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The CP" '-model with fermions:

a new look

DMITRI BYKOV

We elaborate the formulation of the CP"™' sigma model with
fermions as a gauged Gross-Neveu model. This approach allows
to identify the super phase space of the model as a supersymplec-
tic quotient. Potential chiral gauge anomalies are shown to receive
contributions from bosons and fermions alike and are related to
properties of this phase space. Along the way we demonstrate that
the worldsheet supersymmetric model is a supersymplectic quo-
tient of a model with target space supersymmetry. Possible gener-
alizations to other quiver supervarieties are briefly discussed.
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1. Introduction and main results

The goal of the present paper is to take a new look at the well-known CP"~!
o-model [21H23] on a two-dimensional Euclidean worldsheet, particularly in
the case when it is coupled to fermions in various ways. Since CP"~! is a
symmetric space, it has long been known that the bosonic model is classi-
cally integrable [61] in the sense of the inverse scattering method. As usual,
integrability implies the existence of an infinite number of conserved charges
in involution. Only a finite subset of these charges is related to the ‘obvious’
global symmetries of CP" !, and the rest of the charges may be found, for in-
stance, from the celebrated zero-curvature (Lax pair) representation for the
equations of motion (e.o.m.). In fact, from the latter one can derive both lo-
cal charges in involution [53] as well as non-local charges [43] [44]) generating
an infinite-dimensional ‘quantum algebra’ (in infinite volume) [7, 8], see [42]
for a review. For complex symmetric spaces, such as CP"~! or Grassman-
nians, these charges are anomalous at the quantum level, which therefore
spoils integrability. For the local charges this was shown in [32], and for
the non-local charges in [I]. In [2] it was observed that the latter anoma-
lies are canceled, if the o-model is coupled to fermions in suitable ways, for
example minimally or supersymmetrically (see also [3] for a review of these
developments). More general theories with fermions were considered in [4],
where it was noticed that the mechanism by which the anomaly in the non-
local charge is cancelled is related to the well-known chiral anomalies. In
that paper the authors remark that “The deeper reasons for this miraculous
anomaly cancellation, however, remain obscure, and the question certainly
deserves further investigation”. The present paper is a step towards a geo-
metric explanation of the anomaly cancellation.

Our starting point is a novel presentation of the CP" 1-model as a gauged
Gross-Neveu model proposed in [16]. This presentation is essentially a
composition of the [y-system approach of [20] and the gauged linear o-
models (GLSM) for flags developed in [I2HI4]. This approach may be easily
extended to incorporate fermions (in various ways, including supersymmet-
ric couplings[b, which then leads to boson-fermion ‘superpositions’ of chiral
Gross-Neveu models. In particular, we will show that this framework pro-
vides a new way of constructing models with worldsheet supersymmetry by

!General supersymmetric 3y-systems have been recently studied in [40].
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starting from models with target space supersymmetry and gauging (su-
per)subgroups of their global symmetry groupsE|. The following fact will be
of foremost importance: if one is to deal with a projective target space (such
as most of the target spaces we are interested in: CP“_I, Grassmannians,
flag manifolds), one needs to gauge part of the chiral symmetry, under which
both fermions and bosons are charged in our approach. The problem is that
this symmetry is typically anomalous, and the gauging can be performed
quantum-mechanically only if the anomaly is cancelled. As we shall see, the
condition of anomaly cancellation is a simple constraint on the representa-
tions of the supergroups, in which the matter fields transform. In the known
examples the cancellation of such chiral anomalies also implies the cancel-
lation of the anomalies in the Yangian (i.e. in the integrability charges).
Although we leave the full construction of the quantum theory for future
work, we believe this to be the general case.

Apart from the analysis of anomalies, one of the goals of this paper is to
provide a differential-geometric setup for a rather wide class of integrable
o-models incorporating fermions. The integrability of the original purely
fermionic Gross-Neveu model [34] was observed shortly after it was put
forward [24], and soon it was realized that it is related to the integrabil-
ity of bosonic models formulated in terms of the fermion bilinears [51]. In
the present paper we interpret these bilinears as moment maps for the ac-
tion of various symmetry groups on complex symplectic manifoldsﬂ We also
demonstrate that the interactions in the models may be, quite universally,
written as products Tr(uf) of the moment map with its complex conjugate.
The same approach may be used for the analysis of rather general ‘quiver
supervarieties’ satisfying anomaly cancellation conditions.

The structure of the paper is naturally entangled with the two pieces of data
that determine the o-models in question: the ‘phase space’ of the model and
a ‘Hamiltonian’, or interaction term. In section [2| we discuss the super phase
spaces of the CP" '-model with fermions. In section [3| we introduce the
interactions and prove the supersymmetry of the model in a special case.
The condition for the cancellation of chiral gauge anomalies is explained in
section [4] followed by an explanation of the role of the gauge fields in these
models in section [5| on the example of a quantum-mechanical reduction. In

2In the present paper we will be dealing with the CP™ '-model that admits
N = (2,2) SUSY, but the method seems to be inherently applicable to models with
N = (0,2) SUSY (see [27] for a concise review of the latter).

3Equivalently, these are Kac-Moody currents of the non-interacting theory.
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section [6] we present a general differential-geometric setup involving ‘quiver
supervarieties’, to which the methods of the present paper apply.

Notation. We will assume that the worldsheet is the complex plane C, with
coordinates z,Z. Derivatives with respect to these coordinates will be de-
noted 9 := 0, and 0 := 9. Similar notation 9,9 is adopted for covariant
derivatives. All Lie groups and algebras are assumed to be defined over
complex numbers, unless a real form such as SU(n) is explicitly referred to.

2. The CP" '-model with fermions: phase space

We pass to the definition of the o-model with target space M = CP"~!,
first in the purely bosonic case. As already mentioned, we will be using the
formulation of the model as a gauged Gross-Neveu model [16], which may
be thought of as a coupling of two Svy-systems [20] in a GLSM formalism
of [12, 13, 15]. We will start by writing the Lagrangian in a slightly more
general form than actually needed for our purposes in the present paper, to
emphasize that the methods explained here may as well be applied to the
case of trigonometrically /elliptically deformed models. The Lagrangian is

(2.1) L=V-GU+T- -9V +Tr (rs(UV)(UV)T) ,
where YU =0U +iUA.

Here U and V are n-component column- and row-vectors respectively, A is
an auxiliary gauge field and rg is the classical r-matrix (rational, trigono-
metric or elliptic) depending on the spectral parameter ‘s’ and satisfy-
ing the classical Yang-Baxter equation [6]. For the sake of completeness
let us point out that this deformation is (in general) not the same as
the n-deformation [25, [38] that relies on the symmetric space structure
of the target manifold. The n-deformation of CP"~! was studied in detail
in [I8],26), 30L [41], in particular in [I§] the relation between the two deforma-
tions is discussed. In what follows we will focus on the rational case, in which
the rs-matrix is proportional to the identity operator: ry = Id. The discus-
sion of anomalies in sec. [4] below would not be altered by the deformation,
but we leave a detailed study of deformations for future work.

In the present section we consider the possible ways of including fermions in
the bosonic model written above. To do this, first we will ignore the inter-
action term in (2.1) and concentrate on the kinetic term instead. The key
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observation is that the kinetic term is naturally defined in terms of a Liou-
ville one-form 8 corresponding to a certain complex symplectic form Q = d0.
As the gauge field in (2.1) suggests, this symplectic form is the symplectic

reduction of the standard form Q©) = > dVi; AdU; on T*C™ under the C*-

=1
action that scales the (U, V)—coordinatles: U — pU,V — p~'V. In order to
include fermions, one should pass over to symplectic supervarieties and su-
perquotients thereof. Below we elaborate the two most notable phase spaces
that arise in this Wayﬁ that of ‘minimal fermions’ in sec. and that of the
supersymmetric theory in sec.

2.1. Minimal fermions phase space

Ignoring interactions, we may write the kinetic part of the CP"~! Lagrangian
with an additional Dirac fermion © as follows:

(2.2) Lroin = VPV + O%0O ,

where W is a bosonic spinor ¥ = U) and © a fermionic one: © = <C> In

v B

the above formula 9 is a C*-covariant derivative, where the action of C* is
as follows: U — pU,V — p~ 'V, C — pC, B — p~!'B. The first term in
coincides with the kinetic term in the Lagrangian . Viewing ¥ and ©
as coordinates on the superspace T*C"", we conclude that the phase space

of the model (2.2) is

(2.3) iy = (TFCM) jC*.

The notation / means ‘complex symplectic quotient’. The phase space ®pin
contains a dense open subspace o'l (‘st’ for ‘stable’), where U # 0, such

min

that CD(St) = T*Mmin, and My, is the configuration space

min

(2.4) Mppin = CI"/C* = cprtin,

The quotient / should be understood as a geometric invariant theory (GIT)-
quotient (for a more detailed discussion of such subtleties we refer the reader

4We will see later that one can have several different theories for a given phase
space, so that the ‘minimal fermions phase space’ or ‘supersymmetric phase space’
is just a convenient way to label those supermanifolds.
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o [49]). The space is the same as the total space of the vector bun-
dle MV, where M means that the fibers are fermionic (Grassmann), and
V=0(1)®---®0O(1). This is a super-Calabi-Yau manifold, the holomor-
phic nowhere vanishing top form being (we use the inhomogeneous coordi-
nates, U, = 1)

(2.5) Qmin =dUL A - ANdUp—1 ANdC1 N --- NdC,, .

This is a fermionic and higher-n analogue of the conifold O(—1)  O(—1) —
CP.

2.2. Supersymmetric phase space

For the original definitions of the supersymmetric CP™ '-model we refer
o [56] (the case of CP') and [ZI, 23] (arbitrary n), see also [36, Chapter
15] for a more modern treatment. Our approach is based on the following
observation:

The worldsheet supersymmetric CP"~'-model is a gauged version of a
model with target space GL(1|1) supersymmetry.

The general strategy of proving the statement is as follows: we start with
the ungauged [~-system with phase space T*C", impose worldsheet SUSY,
gauge the C*-symmetry to obtain projective space and, finally, introduce
interactions in sec. below.

The pv-system with phase space T*C" reads:
(2.6) Loy =V -0U+U -9V .

In order to supersymmetrize the model, we add a fermionic piece symmet-
rically:

(2.7) Ly =(V-0U+TU-0V)+(B-9C+C-0B).
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Here C;,B; (i=1,...,n) are the fermionic Variablesﬂ The holomorphic
piece (depending on U,V,B,(C) is invariant w.r.t. both target space and
worldsheet SUSY transformations. We pass to the discussion of these.

2.2.1. Target-space supersymmetry. The evident target space sym-
metry group of (2.7) is GL(n|n). Indeed, in terms of the doublets

(2.8) U = (g) Y= (V B)

the Lagrangian is £ S USY — /. 99U + 9 - &'V, so that it is manifestly invari-
ant under

(2.9) U—g-U VoV -gl, geGL(nn).

In most of the models of interest, however, we will be introducing interactions
that are invariant only under the diagonal subgroup

(2.10) Go := GL(1]1) € GL(n|n)

In what follows it will be convenient to use an explicit parametrization of
the matrix g € Gy:

(2.11) g= <}‘£p 7;) SDet(g) = p — ;%
2.2.2. Worldsheet supersymmetry. The Lagrangian is in addi-
tion invariantﬁ w.r.t. the worldsheet supersymmetry transformations. The
generators of the (right-moving/holomorphic) transformations are custom-
arily denoted in the literature as Q. ,Q 4, and the variation of the fields is
obtained by acting on them with the operator § = €1Q+ + €2Q (€12 are
complex Grassmann variables):

(2.12) oU = €1 C, 0B = —€1 V, 0C = —€9 8U, oV = €92 0B.

These elementary transformations have been discussed in [33] 37m It fol—
lows that the charges satisfy the (0,2) supersymmetry algebra: Q? i = Q L=

5The Lagrangian may also be written as a sum of two Dirac pieces: .52;7 =UPv +

= . . . U . C
©@0O, where ¥ is a bosonic spinor ¥ = <V) and © a fermionic one: © = (B)
5Up to a total derivative, as is usual for supersymmetry.
"In [37] the o-model was shown to be supersymmetric w.r.t. the transforma-
tions (2.12)) in the ‘infinite-volume’ limit of the target space. In our formulation, as

we will see, the gauged analogues (2.15]) of these transformations are exact.
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0,{Q+,Q +} = 0. The anti-holomorphic piece in the Lagrangian is analo-
gously invariant w.r.t. the left-moving SUSY transformations. Notice that
from the perspective we adopt here (). is actually one of the generators of
the target-space symmetry algebra gl(1]1).

In order to pass to the case of CP"~! we replace the derivatives by covariant
ones, i.e.

(2.13) Lep
We have gauged a C* C GL(1|1) subgroup corresponding to p =1,§ =x =
0 in (2.11)). Varying the above Lagrangian w.r.t. the gauge field produces a
constraint

(2.14) V.U+B-C=0.

The supersymmetry transformations now take the form

(2.15) 5U:€1 C, 5B:—€1 V, 502—62@[], (SV:GQ@B.

In this case Qi = @i =0,{Q+,Q.} = 9. The variation of the Lagrangian
is

(2.16) (S.§£CP:€2@B'@U+€QB‘@@U
2623(3-@U)+€2FZ3(B-U), Fz=1[9,9].

The variation is a total derivative (and hence the action is invariant) if and
only if

(2.17) B-U=0.
This condition is invariant under supersymmetry:
(2.18) 0(B-U)=-e(V-U+B-C)=0.

The variation is proportional to the constraint (2.14]) and therefore vanishes
on-shell.
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2.2.3. The super phase space. If the condition (2.17)) is satisfied, the
Lagrangian (2.13]) is invariant under an additional local symmetry

(2.19) S10cC = 8(2,2) U, 8100V = 8(2,%) B,

where 8(z,%) is a local Grassmann variable. Recalling the C* gauge group,
we observe that we are actually gauging a subgroup Ga C GL(1]1) com-
prising matrices of the form

(2.20) Ga :—{ g €SLL) = g= (2 2) }

Constraints ([2.14])), (2.17) should be seen as moment map constraints, and
the phase space itself should be viewed as the supersymplectic quotient

(2.21) dgusy = (T*C) /G .

An important point is that gauging breaks the global symmetry GL(n|n) of
the ungauged model down toﬂ

NgrLnn) (Ga)

(2.22) .

~ (C*x PSL(n)) x M(sl,)

10 o) (5 5) oy

where 0 € C*, PSL(n) (represented by A) is ‘embedded’ in GL(n|n) diag-
onally, M(sl,) (represented by =) are fermionic traceless n x n—matricesﬂ in
the adjoint representation of the bosonic PSL(n) and are scaled by C*. In
fact, in most applications the interactions will only be invariant under the
subgroup GL(1]1) x Gp of GL(n|n), where Gp is a bosonic group, and in
this case the gauging breaks the target-space supersymmetry group GL(1|1)
down to C*. For example, such is the worldsheet supersymmetric CP™!-
model, where one does not expect any residual target space supersymmetry.
In that case C* is the R-symmetry group containing both vectorial and axial
transformationﬂ (but only the vectorial U(1) C C* is non-anomalous [36]
Chapter 15]).

SNGL(njn)(Ga) is the normalizer of G in GL(n|n).

9We view MM(sl,,) as a vector space. As a Lie algebra it is simply anti-commutative.

10Gee section below for an explanation of how chiral symmetry acts in Euclidean
signature.



304 Dmitri Bykov

Just as in the case of minimal fermions, we may identify the con-
figuration space, if we restrict to the stable set CD(S%)SY C ®gyusy defined
by the requirement U # 0. The action of Ga on the coordinates U is
U — g-U, where g is of the form , which in components is U —
AU,C — AC + &U. If one ignores C, the quotient w.r.t. the C* action with
parameter A simply leads to CP" 1. The role of C'is that it describes a certain
vector bundle over that projective space. Taking the quotient by multiples
of U means one has a quotient bundle C"/O(—1), where C" is the trivial
bundle. An additional multiplication by A means that one in fact has the
bundle V = O(1) ® (C"*/O(—1)), which is the tangent bundle V = TCP"~L,
The configuration space is

(2.23) Msusy = M(TCP"1).

Again, due to the fact that the fibers are fermionic Mgygy is super-Calabi-
Yau (a fermionic analogue of the cotangent bundle T*CP"™1). A recent dis-
cussion of the properties of the spaces and in the case n = 2 may
be found in [52].

3. Interactions

Next we come to the description of interactions. In particular, we would like
to couple the holomorphic (with coordinates U, V) and anti-holomorphic
(U,V) Bry-systems, so as to obtain the more conventional o-models. This
may be done rather beautifully by a coupling of the form

(3.1) xTr(pp),

where 1 is the moment map for the symplectic action of a group G on the
phase space ® of the model and x is the coupling constant. As we will now
explain, different choices of such action (and of the group G itself) will lead
to different models. For simplicity we will always assume that G O PSL(n),
although one could as well consider smaller symmetry groups. One should
bear in mind that the coupling breaks the complex symmetry group
G down to its unitary subgroup.

Our first examples will refer to the ‘minimal’ phase space ®,i,. The group
of its symplectic automorphisms is PSL(n|n).
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3.1. The CP™ 1" model

Choosing G = PSL(n|n), we obtain a model with explicit PSU(n|n)-
symmetry (the unitary subgroup of G arising because of the interaction
term ) This is a sigma model with target space CP" 1" that has been
studied in [19, [55]. The most notable case — CP31* — related to the so-called
twistor string theory, was thoroughly discussed in [59]. In terms of the dou-
blets

U
(3.2) U = (C’)’ V:=(V B)
introduced in ({2.8]) the moment map is, in this case,

(3.3) HPSL(njn) = U 7V .

We do not subtract the trace part ¥ -9, as it is assumed to vanish as a
consequence of the constraint imposed by the C* gauge field of the model.

3.2. Minimal and non-minimal fermions

The bosonic subgroup of PSL(n|n) contains two copies of SL(n), acting on
C™0 and CO" respectively. The corresponding moment maps ar

V-U)

(34) pov =UQV — 1,,

(B-0)

(3.5) pupc =—-C® B — 1,.

Although we do not set the goal to classify all subgroups G C PSL(n|n)
that lead to interesting models, some options seem especially natural:

e G = SL(n) x 1. The resulting model is that of CP"~! with minimally cou-
pled fermions (in the sense that the fermions do not enter the interaction

terms (3.1)).

e G =1 x SL(n). This produces a model with ‘minimally coupled bosons’.
In the ungauged case this is the original fermionic chiral Gross-Neveu
model.

"The signs in upc are due to the anti-commutativity of the fermions.
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e Diagonal and anti-diagonal embeddings i : G = SL(n) < SL(n) x SL(n),
where i(g) = (g, g) for the diagonal embedding and i(g) = (g, (¢~ ")T) for
the anti-diagonal one. The corresponding moment maps are

(3.6) Hdiag = MUV + UBC

Manti—diag = HUV — (MBC)T .

e G =SL(n) x SL(n). This gives a completely symmetric coupling of a
bosonic chiral Gross-Neveu model to a fermionic one, the coupling being
mediated by a gauge field.

The constraint induced by the gauge fields is, in all cases, ¥ -U =V - U +
B-C=0.

3.3. Supersymmetric model

In the previous subsections we considered the ‘minimal’ phase space
®in. Now we come to the discussion of the ‘supersymmetric’ phase
space Pgusy. As explained in section [2.2.3] its symplectomorphism group
is (C*x PSL(n)) x M(sl,). We will choose the subgroup G = PSL(n) as
the symmetry group that determines the interaction term and prove that
this leads to the standard supersymmetric o-model. The remaining C*-
invariance is the classical R-symmetry of the supersymmetric theory.

The moment map for the action of gl,, diagonally embedded in gl,,, is
(38) N::,deiag:U@V—C@B.

This is also the most general GL(1|1)-invariant combination of the holomor-
phic variables and may as well be viewed as the z-component of the Noether
current of the model (as well as of the full interacting model
below) corresponding to the gl,-symmetry (u, in the interacting case). Note
that Tr(ux) = 0 due to the constraint ¥ - U = 0, so that p is really the mo-
ment map for the action of sl,. From one easily finds the SUSY

variation of u:
(3.9) op = e20p, nw:=U®B.

The geometric meaning of f is that it is the moment map for the action of
the fermionic subgroup M(sl,) C GL(n|n) featuring in ([2.22]).
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The interacting Lagrangian has the form (the variables U, were defined
in (3.2))

(3.10) Lep =Y -DU+U-DV + 2Tr(up),

W A

where D=0+ iﬁsuper , ﬁsuper = < A 0>

One can view the fermionic variable W either as a Lagrange multiplier im-

posing the constraint ([2.17]) or as a gauge field for the local symmetry (2.19)),
and x is the coupling constant. To make sure that the Lagrangian is invariant

w.r.t. the SUSY transformations on-shell, we write out the e.o.m.:

(3.11) V: QU +xuU =0, U: QV+WB—2Vi=0,
(312) C: 9B —xBu=0, B: QC+WU+xuC =0.

As a result we get the very simple e.o.m. for the moment map@

(3.13) O = [ ]
We can now compute the SUSY variation of the interaction term:
(314) S Te(ui)) = €22 Te(Ofi - i) ~ —ea 2 Tr([p, 1),

where ~ means ‘up to integration by parts’, and in the final equality we have
used the e.o.m. for & (see the footnote). An elementary calculation shows
that the commutator

(3.15) il = (V-U+B-C)ji—(B-U)u=0

vanishes as a consequence of the constraints (2.14)) and (2.17)). The action is
therefore invariant under SUSY transformations on-shell. In Appendix [A] we
demonstrate that an off-shell-invariant formulation may also be constructed,
which is in agreement with the standard SUSY transformations [37, 60].

12Here 7z is the moment map for the complex conjugate symplectic form, as de-
fined by the kinetic term in : =V ®U-B®C.Its e.om. dfi = z[fi, i1 has
an unusual-looking sign due to the fact that the kinetic term in is imagi-
nary, which is a consequence of working in Euclidean signature (in fact, it ensures
convergence of the path integral for > 0), see the discussion in [16].
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As discussed earlier, the symmetry group of the kinetic term in is
(C*x PSL(n)) x MN(sl,). The interaction term further breaks this to the R-
symmetry times the unitary subgroup C* x (PSU(n) ~ SU(n)/Z,,), which
is the global symmetry group of the supersymmetric CP™~*-model.

3.3.1. Conventional formulation. To relate the model to the
more standard form of the supersymmetric CP™~'-model, first of all one has
to eliminate the V, V-fields, just as in the bosonic case. However even after
such elimination the G super gauge symmetry still remains, and
one might wish to pick a gauge to fix it. The commonly used gauge for the
scaling Rt C C* gauge symmetry is

(3.16) T-U=1.

After this condition is imposed, one still has the local symmetry (2.19). The
combination U - C shifts under this symmetry as d,.(U - C) = 8(z,2) U -
U = 8(z,%), so that a simple gauge choice is

(3.17) U-C=C-U=0.

This condition may be also seen as a superpartner to (3.16) w.r.t. the
SUSY transformations ([2.15)) and their left-moving counterparts. As a result,

the constraints (3.16)-(3.17) are supersymmetric. The condition (3.17)), to-
gether with the moment map constraint (2.17)), B - U = 0, may be succinctly

rephrased as

(3.18) U-©=0,

where O is the Dirac fermion © = (g) It is the constraint (3.18) that is

most commonly encountered in the literature on the SUSY CP" '-model.
We wish to emphasize that in our approach only the moment map condi-
tion should be seen as fundamental, whereas is simply a gauge
choice. Nevertheless the gauge choice — is rather convenient, since
in this case the bosonic and fermionic parts in the interaction terms separate:
Tr(up) =V -V — (C-C) (B - B). Upon integration over the V,V-variables
one obtains the conventional form of the supersymmetric Lagrangiarﬂ

1 o -
(319) o= [BU[ + 896 —x <@J;75@> <@275@>

where U-U=1, U-0=0.

13In our notation s := i 0109 = —03.
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In other words, supersymmetrization involves coupling the bosonic part of
the Lagrangian to a chiral Gross-Neveu model, as was noted long ago [2].
The present approach based on v-systems elucidates the origin of this phe-
nomenon: the bosonic part is itself a chiral Gross-Neveu model.

We may obtain yet another form of the model by eliminating the auxil-
iary gauge field A, A. One finds A = Ay, —izB-C and A= A, +ixC - B,
where Ay := —i0U - U and Ay :=iU - OU are the purely bosonic parts of
the connection. A simple rewriting then gives

(3.20) Lep = % BUL +8%,0 - % ((66)? - (80:0)* + (60:0)?) |

where 9,9, are the covariant derivatives w.r.t. the connection A, Ap.
Again, one has the additional conditions U - U = 1, U - © = 0. It is this form
of the model that one finds in [2], for example.

4. Anomalies

In this section we pass to the discussion of potential gauge anomalies in the
models introduced in the previous sections. The first important observation
is that part of the symmetry we are gauging in models like or
is actually chiral, and for this reason it is typically subject to anomalies. To
see this, note an important difference in chiral symmetry transformations
for Minkowski vs. Euclidean signature of the worldsheet. If G is the com-
pact group of (vectorial) symmetry transformations of the theory, the chiral
symmetry group is

(4.1) Minkowski signature: GxG
(4.2) Euclidean signature: Gc

This fact was observed as early as in [45], 62], and it has a bearing on most
aspects of the theory related to anomalies. For example, the target space of
the corresponding WZNW theory is G ~ GEG and % respectively. In the case
G = U(n) the latter is the space of Hermitian positive-definite matrices, and
the corresponding WZNW model was thoroughly studied in [31I]. We also
note that the complexified gauge groups naturally arise in supersymmetric
theories, cf. [39] where the reader will also find a corresponding 4D anomaly
cancellation condition.

Due to the difference between (4.1)) and (4.2) the condition of anomaly can-
cellation [57] is suitably modified. Indeed, according to [57] a subgroup H
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of the chiral symmetry group may be gauged if the following condition is
satisfied: Try (T; T;) = Trr(T; Tj), where L and R are the H-representations
of the left- and right-handed fields. Since in the case of Euclidean signature
the left- and right-handed fields transform in complex conjugate represen-
tations of Gc, one has (T;)r = (T;)r. It then follows from the cancellation
condition that, as expected, H = G C G¢ may be gauged, since in this case
(T;)r = (T;) . We are interested, however, in gauging complex subgroups of
Gc. This means that if T} is a generator, so is i Tj. As a result, one has, two
conditions Trz(T;Tj) = £Tr(T; T;), or equivalently Trr(7; Tj) = 0 for all
pairs of generators of the Lie algebra gc. In the setup with target space su-
persymmetry, i.e. when the global symmetry group is in fact a supergroup,
one has both fermions and bosons contributing to the anomaly, and this
condition is promoted to

(4.3) Strw(T313) =0,

where W is the representation of the (left-handed) matter fields. In the
examples we encountered earlier (the two phase spaces @i, and Pgysy)
the supertrace of the generator vanishes as well, and we expect this to hold
in most cases of interestlL%

(4.4) Strw (T}) = 0.

When one of the generators is the identity matrix, the latter condition clearly
follows from . It would be interesting to understand the precise relation
of the conditions — to the vanishing of vy-system anomalies [50), [60]
(i.e. cha(M) = 0 and possibly ¢;(M) = 0 for the target space M), see also [46]
and references therein for a general discussion of o-model anomalies. In our
application to the CP" !-model the above anomaly cancellation conditions
mean, in particular, that the model in the ‘Hopf fibration’ gauge U - U = 1 is
equivalent to the model in the ‘inhomogeneous’ gauge U,, = 1. The relation
between these gauges in the purely bosonic model has been studied in [5] [35].

The above conditions in fact imply that the effective action is independent
of the gauge fields. Indeed, at quadratic order in the gauge field the diagram
shown in Fig. is proportional to the trace in and therefore vanishes. As
for higher orders, this is demonstrated at the level of the Feynman diagrams
in Appendix[B]and is a consequence of the fact that all diagrams contributing

141n simple cases this is the condition of vanishing of mixed gauge/gravitational
anomalies, when the sigma model is placed on a Riemann surface, see [17].
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Figure 1: The anomaly cancellation condition (4.3)) corresponds to the van-
ishing of the sum of such diagrams. The matter fields propagating in the
loops involve both bosonic and fermionic fields.

to the effective action are in fact proportional to the quadratic form given
by the supertrace Stry. The same conclusion may be reached by performing
a calculation in the spirit of [54], which shows that the determinant of the
Dirac operator in an external gauge field is proportional to e SWzxw where
Swznw is the WZNW action (whose fields are expressed in terms of the
gauge field of the original model), and cw is a proportionality constant
characterizing the quadratic form given by the (super)-trace: Trw (T;Tj) =
ew - Trw, (T3T;) (here Wy is some reference representation). This calculation
is reviewed in [47] (see [28| 29] for the original presentation). For c¢yy = 0 the
determinant is a constant, independent of the gauge field.

Independence of the effective action of the gauge field is indeed necessary for
the following reason. Under the complexified infinitesimal gauge transforma-
tions the components of the gauge field transform as §A4 = dx, dA = Jx. In
the infinite-volume theory there is no way to build an invariant combination
out of A, A. A related fact is that in this case it is actually possible to choose

the gauge A = A = 0 [I7], thus getting rid of the gauge field completely. In
finite volume, or on a torus, one could have gauge-invariant holonomies [ A

gl
over cycles v on the worldsheet. We pass to a discussion of this fact on the
simpler example of a quantum mechanical model at finite temperature (i.e.
on a circle S1).

5. Quantum mechanical model

In the previous section we argued that, for a non-anomalous model, the
infinite-volume partition function Z..(A,A) of the matter fields has to be
independent of the gauge fields A, A. Let us now explain this statement
from the point of view of the quantum-mechanical reduction of the model.
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We start by considering the quantum mechanical partition function Zg for
a CP" !-model on a Euclidean time circle of circumference f:

are
(5.1) ZB(AO,AO):/e o ] dvduavav,
t

(5.2) Lep=V-QU+TU-DV)+2U-U)V-V)

The notation Zg (Ao, Ao) indicates that the partition function depends really
only on the zero-modes Ag := % [ dt A of the gauge fields, which are the
only gauge invariants for the C* gauge transformations (these are the same

as the holonomies | A mentioned at the end of the previous section). A

5
priori one assumes periodic boundary conditions in the path integral (5.1)):

U(B)=U(0),V(B) =V(0). One can get rid of the zero modes of the gauge
fields at the expense of imposing twisted boundary conditions on the fields.
Indeed, the change of variables U — etV — e7?40!Y eliminates the
gauge field, but leads to the twisted boundary conditions

(5.3) U(B) =hoU(0), V(B)=h"toV(0), heH,

where H is the original complex gauge group (H = C* in the case of the
CP" !-model, although the discussion here applies more generally). To com-
pute the full partition function one now has to integrate Zg (Ao, Ap) over the
zero modes Ag, Ag. Clearly, this is the same as integrating over the twists h.
Recalling the definition of the partition function as the trace of the statistical

operator e PH we ge

(54)  Za ::/dhdhzﬁ(ﬂo,flo):/dhdh AU (T|e B @ T D)

Since [ dhdhh @ h = My is the projector on the invariants of H, we find
(55) ZB = Tr(I'IHe_BH) = TrH_im,(e_BH) .

In other words, the role of the gauge fields in ‘finite volume’ (i.e. for finite
values of  in this case) is to restrict the Hilbert space to a subsector invari-
ant under the action of H. The infinite volume limit 3 — oo corresponds to
picking the ground state in the spectrum. The fact that the partition func-
tion is independent of the gauge field in this limit means that the ground

5By the tensor product notation we simply mean that h acts on U and V,
whereas h acts on U, V.
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state is symmetric w.r.t. the symmetry group and is therefore shared by all
models with different gauge fields.

6. Grassmannian and quiver generalizations

The setup of the CP" !'-model can be straightforwardly generalized to the
case of Grassmannians G(m,n). The first step in doing this is realising that
the configuration space C"I" may be thought of as Hom(C”l, C™). The natu-
ral generalization is then to take Hom(C™/™, C™) and to consider the quotient

(6.1) Mg (m,n) := Hom(C™™, C") /Gy,
where as G one has to take the relevant subgroup of SL(m|m):

(6.2) Gp = { geSL(mlm) : g= @ g\) A € GL(m) } ,

where & is now an m x m fermionic matrix. The phase space with stable
subset ®t) = T*Mg(m,n) is described by the following elementary quiver:

¥ ¢
(6.3) C:%_<—l

cmim

Here % € Hom(C™™, C") and ¥ € Hom(C", C™™).

Instead of taking A € GL(m) one could as well take A in some parabolic sub-
group P C GL(m). This will give rise to o-models with flag manifold target
spaces [9HI6l 20], coupled to fermions. In general, however, such models will
no longer have worldsheet SUSY.

This discussion suggests a further generalization. Suppose we have a super
phase space ®, which is a complex symplectic (quiver) supervariety. There is
a gauge (super)-group Ggauge acting in the nodes of the quiver, and matter
fields U € W, ¥ € WY are in representations W & WY of Ggauge. We as-
sume that the quiver is ‘doubled’, meaning that every representation arises
together with its dual (Nakajima quivers have this property [48], [49]). Apart
from the gauge nodes, the quiver will typically have some global nodes with
an action of a global symmetry complex group Ggiopal. We can therefore de-
fine the complex moment map g for the action of Gglopat O ®. In this setup
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one can, quite naturally, define the following Lagrangian:

(6.4) ¢ = (W-@% +@-1ﬁ) 2 Te(pn).

We encountered various special cases of this model earlier in this paper,
cf. . The kinetic term in the Lagrangian corresponds to the Sy-systems
— it is a pull-back of the canonical Liouville one-form corresponding to
the complex symplectic form of the quiver. The second term provides a
coupling between the holomorphic and (anti)-holomorphic 7-systems and
comes with an arbitrary coefficient x that should be seen as a coupling con-
stant (in the o-model setup this is the inverse squared radius of the target
space). In Appendix |C| we show directly that the moment map p satisfies
the e.o.m. of the principal chiral model in this more general situation
as well.

As we discussed in the previous sections, one also needs to impose the chiral
anomaly cancellation conditions that in the general setup have the form

(6.5) Strw (T,1y) =0, where Tg, T} € ggauge -

As mentioned earlier, we expect that in most cases Stry(7,) = 0 holds as
well. It is tempting to conjecture that the Lagrangian , supplemented
with the conditions , defines a quantum integrable model. All the mod-
els described earlier in this paper (CP"~!, Grassmannian, flag manifold o-
models with fermions) are particular examples of this system. We leave
further clarification of these issues for the future.

7. Conclusion

In the present paper we continued the study of integrable o-models with
complex homogeneous target spaces [I1], based on their formulation as
gauged bosonic (or mixed bosonic/fermionic) Gross-Neveu models proposed
in [16]. The main emphasis was on the fermionic generalizations of the well-
known CP"~!-model, although the discussion can be generalized to a wide
class of ‘quiver supervarieties’. Our main finding is that all such models
may be defined in a canonical way in terms of a target space supervariety
(the phase space ® or configuration space M). The cancellation of chiral
gauge anomalies that might be present in such models has been formulated
as a simple constraint on these varieties. We conjectured that these chi-
ral anomalies underlie the anomalies in the Yangian charges of the purely
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bosonic models: in both cases inclusion of fermions cancels the anomalies.
As a by-product, we have developed a new method for deriving worldsheet
supersymmetric o-models by starting from models with target space super-
symmetry and gauging part of their symmetry supergroups.

Acknowledgments. I would like to thank A. A. Slavnov for support and
D. Liist for reading the manuscript and useful remarks and suggestions. This
work has been supported by Russian Science Foundation grant RSCF-20-
72-10144.

Appendix A. Details on supersymmetry transformations

In section we showed that the Lagrangian that describes the tar-
get space supersymplectic quotient is in fact invariant under worldsheet
supersymmetry transformations on-shell. This means that the variation of
the Lagrangian is proportional to a subset of the e.o.m. (up to full deriva-
tive terms that we drop). In such cases there is a simple tool to make the
invariance off-shell. Indeed, suppose that the Lagrangian depends on some
generalized coordinates ¢/, so that the (most general) variation of the action
gives the e.om. E; =0, i.e. AS = [ d?2 A¢’ E; (we use the symbol A for
the variation to distinguish it from the variation d w.r.t. some symmetry).
Suppose there is a symmetry d such that the variation of the action is pro-
portional to the e.o.m.: 6S = [ d?z 6V E;, where dV7 is a vector field in field
space. As a result, the combined variation §=0+ A, where in the second
term we take A¢? = —6V7, annihilates the action: 6S = 0. To summarize,
the ‘off-shell” variation of the fields takes the form

(A.1) o = d6¢ — V7.

In our applications to supersymmetry d¢/ are the ‘on-shell’ transforma-

tions ([2.15)). The variation of the action is (here we use ({3.15))

(A.2) 0S = [ d*zes [Foz (B U) — 2 Te(i (OF + #[p, 7))+
—22(V-U+B-C)Tr(au) + 2*(B - U) Tr(pup)]

The coeflicients in front of V- U + B - C and B-U may be reabsorbed in
the shifts of the gauge fields A and 'W:

(A.3) 6(iA) = ep 2* Tr(fifr)
(A.4) 5(iW) = ey (Fuz + 2° Tr(up))
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The coefficient in front of the Lh.s. of the e.o.m. 9z + #[u, @] in (A.2) may be
reabsorbed in a Gc-transformation of the anti-holomorphic fields U, V', B, C
with parameter ey 2z (no compensating transformation for U,V, B,C is

needed). Recalling that 1 = U ® B, we get

(A.5) U =To (exnfi)=eyx(U-U)B

(A.6) 6C =Co(eqzfi)=—ey2(C-U)B
(A7) 6V =—egxfioV =—eyz(B-V)U
(A.8) 6B=—eyxfioB=—eyx(B-B)U

Equations (A.3])-(A.8) provide a complete set of off-shell SUSY transforma-
tions in the formalism with auxiliary gauge fields.

To compare with the standard formulations of SUSY gauged linear o-models
let us choose the gauge discussed in section [3.3.1

(A.9) U-U=1, C-U=U-C=0.

The supersymmetry variations are Q (U -U — 1) =U -C =0 and Q, (C
U) = —C - C # 0, therefore in order to maintain supersymmetry after gauge
fixing we have to perform a compensating fermionic gauge transformation
with parameter C - C. In other words, §C = €; (C - C) U.

Besides, in the standard formulation there are no V-fields (since, from the
standpoint of our approach, they have been integrated out), so we will also
eliminate them using their e.o.m., which gives in our gauge

(A.10) QU —2Up=9U0 — 2V =0

Combining the expressions (A.5)-(A.8) and ([2.15) we obtain the final trans-
formation laws for the standard variables (i.e. all variables except V,V):

SU:elC, 5U:e27cB,
(A.11) 5B = —% 9T, §B=—ex(B-B)U,
5C = —e QU , 5C=e (C-O)U.

One can check directly that the Lagrangian is invariant, up to a total
derivative, w.r.t. these transformations, which are the standard (0,2) SUSY
transformations for a gauged linear o-model after elimination of auxiliary
fields, cf. [36, Chapter 15] (in [58] [60] one finds analogous transformations
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A(z2) A(z1) A(z2)

Al(zs) Al(za) Al(z3)
Figure B1: Diagrams that formally contribute to the effective action.

for the nonlinear form of the o-model). We see that these more complicated
transformations arise from the elementary ones upon going off-shell
and fixing the complex gauge symmetry using the gauge conditions .
The supersymmetry algebra still closes only on-shell, as we are not using
auxiliary fields. The Lagrangian admits an additional (2,0) SUSY
acting primarily on the anti-holomorphic fields U, B, C, with compensating
transformations for U, B, C, and as a result the supersymmetry is extended
to (2,2), as expected for a Kéhler target space.

Appendix B. Contributions to the superdeterminant

In section 4| we imposed the anomaly cancellation conditions on the
generators of the gauge superalgebra. These conditions ensure that the sum
of diagrams shown in Fig. [I| (with various fields propagating in the loop)
vanishes. In fact, all remaining contributions to the ‘effective action’ of the
gauge fields A, A are also proportional to the quadratic form given by the
supertrace Stryy and therefore vanish as well. Let us see how it works on
the example of the cubic and quartic vertices ]svhown in Fig. To this

end we introduce the function G(z1,...,2n) == [] + _lz;ﬂ that involves the

product of propagators in the corresponding diagrams (zy41 = 21), and the
contribution to the effective action is (here A(z) is a shorthand for A(z, %))

N
(B.1) Wy = / H d?z; G(z1,. .., 2n5) Str(A(z1) - - Azn)) -
j=1
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We start from the cubic vertex, N = 3. Since G(z1, 23, 22) = —G(z1, 22, 23),
we have

3 1
Ws = / H d?2; G(21, 22, 23) 9 Str(A(21)[A(22), A(z3)]) = 0
j=1

due to (4.3)).

The analysis of the quartic vertex (N = 4) is slightly more involved. Here we

may use the elementary ‘propagator rearrangement’ identity m =

1 ( 1 T 1 ) to write G4(Zl,2’2,23,24) — G3(21722,23) 4 G3(21722723)‘

Z3—Z21 2324 Z4—21 23 —Z4 Z4—21
Due to the antisymmetry of G3 w.r.t. any pair of arguments, the

first and second terms are antisymmetric w.r.t. z; <> 2o and 29 <> z3
respectively. In the first term in the integrand we therefore replace
Str(A(z1)A(z2)A(z3)A(24)) = 5Str([A(21), A(22)]A(23)A(24)), and in the
second term we perform an analogous replacement for A(z2)A(z3). Finally,
in the integral of the second term we make a cyclic change of variables
Z1 — 24 — 23 — 2o — 21 to arrive at an expression skew-symmetric w.r.t.
z3 <> 2z4. As a result,

. Gs(z1,22,23) + Gs(21, 22, 2)
I 2 3(<1, <2, <3 3 ; )
(B2) ! "/ Hd 4(z3 — 21)

x Str([A(z1), A(z2)][A(23), A(24)])

7j=1

This demonstrates that Wy is as well proportional to the quadratic form
given by Str. All the higher contributions Wy (as well as diagrams involving
interaction vertices proportional to x) may be analyzed in a similar fashion.

Appendix C. Moment map evolution for arbitrary complex
symplectic manifolds

Let M be a complex manifold with coordinates ¢'. In this case ® := T*M
dim M

is a complex symplectic manifold with symplectic form €} = Z dp; N\ dg'.

Suppose M is endowed with an action of a complex Lie group G defined
by vector fields V,(q) (a=1,...,dim(G)) forming the Lie algebra g of
G: [Vo, V] = f5 V. We will assume that g admits a non-degenerate ad-
invariant quadratic form, so that the structure constants fu;. are totally
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skew-symmetric. The moment maps for the action of G are

dim M

(C.1) pa= Y (Va)pi, a=1,...,dim(G).
=1

Consider the Lagrangian
dim M A dim G )
(C.2) L= (E pi0q"’ —c.c.) +x Z |ua’
i=1 a=1

The e.o.m. for the holomorphic coordinates (g, p) are

dim G
(C.3) g +x Y (Va)' g =0
a=1
B dimG [ dimM 4
(C.4) Opi—z > | > 0(Va)pj | Fa=0.
a=1 j=1
This induces the following equations for the evolution of the moment maps:
(C.5) a=>_ 040;(Va)pi+ Y _ (Vo) Op; =
i i
(C.6) =—x Z (Vo)?0;(Va)' pi iy + % Z (Vo) 8:(Vo) pj iy, =
i\jib i\j,b
(C.7) = Z Va, VoV pj iy = 2 Z fab b By -
jvb b,C

In other words, we have again arrived at the equation

(C.8) oy = x[m, pl

which is the same as , up to u — —u. Notice that in the derivation
we have not assumed that M is a homogeneous space. Equation is the
e.o.m. of the principal chiral model (for more details see [15]), which is the
first hint that the model might be integrable.
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