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Calabi–Yau 4-folds and four-dimensional

F-theory on Calabi–Yau 4-folds

with U(1) factors

Yusuke Kimura

In this study, four-dimensional N = 1 F-theory models with mul-
tiple U(1) gauge group factors are constructed. A class of rational
elliptic 4-folds, which we call as “ 1

2
Calabi–Yau 4-folds,” is intro-

duced, and we construct the elliptically fibered 4-folds by utiliz-
ing them. This yields a novel approach for building families of
elliptically fibered Calabi–Yau 4-folds with positive Mordell–Weil
ranks. The introduced 1

2
Calabi–Yau 4-folds possess the character-

istic property wherein the sum of the ranks of the singularity type
and the Mordell–Weil group is always equal to six. This interesting
property enables us to construct the elliptically fibered Calabi–Yau
4-folds of various positive Mordell–Weil ranks. From one to six U(1)
factors form in four-dimensional F-theory on the resulting Calabi–
Yau 4-folds. We also propose the geometric condition on the base
3-fold of the built Calabi–Yau 4-folds that allows four-dimensional
F-theory models that have heterotic duals to be distinguished from
those that do not.

1. Introduction

The aim of this study is to discuss the construction of four-dimensional (4D)
N = 1 F-theory models with multiple U(1) factors. To achieve the construc-
tion of such models, we introduced a certain family of rational elliptic 4-folds,
which are referred to as “1

2
Calabi–Yau 4-folds” in this study. The double cov-

ers of such rational elliptic 4-folds yields the elliptically fibered Calabi–Yau
4-folds. This construction approach yields families of Calabi–Yau 4-folds of
various Mordell–Weil ranks. The F-theory compactifications on the resulting
elliptically fibered Calabi–Yau 4-folds provide 4D N = 1 models with U(1)n,
n = 1, . . . , 6 gauge groups.

The U(1) gauge symmetry relates to the realization of the grand unified
theory (GUT) because the presence of the U(1) gauge symmetry aids in
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explaining a few characteristic properties of the GUT such as the suppression
of proton decay and mass hierarchy of quarks and leptons. We analyze the
U(1) gauge group in the 4D N = 1 F-theory.

F-theory [1–3] is a formulation that extends type IIB superstrings to
a nonperturbative regime. F-theory is compactified on spaces that admit a
torus fibration. In the framework of F-theory, the axiodilaton in type IIB
superstrings is identified with the modular parameters of elliptic curves as
fibers of the torus fibration, thus enabling the axiodilaton to admit SL2(Z)
monodromy.

The local model constructions [4–7] of F-theory model buildings have
been mainly emphasized in recent studies. However, the global aspects of
the geometry of the compactification space in F-theory should be studied
to discuss issues pertaining to the early universe including inflation, and
gravity. In this work, we analyze the structures of the compactification ge-
ometries from a global perspective.

The U(1) gauge group arises in F-theory on an elliptic fibration when
the elliptic fibration has a positive Mordell–Weil rank [3]. Recent progress
on F-theory models on elliptically fibered spaces admitting a global section
can be found, for example, in [8–42]. Recent studies of F-theory models
possessing a U(1) gauge group were discussed, e.g., in [8, 11, 12, 14, 16, 21,
24, 29, 35, 36, 41, 43–51].

The issue of flux [52–56] arises in 4D F-theory models 1. The superpo-
tential generated by the flux can modify the gauge groups and the matter
spectra in 4D F-theory compactification, as discussed in [44]. We do not
discuss the structure of the flux in this work. Furthermore, additional U(1)
factors, which do not result from the rational sections in the 4D F-theory
turning on fluxes, may arise, as reported in [40]. In this study, we focus
on forming U(1) gauge groups in the 4D F-theory that originate from the
Mordell–Weil group of the elliptic fibration.

As mentioned previously, we introduced a class of rational elliptic 4-
folds, which are referred to as “1

2
Calabi–Yau 4-folds” in this study. These

are obtained as a blow-up of six points on P
2 × P

2. These rational 4-folds
naturally admit elliptic fibration, which is described in section 3. These

1F-theory models with four-form flux are recently discussed, e.g., in [57–70].
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rational elliptic 4-folds can be considered as a higher-dimensional general-
ization of rational elliptic surfaces 2, and 1

2
Calabi–Yau 3-folds as introduced

in [41]. As the double covers of such rational elliptic 4-folds provides ellipti-
cally fibered Calabi–Yau 4-folds, as discussed in section 4.1, we refer to them
as 1

2
Calabi–Yau 4-folds in this study. A similar convention of the term was

used in [41] to refer to a certain class of rational elliptic 3-folds. 1
2
Calabi–Yau

4-folds possess a characteristic property wherein the ranks of the Mordell–
Weil group and the singularity type always add up to six. This property
is analogous to those of rational elliptic surfaces and 1

2
Calabi–Yau 3-folds

[41], wherein the sums of the ranks add up to eight and seven, respectively.
We build families of the elliptic Calabi–Yau 4-folds of various Mordell–Weil
ranks by exploiting this property of 1

2
Calabi–Yau 4-folds; this is explained

in section 4.1.
The F-theory on the constructed Calabi–Yau 4-folds yields 4D N = 1

models, with one to six U(1) factors.

The base 3-folds of the elliptically fibered Calabi–Yau 4-folds obtained in
this work are isomorphic to the Fano 3-folds of degree two 3. We hypothesize
that when the base Fano 3-fold admits a conic fibration 4, the total elliptic
Calabi–Yau 4-fold has a K3 fibration, which is compatible with the elliptic
fibration 5 based on natural reasoning. This is discussed in section 5. (When
an elliptically fibered Calabi–Yau 4-fold has a compatible K3 fibration, the
F-theory on the space has a dual heterotic string theory 6.) In section 5,

2These surfaces are also referred to as 1

2
K3 surfaces. In this study, we refer to

the elliptic surfaces obtained by blowing up the nine base points of a cubic pencil
on the projective plane P

2 as rational elliptic surfaces.
3The degree of two means that (−K)3 = 2 where K denotes the canonical divisor

class of the Fano 3-fold.
4[71–77] discussed F-theory models on elliptic fibrations the base spaces of which

admit a P
1 fibration.

5When an elliptically fibered Calabi–Yau 4-fold has a K3 fibration that is com-
patible with the elliptic fibration, the base 3-fold should admit a P

1 fibration over a
surface. However, the condition that the base 3-fold of a Calabi–Yau elliptic fibra-
tion is a conic fibration does not immediately imply that the total elliptic fibration
has a K3 fibration that is compatible with the elliptic fibration. Our hypothesis
here is limited to the situation in which the base 3-fold of an elliptic Calabi–Yau
4-fold is isomorphic to a Fano 3-fold of degree two.

6The heterotic/F-theory duality [1–3, 71, 78] states that F-theory compactified
on an elliptic K3 fibered Calabi–Yau (n+ 1)-fold over the base Bn−1 and heterotic
string on an elliptically fibered Calabi–Yau n-fold over the same base Bn−1 are
physically equivalent. F-theory/heterotic duality is strictly formulated when the
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we also consider the effect of the condition that F-theory models possess
heterotic duals on the non-Abelian gauge groups forming in the theory,
by considering that the elliptic fibrations of the Calabi–Yau 4-folds also
admit a compatible K3 fibration. Among the F-theory models constructed
in this study, those possessing heterotic duals can receive constraints on
the non-Abelian gauge groups arising on the 7-branes. Investigating the
physical characteristics of the F-theory models possessing heterotic duals can
be useful in understanding the structure of the string landscape. Analyzing
the structure of the string landscape relates to the swampland conditions.
Reviews of recent studies on the swampland criteria are given in [83, 84].
[85–87] discussed the swampland.

The main results deduced in this study are summarized in section 2.
The 1

2
Calabi–Yau 4-folds are introduced in section 3. The properties of these

elliptic 4-folds related to the construction of F-theory models are also dis-
cussed. In section 4.1, elliptically fibered Calabi–Yau 4-folds with positive
Mordell–Weil ranks are constructed by taking double covers of these 4-folds.
The F-theory on the resulting Calabi–Yau 4-folds yields 4D N = 1 mod-
els with multiple U(1) factors, as described in section 4.2. In section 5, the
condition that elliptic fibrations of the Calabi–Yau 4-folds constructed in
section 4.1 admit a compatible K3 fibration is discussed in relation to the
4D F-theory/heterotic duality.

2. Summary

We summarize the results of this study in this section. As noted in the intro-
duction, the main objective of this study is to systematically construct 4D
N = 1 F-theory models with multiple U(1) factors. In addition, as described
in section 5, the geometric structure of the base 3-fold of the Calabi–Yau
4-folds constructed in this study can contain information that can be used
to distinguish among the 4D F-theory models that possess heterotic duals
and the models that do not possess heterotic duals.

In section 3, we introduce the rational elliptic 4-folds that we refer to
as 1

2
Calabi–Yau 4-folds. These 4-folds are obtained by blowing up six points

on the product of the projective planes P
2 × P

2, and the resulting 4-folds

stable degeneration limit [71, 79] of a K3 fibration is considered for the F-theory.
There have been recent studies on stable degenerations of F-theory/heterotic dual-
ity, such as [22, 76, 80–82].
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have an elliptic fibration. The double covers of these elliptic 4-folds yield
elliptically fibered Calabi–Yau 4-folds, as discussed in section 4.1.

One of the most useful facts for this construction of Calabi–Yau 4-folds
is that the 1

2
Calabi–Yau 4-folds X should satisfy the following equation:

(2.1) rkMW(X) + rkADE(X) = 6.

MW (X) denotes the Mordell–Weil group of the 1
2
Calabi–Yau 4-fold X, and

ADE(X) is used to denote the singularity type of the 1
2
Calabi–Yau 4-foldX.

This equation implies that once the rank of the singularity type of a 1
2
Calabi–

Yau 4-fold has been determined, its Mordell–Weil rank can be automatically
obtained. Generally, although it is considerably difficult to determine the
Mordell–Weil rank of elliptically fibered manifolds by using the defining
equation, owing to the equation (2.1), determining the Mordell–Weil rank
of 1

2
Calabi–Yau 4-folds is relatively easy. From the equation (2.1), it can

be deduced that the Mordell–Weil rank of 1
2
Calabi–Yau 4-fold ranges from

zero to six. In this study, the members of the 1
2
Calabi–Yau 4-folds with

Mordell–Weil ranks from one to six were considered.
Calabi–Yau 4-folds constructed as double covers of the 1

2
Calabi–Yau

4-fold (the equation of which is given as (4.1)) have Mordell–Weil rank
greater than or equal to the original 1

2
Calabi–Yau 4-folds, as discussed in

section 4.1. (The Mordell–Weil ranks of the original 1
2
Calabi–Yau 4-fold and

the resulting Calabi–Yau 4-fold as a double cover are expected to be equal
for the generic values of the parameters of the double cover.) Therefore,
Calabi–Yau 4-folds of Mordell–Weil ranks (at least) one to six are obtained
via the double covers of 1

2
Calabi–Yau 4-folds of Mordell–Weil ranks ranging

from one to six. One to six U(1) factors form in 4D N = 1 F-theory on the
resulting Calabi–Yau 4-folds, depending on the Mordell–Weil rank of the
constructed Calabi–Yau 4-folds.

The ADE singularity types of the original 1
2
Calabi–Yau 4-fold and the el-

liptically fibered Calabi–Yau 4-fold obtained as the double covers are identi-
cal, as demonstrated in section 4.1. Therefore, the non-Abelian gauge groups
forming in F-theory on Calabi–Yau 4-folds as a double cover of 1

2
Calabi–Yau

4-fold can be deduced by determining the singularity type of the original
1
2
Calabi–Yau 4-fold. As discussed in section 3, the six points in P

2 × P
2

that are to be blown up to yield a 1
2
Calabi–Yau 4-fold are given as the in-

tersection of four bidegree (1,1) hypersurfaces in P
2 × P

2. The singularity
type of 1

2
Calabi–Yau 4-fold can, in principle, be determined by these (1,1)

hypersurfaces.
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As discussed in section 4.1, the base 3-fold of the elliptically fibered
Calabi–Yau 4-folds constructed in this study is isomorphic to the Fano 3-fold
of degree two. As described in section 5, we hypothesize that when this base
3-fold admits a conic fibration, the Calabi–Yau 4-fold has a K3 fibration.
This hypothesis is natural, as explained in section 5. From the viewpoint of
string theory, this yields a conjectural geometric condition determining when
the 4DN = 1 F-theory models obtained in this study possess heterotic duals.
Furthermore, requiring the base space to have a conic fibration appears to
impose constraints on the possible non-Abelian gauge groups forming on the
7-branes. This can imply that the 4D F-theory models that have heterotic
duals receive constraints on the possible non-Abelian gauge groups, whereas
those that do not have heterotic duals do not receive such constraints. If
our geometric hypothesis is accurate, it appears to suggest that, at least
for the 4D F-theory models on the constructed Calabi–Yau 4-folds in this
study, the condition of the 4D F-theory models possessing heterotic duals
translates to a geometric condition on the base 3-fold. This can be a useful
clue to investigate the structure of the 4D N = 1 F-theory landscape.

3. 1

2
Calabi–Yau 4-folds

In this section, we introduce a class of rational elliptic 4-folds that we refer to
as 1

2
Calabi–Yau 4-folds. These 4-folds are used to build families of elliptically

fibered Calabi–Yau 4-folds with various Mordell–Weil ranks, as mentioned
in section 4.1. 1

2
Calabi–Yau 4-folds are obtained by blowing up six points

on the product of projective planes P2 × P
2.

We consider four bidegree (1,1) hypersurfaces, Q1, Q2, Q3, and Q4, in
P
2 × P

2. When one denotes the divisor class of a bidegree (1,1) hypersur-
face by h1 + h2, then, as (h1 + h2)

4 = 6h21h
2
2, the four (1,1) hypersurfaces

Q1, Q2, Q3, Q4 intersect at six points. These intersection points are the six
points to be blown up to yield 1

2
Calabi–Yau 4-fold. The resulting 4-folds

are rational by construction. Furthermore, they possess an elliptic fibration.
This can be seen when the projection onto P

3 is considered by taking the
ratio

(3.1) [Q1 : Q2 : Q3 : Q4].

The fiber of this projection over the point [a : b : c : d] in the base P3 is given
as the complete intersection in P

2 × P
2:
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bQ1 − aQ2 = 0(3.2)

cQ2 − bQ3 = 0

dQ3 − cQ4 = 0.

The complete intersection (3.2) is the intersection of three bidegree (1,1)
hypersurfaces in P

2 × P
2, which is an elliptic curve; therefore, projection

(3.1) yields an elliptic fibration over the base P
3.

The 1
2
Calabi–Yau 4-folds have a characteristic property that is very anal-

ogous to those of rational elliptic surfaces and 1
2
Calabi–Yau 3-folds intro-

duced in [41]. The sum of the ADE singularity rank and the Mordell–Weil
rank of any 1

2
Calabi–Yau 4-fold X is always six, independent of the com-

plex structure. The equation (2.1) in section 2 expresses this property of the
1
2
Calabi–Yau 4-folds.

Equation (2.1) can be proved by applying an argument similar to that
given in [41]. The outline of the proof is to note that the Picard number
of any 1

2
Calabi–Yau 4-fold is 8 because the six-point blow-up of P

2 × P
2

increases the Picard number of P
2 × P

2 7 by 6; the Picard number gives
the rank of the group generated by the divisors (modulo “algebraic equiva-
lence”). This group is generated by a zero-section and the smooth fiber class,
and P

1 components in the singular fibers not meeting the zero-section, and
the group of the global sections. From this reasoning, the following equa-
tion 89 holds:

(3.3) ρ(X) = 2 + rkMW(X) + rkADE(X).

Here, ρ(X) denotes the Picard number of the 1
2
Calabi–Yau 4-fold, which is

8; thus, we obtain equation (2.1).

When the four bidegree (1,1) hypersurfaces Q1, Q2, Q3, Q4 are chosen
generically, the configuration of the six intersection points is generic, and
the resulting 1

2
Calabi–Yau 4-fold does not have an ADE singularity. The

Mordell–Weil rank of the 1
2
Calabi–Yau 4-fold is six owing to equation (2.1)

for this generic situation.

7The product P2 × P
2 has the Picard number 2.

8For elliptic surfaces possessing a global section an equation similar to the equa-
tion (3.3), which is known as the Shioda–Tate formula [88–90] holds.

9The divisors in an elliptic fibration were discussed in [91, 92].
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When specific choices of the four bidegree (1,1) hypersurfaces Q1, Q2,

Q3, Q4 are considered, the resulting 1
2
Calabi–Yau 4-folds have ADE sin-

gularity types and the Mordell–Weil rank decreases and becomes less than
six.

The Mordell–Weil rank of 1
2
Calabi–Yau 4-folds ranges from zero to six.

When 1
2
Calabi–Yau 4-folds develop singularity types of rank six such as E6,

A5A1, and A3
2, they have the Mordell–Weil rank of zero.

As shown in section 4.1, taking double covers of the 1
2
Calabi–Yau 4-folds

yields elliptically fibered Calabi–Yau 4-folds, and the Mordell–Weil rank of
the resulting Calabi–Yau 4-fold is greater than or equal to the Mordell–
Weil rank of the original 1

2
Calabi–Yau 4-fold. As a result, double covers of

1
2
Calabi–Yau 4-folds having Mordell–Weil ranks from one to six give Calabi–

Yau 4-folds of positive Mordell–Weil ranks.

4. Calabi–Yau 4-folds and 4D N = 1 F-theory models with
U(1) factors

4.1. Construction of elliptic Calabi–Yau 4-folds of positive
Mordell–Weil ranks

We construct elliptically fibered Calabi–Yau 4-folds of positive Mordell–
Weil ranks by taking double covers of the 1

2
Calabi–Yau 4-folds introduced

in section 3. As we see later in section 4.2, F-theory on the obtained Calabi–
Yau 4-folds yields 4D models with multiple U(1) factors.

We consider the double cover of of the 1
2
Calabi–Yau 4-folds of the fol-

lowing form:

(4.1) τ2 = F6(Q1, Q2, Q3, Q4).

In equation (4.1), we used F6 to denote a degree-six polynomial in the bide-
gree (1,1) polynomials Q1, Q2, Q3, Q4 as variables 10. The double cover (4.1)
ramified along the 3-fold F6(Q1, Q2, Q3, Q4) = 0 yields an elliptic Calabi–
Yau 4-fold.

As the base of the original 1
2
Calabi–Yau 4-fold was isomorphic to P

3, by
construction, the base 3-fold of the resulting elliptically fibered Calabi–Yau
4-fold (4.1) is a double cover of P3 ramified along a degree-six surface. This

10F6 is a bidegree (6,6) polynomial in the coordinate variables of the product
P
2 × P

2. The degree of the polynomial is selected to ensure that the double cover
(4.1) satisfies the Calabi–Yau condition K = 0.
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is known to be isomorphic to a Fano 3-fold of degree two by a well-known
mathematical result. We denote the Fano 3-fold of degree two by V2 in this
study.

As we discuss in section 5, we conjecture that when the base Fano 3-fold
of degree two admits a conic fibration, the Calabi–Yau 4-fold (4.1) has a K3
fibration that is compatible with the elliptic fibration. This relates to 4D
F-theory/heterotic duality.

As taking a double cover (4.1) of the 1
2
Calabi–Yau 4-folds can be viewed

as a base change, a global section of the original 1
2
Calabi–Yau 4-fold X

lifts to a global section of the Calabi–Yau 4-fold Y (4.1); this situation is
very analogous to those described in [29, 38, 41]. From this observation we
learn that the Mordell–Weil group MW (Y ) of the Calabi–Yau 4-fold Y (4.1)
contains the Mordell–Weil groupMW (X) of the original 1

2
Calabi–Yau 4-fold

X as a subgroup.
In particular, this indicates that the Mordell–Weil rank of the original

1
2
Calabi–Yau 4-fold X is smaller than or equal to the Mordell–Weil rank of

the Calabi–Yau 4-fold Y (4.1). Therefore, we have

(4.2) rkMW(X) ≤ rkMW(Y ).

We showed in section 3 that the Mordell–Weil ranks of the 1
2
Calabi–Yau

4-folds range from zero to six owing to equation (2.1). When the 1
2
Calabi–

Yau 4-folds of Mordell–Weil ranks one to six are chosen and their double
covers (4.1) are taken, owing to inequality (4.2), Calabi–Yau 4-folds of pos-
itive Mordell–Weil ranks are obtained.

Furthermore, it is expected that the equality holds in (4.2) for generic
values of the parameters of taking the double cover (4.1). Utilizing an argu-
ment similar to that given in [29, 41] leads to this expectation by considering
a limit at which a Calabi–Yau 4-fold (4.1) splits into a pair of 1

2
Calabi–Yau

4-folds 11, and a global section of the Calabi–Yau 4-fold also splits to yield

11A deformation of the Calabi–Yau 4-fold (4.1), similar to the processes discussed
in [41, 93], can be considered as

(4.3) τ2 = F6(Q1, Q2, Q3, Q4) + λG3(Q1, Q2, Q3, Q4)
2,

where λ denotes the parameter of a deformation. We have used G3 to denote the
degree-three polynomial in the (1,1) polynomials Q1, Q2, Q3, Q4, given by G3 =
(a1 Q1 + a2 Q2 + a3 Q3)(a4 Q1 + a5 Q2 + a6 Q4)(a7 Q2 + a8 Q3 + a9 Q4). (Here, ai,
i = 1, . . . , 9 are constant.) Setting λ = 0 gives the Calabi–Yau double cover (4.1).
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global sections of the two 1
2
Calabi–Yau 4-folds into which the Calabi–Yau

4-fold is split.

The original 1
2
Calabi–Yau 4-fold and the Calabi–Yau 4-fold obtained

as its double cover (4.1) have identical singularity types. We expand the
discriminant of 1

2
Calabi–Yau 4-fold into irreducible factors as:

(4.4) ∆(X) =
∏

pmi

i
.

We have used ∆(X) to denote the discriminant of the original 1
2
Calabi–Yau

4-fold X. The operation of taking double cover (4.1) corresponds to a base
change, and the polynomial pi is replaced with p̃i under this operation. p̃i is
obtained by plugging polynomials that correspond to the base change into
the coordinate variables of P3 of the polynomial pi. Similar to the situation
as discussed in [41], because the base of the Calabi–Yau 4-folds and the
1
2
Calabi–Yau 4-folds are 3-folds, unlike the case where the base is P

1 [29,
38, 93], the polynomial p̃i obtained via the base change remains irreducible,
and

(4.5) ∆(Y ) =
∏

p̃mi

i
.

yields irreducible decomposition of the discriminant of the Calabi–Yau 4-fold
Y (4.1). ∆(Y ) is used to denote the discriminant of the Calabi–Yau 4-fold Y

obtained as the double cover (4.1) of X. Thus, from an argument similar to
that given in [41], it is evident that the singularity type of the Calabi–Yau
4-fold (4.1) is identical to that of the original 1

2
Calabi–Yau 4-fold.

4.2. 4D F-theory models with U(1) factors

We constructed elliptically fibered Calabi–Yau 4-folds of positive Mordell–
Weil ranks in section 4.1. When the 1

2
Calabi–Yau 4-fold has Mordell–Weil

rank n, the resulting Calabi–Yau 4-fold obtained by taking double cover
(4.1) has the Mordell–Weil rank of ≥ n, n = 1, · · · , 6, owing to the inequality
(4.2). As stated previously, it is expected that their Mordell–Weil ranks are
actually equal for the generic parameters of the double cover (4.1). U(1)n

forms in F-theory on the Calabi–Yau 4-fold obtained as double cover (4.1)
of 1

2
Calabi–Yau 4-fold with the Mordell–Weil rank n, n = 1, . . . , 6.

When the limit at which λ goes to ∞ is considered, the Calabi–Yau 4-fold (4.3) is
split into a pair of 1

2
Calabi–Yau 4-folds as τ = ±G3(Q1, Q2, Q3, Q4).
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When a 1
2
Calabi–Yau 4-fold has Mordell–Weil rank strictly less than six,

it must also have an ADE singularity to satisfy the relation (2.1). Calabi–
Yau 4-fold as the double cover (4.1) of this 1

2
Calabi–Yau 4-fold has an iden-

tical ADE singularity type, and a non-Abelian gauge group arises on the
7-branes in F-theory on the resulting Calabi–Yau 4-fold in this situation.

When the four bidegree (1,1) hypersurfaces Q1, Q2, Q3, Q4 are chosen to
be generic, the 1

2
Calabi–Yau 4-fold obtained by blowing up the base points of

these four hypersurfaces in P
2 × P

2 does not have an ADE singularity as we
noted previously; therefore, it has Mordell–Weil rank six owing to equation
(2.1). An elliptically fibered Calabi–Yau 4-fold obtained as double cover (4.1)
of this 1

2
Calabi–Yau 4-fold has Mordell–Weil rank of (at least) six, and the

resulting Calabi–Yau 4-fold does not have an ADE singularity. F-theory on
this Calabi–Yau 4-fold yields a 4D N = 1 model with U(1)6 gauge group,
and this model does not have a non-Abelian gauge group factor.

5. K3 fibration that is compatible with elliptic fibration, and
relation with heterotic duals

We learned in section 4.1 that the elliptically fibered Calabi–Yau 4-folds
constructed in section 4.1 have base 3-fold isomorphic to a Fano 3-fold of
degree two, V2. We conjecture that when this base Fano 3-fold of degree two
V2 admits a conic fibration, the Calabi–Yau 4-fold admits a K3 fibration that
is compatible with the elliptic fibration. This is very natural to expect, and
this expectation is based on the following observation: when the base 3-fold
of a Calabi–Yau 4-fold has a conic fibration, the base 3-fold is a P

1 fibration
over the base surface. The total Calabi–Yau 4-fold, then, is a fibration over
the base surface, and the fiber of this fibration is an elliptic fibration over
P
1. Elliptic fibration over P1 (with the condition that the total space of this

fibration satisfies the Calabi–Yau condition) yields a K3 surface. Thus, it
is natural to expect that when the base degree-two Fano 3-fold is a conic
fibration over a surface, the total Calabi–Yau 4-fold is quite likely to be a
K3 fibration over the base surface, and this K3 fibration is compatible with
the elliptic fibration. Figure 1 shows images of these.

Among the 4D N = 1 F-theory models constructed in this study, those
having heterotic duals can have some additional constraints on the possible
non-Abelian gauge groups that can form on the 7-branes.
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Figure 1: Elliptically fibered Calabi–Yau 4-fold Y with the base Fano 3-
fold of degree two V2, and Fano 3-fold of degree two V2 as a conic fibration
with the base surface B2 when the Fano 3-fold of degree two admits a conic
fibration. Elliptic fibration over base P

1 yields a K3 surface when the total
space of the fibration is required to satisfy the Calabi–Yau condition.

Non-Abelian gauge groups arising on the 7-branes in F-theory are de-
termined by the types of the singular fibers 12 and by whether they are
split/non-split/semisplit [98], and these are determined by the Weierstrass
coefficients of the elliptic fibration of the compactification space. It is natu-
ral to expect that requiring the base 3-fold to have an additional structure
such as a conic fibration imposes some constraints on the Weierstrass coeffi-
cients of the elliptic fibration of the Calabi–Yau 4-fold; therefore, requiring
the base 3-fold to have an additional structure such that the total elliptic
fibration also admits a compatible K3 fibration is likely to restrict the types
of singular fibers. Thus, from the physical viewpoint, it is likely to restrict
the possible non-Abelian gauge groups forming on the 7-branes.

It would be interesting to consider the physical constraints on the possi-
ble non-Abelian gauge groups on the 7-branes when a condition is imposed
on the elliptically fibered Calabi–Yau 4-folds to also admit a K3 fibration
that is compatible with elliptic fibration, and studying this physical effect is
a likely direction for future work. This can help in analyzing the structure of
the 4D N = 1 F-theory landscape. One can compare the non-Abelian gauge
groups forming in 4D F-theory models that have heterotic duals with those
that do not have heterotic duals.

The rank of the Mordell–Weil group corresponds to the number of ways
one can embed the base space into the total elliptic fibration [3]. As requiring

12The types of the singular fibers of the elliptic surfaces were classified by Kodaira
in [94, 95]. Techniques to determine the singular fiber types of elliptic surfaces can
be found in [96, 97].
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the base 3-fold to have an additional structure such that the elliptic fibration
also has a K3 fibration, and we conjectured that a conic fibration yields an
example of this additional structure when the base 3-fold is isomorphic to
the Fano 3-fold of degree two, does not appear to affect the way the base
3-fold is embedded into the total elliptic fibration, we expect that whether
the constructed elliptically fibered Calabi–Yau 4-folds admit a compatible
K3 fibration does not place a strong effect on the number of U(1) factors
forming in F-theory compactifications. Thus, it is expected, at least for the
4D F-theory models on the constructed Calabi–Yau 4-folds in this study, that
whether a 4D F-theory model has heterotic dual does not have a significant
effect on the number of U(1) factors forming in theory. We only discussed
forming U(1) factors in 4D F-theory that originate from the Mordell–Weil
group in this study, as we noted in the introduction.

6. Conclusions and open problems

Here, we constructed elliptically fibered Calabi–Yau 4-folds of positive
Mordell–Weil ranks. F-theory on the resulting Calabi–Yau spaces yields 4D
N = 1 models with one to six U(1) factors 13.

Investigating explicit constructions of 1
2
Calabi–Yau 4-folds with ADE

singularity types is a likely direction of future study. Taking double covers
of such elliptic 4-folds yields examples of elliptic Calabi–Yau 4-folds with
ADE singularity types identical to the original 1

2
Calabi–Yau 4-folds. F-

theory on the resulting Calabi–Yau spaces yields explicit examples of 4D
N = 1 theories with multiple U(1) factors and non-Abelian gauge groups.

The 1
2
Calabi–Yau 4-folds built in section 3 do not have E7 and E8 singu-

larities owing to equation (2.1) because E7 and E8 singularities have ranks
greater than six. Therefore, in this study, our construction of Calabi–Yau
4-folds by taking the double cover (4.1) does not, at least directly, provide
Calabi–Yau 4-folds with E7 or E8 singularity. Determining whether ellipti-
cally fibered Calabi–Yau 4-folds over the base Fano 3-fold of degree two, V2,
with E7 and E8 singularities exist is an open problem.

When a Calabi–Yau 4-fold admits a K3 fibration (that is compatible with
the elliptic fibration), considering the heterotic dual can aid in analyzing this
problem.

134D N = 1 F-theory models without a U(1) gauge group can be found, for
example, in [99, 100].
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Deducing the Weierstrass equations of the Calabi–Yau 4-folds
constructed in this work from the equations of four bidegree (1,1) hyper-
surfaces in P

2 × P
2 can also be a likely target for future studies. Because the

equations of four bidegree (1,1) hypersurfaces determine the defining equa-
tion of 1

2
Calabi–Yau 4-fold, the Weierstrass equation of Calabi–Yau 4-fold

as double cover (4.1) of the 1
2
Calabi–Yau 4-fold can in principle be obtained

from the equations of four bidegree (1,1) hypersurfaces, Q1, Q2, Q3, Q4. The
Weierstrass equations of the Calabi–Yau 4-folds help to obtain the Yukawa
couplings of the matter fields arising in 4D F-theory.
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