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We show that maximal causal curves for a Lipschitz continuous
Lorentzian metric admit a C1,1-parametrization and that they solve
the geodesic equation in the sense of Filippov in this parametriza-
tion. Our proof shows that maximal causal curves are either ev-
erywhere lightlike or everywhere timelike. Furthermore, the proof
demonstrates that maximal causal curves for an α-Hölder contin-
uous Lorentzian metric admit a C1,

α
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1. Introduction

Causality theory is a very active part of mathematical general relativity and
Lorentzian geometry, see the current comprehensive review [Min19b]. Re-
cently, in several works [FS12], [CG12], [KSSV14], [Min15], [Säm16], [BS18],
[Min19a], [GKSS20] the theory was extended to the setting of non-smooth
Lorentzian and Lorentz-Finsler manifolds and towards a synthetic theory
[KS18, AGKS21, ACS20, CM20], where there might not be a differentiable
or manifold structure, analogous to length or Alexandrov spaces in metric
geometry. Moreover, issues of low regularity came into focus lately, as they
arise in the study of the cosmic censorship conjecture, in particular the (in-
)extendibility of spacetimes [Sbi18, GL17, GL18, GLS18, GKS19, LO19a,
LO19b, MS19, Sbi20].

The regularity class of C1,1 for the Lorentzian metric turned out to
mark a transition between the classical theory and low regularity phenom-
ena. In this regularity, classical results concerning geodesics, causality the-
ory and singularity theorems, remain valid, see [KSS14, Min15, KSSV14,
KSSV15, KSV15, GGKS18, SS18], whereas for lower regularity differences
occur [CG12, GKSS20] and concepts diverge. In particular, the notions of
maximal curves and geodesics (solutions to the geodesic equations) no longer
coincide.

If the metric is C1 then solutions to the geodesic equation still exist but
might not be unique. Nevertheless, in the recent work [Gra20] Graf estab-
lishes the Hawking and Penrose singularity theorems in this regularity class
and along the way shows that in a (globally hyperbolic) C1-spacetime any
two causally related points are connected by a maximal C2-geodesic. Build-
ing on these results, Schinnerl [Sch20] proved that in a C1-spacetime any
maximal curve is of C2-regularity and possesses a parametrization solving
the geodesic equation. The latter result of Graf and the one of Schinnerl also
follow from our work.

Within the low-regularity regime Lipschitz continuous Lorentzian met-
rics play an especially important role as they cover physically most relevant
cases: e.g. spacetimes where there is a loss of regularity on a hypersurface
such as shell-crossing singularities, thin shells of matter, and surface layers,
cf. [BH03, SSV17, Lak17], or impulsive gravitational waves in the so-called
Rosen form, see [GP09, Ch. 20], and especially [PSSŠ15, PSSŠ16], where
the Filippov solution concept was employed to establish C1-regularity of
geodesics.



✐

✐

“4-Saemann” — 2022/9/6 — 13:25 — page 2143 — #3
✐

✐

✐

✐

✐

✐

Lorentz meets Lipschitz 2143

Below this regularity many fundamental statements in causality theory
finally cease to hold, e.g. the future of a point need not be open [GKSS20], the
push-up principle fails and, most surprisingly, there are Hölder spacetimes
where the boundary of a lightcone has positive measure (so-called causal
bubbles) [CG12, Ex. 1.11]. On the other hand, several fundamental prop-
erties of the causality theory have been verified in continuous spacetimes,
[CG12, Säm16, Min19a]. Various other questions concerning causality theory
and properties of maximal curves in Lipschitz continuous Lorentzian mani-
folds have been formulated in [SS18]. The aim of this article is the resolution
of most of these questions.

1.1. Statement of results

All results discussed in the paper are of local nature, thus we will formu-
late them only for the case of globally hyperbolic Lorentzian manifolds (cf.
[Säm16]).

Given a globally hyperbolic Lorentzian manifold (M, g) with a Lipschitz
continuous metric, a causal (Lipschitz continuous) curve γ : [a, b] → M is
called maximal if it maximizes the Lorentzian length among all causal curves
connecting its endpoints. Our main result for such curves reads as follows.

Theorem 1.1. Let γ be a maximal curve for a Lipschitz continuous
Lorentzian metric. Then γ admits a parametrization making it a C1,1-curve.
Moreover, in this parametrization, γ is a solution of the geodesic equation
in the sense of Filippov.

If the Lorentzian metric is assumed to be C1 then solutions of the
geodesic equation in the sense of Filippov are exactly solutions of the geodesic
equation in the classical sense and are automatically C2. Thus, for C1-regular
Lorentzian metrics our results recover [Gra20, Prop. 2.13] and [Sch20].

The proof of Theorem 1.1 shows that for timelike maximal curves, their
parametrization with constant Lorentzian velocity satisfies the conclusion of
Theorem 1.1, thus provides a solution of the geodesic equation in the sense
of Filippov.

Due to a recent result by Graf and Ling ([GL18, Thm. 1.1]) for a Lips-
chitz continuous Lorentzian metric any maximal curve is either lightlike or
timelike almost everywhere. We strengthen this result, see Proposition 9.1,
and provide an independent proof of it:
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Proposition 1.2. Let γ : I → M be a maximal curve for a Lipschitz con-
tinuous Lorentzian metric. Then γ can be parametrized in a C1,1 way, and
either γ′(t) is lightlike for all t, or γ′(t) is timelike for all t.

We mention that the proof does not rely on the push-up principle, es-
tablished for Lipschitz continuous Lorentzian metrics in [CG12]; in fact, the
push-up principle can be easily deduced from Proposition 1.2.

1.2. Additional comments

We would like to mention a few related statements. First, a direct adaptation
of the proof of Proposition 7.2 reveals the following (probably non-optimal)
statement:

Proposition 1.3. Maximal curves for an α-Hölder continuous Lorentzian
metric admit a C1,α

4 -parametrization.

The second comment is concerned with the optimality of the C1,1-
regularity in Theorem 1.1, whose unclear status was pointed out in [SS18].
In a fixed chart, in which the metric is Lipschitz continuous, the maximal
curves do not have to be of class C2. Indeed, we can start with the Minkowski
metric g0 on R

2 and pull it back by a C1,1-diffeomorphism ϕ : R2 → R
2 such

that the preimage γ∗ := ϕ−1(γ) of the y-axes γ is not C2. Then, γ∗ is a
maximal curve in the metric ϕ∗(g0), and γ∗ is not C2.

The following question probably has a negative answer, but a proof
would require some considerable amount of new analytic ideas, similar to
[DK81], [Sv76] in low regularity: Given a C0,1-Lorentzian metric g on U ⊂
R
n, does there exist some coordinates around any point, in which the metric

is still C0,1 and all maximal curves are of class C2?
The third remark concerns the regularity of solutions of the geodesic

equation in the sense of Filippov, see [Fil88], [SS18] and Section 3 for a
discussion of the corresponding concepts. The following general statement
shows that the second part of Theorem 1.1 implies the first and thereby also
answers a question posed in [SS18].

Proposition 1.4. For any Lorentzian metric g of class C0,1 on an open
domain U ⊂ R

n, any solution γ : [0, 1] → U of the geodesic equation in the
sense of Filippov is of class C1,1.

Moreover, the C1,1-norm of γ is bounded in terms of the C0,1-norm of
g and the Euclidean length of γ. The proof of this proposition is a direct
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consequence of a classical result by Filippov [Fil88, Thm. 7.8] and holds true
for any pseudo-Riemannian metric g (see also [Ste14]).

The first half of Theorem 1.1 is the analog of the corresponding regu-
larity statement for shortest curves in Riemannian metrics, [LY06], and its
proof follows the ideas in [LY06]. The proof that maximal curves in C0,1-
Lorentzian metrics are Filippov-geodesics is an extension of the classical
”first variation” argument and transfers literally to the Riemannian case
(even with some technical issues disappearing). It shows that any shortest
curve in a Riemannian C0,1-metric solves the geodesic equation in the sense
of Filippov.

Note, however, that solutions of the geodesic equation in the sense of
Filippov are neither uniquely defined nor have any extremality properties,
even in the Riemannian case, unless the regularity of the metric g is assumed
to be C1,1, see [Har50, HW51]. In particular, solutions to the geodesic equa-
tions need not be maximal (on any subinterval) nor unique and maximal
curves need not be unique, neither.

It seems to be a challenging question to understand the geodesic flow in
Lorentzian (or Riemannian) metrics of low regularity, cf. [Amb08], [KLP21].
Finally, it appears to be possible to use our Theorem 1.1 to extend the
singularity theorem of Hawking to the setting of C0,1-Lorentzian metrics
(this will be explained in a forthcoming article).

1.3. Structure of the text

After introducing notations and conventions in Section 2, we discuss proper-
ties of solutions of geodesic equations in the sense of Filippov, prove Propo-
sition 1.4 and show that the class of Filippov geodesics is stable under point-
wise convergence in Section 3. In Section 4 we show that a maximal curve
solves the geodesic equation, if it is already known to be timelike, C1,1 and
parametrized with constant Lorentzian velocity.

In Section 5 we state a version of a result of [CH70], [LY06] showing that
the property of (not) being a C1,α-curve in a Euclidean space can be char-
acterized in terms of the deviations of the curve from the chords connecting
points on the curve.

In Section 6 we provide a quantitative version of the triangle inequality
in Minkowski space, which to the best of our knowledge seems be new.

In the next sections we fix a chart and show that all maximal curves in
this chart are C1,1. The basic idea, going back to the Riemannian situation
analyzed in [CH70] and [LY06], is that if the maximal curve were too far
from a chord, then the chord would have longer Lorentzian length than the
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maximal curve. One of the arising difficulties is that, a priori, the Euclidean
chord does not need to be causal.

In Section 7 we prove Proposition 1.3, relying on the quantitative triangle
inequality. Here we compare the Lorentzian length of the curve and the chord
with respect to the Minkowski metric of a fixed point on the chord, and then
estimate the error terms arising from the non-constancy of the Lorentzian
metric. Also in the Riemannian case, this estimate is too coarse to obtain
the optimal C1,1-regularity, for Lipschitz continuous metrics. However, for
the rest of the argument we actually only need that maximal curves are C1.

In Section 8 we consider maximal curves whose tangent vectors are time-
like everywhere. We compare the lengths of the curve and its chords by
estimating the differences of Lorentzian velocities with respect to varying
Minkowski metrics. Also this part follows the Riemannian case in [LY06], and
supplies us with the C1,1-regularity for uniformly timelike maximal curves.

In Section 9 we prove Proposition 1.2 and finish the proof of the main
theorem for timelike maximal curves.

In the final Section 10 we show that any lightlike maximal curve can be
obtained as a limit of maximal curves which solve the geodesic equation. By
stability, it shows that any maximal curve solves the geodesic equation in
the sense of Filippov and an application of Proposition 1.4 then finishes the
proof of the main theorem.

2. Notation and conventions

We use the convention that a Lorentzian metric g has signature
+−−− . . . and a vector v ∈ TpM is causal if gp(v, v) ≥ 0 (v ̸= 0), time-
like if gp(v, v) > 0, null or lightlike if gp(v, v) = 0 (v ̸= 0) and spacelike
if gp(v, v) < 0 or v = 0. Corresponding Lorentzian norms are denoted as
|v|p :=

√
|gp(v, v)|. A locally Lipschitz continuous curve γ : I → M is time-

like/causal/lightlike if γ̇ is timelike/causal/lightlike almost everywhere.
On the Euclidean space R

n we denote by ∥ · ∥ the Euclidean norm. We
denote the standard Minkowski product on R

n as ⟨·, ·⟩,

⟨u, v⟩ := utvt − uTx vx ,

where we denote for a vector w ∈ R
n by wt ∈ R its first and by wx ∈ R

n−1

its last (n− 1) coordinates. The Euclidean scalar product will never appear
in this text. Otherwise we follow the conventions used in [CG12, GKSS20].
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A Lorentzian C0,1-manifold denotes a smooth manifold M with a fixed
smooth atlas and a Lorentzian metric g whose coordinates in any chart are
Lipschitz continuous.

Most of the time we work locally on an open set U ⊂ R
n. In such a chart

we denote the Lipschitz constant of g as L:

|gx(v, w)− gy(v, w)| ≤ L · ∥x− y∥ ,

for all unit vectors v, w ∈ R
n and all x, y ∈ U .

By making the chart smaller and the Lipschitz constant larger, if needed,
we can always assume that for any point x ∈ U the chart U can be changed,
so that gx coincides with the standard Minkowski product ⟨·, ·⟩, (while keep-
ing the Lipschitz constant L for g).

Making the chart U smaller we can assume that the first coordinate
vector T is future directed timelike. More precisely, we may assume that the
first coordinate t(u) := ut as function on R

n grows with velocity at least 1
2

on any future directed causal curve γ : I → U parametrized by Euclidean
arclength, i.e.

(t ◦ γ)′ ≥ 1

2

almost everywhere. In particular, any causal curve γ in U parametrized by
arclength is a bilipschitz curve with bilipschitz constant 2. Our Lorentzian
manifold M and therefore also all charts will always be assumed globally
hyperbolic (cf. the proof of [SS18, Thm. 2.2]).

By L(γ) = Lg(γ) we denote the Lorentzian length of a causal curve γ :
I → M :

L(γ) =
∫

I

√

g(γ′(t), γ′(t)) dt .

A causal curve γ : I → M is called maximal if its Lorentzian length is
maximal among all causal curves with the same endpoints. Any subcurve of
any maximal curve is maximal.

3. Filippov geodesics

3.1. Filippov geodesics, their regularity and stability

Let M be a Lorentzian manifold with Lorentzian metric g of class C0,1. Then
there exists a unique Levi-Civita connection ∇g on M . This connection as-
signs to any pair of locally Lipschitz vector fields X,Y a locally bounded
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vector field ∇g
XY so that the usual rules (torsion freeness and metric prop-

erty) are satisfied, see, for instance, [Hon14].
In any chart U ⊂ R

n the Levi–Civita connection differs from the direc-
tional derivative DY (X) by a tensor Γ, called the Christoffel symbol, which
is a bounded symmetric (1, 2)-tensor on U .

The usual Koszul formula provides a formula for Γ via the partial deriva-
tives of g, which exist almost everywhere on U . More precisely, the value of
Γ is defined in all points in which g is differentiable.

Let U be a chart as in Section 2. We say that a curve γ : I → U is a
(Filippov-) geodesic if γ′ exists almost everywhere, is absolutely continuous,
and γ is a solution of the differential equation

γ′′(t) + Γγ(t)(γ
′(t), γ′(t)) = 0

in the sense of differential inclusions of Filippov [Fil88], [SS18]. This is the
case if for almost every t ∈ I the point −γ′′(t) is contained in the essential
convex hull

Γ̂γ(t)(γ
′(t), γ′(t)) :=

⋂

δ>0

⋂

µ(N)=0

K(δ,N),

where µ is the Lebesgue measure on R
n × R

n and K(δ,N) is the closed
convex hull

K(δ,N) := co{Γx(w,w) : (x,w) ∈ (U × R
n) \N ;

∥(x,w)− (γ(t), γ′(t))∥ < δ} .

Due to the continuity of Γx(v, v) in the second variable v for almost all
x ∈ U , it suffices in the definition of the essential convex hull Γ̂γ(γ

′, γ′) to
consider subsets N with µ(N) = 0 of the form N = N0 × R

n.
The notion is invariant under smooth changes of coordinates and there-

fore, we can unambiguously talk about Filippov-geodesics in the Lorentzian
manifold M , by requiring that the intersection of the curve with any chart
is a Filippov-geodesic in this chart.

Remark 3.1. Filippov-geodesics are invariant under C2-changes of coor-
dinates. However, it is not clear to us if Filippov geodesics are invariant
under C1,1-changes of coordinates, the most natural class in the context of
C0,1-metrics.

We can now provide:
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Proof of Proposition 1.4. The statement is local, thus we may assume that
the neighborhood U is small enough as in Section 2, in particular, g is
globally Lipschitz continuous on U . Let γ : [0, 1] → U be a solution of the
geodesic equation in the sense of Filippov. Then γ′ is absolutely continuous,
in particular, ∥γ′(t)∥ is bounded by some constant C1.

For almost every x ∈ U the Christoffel symbol Γx has a norm (as a
bilinear map) bounded by a constant C2 depending on the Lipschitz norm
of g. Hence, for almost all x ∈ U and all t ∈ [0, 1] we have

∥Γx(γ
′(t), γ′(t))∥ ≤ C2

1 · C2 .

Thus the same bound is true for any convex hull of vectors of the form
Γx(γ

′(t), γ′(t)). The definition of being a solution of the geodesic equation
now implies for almost all t ∈ [0, 1]

∥γ′′(t)∥ ≤ C2 · C2
1 .

Thus γ′(t) is Lipschitz continuous and γ is of class C1,1. □

As the proof shows, the C1,1-norm of γ depends only on the Lipschitz
constant of g and an upper bound on the velocity ∥γ′∥ of γ. Thus, due to
the next observation, the C1,1-norm is even controlled by the length:

Lemma 3.1. Let γ : [a, b] → U be a solution of the geodesic equation in the
sense of Filippov. Then, for all t ∈ [a, b], we have

∥γ′(t)∥ ≤ eCr − 1

C
· 1

b− a
,

where C is some constant depending only on U and where r denotes the
Euclidean length of γ.

Proof. By the form of the geodesic equation, the C1,1-curve γ satisfies for
almost all t ∈ [a, b] the differential inequality

∥γ′′(t)∥ ≤ C · ∥γ′(t)∥2 ,

where the constant C > 0 depends only on the Lipschitz constant of the
Lorentzian metric g.
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Thus, the Lipschitz continuous non-negative function s(t) := ∥γ′(t)∥ sat-
isfies almost everywhere

|s′(t)| ≤ C · s2(t) .

If s(t) ̸= 0, this is equivalent to

∣
∣
∣
∣

(
1

s(t)

)′∣∣
∣
∣
≤ C .

Thus, on the open set of points t at which s is positive, the function 1
s(t) is

C-Lipschitz continuous. By continuity, either s is constantly equal to 0 or
s(t) > 0, for all t.

In the first case, γ is constant and the conclusion clearly holds. In the
second case, the function 1

s(t) is C-Lipschitz continuous on [a, b]. Let, in

the second case, s assume its maximum s0 on [a, b] at the point t0. Setting
ϵ := 1

s0
, we get

1

s(t)
≤ ϵ+ C · |t− t0| ,

s(t) ≥ 1

ϵ+ C · |t− t0|
.

Thus, we can estimate the Euclidean length of γ as

r =

∫ b

a
s(t) dt ≥

∫ b

a

1

ϵ+ C · |t− t0|
dt ≥

∫ b

a

1

ϵ+ C · (t− a)
dt =

=
1

C
· (log(C(b− a) + ϵ)− log(ϵ)) =

1

C
· log(1 + C · (b− a)

ϵ
) .

Therefore,

eCr − 1 ≥ C · (b− a)

ϵ

Recalling that 1
ϵ is the maximum of ∥γ′∥ completes the proof. □

As a consequence we derive:

Corollary 3.2. Let γi : [a, b] → U be a sequence of causal curves converging
pointwise to γ : [a, b] → U . If all curves γi are Filippov-geodesics then so is γ.

Proof. By our assumption on U , all causal curves in U have Euclidean length
bounded by a uniform constant r0. By Lemma 3.1, this implies that all γi
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have uniformly bounded first derivatives. As has been shown in Proposi-
tion 1.4, this implies that the curves γi are uniformly C1,1. Then, the point-
wise convergence implies that γi converges uniformly to γ and γ′i converges
uniformly to γ′. Therefore we obtain the conclusion by applying stability
theorems for solutions of differential inclusions [Fil88, Cor. 1, Ch. 2, §7,
p. 77]. □

4. First variational formula

In the remainder of this section we are going to prove the following state-
ment. The proof is the standard variational argument, known as “first varia-
tion formula of length” or the du Bois-Reymond trick. The only non-classical
point in the proof is to carry out all arguments not for a single variation
but for a “full-dimensional” family of variations. This allows us to use the
properties of the Levi-Civita connection, which in our setting are valid only
almost everywhere.

Proposition 4.1. Let g be a Lipschitz continuous Lorentzian metric on
a domain U ⊂ R

n. Let γ : [0, 1] → U be a C1,1-timelike maximal curve with
constant Lorentzian speed |γ′(t)|g. Then γ solves the geodesic equation in the
sense of Filippov.

Proof. Assume that the statement is wrong. We then find a Lebesgue point
t0 ∈ I of the L∞-function γ′′ : I → U , a negligible set N ⊂ U (containing
the set of all points where g is not differentiable) and some δ > 0 such that
the following holds true. The closed convex hull K of the set of all vectors of
the form Γx(v, v) with (x, v) ∈ Bδ(γ(t0), γ

′(t0)) \ (N × R
n) does not contain

−γ′′(t0). Thus we find a unit vector h and some ϵ > 0 such that

(4.1) gx0
(h, γ′′(t0) + k) > ϵ

for all k ∈ K, where x0 = γ(t0). In fact, (4.1) holds for all h in a small
nonempty open set O. Shrinking O we can assume that all h ∈ O are linearly
independent of γ′(t0).

Reparametrizing γ and changing coordinates, we may assume that t0 =
0, γ(0) = 0 and that γ is parametrized on an interval [−r, r] for some small
r. We further assume that g0 is the standard Minkowski product on R

n. By
continuity of γ′ we may further assume that the inequality (4.1) holds for
all k of the form Γx(γ

′(t), γ′(t)), where t ∈ [−r, r] and x in Bδ(0) \N are
arbitrary.
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In the following we can and will assume that supu1,u2∈U ∥u1 − u2∥ < 1.
Let H be a hyperplane containing h and transversal to γ′(0). Since 0 is a
Lebesgue point of γ′′, we have for all small r0 > 0

(4.2)

∫ r0

−r0

∥
∥γ′′(t)− γ′′(0)

∥
∥ dt ≤ ϵ

8L
· r0,

where L is the Lipschitz constant of g.
We fix such an r0 and choose a smooth function f : [−r0, r0] → [0, 1]

vanishing only in ±r0 with f(t) ≥ 1/2 on [−r0/2, r0/2]. For a small neigh-
borhood W of 0 in H, we consider the map F : W × [−r0, r0] → U given
by

F (w, t) = −f(t) · w + γ(t) .

For any w ∈ W , the curve γw(t) := F (w, t) has the same endpoints as γ.
By assumption |γ′(t)|g is a positive constant. Hence, if W is small enough,
then all curves γw are timelike.

The map F is a C1,1-diffeomorphism onto the image outside the boundary
points γ(±r0). For sufficiently small W the map

w → Lw := L(γw) :=
∫ r0

−r0

√

g(γ′w(t), γ
′
w(t)) dt

is Lipschitz continuous.
We can follow the classical computation for the first derivative of the

length, cf. e.g. [O’N83, Prop. 10.2] or [Gro02, Ch. 3]. We see that for almost
all small w ∈ W the derivative ∂

∂s |s=ρLsw exists for almost all small ρ and
can be computed by the usual formula

∂

∂s

∣
∣
∣
∣
s=ρ

Lsw =

∫ r0

−r0

f(t)g(w, ṽ′ρw(t) + Γγρw(t)(ṽρw(t), γ
′
ρw(t)))dt

where ṽρw(t) :=
γ′

ρw(t)

|γ′

ρw(t)| .
We claim that for almost all w ∈ O this expression is positive for almost

all small ρ > 0 (and we only consider such ρ with ρ ·O ⊂ W ). Indeed for
such w we have

∂

∂s

∣
∣
∣
∣
s=ρ

Lsw ≥
∫ r0

−r0

f(t)g(w, ṽ′0(0) + Γvρw(t)(ṽρw(t), γ
′
ρw(t)))dt

− L
(
∫ r0

−r0

∥
∥ṽ′0(t)− ṽ′0(0)

∥
∥ dt−

∫ r0

−r0

∥
∥ṽ′ρw(t)− ṽ′0(t)

∥
∥ dt

)
.
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By continuity of ṽ′ρw(t) in ρ (at times of existence) and the constant
Lorentzian speed |vt| of γ, the integrand of the last term can be made smaller
than ϵ/16|vt| by choosing ρ small enough. The second term can be estimated
with (4.2). Hence

∂

∂s

∣
∣
∣
∣
s=ρ

Lsw ≥ 1

2|vt|

∫ r0/2

−r0/2
g
(
w, ṽ′0(0) + Γvρw(t)(γ

′
ρw(t), γ

′
ρw(t))

)
dt− C

r0ϵ

|vt|

with C < 1
2 . By Lipschitz continuity of g and boundedness of Γ the same

estimate holds for g0 instead of g, if we choose r0 much smaller than ϵ. By
continuity in ρ and our choice of w we obtain

∂

∂s

∣
∣
∣
∣
s=ρ

Lsw ≥ r0ϵ

2|vt|
− C

r0ϵ

|vt|
> 0

for almost all sufficiently small ρ > 0. Thus, Lρw = L(γρw) > L(γ) for almost
all sufficiently small ρ, in contradiction to the maximality of γ. This finishes
the proof of Proposition 4.1. □

5. C
1,α curves

The following lemma is a variant of [CH70, Lem. 2.1], modified for our
purposes.

Lemma 5.1. Let γ : [a, b] → R
n be a bilipschitz curve parametrized by ar-

clength. Let 0 < α ≤ 1 be fixed. Then the following are equivalent:

1) The curve γ is C1,α.

2) There exists some C ≥ 1 such that for all 0 ≤ h ≤ 1
C and all intervals

[t, t+ h] ⊂ [a, b] the image of the restriction γ([t, t+ h]) is contained in
the tube BC·h1+α([γ(t), γ(t+ h)]) of radius C · h1+α around the linear
segment between γ(t) and γ(t+ h).

Proof. If γ is C1,α, then there exists some C > 1 such that for all small h
and all r ∈ [t, t+ h] we have (see [LY06, Lemma 2.1])

∥h · γ′(r)− (γ(t)− γ(t− h))∥ ≤ C · h1+α .

Dividing by h and integrating from t to r we deduce

γ(r) = γ(t) +
r − t

h
· (γ(t+ h)− γ(t)) + q(r) ,
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where ∥q(r)∥ ≤ C · h1+α. Since q(r) bounds the distance to the segment
between γ(t) and γ(t+ h), this proves that (1) implies (2).

Assume (2) and let L denote the biLipschitz constant of γ, i.e. |t2 − t1| ≤
Ld(γ(t1), γ(t2)). Set X = γ([a, b]) and ϵ := h/L. Consider arbitrary points
x1, x2 ∈ X with ∥x1 − x2∥ ≤ ϵ.

Considering the projection of the part X ′ of γ between x1 and x2 onto
the segment [x1, x2] we find a point p in X ′ which is projected onto the
midpoint m between x1 and x2. By assumption d(p,m) ≤ C · d1+α(x1, x2).

By Pythagoras, we deduce that for i = 1, 2

d(xi, p) ≤
1

2
d(x1, x2) · (1 + 4C2d2α(x1, x2))

By [Lyt05, Proposition 1.1] and [Lyt05, Theorem 1.2] there exists some ϵ̄ > 0
such that all pairs of points in X at distance less than ϵ̄ are connected in X
by a C1,α-curve parametrized by arclength. Since γ is injective, this curve
must coincide with γ, thus finishing the proof. □

6. Quantitative triangle inequality

Recall that vectors u, v ∈ C+ in the positive causal cone

C+ = {v = (vt, vx) ∈ R× R
n = R

n+1 | ⟨v, v⟩ ≥ 0, vt > 0}

of the standard Minkowski space (Rn+1, ⟨·, ·⟩) with Minkowski product
⟨u, v⟩ = utvt − uTx vx and norm |v| =

√

|⟨v, v⟩| satisfy the reversed triangle
inequality

(6.1) |u+ v| ≥ |u|+ |v|

as well as the reversed Cauchy-Schwarz inequality ⟨u, v⟩ ≥ |u| |v|, see e.g.
[O’N83, Prop. 5.30]. Here we describe a quantitative version of the reversed
triangle inequality:

Lemma 6.1. For A = 1
10 and for all u, v ∈ C+, the inequality

(6.2) |u+ v|2 ≥ |u+ v| (|u|+ |v|) +A ·D2

holds, where D is the Euclidean distance from u and v to the Euclidean line
spanned by u+ v.
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Proof. By (6.1) we can suppose that u and v are linearly independent. By
homogeneity and by the O(n)-invariance in the spatial part of Rn+1 we can
assume that n = 2 and that

u = (t, x, y), v = (1, z, 0)

with 0 ≤ t ≤ 1 , 0 ≤ z ≤ 1 and x2 + y2 ≤ t2. Using the Cauchy-Schwarz and
the reversed triangle inequality we compute

|u+ v| − |u| − |v| = |u+ v|2 − (|u|+ |v|)2
|u+ v|+ |u|+ |v|

≥ ⟨u, v⟩ − |u| |v|
|u+ v|

≥ ⟨u, v⟩2 − |u|2 |v|2
2 |u+ v| ⟨u, v⟩

=
(t− xz)2 − (t2 − x2 − y2)(1− z2)

2 |u+ v| ⟨u, v⟩

=
(tz − x)2 + y2(1− z2)

2 |u+ v| ⟨u, v⟩ .

We also observe that for such u and v

D2 =
∥u× v∥2

∥u+ v∥2
=

(tz − x)2 + y2(1 + z2)

∥u+ v∥2
≤ (tz − x)2 + y2(1 + z2),

because ∥u+ v∥ ≥ 1. We deduce that

(6.3)
|u+ v|2 − |u+ v|(|u|+ |v|)

D2
≥ (tz − x)2 + y2(1− z2)

(tz − x)2 + y2(1 + z2)
· 1

2(t− zx)

For fixed t, z, x, the term on the right is monotone decreasing in y2. Thus,
we may assume that y2 is as large as possible, y2 = t2 − x2. Then

(tz − x)2 + y2(1− z2) = (t− zx)2

and the right hand side of (6.3) is at least

t− zx

(tz − x)2 + (t2 − x2)(1 + z2)
≥ 1

2
· t− zx

|tz − x|+ (t− x) · 2 · 2 .



✐

✐

“4-Saemann” — 2022/9/6 — 13:25 — page 2156 — #16
✐

✐

✐

✐

✐

✐

2156 C. Lange, A. Lytchak, and C. Sämann

Since t− zx ≥ |tz − x| and t− zx ≥ t− x we arrive at

|u+ v|2 − |u+ v|(|u|+ |v|)
D2

≥ t− zx

10 · (t− zx)
=

1

10
.

This finishes the proof. □

We can now easily derive the following conclusion:

Corollary 6.2. For any compact set S of Lorentzian bilinear forms λ :
R
n × R

n → R
n there exists a constant A = A(S) such that for any λ ∈ S

the following holds true:
If γ : [a, b] → R

n is an λ-timelike curve, if w is the vector γ(b)− γ(a)
and if D denotes the maximal Euclidean distance of a point on γ from the
Euclidean line through γ(a) and γ(b), then

(6.4) |w|λ ≥ Lλ(γ) +
A ·D2

|w|λ
Proof. Any λ in S can be brought by a bounded linear transformation to
the standard Minkowski product. By compactness, all these transformations
change the Euclidean norm (and thus the distance D appearing in the for-
mula) by a uniformly bounded factor. Thus it suffices to prove the statement
for the standard Minkowski product ⟨·, ·⟩.

We first observe that in Minkowski space all chords of a timelike curve
are timelike as well. Now, by homogeneity, we can assume γ(a) = 0. We
consider the point u on γ with maximal distance to the line through 0 and
γ(b) = w. Then for v = w − u we can apply Lemma 6.1, to deduce

|w| ≥ |u|+ |v|+ AD2

|w| .

Since straight lines in Minkowski space maximize Lorentzian length, we have
L(γ) ≤ |u|+ |v|, and this finishes the proof. □

7. First step to regularity

We now embark on the proof of Theorem 1.1. The statement is local and we
will restrict from now on to a chart U as in Section 2.

We will need to compare Lorentzian lengths with respect to different
Lorentzian metrics and will rely on the following observation, a direct analog
of [LY06, Lemma 3.1]. The proof is obtained by integration.
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Lemma 7.1. Let ε > 0 be sufficiently small and let g1, g2 be Lorentzian
metrics on U such that |g1(v, v)− g2(v, v)| < ε for all points in U and all unit
vectors v. Let γ : [0, δ] → U be a curve parametrized by Euclidean arclength
which is causal with respect to g1 and g2. Then the Lorentzian lengths of γ
with respect to g1 and g2 can be compared as |L1(γ)− L2(γ)| ≤ δ · √ε.

In this section we are going to prove

Proposition 7.2. Any maximal curve γ : I → U in U parametrized by Eu-
clidean arclength is C1, 1

4 .

Proof. Assume the contrary. By Lemma 5.1 we find for any arbitrarily large
C > 0, an arbitrarily small h > 0, some subinterval [t, t+ h] ⊂ I, and some
point q on γ([t, t+ h]) such that

(7.1) D ≥ Ch1+
1

4 ,

whereD denotes the Euclidean distance from q to the Euclidean line between
γ(t) and γ(t+ h).

The vector

u :=
γ(t+ h)− γ(t)

h

satisfies ∥u∥ ≤ 1 since γ is 1-Lipschitz.
We consider the restriction γt,h = γ|[t,t+h] and the curve γ̃ = γ̃t,h : [0, h] →

U given by γ̃(s) := γ(t) + s · u. The curve γ̃ has the same endpoints as the
maximal curve γt,h. A contradiction proving Proposition 7.2 will be provided
by showing that for C ≥ C(L) large enough the curve γ̃ is timelike and has
larger Lorentzian length than γt,h.

We may assume that t = 0, that γ(t) = 0 ∈ U and that g0 is the standard
Minkowski product g0 = ⟨·, ·⟩, see Section 2. We set γh := γt,h. We consider
the auxiliary Lorentzian products on R

n given by

gh(v, w) = ⟨v, w⟩+ 4 · L · h · vt · wt ,

where as before vt denotes the first coordinate of v ∈ R
n.

Then, for all x in R
n with ∥x∥ ≤ h and for all unit vectors v ∈ R

n we
have

1) |gx(v, v)− gh(v, v)| ≤ 5Lh, and

2) if gx(v, v) > 0 then gh(v, v) > 0,
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compare [CG12, Thm. 1.15]. In particular, any g-causal curve in the ball
Bh(0) ⊂ R

n is gh-causal.
Hence, the curve γh is timelike with respect to the Minkowski product

gh. Thus also u and the straight segment γ̃ are gh-timelike.
Note that all our auxiliary Lorentzian products gh are contained in a

compact set of Lorentzian products, fixed independently of h. Thus, we find
a constant A > 0 such that the conclusion of Corollary 6.2 is valid for all
such gh, and so we deduce:

(7.2) Lgh(γ̃) = |γ(h)− γ(0)|gh = h · |u|gh ≥ Lgh(γ) +
A ·D2

h · |u|gh

.

Inserting D ≥ C · h1+ 1

4 , we obtain

|u|gh ≥
√
A ·D
h

≥
√
A · C · h 1

4 .

Thus, for all x ∈ Bh(0) we have

gx(u, u) ≥ AC2 · h 1

2 − 5L · h ≥ 1

2
AC2 · h 1

2

for all sufficiently small h. Therefore the curve γ̃ is g-timelike. Moreover, we
have

L(γ̃)− L(γh) =(Lgh(γ̃)− Lgh(γh))

+ (L(γ̃)− Lgh(γ̃)) + (Lgh(γh)− L(γh))
︸ ︷︷ ︸

=:R

.

By Lemma 7.1, we deduce that the absolute value of R is at most 2
√
5Lh

3

2 .
Since γ is maximal , L(γ̃)− L(γh) ≤ 0. Applying (7.2), we find a constant
C1 > 0 such that

AD2

h|u|gh

≤ C1 · h
3

2

AD2 ≤ C1 · h
5

2 · |u|gh

Since |u|gh ≤ 2 we deduce that D ≤ C2 · h1+
1

4 for some constant C2 (inde-
pendent of γ, t and h), and thus a contradiction, if C has been chosen large
enough. This finishes the proof. □

Easily adapting the arguments we provide
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Proof of Proposition 1.3. The proof follows literally as above by redefining
gh as

gh(v, w) = ⟨v, w⟩+ 4 · L · hα · vt · wt ,

and replacing 1
4 by α

4 in (7.1). □

8. Regularity away from lightlike vectors

In this section we prove, again following [LY06]:

Theorem 8.1. Let γ : I → U be a maximal causal curve parametrized by
Euclidean arclength. If |γ′(t)|g > 0 for all t ∈ I, then γ is C1,1.

Proof. The statement is local and we may assume that I is compact. By
continuity of γ′, Proposition 7.2, we find some e > 0 such that |γ′(t)|g > 2 · e,
for all t ∈ I. Restricting γ to a sufficiently small subinterval, we see that all
linear segments between points on γ are timelike curves.

Assume that γ is not C1,1. Relying on Lemma 5.1 and arguing as in
the proof of Proposition 7.2, we arrive at the following situation. For an
arbitrarily large C > 0 we find an arbitrarily small h > 0 with the following
property. The restriction of γ to an interval [a, a+ h] ⊂ I contains a point
at distance

(8.1) D ≥ C · h2

from the linear segment η connecting γ(a) and γ(a+ h). We may assume
without loss of generality that a = 0 and γ(0) = 0 ∈ U .

Denote by u the Euclidean unit vector

u :=
γ(h)− γ(0)

∥γ(h)− γ(0)∥

and let the hyperplane H denote the g0-orthogonal complement of u in
R
n. Since u is timelike, the hyperplane H consists of g0-spacelike vectors.

Moreover, by compactness, we find some constant C1 > 0, depending only
on e, such that

−g0(w,w) ≤ C1 · ∥w∥2

for all w ∈ H. By continuity of g, we may assume, adjusting C1, that also
for all x ∈ R

n with ∥x∥ ≤ h and all w ∈ H we have the inequality

(8.2) −gx(w,w) ≤ C1 · ∥w∥2
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Consider the unique parametrization η : [0, h] → U of the linear segment
η such that

v(t) := γ(t)− η(t)

is g0-orthogonal to u. In other words, η(t) is the g0-orthogonal projection of
γ(t) onto the line spanned by u.

The curves η and v are well-defined and C1, 1
4 . Moreover, v(0) = v(h) = 0.

By the uniform continuity of v′, for an arbitrarily small ρ > 0, the inequality

∥v′(t)∥+ ∥v(t)∥ < ρ

holds true for all t ∈ [0, h] once h has been chosen small enough, compare
[LY06, Lemma 2.1].

For sufficiently small h (and thus, sufficiently small ρ), this implies

(8.3)
1

2
<

∥
∥η′(t)

∥
∥ < 2 and |η′(t)|γ(t) > e .

Now we can estimate for all h small enough:

∣
∣η′(t)

∣
∣
η(t)

− |γ′(t)|γ(t)

=
∣
∣η′(t)

∣
∣
η(t)

−
√

|η′(t)|2γ(t) + 2gγ(t)(η′(t), v′(t)) + gγ(t)(v′(t), v′(t))

≥
∣
∣η′(t)

∣
∣
η(t)

−
∣
∣η′(t)

∣
∣
γ(t)

−
gγ(t)(η

′(t), v′(t))

|η′(t)|γ(t)
−

gγ(t)(v
′(t), v′(t))

2 |η′(t)|γ(t)

≥ −2L · ∥v(t)∥ −
∣
∣gγ(t)(η

′(t), v′(t))
∣
∣

e
−

gγ(t)(v
′(t), v′(t))

2e
.

Here we have used
√
1 + x ≤ 1 + x

2 for x > −1 in the first inequality and the
L-Lipschitz continuity of g in the second inequality.

We estimate the second and third summand separately. In order to deal
with the second term, we observe that for a unit vector w ∈ H:

∣
∣gγ(t)(u,w)

∣
∣ ≤ L · ∥γ(t)∥ ≤ L · t

due to g0(u,w) = 0, the Lipschitz continuity of g and the 1-Lipschitz conti-
nuity of γ. Therefore,

−
∣
∣gγ(t)(η

′(t), v′(t))
∣
∣ ≥ −2L · t ·

∥
∥v′(t)

∥
∥ .
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Estimating the third summand by (8.2) we find

∣
∣η′(t)

∣
∣
η(t)

− |γ′(t)|γ(t) ≥ −2L ∥v(t)∥ − 2L

e
· t

∥
∥v′(t)

∥
∥+

C1

2e

∥
∥v′(t)

∥
∥2

Now we integrate over [0, h] and use the maximality of L(γ) to deduce that
the integral of the right hand side form 0 to h is non-positive. Thus, for a
constant C2 > 0 (depending only on e and L)

(8.4)

∫ h

0

∥
∥v′(t)

∥
∥2 dt ≤ C2

∫ h

0
(∥v(t)∥+

∥
∥v′(t)

∥
∥ t) dt .

Since v(0) = v(h) = 0 we use integration by parts to deduce

∫ h

0
∥v(t)∥ dt = −

∫ h

0
(∥v(t)∥)′ · t dt .

Thus, using |(∥v(t)∥)′| ≤ ∥v′(t)∥ we obtain

∫ h

0
∥v′(t)∥2 dt ≤ 2C2 ·

∫ h

0
∥v′(t)∥ · t dt .

We apply Cauchy-Schwarz to deduce

(∫ h

0

∥
∥v′

∥
∥2
)2

≤ 4C2
2

(∫ h

0

∥
∥v′

∥
∥2
)

·
(∫ h

0
t2 dt

)

=
4

3
C2
2 · h3 ·

∫ h

0

∥
∥v′

∥
∥2 .

Thus, we obtain

4

3
C2
2h

3 ≥
∫ h

0

∥
∥v′

∥
∥2 ≥ 1

h
·
(∫ h

0
∥v′∥

)2

≥ 1

h
· v20 ,

with v0 = maxt∈[0,h] ∥v(t)∥. Thus, ∥v(t)∥ ≤ 2C2 · h2 for all t ∈ [0, h].
This provides a contradiction with (8.1) and finishes the proof of Theo-

rem 8.1. □

9. Timelike maximal curves

The following result proves and strengthens Proposition 1.2.

Proposition 9.1. Let γ : [0, r] → U be a maximal curve parametrized by
Euclidean arclength. If L(γ) = 0 then |γ′(t)|g = 0 for all t.
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If L(γ) > 0 then γ is C1,1. Moreover, for all t ∈ [0, r],

(9.1) |γ′(t)|g ≥ K · L(γ)
r

> 0 ,

where the positive constant K depends only on U . The curve γ admits
parametrizations with constant Lorentzian velocity and any such parametriza-
tion solves the geodesic equation in the sense of Filippov.

Proof. By Proposition 7.2, γ is C1. If L(γ) = 0 then |γ′(t)|g = 0, for almost
all t ∈ [0, r]. By continuity of γ′, this equality holds for all t.

Assume L(γ) > 0. Let [a0, b0] ⊂ [0, r] be such that |γ′(t)|g > 0, for all
t ∈ [a0, b0]. By Theorem 8.1, the restriction γ : [a0, b0] → U is C1,1.

For any interval [a, b] ⊂ R and a non-decreasing Lipschitz function f :
[a, b] → [a0, b0] the reparametrization

γ̃ = γ ◦ f : [a, b] → U

has constant Lorentzian velocity ℓ > 0 if and only if

(9.2) f ′(t) =
ℓ

|γ′(f(t))|g
,

for almost all t ∈ [a, b]. This is a differential equation for f which has a
unique maximal solution with f(a) = a0. Integrating we see that f(b0) = b
if and only if

ℓ · (b− a) = L(γ|a0,b0]) .

The function f ′(t) is Lipschitz. Hence f and, therefore, γ̃ are C1,1.
Due to Proposition 4.1, γ̃ solves the geodesic equation in the sense of

Filippov. Applying Lemma 3.1, for all t ∈ [a, b],

f ′(t) = ∥γ̃′(t)∥ ≤ eCr0 − 1

C
· 1

b− a
,

where the constant C = C(U) > 0 depends only on the Lipschitz constant of
g and where r0 = b0 − a0 denotes the Euclidean length of γ|[a0,b0]. Inserting
into (9.2), we observe for all t0 ∈ [a0, b0]

|γ′(t0)|g ≥ ℓ · (b− a) · C

eCr0 − 1
=

Cr0
eCr0 − 1

· 1

r0
· L(γ|[a0,b0]) .
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Note that Cr0
eCr0−1 is decreasing in r0. Thus, for all t0 ∈ [a0, b0],

(9.3) |γ′(t0)|g ≥ K ·
L(γ|[a0,b0])

r0
,

where the constant K = K(U) denotes K = Crmax

eCrmax−1 and rmax is the max-
imal Euclidean length of causal curves in U (which is bounded by twice the
diameter of U).

It remains to prove that the set T of all times t ∈ [0, r] with |γ′(t)|g = 0
is empty. Assuming the contrary and using L(γ) > 0, we find a subinterval
[a1, b1] ⊂ [0, r] such that |γ′(t)|g is positive for all t ∈ (a1, b1) and vanishes
at one of the boundary points a1 or b1.

We let [a0, b0] ⊂ (a1, b1) converge to [a1, b1]. Applying (9.3) to the in-
tervals [a0, b0], we find a uniform positive lower bound on |γ′(t)|g for all
t ∈ (a1, b1). By continuity, this positive bound is valid at the boundary points
a1 and b1 as well. This contradiction finishes the proof. □

Remark 9.1. As the proof shows the constant K can be chosen arbitrarily
close to 1, if U is chosen sufficiently small.

10. Final arguments

Now we are in position to finish the proof of Theorem 1.1. The remaining
control of lightlike curves is obtained by a limiting argument, independently
discovered in [Sch20]:

Proof of Theorem 1.1. All statements of the theorem are local. Thus we may
restrict to a sufficiently small chart U satisfying the assumptions of Section 2.

We call a causal curve γ in U tame if γ is maximal and admits a C1,1-
parametrization solving the geodesic equation in the sense of Filippov. We
need to prove that all maximal curves are tame. Due to Proposition 9.1, all
maximal curves of positive Lorentzian length are tame.

We first claim that any pair x, y ∈ U of causally related points is con-
nected by a tame curve. Without loss of generality let y be in the future of
x. We find a sequence yn converging to y, such that y and yn are related by a
future directed timelike curve. Then x and yn are related by future directed
causal curves of positive Lorentzian length. By global hyperbolicity of U we
find a maximal curve γn in U connecting x and yn. The curve γn satisfies
L(γn) > 0. By Proposition 9.1, we can parametrize γn on the interval [0, 1]
with constant Lorentzian speed, so that it solves the geodesic equation in
the sense of Filippov.
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By global hyperbolicity of U and the uniform bound on velocities pro-
vided by Lemma 3.1, the curves γn converge pointwise, after choosing a
subsequence, to a future directed causal curve γ : [0, 1] → U connecting x
and y. Due to Corollary 3.2, this limiting curve γ is tame.

Let now γ be an arbitrary maximal curve in U . When parametrized
by Euclidean arclength, the curve γ : [0, r] → U is C1 by Proposition 7.2. If
L(γ) > 0 then γ is tame by Proposition 9.1.

Thus we may and will assume L(γ) = 0. For any natural m > 1 and
0 ≤ i ≤ m, consider points xi = γ( i

m · r) subdividing γ intom pieces of equal
length. By the above, we find for any i = 0, ...,m− 1 a tame curve γim con-
necting xi and xi+1. Consider the concatenation γm of the curves γim for
i = 0, ...,m− 1. The curve γm is a causal curve connecting x = γ(0) and
y = γ(r).

Clearly, for any parametrizations of the curves γm with uniformly
bounded speed, the curves subconverge pointwise to a reparametrization
of γ. Hence, due to Lemma 3.1 and Corollary 3.2, in order to prove that γ
is tame, we only need to verify that all curves γm are tame.

Since γ is maximal and L(γ) = 0, any causal curve connecting x and
y is maximal. In particular, γm is maximal. By Proposition 7.2, γm is C1

when parametrized by Euclidean arclength. By construction, all γim admit
parametrizations solving the geodesic equation in the sense of Filippov.

Any affine reparametrization of a C1,1-curve solving the geodesic equa-
tion in the sense of Filippov is again a solution of the geodesic equation. Due
to Lemma 3.1, we can find such parametrization, having any prescribed pos-
itive Euclidean velocity at the starting point.

We now start with any parametrization γ0m : [0, t1] → U solving the
geodesic equation and proceed by induction on i, to find a parametrization
γim : [ti, ti+1] → U solving the geodesic equation and such that ∥(γim)′(ti)∥ =
∥(γi−1

m )′(ti)∥.
The arising concatenation γ̃m : [0, tm] → U is a reparametrization of the

C1-curve γm with the following properties. The restriction of γ̃m to any of
the subintervals [ti, ti+1] is C1,1 and solves on this subinterval the geodesic
equation in the sense of Filippov. At the boundary points ti the incoming
and the outgoing directions of γ̃m have the same norms. Moreover, since
γm is C1, these incoming and outgoing directions are parallel vectors, hence
they coincide.

Therefore, the derivative γ̃′m is continuous. Since γ̃′m is Lipschitz continu-
ous on the subintervals [ti, ti+1], the derivative γ̃

′
m is Lipschitz continuous on
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all of [0, tm]. Thus, γ̃m is a C1,1-curve. Clearly, γ̃m solves the geodesic equa-
tion almost everywhere on any interval [ti, ti+1], hence almost everywhere
on the whole interval of definition [0, tm].

This shows the tameness of γm and finishes the proof. □

References
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Inextendibility of spacetimes and Lorentzian length spaces. Ann.
Global Anal. Geom., 55(1):133–147, 2019.

[GKSS20] James D. E. Grant, Michael Kunzinger, Clemens Sämann, and
Roland Steinbauer. The future is not always open. Lett. Math.
Phys., 110(1):83–103, 2020.

[GL17] Gregory J. Galloway and Eric Ling. Some remarks on the C0-
(in)extendibility of spacetimes. Ann. Henri Poincaré, 18(10):
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Department of Mathematics, University of Toronto

Toronto, Ontario, M5S 2E4, Canada

E-mail address: clange@math.uni-koeln.de

E-mail address: alytchak@math.uni-koeln.de

E-mail address: clemens.saemann@utoronto.ca



✐

✐

“4-Saemann” — 2022/9/6 — 13:25 — page 2170 — #30
✐

✐

✐

✐

✐

✐


	Introduction
	Notation and conventions
	Filippov geodesics
	First variational formula
	C1, curves
	Quantitative triangle inequality
	First step to regularity
	Regularity away from lightlike vectors
	Timelike maximal curves
	Final arguments
	References

