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General couplings of four dimensional
Maxwell-Klein-Gordon system:
global existence

MULYANTO, FIKI TAUFIK AKBAR, AND BOBBY EKA GUNARA*

In this paper, we consider the multi component fields interac-
tions of the complex scalar fields and the electromagnetic fields
(Maxwell-Klein-Gordon system) on four dimensional Minkowski
spacetime with general gauge couplings and the scalar potential
turned on. Moreover, the complex scalar fields span an internal
manifold assumed to be Kéahler. Then, by taking the Kéahler po-
tential to be bounded by U(1)" symmetric Kihler potential, the
gauge couplings to be bounded functions, and the scalar potential
to be the form of either polynomial, sine-Gordon, or Toda poten-
tial, we prove the global existence of the system.

1. Introduction

The Maxwell-Klein-Gordon (MKG) system describes the multi-field interac-
tion between the complex scalar fields ¢ and the electromagnetic fields Aﬁ
on 4-dimensional Minkowski spacetime with the standard coordinate z# =
(t,2") where = 0,1,2,3 and i = 1,2,3, and metric N = diag(—1,1,1,1).
Let A,X,I'=1,2,3, ..., Ny, denotes the number of gauge fields and the Ro-
man index a,b,c=1,2,3,..., N¢, describes the number of complex scalar
fields. The complex scalar fields span an internal manifold assumed to be
Hermitian manifold endowed with metric g,j.

The Lagrangian of this MKG system with general couplings can be writ-
ten down as

(1) L= thas (6.8) FAF 4 Lhas (6.8) FA P
~ Yab (d)’a) D/‘«QZ)aD'ugbb -V (¢7 QE) )
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where fﬁy = %Aﬁ — &,Aﬁ is the gauge field strength, D,¢% = 8H~<Z>a —
iqrAEQSa is the covariant derivative, gr is a constant function, and F>I
is the Hodge dual of the ]:l/}l,. The real functions hpx (qb, (;_S) and kpy (qb, (;_S)
denote the gauge couplings, and the real function V' (gb, 45) is the scalar po-
tential of MKG system. Since the Lagrangian is invariant under local
U(1)N symmetry where U(1)Y = ®l]i1 U(1), without loss of generality we
could take has ((;S, dS) = hA;(]d)P), kas (qﬁ, (5) = kax(|¢|?), and V (d), qg) =
V(|¢|?) where |$|? = 6,;6%¢". Moreover, to simplify the case, the scalar man-
ifold has to be Kéahler manifold equipped with metric g,; = 0,0;K where
K = K(¢,¢) is the Kihler potential admitting U(1)" isometry.

In recent years, the analysis of the global solution of the Maxwell Klein-
Gordon system has been considered in detail. These systems obey the local
gauge transformation. Then, we have the freedom to choose the gauge condi-
tion according to the method and problem considered. The well-known gauge
choices are the Coulomb gauge, 8'A4; = 0, and the Lorenz gauge, 9, A" =
0. Considering the Coulomb gauge condition, Klainerman and Machedon
proved that the solution exists globally for the finite initial data [I]. As for
the global well-posedness of the MKG systems in the Lorentz gauge condi-
tion, we suggest an interested reader to consult [2].

Another gauge condition we can take into account is the temporal gauge
condition, Ag = 0 as in [3, [4]. In this choice, the local and global existence of
the Yang-Mills-Higgs equation is also obtained [5 [6]. In the previous stud-
ies, we consider the temporal gauge conditions to prove the local existence
of the bosonic part of N = 1 supersymmetric Yang-Mills-Higgs with general
couplings and the scalar potential turned on [7]. In particular, we take the
Kahler potential to be bounded above by the U(n) symmetric Kdhler po-
tential, the first derivative of the scalar potential to be locally Lipshitz, and
the first derivative of gauge couplings to be at most linear growth functions.

It is of interest to complete the proof of our previous study by showing its
global existence. However, we are facing a problem to regularize such as the
three vertex terms of the gauge field Aﬁ when the gauge couplings hax (qb, gg)
and kxxy (¢, (;_5) are no longer constants and moreover, the internal manifold of
the o-model is not flat. Therefore, to evade such a problem, in this paper we
only establish the proof of the global existence of the MKG system for multi-
field interactions with the addition of general gauge coupling in temporal
gauge and scalar potential turned on. In particular, we assume that the
gauge couplings hay (¢, (ZB) and kpy (qﬁ, 45) are bounded smooth functions,
the Kihler potential K has to be bounded by U(1)Y symmetric Kihler
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potential which generalizes the case of 7], and the scalar potential has the
form of either polynomial, sine-Gordon, or Toda potential.

We organize the paper as follows. In Section [2, we derive the field equa-
tions of motions for both gauge and complex scalar fields. We also discuss
some assumptions regarding the gauge coupling functions. In Section |3 we
provide the discussion of properties of the scalar internal manifold which
is Kéhler. In Section [ we discuss some estimates for the gauge and com-
plex scalar fields which are the important ingredients for proving the global
existence. Finally, the final proof and the main theorem are presented in
Section B

2. The field equations of motions

Let us first consider the equations of motions of Lagrangian (1.1))
(2.1)

o . a—7b amry b e’ re% T
OOFE = pAT {qugag <D7¢> & — ¢ qubb) — O%harFh, + 0 kAngv} :
(2.2)
b b 1 (&7 a o e Q ™ ic
D" Dag¢’ = g% <4fﬁgadGAB — 0agazDa¢" D*¢° — 0%gazDad* — adV) !
with hA® is the inverse of hps, and
(2.3) GY = —hasFEOP 4 gy FEIOP
The gauge field strength also yields the Bianchi identity
(2.4) OrF o+ 0aFpy, + 0uF 0 =0 .

Taking the covariant divergence of (2.1)) and use the Bianchi identity of the
gauge field strength, we have

(2.5) D‘FE’Y = _iQAhAZ {811%51)7@5&(55 + 9apOu (DWSCLQ;B)}
+ W™ (0%har) 0aFY, — B (00 har) F,
+ W™ (0%0,kar) Fiy, -

In a similar way, we can obtain

(2.6) OD,¢" = iqro® Fla¢® + iqrFu,0%¢® + iqro® (AL0,9")
— iqro® (A},0a0") + 0,0" Dad®
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where O = —9? + 07 + 03 + 03 is the d’Alembert operator.

We translate the coordinate system to the lightcone coordinate system
centered at p. Then, we can write the equations and as the van-
ishing of a surface integral over the interior of the past light cone K, from a
certain point p to the initial data surface. By using spherical means method,
we can write the equations of MKG theory with general coupling in the in-
tegral form of its field strength as

in 1 . a7b
2.7)  Fp = Fulm - / rdrdQ) (—zhAEqA{augagD,YQb o
KP

+ 9,30, <D7¢“¢_SB> } + 1A (9% har) daFL,

)
t=—r

— W (00 har) Fh, + B (00, kar) fg;u>

1

(2.8) D¢ = D¢ 4 o / rdrdQ (iqro® F,0® + iqpFpa0%¢"
KP

+iqro® (AL9u8") — iqro® (A},0a0") + 0,0* Dag®)|

t=—1r "

with

. 1 o{F.} o{F;}
llin _ My Y >y
(2.9)  Fuy = / dQ |ro— 5175 o2 - :

52 t:tg ,'="To

1 0{D,¢" 0 {D,¢"
(2.10) D¢l = 47/(19 [ro {a;¢ L, {aiqﬁ ) +Dﬂ¢a]

S2 t:to,T':T‘o

The energy-momentum tensor of this system is given by

hAE
|22 —
(2.11) T = =% (

FMnFSy 4 f$'ﬂf2|”7) +29,;DFG DV
— 0" gy D" DVS® — V.

It is common to split the field strength F*¥ into electric and magnetic com-
ponent as

. . U T
(2.12) B = PRI H = PR = DO
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Thus, we can write the energy function as
h . .
(2.13) & = /errdQ</2\E <EiAEZ" + H{\HE”)
BP

I

+ 9 D° 90" DOGF + g5 D" DiP + V)
t:to

where B, represents a solid sphere in the lightcone coordinate that intersect
with K.

Throughout this paper, we set the Lagrangian to be invariant with
respect to the local transformation U(1)" such that we have

has (Ugbaw) = has (¢a Q_S) )
(2.14) kas (U, U¢) = ks (¢,9)
V(U U) =V (,9) .

As the result of the gauge ambiguity, we have the freedom to choose the
appropriate gauge conditions. In particular, we choose the temporal gauge
condition

(2.15) AS () =0,

for all 3 which has been shown in [7] that the solutions of (2.1)) and (2.2)
satisfy (2.15)) for all time. We take

Assumption 1.

has (¢,9) = has (!qﬁ\g) )

(2.16) i
kas (¢,0) = kas <|¢|2) ;

with |¢|* = (5(11-,(;5“955, and both hayx, <]¢|2> and kpay (|¢|2) are bounded func-
tions for all A, 3.

3. The internal manifold

This section is devoted to discuss some properties of the internal scalar
manifold which has to be Kéahler mentioned in section (I In particular, we
consider the case of the Kihler potential to be bounded above a U(1)V
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symmetric function. Our estimates derived in this section play an important
role in proving the global existence of this system.
First of all, let K be a Kahler potential satisfying the following condition

5.) K (6,8) < ® (4]
with
(32 61 = (078"

Then, we have the following lemma

Lemma 1. Suppose M is a Kihler manifold satisfying (3.1). Let ® satisfied
the inequality

(3.3)

Zb 6"

where by, > 0 for all n, Q (|¢|) = % (CIJ” ﬁ), and & = 92 Then, we

h 01"
ave
S 8b
n n+6
(34) |K| < ;J ey (n+5)(n+6)|¢|
2 o o
+;(n+2)(n+3)(n+4)’¢‘ + 20|92 + Cy o + C

with C; >0 for all i =1,2,3.

Proof. If M is a Kihler manifold generated by ®, then we can write the
metric §,; = 0,05 as

- @l 1 1" (D/ _ C J/C
&9 5 = 31 g (¥~ ) e

with @ = 8| ¢>\ The inverse and the first derivative of g,; can be written

down
~ 9 9 o' — P’
gab ‘(Z)‘ 5ab ‘¢| ¢a¢b
ol \ @7 +
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Q/
29|

2= gm ('~ 1)

! 1 39" 39
Q _ . ((I)W . + 2) ]
216l 8¢ ol ||

Hence, using the assumption in (3.3]) and the integral inequality properties

‘/N@MS/V@Wm

N

bn, n
Q) Szin—i—lw o,
n=1

acgal; = Q (5a56(3cz + 5@550@) ¢ ( cféegaa(f) ggtj(bqu]? ’

respectively, where

we obtain

which implies
al 8b,

n+6
<) raeimre

N

12b,, s
+;(”+2)(n+3)(n+4)|¢’ +2011¢]* + Co -

|¢|

+C37

with C; > 0 for all ¢ = 1,2, 3. Thus, applying (3.1 , we get . H

By substituting equation (3.5)) into (2.13]), we can express the energy of the
system in the form of

(3.6) &= / r2drde | A2 (EAEE|Z+HAHE|’> ¢ 85Dy DH P
2 2[¢|
BP
! (@” - @/) 3ep0ac® 9" Dy Dipb + V)
"1l lol) © ! t=to

Since the energy of the system must be positive, then we should take
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Assumption 2. The function ® has to be bounded below by
(3.7) ] > Tlof +ea
where c1 > 0 and co > 0.

4. Estimates

In this section, we derive some estimates for the complex scalar fields and
the gauge fields which are the significant part of the global existence proof.

4.1. The flat energy estimate
We define a flat energy functional as
1
41 TO=Elg+Hlz=+ S 1Dl = + 16l + [VILe

where ¢; > 0 and

1/17
(4.2) 1l = / Pde|
S

is a standard L? norm. The flat energy functional (4.1)) plays an important
role for bounding some estimates in the MKG system.

Preposition 1. Let gb“,Ef\,HiA be solutions of MKG system as in
and in temporal gauge with

(4.3) Jo=J(0) <o0.
Then, for all t > 0 there exists a positive constant Cy > 1 such that
(4.4) J@t)<CnJo(1+1t) .

Proof. Clearly that & < J02. So, the first, second, and last terms of (4.1
are bounded by 53/ 2, that is,

1/2
(4.5) 1Bl o + 1 o + 1V < & < Co
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where C'>1, and we have defined |E|= (EZ-AEE“)I/2 and |H|= (H{\Hm")lﬂ.

Next, from (3.7]), we obtain

C1

(16) ' Y=

29|
such that the estimate of the third term in (4.1)) has the form

(4.7) %HngHLz <Jo,

—\1/2
with |D¢| = (5a5DM¢“D“¢)b) . To get the estimate of the fourth term in
(4.1), let us consider
9 2 2 2
(4.8) Eil drdQ|¢|” = 2 Re [ r°drdQ2|¢pDyo|
K, K,
< 2|9l [1Dodll L <2T010ll > -

Integrating the inequality, we obtain

(4.9) ol < CT(1+1) ,
with C' > 0 showing that (4.4) is fulfilled. O

4.2. Estimate for the gauge fields

Let us rewrite the integral equation (2.7)) as

> Y|lin ) Y b Y Y
(4.10) Foiy = Fur M0 I+ T30+ KL+ Ly + M7
where
1
Y AY qa
(4.11) Loy =—1 / rdrdQh =00 har Fl, |,
KP
1 o
(4.12) I = o rdrdQUh™ (0%har) 0TS, |,
KP
; -
(413) KEW = _E /T‘d’l“dQ hAEQAaugaBDWSaQSbL:iT ’

KP
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’l: -
(4.14) Ly == / drdQ2 1" qpg,50, <Dv¢“¢b) ‘ e
KT‘
1 ~
Kp

First, we consider the first term of the nonlinear part of the equation in
(4.10) which satisfies

(4.16) 11| < / rdrdQ| W 0% 0y har Fh, |,
KP

Using the Holder inequality, we have the following estimate

1/2 1/2
2] < 2d dQL:g“F 2drdQ| WA 0% 0, har|”
}IW‘— rear 2 ridrdQ| Jhar|
K K

To 1/2

< /drH}'(—T)H%w 070, har |, -

0

We have then
(4.17) |n*20%0,har]| . < e (07T 0% . + 07057 ,.)
where ¢ > 0 and we have defined ¥ = |¢|? = 5(15(;5‘1(55.

Consider the following estimate

1/2 1/2

16l s < Il Vel
< endy L+ 02|V
< endy 21+ 02 (IDidll o + IV Al 2Nl o)
<endo(1+1) (1+ 10l 6) "
<enJy (L+1t)

with ¢y > 1. Using the results above, we can get the following estimate

IVl 2 < I1Didll > + IV All L |1l s
< Jo+ Joll @l 1
<OnNTG(1+1) .
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Thus, the first term of (4.17)) can be bound to the energy and its L>° norm

10T 80, 0| o < (IO || oo [|05 W]l L
(4.18) < ON[[0% | poe 1 oo 104 @l o
< ONTFA+1) 079 o [0

with Cy > 1.
As for the second term ||0%0,¥||,,, we have

(4.19) 189059l 1> < CnTGF (1 + ) 1106 o + 6]l = 10%05 0]l 2
where

(4.20) 1005l 1. < |1D*Dadl| 2 -

We can use the equation of motion in (2.2 so that

(4.21) HDO‘DQEHLQ < ( g FL30.G5

|+ |[9"0ug0eDas D

L2
+ HgdbaagdéDa¢c

s

Iz
In order to have an estimate of (4.21)), we have to specify the form of the
scalar potential V' (gf), qS):

Assumption 3. The scalar potential V ((b, <Z_>) has to be either of the fol-
lowing form

N

(4.22) V(D)= a, 0",
n=0

(4.23) V(¥) =V (1 —cosA¥) ,
N

(4.24) V()= de Y,
n=0

where an, an, Vo, A are real constants, while An >0 for every n.

It is worth mentioning that there three known examples in the case of
, namely, for N =1 it corresponds to the mass term in the Klein-
Gordon equation, while for N =2 it describes the ¢*-theory. Equations
(4.23)) and (4.24) correspond to the sine-Gordon and the Toda field the-
ories, respectively.
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Making use of the Holder inequality, equation (3.5)), and its derivative,
we have then

(4.25) Hpapﬁup <& Jo(1+|0g]l )

<H¢Hm + [ llz + Z ol + Z Hqﬁ\|"+4>

n=1

+& Dollollp< 10l + ¢ T T (||¢||) :

with ¢; > 1 for all ¢ = 1,2, 3, and

(4.26)
7o) < 4 €D - if V is of the form :
< H¢||L°<>H3¢”Loo\70 , if V is either of the form (4.23)) or (4.24]) ,
where
(4.27) O (181) < 191l oo 10| oo <1+j0 (141) Z II¢H2”“> '

Thus, we obtain the estimate for the first term of (4.10))

(4.28)
ro 1/2

|| < C1IF (1+1) /dTHJ'"(—T)H%w {109l L=l L~ + 199]| L~

0

(nngLm + )3 + Z IO+ 3 r|¢||“+4> (196] 1~ +1)
11617~ 196l - + I8l (Il } -

where C1 > 1 and
N 1/2
(4.29) H(‘l)f(t)HLm = ]ffﬁle 5(t)‘Loo .

For the second term of nonlinear part in (4.10)), we have

(4.30) || < / rdrdQ|h™> (0°har) O F:

Ky

/J’t——r :
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Making use of the Holder inequality again, we get

ro 1/2

(4.31) RN < | [aripelie | ol o,
0

where

/2
(4.32) Do), = 6a,;Da¢>“D0‘¢b‘Lw.

We can use the equation of motion in 1) to get estimate for H@a
namely,

Foull g2

(4.33) 10078, 1, < €0 (0% + 16~) -

with C > 1. Thus, the estimate for the second term is given by

T 1/2

@z |l <edn| [aiDol ] (Il + ol |
0

with Cy > 1.
Similarly, by employing some computation, we obtain the estimates for
the third and fourth term of (4.10))

T 1/2

(435)  |KZ|<CI2(1+1) / dr D82~ | 10gasll e 16l o
0
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(4.36)

1/2

L2 | < Cio (1+1) ( / dr||¢||im> {(Z I3 + Z llpst
0

+ Z o725 + Z 61" + 1l + Il + 1>

n=1

X (1+[19¢] 1) (chlm + 1 ll7 + Z o725 + Z |¢||”+4>

10l L< 100 Lo + caZ ([9]]) + 19l = + HA!Lw}

To 1

+CuJo (1+1) (/ dr ||D¢Hioo> (Z lolI7E + Z o]z

0

+ Z o175 + Z (A" + [ BlI7 + 19l g~ + 1>

n=1

respectively, with C3,Cy > 1. It is important to notice the estimate of the
fifth term M > ., gives the same result as the estlmate of the first term 1, E

Next, we need to estimate the linear term of (2.7). The linear term can
be estimated using the initial data

B N B

52 t:to ,F="To

< Co+ Cyryp

(437)  |Fn 0

with Cy, C; > 0. Therefore, the estimate for the gauge field is given by

1/2

438 | 'y’ Séo—i—él’l"o—i-jg (1—!—75){(/(17“”]:(—7")”%00) élL (t)

0
. ( / druwu%m) CaM (1) + ( / drwuiw>
0

0

1/2 1/2

C3N(t) } ;
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where C; > 1 for all i = 1,2,3, and
(4.39)

L(t) = (|l g (chllpo + [ ll7 + Z o175 + Z ||¢||”+4>

X (100l ~ + 1) + Ha‘I’HLwWHLw + H%Hm

+ 1017 1001 1 + 16l =T (1)
(4.40)

N
MO = 16l 10%= + 1915 + 3 G ol

+ CLI8 T + 1007 + 10l + Z o172 + Z ol

+ Z ol 7 + Z 9]+ +

(4.41)

Z ol 2L + Z oIz + Z ol

+ Z (61" + 11l + ol +1

n=1

<||¢||L°Q + [ ll7 + Z Il17E* + Z ||¢||"+4> (109l - +1)

+ 161l <109 +C4I(||<Z>H) :

4.3. Estimate for the complex scalar fields

Let us rewrite the integral equation (2.8)) as

(442) D,u(ba _ D#¢a|lin +N3 +RZ ,

231

where Njj and Rf, are the nonlinear part of (2.8)) whose forms are defined as

(4.43) Ni= ﬁ / rdrdQ qr (0°F, 0" + F 0 0% 0"
K:D
0% (AL0u0") — 0 (A[0a0")) |

t=—r’
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a — 1 (0% a
(4.44) "= rdrdQ 0,0 Da¢®|,__, |

By applying Holder inequality, Sobolev estimates, and the result in
({4.33), the estimate of Ny has the form

o 1/2
(4.45) INS| < K1 / arllole | 16le 1+ 106] )

0

o 1/2
2
+ Ko J¢ (1+1) /dr H(4)F(—7“)HLOo
0
o 1/2

+ K370 /dr 1417~ { <\¢||Lw + 1l

0

- Z ol 7> + Z H¢H”*4> 1+ o]l )

+ 1191l <1091 - + C4I(H<Z>H)}
T 1/2

Ko / ar ool |

0

where K; > 1 for all i = 1,2,3. As for R}, , we first consider

(4.46)  |RY| < / rdrd9]9, (D7Dag") — iardy, (AT Do)

Ky

t=—r

To estimate this term, we must derive an estimate for the first derivative of
the equation ([2.2)), that is,

(4.47) 8, (DDag®) = gdb( 0 F 504G + faﬁa 84GP

- auadgaé a¢aDa¢c - 8dga68uDa¢aDa¢c
- adgaéDa¢aauDa¢c - 8uaagdéDa¢c
— 0agd58uDa¢c — @ﬁdv)

+ 8ugdl;gd5 (mDaQﬁa) )
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which can be bound by an expression involving the energy and L°° norm.
Hence, the estimate of R} is given by
(4.48)

3| < BT < [ar ||a¢||%m) { (ch»um + 3~

+ Z ol + Z H¢H”+4> (14 110¢]l o)

1/2

+ 110l o 194 Lo + C4I(H¢H)}

ro 1/2
+ By < [ar H<4>F<—r>H;) (19017~ 119 17~
0

106l 16 e + 1] + 1001 + 16 13- )

T 1/2
+ B3 Jo </ dr ||D¢(—7“)||%m>

{H%IIL«» (Z lll7 =2 +Z lolnEt + )

+ 1100l <H¢HL°° + [ ¢llz~ + Z ol + Z H¢H”+4>

X (L[l ) +Z(I91) + 19l e + (1 + 1) [|A]l }

1/2

B ( / dr||8¢|!im> #(ll6])

0

where B; > 1 for all i=1,..,4,

D(lll)
if V' is of the form (4.22)) ,

o (I0W]7 +1) -

if V' is either of the form (4.23) or (4.24]) ,

(4.49)  H([lo]) <
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and

N-2
(4.50) D (|[¢]lp~) < Z||¢||Lx+Jo L+ 1) 10V e > Nl 7% -
n=0

In the same way as the gauge field case, the linear term of (2.8)) is bounded
by the initial data. So, the total estimate for the complex scalar field is given
by

To

1/2
(4.51) D¢ < K1Jo (/erqﬁ(?“)%oo) S (t)

0

" 12
+ K28 (1+1) (/dr(4)]:(r)ioc) X (1)

1/2

+ Ks3Jo d7"H¢||Loo 6l (1+ 109 )

[«
+K4Jo( drALoo) Uit

1/2
+ K570 d?“a¢Loo) W(t) + ko + kirg

where KC; > 1 for all i=1,...,5, and

(4.52) S (1) = [|99]| (EH@MI“”Z||<25||"+1 >
+Z(ll) + 1ol L~ + (1 +1) HAHLw
+ 1100 (”ngL‘X’ + 7 + Z o175 + Z H¢>II"+4>

n=1
X (L4 [lollz)
(4.53) X () =1+ [06]7~ 16 7~ + 100] 1 1 17~
+ 16l + 100 e + 16 17
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(4.54) U(t) = <||¢|!Loo + 1l + Z o725 + Z H¢>H"+4> (1 + 1[0l L)

n=1

+ 1l <100 o + C4I(||¢||)

(4.55) W (t) = { (HstLm +lllz~ + Z oL + Z \¢\|"+4>

n=1

X (L4100l <) + [0l < 100 = + caZ ([[4]]) }

(HéHLm + 917~ + Z [Clljass Z H¢H"+4>

n=1
+H (Il =) -

5. The global existence

In this section we put the final argument and prove the global existence of
the MKG system with general coupling.

Since the right hand side of and independent of the spatial
coordinates of p and reversing the steps which shifted the origin of coordi-
nates, we can write the result as

: 1/2
Gy |YFe)| <@ a+y {ClL(t) (/ dsH}'(s)H%x)
: ' 1/2
M) ( [ s HD¢(s)Hiw>
i )
+CN (D) (/ ds \|¢(s)||§x> } teotat,
To " 1/2
(5.2) 1DG]1 < Ko ( [ar |D¢<—r>|riw> S(t)
0 t o

et ( [u[orof; ) w0

0
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" 1/2

+ Ko (/ ds \¢(8)|!2Loc) 161l (1 + 1106 1<)

0
‘ 1/2

K ( / dsM(s)llL) Ut)

0
¢ 1/2

+ K50 (/ ds ||a¢(s)||§&> W (t) + ko + kit .

0

Furthermore, to prove the global existence of the MKG equation, we
must show that the norm ||D¢ ()|~ dan H(‘l)]-"(t)HLOo is finite. Therefore,
we define a function as follows

(5.3) Gt = |OFw| +1De @)~ -

Restating the equation in the form of Gronwall inequality, we obtain
t
(5.4) G (1) SN (1) +Q(1) ( [as{IFGIE~ + Do) + 196:) -
0

+106($)]13 + ||A<s>|riw}> 7
with

Q(t) = K108 (t) + KaJg (1 +1) X () + KaTol|¢ll e (1+ 100 1)
+ Ky JoU (t) + Ks T oW (t)
+ JZ (1 +1t) {CLL(t) + CoM(t) +C3N (1)} ,

N (t) = co+ et + ko + kqt .

To get a bound of G2 (¢), we only need to prove that G2 (t) continu-
ous. Continuity of G2 (t) is depend on continuity of H(4)]—"(t)HLOO, &) 700 s
100(t)|| 1 , [|A(t)]| ;o and || D@ (t)|| - Using the triangle inequality and the
Sobolev estimate

(5.5) 1l < Ml
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we can get the continuity of H(4)]—"(t)HLOO. Let € > 0, then we get

s NOFCr9 [ OF0], | [OFera-Ora],
sH@f@+@—quﬂm,

hence, we have

(5.7) ‘Wvﬁ+@JQHMH;*“ £ 0.

The last step follows from continuity of ) F (t) as a curve in Hy. The same
reason clearly applies to || Do (t)||} -

So far we have proved that H(4)J-"(t)HLm and ||D¢(t)|| -~ cannot blow
up in a finite time. Another estimate we need to prove are ||A4; (t)||;~ and
|6 (t)]| ;- By considering the temporal gauge condition, we have

(5.8) &@@:&@@+/a@@,
0

then we get

t
(5.9) 145 ) = 145 0,2+ [ NES ()] ds.
0
t
(5.10) 16 (t,2) | = 160, 2) = + / 1806 ()| . ds
0

which are the key points to complete the proof of the global existence of
Maxwell Klein-Gordon system.

To prove the global existence, we must show that the norm (Hy x H)?
of (A, Ey, ¢, 0¢) does not blow up for a finite time. Therefore, we define a
functions that are elements of (Hy x Hi)? as

1
(5.11) Eo= 2/da: (5@ {EAEF 4+ 0,AY 0;A7 + mAMAT )
R3
+ 10001 + 010l +mlgl?) |
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(5.12) Ei= ;/dx{(SAg (0;E} 0;EF + 0;0,A 9;0,AF)
RS

+ 0006 + 100,01}

where m > 0, is a positive constant. The function (Eg + El)l/2 meets the
norm (Hy x H1)?, so that to obtain the global existence of MKG equations
with general coupling is sufficient by showing that Eg and E; are not blow-up
for a finite time.

The first derivative with respect to time of Ey,

dE
(5.13) | =2 <Co{Y () (1Dgll e + 1+ (18] )
+ |9 109l 1+ ll)
+ (106l + I1Dgll ) Z (t) + T (]l ) + 1},
with
(5.14) —826 \|¢||"+6+an r\¢\|“+5+122b oz

+6C1 (J16117 + ||¢HL®) +(Ca+ Cy) 18] = + C

(5.15) Z(t) = | ¢llp~ + 9]z~ + Z o175 + Z ozt

n=1

where we used the Holder inequality. Integrating the inequality above, we
obtain

(5.16) Eo (t) < Ep (0)exp /73 (t)yde | ,
with
(5.17) P) =Y @#) (D¢l +1+¢llL~)

+|[9F®]| 106l~ (0 +ligll,-)
+ (1091l + 1D9ll ) Z (8) + T (]l ) + 1

Since all of |[WF ()], 6t) 1 s 106 e s [A®) ] and [[DS(t)]|
does not blow-up for a finite time, therefore, Eq (¢) is bounded for all time.
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Finally, computing the time derivative of E1, and after some calculations,

we have

dEy

| SEXO+W O +PH)+UMBIE,

(5.18)

with
(5:19) X (&) =¥ () { (1 Dol 106l] = + DS 1 + 9] .-
+ 1106l .~ + 1B +1}
+7|Or@)| (10617 19l + 10611 ) + 18] -

(5:20) W (1) = D6l Y (&) (106 ~Eg* + 18] .-
+ 09 B 1001~ )
+ |9 ol 100l (196]~ By + 6]~ By
+ 10911~ Es 10911 ) + DG~ 09 . 2
+ 106~ 191l {2 1961~ E5/* +2}
+ 1061 Y (O (9]l + Es'* 8]~
+ By 21100l 91l + 1 D()] 1~ Eg')
+||Or@)| 10813~ 19l (19617 + ]~ ) '
+ 19613~ 617~ -

(5:21) P (t) = 9ll3~ 100l13 + Z | DOl 1 119 1 1]~
+||OF@|, 1960~ 1917 + [P 106~
6l T () + Y (0) (T (1) + 9]l = + 1Al +1)
1160~ S (&) + 19l 1 Z (18] ~)
+Y (£)S () +EY?Y () (1061l + 9]l )
+Y () Z (16l ) + 917~ 10911} |V F)|| _E

+ |1 DGl 108]] o 6311 Eg*Y () +
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+ 21106 1~ 16~ 1DS(E)
x (B + E5/* (1]~ 19611 + 101 ))

| wEo)|, (10wl 1060 £ 1]

1/2
+ 110613 8] E5/°)

+@r)],. (109~ (1061~ € + o)

T 0|2 106, Eé”) |

(5.22) U=St)+T(t)+Z(ollp=)
where
N

5 (n+2) n+2

(5.23) Z_nzl w1 o IOl + Crlléll-
R N nio N

(5.24) 7= ZmanqﬁH"H + 3 (n+3) ballgl" T + Cn,

n=0 n=0

(5:25) S =106l Z (Il~ | VF®)|, & +x Uisll-))
+ 521000 1 22 (L4 16 12) (1D&(0) | + 1100 )
+E/°Z (1D9(1) |~ + 1) (108 + ] .)
+ & | 9F@) 109l
1/2

+ DO 18117 10911 By (1 + 16l )
+ 2109 o (1 + [l ) Eo

(520 T =EQ+Il-) 2+ |V
+ Z(ID9(1) = + 1),

Nl

L
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with

( al n—2e1/2 | & n—1
18l 22 (n—1) [ W[[<"Ey ™ + ZlnH‘I’HLoo :
n=

n=1

(5.27)  Z(|l¢|) < if V' is of the form (4.22]) ,
(1+E I0l~)
L if V' is either of the form (4.23) or (4.24) ,

(5.28)
N
EY? S n||W|p=t, i Vs of the form (E22)

x (lI¢l) <

Etl)/ 2 , if V' is either of the form (4.23)) or (4.24) ,

Integrating the inequality, we get
t
(5.20)  Ei (f) < Ey (0)exp / (X ()W () + P &) + U (t)+} dt
0

The right hand side of is a mixed expression of H WF(t) HLW ()| oo s
100t || poes 1A 1o, [ DP(t)]| 1o, and Eg (t) which is a bounded with re-
spect to time. Therefore, by applying the Gronwall inequality, we find that
E; (t) also cannot blow up in a finite time.

Thus we have proven the global existence of MKG system with general
coupling in temporal gauge condition

Main Theorem. Letuy = (A}(0), E*(0),$%(0),d;¢*(0)) be the initial data
on (Hy X H1)2 such that the initial flat energy function on is finite. If
the internal scalar manifold satisfies Lemmal[l) and Assumption[d, the gauge
couplings satisfy Assumption[l], and the scalar potential is of the form given
in Assumptioné then there exist a unique global solution u (t) € (Hy x Hy)?
of MKG equation with general gauge couplings in temporal gauge which

solves the corresponding equations and for all t € (0,00).
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