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We review the construction of almost contact metric (three-) struc-
tures, abbreviated ACM(3)S, on manifolds with a G2 structure.
These are of interest for certain supersymmetric configurations in
string and M-theory. We compute the torsion of the SU(3) struc-
ture associated to an ACMS and apply these computations to het-
erotic G2 systems and supersymmetry enhancement. We initiate
the study of the space of ACM3Ss, which is an infinite dimensional
space with a local product structure and interesting topological
features. Tantalising links between ACM3Ss and associative and
coassociative submanifolds are observed.
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1. Introduction

Low-dimensional, minimally supersymmetric vacua of string theory and
M-theory are of interest for a number of reasons. In four dimensions, such
ground states may provide effective theories for the physical world, and give
mathematically consistent UV completions of the standard models of parti-
cle physics and cosmology. Similarly, the AdS/CFT correspondence provides
further motivation to explore supersymmetric vacua in spacetimes with con-
stance negative curvature in both three and four dimensions. More broadly,
both four- and three-dimensional solutions can serve as toy models where
dualities, deformations and geometric invariants may be explored through
the lens of superstring theory.

The class of manifolds with G2 structure, which includes torsion-free G2

manifolds as a subclass, holds an important place in this field of research.
In M-theory they provide four-dimensional N = 1 Minkowski vacua, and in
type II or heterotic string theory they give rise to three-dimensional vacua
with non-positive cosmological constant. These topics have been studied for
a number of years, and important results have been established. In partic-
ular, large classes of torsion-free G2 manifolds have been constructed [1–5]
and studied in detail by mathematicians and physicists. However, the topic
of G2 structures and related superstring compactifications is far from ex-
hausted. For example, one still lacks a deformation theory of different G2

geometries, and G2 instantons, beyond the infinitesimal level established in
Refs. [1, 2, 6, 7] and [8–13]; there are no direct constructions1 of the singular,
compact G2 manifolds that are needed for the existence of chiral families
in M-theory vacua [15, 16]; a method for counting associative submanifolds,
important in physics applications due to their contributions to the non-
perturbative superpotential, remains to be established [17–20]; and proofs
are lacking for conjectures regarding duality and mirror symmetry among
G2 vacua [14, 21–24].

In this paper we discuss the existence of almost contact (three-) struc-
tures on G2 structure manifolds. In brief, an almost contact structure (ACS)
is related to a nowhere vanishing vector field, and an almost contact three-
structure (AC3S) is related to a triple of such vector fields (the formal def-
inition is given below). Both structures are guaranteed to exist on any G2

structure manifold [25]. Our aim with this paper is, in part, to provide a
detailed review of these well-established mathematical facts, which, to our
knowledge, has been been partly lacking (see however [26] and [27]). This

1However, see e.g. [14] for constructions relying on string duality.
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may explain why the ACS perspective has not been emphasized in the re-
cent physics and mathematics literature related to G2 structure manifolds.
In addition, we hope our paper gives evidence that these almost contact
(three-) structures provide useful perspectives on G2 geometry, calibrated
submanifolds, string vacua and supersymmetry.

Almost contact structures are, in some way, odd-dimensional cousins of
almost complex structures in even dimensions. Just as for almost complex
structures in even dimensions, the almost contact structures give rise to pro-
jection operators and a decomposition of e.g. differential forms into longitu-
dinal and transverse components. More precisely, almost contact structures
induce almost complex structures on the transverse geometry.

As mentioned above, ACS are related to nowhere-vanishing vector fields.
The existence of nowhere vanishing vector fields, or, more generally, nowhere
vanishing differential forms, on a manifold indicates that the tangent bundle
structure group can be reduced. In string compactifications, this is intimately
tied to the amount of supersymmetry preserved by the vacuum. One may
thus suspect that the existence of an AC(3)S may lead to string solutions
with extended supersymmetry and we will demonstrate under which condi-
tions this holds true. More generally, almost contact structures provide addi-
tional information that may be used in the classification of supersymmetric
string vacua. Indeed, while their related AC(3)S has not necessarily been
emphasised, SU(2) and SU(3) structures have been used in classifications
of four-dimensional N = 1 M-theory vacua [27], in constructing M-theory
lifts of N = 1 type IIA solutions [28], N = 1 AdS type IIB vacua [29–31],
and has points in common with the Gran–Papadopoulos classification of
heterotic supersymmetric vacua [32–34].

Nowhere-vanishing vector fields are always allowed in odd dimensions;
it is well known that the obstruction to the existence of a nowhere vanish-
ing vector field on a closed manifolds is a non-vanishing Euler characteristic
[35].2 Odd-dimensional manifolds have vanishing Euler characteristic, and
hence admit an almost contact structure. It is less obvious, but nonetheless
true, that seven-dimensional manifolds admit three linearly independent,
nowhere vanishing vector fields [25, 36, 37]. Moreover, as we will explain be-
low, when combined with the positive three-form that defines a G2 structure,
these vector fields give rise to an almost contact three-structure, which is fur-
thermore compatible with the metric induced by a G2 structure [26, 38–40].

2In this paper, we will focus in particular on closed (i.e. compact, boundaryless)
manifolds. The results we state also hold for non-compact manifolds, and manifolds
with boundary.
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Importantly, the AC3S vectors will not, in general, be parallel with respect
to the G2 connection. Thus, while this shows that G2 structure manifolds
are necessarily reduced to SU(2), there is no automatic reduction of the
holonomy of the G2 connection. A further reduction in the holonomy would
be indicative of enhanced supersymmetry and, therefore, not generically ex-
pected.

In the rest of this paper we will provide a more detailed account of al-
most contact metric three-structures on manifolds with G2 structures. This
is in part a review of established facts, in part a derivation of new results.
We start in section 1.1 by briefly reviewing the background material and set-
ting our notation. In section 2 we review almost contact metric structures
and the associated SU(3) structure using a somewhat novel perspective of
differential forms. We also add new observations on this topic by elaborating
on the foliation associated to the vector field of the ACMS, and the related
transverse six dimensional geometry, which indeed carries an SU(3) struc-
ture with intrinsic torsion that we may directly determine. With this result
we can, in section 3, show how N = 1 heterotic G2 systems may be analysed
using ACMS. We then turn, in section 4, to a review of almost contact met-
ric three-structures and their associated SU(2) structure. Building on these
classical results, we expand, in section 4.3 upon the existence of three- and
four-dimensional foliations related to ACM3Ss and discuss the intriguing
relation between such foliations and associative and coassociative subman-
ifolds (which are also calibrated submanifolds if the G2 structure is closed
and coclosed, respectively). This allows us to initiate a study of the space
of ACM3Ss and show that it has a non-trivial structure. In section 5 we
give a number of examples which illustrate the concepts we have reviewed.
Finally, in section 6 we conclude and point out a number of directions for
future studies.

1.1. Preliminary notions

1.1.1. G2 structures. A G2 structure manifold is a seven dimensional
manifold Y along with a reduction of the tangent bundle structure group to
G2 (see for example [41, 42] and [43] for more details on G2 structures). A
G2 structure exists whenever the seven manifold is orientable and spin.

Since the group G2 can be identified with the group of automorphisms
of the imaginary octonions, reducing the structure group to G2 allows us
to identify the tangent bundle as a bundle of imaginary octonions, ImO.
Making such an identification endows Y with a metric and a vector cross
product, which can in turn be encoded in a stable, positive three-form, φ.
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The relation between these data is as follows. Given a metric, g and
cross-product, ×, the three-form is defined by

(1) φ(u, v, w) = g(u× v, w) .

Locally, one can choose a trivialisation of the tangent bundle in which such
a three-form takes a standard form, which in our conventions will be

(2) φ0 = (e12 + e34 + e56) ∧ e7 + e135 − e146 − e236 − e245 .

On the other hand, whenever a three-form can be put in such a form,
we can extract a metric and cross product. Indeed, once we have a metric,
(1) defines a cross product. The metric can be defined, using a choice of
orientation, by

(3) 6gϕ(u, v) dvolϕ = (u⌟φ) ∧ (v⌟φ) ∧ φ ,

for all vectors u and v in Γ(TY ). In components this means

gϕab =

√

det gϕ

3! 4!
φac1c2 φbc3c4 φc5c6c7 ϵ

c1···c7 =
1

4!
φac1c2 φbc3c4 ψ

c1c2c3c4 ,

where we have used the metric to define a dual four-form

ψ = ∗ϕ φ ,

and

dxa1···a7 =
√

det gϕ ϵ
a1···a7 dvolϕ .

With respect to this metric, the three-form φ, and hence its Hodge dual ψ,
are normalised so that

φ ∧ ∗φ = ||φ||2 dvolϕ , ||φ||2 = 7 ,

that is

φ⌟φ = ψ⌟ψ = 7 .

Choosing a local frame where φ takes its standard form, one can verify
that the metric, gϕ, is the standard Euclidean metric and the four-form will
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be

(4) ψ0 = e3456 + e1256 + e1234 − e2467 + e2357 + e1457 + e1367

The exterior derivative of the forms (φ, ψ), which give the structure
equations for the G2 structure, can be decomposed into irreducible repre-
sentations of G2

d7φ = τ0 ψ + 3 τ1 ∧ φ+ ∗τ3 ,(5)

d7ψ = 4 τ1 ∧ ψ − τ2 ∧ φ ,(6)

where the torsion classes τk are k forms, τ3 is in the 27 irreducible repre-
sentation of G2 and τ2 in the 14.

1.1.2. Almost contact structures. Let Y be an odd dimensional Rie-
mannian manifold with metric g. If the manifold Y admits the existence of
an endomorphism J of the tangent bundle TY , a unit vector field R (with
respect to the metric g), and a one-form σ which satisfy

J2 = −1+R⊗ σ , σ(R) = 1 ,

Y is said to admit an almost contact structure (J,R, σ) [44, 45]. The one-
form σ is called the contact form. The dimension of a manifold admitting
an ACS must be odd and the structure group of the tangent space reduces
to U(n)× 1, where 2n+ 1 is the dimension of Y . The ACS on the manifold
Y is said to be a contact structure if

σ ∧ dσ ∧ · · · dσ ̸= 0 ,

everywhere on Y . In this paper we are mostly interested in the existence of
almost contact structures on manifols with a G2 structure.

A Riemannian manifold Y with an ACS (J,R, σ) has an almost contact
metric structure (J,R, σ, g) (ACMS) if moreover

(7) g(Ju, Jv) = g(u, v)− σ(u)σ(v) , ∀u, v ∈ Γ(TY ) ,

is satisfied. The fundamental two-form ω of an almost contact metric mani-
fold is defined by

(8) ω(u, v) = g(Ju, v) , ∀u, v ∈ Γ(TY ) ,
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and satisfies

(9) σ ∧ ω ∧ · · · ∧ ω ̸= 0 .

An almost contact 3-structure (AC3S) on a manifold Y [37] is defined
by three distinct almost contact structures (Jα, Rα, σα), α = 1, 2, 3 on Y
which satisfy the following conditions

Jγ = Jα Jβ −Rα ⊗ σβ = −JβJα +Rβ ⊗ σα ,

Rγ = Jα(Rβ) = −Jβ(Rα) ,

σγ = σα ◦ Jβ = −σβ ◦ Jα ,

σα(Rβ) = σβ(Rα) = 0 ,

(10)

where {α, β, γ} are a cyclic permutation of {1, 2, 3}. A manifold admitting
an AC3S must have dimension 4n+ 3 where n is a non-negative integer and
the structure group of the tangent space reduces to Sp(n)× 13. An almost
contact metric 3-structure on a Riemannian manifold Y with metric g, is an
AC3S which satifies

(11) g(Jαu, Jαv) = g(u, v)− σα(u)σα(v) , ∀ u, v ∈ Γ(TY ) ,

for each α ∈ {1, 2, 3}. An AC3S consisting of three contact structures satis-
fying (10) is a contact 3-structure and defines a 3-Sasakian geometry [46].

2. SU(3) structures on manifolds with a G2 structure

A manifold Y with a G2 structure φ has more structure than expected. In
this section we review the fact that (Y, φ) admits an almost contact metric
structure (ACMS) and thereby reduces the structure group to SU(3) [38–
40].3 The reason this happens stems from the fact that any such manifold
admits a nowhere vanishing vector field [35] R which can be normalized with
respect to the G2 metric gϕ.

In the first two subsections we prove the following proposition.

Proposition 1. [26, 40] Let (Y, φ) be a seven dimensional manifold Y with
a G2 structure φ and let gϕ be the metric on Y determined by φ. Then Y

3In fact, we will see in section 4 that there are least three non-zero vectors on
a manifold with a G2 structure [25], which gives Y an almost contact metric 3-
structure (ACM3S) inducing an SU(2) structure on Y [26].
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admits an ACMS (J,R, σ, gϕ) determined by a unit vector field R, where the
endomorphism J is given by

J(u) = R×ϕ u , ∀ u ∈ Γ(TY ) ,

and the one form σ dual to R with respect to the G2 metric gϕ

σ(R) = 1 .

The ACMS determines a foliation FR of Y by the one dimensional integral
curves of R with G2 metric

ds2ϕ = σ2 + ds2⊥ ,

where ds2⊥ represents the metric on the transverse geometry of FR induced
by the ACMS on Y .

Furthermore, the ACMS induces a reduction of the G2 structure to an
SU(3) structure (ωϕ,Ω) on the transverse geometry of the foliation, where
ωϕ is the fundamental two form on Y

ωϕ = iR(φ) ,

and Ω is a transverse three form of type (3, 0) with respect to J . Both forms
(ωϕ,Ω) are determined uniquely by the ACS decomposition of the G2 struc-
ture φ on Y

(12) φ = σ ∧ ωϕ +Ω+ .

The coassociative four form ψ dual to φ decomposes as

ψ = ∗ϕφ = −σ ∧ Ω− +
1

2
ωϕ ∧ ωϕ .

Notice that there is no guarantee that an ACMS will be compatible
with a G2 connection, i.e. if ∇ is a given connection on Y with Hol(∇) ⊆
G2, it does not follow from a choice of ACMS that Hol(∇) ⊆ SU(3). These
issues are discussed in section 2.3. In appendix A we review the definition
of manifolds with an SU(3) structure.
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2.1. Almost contact metric structures on a manifold with a G2

structure

Let Y be a seven dimensional compact manifold. It is known that there exists
(at least) one nowhere vanishing vector field, R, on Y [35]. This vector field
defines a one dimensional “characteristic foliation” FR of Y , where the one
dimensional leaves are the integral curves of R. Given the non-vanishing
vector field R on Y , we can choose local coordinates on Y adapted to the
foliation structure

(13) {xa, a = 1, . . . 7} = {(r, xm),m = 1 . . . 6} ,

such that r is the coordinate along the integral curves of R (curves of con-
stant xm) and such that the vector R is given by

(14) R = ∂r .

Suppose now that Y has a G2 structure φ with metric gϕ. Without loss
of generality, we choose the vector R to be of unit length with respect to
the G2 metric. We define a unique one form σ by

(15) σ(u) = gϕ(R, u) , ∀u ∈ Γ(TY ) .

Note that

(16) σ(R) = 1 ,

is the statement that R has unit length in terms of σ.
The G2 structure together with a choice of vector field, R, defines an

endomorphism, J , of TY by

(17) J(u) = R×ϕ u , ∀ u ∈ Γ(TY ) ,

where ×ϕ is the cross product on Y determined by the G2 structure

(18) φ(u, v, w) = gϕ(u×ϕ v, w) , ∀ u, v, w ∈ Γ(TY ) .

Equivalently, we can consider J to be a vector-valued one form on Y , in
which case it is given, in local coordinates, by

(19) Ja
b = −φa

bcR
c = −iR(φ)

a
b .
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Then, one can easily prove that

(20) J2 = −1+R⊗ σ ,

using the cross product identity

(21) u×ϕ (u×ϕ v) = −gϕ(u, u) v + gϕ(u, v)u , ∀ u, v ∈ Γ(TY ) .

Moreover,

(22) J(R) = 0 , and σ(J(u)) = 0 , ∀ u ∈ Γ(TY ) .

Therefore [40] the G2 structure on Y , together with the existence of a (unit
length) nowhere vanishing vector field R on Y determine an almost contact
structure (J,R, σ) on Y (see section 1.1.2). The one form σ is the contact
form. The existence of the almost contact structure (ACS) on Y means that
there is a reduction of the structure group G2 to 1× U(3). We will see this
explicitly in this section. We remark that this ACS on Y is not, in general,
a contact structure as it need not be that σ satisfies everywhere on Y the
condition

σ ∧ d7σ ∧ d7σ ∧ d7σ ̸= 0 .

Furthermore [38–40], this ACS is compatible with the metric, in the
sense that that gϕ satisfies the necessary condition

(23) gϕ(Ju, Jv) = gϕ(u, v)− σ(u)σ(v) , ∀ u, v ∈ Γ(TY ) .

and therefore (J,R, σ, gϕ) defines an ACMS.
Given the almost contact metric structure (J,R, σ, gϕ) on Y , one also

has the fundamental two form ωϕ on Y

(24) ωϕ(u, v) = gϕ(Ju, v) = φ(R, u, v) , ∀ u, v ∈ Γ(TY ) .

Equivalently,

(25) ωϕ = iR(φ) .

This two form indeed satisfies

σ ∧ ωϕ ∧ ωϕ ∧ ωϕ ̸= 0 ,
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because

(26) dvolϕ =
1

6
σ ∧ ωϕ ∧ ωϕ ∧ ωϕ ,

which can be easily proven from (3) and (25).
Given the ACS (J,R, σ) on Y , consider the bundle, Ker(σ), whose fi-

bres are the vectors which are orthogonal to R. This is a codimension one
subbundle of TY and induces an orthogonal decomposition of TY as

TY = Span{R} ⊕Ker(σ) , Ker(σ) = Span{R}⊥ .

The endomorphism J maps sections of Γ(TY ) into sections of Ker(σ), as can
be seen from equation (22), and thus it can be used to construct projection
operators on TY . Indeed, the operator

− J2 = 1−R⊗ σ ,

is a projection operator mapping TY into Ker(σ). The action of the pro-
jection operators can naturally be extended to the cotangent bundle T ∗Y ,
which now has the orthogonal decomposition

T ∗Y = Span{σ} ⊕ Span{σ}⊥ ,

and, therefore, to any tensor on Y . We can uniquely decompose any k-form
α as

(27) α = σ ∧ α0 + α⊥ ,

where α0 and α⊥ are respectively a (k − 1)-form and a k-form on Y such
that

iR(α) = α0 , iR(α0) = 0 , iR(α⊥) = 0 .

Furthermore, the endomorphism J induces an orthogonal decomposition
of Ker(σ) over C

Ker(σ)⊗ C = Ker(σ)C
(1,0) ⊕Ker(σ)C

(0,1) .

In fact, there are also projection operators P and Q on Ker(σ)⊗ C

P =
1

2
(1− i J −R⊗ σ) = −

i

2
J (1− iJ) ,

Q =
1

2
(1+ i J −R⊗ σ) = +

i

2
J (1+ i J) ,
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which map Ker(σ) into Ker(σ)C
(1,0) or Ker(σ)C

(0,1) respectively.
Again, the action of these operators can naturally be extended to T ∗Y

and to any tensor on Y . For the cotangent bundle T ∗Y , Span{σ}⊥ ⊗ C has
the orthogonal decomposition

Span{σ}⊥ ⊗ C =
(

Span{σ}⊥
)(1,0)

⊕
(

Span{σ}⊥
)(0,1)

.

We can decompose any k-form α with respect to the ACS as in equation (27)
where the forms α0 and α⊥ decompose further into (p, q)-type with respect
to J .

We have arrived at the conclusion that the G2 structure on the manifold
Y is reduced to 1× U(3). The U(3) structure on Y is determined by the
endomorphism J which is effectively an almost complex structure on Y .
Moreover, we have a fundamental form ωϕ satisfying (26). We discuss below
in more detail how this works and how the U(3) structure reduces further
to an SU(3) structure.

2.2. Transverse geometry and SU(3) structures on Y

In this section we show explicitly how the structure group G2 is reduced to
SU(3). The fact that any G2 structure manifold admits a reduction to an
SU(3) structure group was already shown by [26]. In that paper, the authors
argued that a nowhere vanishing vector field R on (Y, φ), along with the
nowhere vanishing spinor η implicit in the choice of G2 structure, induce a
second spinor by Clifford multiplication, Rη. These spinors can be used to
construct the SU(3) structure on Y . In this section we instead show how
the structure group is reduced to SU(3) by constructing the SU(3) structure
directly from the G2 structure three form φ and the ACS.4 A summary of
the content of this section and the previous one is given in proposition 1 at
the beginning of this section 2.

We begin by reviewing the notion of the transverse geometry of the foli-
ation FR. Loosely speaking, locally the transverse geometry pretends to be
the geometry of a hyperplane X which is transverse to R. Note, however,
that there is not necessarily a six dimensional manifold X ⊂ Y whose tan-
gent plane is transverse to R. Another way to say this is that Ker(σ) is not
necessarily integrable.

4Note that, although there is always a connection ∇ with G2 holonomy on Y
such that ∇η = 0, it is not necessarily the case that ∇(Rη) = 0, and therefore the
holonomy group of ∇ is not necessarily reduced to SU(3).
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We say that a vector u ∈ Γ(TY ) is transverse to the foliation FR if u ∈
Γ(Ker(σ)). As we saw above, the vector J(u) is transverse, for any u ∈ TY
(see equation (22)). For a k-form given as in equation (27), we can think
of α0 and α⊥ as a k − 1 form and a k form respectively on the transverse
geometry of the foliation on Y . We will call α⊥ the transverse component
of α, and we call a form transverse if

(28) iR(α) = 0 .

Clearly, J(α) is transverse for any k-form α on Y as iR(J(α)) = 0.
The endomorphism J restricts to an almost complex structure, J⊥ on the
transverse geometry of FR, that is, J⊥ is an endomorphism of Ker(σ) with
J2
⊥ = −1 . The action of J on any k form α on Y can be written as

J(α) = J(α⊥) = J⊥(α⊥) .

The transverse geometry then carries all the properties of an almost complex
structure. For instance, as mentioned before any transverse form decomposes
into (p, q)-type with respect to J⊥. Furthermore, the fundamental form ωϕ

is transverse, and one can define a hermitian structure on the transverse
geometry. It is not hard to prove that ωϕ is type (1, 1) with respect to J⊥,
that is

J(ωϕ) = ωϕ .

One can define primitive transverse forms on Y and thus define the Lefshetz
decomposition, with respect to ωϕ, of transverse forms.

Consider the metric gϕ on Y . Using equation (24) and the endomorphism
J , one can establish a metric g⊥ on the transverse geometry. In fact, (24)
and (20) imply that on Y , the G2 metric is given by

(29) gϕ(u, v) = ωϕ(u, Jv) + σ(u)σ(v) , u, v ∈ Γ(TY ) ,

where the fact thatR is unit length is clearly satisfied. Also, if u ∈ Γ(Ker(σ)),
then we have by (15) that

gϕ(u,R) = σ(u) = 0 .

Now, let u , v ∈ Γ(Ker(σ)). Then we define a metric g⊥ on the transverse
geometry by

(30) gϕ(u, v) = ωϕ(u, Jv) = g⊥(u, v) .
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This means we have a “bundle like” metric on Y of the form

(31) ds2ϕ = σ2 + ds2⊥ ,

where ds2⊥ represents the line element on the transverse geometry and in
the coordinate system adapted to the foliation FR, the one form σ can be
written as

(32) σ = dr +Σ , Σ = Σm dxm .

The transverse one form Σ behaves like a one form connection on the trans-
verse geometry as can be verified by performing a coordinate transformation
on Y . Now, recall that the G2 structure φ determines a metric gϕ uniquely
on Y by equation (3). Of course, this metric needs to be the same as that
in equation (31).

To compare (31) with (3), we begin by decomposing φ with respect to
the ACMS (J,R, σ, gϕ). Recall that the ACMS determines the fundamental
two form on Y

ωϕ = iR(φ) .

This means that φ can be decomposed uniquely as

(33) φ = σ ∧ ωϕ +Ω+ .

for some well defined transverse real three form Ω+ on Y . Let u , v ∈ Γ(TY )
and consider this decomposition of φ together with equation (3) for the
metric:

6 gϕ(u, v) dvolϕ = iu(φ) ∧ iv(φ) ∧ φ .

Taking u = v = R, and using gϕ(R,R) = 1, we have

6 dvolϕ = iR(φ) ∧ iR(φ) ∧ φ = ωϕ ∧ ωϕ ∧ (σ ∧ ωϕ +Ω+) .

The last term must vanish as it is a transverse seven form, while the first
term gives the volume form on Y in terms of σ and ωϕ

(34) dvolϕ =
1

6
σ ∧ ωϕ ∧ ωϕ ∧ ωϕ .

We have already seen this before, see (26). Consider now the metric compo-
nents for u ∈ Γ(Ker(σ)) and v = R. As in this case gϕ(u,R) = σ(u) = 0, we
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have

0 = σ ∧
(

iu(Ω+) ∧ ωϕ − iu(ωϕ) ∧ Ω+

)

∧ ωϕ

= σ ∧ (iu(Ω+ ∧ ωϕ ∧ ωϕ) + 3 iu(ωϕ) ∧ Ω+ ∧ ωϕ)

= σ ∧ 3 iu(ωϕ) ∧ Ω+ ∧ ωϕ ,

which must be true for all transverse vectors u ∈ Γ(Ker(σ)). Hence

(35) ωϕ ∧ Ω+ = 0 .

An important consequence of this equation (35), is that Ω+ is a primitive
form type of (3, 0) + (0, 3) with respect to J because ωϕ is type (1, 1). Finally
we calculate the components gϕ(u, v) where u and v are both in Γ(Ker(σ)).
In this case, gϕ(u, v) = g⊥(u, v) and we have

6 g⊥(u, v) dvolϕ = σ ∧
(

iu(Ω+) ∧ iv(Ω+) ∧ ωϕ

−
(

iu(ωϕ) ∧ iv(Ω+) + iv(ωϕ) ∧ iu(Ω+)
)

∧ Ω+

)

= 3σ ∧ Ω+ ∧ iu(Ω+) ∧ iv(ωϕ) ,

where we have used the constraint (35). Using the volume form (34) and
contracting with R, we find

(36)
1

6
g⊥(u, v)ωϕ ∧ ωϕ ∧ ωϕ =

1

2
Ω+ ∧ iu(Ω+) ∧ iv(ωϕ) ,

for all u , v ∈ Γ(Ker(σ)). As iu(Ω+) is a transverse two form type (2, 0) +
(0, 2), for any vector u, it is easy to see that

iu(Ω+) = −J⊥
(

iu(Ω+)
)

= iJ⊥u

(

J⊥(Ω+)
)

, ∀u ∈ Γ(Ker)(σ) .

Then

1

3
g⊥(u, v)ωϕ ∧ ωϕ ∧ ωϕ

= Ω+ ∧ iJ⊥u

(

J⊥(Ω+)
)

∧ iv(ωϕ)

= −iJ⊥u

(

Ω+ ∧ J⊥(Ω+) ∧ iv(ωϕ)
)

+ iJ⊥u(Ω+) ∧ J⊥(Ω+) ∧ iv(ωϕ)

+ Ω+ ∧ J⊥(Ω+) iJ⊥uiv(ωϕ)

= g⊥(u, v) Ω+ ∧ J⊥(Ω+) + J⊥(Ω+) ∧ iJ⊥u(Ω+) ∧ iv(ωϕ) ,
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where, by equation (30)

iJ⊥uiv(ωϕ) = −ωϕ(Ju, v) = g⊥(u, v) .

Consider now the last term. Using the fact that J2
⊥ = −1 and that the action

of J⊥ on a transverse six form is the identity, we find

J⊥(Ω+) ∧ iJ⊥u(Ω+) ∧ iv(ωϕ) = −J⊥
(

− Ω+ ∧ J⊥
(

iJ⊥u(Ω+)
)

∧ J⊥
(

iv(ωϕ)
)

)

= −Ω+ ∧ iJ⊥u(Ω+) ∧ iJ⊥v(ωϕ)

By equations (36) and (23)

J⊥(Ω+) ∧ iJ⊥u(Ω+) ∧ iv(ωϕ) = −
1

3
gϕ(Ju, Jv)ωϕ ∧ ωϕ ∧ ωϕ

= −
1

3
gϕ(u, v)ωϕ ∧ ωϕ ∧ ωϕ .

Therefore

1

6
g⊥(u, v)ωϕ ∧ ωϕ ∧ ωϕ =

1

4
g⊥(u, v) Ω+ ∧ J⊥(Ω+) ,

that is,

(37)
1

6
ωϕ ∧ ωϕ ∧ ωϕ =

1

4
Ω+ ∧ J⊥(Ω+) .

Let Ω be a (3, 0) form with respect to J⊥ such that

(38) Ω+ =
1

2
(Ω + Ω) = ReΩ .

Then we have that

J⊥(Ω+) =
1

2 i
(Ω− Ω) = ImΩ = Ω− .

Then equation (37) becomes

(39)
1

6
ωϕ ∧ ωϕ ∧ ωϕ =

1

4
Ω+ ∧ Ω− =

i

8
Ω ∧ Ω .

One can define a Hodge-dual operator ∗⊥ on the transverse geometry
using the transverse metric g⊥. Let α be a k-form on Y with decomposition

α = σ ∧ α0 + α⊥ ,



✐

✐

“3-DeLaOssa” — 2022/10/13 — 17:43 — page 159 — #17
✐

✐

✐

✐

✐

✐

Almost contact structures on manifolds 159

then, it is not too difficult to show that

(40) ∗ϕ α = (−1)k σ ∧ ∗⊥ α⊥ + ∗⊥ α0 ,

where one needs,

det gϕ = σ20 det g⊥ .

The coassociative four form ψ then decomposes as

(41) ψ = ∗ϕφ = −σ ∧ Ω− + ρϕ ,

where we have defined the transverse four form ρϕ by

(42) ρϕ = ∗⊥ ωϕ =
1

2
ωϕ ∧ ωϕ ,

and used the fact that

∗⊥Ω+ = Ω− .

This ends the proof of proposition 1.
It is interesting to ask at this point about the conditions for the trans-

verse geometry to correspond in fact to a submanifold X ⊂ Y . According to
the Frobenius Theorem, the foliation FR has a global transverse section X
when Ker(σ) is an integrable distribution, that is

(43) [u, v] ∈ Γ(Ker(σ)) , ∀ u , v ∈ Γ(Ker(σ)) .

A short computation shows that this is the case if and only if

(d7σ)(u, v) = 0 , ∀ u , v ∈ Γ(Ker(σ)) ,

that is,

(44) d7σ = σ ∧ α ,

for some transverse one form α, so d7σ has no transverse component. We will
come back to this constraint later when we discuss examples (see section 5.1).

2.3. Decomposing the structure equations

Let Y be a manifold with a G2 structure given by the three form φ, and let
gϕ be the metric on Y determined by φ. In this subsection, we decompose the
G2 structure equations (5) and (6) under the ACMS (J,R, σ, gϕ), to obtain
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the torsion classes Wi of the induced transverse SU(3) structure in terms
of those τi of the G2 structure. We recall that under the ACMS (J,R, σ, gϕ)
the G2 structure is decomposed in terms of the underlying transverse SU(3)
structure (ωϕ,Ω+) as

φ = σ ∧ ω +Ω+ ,(45)

ψ = −σ ∧ Ω− + ρ ,(46)

σ = dr +Σ ,(47)

where from now on we drop the label φ in the fundamental two form.
In order to decompose the structure equations under the ACMS, we

begin with the following lemmas regarding the decomposition of the con-
traction operator ⌟ϕ and the exterior derivative. The proof of both lemmas
is straightforward.

Lemma 1. Let α be a p-form and β a (p+ q)-form on Y . Let

α = σ ∧ α0 + α⊥ , β = σ ∧ β0 + β⊥ ,

be their decomposition with respect to the ACS. Then

α⌟ϕ β = (−1)p σ ∧ (α⊥ ⌟β0) + (α0⌟β0 + α⊥ ⌟β⊥) ,

where ⌟ϕ and ⌟ are the contraction operators with respect to the G2 metric
gϕ and the transverse metric g⊥ respectively.

Lemma 2. Let α be a transverse p-form on Y , that is, iR(α) = 0. The
decomposition under the ACMS of the exterior derivative d7α is given by

(48) d7α = σ ∧R(α) + d⊥α ,

where we have defined

(49) d⊥α = dα− Σ ∧R(α) ,

and d refers to derivatives with respect to the transverse coordinates in the
coordinate system {r, xm} adapted to the one dimensional foliation of Y by
the non-zero vector R (see (13)). The operator d⊥ is a derivation, in par-
ticular it satisfies the Leibnitz rule, and its curvature d2⊥ can be understood
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as the curvature of d⊥ given by its action on transverse forms by

(50) d2⊥ = −d⊥Σ ∧R .

The exterior derivative d7 on the one-form σ is then

(51) d7σ = d7Σ = σ ∧R(Σ) + d⊥Σ ,

Finally, equations (48)-(51) imply that the exterior derivative d7Λ of a p-
form Λ on Y with components

Λ = σ ∧ Λ0 + Λ⊥ ,

is given by

(52) d7Λ = σ ∧
(

− dΛ0 +R(Λ⊥ +Σ ∧ Λ0)
)

+ d⊥Λ⊥ + d⊥Σ ∧ Λ0 .

Using Lemma 2, the decomposition of d7φ and d7ψ is given by

d7φ = σ ∧
(

− dω +R(Ω+ +Σ ∧ ω)
)

+ d⊥Ω+ + d⊥Σ ∧ ω ,(53)

d7ψ = σ ∧
(

dΩ− +R(ρ− Σ ∧ Ω−)
)

+ d⊥ρ− d⊥ ∧ Ω− .(54)

Equating these with the decomposition under the ACMS of the right hand
side of the G2 structure equations (5) and (6), we find the following relations
for the transverse SU(3) structure

dΩ+ = τ0 ρ+ 3 τ1⊥ ∧ Ω+ −
(

J(τ3 0) + dΣ
)

∧ ω +Σ ∧R(Ω+ +Σ ∧ ω) ,

dΩ− = 4(τ1 0 ρ+ τ1⊥ ∧ Ω−)−R(ρ− Σ ∧ Ω−)− τ2 0 ∧ Ω+ − τ2⊥ ∧ ω ,

dω = τ0Ω− − 3 τ1 0Ω+ + 3 τ1⊥ ∧ ω + ∗τ3⊥ +R(Ω+ +Σ ∧ ω) ,

dρ = 4 τ1⊥ ∧ ρ+ dΣ ∧ Ω− +Σ ∧R(ρ− Σ ∧ Ω−)− τ2⊥ ∧ Ω+ ,

where we have used Lemma 1 and decomposed the G2 torsion classes with
respect to the ACS

(55) τ1 = σ τ1 0 + τ1⊥ , τ2 = σ ∧ τ2 0 + τ2⊥ τ3 = σ ∧ τ3 0 + τ3⊥ .

The condition that τ3 ∈ Ω3
27
(Y ), implies that τ3⊥ is type (2, 1) + (1, 2), τ3 0

is primitive and

(56) ω⌟τ3⊥ = τ3 0⌟Ω+ .
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Similarly, the condition that τ2 ∈ Ω2
14
(Y ) implies that τ2⊥ is primitive and

(57) τ2⊥⌟Ω− = τ2 0 .

We can now compare these relations with the SU(3) structure equations
(A.3) and (A.4), and deduce formulas for the torsion classes of the ACMS-
induced SU(3) structure on Y , Wi, in terms of the G2 torsion classes and
the flow of the SU(3) structure along R. After a somewhat lengthy compu-
tation5, we find

ReW0 =
2

3
τ0 +

1

6
Ω−⌟R

(

Ω+ +Σ ∧ ω
)

,

ImW0 = 2 τ1 0 −
1

6
Ω+⌟R

(

Ω+ +Σ ∧ ω
)

,

2W1 = 4 τ1⊥ − J(τ2 0) + d⊥Σ⌟Ω− + ω⌟(Σ ∧R(ω)) ,

2Re θ = 4 τ1⊥ +
1

2
J(τ2 0) +

1

2
ω⌟R(Ω+) + Ω−⌟R(Σ ∧ Ω−)

ReW2 = −τ
(1,1)
3 0 − P

(

d⊥Σ− ω⌟
(

Σ ∧R(Ω+)
)

)(1,1)
,

ImW2 = −τ
(1,1)
2⊥ − P

(

R(ω)− ω⌟
(

Σ ∧R(Ω−)
)

)(1,1)
,

W3 = P
(

J(τ3⊥) +R
(

Ω+ +Σ ∧ ω
)(2,1)+(1,2)

)

.

(58)

In these equations, P denotes that the primitive part of the form is taken.
Two additional identities appear in this computation:

2ω⌟d⊥Σ = −τ0 − Ω−⌟R(Ω+) ,(59)

(

d⊥Σ
)(2,0)+(0,2)

= τ3 0
(2,0)+(0,2)(60)

+

(

τ1⊥ +
1

2
J(τ2 0) +R(Σ) +

1

2
ω⌟R(Ω+)

)

⌟Ω− .

Let ∇ be a connection compatible with the G2 structure with intrinsic
torsion classes {τi, i = 0, 1, 2, 3}. Equations (58) imply that one can construct
on Y a connection ∇̂ with SU(3) holonomy with intrinsic torsion classes
{Re(θ),W0,W1,W2,W3}. We remark however that this does not necessarily
imply that ∇ω = 0 and ∇Ω = 0. In fact, one can prove, recalling ω = iR(φ),

5These computations are very similar to those in reference [47].



✐

✐

“3-DeLaOssa” — 2022/10/13 — 17:43 — page 163 — #21
✐

✐

✐

✐

✐

✐

Almost contact structures on manifolds 163

that ∇ω = 0 if and only if ∇σ = 0. In section, 3 we discusss an application
of this condition in the context of supersymmetry enhancement in heterotic
string theories.

3. Heterotic G2 systems under the ACMS

In this section we explore the effect of ACMS on a class of minimally su-
persymmetric compactifications of the heterotic string [48–56] that have
received attention lately due to, on the one hand, their connection to G2 in-
stanton bundles, and on the other hand, their interesting deformation theory
[8–13]. In particular, we decompose the description of this class of solutions
with respect to an ACMS. We will see that this extra structure allows to
make contact with string compactifications with enhanced supersymmetry.
We use this to write down the necessary and sufficient constraints on the
ACMS for supersymmetry enhancement.

3.1. Heterotic G2 systems

Let Y be a seven dimensional manifold with a G2 structure φ and let V
be a vector bundle on Y with connection A. We are interested in the de-
composition of ten dimensional heterotic superstring backgrounds on (Y, V )
that preserve minimal supersymmetry under the ACMS, i.e. heterotic G2

systems. A heterotic G2 system is defined to be the quadruple

(61) [(Y, φ), (V,A), (TY,Θ), H] ,

where

• φ is an integrable G2 structure on the seven dimensional manifold Y ,
that is τ2 = 0. In this case the structure equations can be written as

d7φ = τ0 ψ + 3 τ1 ∧ φ+ ∗τ3 = iT (φ) ,(62)

d7ψ = 4 τ1 ∧ ψ = iT (ψ) ,(63)

where T is the totally antisymmetric torsion given by

(64) T (φ) =
1

6
τ0 φ− τ1⌟ψ − τ3 .

Note that a G2 structure admits a totally antisymmetric torsion if and
only if dψ ∈ Ω5

7
, and T (φ) is in fact the torsion of the unique metric

connection with a totally antisymmetric torsion.



✐

✐

“3-DeLaOssa” — 2022/10/13 — 17:43 — page 164 — #22
✐

✐

✐

✐

✐

✐

164 X. de la Ossa, M. Larfors, and M. Magill

• V is a gauge bundle with connection A that is an instanton, i.e. its
curvature F satisfies

(65) F ∧ ψ = 0 .

• Θ is a connection on the tangent bundle TY of Y which is also an
instanton

(66) R(Θ) ∧ ψ = 0 ,

where R(Θ) is the curvature of Θ.

• H is a three form defined by

(67) H = d7B +
α′

4
(CS(A)− CS(Θ)) ,

where CS(A) is the Chern-Simons form of the connection A

(68) CS(A) = tr

(

A ∧ d7A+
2

3
A3

)

,

with a similar definition for CS(Θ), and B is the B-field. The fields H,
A, B and Θ are constrained such that

(69) H = T (φ) ,

where T (φ) is given in equation (64) and it is the totally antisymmetric
torsion of a (unique) connection ∇ compatible with the G2 structure.

3.2. Decomposition of the G2 structure equations with respect to
the ACMS

In section 2.3 we presented the decomposition of the structure equations
of a general G2 structure under the ACMS. We do not find it necessary to
write these relations here as for an integrable G2, all we need to do is to set
τ2 = 0.

3.3. Instanton conditions

We want to discuss how the instanton conditions are decomposed under the
ACMS on Y .
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Let

(70) A = σ a0 + a ,

be the composition under the ACMS of the gauge connection A. Then, the
curvature F of the connection A decomposes accordingly as

(71) F = σ ∧ F0 + F⊥ ,

where

F0 = −daa0 +R(a+Σ a0) ,(72)

F⊥ = F(a) + dΣ a0 − Σ ∧R(a+Σ a0) .(73)

It is not too difficult to show that the instanton condition F ∧ ψ = 0 for the
curvature F is equivalent to the constraints

ω⌟F⊥ = 0 ,(74)

F⊥⌟Ω− = F0 .(75)

It is instructive to note that in terms of

(76) â = a+Σ a0 ,

the components of the curvature are

(77) F0 = −dâ a0 +R(â) , F⊥ = F(â)− Σ ∧ F0 ,

and the instanton conditions become

(78) ω⌟F(â) = −F0⌟J(Σ) , F(â)⌟Ω− = F0 + F0⌟(Σ⌟Ω−) .

These conditions do not correspond to â instantons on the transverse geom-
etry unless, for example, F0 = 0.

The component F0 of the field strength F can be interpreted as a trivial
deformation of the gauge connection A under the one parameter group of
diffeomorphisms generated by the vector R. To see this, recall [9]6 that a

6In [9] it was proven that trivial deformations of the heterotic G2 system are exact
in the cohomology of a nilpotent operator. We refer the reader to this reference for
details.
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trivial deformation of A due to a gauge transformation with parameter ϵ
together with a diffeomorphism generated by a vector V is given by

(δA)triv = dAϵ+ iV (F) .

The second term gives the component F0 when V = R. In other words,
F0 gives the variation of â along the integral curves of R up to a gauge
transformation of â generated by a0. Note that if R is a Killing vector then
F0 = 0 and, in this case, â is an SU(3) instanton. We will return to this case
in section 3.6.

Similar considerations apply to the instanton connection Θ on the tan-
gent bundle of Y . In this case we decompose the connection Θ on the tangent
bundle of Y under the ACMS as

Θ = σ ∧ θ0 + θ⊥ .

The curvature of this connection is thus decomposed as

R(Θ) = σ ∧R(Θ)0 +R(Θ)⊥ ,

where, in terms of θ̂ = θ +Σ θ0 , the instanton conditions become

(79) ω⌟R(θ̂) = −R0⌟J(Σ) , R(θ̂)⌟Ω− = R0 +R0⌟(Σ⌟Ω−) .

Just as before, the component R0 of the curvature R(Θ) is interpreted as
a trivial deformation of the instanton connection Θ on TY under the one
parameter group of diffeomorphisms generated by the vector R. When R is
a Killing vector, this component vanishes and θ̂ is an instanton.

3.4. Anomaly cancellation condition

Let

(80) H = σ ∧H0 +H⊥ ,

be the decomposition of the flux H with respect to the ACS. Then, recalling
equations (67) and (68), the terms in the flux decomposition are given by

H0 = −db0 +R(b̂) +
α′

4

(

tr
(

a0 dâ− â ∧ F0

)

− tr
(

θ0 dθ̂ − θ̂ ∧R0

)

)

,(81)

H⊥ = db̂+
α′

4

(

CS(â)− CS(θ̂)
)

− Σ ∧H0 ,(82)
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where

b̂ = B⊥ +Σ ∧B0 , b0 = B0 .

We can interpret H0 as a trivial deformation of the B field due to the
diffeomorphism generated by R. In fact, up to an ambiguity of an exact two
form, a trivial deformation of the B-field due to a diffeomorphism generated
by the a vector V and a gauge transformation with parameter ϵ, is given by
[9]

(83) (δB)triv = iV (H) +
α′

2
tr(ϵF) .

When V = R, the first term is indeed H0 as claimed. If R is an isometry,
then H0 vanishes up to an exact two form. We will see the implications of
this result in section 3.6 as well as in an example in section 5.1.

The anomaly cancellation condition is the requirement that the flux H
equals the torsion T (φ) of the connection with G2 holonomy determined
uniquely by φ (see equations (64) and (69)). Under the ACMS we have then

(84) H0 = T0(φ) , H⊥ = T⊥(φ) .

where

(85) T = σ ∧ T0 + T⊥ ,

and

T0 =
1

6
τ0 ω − τ1⊥⌟ Ω− − τ3 0 ,(86)

T⊥ =
1

6
τ0Ω+ + τ1 0Ω− + J(τ1⊥) ∧ ω − τ3⊥ .(87)

One can write expressions for T0 and T⊥ in terms of the torsion classes of
SU(3) structure induced by the ACMS using equations (58) with τ2 = 0.

3.5. N = 1 superpotential in terms of the ACMS

A compactification of the heterotic string on a heterotic G2 system leads to
minimally supersymmetric (N = 1) effective field theory on either AdS3 or
three dimensional Minkowski space time. It has been shown [57] that, up to
an overall constant, the superpotential W of the N = 1 effective theory is
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given by

(88) W =

∫

Y

e−2φ

(

(H + hφ) ∧ ψ −
1

2
d7φ ∧ φ

)

,

where h is the three dimensional flux which is related to the curvature of the
three dimensional space-time and ϕ is the dilaton field. It was also shown in
[57] that this superpotential is a functional of the fields whose critical points
give the conditions for preservation of N = 1 supersymmetry in three dimen-
sions, or equivalently, the conditions defining the G2 structure. Furthermore,
it was shown that supersymmetry requires, apart from the constraints de-
scribed above, that h be proportional to the torsion class τ0, and that τ1 is
d-exact, specifically

h =
1

3
τ0 , τ1 =

1

2
dϕ .

As we have seen in section 2, the ACMS (J,R, σ, gϕ) on a manifold Y
with a G2 structure φ, implies that the G2 structure can be decomposed in
terms of an underlying transverse SU(3) structure (ωϕ,Ω+). This is sum-
marised in Proposition 1. In a similar way, we may use equations (34), (39),
(53), and (80), to decompose the various terms in the superpotential (88).
A short computation gives

W =

∫

Y

e−2φ σ ∧ Im
([

Ĥ + i d⊥ω

+
1

8

(

ω⌟(H0 − d⊥Σ) + 7h−

(

Σ ∧H0 +
i

2
R(Ω+)

)

⌟Ω̄

)

Ω̄

]

∧ Ω

)

,

(89)

where

(90) Ĥ = db̂+
α′

4

(

CS(â)− CS(θ̂)
)

.

This decomposition provides links between the heterotic G2 system and
the six dimensional Strominger–Hull system [58, 59].7 In particular, this is
evident from the first two terms in the square bracket in (89), where we
recognize the SU(3) superpotential of the latter system.8 This is consistent
with the fact that the systems need not be related by a circle reduction, and
that the heterotic G2 system need only preserve half of the supersymmetry of

7Such links were discussed from a different perspective in [60].
8The remaining terms of W are related to the non-transverse objects.
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the Strominger–Hull system. Indeed, in contrast to Strominger–Hull system,
we cannot identify a holomorphic superpotential. As a further comment we
note that, as is true for any four dimensional N = 1 theory, the Strominger–
Hull superpotential captures the F-term constraints, but not the D-terms.
In contrast, for three dimensional N = 1 theories, there is no decomposition
into F- and D-terms, and indeed the G2 superpotential captures also the
D-term constraints of the Strominger–Hull system.

3.6. Three dimensional theory with N = 2

Consider now the following question: What are the constraints on the het-
erotic G2 system to have supersymmetry enhanced to N = 2? This question
was already addressed in [32–34]. In this section, we approach the question
using an almost contact metric structure and show that supersymmetry en-
hancement is equivalent to the existence of a particular kind of ACMS on Y .

We know that any manifold Y with a G2 structure admits a covariantly
constant nowhere vanishing spinor η. Given the existence of a nowhere van-
ishing vector R, the manifold Y admits another nowhere vanishing spinor
Rη which is not, however, necessarily covariantly constant. In this section
we deduce the geometric conditions under which the spinor Rη is covariantly
constant too. As we will see in this section, this has interesting applications,
as for example, to the construction of three dimensional theories with N = 2
supersymmetry by constraining further the heterotic G2 system such that
Rη is indeed covariantly constant. As we will see, with two covariantly con-
stant spinors at hand, the structure group of Y reduces further to a certain
type of SU(3) structure.

The requirement that ∇(Rη) = 0 is equivalent to the condition that R
is itself covariantly constant. Equivalently (as the connection ∇ is metric),
we require that σ is covariantly constant

(91) ∇aσb = 0 .

As we remarked earlier, we now have ∇ω = 0 and ∇Ω = 0 so the holonomy
of the G2 compatible connection ∇ is reduced to SU(3). Symmetrising this
equation with respect to the indices a, b, we obtain that R must be a Killing
vector. When R is a Killing vector, φ becomes independent of the coordinate
r and hence, the transverse forms ω, Ω, and Σ are also independent of r.
The antisymmetric part of equation (91) gives a further constraint

(92) d7σ = iT (σ) = T0 .
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The authors of [32, 33] obtain precisely condition (91) as part of the re-
quirements to obtain supersymmetry preserving backgrounds. In fact, a ten
dimensional backgound on AdS3 ×Y, where Y is a manifold with a G2

structure, demands the existence of an extra covarianly constant one form
to have an extra supersymmetry and hence reducing the the holonomy of
the G2 connection to SU(3).

The relations between the G2 torsion classes and the induced SU(3)
torsion classes given in equations (93) greatly simplify because we now have
to set τ2 = 0 and, R being a Killing vector, means that R(Σ) = 0, R(ω) = 0
and R(Ω) = 0. We then find

ReW0 =
2

3
τ0 = −

4

3
ω⌟ dΣ , ImW0 = 2 τ1 0 ,

2W1 = 4 τ1⊥ + dΣ⌟Ω− , 2Re θ = 4 τ1⊥ ,

ReW2 = −τ
(1,1)
3 0 − P

(

dΣ
)(1,1)

, ImW2 = −τ
(1,1)
2⊥ ,

W3 = P
(

J(τ3⊥)
)

,

(

dΣ
)(2,0)+(0,2)

= τ3 0
(2,0)+(0,2) + τ1⊥⌟Ω− .

(93)

As discussed above, a Killing vector is necessary but not sufficient for
an enhancement of the supersymmetry, we need furthermore to impose the
condition (92). Using (93) in (86), the condition (92) becomes

(94) dΣ = T0 = −
1

3
(ω⌟dΣ)ω +ReW2 + P(dΣ)(1,1) − (dΣ)(2,0)+(0,2) .

Therefore dΣ must be a primitive (1, 1) form and ReW2 = 0. Moreover, the
fact that ω⌟dΣ = 0 means that ReW0 = 0, that is τ0 = 0. For the heterotic
string we need to add the constraint that 2 τ1 = d7ϕ. This implies that

(95) τ1 0 = 0 , 2 τ1⊥ = dϕ .

Therefore

(96) ImW0 = 0 .
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In summary, the torsion classes of the SU(3) on the transverse geometry
satisfy

W0 = 0 , W2 = 0 ,

W1 = Re θ = dϕ = −τ3 0⌟Ω− ,

W3 = P
(

J(τ3⊥)
)

,

and we also have

τ0 = 0 , dΣ = −τ
(1,1)
3 0 ,

where τ3 0 is primitive.
As an example, we note that, if the manifold Y has G2 holonomy, then

the transverse bundle Ker(σ) is necessarily integrable, so Y is a codimenion
one foliation with leaves which are Calabi–Yau three folds.

More generally, the vanishing ofW0 andW2 means that the almost com-
plex structure J on the transverse geometry is integrable, and the fact that
W1 (and hence Re θ) are exact imply that the transverse geometry is confor-
mally balanced. Therefore the transverse geometry has the SU(3) structure
of the Strominger-Hull system. Moreover, the fact that dΣ is a primitive
(1, 1) form means that the manifold Y has the structure of a U(1) princi-
pal bundle with a holomorphic connection Σ over the transverse geometry.
Finally, we note that the vanishing of τ0 implies that the three dimensional
spacetime is Minkowski space.

Consider now the instanton conditions. Following the discussion at the
end of section 3.3, we recall that F0 represents the change of the connection
A with respect to the vector R. As R is, in our case, a Killing vector, we have
F0 = 0 and it follows that â is a holomorphic instanton on the transverse
geometry. Similarly, R0 = 0 and θ̂ is also an instanton.

For the anomaly cancellation condition, we earlier saw that if R is a
Killing vector, then H0 must be an exact two form, a conclusion that was
arrived at by studying the symmetries of the heterotic system. Interestingly,
the condition that H0 be an exact form is precisely the content of equation
(94), which fixes this exact form to be

H0 = T0 = dΣ ,

where we recall that the second equality comes from the fact that R is not
just a Killing vector, but is also covariantly constant. For completeness we
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note that the transverse part of the flux becomes

H⊥ = −Σ ∧ dΣ + Ĥ ,

where Ĥ is defined in equation (90). Note, furthermore, that the Bianchi
identity of the anomaly cancellation condition becomes

(97) dH⊥ = −dΣ ∧ dΣ +
α′

4

(

tr(F(â) ∧ F(â))− tr(R(θ̂) ∧R(θ̂))
)

.

We remark that it has not been necessary to require the integrability of
Ker(σ). That is, it is not necessary to require that dΣ = 0 to have N = 2 in
three dimensions, as one might have expected.

4. SU(2) structures on manifolds with a G2 structure

The SU(3) structure discussed in the previous section is not the only “bonus”
restriction on the topology of G2 structure manifolds. Indeed, there are two
non-vanishing vector fields on a manifold Y with a G2 structure [25, 61],
which may be combined with the G2 compatible spinor to form two addi-
tional nowhere-vanishing spinors. These three spinors reduce the structure
group of the manifold to SU(2) [26]. Moreover, the existence of two well-
defined vectors implies that there is an almost contact metric 3-structure
(ACM3S) on Y (that is a reduction of the structure group to 13 × Sp(1))
[37] (see also [40]). In this section, we will expand on this topic, and show
how the Sp(1) ∼= SU(2) structure is embedded in the G2 structure. As in the
preceding section, we will describe the ACM3S in terms of differential forms.
We will also clarify when the ACM3S leads to a involutive decomposition
of the tangent bundle TY , and expand on the relation to associative and
coassociative submanifolds. Finally, we will study the space of ACM3S.

4.1. Almost contact 3-structure

It is a classical result by E. Thomas, that any compact, orientable 7-
dimensional manifold Y admits two globally defined, everywhere linearly in-
dependent vector fields R1, R2 ∈ Γ(TY ) [25, 61]. Suppose now that Y has G2

structure φ with metric gϕ. We may then assume, without loss of generality,
that the 2-frame (R1, R2) consists of vectors that are orthonormal. Indeed,
given two non-orthogonal, but linearly independent, vectors (R1, R2), we
can form two orthogonal ones using the G2 cross product: (R1, R1 ×ϕ R

2).
We can also normalise the vectors by dividing by their norms as calculated
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with the G2 metric. Thus all G2 manifolds allow orthonormal 2-frames of
vectors.

Each vector Rα will be associated to an ACMS, in the sense discussed
in section 2.1. We thus have [40] (see also [38, 39]) two dual one-forms σα

so that (Jα, Rα, σα, gϕ), for α = 1, 2, are two ACMS on Y . If the structures
furthermore satisfy the relations

σ1(R2) = σ2(R1) = 0

J1(R2) = −J2(R1)

σ1 ◦ J2 = −σ2 ◦ J1

J1J2 −R1 ⊗ σ2 = −J2J1 +R2 ⊗ σ1 ,

(98)

Kuo [37] has shown that Y admits a third ACMS given by

(99) J3 = J1J2 −R1 ⊗ σ2 , R3 = J1(R2) , σ3 = σ1 ◦ J2 .

Together, these three ACMS then satisfy (10), and hence define an almost
contact 3-structure (AC3S) [37]. In fact, one can show that, for two ACS
associated to the same metric, the last constraint in (98) implies the other
three constraints [37].

From the definition of an AC3S, we have the following useful identities

(100) σα(Rβ) = δαβ , Jα(Rβ) = ϵαβγRγ , σα ◦ Jβ = −σβ ◦ Jα .

In addition,

(101) R3 a = [J1(R2)]a = φa
bcR

1 bR2 c i.e. R3 = R1 ×ϕ R
2

or, equivalently,

(102) σγ =
1

2
ϵαβγiRβ iRαφ ,

which will be used below when we discuss the SU(2) decomposition of the
G2 structure.

Finally, it was recently proven by Todd [40] that on any G2 structure
manifold, two ACMS’s (Jα, Rα, σα, gϕ) will automatically satisfy the last
constraint of (98). Thus, we have

Theorem 1 (Todd, [40]). Let (Y, φ) be a compact and boundary-less 7-
manifold with G2 structure φ. Then Y admits an almost contact metric
3-structure which is compatible with the G2-metric.
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Note that the three ACMS have different contact forms σα, but the fact
that they are associated to the same G2 metric,

(103) gϕ(J
αu, Jαv) = g(u, v)− σα(u)σα(v) , α = 1, 2, 3 (no sum) ,

implies the resulting almost contact 3-structure is indeed an almost contact
metric 3-structure (ACM3S).

We observe, in particular, that the ACM3S involves fixing a distinguished
orthonormal three-frame, (R1, R2, R3), which induces a decomposition of the
tangent bundle

(104) TY ∼= T ⊕ T ⊥,

where T is trivial rank three bundle with a distinguished trivialisation in-
duced by the three-frame (R1, R2, R3). The second factor, T ⊥, is then the
orthogonal complement. With this data, we are able to identify T as a trivial
bundle of imaginary quaternions, with a product induced by the G2 cross
product. This follows immediately from (101).

The choice of ACM3S therefore reduces our structure group G2 → 13 ×
H, for some H ⊂ G2. In fact, results of Kuo, [37], show that H = Sp(1) ∼=
SU(2). One way to see this, from the G2 perspective, is to observe that
the subgroup of G2 that preserves three orthonormal vectors is, indeed,
SU(2), from which the result follows. Note, in particular, that the rank four
bundle, T ⊥ has reduced structure group SO(4) → SU(2). A reduction of
structure group leads to distinguished differential forms living in irreducible
representations of the reduced group and we will explicitly exhibit the forms
induced by the reduction of T ⊥’s structure group. These structure forms will
be familiar to readers that have studied four dimensional SU(2) structure
manifolds, but it is important to bear in mind that T ⊥ need not be tangent
to any underlying four manifold.9 This decomposition is purely at the level
of the bundle.

The splitting of the tangent bundle, (104) induces an analogous decom-
position of the cotangent bundle

(105) T ∗Y = T ∗ ⊕ T ∗⊥ ≡ Span{σ1, σ2, σ3} ⊕ Span{σ1, σ2, σ3}⊥ ,

9The conditions that T ⊥ must satisfy in order for such manifolds to exist are
reviewed in section 4.2.
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and, consequently, a decomposition of the differential forms. In particular,
we will refer to a k-form, λ, as being α-transverse if it satisfies

(106) iRα(λ) = 0 .

More generally, an arbitrary form k-form, λ, can be decomposed as

(107) λ =
∑

α

σα ∧ λα0 + λ⊥ ,

where

iRα(λ) = λα0 , iRα(λα0 ) = 0 , and, iRα(λ⊥) = 0 , ∀α .

Recall that each ACS has an associated fundamental two-form, (25),

(108) ωα = iRα(φ) .

Evidently, ω1 is a 1-transverse two-form, but it is neither 2- nor 3-transverse;
as a consequence it is not in Γ(Λ2T ∗⊥), but is instead a linear combination

(109) ωα =
∑

β ̸=α

σβ ∧ ωα
0β + ωα

⊥ .

where we recall that ωα
⊥ is, in fact, transverse with respect to all three ACMS.

Moreover, (102) implies that e.g.

(110) σ3 = iR2ω1 = −iR1ω2

and we thus have that ω2
0 1 = −σ3, or, in general,

(111) ωα =
1

2
ϵαβγσβ ∧ σγ + ωα

⊥ .

Next, we decompose theG2 structure form, φ with respect to the ACM3S.
Using that the trivial bundle, T ⊂ TY , can be interpreted, fibrewise, as the
imaginary quaternions sitting inside the imaginary octonions, we can quickly
deduce that φ⊥ = 0. This is because the octonionic product of any two el-
ements in Im(H)⊥ ⊂ Im(O) will necessary land back in Im(H), while φ⊥

projects this product back into the complement Im(H)⊥.
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More concretely, we can consider a local frame, ei, such that e4+α := Rα,
and e1, e2, e3, e4 are chosen such that φ takes the standard form

(112) φ0 = (e12 + e34 + e56) ∧ e7 + e135 − e146 − e236 − e245 .

In such a local frame, φ⊥ will be those terms of φ0 in which none of e5, e6, e7

appear and one observes that there are no such terms.
Furthermore, comparing the terms that appear in (112) with the expan-

sion (111), we can explicitly expand φ:

(113) φ =
1

3!
ϵαβγσ

α ∧ σβ ∧ σγ +
∑

α

σα ∧ ωα
⊥ ,

The expansion of ψ can be straightforwardly computed, using either a
local frame and its standard form, or applying the Hodge star. Either way,
one obtains

(114) ψ = dvol⊥ +
1

2
ϵαβγσ

α ∧ σβ ∧ ωγ
⊥ .

Note that we use dvol⊥ to refer to the canonical section of Λ4(T ⊥,∗),
although there may not be a four dimensional manifold, even locally, for
which dvol⊥ is a volume form. Whenever T ⊥ is integrable (see the next
subsection), then dvol⊥ is indeed the volume form for the leaves of the
corresponding foliation.

In the preceding, we have come across a triple of real two-forms ωα
⊥,

α = 1, 2, 3. These characterise the reduced SU(2) structure of the rank four
bundle, T ⊥. This will be familiar to readers comfortable with SU(2) struc-
tures in dimension four and we briefly review this setting in Appendix B.
To be sure that these really are the correct differential forms, we must check
that

(115) ωα
⊥ ∧ ωβ

⊥ = 2δαβdvol⊥ .

That this holds follows directly from the decompositions (114) (113). Indeed,
on the one hand, we have

(116) 0 ̸= 7dvolϕ = φ ∧ ψ = σ1 ∧ σ2 ∧ σ3 ∧ (dvol⊥ + 3ωα
⊥ ∧ ωα

⊥) ,

showing that ωα
⊥ ∧ ωα

⊥ = 2dvol⊥. On the other hand, we have

(117) 0 = φ ∧ φ ∼ σα ∧ σβ ∧ ωα
⊥ ∧ ωβ

⊥
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so ωα
⊥ ∧ ωβ

⊥ must vanish when α ̸= β.
We now return to the role that the unit vector fields, Rα played in the

above computations. In particular, it is important that fixing the splitting
(104) does not fix the ACM3S. The extra data required is a global identifi-
cation of T with the imaginary quaternions, Im(H), along with the multi-
plication induced by φ. This is equivalent to a choice of three orthonormal
vector fields, satisfying (101). In particular, after a choice of splitting, (104),
there remains an interesting space of compatible almost contact metric 3-
structures, which we study in Subsection 4.3. To the authors’ knowledge,
this has not been explored in the literature and we provide some initial
results below.

In contrast, a decomposition TY ∼=T1⊕T ⊥
1 into a trivial one-dimensional

bundle, T1, and its orthogonal complement, T ⊥
1 , has a much less interesting

space of almost contact structures. Indeed, recall from Section 2 that the
data needed for an ACMS on a G2 structure manifold is precisely that of a
unit vector field.10 The rank one bundle, T1 admits precisely two such vector
fields, say R and −R. Choosing either, say R for concreteness, induces an
ACMS such that T1 = Span(R) and T1 = Kerσ.

To further contrast with the ACMSs of Section 2, the trivial subbundle,
T , is no longer guaranteed to be tangent to a foliation, i.e. it need not be
an integrable distribution. As a consequence, we can not generally expect to
find adapted coordinates in the same vein as (13). In other words, we can
not expect there to be even a local product structure of the geometry. We
turn to this question now.

4.2. Integrability

In this subsection we will investigate the conditions for the distributions T
and T ⊥ to be tangent to a foliation of the seven manifold, Y . We will begin
with the trivial bundle, T . It is a standard result in the study of foliations
that this is true if and only if T is involutive, for which it suffices that the
Lie bracket of the distinguished vector fields, Rα, closes. That is, there are
real functions fαβγ , α, β, γ ∈ {1, 2, 3} such that

(118) [Rα, Rβ ]x = fαβγ(x)R
γ
x ∀x ∈ Y .

Observe that the analagous condition on the rank one bundle induced by
an ACMS, Span(R), is trivially satisfied since [R,R] = 0. This is a reflection

10Just as an ACM3S allows us to identify T with the imaginary quaternions, an
ACMS allows us to identify T1 with the imaginary complex numbers.
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of the well-known fact that vector fields always admit integrable curves
or, to put it another way, that ordinary differential equations always have
locally unique solutions. The possible failure of integrability of a higher
rank foliation is related to the comparative subtlety of partial differential
equations.

Note also that (118) is independent of the distinguished vector fields,
Rα, which can be checked by straightforward computation. In particular,
integrability is a property of the subbundle, not of its trivialisation.

Condition (118) can be equivalently formulated in terms of the kernel
T ∗,⊥. Recalling that a one-form, ξ is in Γ(T ∗,⊥) if and only if iRαξ = 0 for
each α = 1, 2, 3, then, T is involutive if and only if d(T ∗,⊥) ⊂ T ∗,⊥ ⊗ Ω1(Y ),
i.e. that iRαiRβdξ = 0 for all ξ ∈ Γ(T ∗,⊥).

We can now review the conditions under which T ⊥ is integrable. Since
the presentation of T ⊥ is not as convenient as that of T , it is the second of the
above characterisations that is most convenient, viz. T ⊥ is integrable if and
only d(T ∗) ⊂ T ∗ ⊗ Ω1(Y ). Using that T ∗ = Span{σ1, σ2, σ3}, we conclude
that T ⊥ is involutive if and only if dσα = σβ ∧ µαβ , for one-forms µαβ . This
is the ACM3S analogue of the condition (44) for ACMS’s.

We can now ask about the relation between integrability of T , respec-
tively T ⊥, and the G2 structure on Y . Let us begin by assuming that T
is integrable, so that Y has a three dimensional foliation with leaves, say
Lx, such that TyLx = Tx. Here, x is any point on the leaf, so there is a
huge degeneracy in this labelling and, unless it will lead to confusion, we
will omit recording this point. We observe that, by construction, L has a
volume form which is, at each point y ∈ Lx, the wedge of the dual one-forms
dvolL,y = (σ1 ∧ σ2 ∧ σ3)y. Further, this wedge product is nothing but the G2

structure three-form, φ, restricted to TyL, as can be easily seen by choosing
a local frame extending σα, cf. (113). This is precisely the condition that L
be an associative manifold, [62, 63].

We have just shown that T is integrable if and only if Y is foliated by
associative submanifolds. In the case that our G2 structure is closed, dφ = 0,
then φ is a calibration and the associative submanifolds are the correspond-
ing calibrated cycles, which minimize volume within their homology class.
In string theoretic compactification scenarios, calibrated cycles contribute to
non-perturbative effects in the effective field theory and it is a long-standing
open problem to properly account for these contributions, see [14, 18–20] for
instance, or [24] for a brane world-sheet perspective. For more general G2

structures, in particular for non-closed G2 structures, the positive three-form
φ is no longer a calibration, the volume-minimizing cycles and corresponding
non-perturbative effects are, in general, less understood [17]. The surprising
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link between three-structures and associatives may offer a tool to be ap-
plied to both of these problems and we comment on this possibility in the
conclusions, Section 6.

At any rate, the condition that T be integrable is clearly a strong one. As
a final comment on this property, we remark that the leaf, L, is evidently
parallelisable and, once we fix the ACM3S, is equipped with a canonical
trivialisation. In three dimensions, every oriented manifold is parallelisable,
so this does not add extra conditions on the topology of the leaf.

The case for T ⊥ is similar. Were T ⊥ to be integrable, Y would have
a four-dimensional foliation, whose leaves will be denoted L⊥, TxL

⊥ = T ⊥
x .

Choosing a local orthonormal frame extending (R1, R2, R3), say with e1,
e2, e3, e4 then we have that in this frame the volume of L⊥ will be given
by dvolx(L

⊥) = e1 ∧ e2 ∧ e3 ∧ e4, which is precisely the restriction of the
coassociative four form. Submanifolds of aG2 structure manifold with volume
form given by the restriction of the G2 structure four form, ψ, are called
coassociative submanifolds. When ψ is closed, it is a calibration of the seven
manifold and coassociative submanifolds are the corresponding calibrated
manifolds. Therefore, much of what we said on the interest in associative
three-cycles can be said, mutatis mutandis, for coassociatives.

It is interesting to note that the setting where T ⊥ is integrable is remi-
niscent of the study of G2 manifolds fibred by coassociative cycles which has
been promoted by Donaldson [64], Baraglia [65] and Kovalev [66], among
others. K3-fibrations are also relevant in M-theory/heterotic duality and
have been utilised in defining a conjectural generalisation of mirror symme-
try to the seven dimensional case [21–23]. It would be interesting to explore
how these topics interact with the ACM3Ss.

4.3. Space of ACM3S

We now return to the study of the space of ACM3 structures compatible
with a given G2 structure on a seven manifold, (Y, φ). We will denote this
space by C , or C (Y, φ) if context makes it necessary to emphasise the G2

structure manifold. This is an interesting space in its own right, but it is
also necessary to understand from a physics perspective, since it is far from
clear that different choices of ACM3S would yield equivalent effective field
theory descriptions of physics. In other words, there may be certain choices
of ACM3S that provide better descriptions of the low-energy physics. At the
moment, the precise meaning of these choices for physics are unclear and we
will simply give a mathematical description of this space. It seems likely that
physics considerations will refine this study and we will comment on these
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possibilities in the conclusion, see section 6. Mathematically, this space,
C , can be seen as a very coarse invariant of the G2 structure, essentially
depending only on the topological class of the associated G2 bundle.

One indication of this interdependence is the way parallelisability is re-
flected by ACM3Ss. This connection comes about as follows: consider any
two splittings T ⊕ T ⊥ ∼= TY ∼= T ′ ⊕ T ′,⊥. Observe that the rank of the sum
T + T ′ must have at least one fibre (and therefore, also all fibres in an open
neighbourhood) with dimension greater than three in order that the split-
tings be different. On the other hand, if all the fibres have rank greater than
three, then the manifold is in fact parallelizable. Indeed, since we assume
T + T ′ is everywhere at least rank 4, then we can conclude that there is at
least four orthonormal vector fields, say Rµ, µ = 1, 2, 3, 4. Regarding these
as unit, imaginary octonions with the G2 cross product, we then have the
basic fact that any four orthogonal, imaginary octonions generate the space
of all imaginary octonions. Turning this statement around: whenever the
underlying G2 structure manifold is not parallelizable, any two splittings
will overlap in at least one point.

We will now give a concrete expression for the space of all ACM3Ss
induced by the G2 structure. We have seen that these are in one-to-one
correspondence with orthonormal three-frames satisfying (102), i.e. that
R3 = R1 ×ϕ R

2. Since this implies that the third orthonormal vector is com-
pletely fixed by the first two, we conclude that C is simply the space of all
orthonormal, ordered pairs of vector fields. Fibrewise, the space of orthonor-
mal pairs of vectors inside TxY ∼= R7 is a so-called Stiefel manifold which we
can denote V2(TxY ). This space has a description as a homogeneous space
G2/SU(2) [62], expressing the fact that G2 acts transitively on orthonomal
pairs of vectors, with stabiliser SU(2). Globally, there is a fibre bundle as-
sociated to the tangent bundle with typical fibre V2(R

7). We will denote
this bundle by V2(TY ). A section of V2(TM) is the same as an orthonor-
mal two-frame or, equivalent in our situation, an ACM3S, and therefore the
space of ACM3S is the space of sections of V2(TY ), C = Γ(Y,V2(TY )).11

This space may have non-trivial topology, including non-trivial homotopy
groups, which we will investigate in some examples, see Section 5.

This space of sections, C , has a locally trivial fibre bundle structure,
where the base corresponds to the space of splittings of the form (104) and
the fibres are the trivialisations of this bundle. The projection map is simply
taking the span fibrewise. We will now make this more concrete.

11Thomas’ proof that any G2 structure manifold admits a 2-vector field, [25, 61]
used obstruction theory to show this space of sections is non-empty.
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The space of decompositions, TY ∼= T ⊕ T ⊥, with T a trivial bundle
with associative fibres is, fibrewise, equivalent to choosing a three-plane in
the seven-dimensional tangent space with a further constraint that enables
it to be regarded as a copy of the imaginary quaternions. The space of such
choices at a given point is the so-called associative Grassmanian, G(φx),
and is, like V2(TxY ), a homogeneous space with G2 total space, G(φx) =
G2/SO(4), [62]. Once again, we can consider a fibre bundle associated to
TY , now with typical fibre G(φ0). We will call this fibre bundle G(φ) →
Y and let S̃ := Γ(Y,G(φ)) be the space of sections. By construction, a
section of this bundle corresponds to a rank three subbundle of TY with
associative fibres, and thus a splitting TY ∼= T ⊕ T ⊥, but it is not obvious
that the bundle T must be trivial. Thus, S̃ is not precisely the space we
need, it is too big. The subspace of trivial bundles, however, consists of a
union of path-connected components of S̃ . Indeed, the bundle associated
to a section in the same path component as that of a trivial bundle is, by
definition, homotopic to the trivial bundle and consequentially isomorphic.
Therefore, the relevant subspace of all sections will be a disjoint union of
certain disconnected components of the space of sections, which we will
denote by S ⊂ S̃ .

We can now look at the fibres of the projection C → S , which consists
of the space of orthonormal, associative trivialisations of the corresponding
trivial rank three bundle. Since we assume this is not an empty space, we can
fix an initial ACM3S by making an arbitrary choice of orthonormal vector
fields, (R1, R2, R3) satisfying (101), i.e. R3 = R1 ×ϕ R

2.
Any other trivialisation of T is given by an orthonormal framing,

(S1, S2, S3), and it follows that there is a unique Θ ∈ Maps(Y,O(3)) such
that each Sα = Θα

βR
β . Imposing that (S1, S2, S3) satisfies condition (101),

implies that Θ in fact takes values in SO(3).
We see, then, that the space of orthonormal trivialisations of T , com-

patible with (101), has a free, transitive action of the topological group
Maps(Y, SO(3)); in other words it is a torsor for this group. After making
an arbitrary choice of basepoint in Y , this group factorises into a product,
with one factor the space of constant SO(3)-valued maps and the other
the basepoint-preserving maps. The first factor can be seen as an overall
rotation of the vector fields and it seems best to regard this as a redun-
dancy, which we will quotient out. More precisely, we make a choice of base-
point, x0 ∈ Y , which gives us a canonical homomorphism Maps(Y, SO(3)) ∼=
Maps∗(Y, SO(3))× SO(3) where Maps∗ denotes those maps which send the
basepoint to the identity, x0 7→ 1 ∈ SO(3). Explicitly, this map is given by
Θ 7→ ((Θ ·Θ(x0)

−1),Θ(x0)) and can be interpreted as using a global rotation
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to ensure that any given ACM3S agrees with that induced by (R1, R2, R3)
at x0.

We will denote this space of trivialisations by T , which is manifestly
independent of the underlying splitting, s ∈ S . We will now show that the
projection p : C → S is indeed locally trivial. This argument is reminiscent
of the standard construction of the universal bundle over the classifying
space BU(n), see for instance [67, 68].

The topology that we take for both spaces is that induced by compact-
open topology on the space of all maps. Focusing on the total space, C ,
for concreteness, the compact-open topology has a subbase given by the
sets V (K,U) = {f : Y → V2(TY ) | f(K) ⊂ U} for K ⊂ Y compact and U ⊂
V2(TY ) open. An open set in the space of sections will be the intersec-
tion of an open set on the space of all maps, with the set of intersections.
The same definitions apply, mutatis mutandis, for the base space, S . In
particular, for an arbitrary section s ∈ S , we can take an open neighbour-
hood to be one of the subbasis generators, V (K,U). We need U to be some
open neighbourhood such that, each s′ ∈ U is, fibrewise, a three-plane that
forms a graph over sx. In other words, the plane corresponding to s′(x) is
just a small rotation of the initial three-plane, s(x), for all x ∈ Y . We can
take K ⊂ Y to be any nonempty, compact subset, possibly Y itself. The
claim is that p−1(V (K,U)) ∼= V (K,U)×Maps(Y, SO(3)). Indeed, if we fix
a trivialisation over s, then by projection and Gram-Schmidt, we are able
to continuously assign an orthonormal trivialisation to each section in this
neighbourhood and from there extract the isomorphism. We therefore have
a fibre bundle, T → C → S , or more explicitly

(119) Maps(Y, SO(3)) → Γ(Y,V2(TY )) → Γ(Y,G(φ)) .

We do not know when, if ever, this space is in fact a trivial product,
but we will show an example, 5.4, in which it is non-trivially fibred. More
generally, it is natural to expect that Maps(Y, SO(3)) has infinitely many
components, because both Y and SO(3) have freely generated summands in
third cohomology, while G2/SU(2) has only torsion, so it is plausible that
the space of sections of V2(TY ) also has only finitely many components. This
leads us to expect that the fibre bundle is generically non-trivial, although
this question is not settled here.
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5. Examples

In this section we will present example geometries that serve to illustrate
concepts related with almost contact structures. The selected examples
admit G2 structures with different properties, and some have been used
in physics for the construction of supersymmetric solutions of string or
M-theory. We also explore the connection between ACM3S and associative
submanifolds in a class of non-compact examples with G2 holonomy.

5.1. Heterotic G2 systems on nilmanifolds

Parallelizable nilmanifolds provide explicit examples of G2 structure mani-
folds, that can be analysed in great detail using their left-invariant one-forms
[69, 70]. Here we will recapitulate, in some detail, a particular example from
Ref. [69]: the nilmanifold N(3, 1), which solves the heterotic G2 system pre-
sented in 3.1 and which appears particularily apt to illustrate that almost
contact structures give added insight to the physical properties of string
compactifications.

Let H(3, 1) denote the seven dimensional generalised Heisenberg group.,
consisting of nilpotent real matrices of the form (cf. page 12 of [69])

(120) H(3, 1) =



































1 x1 x2 x3 z
0 1 0 0 y1
0 0 1 0 y2
0 0 0 1 y3
0 0 0 0 1













|xi, yi, z ∈ R, 1 < i < 3























.

From this, we may construct a compact nilmanifoldN(3, 1)=Γ(3, 1)\H(3, 1),
where Γ(3, 1) ∈ H(3, 1) consists of integer matrices of the above form. As
all nilmanifolds, N(3, 1) is parallelizable, and its geometric features can be
derived using a basis of left-invariant one-forms ea, a = 1, .., 7 on H(3, 1)
which satisfy the structure equations

(121) dei = 0 , 1 < i < 6 , de7 = ae12 + be34 + ce56 ,

where we use the abbreviation eij = ei ∧ ej and a, b, c are real non-zero con-
stants. Also, in this section, we will not distinguish between d7 and d, since
they coincide on N(3, 1). The structure equations clearly show that the
N(3, 1) can be viewed as a twisted torus

S1 →֒ N(3, 1) → T 6 ,



✐

✐

“3-DeLaOssa” — 2022/10/13 — 17:43 — page 184 — #42
✐

✐

✐

✐

✐

✐

184 X. de la Ossa, M. Larfors, and M. Magill

and that e7 acts as a connection that encodes the twisting of S1 over the
six-torus T 6.

In Ref. [69], Lemma 5.5 shows that N(3, 1) admits a three-parameter
family of G2 structures, defined by

(122) φ = (e12 + e34 + e56) ∧ e7 + e135 − e146 − e236 − e245

with associated diagonal metric gϕ = e1 ⊗ e1 + ...+ e7 ⊗ e7. An explicit cal-
culation shows that the Hodge dual fourform is

ψ = ∗ϕφ = e3456 + e1256 + e1234 − e2467 + e2357 + e1457 + e1367 .

Moreover,

dψ = 0 , dφ = (a+ b)e1234 + (a+ c)e1256 + (b+ c)e3456

and thus the torsion is contained in the classes τ0 and τ3. Explicitly, we have

(123) τ0 =
2

7
(a+ b+ c) , and τ3 = ∗dφ− τ0φ .

Note that the case where c = −(a+ b) leads to a vanishing τ0 and hence
a Minkowski solution to the heterotic G2 system of section 3.1. Furthermore,
in this case, T simplifies to

(124) T = −τ3 = −(a+ b)e567 + be347 + ae127 .

We will restrict to this case in the following.

5.1.1. Solving the heterotic G2 system. In order to solve the het-
erotic G2 system of section 3.1, the nilmanifold Y must admit G2 instanton
connections on TY and V . Ref. [69] shows that this can be accomplished
on N(3, 1), provided that c = −(a+ b). This is seen as follows: recall that
all nilmanifolds have Levi-Civita connection 1-forms completely specified by
their structure constants f ijk :

(125) (κLC)ij =
1

2
(f ijk − fkij + f jki)e

k

which can be read off from (121) using dei = f ijke
jk.
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Moreover,∇+ = ∇LC + 1
2T is the unique G2 compatible connection, and

has associated connection one-forms [69]

(126) (κ+)12 = −ae7 , (κ+)34 = −be7 , (κ+)56 = (a+ b)e7 .

As always, the curvature two-forms are given by (Ω)ij = d(κ)ij + (κ)ik ∧ (κ)kj ,
so

(127) (Ω+)12 = −ade7 , (Ω+)34 = −bde7 , (Ω+)56 = −(a+ b)de7 .

Now, as discussed in section 3.1, supersymmetry requires that ∇+ is a
G2 instanton, and so should satisfy (65). This follows from

de7 ∧ ψ = (a+ b− a− b)e123456 = 0 .

Thus, a+ b+ c = 0 implies that ∇+ is a G2 instanton. In fact, the same
holds for any other connection with one-form components proportional to
e7.

In the same manner, we may then construct a vector bundle connec-
tion A satisfying (65). We assign connection one-forms (κA)ij ∼ e7, which
will satisfy (65). As shown in Ref. [69], the nilmanifold thus admits a 3-
parameter family of G2 instanton connections Aλ,µ,τ . Finally, with this
choice of connections, the Bianchi identity associated to the anomaly can-
cellation condition (67) admits a solution as long as (λ, µ, τ) ̸= (0, 0, 0) and
λ2 + µ2 + τ2 < a2 + b2 + c2 = 2(a2 + b2 + ab) [69].

5.1.2. Left-invariant contact structure and N=2 supersymmetry.
The left-invariant one-forms ei have dual vectors Ei defined by

ej(Ei) = δji .

Having seven globally defined vectors is the hallmark of a parallelizable
seven-dimensional manifold. Picking any of these vectors defines an ACMS
on N(3,1), and any three-frame defines an ACM3S.

In this subsection, we will determine the properties of the ACMS defined
by

R = E7 and σ = e7 .

By definition, we have R(σ) = 1. Moreover, by (121) we see that dσ is purely
transverse, so Ker(σ) is non-integrable and, therefore, not tangent to a 6-
dimensional foliation (cf. section 2.2). Indeed, we have that

(128) σ ∧ dσ ∧ dσ ∧ dσ = −3!a b (a+ b) e1234567 ̸= 0 .
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Thus, the almost contact structure induced by σ is in fact a contact struc-
ture. The fundamental two-form is

ω = iR(φ) = ae12 + be34 − (a+ b)e56 = dσ .

This contact structure furthermore leads to enhanced supersymmetry.
Recall, from section 3.6, that when R is covariantly constant, there exist two
covariantly constant spinors on Y . We can phrase the covariant constancy
of R as a question on the connection one-forms. Indeed, the connection one-
form is defined by

(129) (κ+)ji(Ek) := g(∇+
Ek
Ej , Ei)

and, consequentially, ∇+E7 = 0 if and only (κ+)7i ≡ 0. That this is true
follows immediately from the discussion leading to (126).

We may go on to check the compatibility of the G2 instanton connec-
tions and H-flux, constructed in the previous subsection, with the possible
existence of N = 2 supersymmetry enhancement induced by the covariantly
constant vector field, E7. The connection one-forms clearly lack a transverse
piece, whereas the associated curvature is completely transverse, i.e.

(κA)ij ∼ σ , (ΩA)ij ∼ ae12 + be34 − (a+ b)e56 .

We thus read off that F0 = 0, as we have argued in section 3.6 should be
the case for N = 2 enhanced solutions. Likewise, the anomaly cancellation
condition requires, for N = 2 SUSY, that H is completely transverse up to
an exact contribution. Indeed, the torsion (124) for this nilmanifold example
lacks a transverse piece, and has

T0 = dσ = dΣ .

We thus conclude that theN(3, 1) solution to theN = 1 heteroticG2 system,
that was constructed in Ref. [69], in fact preserves N = 2 supersymmetry.
We will discuss this further in the next subsection.

5.1.3. Left-invariant almost contact 3-structures. In the preceding
section we showed that N(3, 1) admits a left-invariant CS which is associ-
ated to two covariantly constant spinors, leading to N = 2 supersymmetry.
A natural question to pose is whether the ACS associated to the remain-
ing left-invariant one-forms, ei, for i = 1, .., 6, give a further enhancement
of supersymmetry. To answer this question we are led to construct, and ex-
plore, the space of left-invariant ACM3S on this nilmanifold. As discussed
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in section 4.3, since we are dealing with a parallelisable manifold, we expect
several distinguishable ACM3S, corresponding to the

(

7
2

)

different ways of
choosing 2-frames among the seven left-invariant vectors Ei.

As a first remark, we have dei = 0 for i ̸= 7. Consequently, the ACS
associated to ei for i ̸= 7 are clearly not contact structures. Thus N(3, 1)
does not admit a left-invariant contact 3-structure (see the discussion at the
end of 1.1.2).

Let us then start by identifying R1 = E7. Then, we may choose R2 = E1

say, after which R3 will be determined by (101) to be R3 = E2. Choos-
ing instead R2 = E3(E5) gives R3 = E4(E6), and if we start with picking
R2 = E2n we find the same trivialisation up to an overall sign. The up-
shot is that, once R1 = E7 is chosen, there are three inequivalent trivialisa-
tions (R1, R2, R3) = (E7, E1, E2),(E7, E3, E4),(E7, E5, E6). As discussed in
section 4.3, these partially overlapping ACM3S are a consequence of the
parallelizability of the nilmanifold. We will see below that these different
trivializations all have the same qualitative properties.

For concreteness, let us study the trivialisation

(R1, R2, R3) = (E7, E1, E2).

We may now determine whether the associated splitting TY = T ⊕ T ⊥ lead
to involutive T , T ⊥. As discussed in Section 4.2, T is involutive if for any
one-form ξ ∈ T ∗,⊥ we have

iRαiRβdξ = 0 .

This follows directly from the fact that T ∗,⊥ = Span{e3, e4, e5, e6}, and

dei = 0 ∀ i ̸= 7.

In contrast, it is evident from the discussion around equation (128), that
T ⊥ fails to be involutive since

iR1iR2dσ1 = a ̸= 0 .

This conclusion clearly holds also for the ACM3S given by (R1, R2, R3) =
(E7, E3, E4) or (E7, E5, E6). We thus conclude that these ACM3S are asso-
ciated with three-dimensional foliations of Y , but no four-dimensional foli-
ation. The leaves of the three-dimansional foliation are associative subman-
ifolds (however, they are not volume-minimizing since we lack a calibrating
three-form).
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Let us now explore an ACM3S that does not include E7 in the three-
frame (R1, R2, R3). This leads to rather different properties. For example, let
us take (R1, R2, R3) = (E1, E3, E5). The associated splitting TY = T ⊕ T ⊥

then lead to involutive T and T ⊥. Clearly, since T ∗,⊥ = Span{e2, e4, e6, e7},
for any ξ ∈ Γ(T ∗,⊥) we have either dξ = 0 or

iRαiRβdξ ∼ iRαiRβde7 = 0

showing that T is involutive. Moreover, T ⊥ is involutive, since (σ1, σ2, σ3) =
(e1, e3, e5) are all closed. Thus, with this choice of ACM3S, we see that Y
admits both a three- and a four-dimensional foliation. The leaves of these
foliations are, respectively, associative and coassociative submanifolds. Fur-
thermore, since dψ = 0, the leaves of the latter foliation correspond to cali-
brated submanifolds.

Supersymmetry enhancement cares less about these different ACM3Ss
on N(3, 1). Among the left-invariant basis vectors, only E7 is covariantly
closed. This follows directly from the definition of the connection one-form,
(129), in conjunction with (126). Thus, none of the left-invariant ACM3S
under study imply an enhanced supersymmetry to N = 4. Just like in sec-
tion 3.6, where we saw that a reduction of structure group need not be com-
patible with a given connection, the parallelisability of the nilmanifold does
not imply supersymmetry is maximally enhanced. Barring extra covariant
vector fields on this nilmanifold, the holonomy group stays SU(3).

Finally, before closing this discussion, let us remark that we have not
exhausted the possible almost contact structures. Our discussion is limited to
left-invariant ACM3Ss, and even here one can imagine constructing ACM3S
using position dependent linear combination of the left-invariant forms which
may lead to different conclusions.

5.2. Barely G2 examples

In this section we demonstrate the features of an SU(2) structure in a special
class of G2 structure manifolds known as barely G2 manifolds, [2, 20, 71].
These manifolds are constructed from Calabi-Yau threefolds endowed with
a real structure. For our purposes, we will focus on the subclass where the
real structure is freely acting and where the initial Calabi-Yau manifold has
vanishing Euler characteristic. Although this is expected to be an extremely
small class (there are only two complete intersection Calabi-Yau manifolds
with these properties, [71], with Betti numbers (15,15) and (19,19)), the
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restriction is purely for convenience. We will begin reviewing the construc-
tion and key features of barely G2 manifolds, before moving on to SU(2)
structures.

The starting point for a barely G2 manifold is a Calabi-Yau threefold, Z,
endowed with a real structure, that is, an antiholomorphic involution, ζ. To
avoid having to resolve singularities, we will assume that ζ is freely acting.
This real structure is used to endow Z × S1 with a Z2 action, ζ̂ = ζ × (−1),
where (−1) acts on S1 ⊂ C via eiθ 7→ (e−iθ), i.e. reflection about the real
axis. The barely G2 manifold, Y is the quotient by this action,

Y = (Z × S1)/(ζ × (−1)) .

For us, it will be convenient to give an alternative definition for Y :

(130) Y = (Z × [0, 1])/ ∼

where we identify (z, 0) ∼ (ζ(z), 1) and ∂t|(z,0) ∼ −∂t|ζ(z),1.
Observe that this space has only a single constant spinor, but never-

theless the holonomy is a proper subgroup of G2, being SU(3)⋊ Z2. The
induced G2 structure forms are induced by the Calabi-Yau Kahler form, ω,
and holomorphic three-form Ω:

φ = ω ∧ dt+ReΩ(131)

ψ = ρ− dt ∧ ImΩ .(132)

Observe that these product forms indeed survive the quotient, since:

ζ∗Ω = Ω̄(133)

ζ∗ω = −ω(134)

(−1)∗dt = −dt .(135)

Now, by assumption, Z has vanishing Euler characteristic and conse-
quently the underlying smooth manifold admits a vector field, v. We will
assume that we are given such a vector field, say v, and, without loss of
generality, that it is of unit norm and invariant under the real structure,
ζ∗v = v. This will guarantee that v induces a vector field on the barely G2

manifold, Y , say R1.
On the other hand, if I denotes the complex structure on Z, then w := Iv

is another unit vector field, but is not invariant under the real structure,
instead acted on by a sign, ζ∗w = −w. Similarly, the unit tangent vector
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field on the interval, ∂t, is not invariant so is not well-defined on equivalence
classes.

The three vector fields, v, w, ∂t, obviously induce vector fields on the
product Z × [0, 1], but as observed above, neither w nor ∂t will survive the
quotient individually. It is, however, possible to form invariant combinations
using both vector fields, in particular by rotating through the two-frame they
span. More precisely, consider

(136) R2 = cos(πt)w − sin(πt)∂t ,

which is well-defined on the quotient since

R2
(z,0) = wz = R2

(ζ(z),1) .

Note, further, R1 is everywhere orthogonal to R2 so, in particular, it is
everywhere linearly independent.

The third vector field in the three-frame necessary to define an SU(2)
structure is obtained with the G2 induced cross product:

(137) R3 := R1 ×ϕ R
2

though it is in fact easiest to compute first the dual one-form. Indeed, by
definition σ3 := g(R3,−) can be computed to be

(138) σ3 = iR2iR1φ = cos(πt)dt− sin(πt)g(w,−) .

This is now easy to dualise back to a vector field and we obtain

(139) R3 = − sin(πt)w + cos(πt)∂t .

We have now fixed three linearly independent vector fields that fix the
SU(2) structure and can now directly compute the induced structure forms.
Before doing so, we remark that these vector fields can not be covariantly
constant, since we have assumed that the initial Calabi-Yau manifold had
full SU(3) holonomy. As a consequence, the G2 connection does not descend
to a connection of the reduced SU(2) structure.

Each vector induces an SU(3) structure, for which we can construct
a two-form ωi := iRiφ and three-form Ωi

− = iRiψ, a dual one-form σi =
g(Ri,−) and endomorphism J i such that g(J i−,−) = ωi. We will focus on
computing ωi and Ωi

− since we do not need a metric for this data. The
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computations are straightforward and we obtain:

ω1 = −w# ∧ dt+ iv ReΩ(140)

ω2 = − sin(πt)ω + cos(πt)(v# ∧ dt+ iv ImΩ)(141)

ω3 = cos(πt)ω − sin(πt)(v# ∧ dt+ ImΩ)(142)

Ω1
− = −w# ∧ ω + dt ∧ iv ImΩ(143)

Ω2
− = sin(πt) ImΩ + cos(πt)(v# ∧ ω + dt ∧ iv ReΩ)(144)

Ω3
− = − cos(πt) ImΩ− sin(πt)(v# ∧ ω + dt ∧ iv ReΩ)(145)

where we have introduced v# = g(v,−) and w# = g(w,−) and recall that
ω,Ω are the Calabi-Yau structure forms. The particular vector field that we
give here can be viewed as rotating through the local frame (v, w, ∂t), a fact
that is also apparent in the structure forms. On a generic barely G2-manifold
we would not expect to find vector fields analogous to v and w, but even
so we are guaranteed to find a ACM3S. One would expect that any such
three-framing would intertwine the Calabi-Yau and interval directions much
more intricately than exhibited here.

We can now consider the space of trivialisations that are compatible
with the splitting induced by (R1, R2, R3). We will show that there are at
least two connected components, which we distinguish by map induced on
the first homology groups. As is well-known, the first homology group of
SO(3) is H1(SO(3),Z) ∼= Z2, with generator induced by the generator of
SO(2) ∼= S1 under the inclusion SO(2) →֒ SO(3), i.e.

ρ : I → SO(3) , ρ(t) =





1 0 0
0 cos(2πt) − sin(2πt)
0 sin(2πt) cos 2πt



 .(146)

Using standard techniques in algebraic topology, it can be shown that
H1(Y,Z) ∼= Z2 also, with generator induced by the open path on Z × S1

(147) χ(t) =

{

(γ0(2t), 1) t ∈ [0, 1/2]

(ζ(x0), e
iπ(2t−1)) t ∈ [1/2, 1]

with γ0 an arbitrary path in Z between a fixed x0 and ζ(x0). Note that since
Z is simply connected, the homotopy class of χ is independent of γ0.
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Consider, then, the map Θ : Y → SO(3), induced by the map, Θ̃ on
Z × I

(148) Θ̃(x, t) =





1 0 0
0 cos(2πt) − sin(2πt)
0 sin(2πt) cos 2πt



 .

Then, it is straightforward to check that

Θ∗χ(t) =

{

1 t ∈ [0, 1/2]
Θ(σ(x0), 2t− 1) t ∈ [1/2, 1]

∼ ρ(t).

Consequentially, Θ∗ : H1(Y ;Z) → H1(SO(3),Z) is an isomorphism and Θ
can not be homotopic to the constant map 1 : Y → SO(3). The trivialisation
corresponding to Θ is given by the vector fields (S1, S2, S3), which, by direct
computation, are:

S1 = R1 = v(149)

S2 = cos(2πt)R2 − sin(2πt)R3 = cos(πt)w − sin(3πt)∂t(150)

S3 = sin(2πt)R2 + cos(2πt)R3 = − sin(πt)w + cos(3πt)∂t(151)

The fact that Θ does not induce the zero map on first homology, or equiv-
alently, that it does not induce the zero map on the fundamental group,
implies that Θ can not be lifted to the universal cover of SO(3), which is
SU(2). This indicates that the spin structure that is canonically associated
to the trivialised bundle, T , differs between the R and S trivialisations.

Although Θ induces countably many trivialisations via Θn, n ∈ Z, the
first homology groups are only able to distinguish between the cases that
n is even or odd. The group SO(3) has only torsion homotopy groups in
dimensions zero through seven, with the exception of π3, π3(SO(3)) ∼= Z.
Therefore, the third homotopy group is a natural arena in which to attempt
to distinguish the components of these maps, though we do not attempt
that here.

Further, we have only shown that these two trivialisations are non-
homotopic inside the fixed trivial 3-bundle and it does not necessarily follow
that they are non-homotopic in the space of all ACM3S’s. This would only
follow if the locally trivial product structure that we identified in Subsec-
tion 4.3 is in fact trivial. Working with the space of all ACM3S’s is more
subtle because they correspond to sections of a possibly non-trivial bun-
dle, with twisting dictated by the initial G2 structure and we have nothing
conclusive to say about this.
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5.3. A compact G2 holonomy example

Let us now turn to manifolds with G2 holonomy, and explore almost contact
structures on such spaces. In this section, we review an example of compact
seven-manifolds with G2 holonomy that is due to Joyce. As we will see,
this construction allows us to specify a canonical AC(3)S that is suitable to
illustrate the topological nature of the space of ACM3S. In the next section,
we will explore this topic in more detail in a non-compact setting.

The construction of this type of G2 holonomy manifolds is modelled on
the Kummer construction of SU(2) holonomy metrics on the orbifold T 4/Z2.
The construction was originally proposed in [1, 2], has been presented in
great detail in the books [43], and a clear summary of the construction can
be found in Ref. [72]. For the sake of completeness, we will recapitulate the
construction algorithm here.

To begin, we start with the 7-dimensional torus T 7, with coordinates
xa, a = 1, ..7 satisfying xa ∼ xa + 1. This space may be equipped with the
standard G2 structure φ0 as in (2), by the global identication ea = dxa. The
metric gϕ0

is naturally flat. By quotienting T 7 by a finite automorphism
group Γ that respects φ0, a new G2 space is obtained. In general, T 7/Γ will
be an orbifold, with singular set S specified by the fix points of Γ. We will
see an example of this momentarily.

In order to obtain a smoothG2 manifold, there is then need to resolve the
singularities. In Joyce’s construction, this is accomplished by noticing that
for certain groups Γ the singular set S decomposes into connected compo-
nents that may be resolved using standard procedures in complex algebraic
geometry (see below). This resolution gives a non-singular 7-manifold Y ,
which can be shown to admit a 1-parameter family of G2 structures φt with
torsion |∇φt| = O(t4). This 1-parameter family of G2 structures is obtained
by gluing together, using a partition of unity, the flat G2 structure (φ0, g0) in
the non-singular “bulk” of Y with local G2 structures (φi, gi) valid near the
various resolved orbifold singularities. The non-zero torsion is localized in
the regions with non-trivial derivatives for the partition of unity, i.e. where
the resolved singular spaces adjoin with the bulk.

It is then possible to prove that for all sufficiently small parameters t,
one may deform (φt, gt) to (φ̃, g̃) with vanishing torsion. Finally, given the
specific choices made in the construction, one may show that the holonomy
of g̃ is indeed G2, and not a subgroup thereof. Thus Y is a compact G2

holonomy manifold.
Our purpose in this section is to explore AC(3)S that are compatible

with Joyce’s construction. Let us therefore describe in some more detail
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the singular set S, following [72] (see also [73–75]). By careful selection of Γ,
one may ascertain that S decomposes into connected components Si that are
locally isomorphic to either T 3 × C2/G, for G ⊂ SU(2) finite, or S1 × C3/G,
for G ⊂ SU(3) finite and freely acting on C3\0. We may then use that

1) C2/G, for G ⊂ SU(2) finite, may be resolved to a smooth Asymptoti-
cally Locally Euclidean (ALE) space U2, with Kähler metric of SU(2)
holonomy

2) C3/G, for G ⊂ SU(3) as above, may be resolved to a smooth ALE
space U3, with Kähler metric of SU(3) holonomy

Then, we may resolve Y by locally excising the connected components Sα of
the singular set S, and then glue in smooth product spaces Ŝα, which have
the form T 3 × U2 or S1 × U3, depending on the nature of the singularity.

The product spaces Ŝα admit G2 structures, which we will discuss in
detail for the example below. An obvious effect of this construction is that
these local G2 structures are reduced to SU(2) and SU(3) structures, re-
spectively, and the holonomy of the local metric will be either SU(2) or
SU(3). This provides a first link to the AC(3)S that we have discussed in
this paper. Let’s explore that in more detail in an example.

The following example is taken from [1]: as above, we construct an orb-
ifold by quotienting T 7 by a finite group, which in this example is the Z3

2

generated by12

α((x1, ..., x7)) = (−x1,−x2,−x3,−x4, x5, x6, x7)(152)

β((x1, ..., x7)) = (−x1,
1

2
− x2, x3, x4,−x5,−x6, x7)(153)

γ((x1, ..., x7)) = (
1

2
− x1, x2,

1

2
− x3, x4, x5,−x6,−x7) .(154)

One can readily show that this group preserves the G2 threeform φ0 given
in (2). The singular set S of T 7/Z3

2 is determined by the fix points of the
generators α, β and γ, and a little thought reveals that S decomposes into
12 disjoint components of the form T 3 × C2/{±1} [1].

Now, we’re in the first situation described in the above list, and for each
simply connected component of singular set, we may blow up C2/{±1} to
UA, where UA is a smooth ALE space that agrees with C2/{±1} on its
boundary. We may construct this geometry explicitly. Denoting by (z1, z2)

12There is a change in convention in the definition of the local form of φ with
respect to [1]; this requires changing a sign in the γ action.
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the coordinates on C2, UA admits a hyper-Kähler triple of two-forms {ωα(t)}
satisfying

(155) ω1(t) =
i

2
∂∂̄ft , ω

2(t) + iω3(t) = dz1 ∧ dz2

where we have introduced a suitable Kähler potential that reduces to ft →
|z1|

2 + |z2|
2 at the boundary of UA, and hence guarantees that the two-forms

ωα(t) become flat ω̂α at this boundary.
We then find that the smooth manifold Y , that result from desingu-

larising T 7/Z2
3 in the manner just described, admit a nowhere vanishing

three-form φt. Using the above defined two-forms, and taking one-forms σα

as sections of Λ∗T 3, this can be written as

φt = φ0 =
1

3!
ϵαβγσ

α ∧ σβ ∧ σγ +
∑

α

σα ∧ ω̂α ,

in the non-singular bulk of T 7/Z2
3, and

φt =
1

3!
ϵαβγσ

α ∧ σβ ∧ σγ +
∑

α

σα ∧ ωα(t) ,

in an open neighbourhood that contains S × UA. This is a smooth three-
form, since {ωα(t)} → {ω̂α} at the boundary of UA, and it is closed for all t.
However, a subtlety of the construction is that it is only for small t that φt

is guaranteed to be a positive three-form, and hence defines a G2 structure,
in the interpolating region [1]. Finally, while φt is closed for all t, it fails
to be coclosed in this region. As discussed above, a closed and coclosed G2

structure may be constructed, in the t→ 0 limit, as φ = φt + dηt, where the
two-form η satisfies a certain elliptic differential equation that we will not
discuss in detail.

Thus, in the parametric limit of small t, we have constructed a G2 struc-
ture φt which is of the form (113), and provide an example of an ACM3S.
In particular, there is a set of globally defined two-forms, {ωα(t)}, which,
when combined with the G2 three-form, uniquely defines three one-forms
{σα}, which in turn defines an orthonormal three-frame {R1, R2, R3}.

So far, we have seen that there are obvious similarities between Joyce’s
torsionful G2 structure φt and the ACM3S decomposition that we know
should exist for any G2 structure. A more interesting question to ask is
whether Joyce’s construction automatically provides information about the
AC(3)S of the torsion-free G2 structure φt. This is true, but only to some
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extent. Indeed, any nowhere vanishing vector field R will provide an ACS
when combined either with φt or φ. However the fundamental two-forms
given by (24) depend on the three-form, and hence the transverse geometry
will differ between these ACS. Clearly, comparing to (58), the SU(3) torsion
classes will also depend on whether the torsionful or torsionfree G2 structure
is selected.

For AC3S the situation is similar, but here one also has to take into
account that while linear independence of vector fields does not depend on
the G2 structure, orthonormality of vectors do. Thus, an orthonormal three-
frame {R1, R2, R3} associated to φt will not be orthonormal with respect to
φ. However, the space of AC3S, C , is topological, and hence the same for φt

and φ. Thus, we may hope to determine this space using only the explicit,
torsionful G2 structure φt. This is interesting, because we can then hope to
even say something new about how to count associatives on a G2 manifold.
We hope to return to this intriguing problem in a future publication.

5.4. A class of non-compact G2 holonomy examples

In this section we will consider the local neighbourhood of an associative
three-cycle in the context of ACM3Ss. Associative cycles are known to be
relevant to M-theory compactifications and we earlier found a surprising
relation with ACM3Ss. In particular, the associated trivial bundle, T , can
only be tangent to a submanifold if it is an associative submanifold.13 The
question naturally arises: if we fix an arbitrary associative three-cycle, can
we always choose a global ACM3S that restricts to the tangent bundle of
this three-cycle? In the simplest case, one would be able to locally deform
a given ACM3S in a neighbourhood of the chosen three-cycle to satisfy this
condition and we explore this possibility using our explicit expression for
the space of ACM3Ss.

First, we will show by construction that there is always an ACM3S,
defined in the neighbourhood of an associative three-cycle, which restricts
to a trivialisation of the three-cycle’s tangent bundle. This example, how-
ever, has boundary behaviour that is manifestly dependent on the chosen
trivialisation at X. This is undesirable from the perspective of the initial
compact manifold. We will therefore fix boundary conditions and study the

13Note that T may be tangent to a submanifold without everywhere being a
foliation, that is, the involutivity condition (118) may be satisfied for x ∈ X3, but
not for arbitrary x ∈ Y .
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space of compatible ACM3S. We will see that there are topologically dis-
tinct ACM3Ss at the boundary and, therefore, the possible configurations
over the associative three-cycle depends on what happens at the edge of
its local neighbourhood. Note that the question of which boundary con-
ditions may arise depends on the global setting. It is an interesting open
problem to determing what global topological features may obstruct choos-
ing the ACM3S to be tangent to X. Finally, we will then study the space
of all ACM3Ss, C (NX,φ) and show, in particular, that the bundle struc-
ture observed in subsection 4.3, is non-trivial. Finally, we will fix boundary
conditions on NX and study the corresponding space of ACM3S, C∂(NX),
say.

5.4.1. Constructing an ACM3S. Let (Y, φ̃) be a manifold with G2

holonomy, i.e. φ is a closed and coclosed stable three-form. Let X →֒ Ỹ a
smooth associative three-cycle, meaning that the induced volume form on
X is precisely the restriction of the stable three-form: φ̃|X = VolX . X has a
normal bundle, NX, and by standard results, this bundle is diffeomorphic
to a tubular neighbourhood of X in Ỹ . By choosing such a diffeomorphism
and pulling back φ̃, the normal bundle is endowed with a G2 structure.

In practice, it will be most useful for us to replace NX with a finite-
radius disc bundle. This is for technical convenience and we will tend not
to keep explicit track of the difference. For concreteness, we will choose
the embedding of NX →֒ Ỹ to be given, fibrewise, by geodesics. That is,
for nx ∈ NX, a small enough normal vector at x ∈ X, the corresponding
point in the embedded submanifold is given by expx(nx) ∈ Y , where exp is
exponential map of Riemannian geometry.

Pulling back the three-form, φ̃ we obtain a three-form on NX, φ, which
is covariantly constant with respect to the Levi-Civita connection. This has
the convenient consequence that the value of φ everywhere on NX is fixed
by its value on X, since we can parallel transport along the fibres:

(156) φ(n,x) = Pexpx(tn)
(φ),

where Pγ indicates parallel transport along γ; our choice of path, t 7→
expx(tn) is not unique, but φ is completely independent of this choice.

We can now look at ACM3Ss compatible with the G2 structure we have
introduced. We are particularly interested in ACM3Ss that restrict to the
tangent bundle of X, so our first task is to ensure that we can extend such
a choice over the whole NX.

In this example, there is a canonical choice for extending a trivialisation
of X. Let us fix an oriented, orthonormal framing of X, thereby inducing
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a three-frame on TY |X , say (R1
X , R

2
X , R

3
X). We need to extend this three-

frame over NX, whilst preserving R1
X ×ϕ R

2
X = R3

X . The obvious thing to
do is parallel transport along the geodesics:

(157) Ri
(x,nx)

= Pexpx(nx)R
i
X,x .

This preserves (101), since φ is also given by parallel transporting along
the geodesics off of X. On the other hand, the triple (R1, R2, R3) need no
longer be integrable. Indeed, a straightforward computation shows that the
Lie bracket of parallel transported vectors is given by:

(158) [PR,PS] = (∇PRP)(S)− (∇PSP)(R) + P(∇PRS −∇PSR) ,

showing that parallel transport does not play well with the Lie bracket. This
is not at all surprising: if integrability were preserved along the normal bun-
dles, it would indicate a family of deformations of an associative three-cycle
and finding such deformations is notoriously difficult, [17, 63]. Integrability
is not a requirement for us, however, and we are satisfied with an implicit,
canonical ACM3S for each framing of the calibrated cycle X.

5.4.2. Compatibility of boundary conditions. We note that the
ACM3S constructed in the previous section has a non-trivial relationship
between the behaviour at the boundary of NX and the precise framing of
X. If we want to glue this back into the original, compact manifold, this
is not satisfactory. We therefore consider a similar problem, but with fixed
boundary conditions. Our approach will use the topological features of C as
opposed to the direct construction used above.

To this end, let us fix an ACM3S at the boundary of NX, say R∂ ∈
C (∂(NX)), where C (∂(NX)) := Γ

(

∂(NX),V2(T (NX))|∂(NX)

)

, by abuse
of notation. We will also fix boundary conditions at the zero section RX ∈
C (X). Note that we have not actually imposed that Ri

X come from the
tangent bundle over X, despite our motivation for studying this problem.
Our conclusions are independent of which boundary conditions we impose at
either end: it matters only that not all conditions are mutually compatible.

To impose the boundary conditions over X, consider the manifold Y ◦,
which is obtained from NX by cutting out the zero section. It turns out
that Y ◦ is very simple. Indeed, the normal bundle, NX can be seen as a vec-
tor bundle associated to an SU(2)× SU(2)-principle bundle over X. Since
SU(2) is simply connected and X is three-dimensional, any such bundle is
trivial and NX is diffeomorphic to the product X ×D4. Consequentially,
we can identify Y ◦ with X × S3 × I for an open interval, I.
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We recall from Subsection 4.3 that the space of ACM3Ss is the space of
sections of a fibre bundle with typical fibre the homogeneous space V2(R

7) =
G2/SU(2). In our case, the seven manifold is parallelisable so that the fibre
bundle is trivial and we can view our boundary conditions as maps R∂ :
X × S3 × {1} → V2(R

7) and RX : X × S3 × {0} → V2(R
7). Of course, for

consistency, it must be that RX be constant in the fibral S3 direction. An
ACM3S that extends these boundary conditions is the same as a map Y ◦ →
V2(R

7) that restricts to R∂ and RX . To put it another way, such a map is
a homotopy of maps X × S3 → V2(R

7), so our problem is to determine the
connected components of the space Maps(X × S3, V2(R

7)). We will utilise
elementary topology techniques to put very coarse bounds on the number
of these components. Readers unfamiliar with these techniques can consult
e.g. [76] for a comprehensive introduction.

To make things more concrete, we will assume our associative three-
cycle is the three-sphere X = S3. Since this is the simplest compact three-
manifold, we would expect that any obstructions appearing in this example
would occur for a generic associative submanifold. The first observation we
make is that V2(R

7) is simply connected, which we shall show below using
sequence chasing in a homotopy exact sequence. Given this fact, we know
that the homotopy classes of maps Maps(X × S3, V2(R

7)) (i.e. the connected
components of this space) is identical with the homotopy classes of basepoint
preserving maps Maps∗(X × S3, V2(R

7)), so we will regard both spaces as
coming with an arbitrary choice of basepoint.

Since maps out of a product space are not very convenient to deal with,
we consider the fibration sequence

(159) S5 → S3 ∨ S3 → S3 × S3 → S6 → Σ(S3 ∨ S3) .

We have utilised several basic topological constructions here, which we briefly
recall. In particular, the operations of wedge sum, ∨, the smash product, ∧,
and suspension, Σ, have appeared. Briefly, the wedge sum of pointed spaces,
(X,x0), (Y, y0) is defined to be quotient space X ∨ Y = (X ⊔ Y )/(x0 ∼ y0).
In other words, the wedge sum is the space formed by gluing the two spaces
together at the basepoint. The wedge sum of two circles is, for instance,
the figure-eight space. Next, the smash product of two spaces is formed by
quotienting the wedge sum out of the cartesian product,

X ∧ Y = (X × Y )/(X ∨ Y ) .

This uses the embedding of the wedge sum X ∨ Y →֒ X × Y , which is in-
duced by the maps X 7→ X × {y0} and Y 7→ {x0} × Y . In the example of
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two circles, this embeds the wedge sum into the two-torus T 2 as the union
of the longitudinal and meridianal circles, and the smash product is given
by crushing these circles to a point. One can check that the resulting space
is a homeomorphic to the 2-sphere. Finally, the suspension of a space can
be given by smashing with a circle, ΣX := S1 ∧X. The example with two
circles exhibits the general property that the suspension of an n-sphere is
homeomorphic to an (n+ 1)-sphere, Σ(Sn) ∼= S1 ∧ Sn ∼= Sn+1.

Returning to the sequence, (159), we can now define the maps. In partic-
ular, the excerpt S3 ∨ S3 → S3 × S3 → S6 is precisely the defining maps of
the smash product: the first map is the canonical inclusion of the wedge sum
into a product, and the final map is the quotient S3 × S3 → S3 ∧ S3 ∼= S6.
The first map can be seen as the boundary of the attaching map

Φ : D6 → S3 ∨ S3

as part of CW construction for S6 (see, e.g. [77, p.175] for more details on
this). Finally, the map S6 → Σ(S3 ∨ S3) is the suspension of this attaching
map, ∂Φ. It is, in particular, nullhomotopic, which gives us an excerpt of an
exact sequence:

0 → π0
(

Maps∗(S
6, V2(R

7)
)

→ π0
(

Maps∗(S
3 × S3, V2(R

7))
)

→ π0
(

Maps∗(S
3 ∨ S3, V2(R

7))
)(160)

where the third term is the set we are interested in. The first term is the
homotopy group π6(V2(R

7)) and the last one is the direct sum π3(V2(R
7))⊕2.

These homotopy groups can be calculated using the fibration

SU(2) → G2 → V2(R
7)

and the associated long exact homotopy sequence, as will see now.
Let us first prove the earlier claim that V2(R

7) is simply connected.
Indeed, as an excerpt from the exact sequence we have:

(161) π1(G2) → π1(V2(R
7)) → π0(SU(2)) ,

and the fact that both G2 and SU(2) are simply connected shows that
π1(V2(R

7)) is indeed vanishing.
Let us now look for the groups appearing as a consequence of (159), i.e.

π3(V2) and π6(V2). First, we use the following extract:
(162)

0 → π7(V2) → π6(SU(2)) → π6(G2) → π6(V2(R
7)) → π5(SU(2)) → 0
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where the fact that π5(G2) = 0 = π7(G2), [78] has been used. Since
π5(SU(2)) = Z2, exactness implies that π6(V2(R

7)) ̸= 0. Further, π6(G2) = Z3

and π6(SU(2)) = Z12 so both π6(V2(R
7)) and π7(V2(R

7)) are certainly tor-
sion, in particular having finite cardinality.

Similarly, we can extract the exact sequence

(163) 0 → π4(V2) → π3(SU(2)) → π3(G2) → π3(V2) → 0

where π3(G2) ∼= π3(SU(2)) ∼= Z. A map from Z → Z is either zero, or injec-
tive. In the first case, we would find π4(V2) ∼= π3(V2) ∼= Z, while in the second
we would conclude that π4(V2) = 0 and π3(V2) is torsion. In fact, this map
can not be zero. This is because SU(2) ∼= S3, so if the generator of π3(SU(2))
maps to zero in π3(G2) we have to conclude that the image of SU(2) inside
of G2 is nullhomotopic. In particular, all maps πi(SU(2)) → πi(G2) would
have to vanish, which is known not to happen, [78]. Therefore, π4(V2) = 0
and π3(V2) is torsion.

With these results in hand, we can return to (160). Since π6(V2) ̸= 0 is
injected into π0(Maps∗(S

3 × S3)), it follows that this set must have cardi-
nality at least as large as π6(V2). Further, exactness implies this map surjects
onto a subgroup of π3(V2)

⊕2 and we have just seen that this is torsion. As a
consequence, the set of connected components, π0(Maps∗(S

3 × S3, V2(R
7))),

is non-empty but finite.
This implies that there are indeed topological obstructions preventing

us from extending arbitrary boundary conditions, but there are only finitely
many distinct components, or at least only finitely many that are detected
by the induced maps on homotopy groups.

Assuming that we have found compatible boundary conditions, we can
still ask about the space of ACM3S extending them. Our above argument
shows that this is the space of paths in Maps(S3 × S3, V2(R

7)), with fixed
endpoints. For simplicity, let us assume that our boundary conditions are
such that RX = R∂ ∼ constant. Such paths are the same as maps on the
cylinder S3 × S3 × I, constant at the interval endpoints. In fact, we can
think of this as a map on the suspension Σ(S3 × S3) ∼= Σ(S3) ∨ Σ(S3) ∨
Σ(S3 ∧ S3). Therefore, the distinct components of this space are

π0(Maps(Σ(S3 × S3), V2(R
7))) ∼= π4(V2(R

7))⊕2 ⊕ π7(V2(R
7))(164)

= π7(V2(R
7)) .
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We have used the earlier observation that π4(V2) = 0. The fact that π7(V2)
is torsion means that there are finitely many distinct classes of ACM3Ss
with these boundary conditions.

In summary, we have seen that boundary conditions on NX may ob-
struct our ability to find an ACM3S that is tangent to the associative three-
cycle, X. It is an interesting question for future work to determine these
obstructions more precisely and to see how the global topology of Ỹ influ-
ences the ACM3S that are obtainable on the boundary NX.

5.4.3. All ACM3S’s on NX. We will now return to study the space
of all ACM3Ss on NX, without imposing any boundary conditions. This is
interesting to study because the topological simplicity of NX means we can
easily see that the fibre bundle structure on the space of ACM3S’s cannot
be trivial.

We will continue to assume that X is a three-sphere to keep the
calculations as simple as possible. In this case NX ∼= X × R4, and the
space of all ACM3Ss is given by the space of maps into V2(R

7)

C (NX) = Maps(NX,V2(R
7)) .

The connected components of this space are the homotopy classes of these
maps and contractibility of R4 means that this is the same as the homotopy
classes of maps Maps(X,V2(R

7)). Conveniently, this is the homotopy group
π3(V2(R

7)), which was argued above to be finite.
The connected components of Maps(NX,SO(3)) can be similarly cal-

culated. This is again given by the homotopy group π3(SO(3)) ∼= Z. In par-
ticular, this space has infinitely many components.

On the other hand, recall that the space of ACM3S is the total space of
a bundle, (119),

(165) T → C → S ,

where the fibre is the space of trivialisations, T = Maps(NX,SO(3)) and
the base is the space of splittings S = Γ(NX,G2(φ)). We want to know
whether this bundle is trivial or not. If we assume that it is a trivial bundle,

Γ(NX,V2(TNX)) ∼= Maps(NX,SO(3))× Γ(NX,G2(φ)) ,

then we would conclude that

π0(Γ(NX,V2(TNX))) ∼= π0(Maps(NX,SO(3)))× π0(NX,G2(φ)) .
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This can not be, however, since the left-hand side is a finite set, and the
right-hand side is infinite. Therefore, even in this very simple system the
topological structure of the space of ACM3S’s is non-trivial.

6. Conclusions and outlook

In this paper we reviewed established results guaranteeing that G2 structure
manifolds admit a further reduction of structure group, first to SU(3), then
to SU(2). This reduction can be thought of as being topological in that
geometric features of the G2 structure, parallel transport for instance, need
not respect this reduction. We saw, unsurprisingly, that compatibility of the
geometry with this reduction leads to supersymmetry enhancement of the
physics and, in the case of heterotic supergravity we explicitly analysed these
compatibility conditions for an SU(3) reduction.

For SU(3) reductions, there is an induced foliation of the underlying
seven manifold and by decomposing the field equations into longitudinal
and transverse components with respect to this foliation, we found that the
longitudinal components of the fields can be seen as measuring the flow
along the foliation up to gauge transformations. In other words, looking
at the geometric features of the reduction of structure group allows us to
interpret the seven-dimensional field equations as non-trivial flows of six-
dimensional geometries. Further, this analysis allowed us to precisely identify
the conditions for supersymmetry enhancement, from N = 1 to N = 2, in
terms of the SU(3) structure, in complete agreement with the work in [32–
34], and we used this to observe that an example from the literature [69],
had an hitherto unrecognised enhancement of supersymmetry.

This relation between almost contact structures and flows of six-
dimensional geometries may have interesting consequences for the defor-
mation theory of both six- and seven-dimensional geometries. From the six-
dimensional perspective, one can consider flows in which the SU(3) structure
fails to satisfy the relevant equations of motion (for instance, Strominger-
Hull in the heterotic case), but where this failure is cancelled by the change
along the flow, leading to well-behaved seven-dimensional solutions. These
kind of constructions have been considered in the context of domain walls,
[47], for instance, but the generality of the ACS may be leveraged to con-
sider more complicated scenarios involving subtle interplay between six- and
seven-dimensional geometries, such as intersecting networks of domain walls.

Returning to the purely seven-dimensional setting, ACSs may be of use
in the study of deformations of a G2 structure manifold. In this case, the
reduction of structure group can be thought of as an extra redundancy in
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the system, in other words a symmetry, and deformations can be expected
to come in representations of this symmetry. Such considerations have often
been used in physics. In the case at hand, we expect this will have non-trivial
consequences for the difficult study of finite deformations of compactifica-
tions on G2 structure manifolds. In fact, looking further ahead, it may be
possible to use these structures to study the infinite distance in moduli space,
through decompactifying the foliation direction, for instance. That is, if we
suppose that the foliation has compact leaves14, then we can consider the
limit in the geometry where these leaves go to infinite length. This is reminis-
cent of Donaldson’s study of adiabatic limits of Kovalev–Lefschetz fibrations
[64], and it would be interesting to make this connection more precise. From
a physicist’s perspective, the usual stringy considerations [79] imply that
we ought to find a massive tower of states becoming light in this limit, and
these states ought to correspond to excitations along the foliation. What
this tower of states consists of depends on which theory we study. In this
paper, we studied the decomposition of the fields of heterotic supergravity
into longitudinal and transverse components, as well as the torsion of the
SU(3) structure connection, and we expect these results will be necessary
in pursuing this idea in the heterotic context. Moreover, it would be inter-
esting to perform similar studies of, for example, M-theory compactified on
manifolds with G2 holonomy.

A feature of importance for the future prospects of this research is that
almost contact structures are abundant, indeed there is automatically an
infinite dimensional family of them. It is, however, unclear whether each of
these should truly be regarded as “different” from the physics perspective. It
may perhaps be more fruitful to consider the further reduction of structure
group to SU(2) for these questions. We saw in this paper that this further
reduction is accomplished by an SO(3) triple of vector fields. This is the
generic minimum structure group for a G2 structure manifold, since any
further reduction implies the manifold is, in fact, parallelizable i.e. that the
structure group is trivial.

Although the existence of an almost contact metric three-structure, an
ACM3S, (and hence reduction of structure group to SU(2)) has been known
since the middle of the last century, it seems the study of the space of such
reductions has not been undertaken thus far. In this paper we initiated the
study of this space, which we identified as a space of sections on a bundle
naturally associated to the principal G2 frame bundle. It is, consequentially,

14In general, the leaves of a foliation need not be compact, so this procedure will
not be sensible for every ACS.
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infinite dimensional and has non-trivial topology in its own right, including
being a locally trivial fiber bundle. We saw in examples that this may be non-
trivially fibred and gave a rough argument for why this might be expected
to hold in general. Further detailed analysis of this space, for example for
compact G2 manifolds, may prove to be interesting.

From the mathematical perspective, the space of these ACM3Ss, which
we have denoted C , depends only on the isomorphism class of the G2 frame
bundle. In this sense, it is a rather coarse G2 invariant. An immediate ques-
tion to ask is whether it truly depends on this bundle, or if it, in fact, depends
only on the unreduced tangent bundle of the manifold. Perhaps of greater
interest would be to find a refinement of this space, which somehow encodes
geometric features of the G2 structure, including the metric and covariant
derivative, for instance.

Some physics considerations may point the way to constructing such a
space. Indeed, what is lacking in our analysis is any consideration of whether
there is any ACM3S that is preferred. It is natural, from the physics per-
spective, that not all structures are created equal, so an important open
problem is to discover a principle to differentiate between them. As we have
alluded to, there is a connection between ACM(3)S and supersymmetry,
that one might hope to build on to discover such a principle. Let us make
some arguments in favour of this.

One line of reasoning is to relate the triplet of vectors to spontaneously
broken supersymmetry, comparable to the approach in [80]. This is a natu-
ral connection to make, because the vector fields induce spinors via clifford
multiplication on the canonical G2 spinor. One might hope that these cor-
respond to massless spinors, in the effective theory of a compactification
scenario for instance, but unless supersymmetry is enhanced they will cor-
respond to particles with a mass measured by the G2 Dirac operator. This
suggests that this mass is the quantity to minimise to find the preferred
ACM3S, in the general case.

In fact, this proposal has some ambiguities. There is no reason to expect
a generic nowhere vanishing vector to induce an eigenspinor. Consequen-
tially, a given AC(3)S will induce a linear combination of massive fields that
can not be teased apart using the tools at hand. It may be too naive, then,
to think of the triplet in an ACM3S as corresponding to particles of the
effective theory. Nevertheless, if we view that ACM3S as part of the data in
defining an enhanced supersymmetric vacuum, then variations of ACM3S
would correspond to vectors in the space of field configurations. Considering
the variations of e.g. a superpotential would lead to Euler-Lagrange equa-
tions and it is these solutions that one might expect to single out preferred
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structures. In fact, it might well be expected that the critical locus would
be an interesting invariant of the G2 geometry and thus be of independent
interest to mathematicians.

Indeed, we discovered that integrability of the bundles appearing in the
construction of the ACM3S is related to interesting aspects of the G2 struc-
ture: associative and coassociative cycles. These have been much studied in
the context of G2 holonomy manifolds, impetus in the physics community
coming from BPS states in M-theory compactifications, for instance. When
the G2 structure is not, in fact, closed and coclosed, then identifying the
relevant BPS states is a still open question. There is some hope that the
ACM3S studied here may help shed light on this, once one has identified
the correct action principle.

The relation between ACM3Ss and associative cycles was explored fur-
ther in examples. In particular, we looked at the local neighbourhood of
an associative three-cycle in a G2-holonomy manifold. It was here that we
were able to explicitly show that the space of ACM3Ss, C , was non-trivially
fibred over the space of trivial, associative rank 3 subbundles of the tan-
gent bundle. We also saw that we could always find an ACM3S that was
tangent to the associative three-cycle, but that if we fixed the behaviour at
the boundary of this manifold, then there are possible obstructions to doing
so. Re-inserting this local picture into a compact G2-holonomy manifold is
therefore non-trivial. It would be very interesting to invert this problem and
consider how the global topology of a compact manifold affects the possibil-
ity of an ACM3S lying tangent to a given associative cycle (or, dually, for
the transverse bundle to lie tangent to a coassociative).

One way to approach this question is, of course, to study more examples.
There are several classes to explore: further nilpotent examples from the list
of [70], T 3 bundles over K3 [69], [13], and the very recently constructed
examples of heterotic G2 systems on contact Calabi–Yau seven-manifolds
[81]. Of equal import are the different constructions of compact G2 holonomy
manifolds: Joyce orbifolds [1, 2] and (extra) twisted connected sums [3–5, 82].
Here, we have initiated studies of ACM3S on Joyce orbifolds, and shown that
they come equipped with a canonical AC(3)S. We expect similar results to
hold for TCS manifolds. Non-compact G2 manifolds, such as Bryant and
Salamon’s seminal examples [83] and the more recent constructions [84, 85],
also have clear links with SU(3) structures and ACS. Determining the space
C on some of these example geometries would be interesting.

One final possibility that we would like to highlight is the utility of
these structures in applications of localisation techniques in quantum field
theories (see [86] for a review). Indeed, localisation techniques have been
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successfully applied to classes of 7-manifold admitting particular kinds of
contact structure, [87–90]. Extending these results to a general G2 structure
manifold would be incredibly interesting, but it thus far remains intractable.
It is plausible that the almost contact structures considered here will of be
use, in that they are similar (but weaker) to the contact structures already
used in Refs. [87–90], while being ubiquitous.

In short, we have found that these almost contact (three) structures have
tantalising connections to many active research in both physics and math-
ematics. We think that the tools and results we reviewed and established
here will be necessary in fleshing out these surprising relations.

Acknowledgements

The authors would like to thank Eirik Svanes for initial collaboration on this
project. We would also like to thank Marc-Antoine Fiset, Mateo Galdeano
Solans and Maxim Zabzine for discussions. The research of ML and MM is
financed by Vetenskapsr̊adet under grant number 2016-03873, 2016-03503,
and 2020-03230.

Appendix A. SU(3) structures

Let X be a 6 dimensional Riemannian manifold with metric g. An SU(3)
structure on X is defined by a triple (X,ω,Ω), where ω is a positive non-
degenerate globally well defined real two form, and Ω is a locally decompos-
able nowhere vanishing globally well defined decomposable three form. The
forms Ω and ω satisfy

(A.1) ω ∧ Ω = 0 .

The real part of the form Ω determines an almost complex structure J on
X. With respect to J , Ω is a (3, 0)-form and, by equation (A.1), ω is a (1, 1)
form. In fact ω is a hermitian form on X. The almost complex structure
together with ω determine a hermitian metric on X

gmn = ωmp J
p
n = −Jp

m ωpn .

There is a unique, up to a constant, invariant volume form which can be
written as

(A.2) dvol =
1

3!
ω ∧ ω ∧ ω =

i

||Ω||2
Ω ∧ Ω , ||Ω||2 = Ω⌟Ω .
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As we will see later, the SU(3) structure which is natural to a manifold with
a G2 structure satisfies ||Ω||2 = 8. This means that the scale invariance of
this SU(3) is reduced to an invariance under phase changes of Ω.

The exterior derivative of the form ω and Ω can be decomposed into
representations of SU(3) as follows

dω = −
12

||Ω||2
Im(W0Ω) +W1 ∧ ω +W3 ,(A.3)

dΩ =W0 ω ∧ ω +W2 ∧ ω + θ ∧ Ω ,(A.4)

where the forms {W0, θ,W1,W2,W3} are the torsion classes.W0 is a complex
function, W1 is a real one form, θ a (1, 0) form, W2 is a complex primitive
(1, 1) form, and W3 is a real primitive three form type (2, 1) + (1, 2).

Appendix B. SU(2) structures

Let S be a four dimensional manifold with metric g. An SU(2) structure
on S is defined by a triple (S, ω,Ω), where ω is a positive, non-degenerate,
globally well defined real two form, and Ω is a locally decomposable, nowhere
vanishing, globally well defined two form. The forms Ω and ω satisfy

(B.5) ω ∧ Ω = 0 .

There is a unique, up to a constant, invariant volume form

(B.6) dvolS =
1

2
ω ∧ ω =

1

||Ω||2
Ω ∧ Ω , ||Ω||2 = Ω⌟Ω .

While keeping the scaling of Ω as an invariance of the theory, in the G2

setting we are interested in, we will have ||Ω||2 = 1.
We will not, in this paper, need the torsion classes of the SU(2) structure,

which is found by decomposing the exterior derivative of the form ω and Ω
into representations of SU(2). The reader is referred to [27], and also [80, 91–
93] for more details on this point.

Just as in the SU(3) structure discussed in the previous subsection, we
have that the complex two-form defines an almost complex structure on TX.
In fact there are several almost complex structures on an SU(2) structure
manifold, as we now explain. We may always, as we do in the main discussion
of this paper, trade the complex two-form Ω for two real two-forms. Let

(B.7) ω1 = ReΩ , ω2 = ImΩ , ω3 = ω .
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Then {ω1, ω2, ω3} transform as an SU(2) triplet, and any complex combina-
tion of these forms defines an almost complex structure. Moreover, we may
associate an almost complex structure to each ωα:

(B.8) (J (α))ab = gacωα
bc .

It can be shown that J (α)J (β) = −δαβ1 follows from 2ωα ∧ ωβ = δαβdvolS ,
which in turn follows from (B.6). The almost complex structure J (α) is
integrable if the corresponding two-form is closed. In the case that all ωα

are closed, the four-dimensional manifold is hyper-Kähler, and the SU(2)
transformations that rotate the ωα correspond to hyper-Kähler rotations of
the complex structure. If the structure group is proper SU(2), and not a
subgroup thereof, the closure of all ωα implies that X is a K3 surface.
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