] [32, 12] 4

4 22

2

2
(4, 10) (4, 9)

Yes, if we turn on

an FI term.

[32, 12] [32, 12] 4

3 221

1

1

2

(3, 9) (3, 9) Yes. See, e.g. [31].

[5, 13] [3, 15] 2

2 2 21

1
(2, 6) (2, 6) Yes. See, e.g. [31].

[42]I [24]I 2 same as above (2, 6) (2, 6) Yes. See, e.g. [31].

[42]II [24]II 2 same as above (2, 6) (2, 6) Yes. See, e.g. [31].

[5, 3] [22, 14] 2

2 1

2

1

1
(1, 5) (1, 5) Yes. See, e.g. [31].

8.2.2. Little string quivers for E6. We have 20 non-trivial defects in
this case. We refer to Appendix A of [74] for the LSQ data. We include the
LSQs here for a few representative examples.
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ON OH h(OH ) Little String Quiver

(dHiggs, dCoul)

LSQ

(dHiggs, dCoul)

Tρ[E6] Reachable?

0 E6 22
21 14

14

7

7

147
(49, 77) (36, 36)

No.

dCoul(LSQ) − dCoul(T
ρ[E6]) > 6

A1 E6(a1) 16
12 10

6

8

6

84
(24, 48) (25, 35)

No. Both

dHiggs(T
ρ[E6]) > dHiggs(LSQ)

and

dCoul(LSQ) − dCoul(T
ρ[E6]) > 6

2A1 D5 14 (13, 43) (20, 34)

No. Both

dHiggs(T
ρ[E6]) > dHiggs(LSQ)

and

dCoul(LSQ) − dCoul(T
ρ[E6]) > 6

3A1 E6(a3) 10 (8, 62) (16, 33)

No. Both

dHiggs(T
ρ[E6]) > dHiggs(LSQ)

and

dCoul(LSQ) − dCoul(T
ρ[E6]) > 6

A2 E6(a3) 10 (17, 49) (15, 33)

No.

dCoul(LSQ) − dCoul(T
ρ[E6]) > 6

A2 + A1 D5(a1) 10
10 7

6

4

1

74

2

1

(10, 38) (13, 32)

No.

dHiggs(T
ρ[E6]) > dHiggs(LSQ)

A2 + 2A1 A4 + A1 8 (10, 38) (12, 31)

No. Both

dHiggs(T
ρ[E6]) > dHiggs(LSQ)

and

dCoul(LSQ) − dCoul(T
ρ[E6]) > 6

2A2 D4 10 (10, 33) (12, 30)

No.

dHiggs(T
ρ[E6]) > dHiggs(LSQ)

A3 A4 8
9 7

5

5

3

63

1

(10, 35) (10, 30)

Yes, if we turn on

FI terms.

2A2 + A1 D4(a1) 6

12 8

6

484

2
(12, 42) (9, 29)

No.

dCoul(LSQ) − dCoul(T
ρ[E6]) > 6

A3 + A1 D4(a1) 6
9 7

5

4

1

63

1

1

(8, 34) (8, 29)

Yes, if we turn on

FI terms.

D4(a1) D4(a1) 6 (9, 37) (7, 29)

No.

dCoul(LSQ) − dCoul(T
ρ[E6]) > 6

A4 A3 6 (7, 31) (6, 24)

No.

dCoul(LSQ) − dCoul(T
ρ[E6]) > 6

D4 2A2 4
6 5

3

4

3

42
(6, 24) (6, 26)

No.

dCoul(LSQ) − dCoul(T
ρ[E6]) < 0

A4 + A1 A2 + 2A1 4
8 6

4

3

1

63

1

(6, 30) (5, 25)

Yes, if we turn on

both FI terms and a mass.
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ON OH h(OH ) Little String Quiver

(dHiggs, dCoul)

LSQ

(dHiggs, dCoul)

Tρ[E6] Reachable?

D5(a1) A2 + A1 4
6 4

3

2

1

53

1

(4, 23) (4, 23)
Yes. The moduli

space dimensions match.

A5 A2 4
6 4

4

2

2

42
(2, 22) (4, 21)

No.

dHiggs(T
ρ[E6]) > dHiggs(LSQ)

E6(a3) A2
24 4

6 4

3

2

1

42

(3, 21) (3, 21)
Yes. The moduli

space dimensions match.

D5 2A1 2
4 3

2

2

1

32

1

(2, 16) (2, 16)
Yes. Constructed

in [71].

E6(a1) A1 2
3 2

2

1

1

21
(1, 11) (1, 11)

Yes. Constructed

in [71].

9. Connections to symplectic duality

In this section, we explore two consequences of our results for the interface
between Symplectic Singularities and 3d N = 4 SCFTs and to the recent
work on “Symplectic Duality” [26, 113].

The notion of Symplectic Duality was defined in [26] and according to
this definition, two symplectic resolutions are dual to each other if a series
of highly non-trivial relations hold between certain natural objects related
to the two resolutions (See §10 of [26]). At the highest level, Symplectic Du-
ality is a Koszul duality between certain geometric and algebraic categories
associated to the two Symplectic Resolutions together with a switching of
roles of two natural functors that act on these categories (the twisting and
shuffling functors). These categories are constructed in a way analogous to
the construction of the geometric and algebraic Bernstein-Gelfand-Gelfand
(BGG) Category O corresponding to representations of the U(g), the uni-
versal enveloping algebra of g. For the case where the categories are indeed
the original BGG categories, the corresponding symplectic resolution is the
Springer resolution of the nilpotent cone of g.

24For this defect, the authors of [74] assign the Hitchin orbit to be “3A1”, a non-
special orbit. They do not clarify why 3A1 and not A2 is the Hitchin Orbit for this
case. Incidentally, the LSQ has the right Coulomb Branch dimension for A2.
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In [26], the statement of Symplectic Duality at the level of categories is
then shown to have important consequences at the level of cohomology of
these resolutions. This duality at the level of cohomology further leads to an
order-reversing duality between the strata (symplectic leaves) of the singular
base manifolds of the two symplectic resolutions. A simple instance of this
order-reversing duality is that the top stratum on one side of the duality is
always exchanged with the lowest stratum on the other side. On the other
hand, the duality between intermediate strata can be quite involved.

But, it can sometimes turn out that the intermediate strata can them-
selves be realized as top/lowest strata of certain smaller Symplectic Resolu-
tions. For the case of the Springer resolutions, these smaller resolutions are
the parabolic Springer resolutions25 of the form T ⋆(GC/P ) → O for certain
choice of a parabolic P . The existence of these smaller resolutions is helpful
since one can then hope to devise an inductive procedure of deducing the
order-reversing duality relevant for the bigger resolution by using the du-
ality between top stratum and lowest stratum for the smaller resolutions.
When G is a Lie group of Cartan type A, every nilpotent orbit can be re-
alized as either the top or lowest stratum of a suitable parabolic Springer
resolution. This corresponds to the fact that every nilpotent orbit of type
A is both principal Levi type (restricts to the principal orbit in a Levi) and
Richardson (can be induced from the zero orbit in a Levi). So, the entire
order-reversing duality map can be deduced just from the knowledge that
the top stratum and lowest stratum are exchanged under the duality.

However, this property does not hold outside of type A. For example,
there exist strata of the Nilpotent cone that can not be realized as the open
stratum of (the base in) some parabolic Springer resolution. Correspond-
ingly, we have nilpotent orbits that are not Richardson. So, to deduce the
action of the duality on these strata, we need some additional input. For us,
this additional input is in the form of the condition that the mass deforma-
tions of the corresponding 3d N = 4 SCFT have consistent interpretations
as a) VEVs for scalars in background vector multiplets for the Flavour sym-
metry group and b) they act as deformations of the Coulomb branch in a
way that resolves (perhaps only partially) the singular geometry. It is this
additional constraint that led us to consider a refinement of the theory of
sheets in §5.4.

25These resolutions are often called “partial Springer resolutions”. Since we
have already used the adjective “partial” in a different context in this paper, we
have avoided calling these partial Springer resolutions and instead prefer the term
parabolic Springer resolution.
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This dual role played by the mass parameters also plays an important
role in the switching of the twisting and shuffling functors under Symplec-
tic Duality. Here, we will specialize to the case of T ρ[G] theories. We will
continue to denote their Flavour symmetry by F . The twisting and shuf-
fling functors are close relatives of the W (F ) action on the space of mass
parameters.

From the perspective of the Higgs branch (the Slodowy Slice), the action
of W (F ) on masses is the action of the W (F ) on the parameters living in
the Cartan subalgebra of group of continuous hyper-Kähler isometries of
the Slodowy Slice. This is the de-categorified version of the action of the
shuffling functor [26].

From the perspective of the Coulomb branch, the W (F ) action has a
different interpretation. In the framework of [27], the family of Coulomb
branches (parameterized by the value of the complex mass parameters) ob-
tained by mass deformations can be identified with a canonical Poisson
deformation associated to every Symplectic resolution 26. The Flavour sym-
metry group F does not act on the Coulomb branch. Nevertheless, we have
an action of W (F ) on the space of mass deformations. In other words, it is
an action on the family of Coulomb branches that are obtained after mass
deformation 27. We derived this action in terms of sheet data in §5.6. This is
the de-categorified version of the twisting functor. In [30], the authors have
argued that the twisting and shuffling functors can themselves be identified
with actions of the braid group associated to W (F ) on certain boundary
conditions in the 3d N = 4 theory reduced to two dimensions.

9.1. Conjectures for symplectic duality

Our work in this paper makes a direct connection only with the consequences
of Symplectic Duality at the level of the order reversing duality on strata.
Based on the results of this paper and the observation that a large class
of instances of Symplectic Duality can be deduced by observing that the
two relevant Symplectic Resolutions are Coulomb and Higgs branches of

26We emphasize here that while the Symplectic Resolution depends on the choice
of a parabolic P , the mass deformation depends only on the choice of a Levi.

27One can make a corresponding statement about twisted masses/F.I parameters
as well but for the T ρ[G] theories, mass deformations offer the more interesting
constraints. This is due to the fact that the space of mass deformations varies in a
non-trivial way for different choice of ρ (for fixed G). This is in start contrast to the
number of twisted masses/F.I parameters which always equals rank(g) (independent
of the choice of ρ).
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a specific 3d N = 4 SCFT (see [26]28 and [30]), we are led to make the
following observations about Symplectic duality for the Springer resolution.

9.1.1. Symplectic duality is a duality between slices and sheets.
The first conjecture concerns the role of the theory of sheets. Our study of
mass deformations clearly demonstrates that the objects that get naturally
paired in T ρ[G] theories are slices in g and sheets in g∨. Correspondingly,
the consequences of Symplectic duality for the T ρ[G] theories are better
thought of as relating slices and sheets and not just slices and orbit closures
(as it was originally articulated in [26]). The inclusion of sheet data on the
g∨ side is a necessary refinement outside of type A since a given nilpotent
orbit (even a Richardson one) can be part of multiple sheets. The distinct
sheets associated a fixed nilpotent orbit correspond to the different families
of non-nilpotent orbits that are of the same dimension as the nilpotent orbit.
Every such family contains infinitely many non-nilpotent orbits. Their real-
ization as the moduli space of Nahm’s equations endows any fixed orbit with
a fixed hyper-Kähler structure and a unique metric. Alternatively, one can
take the non-nilpotent parts sheet to parameterize a family of holomorphic
symplectic forms on a Kähler manifold (M,ωI). In this alternative interpre-
tation, changing the eigenvalues of the semi-simple part of the non-nilpotent
elements in a sheet is interpreted as changing the holomorphic symplectic
form ΩI on (M,ωI). For the sheet containing regular semi-simple elements
(the principal Dixmier sheet), this observation is essentially due to [93]. The
manifold M is of the form of a homogeneous space GC/LC when the non-
nilpotent orbits in a sheet are all semi-simple. When they are of a mixed
nature, the manifold M is of the form GC/Z(ã) where Z(ã) is the centralizer
of one of the non-nilpotent elements and M can now have non-trivial closure
and non-trivial topology. The local nature of the singularity of GC/Z(ã) is
what we have termed the residual singularity in §3.1 and is the closure of a
nilpotent orbit in a proper Levi subalgebra.

From the theory of sheets (that we have reviewed in §4), the following
facts can be deduced about symplectic resolutions for nilpotent orbits.

(a) Every symplectic resolution corresponds to a special sheet (in fact a
Dixmier sheet) attached to a Richardson Orbit.

(b) A partial symplectic resolution of a special orbit could correspond to
a special sheet or a non-special sheet. So, it makes sense to distinguish
between special symplectic partial resolutions vs non-special symplectic
partial resolutions.

28Here, the initial observation in this direction is attributed to Gukov-Witten
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(c) A partial symplectic resolution of a non-special orbit corresponds to a
non-special sheet.

We expect that the distinction between a special sheet attached to a
special orbit and a non-special sheet attached to a special orbit should also
be relevant for the study of Symplectic Duality. In particular, we conjecture
that a non-special sheet attached to a special orbit is not Symplectic dual to
any slice on the g∨ side. Equivalently, we conjecture that only special sheets
have Symplectic dual slices.

9.1.2. Rigid SCFT is the appropriate notion of rigidity for sym-
plectic duality. Our second conjecture concerns the notion of rigidity. We
conjecture that the appropriate notion of rigidity for the study of Symplectic
Duality is the one that corresponds to a Rigid SCFT and not the one that
corresponds to a Rigid Orbit. The latter notion can be recovered from the
former as a special case. This conjecture can be thought of as a refinement
of the conjectures following from [26] which had already suggested an im-
portant role for rigid orbits.29 Below, we discuss why this refinement makes
a difference.

By the observation in §9.1.1 above, one can think of Symplectic dual-
ity for the Springer resolution as acting on a simultaneous stratification of
(g, g∨) by (slices, sheets) in which only the special sheets (on the g∨ side)
occur as Symplectic duals for slices (on the g side). If one were studying
the usual theory of sheets on g∨, a simple count of the special sheets in the
theory would, in general, be smaller than the number of nilpotent orbits
(and hence slices) in g. But, with the refined notion of a sheet that is based
on the notion of a rigid SCFT, the number of special (refined) sheets in g∨

equals the number of nilpotent orbits in g by construction.
Now, for the purposes of our paper, we only needed to study sheets

attached to special orbits and the notion of Rigidity (refined or otherwise)
of special orbits. The usual notion of Rigidity applies equally well to non-
special orbits. So, it is natural to wonder if there is a corresponding refined
notion of rigidity that applies to non-special orbits as well.

9.1.3. Relation to the geometric theory of character sheaves. It
would be interesting to connect our present discussion to the theory of char-
acter sheaves for the Lie algebra g. This theory was originally developed by
G. Lusztig in a series of papers [99, 100]. The theory has since been given
a more geometric flavour in [66, 109]. In particular, one would like to relate

29We thank N. Proudfoot and B. Webster for discussions on this.
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the duality between slices and refined sheets arising in our work with the
duality between distinguished Lusztig strata in the Lie algebra g (defined
in [99]) and the dual stratification on the g∨ side arising from the param-
eterization of character sheaves using special nilpotent orbits in g∨. These
stratifications enter geometric approaches to the theory of character sheaves
(for instance, see [53, 109]). Barbasch-Vogan duality dBV plays an impor-
tant role in both situations and hence, it seems reasonable to believe that a
precise connection can be established. A setting in which such a connection
can be explored is the gauge theory approach to the geometric Langlands
program which relies on the S-duality of 4d N = 4 SYM as its starting point
[87]. When this setup is specialized to the local case, it is expected to lead to
the local geometric Langlands correspondence which can be thought of as a
‘categorified’ version of Lusztig’s theory of character sheaves [12, 14]. Of par-
ticular interest would be the identification of cuspidal character sheaves in
the gauge theory setup. These are, in a sense, the fundamental objects in the
theory. This is because the non-cuspidal character sheaves for a Lie algebra
g can be obtained by induction from cuspidal character sheaves for certain
proper Levi subalgebras l ⊂ g [66]. So, a classification of cuspidal sheaves
for g and for all proper Levi subalgebras l amounts to a classification of all
character sheaves for g. In the approach to geometric Langlands based on
4d N = 4 SYM, boundary conditions in the four dimensional theory and
their behaviour under S-duality plays a crucial role. Of particular interest
are the boundary conditions involving the T ρ[G] theories [61]. When the
T ρ[G] boundary conditions are considered in conjunction with the available
symmetry breaking patterns in the bulk 4d theory [7], we get a large class of
possible boundary conditions in the 4d theory. From among these boundary
conditions, it should be possible to separate the ones corresponding to the
cuspidal objects and the non-cuspidal (or Eisenstein) objects of the local
theory. We expect the results of this paper to be helpful in carrying out
such a separation.

9.2. Order reversing dualities and symplectic duality

In this section, we wish to clarify a subtle point which is important in the
study of order-reversing dualities and their relationship to Symplectic Du-
ality. For background material on order reversing dualities, see [6, 36].

This subtlety appears only when g is a semi-simple Lie algebra that
contains atleast one non-simply laced Lie algebra as one of its simple factors.
So, to simplify the discussion, let us go ahead assume g is simple and non-
simply laced. Nilpotent orbits and Slodowy Slices in such non-simply laced
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Lie algebras arise as vacuum moduli spaces associated to twisted defects of
the six dimensional theory [36]. As we reviewed in an earlier section, the
Higgs branch associated to such a defect is a Slodowy Slice in g and the
Coulomb Branch is a Nilpotent Orbit in g∨. The relationship between them
is an order reversing duality that passes to the Langlands dual Lie algebra.
One can see that this is the case by relating these defects to S-duality of
boundary conditions in N = 4 SYM and this S-duality exchanges the gauge
theories with G and G∨ gauge groups. There is, however, a different order
reversing duality map that stays within the Lie Algebra g. This map is
also relevant for the physics of these defects in the following way. If one
were to consider an alternate dimensional reduction from six dimensions
to four dimensions in which these defects reduce to surface operators of the
N = 4 theory, then there is a S-duality map between Surface Operators of G
and Surface Operators of G∨ theory. When restricted to Surface Operators
corresponding to Special Nilpotent orbits, this map squares to the Identity
and is order (and dimension) preserving. When this map is composed with
the Order reversing duality that relates the Higgs and Coulomb branches
of T ρ[G], then we get an order-reversing map from Slodowy Slices of g to
Nilpotent Orbits of g. 30.

When one studies the BGG Category O associated to the two Springer
resolutions, then Category O is both Koszul self-dual and Koszul dual to the
Langlands dual Category O. The definition of Symplectic Duality adopted
in [26] includes this Koszul duality as an important requirement. One of
the important examples of Symplectic Duality is the relationship between
CategoryO for T ⋆(GC/B) and CategoryO for T ⋆(G∨/B∨) and this is proved
in [26] using the classic result on Koszul duality due to [11] and the results
of [108]. Using these same results, it is also possible to show that T ⋆(GC/B)
is also its own Symplectic Dual in the sense of [26] in that it satisfies their
list of requirements for being Symplectic Self-Dual.

In the program initiated in [30], boundary conditions in 3d N = 4 theo-
ries in the presence of an analog of the Ω-background are used to study the
categorical statement of Symplectic Duality. In this setup, the construction
of a pair of Symplectic Dual resolutions is through the study of vacuum
moduli spaces of 3d N = 4 SCFT that has the corresponding geometries as
Higgs and Coulomb branches. This definition is known to match the defini-
tion of [26] in several non-trivial examples [30]. But, in the specific context
of Langlands duality, equality between the definition adopted by [30] and

30The case where g = F4 is an interesting special case. Although the Lie algebra
is “self-dual”, the two order-reversing dualities are different [8]
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original definition of [26] is not automatic. For example, at the present mo-
ment, we are not aware of the existence of any three dimensional SCFTs for
which the Nilpotent cone of g (recall that g is strictly non-simply laced in
this discussion) occurs as both the Higgs and Coulomb Branch. The exis-
tence or non-existence of such theories is relevant for a precise comparison
between the defining requirements of Symplectic Duality as outlined in [26]
and definition adopted in [30] where Symplectic Duality is taken to relate
Higgs and Coulomb branches of a 3d N = 4 SCFT.

Our observations in the beginning of the section regarding the relevance
of the refined theory of sheets and special symplectic resolutions was made
in the context of those instances of symplectic duality where the two relevant
geometries do arise as Coulomb and Higgs branches of a single 3d N = 4
SCFT. But, they can be extended to include the instances of symplectic
self-duality by a combining the results of this paper with an extension of
[67, 68] in the spirit of this paper. We also anticipate that the geometry of
the mass deformed Coulomb branches could be related to the deformations
studied in [58, 115] and [97].
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Appendix A. Notions for adjoint orbits

In this Appendix, we summarize certain aspects of the theory of adjoint
orbits in a complex Lie algebra that play an important role in the paper.
See [37] for a textbook treatment of many of these topics. Other classic
references include [34, 127].

A.1. Bala-Carter theory

In order classify all nilpotent orbits in a complex Lie algebra g, one can
could study how nilpotent orbits restrict to Parabolic subalgebras of g. The
fundamental insight of Bala-Carter [4, 5] was that if one were to classify
distinguished nilpotent orbits occurring in Levi factors of parabolic subal-
gebras, then one obtains a classification of all nilpotent orbits. In the paper,
the Bala-Carter Levi associated to the Nahm orbit plays an important role.

In the case of nilpotent orbits in Exceptional Lie algebras, we have used
their Bala-Carter labels to identify them. The BC Levi is obvious from the
BC Label. For example, the BC Levi for a nilpotent orbit that is denoted
as “E6(a1)” is E6. In the case of nilpotent orbits in classical Lie algebras,
we have identified them using the standard partition type labels [37]. The
BC Levi is not obvious from the partition label. But, the Bala-Carter Levi
associated to a partition label can be calculated using a simple combinato-
rial algorithm. For completeness, we include the algorithm here for all the
classical types.

Type A. Nilpotent orbits in the Lie algebra AN are classified by part ions
of N + 1. Let [ni] be a partition of n+ 1. Then, the BC Levi associated to
[ni] is just An1−1 +An2−1 . . .

Types B/D. Nilpotent orbits in the Lie algebra BN/DN are classified by
D-type partitions of 2N + 1/2N . These are partitions in which even parts
occur an even number of times. Let [ni] be such a partition. If all ni are
distinct and odd, then the orbit is distinguished and the BC Levi is BN/DN .
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If some of the parts repeat, we have the following inductive procedure. For
every pair in ni that is equal k, add a factor of Ak−1 to its BC Levi and
form a reduced partition with the repeating pair removed. Proceed until the
partition is empty. If the final remaining part is a [3], then add a factor Ã1

to the BC Levi.

Type C. Nilpotent orbits in the Lie algebra CN are classified by C-type
partitions of 2N . These are partitions in which every odd part occurs an even
number of times. If all the [ni] are distinct and even, then the corresponding
orbit is distinguished. Its BC Levi is just CN . If some of the parts repeat,
one proceeds inductively as in the case above. For every pair in ni that is
equal to k, add a factor of Ãk−1 to the BC Levi and form a reduced partition
with the repeating pair removed. Proceed until the partition is empty. If the
final partition is [2], then add a factor A1 to the BC Levi.

A.2. Induction of nilpotent orbits

Here, we briefly recall the idea of the idea of Orbit Induction and summarize
the how the procedure works in the classical Lie algebras. The idea is origi-
nally due to Lusztig-Spaltenstein [102]. We refer to [37] and [36] for further
discussions. The basic idea is the following. Let p be a parabolic subalge-
bra of g and let l, n be the Levi factor and Nilradical of p. Now, we pick a
nilpotent orbit Ol of l. Now, pick representative of Ol + n. This has a natu-
ral inclusion into the Lie algebra g. The adjoint orbit through this element
will have a unique open dense orbit. This is said to the orbit induced from
(l,Ol). Although a parabolic subalgebra is chosen to describe the induction,
the induced orbit ultimately depends only on the Levi factor l.

Orbit induction furthermore obeys the following transitive property. If
an orbit O is induced from (l1,O1) for a Levi l1 ⊂ g and the orbit O1 is in
turn induced from (l2,O2) for a Levi l2 ⊂ l1, then it is possible to induce the
orbit O from (l2,O2). Owing to this transitive property, the classification
problem for orbit inductions reduces to a classification problem for orbit
inductions from rigid nilpotent orbits in maximal Levi subalgebras. This is
because rigid nilpotent orbits are precisely those that are not induced from
any proper Levi subalgebra and maximal Levi subalgebras are those Levi
subalgebras that do not arise as proper Levi subalgebras of some other Levi
subalgebra.

Orbit induction for Exceptional Lie algebras has to studied on a case-by-
case basis. The results are originally due to A. Elashvili and can be found in
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summarized form in [52]. Below, we summarize the orbit induction procedure
in the classical cases.

A.2.1. Induction in classical Lie algebras.

Type A. Let us denote by ∆ = {e1 − e2, e2 − e3, . . . en−1 − en} the set of
simple roots of the Lie algebra An−1. Let [pi] be a partition of n. One can
associate a canonical Levi subalgebra of g associated to such a partition.
One can do this in the following way. First, we pick a parabolic subalgebra
corresponding to the following subset of the set of simple roots

∆pi
= {e1 − e2, e2 − e3, . . . ep1−1 − ep1

, ep1+1 − ep1
, . . . ,(A.1)

ep1+p2−1 − ep1+p2
, ep1+p2+1 − ep1+p2

, . . .}

When the partition is [1n], the associated parabolic subalgebra is the
Borel subalgebra b. When the partition is [n], the associated parabolic sub-
algebra is the full Lie algebra g. The Levi factor of the parabolic subalgebra
associated to ∆p is l[pi] = Ap1−1 +Ap2−1 + . . .. Now, let us pick the zero
nilpotent orbit in the Levi l[pi]. The orbit obtained by induction from this
orbit is

(A.2) Indgl[pi]
= O[pi]T

where [pi]
T is the transpose partition and O[pi]T is the nilpotent orbit cor-

responding to the partition [pi]
T .

Any classical Lie algebra. To describe induction in the other classical
types, we need to make use, as an intermediate step, an operation that
takes a partition that is not of B/C/D type and outputs a partition that
is of B/C/D type. This is called X-collapse for X = B,C,D. We refer to
[36, 37] for a description of the X-collapse operation.

We take as a starting point a Levi subalgebra l and a nilpotent orbit Ol

in the Levi subalgebra. We would obtain the partition label for Indgl (Ol).
Let us denote by t the rank of the semi-simple part of l. Let r be the rank
of g. The center of l is r − t dimensional. The semi-simple part of l would
be of the form lss = Ak1

+Ak2
+ . . .+Akl

+Xk′ , where Xk′ is of the same
Cartan type as g. Let dk′ be the dimension of the standard representation
of Xdk′

. That is, dk′ = 2k′ if Xk′ is of type C,D and dk′ = 2k′ + 1 if Xk′ is
of type B.

Now, any nilpotent orbit of l is uniquely identified by its restriction
to each of the simple factors in the semi-simple part of l. In other words,
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a nilpotent orbit of lss can be given a label that corresponds to a series
of partitions of k1 + 1, k2 + 1, . . . , kl+1, 2k

′ . Let us denote these partitions
by [pk1,i], [pk2,i], . . . , [pkl,i], [pk′,i]. Now, treat each of these partitions to be
of length N (by adding zeros as parts if necessary) where N = 2n for g =
Dn/Cn and N = 2n+ 1 for g = Bn. Now, the partition label [pi] of Ind

g

l (Ol)
is given by

[p̃i] = [p0,i] + 2[pk1,i] + 2[pk2,i] + . . .+ 2[pkl,i] + [pk′,i]

[pi] = [p̃i]X
(A.3)

where [p0,i] is a lengthN partition of the form [N − dk′ − 2(k1 + k2 + . . . kl +
l), 0, 0, 0, . . . , 0] and [·]X denotes the X-collapse operation.

The above algorithm is equivalent to the one obtained by Kempken [88]
and Spaltenstein [127]. When dealing with very even orbits in Lie algebras
of type D2n, there are some further subtleties. We refer to [37] for these
cases.

To make the discussion more symmetric, we note that the induction al-
gorithm for g = An can also stated in a form that is similar to the one for
types B/C/D. Here, we take N = n+ 1. The semi-simple part of a Levi sub-
algebra l of An is always of the form Ak1

+Ak2
+ . . .+Akl

. Using notation
as above, the partition label of Indgl (Ol) is [pi] = [p0,i] + [pk1,i] + [pk2,i] +
. . .+ [pkl,i], where [p0,i] is a length N partition of the form [N − (k1 + k2 +
. . . kl), 0, 0, 0, . . . , 0]. One can check that this equals [ri]

T where [ri] is the
partition corresponding to the Levi l in the sense that the set simple roots
corresponding to l is ∆ri (see Eq. A.1 for definition of ∆ri).

A.2.2. Kempken-Spaltenstein criterion. There is a combinatorial con-
dition on the partition label of a classical nilpotent orbit in order for it to
correspond to a rigid nilpotent orbit. A rigid nilpotent orbit is one which
is not induced from any proper Levi subalgebra. This condition was first
obtained by Kempken [88]31 and Spaltenstein [127] and they are summa-
rized with proof in [37]. Let us denote by PB/C/D the set of B/C/D type
partitions. As per the usual convention, the parts pi are ordered to be in
descending order.

A partition [pi] ∈ PB/D corresponds to a rigid nilpotent orbit if and only
if

pi − pi+1 = 0, 1

pn = 1

| {j | pj = i} | ≠ 2, for any odd number i.

(A.4)

31In this work, rigid nilpotent orbits were called original orbits.
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A partition [pi] ∈ PC corresponds to a rigid nilpotent orbit if and only
if

pi − pi+1 = 0, 1

pn = 1

| {j | pj = i} | ≠ 2, for any even number i.

(A.5)

A.3. Definitions

We collect here some definitions that play an important role in the body of
the paper.

A.3.1. Parabolic subalgebra. A parabolic subalgebra p of g is defined
to be a subalgebra that contains a Borel subalgebra b of g. A canonical way
to construct a parabolic subalgebra is the following procedure. We start with
a real semi-simple element x ∈ g. Then, the set of all elements α ∈ g that
obey [x, α] = λα, λ ≥ 0 form a parabolic subalgebra p. The nilradical of p is
the further subset of elements that obey [x, α] = λα, λ > 0.

A.3.2. Levi subalgebra. Every parabolic subalgebra p has a Levi de-
composition p = l+ n, where n is the nilpotent radical of p and l is a re-
ductive Lie algebra that is called the Levi factor of p. All subalgebras of g
that occur as Levi factors are called Levi subalgebras. The canonical proce-
dure to construct parabolic subalgebra can be adapted to construct all Levi
subalgebras. Using the notation as in A.3.1, the Levi factor of a parabolic
subalgebra is nothing but the set of elements α ∈ g that obey [x, α] = 0. In
other words, Levi subalgebras arise as Lie algebra centralizers of semi-simple
elements.

A.3.3. Rigid nilpotent orbit. These are nilpotent orbits of g that are
not induced (in the sense of Lusztig-Spaltenstein) from any proper Levi sub-
algebra l ⊂ g. For Lie algebras of Cartan type A, every non-trivial nilpotent
orbit can be induced from a proper Levi subalgebra. Consequently, there are
no rigid nilpotent orbits. For Lie algebras of other types, non-trivial Rigid
nilpotent orbits always exist. For example, the minimal nilpotent orbit (the
unique nilpotent orbit of the smallest dimension) is always rigid outside of
type A.

A.3.4. Special nilpotent orbit. These are those nilpotent orbits that
are in the image of the Spaltenstein/Barbasch-Vogan duality maps between
nilpotent orbits [36]. An equivalent definition is the one due to Lusztig using
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the Springer correspondence (see a review in [6] adapted to the physics
context).

For nilpotent orbits in classical Lie algebras, there is a combinatorial
condition on the partition labels [pi] corresponding to special orbits. Let [pi]
be a B/C/D type partition. Then, [pi] is a special iff its transpose [pi]

T is a
B/C/C partition (respectively).

A.3.5. Principal/Regular Nilpotent orbit. This is the unique nilpo-
tent orbit with the smallest possible centralizer. The dimension of the small-
est possible centralizer is always rank(g). Hence, the dimension of the princi-
pal nilpotent orbit is dim(g)− rank(g). The principal nilpotent orbit is also
called the regular nilpotent orbit.

A.3.6. Regular semi-simple orbit. Any semi-simple orbit with the
smallest possible centralizer is called a regular semi-simple orbit. The di-
mension of every regular semi-simple orbit is dim(g)− rank(g). There an
infinite number of regular semi-simple orbits but there is a unique sheet
that contains them all. We call this the principal/regular sheet of the Lie
algebra.

A.3.7. Distinguished nilpotent orbit. If a nilpotent orbit of g is such
that the only Levi subalgebra that contains it is g itself, then it is called
a distinguished nilpotent orbit. For Lie algebras of type A, the principal
nilpotent orbit is the only distinguished nilpotent orbit. For other types,
distinguished orbits that are different from the principal orbit exist.

A.3.8. Nilpotent orbit of principal Levi Type. The Bala-Carter the-
ory classifies nilpotent orbits by classifying distinguished nilpotent orbits in
Parabolic subalgebras. The classification ultimately depends only on the
Levi factors of these parabolic subalgebras. So, the BC labels for nilpotent
orbits involve a Levi subalgebra l of g and a distinguished nilpotent orbit
Odist of the Levi subalgebra. When Odist is the principal/regular orbit, we
denote the corresponding nilpotent to be a nilpotent orbit of principal Levi
type.

A.3.9. Richardson nilpotent orbit. When a nilpotent orbit is non-
trivially induced, one can describe each such instance of induction by iden-
tifying the Levi subalgebra l and a rigid nilpotent orbit Origid in l. When
this rigid nilpotent orbit happens to just be the zero orbit of l, the original
nilpotent orbit is called a Richardson orbit. Richardson orbits are always
special.
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A.3.10. Sheet. Let U be the union of adjoint orbits in the Lie algebra
that are of a fixed dimension. Then, the irreducible components of U are
called sheets. Every sheet has a unique nilpotent orbit at its boundary. In
type A, every nilpotent orbit belongs to a unique sheet. But, outside of type
A, this property can fail to hold for certain nilpotent orbits.

A.3.11. Dixmier sheet. A sheet which contains semi-simple orbits is
known as a Dixmier sheet. In type A, every sheet is a Dixmier sheet. This is
no longer true outside of type A. The boundary of every Dixmier sheet is a
Richardson nilpotent orbit. The existence of non-Dixmier sheets is equivalent
to the existence of non-Richardson nilpotent orbits.

A.3.12. Special sheet. The non-nilpotent elements of a sheet could, in
general, have a Jordan decomposition of the form an + ass, [ass, an] = 0, for
an being a representative of a nilpotent orbit of l = Zg(ass). If the nilpotent
orbit Oan

is a special nilpotent orbit in l, then denote the corresponding
sheet (l,Oan

) to be a special sheet of g. The boundary of a special sheet is
necessarily a special nilpotent orbit of g.

A.3.13. Non-special sheet. This is defined in a way that is similar to
the definition of a special sheet. There are sheets in which the the nilpotent
orbit Oan

is a non-special nilpotent orbit of l. The boundary of a non-special
sheet could be a special orbit or a non-special nilpotent orbit of g.

A.3.14. Refined sheet. A refined sheet is a subspace of a sheet that
obeys a further restriction. This restriction arises from the physical re-
quirement that we want the eigenvalues of the semi-simple part of the non-
nilpotent elements in such a sheet to correspond to mass parameters of the
3d SCFTs that we study in this paper. This additional restriction is what
we have called the Flavour condition in the paper.

Appendix B. Tables for twisted defects

We included here tables detailing mass deformations for twisted defects in
certain low rank simple Lie algebras. For twisted defects that are classified
by nilpotent orbits in Bn, Cn algebras, there exist general formulas for the
dimension of the Coulomb branch and the flavour symmetry analogous to
(6.11) and (6.12). Let [pi] the partition label for the Nahm orbit and let [ri]
be its transpose and ti be the multiplicity of the number i in the partition
[pi].
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In terms of this data, the flavour symmetry of the T [pi][G] theory is given
by

(B.1)

f =
∏

i∈odd

so(ti)×
∏

i∈even

sp(ti/2), g = so(2n+ 1),

f =
∏

i∈even

so(ti)×
∏

i∈odd

sp(ti/2), g = sp(2n).

Now, let the Coulomb branch be the orbit with label [qi] in g∨. Let [si]
be the transpose of [qi] and let mi be the multiplicity of the number i in the
partition [qi]. The dimension of the Coulomb branch is given by

(B.2)

dim(O[qi]) = dim(so2n+1)−
1

2

(

∑

i

s2i −
∑

i∈odd

mi

)

, g∨ = so(2n+ 1)

dim(O[qi]) = dim(sp2n)−
1

2

(

∑

i

s2i +
∑

i∈odd

mi

)

, g∨ = sp(2n)

In the case of G2, F4, the flavour symmetries and the dimensions of the
Coulomb branches can be obtained from [34, 37] and have been summarized
in [36]. We use used these and the formula (6.2b) in compiling the tables
below.

B.1. g = B3, g
∨ = C3

ON OH dim(OH) dim(Og∨

ass
) F (l∨,Ol∨

H ) dim(Z(l∨))

[17 [6] 18 18 B3 (0, 0) 3

1[2
2, 13] [4, 2] 16 16 C1 ×B1 (A1, 0) 2

2[3, 1
4] [4, 2] 16 16 D2 (C1, 0) 2

[3, 22] [32] 12 12 C1 (A1 + C1, 0) 1
[32, 1] [23] 12 12 B1 (A2, 0) 1
[5, 12] [22, 12] 10 10 B1 (C2, 0) 1
[7] [16] 0 - - (C3, 0) 0
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[6] (0, 0)

[4, 2] 1(A1, 0)2(C1, 0)

[32] (A1 + C1, 0)

[23] (A2, 0)

[22, 12] (C2, 0)

[16]

Figure B1: This diagram shows the special sheets for the Lie algebra C3.

B.2. g = C3, g
∨ = B3

ON OH dim(OH) dim(Og∨

ass
) F (l∨,Ol∨

H ) dim(Z(l∨))

[16] [7] 18 18 C3 (0, 0) 3

1[2, 1
4] [5, 12] 16 16 C2 (B1, 0) 2

2[2
2, 12] [5, 12] 16 16 C1 ×D1 (A1, 0) 2

[23] [32, 1] 14 14 B1 (A1 +B1, 0) 1
[32] [3, 22] 12 12 C1 (A2, 0) 1

1[4
2, 12] [3, 14] 10 10 C1 (B2, 0) 1

2[4, 2] [3, 14] 10 - 0 (B3, [3, 1
4]) 0

[6] [17] 0 - 0 (B3, 0) 0
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[7] (0, 0)

[5, 12] 1(B1, 0)2(A1, 0)

[32, 1] (A1 +B1, 0)

[3, 22] (A2, 0)

[3, 14] 1(B2, 0)2(B3, [3,1
4])

[17]

Figure B2: This diagram shows the special sheets for the Lie algebra B3.

B.3. g = B4, g
∨ = C4

ON OH dim(OH) dim(Og∨

ass
) F (l∨,Ol∨

H ) dim(Z(l∨))

[19] [8] 32 32 B4 (0, 0) 4

[22, 15] [6, 2] 30 30 B2 × C1 (A1, 0) 3
[3, 16] [6, 2] 30 30 D3 (C1, 0) 3

1[2
4, 1] [42] 28 28 C2 (A2, 0) 2

2[3, 2
2, 12] [42] 28 28 C1 × U(1) (A1 + C1, 0) 2

[32, 13] [4, 22] 26 26 B1 × U(1) (A2, 0) 2
[33] [32, 2] 24 24 B1 (A2 + C1, 0) 1
[5, 14] [4, 2, 12] 24 24 D2 (C2, 0) 2
[5, 22] [32, 12] 22 22 C1 (A1 + C2, 0) 1

1[4
2, 1] [24] 20 20 C1 (A3, 0) 1

2[5, 3, 1] [24] 20 - 0 (C4, [2
4]) 0

[7, 12] [22, 14] 14 14 U(1) (C3, 0) 1
[9] [18] 0 - 0 (C4, 0) 0
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[8] (0, 0)

[6, 2] (A1, 0)(C1, 0)

[42] 1(A2, 0)2(A1 + C1, 0)

[4, 22] (A2, 0)

[4, 2, 12](C2, 0) [32, 2] (A2 + C1, 0)

[32, 12] (A1 + C2, 0)

[24] 1(A3, 0)2(C4, [2
4])

[22, 14] (C3, 0)

[18]

Figure B3: This diagram shows the special sheets for the Lie algebra C4.

B.4. g = C4, g
∨ = B4

ON OH dim(OH) dim(Og∨

ass
) F (l∨,Ol∨

H ) dim(Z(l∨))

[18] [9] 32 32 C4 (0, 0) 4

1[2, 1
6] [7, 12] 30 30 C3 (B1, 0) 3

2[2
2, 14] [7, 12] 30 30 C2 × U(1) (A1, 0) 3

[23, 12] [5, 3, 1] 28 28 C1 ×B1 (A1 +B1, 0) 2
[24] [5, 3, 1] 28 28 D2 (2A1, 0) 2

[32, 12] [5, 22] 26 26 C1 × C1 (A2, 0) 2
[32, 2] [33] 24 24 C1 (A2 +B1, 0) 1
[4, 2, 12] [5, 14] 24 24 C1 (B3, [3, 1

4]) 2
[4, 22] [32, 13] 22 22 U(1) (A1 +B2, 0) 1
[42] [3, 22, 12] 20 20 U(1) (A3, 0) 1

1[6, 1
2] [3, 16] 14 14 C1 (B3, 0) 1

2[6, 2] [3, 16] 14 - 0 (B4, [3, 1
6]) 0

[8] [19] 0 - 0 (B4, 0) 0
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[9] (0, 0)

[7, 12] 1(B1, 0)2(A1, 0)

[5, 3, 1] (A1 +B1, 0)(2A1, 0)

[5, 22] (A2, 0)

[5, 14](B2, 0) [33] (A2 +B1)

[32, 13] (A1 +B2, 0)

[3, 22, 12] (A3, 0)

[3, 16] 1[(B3, 0)2(B4, [3,1
6])

[19]

Figure B4: This diagram shows the special sheets for the Lie algebra B4.

B.5. g = g
∨ = G2

ON OH dim(OH) dim(Og∨

ass
) F (l∨,Ol∨

H ) dim(Z(l∨))

1 G2 12 12 G2 (0, 0) 2

1A1 G2(a1) 10 10 A1 (Ã1, 0) 2

2Ã1 G2(a1) 10 10 A1 (A1, 0) 1

3G2(a1) G2(a1) 10 - (G2, G2(a1)) 0

G2 1 0 - (G2, 0) 0
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G2

G2(a1)

1(A1, 0) 2(Ã1, 0)

3(G2,G2(a1))1

Figure B5: This diagram shows the special sheets for the Lie algebra G2.

B.6. g = g
∨ = F4

ON OH dim(OH) dim(Og∨

ass
) F (l∨,Ol∨

H ) dim(Z(l∨))

0 F4 48 48 F4 (0, 0) 4

1A1 F4(a1) 46 46 C3 (Ã1, 0) 3

2Ã1 F4(a1) 46 46 A3 (A1, 0) 3

A2 B3 42 42 A2 (Ã2, 0) 2

Ã2 C3 42 42 G2 (A2, 0) 2

1(A2 + Ã1) F4(a3) 40 40 A1 (A1 + Ã2, 0) 1

2(A1 + Ã2) F4(a3) 40 40 A1 (Ã1 +A2, 0) 1

3B2 F4(a3) 40 40 2A1 (C2 ∼ B2, 0) 2

4C3(a1) F4(a3) 40 30 A1 (B3, [3, 1
4]) 1

5F4(a3) F4(a3) 40 - - (F4, F4(a3)) 0

B3 A2 30 30 A1 (C3, 0) 1

C3 Ã2 30 30 A1 (B3, 0) 1

F4(a2) A1 + Ã1 28 - - (F4, A1 + Ã1) 0

F4(a1) Ã1 22 - - (F4, Ã1) 0
F4 0 0 - - (F4, 0) 0
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F4 (0, 0)

F4(a1) (A1, 0)(Ã1, 0)

F4(a2) A1 + Ã1

B3(Ã2, 0) C3 (A2, 0)

F4(a3) 1(A1 + Ã2, 0)

2(Ã1 +A2, 0)

3(C2 ∼ B2, 0)

4(B3, [3, 1
4])

5(F4,F4(a3))

A2(C3, 0) Ã2 (B3, 0)

A1 + Ã1

Ã1

1

Figure B6: This diagram shows the special sheets for the Lie algebra F4.
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