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The quantization of the Teichmiiller theory has led to the formu-
lation of the so-called Teichmiiller TQFT for 3-manifolds. In this
paper we initiate the study of “supersymmetrization” of the Te-
ichmiiller TQFT, which we call the super Teichmiiller spin TQFT.
We obtain concrete expressions for the partition functions of the
super Teichmiiller spin TQFT for a class of spin 3-manifold geome-
tries, by taking advantage of the recent results on the quantization
of the super Teichmiiller theory. We then compute the perturba-
tive expansions of the partition functions, to obtain perturbative
invariants of spin 3-manifolds. We also comment on the relations of
the super Teichmiiller spin TQFT to 3-dimensional Chern-Simons
theories with complex gauge groups, and to a class of 3d N = 2
theories arising from the compactifications of the M5-branes.
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1. Introduction

Quantum Teichmiiller theory [, 2] has been a fascinating subject with connec-
tions to many different topics in mathematics and physics. While the quantum
Teichmiiller theory in itself concerns 2-manifolds, one can use the ingredients
from the Teichmiiller theory to define the so-called Teichmiiller Topological
Quantum Field Theory (Teichmiiller TQFT) [3+5][] which generates inter-
esting topological invariants of 3-manifolds.

There are several possible extensions of the quantum Teichmiiller the-
ory. One such generalization is to consider the super Teichmiiller theory,
which studies the moduli space of super Riemann surfaces. While the super
Teichmiiller space has long been playing fundamental roles in the perturba-
tive superstring theory, the systematic analysis of explicit classical coordinate
systems [23, 24] and the quantization [25, 26] are relatively new subjects[]

The goal of the present paper, stimulated by recent developments, is to
consider the super Teichmiiller counterpart of the Teichmiiller TQFT. One
of the crucial differences between the super Teichmiiller theory and its non-
supersymmetric (i.e. non-super) counterpart is that we now need to take into
account the dependence on the spin structure of the 2-dimensional surface.
Relatedly, the super generalization of the Teichmiiller TQFT should depend
on the choice of the spin structure of the 3-manifold—we should obtain a
spin TQFT, not a TQFT. We call this spin TQFT the super Teichmiiller
spin TQF TE|

In this paper we provide algorithms to compute the partition functions of
the super Teichmiiller spin TQFT for a class of spin 3-manifolds. This leads

1See also [6HI4]. The topic has also been discussed in connection with the 3d-3d
correspondence [I5] [16]. Some papers on this topic, with emphasis on the mapping
torus geometry, include [15] 17H22].

2See also [27H33] for some recent papers related to this subject.

3Clearly the words “super” and “spin” are closely related, and one might be
tempted to drop either of them in the terminology. We nevertheless find it useful to
emphasize that this is a spin TQFT as defined from the super Teichmiiller theory.
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to concrete integral expressions for the partition functions, and we study their
perturbative expansions.

We also discuss relations with a number of topics from mathematical
physics. It turns out that super Teichmiiller spin TQFT is related to the
3-dimensional Chern-Simons theory with complexifications of OSp(1|2) and
SO(3) gauge groups. Moreover, we propose to extend the dictionary of the so-
called 3d-3d correspondence between supersymmetric 3d gauge theories and
the 3d Chern-Simons theory [I5) [I6]; in our context the partition function of
the super Teichmiiller spin TQFT is identified with the partition functions
of 3d NV = 2 supersymmetric theories on the projective space RP* [34, [35].
This new 3d—3d correspondence originates from compactifications of two M5-
branes on RP? times a 3-manifold.

This paper is organized as follows. We begin in Sec. 2 with a summary
of our strategy for computing the partition function of the super Teichmiiller
spin TQFT. We first review classical super Teichmiiller theory in Sec. 3. We
then describe the action of the mapping class group in the super Teichmiiller
space in Sec. 4. This result will be uplifted to the quantum super Teichmiiller
theory in Sec. 5. Based on these results, in Sec. 6 we explicitly compute
the partition functions of the super Teichmiiller spin TQFT for mapping tori
associated with the once-punctured torus. We further study the relation of the
super Teichmiiller spin TQFT with a number of different topics, such as the
3-dimensional Chern-Simons theory in Sec. 7 and the 3d—3d correspondence
and Mb5-branes in Sec. 8. Finally we suggest possible future problems in Sec. 9.

2. Outline of strategy

Before coming to details, let us outline our strategy. Our construction of the
super Teichmiiller spin TQFT is inspired by the Atiyah-Segal type axioms
in TQFT [36] (adopted here for a spin TQFT). Recall that a spin TQFT
associates a partition function Z (M) to a closed spin 3-manifold M, and a
“Hilbert space” H(X) to a spin 2-manifold ¥. When M is a 3-manifold with
boundaries, Z(M) defines an element (a wavefunction) in the Hilbert space
associated with the boundaries of M. For example, if M has two spin 2-
manifolds ¥; and ¥ as boundaries, namely OM = (—X;) U s (where minus
here means the orientation reversal), then we have

(1) Z(M) € H(1)* @ H(S2) ~ Hom(H(1), H(Ds)) .
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Similarly, if one has the a 3-manifold M with three 2-manifolds 3 2 3 (so that
OM = (—X;1) UX3 U X3, then one has

(2) Z(M) € H(Z1)" ®@ H(X2) ® H(X3) -

This discussion points us to a possible strategy in formulating a 3-dimensional
spin TQFT: we first start with the formulations of the Hilbert space H(X)
for a spin 2-manifold ¥, identify the operators acting on their tensor prod-
ucts, and make contact with the geometry of the 3-manifold M. In physics
language, this is to adopt the Hamiltonian formulation of the theory. Fortu-
nately, the “Hilbert space” H(X) associated with a punctured spin 2-manifold
>’ has already been constructed in the literature in the context of the quan-
tum super Teichmiiller theory [25] and we will use this as a starting point of
our discussion.

The connection between the geometry of the 3-manifold and the boundary
2-manifolds is particularly pronounced for the mapping torus geometry

(3) M= (xS =(Zx[0,1])/ ~,

where the equivalence class ~ is given by (x,0) ~ (¢(z),1) for x € X, p €
Aut(X). This is a non-trivial fibration of ¥ over S'. Note that the topology
of the mapping torus (X x Sl)M depends only on the spin mapping class
[¢], and not on the choice of the automorphism ¢ within the class [p]. While
the mapping torus in itself does not have a boundary, we can “cut open”
the mapping torus into a mapping cylinder M = (£ x [0,1]),. This is a 3-
manifold with two boundaries OM = (—X) U X, where the boundary condi-
tions at the two surfaces 3 are twisted by ¢. The spin TQFT then associates
an operator

(4) ¢ =Z[(%x[0,1]),] € End(H(%)) .

Once we identify the operator ¢, one can then compute the spin 3-
manifold invariant Z[(X x St),] by a suitable traceﬂ

(5) Z[(2 x $Y)y] = Tr(p) .

Our discussion naturally generalizes similar discussions for the non-
supersymmetric quantum Teichmiiller theory [15, [I7, 20, B7] to supersym-
metric settings. We will find, however, that there are important differences

4More precisely we need to insert suitable projection operators into the trace to
fix a 3d spin structure, as we will discuss in Sec. 6.1.
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in the formulations of the theory, both technically and conceptually. One of
the crucial differences is that the super Teichmiiller TQFT is a spin TQFT
(not a TQFT), and hence depends on the choice of the spin structure of the
3-manifold (and hence of the 2-manifold). In order to explain this point, let
us first begin in the next section with the summary of the classical super
Teichmiiller theory.

3. Review: classical super Teichmiiller theory

In this section we briefly summarize the essence of the super Teichmiiller
theory (see e.g. [23] for details). We first introduce coordinate system for the
super Teichmiiller space in Sec. 3.1, whose definition requires combinatorial
spin structures in Sec. 3.2. We also discuss coordinate transformations in
Sec. 3.3.

3.1. Generalities on super Teichmiiller space

A super Riemann surface >, ,, is a 1-dimensional complex supermanifold with
genus g and the number of punctures n. For our goals it will be most conve-
nient to simply define super Riemann surfaces as quotients of the super upper
half-plane by suitable discrete subgroups I' of OSp(1/2).

A natural map from OSp(1]2) to SL(2, R) may be defined by mapping the
odd generators to zero. The image of g € OSp(1]2) under this map will be
denoted as ¢* € SL(2,R). A discrete subgroup of I of OSp(1|2) such that I'#
is a Fuchsian group is called a super Fuchsian group. In fact, a super Fuchsian
group is a finitely generated discrete subgroup of OSp(1|2) which reduces to
a Fuchsian group.

The super upper half-plane is defined as H'I* := {(x, ) cCH' : Tm(x) >0
and a super Riemann surface of constant negative curvature will be defined
as a quotient of the super upper half-plane H'' by a super Fuchsian group

(6) Yyn = HW/T .

The group OSp(1]2) is the group of automorphisms of H!* under which the
metric is invariant.

We can define the super Teichmiiller space S7,, of super Riemann sur-
faces X, of genus ¢ with n punctures as the quotient [38-140]

(7) STgn ={p:m(Xgn) — OSp(1]2)} / OSp(1]2) ,
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where p is a discrete representation of fundamental group m(%,,) into
OSp(1]2) whose image is super Fuchsian. There is always a non-
supersymmetric Riemann surface Eg’n associated to each super Riemann sur-
face, defined as the quotient of the upper half-plane H by I'*. Notions such as
ideal triangulations, where the vertices of the triangulations are on the bound-
aries of the super upper half-plane, will therefore have obvious counterparts
in the theory of super Riemann surfaces.

The isometry group OSp(1]2) acts on the super upper half-plane H'' by
generalized Mobius transformations of the form

(8) x_>x,:ax+b+’y€
cx+d+ 60

,  ar+ [ +el

(9) 9—>eicx+d+59'

We can define two types of invariants, even Z and odd &, under the
generalized Mobius transformations [41]. The first is the super conformal
cross-ratio (even super Fock coordinate) Z defined for four points P; = (z;|6;),
1=1,...,4 in the super upper half-plane:

X1 X
7. 21t

10 - 7
(10) X12X34

where X;; = x; — x; — 0;0;. This is a natural generalization of the cross-ratio
(Fock coordinate) in the non-supersymmetric Teichmiiller theory. The second
is an odd invariant +¢ associated to a collection of three points P; = (z;|6;),
1=1,2,3:

Ta36h + w3102 + w1203 — %919293
(X12X23X31)?

(11) ¢ =+

)

where z;; == x; — x;. Note that at this point we have not fixed the sign am-
biguityﬂ

3.2. Combinatorial spin structures

In this part we discuss combinatorial spin structures. We define the Kasteleyn
orientation and explain its relation with the spin structure.

°For this reason this odd invariant was called the pseudo-invariant in [41].
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3.2.1. Kasteleyn orientation. Suppose that we choose an ideal triangu-
lation for the super Riemann surface. We can then introduce a collection of
coordinates Z (for each edge) and £ (for each face) as in and (LI)—it is
known that these coordinates provide a good coordinate system for the super
Teichmiiller space [23| Theorem 4.3.10].

For this purpose, however, we still need an extra data to fix the signs in
the definition of the odd invariant & . This extra data allows us to define
the lifts of the punctures P; € P! to points P, on the double cover S over
P!, Note that the even part of P! is the real projective line RP! with
group of automorphisms PSL(2,R), while the even part of S'I! is a double
cover of RP! with group of automorphisms SL(2, R). Lifting the vertices of
the triangulation of H'' to S'' should therefore be accompanied with a
lift of the Fuchsian group I'¥ € PSL(2,R) to a subgroup of SL(2,R). It is
known that the definition of such a lift depends on the choice of the spin
structure on ¥ [42], and indeed different connected components of the super
Teichmiller space are indexed by such spin structures. Therefore, we need to
fix a combinatorial spin structure on the ideal triangulation. This is achieved
by the so-called Kasteleyn orientation [43-45], which we now explain.

For each given ideal triangulation we consider the canonical orientation
induced from that of the 2-dimensional surface. One can also define the hexag-
onalization by “cutting the corners of triangles” as in Fig. 1. The Kasteleyn
orientation is an orientation of the boundary edges of the resulting hexagons
such that for every face of the resulting graph the number of edges oriented
against the orientation of the surface is odd.

Figure 1: The hexagonalization of an ideal triangulation.

Two Kasteleyn orientations are said to be equivalent if they are related
by the reversal of orientations of all the edges meeting at the same vertex, as
illustrated in Fig. 2.

The results of Cimasoni and Reshetikhin [44], [45] say that the equivalence
class of the Kasteleyn orientation is in one-to-one correspondence with the
spin structure.

For practical applications, it is often cumbersome to represent a Kaste-
leyn orientation with hexagonalization. One can instead introduce a dotted
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Figure 2: Equivalence between two Kasteleyn orientations.

notation on the triangles: if any corners of the triangulation are dotted (or
undotted), it means that the edge of the hexagon associate to that corner
has the opposite (or the same) orientation from the surface orientation. An
illustration of this procedure is given in Fig. 3 (the surface orientation in these
figures is counterclockwise).

o= b

Figure 3: Equivalence between a Kasteleyn orientation on a hexagon and that
on a dotted triangle.

3.2.2. Example: once-punctured torus. For illustration let us discuss
spin structures of once-punctured torus ¥; ; in detail.

The once-punctured torus can be triangulated by two ideal triangles, and
by working out the combinatorics we find that there exist four possible equiv-
alence classes of Kasteleyn orientations as it is shown in Fig. 4.

Case (1,1) Case (1,0) Case (0,1) Case (0,0)

RO ZORY

Figure 4: Four different spin structures on the once-punctured torus, as rep-
resented by (equivalence classes of) four dotted Kasteleyn orientations.

Having four equivalence classes of Kasteleyn orientations is consistent
with the fact that there exist four spin structures on the once-puncture torus.
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It is known that the space of spin structures is equivalent with H'(3,Zs) as
an affine space (i.e. if we fix a base point)ﬁ For the once-puncture torus this
Zo cohomology is simply given by Hiy(X41,Zs) = Zs ® Zs, where each Zs is
associated with the a- and (-cycles of the torusﬂ In Fig. 4 we have already
shown the corresponding values of Zy @ Zs, which can be derived by the rules
explained in Appendix A.

3.3. Coordinate transformations

In Sec. 3.2.1 we explained that a Kasteleyn orientation can be used to fix the
signs of the odd invariants. We then have a well-defined coordinate system for
the super Teichmiiller space for a given dotted triangulation, i.e. for a given
Kasteleyn orientation of an ideal triangulation.

However, there is no unique choice of ideal triangulation for a given su-
per Riemann surface. In addition, one spin structure corresponds to multi-
ple Kasteleyn orientations inside an equivalence class. It is thus necessary
to determine how the coordinates transform under the changes of the ideal
triangulations and Kasteleyn orientations [23].

Push Out. Let us consider a move describing a change of Kasteleyn orien-
tation which leaves the spin structure unchanged.

In terms of dotted triangles, one can pictorially represent this by moving
a dot from from one dotted triangle to another, as in Fig. 5—we call this
operation a “push out.” In the figure we have shown the action on the odd
invariants: the invariant of the left hexagon stays the same, while the invariant
of the right changes sign.

> =<

Figure 5: The pictorial representation of a (left) push out on triangles with
one dot.

A spin structure can be identified with a quadratic form on H* (3, Zs) [46].

"In general we have a choice of either Ramond or Neveu-Schwarz boundary con-
dition around the puncture. The puncture, however, is always a Neveu-Schwarz
puncture for the once-punctured torus, where (—1)7 = +1 around the puncture.
This is because the monodromy around the puncture is given by afa~'37! inside
the fundamental group, which trivializes in the Zs cohomology.
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We can moreover define an inverse of a (left) push out, which we will call
a right push out. On the odd invariants, it acts in the same way as the left

push out.
‘F Bz ‘4

Figure 6: The pictorial representation of a right push out on triangles with
one dot.

Superflip. Let us next discuss the change of ideal triangulations. This can
be achieved by a superflip operation as in Fig. 7, where we change the the
diagonal in a quadrilateral.

Figure 7: A superflip changes the diagonal of a quadrilateral.

Note that in the superflip we have simultaneously changed the Kasteleyn
orientation so that we keep the spin structure. The superflip of Fig. 7 generates
the coordinate transformation [23, Figure 5.3]:

X X' X1+ Z+6&6V7)

Y Y’! Y(1+Z—1 +§1£2\/ Z_l)_l
(12) Z |-z =] z

&1 & (1+2)71V%(& - &V7)

13 13} 1+ 2)" V26V Z + &)

The coordinate transformations depend crucially on the choice of the
Kasteleyn orientations. In general one can derive the transformation formulas
using the results of [23, Chapter 5] in combination of suitable push outs. Fig. 7
is only one of the four equivalence classes of Kasteleyn orientations for the
quadrilateral.
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4. Mapping class group

In this section we explicitly work out the effects of the mapping class group on
the coordinates of the super Teichmiiller space introduced previously. While
our formalism works in general, we will discuss the example of the once-
punctured torus ¥ ; in detail. We begin in Sec. 4.1 with general reminder on
the mapping class group and its action on spin structures. We then discuss
the mapping class group actions on odd and even structures in Sec. 4.2 and
Sec. 4.3 respectively.

4.1. Mapping class group generalities

Let us discuss the mapping class group for the once-punctured torus. In con-
trast with the flips and push outs, this in general changes the spin structure.

The mapping class group for the once-punctured torus is SL(2, Z)ﬁ This
group acts on a- and S-cycles, which are generators of H(3,7Z), as

e (3)-(28)(3). (2 5)emen

We choose the generators of the mapping class group to be

W () ()

representing Dehn twists along a and [-cycles. More concretely, these flips
change the o and (-cycles of the torus as

(15) L:a—a+0, 8—0, Ria—a, B—oa+0.

Let us choose a spin structure o = (o(«a),0(f3)) € Za @& Zs on the 2-
manifold ¥ and consider the action of the mapping class group element. This

8The orientation-preserving subgroup is PSL(2,7Z). We will later find that with
fermions we need to consider the double cover of SL(2,Z), the metaplectic group
Mp(2,Z).
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is known to be an affine transformation (cf. [47])

o(a) a b o(a) ab
o) (0<5>)H(cd)-(g<ﬂ>)+(cd)~

We have two orbits under the mapping class group: an even orbit o = (0, 0),
(0,1),(1,0) and an isolated odd orbit o = (1,1) (see the left figure of Fig. 10).

We can choose a different set of the generators for the SL(2,7Z) mapping
class group. For example, we can use the S and T' generators

[ | | (1
(17) S=L"'RL _<1 0>7 T-L-(O 1).

The change of the spin structure under these generators is shown in the right
figure of Fig. 10.

4.2. Mapping class group: odd spin structure

We wish to describe mapping class actions inside the framework of the quan-
tum Teichmiiller theory. The basic idea is simple: starting with a dotted ideal
triangulation, we apply the mapping class group action, namely to change
the fundamental region of the torus. The result will be another dotted ideal
triangulation, to which we can associate another coordinate chart of the super
Teichmiiller space.

While such an operation in general changes the spin structure, let us here
consider the odd spin structure, namely the type (1, 1) spin structure, so that
we are back to the same spin structure (and hence of the same connected
component of the super Teichmiiller space).

The steps for deriving the action of the L generator are shown in Figs. 8.
Notice that in writing down the expression for the L generator we need to
make sure that we come back to the same coordinate chart of the super
Teichmiiller space, and this requires suitable superflips and push outs from
Sec. 3.3.

In the leftmost figure of Fig. 8, we denote the odd variable of the dotted
triangle by &1, and of the undotted triangle by &. The first step is the superflip
in the edge X and we have the following transformations of the super Fock
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Figure 8: The action of L) on a dotted triangulation of type (1,1).

coordinatefﬂ
X/ — X—l
YV =Y(1+X+&66VX)?,
(18) 7' =ZA+ X "4 6VX-1H) 72

& =01+X) (& +&VX),
G=0+X)PEVX+&).

The second step is an SL(2,Z) transformation. As shown in Fig. 8, the
only effect of this is to change the fundamental region of the torus according
to the L action, and we preserve all the coordinates associated to edges and
faces. This nevertheless is a rather crucial step for the mapping class group
action.

In the third step, we go back to the original dotted triangulation by a
push out, leading to the transformation

(19> X/l — Xl , Y/I — Yl , Z/l — Z/ , :/ll — _gi , él — fé .

We now are back in the same coordinate chart, except in the last step we
need to exchange X and Z variables:

m o on "o 1 m o~ no__en no__en
(20) X"=272", Y"=Y", Z7=X", =5, & =& .

9This formula can be derived by the results of [23, Chapter 5], and is a variant of
the formula . Notice that compared with our formula for a general surface

+
we here have a power of 2 for the factors 1 + X+ + &6V X 1. This is a special
feature of the once-punctured torus.
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Therefore, considering the composition of all those steps one has

X"=Z(1+X '+ 66VX )2,
V" =Y(1+X+&6VX)?,
(21) 7" =X"1,
U=+ X)PG - 6VX)
Y= (1+X)PavVX + &)
Let us summarize this result as a coordination transformation L 1), the

L-generator action on the super Teichmiiller space equipped with the type
(1,1) spin structure:

X ZA+ X1+ 4EVX)?
Y Y1+ X+ &66VX)?

(22) Laqy: Z |- | x1
& (1+X)"V2(& - &VX)
3 (1+X)"V2(6VX + &)

We can work out the expression for R 1y in a similar manner (see Fig. 9
for the four step@:

X X(1+Y 4+ 66VY )2
Y Z(1+Y +&&VY)?
(23) R ny: Z — | Yy !
& 14+ V) 2(EVY + &)
&2 (1+Y)V2 (=6 + &VY)

Figure 9: The action of R(; ;) on a dotted triangulation of type (1, 1).

19Compared with the case of L(1,1), one needs to have an extra exchange of &;
and & in the Step 4.
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Notice that when we disregard the odd coordinates, the spin structure
dependence drops out and the resulting coordinate transformations coincide
with those in the non-supersymmetric case, studied previously in [15] [I7].

Since we already know the expression for L and R for all the possible spin
structures, we can derive expression for S in :

X 1+ Z '+ &46VZ )Y
Y (14 Z+&&VZ)PX

(24) 5(171): VA — Zﬁ1
&1 (1+2)"12(=&1 + &V 7Z)
&2 1+ 2)*(=aVZ - &)

We can now verify the mapping class group relations satisfied by the S
and T generators. We find

(25) (S(l,l))z: (X,Y, Z7§17€2) - (XaKZa _€2a§1) )
and hence (5(1’1))4 is given by
(26) (S(l,l))4: (X7Y727§17§2) - (X7}/7Z7 _§1>_§2> :

Similarly, we can verify that

(27) (5(1,1)T(1,1))3? (XY, Z,61,6) — (X,Y, Z, =&, 61)
and
(28) (S(l,l)T(l,l))G: (levaa 61752) - (X7KZ, _517_52) :

In the group SL(2,Z) one has the relation S* = (ST)% = 1, however
and shows that these elements are represented non-trivially by an oper-
ation of order 2 acting only on odd variables. This suggests that the actual
mapping class group relevant for our problem is the double cover of SL(2,Z),
namely the metaplectic group Mp(2,Z).

The appearance of the metaplectic group can be understood as follows
(cf. [48]). Let us choose a flat complex coordinate of the 2-dimensional torus
z, with the identification z ~ z + m + n7 for integers m, n and the torus mod-
ulus 7. Now, the fermions takes values in the spinor bundle, and hence trans-
forms as the square root of the one-form v/dz: Vdz — +v/dz/v/cz + d, with
an extra sign ambiguity. This sign gives precisely the definition of the meta-
plectic group, which is a double cover of the SL(2,Z) group.
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4.3. Mapping class group: even spin structure

Let us next discuss even spin structures. Instead of repeating the manipula-
tions as in Figs. 8 and 9, we proceed as follows.

Recall that the choice of the spin structure is needed to resolve the sign
ambiguity in the choice of the odd variables &7, &>, and hence these are the
only ambiguities involved when changing the spin structure. We can represent
these ambiguities by sign flips

P1: (51752) - (_517§2> )
(29) p2: (&1,&) — (&, —&) ,
pi2 1 (&1,&) — (=&, —&) ,

with all the even variables X, Y, Z unchanged. We can use one of these op-
erators before and/or after to the maps L(; 1y and R(; 1) derived previously.
Moreover, these signs should still be consistent with the mapping class group
relations.

It is not difficult to identify the sign rules which automatically satisfy the
mapping class group relations:

Loy =pi2Lanpz, Loy =pri Lane, Lo =pz ' Lanme

o) o U
(1,0) = P2 R(1,1)/?2 ) R(O,l) = P12 R(1,1)P1 ) R(o,o) =01 R(1,1)P12 )
Loy Lay Ton  Tuy
(0,1) (1,1) 0,1) (1,1)
Ray Sy
D, SQ
R0 R S(1,0)
RS T TN
0.0) T4 <L0>3R<m> S00) C(o,m a0 =)
~_ ~_
Lo,0) T0,0)

Figure 10: Orbits of spin structures under the mapping class group transfor-
mations L, R and S,T. Here the notation L ) represents the L action on
the super Teichmiiller space with (1,0) spin structure.
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More explicitly,

ZA+ X1 -gEVX )2
V(14X - &&VX)?

— X1 ,
(1+X)12(=4 — &VX)
(1+X)2(-6VX + &)

N <

L(LO) .

22 "Aa%
[

no

ZA+ X' —g6VX1)2
V(14X - &&eVX)?

— x-1 ,
(1+X)712(& + &VX)
(1+X) 2 (=6VX + &)

N <

(31) L(O,l) .

s asy
/)

Do

ZA+ X+ 66VX 1)
V(14 X + &6VX)?
— X1 ,
1+ X)7V2(=4 + &VX)
1+ X) Y aVX + &)

N < e

L(0,0) .

I In
=
—~

no

and

XA+Y ! =§&VY )2
Z1+Y —66VY) 2

— y-1 ,
(1+Y)2(+6VY = &)
(1+Y)"V2(+& + &VY)

N <

R(l,O) :

S I
—_

no

X(14Y'=&&VY )2
Z(14+Y —&6VY) 2

— y-1 ,
1+Y)2(6VY — &)
(1+Y) V(=& - &VY)

N < e

(32) R(O,l) .

I
—

no

X(l +Y 1+ &6V Yﬁl)_z
Z(l +Y + 5152\/?)_2

— y-1
1+Y)2(GVY + &)
(1+Y)712(& = &VY)

N <

R(O,O) :

Ny Iny
iy

(V)
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Note that in each of these cases the product && is preserved under the
transformation up to a sign.

In these expressions the choice of p1, p2, p12 is correlated with the choice
of the spin structure:

pr:(0,1) — (1,1),
(33) p2: (1,0) = (1,1),
(0,0) — (1,1) .

For example suppose that we wish to obtain L ), which maps the (0, 0)
spin structure to the (1,0) spin structure as through the relation L) =
Py IL(l,l) p12. We can explain this relation as follows: One first maps the (0, 0)
spin structure by pi2 to obtain the (1,1) spin structure, so that one can
apply L1,1). Recall that L 1) maps the (1,1) spin structure back to itself.
Then we need to transform the resulting (1,1) spin structure to the (1,0)
spin structure by ps~!. We can use the similar strategy for the rest of the
relations. The relations are summarized on the left side of Fig. 10.

The rule (33) can be regarded as a representation of Zy @ Zy ~ H* (2, Zs),
and this ensures the consistency with the mapping class group relation. This
can also be checked explicitly, by using the relations

Sao = (L onRoo L a0 = L) 'Roon(Log) " .
(34) So,) = (L~ )(O,O)R(O,l)( )(0 )= (L)~ R(0,1)(L(0,1))_1 ;
S(o,0) = (L~ )(1,0)R(1,0)(L )(0 0 = (Loo)” 1R(1,0)(L(1,0))_1

This gives (recall T' = L, which already appeared in (30)))

5(1,0) = P15(1,1)02 ) 5(0,1) = 025(1,1)P1 ) 5(0,0) = 5(1,1) )

(35)
Taoy=Taner, Ty =mTane, Too = pTa)p12 -

For example, if we want to evaluate S* starting with the type (1, 0) spin struc-
ture, one needs to evaluate (54)(170) = 500,1)5(1,05(0,1)5(1,0), Which coincides
with (5%)(1,1). We can similarly compute (ST)° for all the even structures,
and find that they all coincide with that of the odd spin structure. This veri-
fies the expected relations in the metaplectic group Mp(2,Z). The right side
of Fig. 10 summarizes how S and 7" map one spin structure to another.

5. Quantum super Teichmiiller theory

In this section, we describe the quantization of the super Teichmiiller theory
(as discussed in [25]). We again discuss the case of the once-punctured torus.
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First, in Sec. 5.1 we define the Hilbert space of the theory on the torus and
how the quantized super Fock coordinates are represented on it. We then
discuss how the mapping class group generators are represented by suitable
operators acting on the Hilbert space in Sec. 5.2.

5.1. Quantization of the super Fock space

The Hilbert space associated to a dotted ideal triangulation of a super Rie-
mann surface is defined as follows. To each dotted triangle A, we associate
a Hilbert space H(A,) = H, ~ L*(R) ® C'I'. Therefore, the Hilbert space
H,(21,1) = H, associated to the torus with one of the four spin structures
o =1(0,0),(0,1),(1,0),(1,1) is the tensor product of the spaces for each tri-
angle. For once-punctured torus in particular, we have

(36) Hy = H1 @ Hy .

The super Fock coordinates x = log(X),y =log(Y), z = log(Z), which
are logarithms of the super Fock coordinates X, Y, Z introduced in , get
quantized to self-adjoint operators on the Hilbert spaces H,. The even co-
ordinates x,y,z are replaced by operators satisfying canonical commutation
relations

(37) x,y] = [y,2] = [z.x] = —8mib? .
The algebra of those even coordinates admits a central element
(38) hi=x+y+z.

One can hence consider a decomposition of H into spaces on which h is diag-
onal

(39) He =P Pu,

heR

where P, ~ L?(R) @ (C")®2, On P, two of the observables x,y,z (we will
choose x and y) are represented on L?(R) as multiplication and differentiation
operators. In the classical limit b — 0, the operators x,y, z give their classi-
cal counterparts x,y, z as one would expect. The odd coordinates &; become
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operators acting on H, of the form

(40) me) =iVt - ieoL), m&) =iVi —g Lo,

where # is a (1]1) x (1|1) matrix acting on C!!

(41) H:(?U

I is the (1]1)-dimensional identity matrix, and ¢ := ¢™” One finds that &;
satisfy anti-commutation relations

(42) {£Z7§l} = -2 <q§ - q_§> ) {51752} =0 3
and commute with all even operators

(43) X, &) =y, &l =[2,&] =0.

Summarizing, the quantized super Fock variables are represented on the space

(44) thspan{|x>®<z>®<2>} ,
z€R,a,b,c,deC

as follows:
mx)=rzhLhel,
Lo d
Th(y) = 8mb2£ 2L el,
d
(45) mh(z) = (h— 2 — 8m’b2dx> LI,

i\/q% —q_%®f€®]l2,
i\/q% —q*é®]lz®li.

5.2. Mapping class group generators

(1)
mh(62)

Now, we will realize the Dehn twists L, R described in Sec. 4.1 as linear
operators L, R acting on the Hilbert space. A coordinate transformation maps
one spin structure o to another ¢/, and we promote it to an operator Uy, :
H, — H, between the corresponding Hilbert spaces. Since we already know
the classical coordinate transformation, we know a transformation rule of the
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form w'? = W2, _({w'}), where w* and w? are coordinates corresponding for
the Hilbert spaces H, and H, . The unitary operator U, representing these
changes of coordinates on the quantum level satisfy

(46) Ugio W Upry = Wi, ({wi}).

and should be consistent with the classical transformation rule in the classical
limit. This requirement is expected to characterize the operators U,/ uniquely
up to a multiplicative coefficient.

We will start by considering the quantization of the coordinate transfor-
mations and given by the quantized Dehn twists associated to the
(1,1) spin structure
Lan s Hany — Hay:

L(il%l) Ly = (1+¢%e ™+ ge/2616) 7!
X (14 ¢%e™ + gPe /2 &) e,
Lty @ Lay = (L e+ ge*06) (1 + e + e/ 6)e
L(71}1) eLlagny=e",
L(_l}l) fleY/4 |—(1,1) = (& — q1/26x/252)6y/4 :
Ly L Ly = (& + ¢ /2e2E) et

(47)

and R(l,l) : H(l,l) — H(1,1)3

R € Rapy = €(1+q % + ¢ %662
X (1+q 7% +q " G&e ™)
Rty @ Rapy = (1 +q7%¢ + ¢ 616e"?)
(48) x (14 q 2 + ¢ L¢16e%?)
Ray € Rapy =e™,
RGY €4 Ry = (&2 + ¢'/26e/)e?/t
R(_l}l) &Ry = (=& + ¢ P&t

The operators L 1), R(1,1) implementing the above transformations can be
constructed as follows

1 2 X
L — eTonmz X2 o1 ( )
(y = et ¢ \2mb/ >

(49) ,
Ray = e o 072 < y) -

"~ 27b
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Here e is a function-valued matrix
1
e(u) = 5 ler(u)(Io @ Iy — ik @ k) + ens(u)(lo ® Iz + ik ® k)]
e (W) =5 [er(W) (L@ L — ik @ k) +exs(u) L@+ ik ® k)|

where the special functions eg, ens are the supersymmetric analogs of the
Faddeev’s quantum dilogarithm (cf. [49, [50])

_ (m +i(b — b—l)/2> (x —i(b— b—l)/z>
er(x) = ep en ,

51 2 2
(51 . r+i(b+b71)/2 r—i(b+b71)/2
eNs(x) = €p 9 €h 9 y

and the quantum dilogarithm function ey, (x) [51H53] is defined by the following
integral representation

dw 672ixw
(52) ep(x) = exp [/RHO Z4Sinh(wb) sinh(w/b)] ’

In particular, the coordinate transformations are satisfied thanks to the
shift property of the function e

e(m—f) (/1@]12):(/{®H2—e”bx]12®fi)e(x+g)) ,

b b
e(x—lz> (Hg@/ﬁ)—(H2®K+€Wbm/€®ﬂg)e($+;> .

(53)

These equations follow from the shift properties

'b:tl -b:tl
€R (m — 22> =(1+ ie’rbilz) eNs (:c + ZT )

'b:tl -bzl:l
eNs (m — Z2> = (1 — ieﬂbilx) €R, <$ + ZT )

which is implied by a similar relation for the non-supersymmetric quantum
dilogarithm:

-bil L ‘bil
(55) en (SE — 12) =(1+ e2mb* ey (x + 12> )

(54)



Towards super Teichmiiller spin TQFT 267

5.3. Change of Kasteleyn orientations

We now describe operators changing the Kasteleyn orientations, as well as
those changing spin structures.

For a given spin structure, any two Kasteleyn orientations are related by
push outs. Recall that the push out 315 of Fig. 5 flips the sign of the one of
the odd variables &, while preserving the remaining odd variable & as well
as all the even variables z,y, z. The quantum version of this operator can be
identified to be

(56) B =T, ® M, M:—(é _01>.
We can easily verify the expected property

By XB,=X, BLYBn=Y, BLZBnp=7,

(57) 24 5z 12 B =
Blo&iBi2 =&, Bip&Bia=-8.

We can also discuss changes of spin structures. In order to describe the
operators L, R for even spin structures, we introduce “spin structure changing
operators” (whose classical analogs were introduced in (33))):

(58)  p12: Hoo — Hay, p1:Hoy—Han, p2:Hao — Hay s
given by
(59) pr2=Mx M, pr=M®I,, p2 =L M,

where M was defined previously in . Then, the remaining quantized Dehn
twists are related to the one described above as follows

(60) Lo = P1:211|-(1,1)02 Loy = Pi'—(m)ﬁl ;Lo = ,02:11|-(1,1)P12 )
Rao = P2 Ranpez s Ry =p,Raner, Ree =1 Rape -
6. Partition functions for super Teichmiiller spin TQFT
6.1. Definition of the partition function
As already explained in Section 2, our basic idea is that the trace Tr(¢) of

the mapping class group action ¢ inside the Hilbert space should basically be
the partition function of the super Teichmiiller spin TQFT.
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The spin structure we have used so far is a spin structure of the 2-manifold.
For the super Teichmiiller spin TQFT, however, it should be that we need a
spin structure of the 3-manifold (mapping torus). To discuss this, let us note
that the fundamental group of the mapping torus is given by

(61) 1 (M):m(E) N‘P*Z7

where ¢, : m(X) — m(2) is the map induced from ¢ € Aut(X). In other
words, m1 (M) is given by 71(X), with an extra generator v added and with
extra relations

(62) m(M) = {1 v =p.(), aem(D)}.

Note that the space of spin structures is an affine space over H'(M, Zy), which

is a Zo-reduction of H'(M,Z), which in turn is the abelianization of 7y (M, Z).

This makes it clear that, in order to discuss spin structures on mapping tori

we need to

(1) choose the spin structure of ¥ which is kept fixed under ¢ and

(2) take into account an extra Zs-choice of the spin structure, corresponding

to the extra cycle v (i.e. the extra circle S1, the base of the mapping torus).
Let us first discuss point (2). We claim that we can distinguish the two

spin structures along the S*-direction by introducing projection operators Py

1
(63) P:tzzi[]b@]b:l:ilﬁ@/{].
They satisfy the canonical relations for projection operators
(64) P}=1,, P,P.=P.P,=0, P,+P =L®l,.

We then consider two partition functions by the trace with the projection
operators inserted:

Trxs(@) = Tr(P-p)

() Trr(e) = Tr(Pro) .

We claim that the two choices represents the two choices of the spin
structures. Indeed, since we have the relation

Pila(l; @Iy —ik@ k) +b(Ilo @ Ih + ik ® k)] = aPy

66
(66) P ol —ik@k)+ by @Iy + ik ® k)] = bP_ .
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We find that when computing Trns(¢) and Trg(¢) we can replace e(u) and

e 1(u) in by

e(u) ~ enxs(u)P- , e_l(u) ~ eNs(u)_lP, (for Trns(@) ),
e !(u) ~ er(u) Py (for Trr(yp) ) .

This observation simplifies our computation below considerably.

Let us now come back to point (1) concerning the condition that the spin
structure is fixed by ¢. While in general there can be more than one of such
spin structures satisfying this condition, operators ¢ fixing spin structures
are related by conjugation by spin structure changing operators . Since
these operators are even, and since these operators either commute with P4 or
exchange Py and P_, their associated partition functions (which are defined
by the trace) coincide due to the conjugation invariance of the trace. This
means that we always have two partition functions depending on the choice
of R/NS in the traceE For this reason it is sufficient below to describe the
partition function starting with the odd spin structure (of type (1, 1)), which
is always kept fixed irrespective of the choice of the mapping class group.

For our discussion of the quantum super Teichmiiller theory, we need to
choose both an ideal triangulation and a Kasteleyn orientation on it. Recall
that different ideal triangulations are related by superflips, and that differ-
ent Kasteleyn orientations (for a given spin structure) are related by push
outs. Since superflips and push outs are represented by unitary operators
(which we call U), such ambiguities have the effect of replacing the operator
¢ by U~tpU. The operators U were even elements, and also commute with
the projection operators Py. This means that the two traces, Tr(Pip) and
Tr(PLUtpU) coincide, thanks to the conjugate-invariance of the tracem The
partition function as defined by the trace is thus free from the ambiguities

(67) e(u) ~ eg(u)Py ,

1One can also try to compute the partition function when the spin structure is
not fixed by . Since this is inconsistent geometrically, we expect that something
should go wrong for these cases. It turns out that the partition functions are zero in
these cases. We can see this in a simple example of ¢ = L. This preserves only two
(types (1,1) and (0,1)) out of the four spin structures. The corresponding expres-
sions for L(; 1) and L g, 1) are non-trivial, and the two expressions are the same, since
according to L1,1) and L 1) are related by conjugation by p1. By contrast
Tr(L(1,0y) and Tr(L,g)) vanishes simply because Tr(p1Py), Tr(p2Pxy), Tr(p12Px)
all vanish. A similar discussion shows that this vanishing property holds more gen-
erally for an arbitrary element of the mapping class group not preserving the spin
structure.

120ne can instead choose a supertrace which is automatically conjugation invari-
ant. The resulting expressions Str(Py¢) vanishes, however.
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mentioned above, and depends only on the choice of the spin structure of the
3-manifold, as expected.

In the following we consider a few concrete examples of the mapping class
group element ¢ and the associated partition functions. For |Tr(¢)| > 2, the
mapping class group ¢ is known as pseudo-Anosov and the resulting mapping
class torus admits a complete hyperbolic structure [54].

6.2. Example: ¢ = LR

2 1
11
torus M is identified with complement of the figure-eight knot (often denoted
by 4,) inside S3: 53\ 4;. We wish to compute the partition function of this 3-
manifold. Since we have two spin structures on this manifold (corresponding
to the Zy spins around the tubular neighborhood of the knot), we expect
to have two partition functions, and these two will be identified with our
partition functions Trg/ng(LR).

On the 2-manifold ¥ the odd spin structure is kept invariant under ¢,
while the three even spin structures are permuted among them. We thus
need to choose the odd spin structure for mapping torus construction.

We can define the trace for the mapping class element ¢ = LR as a trace
of the operator RL

Let us consider an example of ¢p = LR = . In this case, the mapping

Trr/ns(LR) = Trp2@)gcer (PLRL)
where we denoted
(69) h=2mib? .

It is worthwhile to compare this result to the calculation for the bosonic case
[17]:

- — ===l (L Y ) - x)
sy (1R) = [ oy o (~3m) ' (55)

The comparison of the two expressions makes clear that the only differences
between the non-supersymmetric and supersymmetric cases are (the two are
related, as will become clear below):
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1) ey, is replaced by er and ens depending on the choice of the spin
structure,

2) h = 2mib? is replaced by h/2.

In this section we often highlight these differences in red color.

We can now discuss the asymptotic expansion of the expression around
b=0 (h=0). For this purpose we need the asymptotic expansion of the
supersymmetric quantum dilogarithm around b = OE

(71)
er(z) = exp [Z B2€4)h"1(Lig_n(—ie”bm) + (—1)”Lig_n(z’e”bm))] ,
n=0 :
ens(x) = exp [i(—l)”a;("*)hn—l@i?n(—ie”bx) + (_1>nLi2n(i6nbx))1 ’
n=0 :

where B, (z) is the n-th Bernoulli polynomial and Li, (x) is the polylogarithm
function.

In the following we concentrate on the leading and subleading terms,
which read (using Bo(z) = 1, B1(x) =  — 1/2, Lig(x) + Liy(—2) = Lig(2?)/2
and Lij(z) = —In(1 — x))

(72) er /s () = exp %Lig(—e%b“’)i%lnﬁ(x)—kO(h) ,

where plus/minus sign corresponds to R/NS respectively, and we defined

1 4 jerbe
1 —gembz

(73) L) :

13This can be derived from the Euler-Maclaurin expansion of the quantum dilog-
arithm function:

(70)

ib ibil = Bk(% + %) - 1 2\k—17: -n 27bz
ép (z+m4 +n 1 ) = exp LZ% T(me V¥ Lig_p(—i"e*™%) | .
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It is again useful to compare this with the expansion of the quantum diloga-
rithm function itself:

(74) e (2) = exp %Lig(—62”b2)+0(h) .

In the leading order, we have again a factor 2 difference in A, which is consis-
tent with the observation before. What is important is that in the subleading
order there is a new contribution (£(z)) in the supersymmetric case, which
does not have a counterpart in the non-supersymmetric case.

With the help of these formulas, the partition function can be expanded
in the limit A,b — 0 as

(15)  Trmps(LR) = [ dady R @S (14 O(m)
where
1 2 : T 1 2 : —
Vol y, h) i= = (h = )* = Lin(=e") + (b — ) + Lin(—e ™)
(76) L(-y)
Vi(z,y) = 2.
’ L(x)

This integral can be evaluated in the saddle point approximation, namely
by extremizing the function Vy(z,y, h).

For the special case of h = 0, the saddle points are given by e* = ¢e¥ =
(—1+iv/3)/2, and the corresponding critical value Sy = Lip(—e?™/3) —
Lip(—e27/3) of V; gives the complexified volume of the figure eight knot
complement.

We can also keep the general values of h. In this case, the saddle point
equations describe the gluing conditions for two ideal tetrahedra triangulat-
ing the figure eight knot complement. The parameter h, identified with the
longitude parameter [ of the boundary torus by a simple relation [ := h + iw
[17], describes the one-parameter family of the deformation of the hyperbolic
structure [55]. For comparison with literature, it is useful to fix the merid-
ian parameter m, which we can achieve by a Fourier transformation (cf. [21)
Appendix C])

(77) 'T?R/Ns(m) — / dh Trgns(h) e”™ /@0
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In this expression, the longitude parameter [ plays the role of the Lagrange
multiplier, giving rise to the constraint]

R GICAND)

(78) o

=(r—y)/2.

We can then eliminate the variable ¢ in terms of x and m, and evaluate the
asymptotic expansion with respect to the remaining integration variable x.
The leading piece Vy now reads

(79)  Vo(z,m) = —Lis(—e®) + Lin(—e~@=2m) _ %(xﬁ ~(z—2m)?).

Extremizing this function, we can solve for z as (with X = e*, M = e™):

 MA(M? 1)
S 1-M—- (4 L)M?’

(80) X

and by eliminating x one obtains the relation between the longitude [ and the
meridian m (with L = e!):

1 1 1
81 L+—-+42——+—+M-M=0.
(81) tr 2ot t
The latter equation is nothing but (the non-reducible part OED the A-
polynomial [56] of the figure eight knot complement.

To this point the analysis is completely parallel to the non-supersymmetric
case [I7]. However, there is a difference in the next-order correction, which
can be computed by evaluating the Gaussian fluctuations around the saddle
point. For the non-supersymmetric case, the result of the computation is

1

(82) r,Iﬁvrnon—SUSY(l-R) = eﬁSO-HOg ﬁ+%1n Sl(l + O(ﬁ)) s
with the one-loop part S; gives the Reidemeister torsion [57]

M2
(M2 =3M+1)(M?2+M+1)°

(83) Sy =

14 This coincides with the expression for the meridian coming from ideal triangu-
lations of the boundary torus of the knot complement [I7].

15The A-polynomial in general contains a factor L — 1 for the reducible flat con-
nection. The expression here is for the irreducible flat connection.
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In the supersymmetric case, there is a new contribution
~ 1 1 1. =
(84) Trr/ns(LR) = exp %Sg + log(2h) + 3 InS; + 1 InSi| (1+0(h)),

where the spin structure dependent piece is given by

 (VXF M) (1 —iVXY)
saddlepoint (m-@M)(l +Z\/}?) )

with the saddle point expression

(85) Sy = S

1
(86) X*:§<—1+M—M2—\/1—2M—M2—2M3+M4) .

We have seen that the Reidemeister torsion is modified in supersymmetric
cases as

(87) Sy — S1(57%)

depending on the choice of the spin structure. The combination on the right
hand side should be regarded as a supersymmetric version of the Reidemeister
/Ray-Singer torsion (depending on a spin structure of the 3-manifold), and
it would be interesting to further study this torsion@

It is straightforward to explicitly calculate the higher orders terms in the
expansion with the Feynman diagram techniques, see e.g. [9, 11}, 21].

6.3. General ¢

Comparison between the integral expressions for the partition function for
¢ = LR for supersymmetric and non-supersymmetric case makes
the structure rather manifest. Namely, we need to (1) divide the quadratic
Gaussian factor by a factor of 2 and (2) replace the quantum dilogarithm e, by
their supersymmetric counterparts eg or eng, depending on the choice of the
spin structure. We can therefore straightforwardly adopt the results of [I7] to a
general element ¢ of the mapping class group, and discuss invariants of spin 3-
manifolds, where the 3-manifolds in question are complements of the so-called
fibered knots. Note that a general element of SL(2,Z) can be written as ¢ =

16Tn physics language the Reidemeister torsion is the one-loop piece of the 3d
Chern-Simons theory [58] (see Sec. 8 for connections with the OSp(1]2) Chern-
Simons theory). The torsion for a supergroup Chern-Simons theory was discussed
e.g. in [59].
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L™ R™[™R™ .. where ni,no, ... are integers. As we discuss in appendix B,
the number of spin structures of the once-punctured torus kept fixed under
a general element of the SL(2,Z) is either one, two or four. This means that
in general there are two, four or eight spin structures on 3-manifolds. As
commented already, however, we have only two different partition functions
given by the choices of Trg ns(¢).

Let us further illustrate this point with the example of ¢ = L?2R. The
resulting 3-manifold is listed as m009 in the SnapPea census [60]. In this
example, two spin structures of the 2-manifold are fixed, type (1,1) and type
(1,0). We have four spin structures, nevertheless we only have two partition
functions again, given by Trg/ng(LLR).

In the non-supersymmetric case, the trace is computed as [17]

Trnon_susy(LLR) = /dyld.I'Qd[L‘g 6h1 quad(y1@271737 L)
><6< yl) (1'2)1 <I‘3>1
b 2mh b 2mh b 2mh ’

with the quadratic piece Vguaa given by

1 1 1
(89) vquad(y17x27$37 h’) = +Zx§ + Zy% - 1(1‘3 - $2)2
1 1
+ 5( 3Y1 — Y102) + ih(@ —y1) .

The supersymmetric counterparts are computed to be

(90)  Trg/xs(LLR) = /dmdﬂczdxs eiv‘*“adeR/NS (_Zy;b)

e (w)l . (fvs)l
R/NS 27h R/NS 27h .
The classical limit & — 0 is given by
(91) Trg/xs(LLR) = /dyldzgdxgeﬁ%(%%%h)ﬁi%@hxm) (1+0(h)) ,

where 1 is the same expression as in the non-supersymmetric case, found in
[17]:

Vo(yr, xe, x3, h) = Lig(—e™¥') — Lig(—e*?) — Lig(—e™)

1 1 1 1 1
9 Lo Lo L o 1 . 1 B
(92) + 173 + nal 4(963 x2)” + 2(963.@1 Y1T2) + Qh(l’z Y1)
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and Vj is the new contribution for the supersymmetric case:

L(=y1)

(93) Vi(y1, z2,23) = In L) L(zs)

The saddle point equations are the same as in the non-supersymmetric
case. For the value h = 0 (corresponding to the complete hyperbolic structure
of the 3-manifold), and we get

eV =e™ = (—1+iV7)/4, e = (=3 +14V7)/8,
and the extremal value Sy of the potential V| reproduces the complexified
volume of the 3-manifold.

We can also keep h generic. After redefinition into longitude and meridian
variables

=2 —2m, h=I[—ir,

and the change of variables L = e', M = e™, X = e® we can solve the saddle
point equation as

1
X;:1(—1+M—M2—\/1—2M—5M2—2M3+M4),

(=1 =M — M? —/1—2M — 5M? — 2M3 + M%)
2(1+2M + M?) ’

(94)

X5 =

and by elimination we reproduce the non-reducible part of the A-polynomial
(95) ALM)=L""+LM+2—-1/M+2M - M?>=0.

We can also compute the subleading correction contributing to the Rei-
demeister torsion:

N 1 1 1. =

Here Sy is the one-loop determinant for the non-supersymmetric case, which
reads

M2
T 1AM+ M) (—2+ (—=3+M)M)’

(97) S1
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and this coincides with the known expression for the Reidemeister torsion
[57]. For supersymmetric case, we have a new contribution

(98) gl(M)* (\/)T5+ZM) (1_i\/‘)T5) (1_i\/X7§)

(VXS —iM) (1 +iy/X5) (1+iy/X3)

where X3, X3 are the critical points presented in .

7. Relation with Chern-Simons theories
7.1. OSp(1|2) Chern-Simons theory

Since the super Teichmiiller space is a subspace of the moduli space of flat
OSp(1|2) connections, it is natural to imagine that the spin TQFT associ-
ated with the 3-manifold should also be related to another quantization of
the moduli space of the flat OSp(1|2) connections, namely the 3-dimensional
Chern-Simons theory with gauge group OSp(1]2).

One should quickly add that it is far from clear if this reasoning indeed
works. The super Teichmiiller space is only a subspace of full space of flat
OSp(1]2) connections, however in the formulation of TQFT one needs to sum
over all the possible states when factorizing the geometry, and hence it is not
clear how one can restrict to a subspace consistently.

A similar problem was discussed for the non-supersymmetric Teichmiiller
theory [61]. In this paper, it was explained that the Teichmiiller TQFT arises
from the complex Chern-Simons theory on a particular integration contour
specified by the singular Nahm pole boundary condition. While we do not
work out all the details, we expect that a similar reasoning will guarantee
that our super Teichmiiller spin TQFT can be identified with the complex
OSp(1|2) Chern-Simons spin TQFT on a certain integration contour. Note
that the supergroup OSp(1]|2) Chern-Simons theory can be thought of as a
theory of gauge fields with fermions, and hence depends on the choice of the
spin structure of the 3-manifold and is a spin TQFT.

7.2. Duality to SU(2) Chern-Simons theory

We can now appeal to the duality discussed in [62] (see also [63],[64]). By ana-
lyzing SL(2, Z)-duality of a topologically-twisted 4-dimensional supersymmet-
ric Yang-Mills theory [65], one obtains the duality between analytic contin-
uations of 3-dimensional Chern-Simons theories with different gauge groups:
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OSp(2m + 1|2n) and OSp(2n + 1|2m). Their duality works when one identi-
fies the coupling constants of the two theories up to a sign flip:

(99) qOSp(2m+1]2n) = —4OSp(2n+1|2m) -

For our purpose, we can consider the special case of m = 0,n = 1, which
gives a duality between OSp(1]2) theory and SO(3) theory. The statement is
that the analytic continuation of the OSp(1|2) theory coincides with that of
the SO(3) theory.

At the level of Lie algebras s0(3) coincides with su(2), whose complex-
ification gives s[(2,C). Since the real slice of sl(2,C) is s[(2,R), and since
this is relevant for Teichmiiller theory, one expects that the resulting theory
is essentially the (non-supersymmetric) quantum Teichmiiller TQFT. This
naively seems to be in tension with the fact that the other side of the duality,
the OSp(1]2) theory, is a spin TQFT, not a TQFT.

The apparent tension is resolved by the subtle difference between SO(3)
and SU(2) gauge groupsm Recall that the gauge-invariance of the Chern-
Simons action (for a gauge group G)

k 2
(100) SCS:f/ Trg<A/\dA—|-A/\A/\A> ,
A Jmr 3
is guaranteed by the quantization of the integral of the characteristic class
1
101 N:=— Trqg(FAF
(101) oz [, T

where M, is a closed four-manifold: the level k is an integer if N € Z. Now,
when the quantization condition is N € Z for G = SU(2), the corresponding
quantization condition is N € Z/4 for G = SO(3). This means that the SO(3)
Chern-Simons theory with the smallest level (kgo(3) = 1) corresponds to the
level ksy(a) = 4 SU(2) Chern-Simons theory.

The situation is different if we further assume that both M and M, are
spin manifolds. In this case, the quantization condition for G = SO(3) is now
N € Z/2, so that the minimal choice of the level for the SO(3) theory corre-
sponds to level kgy(2) = 2 in the SU(2) Chern-Simons theory. Of course, this
means that the SO(3) theory is now a spin TQFT, which is what we expect
when we discuss the duality with OSp(1]|2) Chern-Simons theory.

17The differences between SO(3) and SU(2) gauge group for Chern-Simons theory
plays crucial roles in the formulation of the closed 3-manifold version of the volume
conjecture [60] [67], which involves specifications of integration contours in Chern-
Simons theory [68].
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Summarizing, we find that OSp(1]2) spin TQFT should be identified
with the Teichmiiller TQFT at level 2, under the identification qogp(1j2) =
—(Teichmiiller -

The connection with the level-2 SU(2) Chern-Simons theory can be worked
out more explicitly from concrete expressions. In the level-2 Chern-Simons
theory studied in [I3], the basic building blocks are the “level 2 version” of
the quantum dilogarithm function, which are given by@

(103)
ZE2(2,0) = e <$+Z(b2+b)/2> en <xl(b2+b)/2> = ens(—2) ,
25:2(56, 1) =eyp <_$ i i(b2— b )/2> €h (—x — i(b2— b )/2> = er(—1) .

These are (up to a sign) nothing but the definitions of the “NS” and “Ra-
mond” quantum dilogarithms introduced earlier in .

One can also find the shift gogp(1j2) = —¢Teichmiier- Recall that in our
notation we had qogp(1j2) = ¢™” This should be compared with the definition
of the g-parameter in [13]:

27
(104) Teichmiiller = €XP (2(b2 + 1)) ,
which indeed satisfies the sign shift gosp(1)2) = —¢Teichmiiller- Note that the
combination (104 can be derived from supersymmetric localization of 5d
N = 2 theory [69].
Note that the discussion of the level 2 Chern-Simons theory in [13] does

not mention the spin structure, and the theory there is meant to be a TQFT,

18Tn the notation closer to [L3], one has

_ z +iby+ib™16
SRCUEEES | I E ety
7,6=0,1,y—6=0(mod2)

T z+ib+ib~ !
- (G)a (2
(L b( . )

_ z +iby+ib™16
I | N
7,6=0,1,y—35=1(mod2)

x4+ 1ib x4+ ib™!
= Z Z .

This is converted to by (103)) by the relation Zy(z) = ep(—(z +i(b+b~1)/2)).

(102)
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not a spin TQFT. This is not necessarily a contradiction since given a spin
TQFT one can define a topological partition function by summing the spin
TQFT partition function over possible spin structures. We have already seen
a version of this when we discussed the trace in the super Teichmiiller theory,
which we now know to be a sum of two integral expressions for two different
spin structures:

(105) Tr(p) = Trxs(p) + Trr(e) ,

where the right hand side is a sum over the Z, choices along the base (S1)
direction of the mapping torus (the spin structure is still chosen and fixed
along the fiber (X) direction).

By turning the argument around, one could expect that the partition
functions of analytically-continued OSp(1|2) Chern-Simons theory on general
3-manifolds can be obtained from those of the level 2 analytically-continued
SU(2) Chern-Simons theory by applying suitable projection operators.

8. Chain of connections: super 3d—3d correspondence

In this section let us comment on connections with various topics. We keep
our discussion short and we will be content here with sketching the main
ideas. Each of the topics deserves a serious study, which we leave for future
work.

3d N = 2 Theories on RP? and Super 3d-3d correspondence. We
have seen that the super Teichmiiller spin TQFT is eventually related to the
level 2 complex Chern-Simons theory.

One of the motivations for the level-k Chern-Simons theory [13] was to
consider the 3d-3d correspondence [15] 16}@ Here for a 3-manifold M there
is a natural 3d A = 2 theory 7 [M], whose supersymmetric partition function
on the lens space L(k, 1) ~ S3/Z; coincides with the Chern-Simons partition
function on M. In fact, historically the expression for the “level-k” quantum
dilogarithm was derived first in the context of supersymmetric localiza-
tion of 3d N = 2 theories on the lens space [34] [35], which was then used as
the building block for the level-k discussion of [13].

In this context, one can track the two choices of the quantum dilogarithm
function into the choice of discrete Zsy holonomies along the S*'-circle of S? [ Zo;
periodic and anti-periodic boundary conditions for fermions.

19See [T0HT2] for direct derivations from supersymmetric localization of the five-
dimensional N' = 2 theory.
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The comment of the previous paragraph suggests that there should be
a refinement of the level-2 Chern-Simons theory corresponding to a specific
choice of the spin structure. In other words, the expectation is that

(N = 2 theories 7[M] on RP?,
with a fixed boundary condition for fermions)
— (Complex OSp(1]|2) Chern-Simons theory
on a spin 3-manifold M) .

(106)

There is another path to arrive at the same conclusion, using a chain of
connections invoked for the non-supersymmetric case [15}69]. Let us comment
on this now.

Super Liouville theory. The first piece of the chain is the connection with
quantum super Teichmiiller theory and the quantum super Liouville theory.
While these two theories are apriori different theories quantum-mechanically,
we conjecture that the two quantizations are actually equivalent. The bosonic
analog of this statement, that the quantum Teichmiiller theory coincides with
quantum Liouville theory, was conjectured in [73] and was studied in detail
in [74H706] (see also pioneering works [77, [78]).

Four-dimensional N/ = 2 Theory. We can next look at the connection
between Liouville theory and 4-dimensional N' = 2 theory & la Alday, Gaiotto
and Tachikawa [79]. While the original proposal referred to the non-super-
symmetric Liouville theory, an extension to super Liouville theory was later
discussed in [8()782]@ Namely, the conformal blocks of N' = 1 super Liouville
theory were identified with the instanton partition functions of 4-dimensional
N = 2 theories on R*/Z5. One expects that this is the “half” of the super-
symmetric partition function on S*/Zs, generalizing the results of [83] [84].

3d N = 2 Theory. In the proposal of [I5], the 3d N = 2 theories asso-
ciated with mapping tori are identified with duality domain wall theories
inside 4d A = 2 theories. In the context of the supersymmetric localization,
the domain wall occupies the equator S? inside the S*. In our context, S* is
replaced by RP* = §* /Zs, and hence the equator S* should be replaced by
RP? = S3/Z,.

By combining all the three arguments above, we have thus arrived at the
same conclusion as before: super Teichmiiller TQFT should be identified with
the 3d N = 2 theories on RP3.

20While the proposal of [80] involved a decoupled coset, it is argued in [69] that
this is taken into account by complexifying the Liouville theory.
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M5-branes on RP? x M. We have seen that super Teichmiiller TQFT is
related with a number of different topics in physics and mathematics. The
ultimate reason for these statements is that all these theories arise from the
compactification of the 6d ' = (2,0) theory on RP:

(107) (6d N = (2,0) theory on RP3 x M)
~~ (super Teichmiiller spin TQFT on M) .

By compactifying the 6d theory along the Hopf fiber direction of RP? = S3/Z,
this should have a direct derivation from supersymmetric localization of five-
dimensional N = 2 theory along the lines of [TOHT72].

9. Future directions

Let us end this paper by listing several open problems.

e One of the most important questions is to formulate the super Teichmiiller
spin TQFT for a general spin 3-manifold. For this purpose, one needs combi-
natorial 3d spin structures on 3d ideal tetrahedra. While combinatorial spin
structures on 3-manifolds have been discussed in [85H87], in the literature
there seems to be no known Kasteleyn-type combinatorial spin structure for
3-manifolds convenient for our purposes—such a combinatorial spin structure
for the 3-manifold should reduce to the Kasteleyn orientation on the boundary
2-manifold. It should in principle be possible to “uplift” our 2d Kasteleyn ori-
entations to 3d Kasteleyn orientations. For example a flip in the 2-dimensional
surface can be uplifted to a 3-dimensional tetrahedron, and the 2d Kasteleyn
orientation can be uplifted into allowed orientations of 3-dimensional tetra-
hedron. Moreover, the pentagon relation in the 2-dimensional case can be
interpreted as the 3-dimensional 2 — 3 Pachner move, now equipped with 3d
Kasteleyn orientations.

e There is a natural generalization the super Teichmiiller theory, where
OSp(1]2) flat connections are replaced by OSp(/V|2) flat connections. For the
special case of N = 2, this is the N =2 super Teichmiiller theory, whose
classical theory was discussed in [27]. We expect that the resulting partition
function will depend on the choice of the “para-spin” structure, where the
role of H'(M,Zs,) is played by H'(M,Zy) (this is related with the spin®
structure). In the context of Liouville theory (see Sec. 8), N > 1 counterparts
of our theories are the para-Liouville theories [88], [89]. In [90, OI] (see also
[80H82]) the connection between the para-Liouville theory and the instanton
counting on R*/Zy was discussed. By the similar logic as before, this should
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be related with the 3d A" = 2 theory on S3/Zy, which in turn can be related
with complex Chern-Simons theory with level N ]

e The semiclassical analysis of this paper can be regarded as the unity
limit b — 0,¢ — 1 of the quantum invariants. It would be interesting to ex-
plore expansion around more general rational points, see [14, 92] for related
discussion.

e We can include supersymmetric defects to the super 3d-3d correspon-
dence discussed in Sec. 8. We can either consider co-dimension 2 defects
of co-dimension 4 defects in the 6d theory (see the analysis for the non-
supersymmetric cases in e.g. [20] 21], 93, [94]). For example, an insertion of a
co-dimension 4 defect is represented by an insertion of a Wilson line operator
W inside the trace, so that we have an expression of the form Tr(@W) [20].

e Instead of a mapping torus with a non-trivial twist, we can consider a
mapping torus without a twist, namely the direct product ¥ x S*. We can
then reduce to the 2-dimensional theory. The resulting 2-dimensional theory
is the BF theory [95], this time associated with the supersymmetric version
[96-98] of the Jackiw-Teitelboim gravity [99, [I00]. This theory has recently
been studied in connection with the supersymmetric extension of the SYK
model [32]. This suggests that some of the techniques of this paper could have
applications there.
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which correspond to complex Chern-Simons theories with SU(M) gauge groups at
level N.
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Appendix A. Spin structure versus Kasteleyn orientation

In this appendix we summarize the relation between the Kasteleyn orientation
and the spin structure.

Let us fix a Kasteleyn orientation on the 2-manifold Y. Suppose we choose
a closed oriented cycle C' on X: namely C' is a set of edges in the hexagonal-
ization of the ideal triangulation. Let K (C') be the number of the edges where
the orientation along the path C' is opposed from the orientation determined
by the Kasteleyn orientation. By {(C') we denote the number of left dimer
sticks along the path C, where the dimer stick is defined as the small contin-
uation of all edges at the vertices of the hexagon. If we reach a dimer sticks
along the a path C on the left hand side of the path we call it a left dimer
stick.

Let us explain this notation using Fig. Al. We start a blue path C from
point @ to point b. We have four of the edges with orientations against the
Kasteleyn orientation and therefore K (C) = 4. Along the blue path we find
the left dimer sticks (shown with red color) five times and therefore [(C') = 5.

Figure Al: An example of a path C' (from point a to b on the once-punctured
torus) with K(C) =4, I(C) = 5.

Let us define a Zs sign ¢(C') associated with the closed path C' by
(A1) q(C) =14+ K(C)+1(C) (mod?2).

It turns out that this sign depends only on the spin structure (i.e. the equiva-
lence class of the Kasteleyn orientations) and on the cohomology class of the
path C. The signs can thus be regarded as a map from a spin structure to an
element of H'(3,Zs) ([45, Theorem 1], see also [23, Theorem 3.2.8]).

As an example, we consider the once-punctured torus. We have four equiv-
alence classes of Kasteleyn orientations as in Fig. 4. Let us here discuss the
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case (0,0). To find I(C') we can draw the o and fS-circle in the hexagonal-
ization as in Fig. A2. We show four different representative paths for the
cohomology class, both for the o and the (-cycle. The point « is the starting
point of the path C' and the red dimers are those dimers which are on the left
side of the path C. The result for different choice of path C' is the same, as
long as they represent the same cohomology class in H'(X, Z).

B1 B2 Bs Ba
: : b : : b i : b : : b
a a a a
Qg (05)) as Qy
l<I>‘ b<D b:]<I> b<l>
Figure A2: Four representatives for the « and (-cycles in the cohomology
H'(X,7) of the once-punctured torus. Here we have fixed the Kasteleyn ori-

entation corresponding to case (0,0) of Fig. 4. The resulting Zo @ Zy signs
are independent of the choice of the representative.

In our example of type (0,0) of Fig. 4, we find

|on a2 a3 asl[B1 B2 Bs Ba
K(C) 1 3 4 32 3 3 3
(A.2) 1(C) 0 2 5 41 2 4 4
¢)mod2] [0 0 0 0] 0 0 0 0
4(a) a(9)

and therefore, g(a) = 0, ¢(5) = 0 (mod 2) irrespective of the choice of the rep-
resentative for the cohomology class, as expected. One can repeat this exercise
for the other three Kasteleyn orientations in Fig. 4.
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Appendix B. Spin mapping class group

In this appendix we study the number of spin structures kept fixed under a
general element of the SL(2,Z).

A general element of SL(2,7Z) can be written as ¢ = L™ R™ L™ R"™ ...
where n1,ng, ... are integers. Since L? and R? preserves the spin structure,
for our purposes we can consider the integers ni,no, ... modulo 2, so that we
have elements of the form LRLR... or RLRL.... Moreover, since (LR)? and
(RL)?3 preserves the spin structure, the discussion reduces to the following six
cases (notice for example LRLRL and R act on the spin structures in the
same way):

(B.3) I, L, RL, LRL, LR, R.

For each case, the action on the spin structure on each of the four spin struc-
tures can be worked out as

LD L) L) L) L) (L) (LD
(B4)  (LO)|(LO) (0,0) (0,1) (0,1) (0,0) (L.0) |
(0,1) ] (0.1) (0.1) (0,0) (1,0) (1,0) (0,0)
(0,0) | (0,0) (1,0) (1,0) (0.0) (0,1) (0,1)

where those spin structures fixed under the mapping class group action are
highlighted in red. This means that in general a mapping class group element
preserves either one, two or four spin structures.
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