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1. Introduction

Quantization plays important roles in both physics and in mathematics. Two
outstanding approaches are the deformation quantization ([1–3, 11, 21, 25])
and geometric quantization [19,22,30,31,33],1 which provide mathematical
descriptions of the algebra of quantum observables and the Hilbert space
associated to a quantum mechanical system respectively. This paper is an

1These lists of references are certainly not meant to be exhaustive.
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attempt to understand the intriguing relationship between these two quan-
tization schemes. More precisely, we will construct Hilbert space represen-
tations of deformation quantization algebras. In particular, this gives an
answer to an open problem in [5, Sect. 9].

To begin with, let us consider a symplectic vector space X = R2n

equipped with the standard symplectic form ω =
∑n

j=1 dxj ∧ dyj . A com-
plex polarization (i.e., a complex structure) identifiesX with Cn with coordi-
nates zj = xj +

√
−1yj ’s. Geometric quantization of Cn gives the Bargmann-

Fock space HL2(Cn, µℏ) consisting of L2 integrable entire holomorphic func-
tions with respect to the density µℏ(z) := (πℏ)−ne−|z|2/ℏ. A smooth function
f = f(z, z̄) ∈ C∞(X) acts on HL2(Cn, µℏ) as a Toeplitz operator Tf defined
by Tf = Π ◦mf , where Π is the orthogonal projection of smooth functions
to HL2(Cn, µℏ) and mf is the multiplication by f . Typical examples are
Tzj = mzj and Tz̄j = ℏ

∂
∂zj

. Composition of these operators defines a star

product via Tf ◦ Tg = Tf⋆g. This endows C
∞(X)[[ℏ]] with a noncommutative

algebra structure, or a deformation quantization of (X,ω), and HL2(Cn, µℏ)
is naturally its representation. An algebraic formulation of this deformation
quantization and geometric quantization on Cn is given by the Wick algebra
and its holomorphic Bargmann-Fock representation:

Definition 1.1. The Wick algebra is WCn := C[[y, ȳ]][[ℏ]] equipped with
the multiplication:

(1.1) f ⋆ g := exp

(
−ℏ

n∑

i=1

∂

∂yi

∂

∂ȳ′i

)
(f(y, ȳ)g(y′, ȳ′))|y=y′ .

On the holomorphic Bargmann-Fock space

FCn := C[[y1, · · · , yn]][[ℏ]],

the Toeplitz operator associated to a monomial yi1 · · · yik ȳj1 · · · ȳjl is the
differential operator acting on s ∈ FCn as
(1.2)

(yi1 · · · yik ȳj1 · · · ȳjl)⊛ s :=

(
ℏ · ∂

∂yj1

)
◦ · · · ◦

(
ℏ · ∂

∂yjl

)
◦myi1 ···yik (s).

In other words, holomorphic polynomials are mapped to creation operators
and anti-holomorphic ones are mapped to annihilation operators. This as-
signment is also commonly known as the Wick normal ordering.



✐

✐

“1-Chan” — 2022/9/21 — 2:02 — page 3 — #3
✐

✐

✐

✐

✐

✐

Geometric representations of the BT quantization 3

We also have the anti-holomorphic Bargmann-Fock representation of
WCn on F̄Cn := C[[ȳ1, · · · , ȳn]][[ℏ]], where the operator associated to a mono-
mial is given by
(1.3)

(yi1 · · · yik ȳj1 · · · ȳjl)⊛̄s := mȳj1 ···ȳjl ◦
(
−ℏ · ∂

∂ȳi1

)
◦ · · · ◦

(
−ℏ · ∂

∂ȳik

)
(s),

namely, holomorphic polynomials are now mapped to annihilation operators
while anti-holomorphic ones give creation operators.

In [5], Bordemann and Waldmann showed that the representation F̄Cn

is isomorphic to the GNS representation of WCn . Let us briefly recall the
construction of GNS states: the delta functional

δ : WCn → C[[ℏ]]

defined by taking the constant term induces the Gelfand ideal

J := {α ∈ WCn : δ(ᾱ ⋆ α) = 0}.

Then the quotient WCn/J is naturally a representation of WCn via left
multiplication. It was shown in [5, Proposition 7] that WCn/J ∼= F̄Cn as
representations of WCn .

It is a more interesting and difficult problem to find representations of
deformation quantization algebras for general Kähler manifolds. Bordemann
and Waldmann generalized their construction of the GNS representation (or
the anti-holomorphic Bargmann-Fock representation) to an arbitrary Kähler
manifold X by using their previous construction of Wick type Fedosov star
products [4]. They obtained a family of GNS representations parametrized
by points inX, and raised the following interesting question which motivates
the work in this paper:

Question 1.2 (problem iv in Sect. 9 in [5]). Are the prequantum
line bundles of geometric quantization over a compact prequantizable Kähler
manifold related to the GNS construction?

For the flat space X = Cn, we have seen that the Toeplitz operators and
the GNS construction correspond to “conjugate” representations of WCn

defined in (1.2) and (1.3) respectively. Note that these two representations
are not isomorphic, since holomorphic polynomials act on FCn and F̄Cn as
creators and annihilators respectively. In this paper, we will see that it is ac-
tually the generalization of the holomorphic Bargmann-Fock representation
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to prequantizable Kähler manifolds which encode the geometry of prequan-
tum line bundles.

On such a Kähler manifold X, there exists a prequantum line bundle L

whose curvature FL satisfies
√
−1
2π FL = ω. Geometric quantization of (X,mω)

produces the Hilbert spaceH0(X,L⊗m), the space of holomorphic sections of
L⊗m. To a smooth function f ∈ C∞(X), we can, as in the flat case, associate
the Toeplitz operator

Tf,m := Πm ◦mf : H0(X,L⊗m) → H0(X,L⊗m),

where mf is multiplication by f and Πm is the orthogonal projection from
the space of L2 sections L2(X,L⊗m) to H0(X,L⊗m).

An important result in Berezin-Toeplitz quantization is that this gives
rise to a star product ⋆BT , and hence the deformation quantization algebra
(C∞(X)[[ℏ]], ⋆BT ) [3, 18, 29]:

f ⋆BT g :=
∑

i≥0

ℏ
iCi(f, g),

such that the following estimates hold:

(1.4) ||Tf,m ◦ Tg,m −
N−1∑

i=0

(
1

m

)i
TCi(f,g),m|| ≤ KN (f, g)

(
1

m

)N
;

here Ci(−,−) are bi-differential operators, || · || is the operator norm, and
KN (f, g) is a constant independent of m. Unlike the flat case, however, the
estimate (1.4) says that the difference

Tf,m ◦ Tg,m − Tf⋆BT g,m

is only asymptotically zero when m tends to infinity. So (C∞(X)[[ℏ]], ⋆BT )
does not quite act on H0(X,L⊗m). In fact we do not even expect a repre-
sentation of (C∞(X)[[ℏ]], ⋆BT ) on the product

∏
mH

0(X,L⊗m).
On the other hand, as m→ ∞, we are scaling X to a large volume

limit. Physically speaking, we would expect the physical system around any
given point z0 ∈ X to behave like one on a flat space. We are going to
see that this is indeed the case. To be more precise, we will use peak sec-
tions Sm,p,r ∈ H0 (X,L⊗m) [32] to appropriately localize the Hilbert spaces
around z0 and produce a representation Hz0 of the Berezin-Toeplitz defor-
mation quantization algebra (C∞(X)[[ℏ]], ⋆BT ).
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In a suitably chosen coordinates (and frame of L) around z0, Sm,p,r
is equal to the monomial zp11 · · · zpnn up to order 2r − 1. Because of the
error terms, the peak sections in

∏
mH

0(X,L⊗m) with a fixed r behave in
a compatible way with the actions of the operators Tzj = mzj and Tz̄j =
ℏ
d
dzj

around z0 only up to order 2r − 1, which is not enough to produce a

representation of (C∞(X)[[ℏ]], ⋆BT ). To construct our representation Hz0 ,
we need to find a clever way to increase the order r of Taylor expansions at
z0 to infinity when the choices of the peak sections Sm,p,r are changing with
r.

To achieve this, we consider a sum

∑

m

αm,r ∈
∏

m

H0(X,L⊗m),

or a double sequence {αm,r} of peak sections for different tensor powers
L⊗m’s, for which we are only keeping track of the Taylor expansion around
z0 up to order 2r − 1. A key observation is that, using asymptotics of in-
ner products of peak sections, we can show that {αm,r} defines an element
in
∏
mH

0(X,L⊗m) with more and more terms of their Taylor expansions
around z0 becoming identical if the following condition holds: there exists a
sequence of complex numbers {ap,k}p,k≥0 such that, for each fixed r > 0, we
have the estimates

(1.5) ⟨αm,r −
∑

2k+|p|≤r
ap,k ·

1

mk
· Sm,p,r+1, Sm,q,r+1⟩m = O

(
1

mr+1

)
,

for any multi-index q with |q| ≤ r.
We call such {αm,r} an admissible sequence at z0 (see Definition 3.4).

They span a linear subspace Vz0 ⊂
∏
r

(∏
mH

0(X,L⊗m)
)
. In fact, the coef-

ficients {ap,k} of {αm,r} would already record the whole Taylor expansions
at z0, and this defines an equivalence relation ∼ on Vz0 . The desired Hilbert
space can then be constructed as the sub-quotient

Hz0 := Vz0/ ∼ .

Theorem 1.3 (=Theorem 3.16). The vector space Hz0 is a representation
of the Berezin-Toeplitz deformation quantization algebra (C∞(X)[[ℏ]], ⋆BT ).

One main technical tool we use is the formal integrals defined via the
Feynman-Laplace expansions of oscillatory integrals. This technique was also
applied in earlier studies of deformation quantization on Kähler manifolds
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[17, 28]. In our construction, the formal integrals arise naturally from the
geometry of prequantum line bundles, with which we define an inner product
on Hz0 (with values in C[[ℏ]]) and show that the action of C∞(X)[[ℏ]] on
Hz0 is exactly by the formal Toeplitz operators with respect to this inner
product.

We will prove that our representation possesses various nice properties,
as expected from the physical point of view. First of all, Theorem 3.18 says
that it is local, namely, for any smooth function f ∈ C∞(X), the action of the
Toeplitz operator Tf on Hz0 depends only on the infinite jets of f at z0. Also,
for every real-valued function f , we will show that the operator Tf on Hz0

is self-adjoint in Proposition 3.14. Last but not the least, the representation
is irreducible in a suitable sense, as we will see in Theorem 3.21.

In a sequel to this paper [7], we extend Fedosov’s quantization approach
to construct a module sheaf over the sheaf of algebras of smooth formal
functions under the Berezin-Toeplitz star product. The Hilbert space Hz0

will be seen as a subspace of the stalk of this module sheaf at z0 and we show
that the Hz0 ’s are related to each other via parallel transport by a Fedosov
flat connection. In particular, the action of a smooth formal function f
on Hz0 is the fiberwise holomorphic Bargmann-Fock action of the Taylor-
Fedosov series of f on Wz0 := Ŝym(T ∗Xz0)[[ℏ]].
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2. The Feynman-Laplace Theorem and perturbations of the

Bargmann-Fock space

In this section, we perform local computations which will be needed for prov-
ing Theorem 1.3. We will first introduce an extension of the Wick algebra
by allowing negative powers of ℏ, and later consider a perturbation of the
holomorphic Bargmann-Fock representation.

Throughout this paper, we will use the following notation for multi-
indices: let I = (i1, · · · , in) and J = (j1, · · · , jm) then we set

yI := yi11 · · · yinn , ȳJ := ȳj11 · · · ȳjmn .

We also use the notations: |I| := i1 + · · ·+ in and I! := i1! · · · in!.
Let I, J be multi-indices. We assign a Z-grading on WCn by letting the

monomial ℏkyI ȳJ to have degree 2k + |I|+ |J |. There is an associated de-
creasing filtration on WCn given by the set (WCn)k of power series in WC

whose terms are all of degree ≥ k. In a similar way, we can define a grading
and filtration on both FCn and C[[ℏ]]. Note that this grading is preserved
by both the Wick product and the Bargmann-Fock action.

Definition 2.1. The extended Wick algebra W+
Cn is defined as follows:

• Elements of W+
Cn are given by power series, possibly with negative

powers of ℏ,

• The degrees of terms of an element U ∈ W+
Cn have a uniform lower

bound which could be negative; equivalently, there exists k ≥ 0 so that
every term in ℏk · U has non-negative degree.

• For an element U ∈ W+
Cn , there exists a finite number of terms for any

given nonnegative total degree.

Remark 2.2. The definition of W+
Cn here is different from the one in [11,

p. 224]; in that definition, monomials in W+
Cn must have non-negative total

degrees. Our extension will be important later for proving Theorem 3.21.

Note that W+
Cn is closed under the Wick product. One reason for con-

sidering this extension is to allow the following exponentials:
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Example 2.3. Let H ∈ (WCn)3, i.e., every term in H is of degree at least
3, then the following classical and quantum exponentials both live in W+

Cn :

exp(H/ℏ) = 1 +
H

ℏ
+

1

2!

H ·H
ℏ2

+ · · · ,

exp⋆(H/ℏ) = 1 +
H

ℏ
+

1

2!

H ⋆H

ℏ2
+ · · ·

Notation 2.4. In this paper, we will use the notation eH/ℏ to denote the
classical exponential of H/ℏ.

We can define an extension F+
Cn of the holomorphic Bargmann-Fock

space FCn in a similar way. It is clear that there is a natural extended
Bargmann-Fock action of W+

Cn on F+
Cn . The following lemma shows that

the subspace FCn ⊂ F+
Cn is closed under the action of elements in W+

Cn of a
special form.

Lemma 2.5. Suppose H =
∑

k,|I|≥0,|J |≥0 ℏ
kak,I,J · yI ȳJ ∈ (WCn)3 has no

purely holomorphic terms, i.e., ak,I,0 = 0. Then FCn is closed under the
action of exp(H/ℏ) and exp⋆(H/ℏ).

Proof. Each ȳj in every monomial of H/ℏ acts as ℏ
∂
∂yj , and the ℏ in this

differential operator will cancel with the ℏ in the denominator. So the output
can only have nonnegative powers of ℏ. □

Lemma 2.6. The classical exponential exp(H/ℏ), where H ∈ (WCn)3, can
also be written as a quantum exponential:

exp(H/ℏ) = exp⋆(H ′/ℏ),

with H ′ ∈ W+
Cn. In particular, exp(H/ℏ) is invertible in W+

Cn and

(exp(H/ℏ))−1 = exp⋆(−H ′/ℏ).

Proof. Let A = exp(H/ℏ)− 1 ∈ (WCn)1. ThenH
′ is defined via the following

formal logarithm with respect to the quantum product ⋆:

H ′ =
∞∑

k=1

(−1)k+1

k
Ak,

where Ak = A ⋆ A ⋆ · · · ⋆ A denotes the k-th power with respect to the quan-
tum product. The fact that A ∈ (WCn)1 implies that each term of H ′ is of
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positive degree, and in each degree there are only finitely many terms in H ′,
i.e., H ′ ∈ W+

Cn . □

2.1. Formal Hilbert spaces

In the Kähler geometry setting, we cannot reduce to the local model of
the Bargmann-Fock representation and will need to consider the effect of a
non-flat metric. For this purpose, we need the following theorem:

Theorem 2.7 (Feynman-Laplace). Let X be a compact n-dimensional
manifold (possibly with boundary), and let f be a smooth function attaining
a unique minimum on X at an interior point x0 ∈ X, and assume that the
Hessian of f is non-degenerate at x0; also, let µ = α(x) · eg(x)dnx be a top-
degree form. Then the integral

I(ℏ) :=

∫

X
µe−

1

ℏ
f(x) =

∫

X
α(x) · e

−f(x)+ℏg(x)

ℏ dx1 · · · dxn,

has the following asymptotic expansion as ℏ → 0+:

I(ℏ) ∼
∑

k≥0

ak · ℏk,

where each coefficient ak is a sum of Feynman weights which depends only
on the infinite jets of the functions f, g at the point x0.

More explicitly, each ak is a sum over connected graphs of genus k.
Recall that the genus of a graph γ is the sum of the genera of the vertices in
γ (in our situation, each vertex has genus either 0 or 1, labeled by f(x) and

g(x) respectively, since the integrand is e
f(x)+ℏg(x)

ℏ ), and k = 1− χ(γ) where
χ(γ) denotes the Euler characteristic of γ. The propagator in the Feynman
weights is given by the inverse of the Hessian of f at x0. The following
picture shows a Feynman graph:
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Here every vertex labeled by f must be at least trivalent, and every vertex
labeled by ℏ · g must be univalent. For more details on the Feynman-Laplace
Theorem, we refer the readers to Pavel Mnev’s excellent exposition in [26],
and for a detailed exposition of Feynman graph computations, we refer the
readers to [8].

We will mainly apply the Feynman-Laplace Theorem to a function f(z, z̄)
on a closed disk D2n ⊂ Cn such that the origin 0 ∈ D2n is the unique min-
imum of f and f(0) = 0. So, by taking an appropriate complex coordinate
system z = (z1, · · · , zn) centered at 0, the Taylor expansion of f at the origin
is given by

f(z, z̄) = |z|2 +O(|z|3).

Theorem 2.7 gives an asymptotic expansion of the following integral:

(
√
−1)n

ℏn

∫

D2n

h(z, z̄)e
−f(z,z̄)+ℏ·g(z,z̄)

ℏ dz1dz̄1 · · · dzndz̄n.

Remark 2.8. The above integral clearly depends on the radius of D2n, but
its asymptotic expansion is actually independent of the radius.

Theorem 2.7 implies that the asymptotic expansion of the above integral
depends only on the Taylor expansions of the functions f, g and h at the
origin. We can thus replace these functions by formal power series in WCn ,
and define a formal integral:

Definition 2.9. For ϕ(y, ȳ) ∈ (WCn)3 and h(y, ȳ) ∈ WCn , we define the fol-
lowing formal integral:

1

ℏn

∫
h(y, ȳ) · e

−|y|2+φ(y,ȳ)

ℏ ∈ C[[ℏ]]

via the Feynman rule in Theorem 2.7.

Remark 2.10. We omit the standard differential form (
√
−1)ndz1dz̄1 · · ·

dzndz̄n in the notation of formal integral.

Lemma 2.11. The formal integral preserves the decreasing filtration on
WCn and C[[ℏ]]; more precisely, if h(y, ȳ) ∈ (WCn)k, then the formal integral
lies in (C[[ℏ]])k.
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Proof. The leading term of the formal integral

1

ℏn

∫
h(y, ȳ) · e

−|y|2+φ(y,ȳ)

ℏ ∈ C[[ℏ]]

is the same as that in the free case, i.e., when ϕ = 0. Thus the leading term
of the integral have the same degree as the leading degree of h(y, ȳ). □

Using this formal integral, we can define a Hilbert space in the formal
sense, namely, its inner product takes values in the formal Laurent series
C((

√
ℏ)):

Definition 2.12. On the C((
√
ℏ))-vector space WCn ⊗C[[ℏ]] C((

√
ℏ)), we

define a complex conjugation by extending the complex conjugation on poly-
nomials in Cn:

(
√
ℏ)kaI,Jy

I ȳJ 7→ (
√
ℏ)kāI,J ȳ

IyJ .

Fix ϕ(y, ȳ) ∈ (WCn)3. Then for f, g ∈ WCn((
√
ℏ)), we define their formal

inner product as the following formal integral:

(2.1) ⟨f, g⟩ := 1

ℏn
·
∫
fḡ · e

−|y|2+φ(y,ȳ)

ℏ ,

which is in turn defined using Feynman graph expansions as in Definition 2.9
and takes value in C((

√
ℏ)).

The following are some simple properties of this formal inner product.

Lemma 2.13. Suppose that ϕ is real, i.e., ϕ = ϕ̄. Then the formal inner
product (2.1) is Hermitian, namely, ⟨f, g⟩ = ⟨g, f⟩.

Lemma 2.11 implies the following

Corollary 2.14. The formal inner product of f, g ∈ W+
Cn is a formal power

series in ℏ, i.e., ⟨f, g⟩ ∈ C[[ℏ]].

Remark 2.15. We allow ϕ to have ℏ-dependence. In particular, the fact
that ϕ is of at least degree 3 guarantees that the graph expansion of (2.1)
is valid. In the Kähler geometry setting, f will be given by the logarithm of
the norm of a local holomorphic frame of the prequantum line bundle, and
g will be the logarithm of the volume form.

The following lemma explains the reason for considering an extension of
WCn by C((ℏ)):
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Lemma 2.16. The holomorphic polynomials

yI√
I!ℏ|I|

form a basis of the formal Hilbert space, which is orthonormal modulo ℏ,
i.e.,

⟨ yI√
I!ℏ|I|

,
yJ√
J !ℏ|J |

⟩ = δI,J +O(ℏ).

Proof. The proof for the cases where I = J is obvious since the computation
of the leading term is the same as that in the Bargmann-Fock space. For
the cases where I ̸= J , the terms yI ȳJ cannot be fully contracted using the
quadratic part −|y|2/ℏ. The “interaction” part eϕ/ℏ needs to come in so
that we can get a full contraction which takes value in C[[ℏ]]. Notice that
this contraction preserves the filtration induced by the grading on WCn and
C[[ℏ]]. Now yI√

I!ℏ|I| ,
ȳJ√
J !ℏ|J| have degree 0, and all terms in eϕ/ℏ have degrees

strictly greater than 0. The result follows. □

Corollary 2.17. Given two different multi-indices I ̸= J , we have the fol-
lowing asymptotics:

ℏ
−n
∫
yI ȳJe

−|y|2+φ(y,ȳ)

ℏ = O(ℏmax{|I|,|J |}).

Let ϕ=
∑

k,I,J ℏ
kϕk,I,Jy

I ȳJ , and suppose ϕ satisfies the property that ϕ0,I,J=
0 if either |I| = 1 or |J | = 1. Then we further have the refinement:

ℏ
−n
∫
yI ȳJe

−|y|2+φ(y,ȳ)

ℏ = o(ℏmax{|I|,|J |}).

Proof. LetK = (k1, · · · , kn) be the multi-index given by kl = max{il, jl}, 1 ≤
l ≤ n. The worst scenario is when yI ȳJ together with terms in eϕ/ℏ form a
multiple of yK ȳK so that we get full contraction. These terms coming from
eϕ/ℏ must be a multiple of

ℏ
−l · yK−I ȳK−J

for some l. Thus the leading term of the integral in the statement isO(ℏ|K|−l).
If l ≤ 0, then there is nothing to show since |K| − l ≥ |K| ≥ max{|I|, |J |}.
Thus we assume that l > 0. Since every monomial in ϕ/ℏ contains at least
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one yi’s, it follows that

(2.2) l ≤ |K − I|.

From Lemma 2.16, we know that

ℏ
−n
∫
yI ȳJ · 1

ℏl
yK−I ȳK−J = ℏ

−n
∫
yK ȳK

ℏl
= O

(
ℏ
|K|−l

)
.

The statement follows since |K| − l ≥ |K| − |K − I| = |I|, and also |K| −
l ≥ |J | by a similar argument. For the refinement under the additional con-
dition on ϕ, we only need to notice that the inequality (2.2) can be refined
to

l ≤ |K − I|
2

< |K − I|.
□

We want to define the notion of orthogonal projection and formal Toeplitz
operators using this formal inner product. To do so, we need the following
technical theorem (which is also important in the sequel [7] to this paper):

Theorem 2.18. Suppose ϕ ∈ (WCn)3 contains no purely holomorphic mono-
mials. For any f ∈ WCn, there exists a unique Of ∈ WCn such that

1) For any s ∈ FCn, the element TOf
(s) ∈ FCn satisfies the following equal-

ities:

⟨TOf
(s), yI⟩ = ⟨f · s, yI⟩,

for every multi-index I; here TOf
denotes the Bargmann-Fock action

by Of .

2) IF f is a monomial, then the leading term of Of is exactly f , i.e.,

Of = f + higher order terms.

Proof. Given s ∈ FCn , suppose there exists s′ ∈ FCn such that

(2.3) Tf ·eφ/ℏ(s) = Teφ/ℏ(s′).
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There is the following straightforward computation:

∫ (
eϕ/ℏ · s′

)
· ȳI · e−

|y|2
ℏ =

∫
Teφ/ℏ(s′) · ȳI · e−

|y|2
ℏ

=

∫
Tf ·eφ/ℏ(s) · ȳI · e−

|y|2
ℏ

=

∫ (
f · eϕ/ℏ · s

)
· ȳI · e−

|y|2
ℏ

for any purely antiholomorphic monomial ȳI ; here the first equality follows
from the fact that Teφ/ℏ(s′) is the orthogonal projection of eϕ/ℏ · s′ with
respect to the standard Gaussian measure. So for every multi-index I, we
have ∫

s′ · ȳI · e
−|y|2+φ(y,ȳ)

ℏ =

∫
fs · ȳI · e

−|y|2+φ(y,ȳ)

ℏ .

Hence we only need to solve the equation (2.3) for s′.
By Lemma 2.6, eϕ/ℏ is invertible under the Wick product and its inverse

is:
(
eϕ/ℏ

)−1
= exp⋆

(
−

∞∑

k=1

(−1)k+1

k
(eϕ/ℏ − 1)k

)
.

From the following expansion

−
∞∑

k=1

(−1)k+1

k

(
eϕ/ℏ − 1

)k
= −

∞∑

k=1

(−1)k+1

k

(
ϕ

ℏ
+

1

2!

ϕ2

ℏ2
+ · · ·

)k
,

it is easy to see that each monomial in the expansion of
(
eϕ/ℏ

)−1
satisfies

the following property: in every ℏ−k term, the antiholomorphic components
must have degrees at least k. By a similar argument as in the proof of

Lemma 2.5, we see that there is a well-defined action of
(
eϕ/ℏ

)−1
on FCn .

Therefore we get the following explicit description of s′:

(2.4) s′ = T(eφ/ℏ)−1 ◦ Tf ·eφ/ℏ(s).

The next step is to look at the term Tf ·eφ/ℏ(s) more closely. According to
(1.1), we have

f · eϕ/ℏ = eϕ/ℏ ⋆ f −
∑

k≥1

ℏ
kCk

(
eϕ/ℏ, f

)
.
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Since Ck(−,−) is a bi-differential operator, the term Ck
(
eϕ/ℏ, f

)
is still of

the form eϕ/ℏ · gk(y, ȳ) for some gk ∈ WCn and satisfies the condition that

leading degree of gk − leading degree of f ≥ k.

Thus by an induction on the degree, this procedure can be iterated, and
we can find Of ∈ WCn whose first terms are exactly f such that f · eϕ/ℏ =
eϕ/ℏ ⋆ Of . This implies that

(2.5) Tf ·eφ/ℏ(s) = (Teφ/ℏ ◦ TOf
)(s).

In particular, we see that s′ = TOf
(s). □

By the first statement of this theorem, we can make the following:

Definition 2.19. The orthogonal projection operator

(2.6) πϕ : WCn → FCn = C[[y1, · · · , yn]][[ℏ]].

is defined by requiring that

⟨f, yI⟩ = ⟨πϕ(f), yI⟩

for all multi-indices I; here ⟨−,−⟩ is the inner product defined by equa-
tion (2.1).

We can also define the formal Toeplitz operators:

Definition 2.20. The formal Toeplitz operator Tϕ,f associated to f ∈ WCn

is defined as the composition of multiplication by f and the projection πϕ:

Tϕ,f := πϕ ◦mf .

Theorem 2.18 gives an explicit algorithm to compute Tϕ,f : we only need
to find Of ∈ WCn associated to f , and then Tϕ,f = TOf

. A simple observation
is that if f = f(y) is a holomorphic power series, then Tf is simply the
multiplication mf since then Of = f .

Here we give a description of the adjoint operator of a formal Toeplitz
operator:

Lemma 2.21. Suppose ϕ ∈ WCn is real, i.e., ϕ = ϕ̄. Then for any f ∈ WCn,
the adjoint of the formal Toeplitz operator Tϕ,f is given by Tϕ,f̄ . In particular,
Tϕ,f is self-adjoint if and only if f ∈ WCn is real.
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Proof. According to the definition of formal Toeplitz operators, for any ele-
ments s1, s2 ∈ FCn , we have

⟨Tϕ,f (s1), s2⟩ =
∫
Tϕ,f (s1) · s̄2 · e

−|y|2+φ(y,ȳ)

ℏ

=

∫
f · s1 · s̄2 · e

−|y|2+φ(y,ȳ)

ℏ

=

∫
s1 · f̄ · s2 · e

−|y|2+φ(y,ȳ)

ℏ

= ⟨s1, Tϕ,f̄ (s2)⟩.

□

2.2. Local asymptotics via formal Hilbert space

Let D2n ⊂ Cn be a ball centered at 0, with

dvolD2n := (
√
−1)neψ(z,z̄)dz1dz̄1 · · · dzndz̄n

the volume form. For every smooth function f on D2n, we will let Jf ∈ WCn

denote the Taylor expansion of f at the origin:

Jf :=
∑

I,J≥0

1

I!J !

∂|I|+|J |f
∂zI∂z̄J

(0)yI ȳJ .

The previous algebraic computations together with the Feynman-Laplace
Theorem 2.7 give the following asymptotics as ℏ → 0+:

Theorem 2.22. Suppose φ(z, z̄) is a smooth function on D2n which attains
its unique minimum at the origin. Let f, φ, s be functions on D2n such that
∂̄s = 0, φ has a unique minimum at the origin and satisfies

(2.7) Jφ = |y|2 +
∑

I,J≥2

1

I!J !

∂|I|+|J |φ
∂zI∂z̄J

(0)yI ȳJ .

There exist complex numbers ak,I so that for every fixed multi-index J , we
have the following asymptotics as ℏ → 0:

(2.8)
1

ℏn

∫

D2n

(
f · s−

∑

2k+|I|≤r

1

ℏk
ak,Iz

I

)
· z̄Je−

ϕ(z,z̄)

ℏ dvolD2n = O(ℏr+1).
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In particular, these ak,I ’s only depend on the Taylor expansions of f, s, φ
and ψ at the origin.

Proof. We define a function ϕ = |z|2 − φ(z, z̄) + ℏψ(z, z̄). Then we define
ak,I ’s via the following equation:

∑

k,|I|≥0

ak,Iℏ
k · zI = T(eJφ/ℏ)−1 ◦ TJf ·eJφ/ℏ(Js).

From Theorem 2.7, we have, for any z̄J , the following equality of asymptotic
ℏ-expansions

1

ℏn
·
∫

D2n

f · s · z̄Je−
ϕ(z,z̄)

ℏ dvolD2n =
1

ℏn

∫
Jf · Js · ȳJe

−|y|2+Jφ

ℏ .

On the other hand, there is the following identity by Theorem 2.18:

1

ℏn

∫
Jf · Js · ȳJe

−|y|2+Jφ

ℏ =
1

ℏn

∫ ( ∑

k,|I|≥0

ak,Iℏ
k · yI

)
· ȳJe

−|y|2+Jφ

ℏ .

Now equation (2.8) follows from Corollary 2.17 since the truncated higher
order terms will only contribute to integrals of type o(ℏr+1). □

3. Geometric representations of the Berezin-Toeplitz

quantization

In this section, we construct a family of representations of the Berezin-
Toeplitz deformation quantization on a Kähler manifold X parametrized
by its points, and describe some basic properties such as locality and irre-
ducibility.

The organization of this section is as follows: In Section 3.1, we use Cn as
the motivating example to illustrate the idea behind the general definition
of admissible sequences. In Section 3.2, we construct representations of the
Berezin-Toeplitz deformation quantization using peak sections (whose prop-
erties are reviewed in Appendix A), which reduce the proof of Theorem 1.3
to the local computations in Section 2. In Section 3.3, we prove locality and
(modified) irreducibility of our representations.

3.1. Admissible sequences on Cn

Recall that the prequantum line bundle L on Cn is trivialized by a
global holomorphic frame ⊮. The Hermitian inner product of L⊗m under
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this trivialization is given by

hm(⊮⊗m,⊮⊗m) = e−m·|z|2 .

We would like to define an action of C∞(Cn)[[ℏ]] on FCn such that its re-
striction to polynomials is exactly the Bargmann-Fock action. To do this,
we first apply asymptotic analysis to give an equivalent description of FCn .

First of all, we consider the vector space

V :=
∏

r≥0


∏

m≥0

H0(Cn, L⊗m)


 ,

an element of which is a double sequence α=(αm,r) with αm,r∈H0(Cn, L⊗m).
We also consider the map

(3.1) F : FCn → V, a =
∑

k,I

ak,Iℏ
kzI 7→ α = {αm,r},

defined by setting

αm,r :=


 ∑

2k+|I|≤r
m−k · ak,IzI


⊗ ⊮

m ∈ H0(Cn, L⊗m).

If the element in FCn is of the form
∑

I aIz
I , i.e., it does not include ℏ, then

each αm,r is a holomorphic section of L⊗m which is a polynomial of degree
≤ r truncated from α under the trivialization ⊮⊗m. For general elements, ℏk

is mapped to 1/mk in the corresponding components of the double sequence.
We now consider an action of smooth functions on the image of the map

(3.1). Let f be any smooth function on Cn. It is clear that the Toeplitz
operator Tf,m is in general not well-defined since Cn is noncompact. We
apply the asymptotic analysis in Section 2.2 to obtain the following

Proposition 3.1. Let f be any smooth function on Cn, and let F (a) =
{αm,r} be defined as above. Then there exists b =

∑
k,I ℏ

kbk,Iz
I ∈ FCn with

F (b) = {βr,m}, satisfying the following asymptotics as m→ ∞:

(3.2) mn ·
∫

Cn

(f · αm,r − βm,r) · z̄J · e−m·|z|2 = O

(
1

mr+1

)
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for every fixed r ≥ 0 and multi-index J . In particular, the formal power
series b ∈ FCn is uniquely determined by α and the Taylor expansion of f
at the origin 0 ∈ Cn.

Proof. Explicitly, we need to prove the following:

mn ·
∫

Cn

(f · αm,r −
∑

2k+|I|≤r

1

mk
· bk,IzI) · z̄J · e−m·|z|2 = O

(
1

mr+1

)
.

Since αm,r’s are truncated from the same formal power series, we see that {f ·
αm,r} has the same property. Thus the result follows from Theorem 2.22. □

Example 3.2. Let us consider the simplest example where n = 1, and let
a = z. Then the double sequence {αm,r} is explicitly defined by αm,r :=
z ⊗ ⊮m. Let f = z̄, then a simple computation of the Wick ordering gives
ℏ
∂
∂z (z) = ℏ. It follows that

bk,I =

{
1, (k, I) = (1, 0),

0, otherwise.

We can interpret Proposition 3.1 as follows. Let Tf,m denote the Toeplitz
operators on H0(Cn, L⊗m) associated to the function f , then the double
sequence {Tf,m(αm,r)} ∈ V can be “approximated” by a vector in the image
of F . To make this precise, we define the subspace of admissible sequences
V0 ⊂ V :

Definition 3.3. We call α = {αm,r} ∈ V an admissible sequence if there
exists b =

∑
k,I bk,Iℏ

kzI ∈ FCn with F (b) = {βr,m} such that, for every fixed
r > 0, we have

mn ·
∫

Cn

(αm,r − βm,r) · z̄J · e−m·|z|2 = O

(
1

mr+1

)

for any multi-index J .

It is clear that there are inclusions F (V ) ⊂ V0 ⊂ V . Furthermore, there is
a natural equivalence relation ∼ on V : If αi ∈ V0, i = 1, 2 are two admissible
sequences with bi their corresponding elements in FCn respectively, then we
say α1 is equivalent to α2 if b1 = b2 ∈ FCn .
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3.2. Construction of the representation

For a general compact Kähler manifold X equipped with a prequantum
line bundle L, we define

V :=
∏

r≥0


∏

m≥0

H0(X,L⊗m)




as before. The situation is more complicated than Cn because L is non-
trivial and there are no obvious global holomorphic sections analoguous to
zI ⊗ ⊮m on Cn. The best replacement (or approximation) for the polynomial
sections on Cn are given by so-called peak sections, with which we can define
double sequences of holomorphic sections with asymptotic properties similar
to equation (3.2):

Definition 3.4. For every point z0 ∈ X, we fix a set {Sm,p,r} of normalized
peak sections centered at z0, as introduced in Section A. A sequence of
holomorphic sections α = {αm,r ∈ H0(X,L⊗m)}, regarded as an element in
V , is called an admissible sequence at z0 if it satisfies the following two
conditions:

1) For every fixed r, the norm of the sequence {αm,r}m>0 has a uniform
bound:

||αm,r||m ≤ Cr.

2) There is a sequence of complex numbers {ap,k}p,k≥0 such that, for each
fixed r > 0, we have

(3.3) ⟨αm,r −
∑

2k+|p|≤r
ap,k ·

1

mk
· Sm,p,r+1, Sm,q,r+1⟩m = O

(
1

mr+1

)
,

for any multi-index q with |q| ≤ r.

We define the subspace Vz0 ⊂ V as the C-linear span of admissible sequences
at z0.

Equation (3.3) is the analogue of equation (3.2) in the flat case. Accord-
ing to Lemma A.9, the coefficients ap,k are uniquely determined.

Remark 3.5. The index r in admissible sequences corresponds to the de-
gree in the Wick algebra and Bargmann-Fock space.
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The complex numbers {ap,k} are called the coefficients of the admissible
sequence α. Note that they are independent of both the tensor power m and
the weight index r. The coefficients define a natural equivalence relation ∼
on Vz0 , namely, α is equivalent to β (denoted as α ∼ β) if and only if the
coefficients of α− β are all 0.

Remark 3.6. It follows from this definition that, for each fixed r, even if
we change finitely many terms of the double sequence {αm,r}, its equivalence
class remains the same (cf. direct limits).

The vector space we would like to construct is then simply the quotient
by this equivalence relation:

Hz0 := Vz0/ ∼ .

It follows from asymptotics of inner products of peak sections Sm,p,r’s as
m→ ∞ and equation (3.3) that Hz0 is a formal Hilbert space.

Remark 3.7. The vector space Hz0 is defined as a sub-quotient, instead
of just as a linear span of peak sections. This is because in general Toeplitz
operators do not preserve the space of peak sections.

We now give some examples of admissible sequences:

Example 3.8. Suppose we fix any multi-index q. Then we define an ad-
missible sequence α as follows: we let αm,r := 0 if m is too small and there
is no (normalized) peak section of L⊗m corresponding to the index r, and
let αm,r = Sm,q,r+1 be simply the normalized peak section. It is then easy
to see that this is indeed an admissible sequence with coefficients ap,r = 0 if
(p, r) ̸= (q, 0) and aq,0 = 1.

Example 3.9. We give an example of equivalent admissible sequences. Let
α be the admissible sequence as in the previous example. We now construct
a sequence also consisting of normalized peak sections similar to α but with
a higher order error term. Namely, we let β = {βm,r} be the admissible
sequence given by βm,r = Sm,q,r+2. It is easy to show that α ∼ β.

It is not difficult to see that the admissible sequences in Example 3.8
form a basis of Vz0 as a C-vector space, and thus every vector can be written
as {ap,k}. More precisely, we have the following lemma:



✐

✐

“1-Chan” — 2022/9/21 — 2:02 — page 22 — #22
✐

✐

✐

✐

✐

✐

22 K. Chan, N. C. Leung, and Q. Li

Lemma 3.10. We have the following isomorphism of C-vector spaces:

(3.4) Hz0
∼= C[[y1, · · · , yn]][[ℏ]].

Proof. The above isomorphism is given by {ap,k} 7→
∑

p,k ap,k · ℏkyp. □

Remark 3.11. The isomorphism in the above lemma depends on a choice
of K-coordinates centered at z0, and thus is unique only up to a U(n)-
transformation.

Now for every sequence of operators {Am}m≥0, where

Am ∈ End(H0(X,L⊗m)),

we have an obvious action on V :

{αm,r} 7→ {Am(αm,r)}.

We apply this to the sequence of Toeplitz operators {Tf,m}m≥0 associated
to any given smooth function f ∈ C∞(X).

Lemma 3.12. Suppose that α = {αm,r} is an admissible sequence. Then
{Tf,m(αm,r)} is also an admissible sequence for any smooth function f .

Proof. We consider the sequence Tf (α) := {Tf,m(αm,r)}m,r≥0. First of all,
since the operator norm of Tf,m is bounded by ||f ||∞ for any fixed r > 0,
the sequence {Tf,m(αm,r)}m>0 has bounded norm.

To show that Tf (α) satisfies the second asymptotic property, we split
the integral which defines that property into two parts: one inside the disk
{ρ(z) < 1} and the other outside:

mn

∫

X
hm(Tf,m(αm,r), Sm,p,r+1) · dVg

= mn

∫

X
hm(f · αm,r, Sm,p,r+1) · dVg

= mn

∫

X\{ρ(z)<1}
hm(f · αm,r, Sm,p,r+1) · dVg

+mn

∫

{ρ(z)<1}
hm(f · αm,r, Sm,p,r+1) · dVg,

where the first equality follows from the fact that Tf,m(αm,r) is the orthog-
onal projection of f · αm,r to the space of holomorphic sections, and that
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Sm,p,r+1 are all holomorphic sections. For the integral outside the disk, we
have the following estimate:

∣∣∣∣∣m
n

∫

X\{ρ(z)<1}
hm(f · αm,r, Sm,p,r+1) · dVg

∣∣∣∣∣

≤ mn

(∫

X\{ρ(z)<1}
||f · αm,r||2hm · dVg

)1/2

×
(∫

X\{ρ(z)<1}
||Sm,p,r+1||2hm · dVg

)1/2

≤ ||f ||∞ · Cr ·O
(

1

m(2r+2+|p|)/2

)
= O

(
1

mr+1

)
.

Here the multi-index p satisfies |p| ≤ r, and the constant Cr is given by the
upper bound of the sequence {αm,r}m>0. For the second inequality, we have
used boundedness of {αm,r}m>0, and equation (A.9).

Hence it remains to consider the integral inside the disk {ρ(z) < 1}. In
this local setting, the computation is the same as the asymptotics of the
Gaussian integral on D2n, and also that in the formal Hilbert space. So the
statement follows from Theorem 2.22. □

This lemma shows that for any smooth function f , the sequence of
Toeplitz operators {Tf,m}m>0 gives a well-defined linear operator Tf : Vz0 →
Vz0 , α 7→ Tf (α).

Lemma 3.13. Suppose that two admissible sequences are equivalent, i.e.,
α ∼ β. Then for any smooth function f , we have Tf (α) ∼ Tf (β).

Proof. We only need to show that if the coefficients ak,I of α = {αm,r} van-
ish, then Tf (α) has the same property. Notice that the condition ak,I = 0 is
equivalent to the following equalities for all indices r, q, as m→ ∞:

mn

∫

X
hm(αm,r, Sm,q,r+1) · dVg = O

(
1

mr+1

)
.
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Similar to the argument of Lemma 3.12, there is

∣∣∣∣∣m
n

∫

X
hm(Tf,m(αm,r), Sm,q,r+1) · dVg

∣∣∣∣∣

=

∣∣∣∣∣m
n

∫

X
hm(f · αm,r, Sm,q,r+1) · dVg

∣∣∣∣∣

≤ mn · ||f ||∞

∣∣∣∣∣

∫

X
hm(αm,r, Sm,q,r+1) · dVg

∣∣∣∣∣

= O

(
1

mr+1

)
.

□

Hence, for every smooth function f on X, the sequence of Toeplitz oper-
ators {Tf,m}m>0 gives a well-defined linear operator Tf on the vector space
Hz0 . We can further extend it to an action of C∞(X)[[ℏ]] on Hz0 by letting
ℏk · f act as

Tℏk·f : {αm,r} 7→
{

1

mk
· Tf,m(αm,r)

}
.

Lemma 2.21 implies the following:

Proposition 3.14. Suppose f ∈ C∞(X) is a real function. Then for every
z0 ∈ X, the operator Tf on Hz0 is self-adjoint.

Lemma 3.15. Let A = {Am}m≥0 and B = {Bm}m≥0 be two sequences of
bounded operators preserving asymptotic sequences and satisfying the condi-
tion that

(3.5) ||Am −Bm|| = O

(
1

mk+1

)
.

Then for any admissible sequence α, the two admissible sequences A(α) and
B(α) have the same coefficients up to weight k.

Proof. Equation (3.5) implies that the operators {Am −Bm} will increase
the weight of α by k + 1. The lemma follows. □

Here is our main theorem:
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Theorem 3.16. Let z0 ∈ X be any point. The action of C∞(X)[[ℏ]] on the
vector space Hz0 satisfies the following relation:

(3.6) Tf ◦ Tg = Tfg +
∑

k≥1

ℏ
k · TCk(f,g), f, g ∈ C∞(X),

where Ck(−,−) are the bi-differential operators which appear in the Berezin-
Toeplitz quantization. Therefore, Hz0 is a representation of the Berezin-
Toeplitz deformation quantization algebra (C∞(X)[[ℏ]], ⋆BT ).

Proof. We first recall the property of Toeplitz operators:

||Tf,m ◦ Tg,m − (Tfg,m +

n∑

k=1

1

mk
· TCk(f,g),m)|| = O

(
1

mn+1

)
.

We apply Lemma 3.15 by putting Am := Tf,m ◦ Tg,m and Bm := Tfg +∑n
k=1

1
mk · TCk(f,g),m. Then A(α) and B(α) have the same coefficients up

to order n. The theorem follows by letting n→ ∞. □

Remark 3.17. The representation and also the isomorphism (3.4) are in-
dependent of the choice of the set of peak sections because for every multi-
index p and p′ > |p|, different choices of peak sections only differ by higher
order terms.

3.3. Locality and irreducibility of the representation

3.3.1. Locality. We will give an explicit formula of our representation
under the isomorphism (3.4). Given any K-coordinates (z1, · · · , zn) centered
at z0, we define Jf,z0 ∈ WCn by

(3.7) Jf,z0 :=
∑

|I|,|J |≥0

1

I!J !

∂|I|+|J |f
∂zI z̄J

(z0)y
I ȳJ ,

where the sum is over all multi-indices.

Theorem 3.18. Let f be any smooth function on X, and Jf,z0 be defined
as above. We define Of,z0 ∈ WCn as the unique solution of the following
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equation:

Jf,z0 · eΦ/ℏ = eΦ/ℏ ⋆ Of,z0 .

Then the action of Tf on α ∈ Hz0 is given by

Tf (α) = Of,z0 ⋆ α.

In particular, this implies that the representation Hz0 is local in f ∈ C∞(X),
i.e., it only depends on the infinite jets of f at z0.

Proof. The representationHz0 depends on an arbitrarily small neighborhood
of z0. So the result follows from the computation of the formal Toeplitz
operators on Cn in Theorem 2.18. □

As a straightforward corollary, we have:

Corollary 3.19. Let f, g ∈ C∞(X) be smooth functions on X. Then

Of⋆BT g,z0 = Of,z0 ⋆ Og,z0 .

This gives an algorithm for computing f ⋆BT g: for every z0 ∈ X, in
order to find (f ⋆BT g)(z0), we only need to compute the Wick product
Of,z0 ⋆ Og,z0 and then collect all the constant terms in the Wick algebra.

3.3.2. Irreducibility. We now consider irreducibility of our representa-
tion. The first observation is that the Bargmann-Fock space is not an ir-
reducible representation of WCn : for every f ∈ WCn , we have the invariant
subspaces

Tf ((FCn)k) ⊂ (FCn)k.

But this is the only reason why the representation fails to be irreducible.
So to have a suitable notion of irreducibility, we make use of the extended
algebra W+

Cn , which allows terms with negative degrees, and the correspond-
ing extension F+

Cn . It is then quite easy to check that we indeed obtain an
irreducible representation.

We now define an extension of C∞(X)[[ℏ]], which is the geometric ana-
logue of W+

Cn .

Definition 3.20. For every smooth function f ∈ C∞(X), let degz0(f) be
the vanishing order of f at z0. Then let (C∞(X)[[ℏ]])+z0 be the extension of
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C∞(X)[[ℏ]] which consists of formal functions:

∑

i∈Z
ℏ
i · fi,

where fi ∈ C∞(X) are smooth functions on X satisfying the conditions that

• the sum degz0(fi) + 2i has a uniform lower bound for all i, and

• for every degree k, the following expression is a finite sum:

∑

2i+degz0
(fi)=k

ℏ
i · fi.

In the same way we can define the extension Hz0 ⊂ H+
z0 . It is easy to

check that the extension (C∞(X)[[ℏ]])+z0 is closed under the star product
⋆BT , and acts on H+

z0 . Furthermore, the map f 7→ Of,z0 can be extended to

(3.8) (C∞(X)[[ℏ]])+z0 → W+
Cn .

Theorem 3.21. For every z0 ∈ X, the representation H+
z0 of (C

∞(X)[[ℏ]])+z0
is irreducible.

Proof. Let W be a sub-representation of H+
z0 . We choose any non-zero a ∈

W , which can be written as:

a =
∑

2i+|I|≥k
ai,Iℏ

i · yI .

Since for a local holomorphic function f , we have

Of,z0 = Jf,z0 ,

which consists of only creators in (Hz0)
+, we only need to find f ∈

(C∞(X)[[ℏ]])+z0 such that Tf (a) = ℏl for some l, and the result will follow.
We choose a non-zero term in a of leading order ai0,I0ℏ

i0 · zI0 , 2i0 + I0 =
k, such that i0 is the least possible. Let f0 ∈ (C∞(X)[[ℏ]])+z0 be a formal
function which is a−1

i0,I0
z̄I0 near z0. So the leading term of the image of f0

under the map (3.8) is a−1
i0,I0

ȳI0 , and the degree of the function f0 is exactly
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|I0|. We have

Tf0

( ∑

2i+|I|≥k
ai,Iℏ

i · yI
)

= ℏ
i0+|I0| +

∑

2i+|I|=2(i0+|I0|)+1

bi,Iℏ
iyI

+ higher degree terms.

The next step is to find a formal function f1 ∈ (C∞(X)[[ℏ]])+z0 , so that

(Tf0 + Tf1)

( ∑

2i+|I|≥k
ai,Iℏ

i · yI
)

= ℏ
i0+|I0| + higher degree terms.

Let g be a formal function which equals − 1
ℏi0+|I0|

∑
2j+|J |=2(i0+|I0|)+1 bj,Jℏ

jzJ

near z0. It is easy to see that the total degree of g is 1, and we have

(Tf0 + Tg ◦ Tf0)
( ∑

2i+|I|≥k
ai,Iℏ

i · yI
)

= ℏ
i0+|I0| + (terms of degree ≥ 2(i0 + |I0|) + 2)) .

Although Tg ◦ Tf0 =
∑

i≥0 ℏ
iTCi(g,f0) is an infinite sum, but those high enough

ℏ will map terms in a to terms of high degree. More precisely, we can simply
let f1 =

∑N
i=0 ℏ

iCi(g, f0), where N = i0 + |I0| − k/2 + 2. Then we have

(Tf0 + Tf1)

( ∑

2i+|I|≥k
ai,Iℏ

i · yI
)

= ℏ
i0+|I0| + (terms of degree ≥ 2(i0 + |I0|) + 2)) .

From the formula of ⋆BT , it is easy to see that the total degree of ℏiCi(g, f0)
is no less than the sum of the degree of g0 and f which equals 1 + |I0|. This
implies that the degree of terms in f1 is strictly greater than the degree of f0.
This procedure can be repeated and we obtain the desired formal function
f =

∑
i≥0 fi ∈ (C∞(X)[[ℏ]])+z0 . □

Appendix A. Peak sections in Kähler geometry

In this appendix, we briefly review of the notion of peak sections, which was
introduced in [32] and plays an important role in the study of asymptotic
expansions of the Bergmann kernel [34] with applications to balanced em-
beddings and constant scalar curvature metrics as well as in the theory of the
geometric quantization. For our purpose, we need to introduce a normalized
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version of peak sections and describe their basic properties. We first recall
the notion of K-coordinates and K-frame of the prequantum line bundle L.

Definition A.1. Let eL,z0 be a holomorphic frame of the prequantum line
bundle L in a neighborhood of a point z0 ∈ X, and let (z1, · · · , zn) be a
holomorphic coordinate system centered at z0. Let φ(z) := − log ||eL,z0 ||.
We say that (z1, · · · , zn) are K-coordinates with K-frame eL,z0 if the Taylor
expansion of φ(z) at z0 is of the following form:

(A.1) φ(z) ∼ |z|2 +
∑

aJKz
J z̄K , |J | ≥ 2, |K| ≥ 2.

For Kähler manifolds with real analytic Kähler form, the existence of
K-coordinates and K-frames was shown by Bochner. For Kähler manifolds
with only smooth Kähler form, such a coordinate system and frame do not
exist in general; then we may consider a weakerK-coordinates andK-frames
of finite order. But to avoid further technical complications, let us assume
that the Kähler manifolds in this paper always admit K-coordinates and
K-frames.

It is obvious that this local holomorphic frame eL,z0 is unique up to a
multiplication by a complex number of modulus 1. In particular, the leading
term of the Taylor expansion of φ with degree at least 3 is given by the
curvature:

(A.2) φ(z, z̄) = |z|2 +
∑

i,j,k,l

Rij̄kl̄zizkz̄j z̄l +O(|z|5).

Also note that equation (2.7) is satisfied.

Lemma A.2. Suppose the volume form is

(
√
−1)n · eψ(z,z̄) · dz1 · · · dzndz̄1 · · · dz̄n = ωn.

Then the purely (anti-)holomorphic derivatives of ψ(z, z̄) vanish at z0 under
the K-coordinates, i.e.,

∂|I|ψ
∂zI

(z0) =
∂|J |ψ
∂z̄I

(z0) = 0

for all multi-indices with |I|, |J | > 0.

Proof. We will only prove the vanishing of purely holomorphic derivatives
at z0; the proof for antiholomorphic ones is the same. It suffices to show that
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the statement is valid for functions ωi1j̄1 · · ·ωinj̄n , where

ωij̄ =
∂2φ

∂zi∂z̄j
,

and ϕ is Kähler potential. But then equation (A.1) implies that

∂|I|+1φ

∂zI∂z̄j
(z0) = 0, |I| ≥ 2,

from which the statement follows easily. □

Equation (A.1) together with Lemma A.2 tell us that the Taylor expan-
sions of φ(z, z̄) and ψ(z, z̄) satisfy the technical conditions in Theorem 2.22.
This allows us to apply the algebraic computations in the formal setting in
Section 2.1.

We now recall the following proposition in Tian’s paper [32] and, in
particular, the definition of peak sections. Let (z1, · · · , zn) be aK-coordinate
with K-frame eL,z0 at z0 ∈ X, and consider the function

ρ(z) :=
√

|z1|2 + · · ·+ |zn|2.

Proposition A.3 (Lemma 1.2 in [32]). For an n-tuple of integers p =
(p1, · · · , pn) ∈ Zn+ and an integer r > |p| = p1 + · · ·+ pn, there exists an
m0 > 0 such that, for m > m0, there is a holomorphic global section S, called
a peak section, of the line bundle L⊗m, satisfying

(A.3)

∫

X
||S||2hmdVg = 1,

∫

X\{ρ(z)≤ log m√
m

}
||S||2hmdVg = O

(
1

m2r

)
,

and locally at z0,

(A.4) S(z) = λm,p ·
(
zp11 · · · zpnn +O(|z|2r)

)
emL,z0

(
1 +O

(
1

m2r

))
,

where || · ||hm is the norm on L⊗m given by hm, and O
(

1
m2r

)
denotes a

quantity dominated by C/m2r with the constant C depending only on r and
the geometry of X, moreover

(A.5) λ−2
m,p =

∫

ρ(z)≤logm/
√
m
|zp11 · · · zpnn |2 · e−m·φ(z)dVg,

where dVg = det(gij̄)(
√
−1/(2π))ndz1 ∧ dz̄1 ∧ · · · ∧ dzn ∧ dz̄n is the volume

form.
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Here we use the same notation as in the introduction of K-frame:
hm(eL,z0 , eL,z0) = e−m·φ(z). Geometrically, a peak section is, roughly speak-
ing, a global holomorphic section of a high enough tensor power of L whose
norm is 1 and is concentrated around a given point z0 on the Kähler mani-
fold.

We want to define a section Sm,p,r of the line bundle L
⊗m by normalizing

the peak section S(z) in Proposition A.3 so that its Taylor expansion at z0
under the K-frame e⊗mL,z0 is exactly equal to zp11 · · · zpnn up to order 2r − 1.
This forces Sm,p,r to be of the form:

(A.6) Sm,p,r := λ−1
m,p ·

(
1 +O

(
1

m2r

))
· S(z).

We now give an estimate of λ−1
m,p. We have, for m >> 0,

λ−2
m,p =

∫

ρ(z)≤logm/
√
m
|zp11 · · · zpnn |2 · e−m·ρ(z)dVg

≤
∫

ρ(z)≤1
|zp11 · · · zpnn |2 · e−m·ρ(z)dVg = O

(
1

m|p|+n

)
,

where the estimate follows from Theorem 2.7. In particular, there is a con-
stant Cp, depending only on the point z0 and the multi-index p, such that

λ−1
m,p ·

(
1 +O

(
1

m2r

))
≤ Cp ·

(
1

m
|p|+n

2

)
.

We define a normalized version of the inner product of sections of L⊗m:

Definition A.4. Let s1, s2 be (smooth) sections of L⊗m. Their (normal-
ized) inner product is defined as

(A.7) ⟨s1, s2⟩m := mn ·
∫

X
hm(s1, s2)dVg,

where n = dimCX, and we let ||s||m be the norm of a section s under this
inner product.

Remark A.5. An explanation of the normalization factor mn is the fol-
lowing: consider Cn with the volume form

(√
−1

2π

)n
e−m·|z|2dz1 ∧ dz̄1 ∧ · · · ∧ dzn ∧ dz̄n,

then the factor mn normalizes the volume to 1 under this volume form.
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We summarize the properties of Sm,p,r as follows:

(A.8) ||Sm,p,r||2m ≤ mn · C · λ−2
m,p = O

(
1

m|p|

)
;

(A.9)

mn ·
∫

M\{ρ(z)≤1}
||Sm,p,r||2hmdVg ≤ mn ·

∫

M\{ρ(z)≤logm/
√
m}

||Sm,p,r||2hmdVg

≤ mn · C · λ−2
m,p ·O

(
1

m2r

)
= O

(
1

m2r+|p|

)
.

Remark A.6. The constant C in the above estimates comes from the
number 1 +O

(
1
m2r

)
in equation (A.6).

Locally around z0, we have

(A.10) Sm,p,r(z) =
(
zp11 · · · zpnn +O(|z|2r)

)
· emL .

The first property (A.8) implies that for fixed p, r, the sequence {Sm,p,r}
is bounded for all m. The second property (A.9) is saying that the sections
Sm,p,r are asymptotically “concentrated” around the point z0. The third
property (A.10) is saying that asymptotically, Sm,p,r has an assigned leading
term of the Taylor expansion at the point z0.

Remark A.7. The third property of Sm,p,r is the reason for calling it a
normalized peak section: its Taylor expansion at z0 has leading term exactly
exactly equal to the monomial zp · emL corresponding to the multi-index p.

Remark A.8. According to [32], for every fixed p, r, peak sections exist
only when m is big enough. We will adopt the follows two conventions

• Sm,p,r := 0 for small m,

• Sm,p,r := 0 if r ≤ |p|.

There is the following estimate of the inner product between peak sec-
tions:
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Lemma A.9. Given two normalized peak sections Sm,p1,r, Sm,p2,r, we have
the following asymptotic expansion of their inner product up to order r:

(A.11) ⟨Sm,p1,r, Sm,p2,r⟩m −
p′−1∑

k=1

ak ·
1

mk
= O

(
1

mp′

)
,

where the coefficients ak’s are the same as those in the expansion of the
following formal integral:

∫
zp

1

z̄p
2

e
−|z|2+φ(z,z̄)

ℏ =
∑

k≥1

ak · ℏk.

Thus, for fixed multi-indices p1, p2, the ai’s are independent of r >> 0. In
particular, the leading term of the asymptotic expansion of ||Sm,p,r||2m is
given by (

1

m

)|p|
p!,

which is non-zero.

Proof. We split the integral defining the inner product to two parts:

1

mn

∫

{ρ(z)<1}
hm(Sm,p1,r, Sm,p2,r) · dVg

+
1

mn

∫

X\{ρ(z)<1}
hm(Sm,p1,r, Sm,p2,r) · dVg,

where the second part is O

(
1

m2r+
|p1|
2

+
|p2|
2

)
by using Cauchy-Schwarz in-

equality and equation (A.9). Thus to show equation (A.11), the integral
outside the disk {ρ(z) < 1} can be ignored. For the integral over the disk,
we can apply Theorem 2.7 to obtain the desired asymptotic expansion. In
particular, the coefficients ak’s are the same as those coming from the formal
integral. □

As an immediate corollary, we have the following:

Corollary A.10. Let p1, p2 be multi-indices, and let r > max{|p1|, |p2|},
then we have the following estimate of the inner product between Sm,p1,r and
Sm,p2,r:

⟨Sm,p1,r, Sm,p2,r⟩m =




O
(

1
m|p1|

)
, p1 = p2

o
(

1
mmax{|p1|,|p2|}

)
, p1 ̸= p2.
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Proof. The case where p1 = p2 is given by equation (A.8). For p1 ̸= p2, we
need to estimate an integral. For the integral inside the disk {ρ(z) < 1}, this
estimate is given by Corollary 2.17 where the technical condition on ϕ is
implied by the existence of K-coordinates and K-frame. For the estimate of
the integral outside the disk, we use Cauchy-Schwarz inequality:

mn ·
∫

X\{ρ(z)<1}
hm(Sm,p1,r, Sm,p2,r) · dVg = O

(
1

m
4r+|p1|+|p2|

2

)
(A.12)

= o

(
1

mmax{|p1|,|p2|}

)
.

□
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