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In a previous paper, the authors showed the advantages of build-
ing a Z2-action into an F -theory model W4/B3, namely the action
of complex conjugation on the complex algebraic group with com-
pact real form E8. The goal of this paper is to construct the Fano
threefold B3 directly from the roots of SU (5) in such a way that
the action of complex conjugation is exactly the desired Z2-action
and the quotient of this action on W4/B3 and its Heterotic dual
have the phenomenologically correct invariants.
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1. Introduction

A particular challenge in Heterotic F -theory duality arises when one wishes
to transfer a Z2-action

(1.1) V ∨
3 /B∨

2 =
V3/B2

Z2

on a elliptically fibered Calabi-Yau Heterotic threefold V3/B2 to a Z2-action

(1.2) W∨
4 /B

∨
3 =

W4/B3

Z2

on an elliptically fibered Calabi-Yau fourfold that becomes the F -theory
dual. We have proposed a framework for such a duality in [4]. W4/B3 with
B3 = B2 × P[u0,v0] with del Pezzo B2 is defined by a Tate form

(1.3) wy2 = x3 + a5xyw + a4zx
2w + a3z

2yw2 + a2z
3xw2 + a0z

5w3

with aj , z,
y
x
∈ H0

(

K−1
B3

)[−1]
with respect to the Z2-action. We will require

that W4/B3 be defined subject to the condition

(1.4) a5 + a4 + a3 + a2 + a0 = 0.

The condition is equivalent to the condition that W4/B3 have a second
section τ given by

x = wz2

y = wz3.

Incorporating translation by the difference of τ and the standard section ζ
given by

x = 0
w = 0

into the Z2-action allows us to eliminate vector-like exotics in a final paper
[5] of this series.

Furthermore B3 is a P1-fiber bundle over B2 on which Z2 must act
equivariantly. One desires such a configuration in order to employ the Wilson
line mechanism for symmetry-breaking consistently and simultaneously on
both the Heterotic model and its F -theory dual.

The Z2-action on a V3 must be free. Furthermore on the F -theory side
the Z2-action must restrict to a free Z2-action on a distinguished smooth
anti-canonical divisor SGUT ⊆ B3. Therefore it must act skew-symmetrically
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on the anti-canonical section z defining SGUT. In [4] we showed that, while
x and w are symmetric with respect to the Z2-action on (1.3), y, z, and all
the aj have to be skew-symmetric.

The Heterotic Z2-action must preserve the initial E8-symmetry and
so the F -theory Z2-action must preserve initial E8-symmetry as well. In
short, the challenge is to begin with E8-symmetry on both the Heterotic
and F -theory sides and, for successive subgroups GR ≤ E8, to match break-
ing to GR-symmetry on the Heterotic side with simultaneous breaking to
GR-symmetry on the F -theory side throughout, ending with symmetry-
breaking toGR = SU (3)× SU (2)× U (1), the so-called Minimal Supersym-
metric Standard Model [MSSM].

As we showed in [4] , the necessity that Z2 must act as

dx

y
7→ −

dx

y

on the relative one-form of the elliptic fibration W4/B3 implies that it must
incorporate the central involution

−I8 : hEC
8
→ hEC

8

on the Cartan subalgebra of the complex algebraic group EC
8 at the outset

without breaking initial E8-symmetry on the quotients (1.1) and (1.2).
To achieve this, in [4] we proposed the method of replacing all roots ρ

with −ρ via the operation of complex conjugation on the complex algebraic
group EC

8 and all relevant subgroups GC, an operation that restricts to the
identity on all compact real forms GR. Since all the compact real forms
have faithful real matrix representations, this complex conjugation operator
will not affect GR-symmetry and will commute with the various symmetry-
breaking steps.

The purpose of this paper is to build the appropriate base space B3 of
the elliptically fibered F -theory model W4/B3 in such a way that the Z2-
action on B3 is exactly that induced by the complex conjugation operator on
the complex algebraic group SL (5;C). Therefore it will fix the compact real
form SU (5) so that the requisite Wilson line can be wrapped simultaneously
on the Z2-actions on the Heterotic and F -theory sides.
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1.1. Building B3 from the action of the Weyl group of SU (5) on
its complexified Cartan subalgebra

In fact we will build B3 as a quotient of the resolution of the projectivization
of the graph of

(exp (2πi · α) 7→ exp (2πi · (−α)))

on the maximal torus

exp
(

hSL(5;C)
)

by an action of the longest element of the Weyl group W (SL (5;C)). This
will allow the Z2-action on B3 to automatically commute with the action of
complex conjugation.

In later sections we will show that B3 as constructed will have the cor-
rect numerical characteristics so that the F -theory model (1.2) will have
the desired properties (3-generation, correct chiral invariants, no vector-like
exotics, etc.). The transfer of information between the F -theory and its Het-
erotic dual is the subject of a companion paper [4]. The application to the
production of the final phenomenologically consistent F -theory/Heterotic
duality is the subject of the final paper [5] in this sequence.

Remark 1. Throughout this paper, we will let

Pd−1
[i1,...,,id]

denote the weighted complex projective (d− 1)-space with weights
[i1, . . . , , id] and will let

P[u1,...,ud]

denote the (unweighted) complex projective space with homogeneous coor-
dinates [u1, . . . , , ud].

2. The spectral divisor

The role of the Tate form (1.3) is to break E8-symmetry to that of the first
summand of its maximal sub-group

SU (5)gauge × SU (5)Higgs

Z5
.

The crepant resolution W̃4/B3 of W4/B3 will have I5-type fibers over generic
points of

SGUT := {z = 0} ⊆ B3.
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The I5-fibration over SGUT carries the SU (5)gauge-symmetry. SU (5)Higgs-
symmetry is broken on a five-sheeted branched covering of B3 given by the
lift of

(2.1) CHiggs := W4 ·
({

wy2 = x3
}

− {w = 0}
)

to a divisor C̃Higgs ⊆ W̃4. Its symmetry is broken by assigning non-trivial
eigenvalues to the fundamental representation SU (5)Higgs using the spectral
construction with respect to the push-forward to B3 of a line bundle LHiggs

on C̃Higgs. We see this as follows.
In parallel to the construction for SU (5)gauge in [4], we imbed

hC
SU(5)

Higgs

↓(c2,c3,c4,c5)

(SGUT − {a0 = 0}) →
hC

SU(5)Higgs

W (SU(5))

in such a way that the image of W4 − {a0 = 0, w = 1} in C3 ×
hC

SU(5)Higgs

W (SU(5)) is
a family of rational double-point surface singularities. The above diagram
allows the Casimir operators cj to operate on the fundamental representation
of SU (5)Higgs with eigenvalues that are tracked via a spectral construction
[8, 9].

The Tate form (1.3) then records the above geometrically in W4/B3 by
considering it as a hypersurface in

P := P (OB3
⊕OB3

(2N)⊕OB3
(3N))

with fiber coordinate [w, x, y].

2.0.1. The spectral divisor. We define the map

P (OB3
⊕OB3

(N)) → P (OB3
⊕OB3

(2N)⊕OB3
(3N)) = P

[w, t] 7→
[

w, x = t2w, y = t3w
]

,

Dividing by w3 the inverse image of W4 in P (OB3
⊕OB3

(N)) has equation

(2.2) 0 = a5t
5 + a4zt

4 + a3z
2t3 + a2z

3t2 + a0z
5

We next blow up up the locus {t = z = 0} in P (OB3
⊕OB3

(N)) via

(2.3)

{∣

∣

∣

∣

t z
T Z

∣

∣

∣

∣

= 0

}

⊆ P (OB3
⊕OB3

(N))× P[T,Z]
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in which the proper transform of (2.2) becomes

(2.4) 0 = a5T
5 + a4ZT 4 + a3Z

2T 3 + a2Z
3T 2 + a0Z

5

defining the spectral divisor that we denote as D. In particular, the spectral
divisor expands the singular locus {x = y = z = 0} of W4. The condition
(1.4) implies that homogeneous form in (2.4) is divisible by Z − T , that is,
the spectral divisor admits a (4 + 1) factorization.

(2.5) D = D(4) +D(1) ⊆ B3 × P[T,Z]

given by the equation

(2.6)
0 = a5T

5 + a4ZT 4 + a3Z
2T 3 + a2Z

3T 2 + a0Z
5 =

(

a5T
4 + a54T

3Z − a20T
2Z2 − a0TZ

3 − a0Z
4
)

(T − Z)

where ajk := aj + ak. The involution β̃4/β3 of W4/B3 leaves (2.6) and each
of its two factors invariant.1

3. The role of the Cartan sub-algebra hSL(5;C)
gauge

3.1. Tracking roots

Again referring to [4] we track roots during symmetry-breaking from E8 to
the maximal subgroup

SU (5)gauge × SU (5)Higgs

Z5

on the F -theory side by returning to the Tate form

wy2 = x3 + a5xyw + a4zx
2w + a3z

2yw2 + a2z
3xw2 + a0z

5w3

where we divide both sides by a60, rescale by the rule

x
a2
0
→ x

y
a3
0
→ y

z
a0

→ z

1This 4 + 1 split is often written in terms of the variable s = Z/T , e.g. the factor
(Z − T ) becomes the factor (s− 1) used to remove 10{−4} states as in formula (70)
in [2]. In our case, the 4 + 1 split is global.
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and define the functions

cj =
aj
a0

on B′
3 := B3 − {a0 = 0}. By this rescaling we obtain the equation

(3.1) y2 = x3 + c5xy + c4zx
2 + c3z

2y + c2z
3x+ z5

in the variables (x, y, z) parametrized by the ‘free’ variables (c2, c3, c4, c5)
that we interpret as a family Vgauge of rational double-point surface singu-
larities. (See §4.1 of [4].)

Next by interpreting the cj as the SU (5) Casimir generators, we pull
the family Vgauge back to hSL(5;C)

gauge
by the map

(c2, c3, c4, c5) : hSL(5;C)
gauge

→
hSL(5;C)

gauge

W (SL (5;C))

where we were able to interpret it as a family of weighted homogeneous
polynomials of weight 30 that is therefore also obtained via pull-back from
a map to the semi-universal deformation of

(3.2) y2 = x3 + z5.

Next defining

(3.3) z :=

5
∑

j=2

κjαj

for general complex constants κj as in §4.1 of [4], we obtained morphisms

B′
3 →

hSL(5;C)

W (SL (5;C))

and

W ′
4 := W4 ×B3

B′
3 → Vgauge

for B′
3 = B3 − {a0 = 0}. Further we showed that the complex conjugation

operator ι induces equivariant involutions

(3.4) ((a0, a2, a3, a4, a5) , x, y, z) 7→ ((−a0,−a2,−a3,−a4,−a5) , x,−y,−z)

on W4/B3 and

((c2, c3, c4, c5) , x, y, z) 7→ ((c2,−c3, c4,−c5) , x,−y, z)
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on (3.1). This allowed us in [4] to interpret the equivariant crepant resolution
of (3.1) over hSL(5;C) as induced by the Brieskorn-Grothendieck equivariant
crepant resolution [3, 12] of the semi-universal deformation of (3.2) and
thereby track roots and the action

i · hSU(5)
gauge

× i · hSU(5)
Higgs

−I4×−I4−→ i · hSU(5)
gauge

× i · hSU(5)
Higgs

↓ ↓

i · hE8

−I8−→ i · hE8

of complex conjugation.

3.2. Notation distinguishing Weyl chambers

We will have a single Tate form defining our F -theory model W4 but ini-
tially we will have two desingularizations that we will denote as Ẇ4/Ḃ3 or
the ‘blue’ desingularization and as Ẅ4/B̈3 or the ‘red’ desingularization,
depending on whether we consider a given Weyl chamber of SU (5) or its
negative as the ‘positive’ Weyl chamber. Ḃ3 will be related to B̈3 by a Cre-
mona transformation representing the passage of each root to its negative.
Indeed it is the resolution of the graph of that transformation that will de-
termine our ultimate B3 and the quotient under its induced involution that
will be our ultimate B∨

3 .

4. S4 ⊆ W (SU (5))

Our strategy is now to identify a group G ≤ W (SU (5)) such that

hC
SU(5)

G
⊇ B′

3 ⊆ B3

gives rise to a phenomenologically correct F -theory model.

4.1. Building a toric B
∧

3 from SU (5) roots

A set of simple positive roots ordered by the A4-Dynkin diagram is given by

(4.1) {αi = ei − ei−1, }i=1,...,4 .
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One immediately checks that the permutation of the axes ej given by the
product of transpositions (e0e4) (e1e3) acts as

(

α1 α2 α3 α4

)









0 0 0 −1
0 0 −1 0
0 −1 0 0
−1 0 0 0









=
(

−α4 −α3 −α2 −α1

)

and so is the composition of −I4 with the unique symmetry of the A4-
Dynkin diagram. Therefore it is the unique longest element of W (SU (5)).
This symmetry fixes exactly one of the five axes, namely the axis e2, and
therefore lies the permutation subgroup

S4 = Perm {e0, e1, e3, e4} →֒ S5 = Perm {e0, e1, e2, e3, e4} = W (SU (5))

via the identification of the axis ej of the fundamental representation of
SU (5) with the root ej − e2. We use this fact to construct a root basis for
hC
SU(5) that is convenient for a toric construction of our ‘new’ B3.

We next project the root space along the e2-axis to obtain the vertices
of a 3-dimensional cube. Thus we place e2 at (0, 0, 0), the center of the cube
below (that we will denote as CUBE) whose eight vertices are (±1,±1,±1).
The elements {e0, e1, e3, e4} can be identified with the vertices of the blue
tetrahedron inscribed in CUBE

as follows:

e0 : (1,−1, 1)
e1: (1, 1,−1)
e3 : (−1,−1,−1)
e4 : (−1, 1, 1)

That is, {e0, e4} are the two ‘top’ blue vertices and {e1, e3} are the two
‘bottom’ blue vertices and their negatives are the four vertices of the red
tetrahedron. Circled vertices are those of the polyhedral fan.



✐

✐

“3-Clemens” — 2022/12/23 — 23:33 — page 334 — #10
✐

✐

✐

✐

✐

✐

334 H. Clemens and S. Raby

4.2. The Weyl group of SU (5) and the Cremona involution as
symmetries of the cube

The group of orientation-preserving symmetries of CUBE (or equivalently
the orientation-preserving symmetries of the inscribed green octahedron)
maps isomorphically to the permutation group of axes ±ej , that is,

S4 = Perm {{±e0} , {±e1} , {±e3} , {±e4}} ⊆ S5 = W (SU (5)) .

For example, ({±e0} {±e4}) ({±e1} {±e3}) is the rotation of CUBE
around the vertical axis through an angle of π. It gives the above longest ele-
ment of W (SU (5)). Rotation of the cube around the diagonal axis through
(1, 1, 1) through an angle of 2π/3 is the cyclic permutation ({±e0} {±e1}
{±e4}). A rotation with axis spanned by the midpoints of a pair of opposite
edges only flips the pair of axes given by the endpoints of the edges. We
will be especially interested in the commutator subgroup of the involution
({±e0} {±e4}) ({±e1} {±e3}) in S4.

Finally A4 ⊆ S4 is the subgroup of orientation-preserving symmetries
of the cube that preserve the blue tetrahedron and therefore also preserve
the red tetrahedron, so that the quotient S4/A4 interchanges the two. The
full symmetry group of CUBE is then generated by adjoining the cen-
tral, orientation-reversing element given by reflection through the origin
that we denote as C. It is the involution induced by C given by
(ei − e2 ↔ e2 − ei)i=0,1,3,4 on W4/B3 that will the yield the quotient F -
theory model W∨

4 /B
∨
3 with a Z2-action. It is the Z4-group generated by the

cyclic permutation ({±e0} {±e1} {±e4} {±e3}) that will lead to an asymp-
totic Z4 R symmetry on the semi-stable degeneration W4,0/B3,0 of W4/B3.
Notice that the Cremona involution C /∈ W (SU (5)), however C commutes
with all the elements of S4 ≤ W (SU (5)).

5. Toric geometry of B3

5.1. Coordinatizing roots

We choose U (4) ⊆ SU (5) via the inclusion

(5.1)

U (4) →֒ SU (5)

A 7→ Â :=

(

detA 0
0 A

)
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with maximal torus of SU (5) identified with diagonal unitary matrices A.
Logarithms of eigenvalue functions for the restriction of the adjoint repre-
sentation

AdSU(5) : SU (5) → GL (su (5)⊗ C)

to the maximal torus give the (root) linear operators on the complexified
Cartan subalgebra hC

SU(5) = hSL(5;C). We choose set of roots {ej − e2}j=0,1,3,4

as basis for
(

hC
SU(5)

)∗
as in the previous section. Exponentiating we let

x, y, z, w

denote the corresponding eigenvalue functions.

Remark 2. As is standard in the literature, we have used the letter z to
denote the form whose vanishing defines the anti-canonical divisor SGUT ⊆
B3. In several places below, we will abuse notation by also using each of the
letters x, y, z, w to denote one of the homogeneous coordinates [x, y, z, w] of
the P3 = P

(

hCA4

)

where hA4
denotes the Cartan subalgebra of SU (5). We

trust that the intended meaning of x, y, z, w in each instance will be clear
from the context.

Then we can make the identification

(5.2)

log x = e0 − e2
log y = e1 − e2
logw = e3 − e2
log z = e4 − e2.

giving a basis for the A4 root lattice. The distinguished Weyl chamber (4.1)
is given by the system of positive simple roots

(5.3)

α1 = e1 − e0 = log (y/x)
α2 = e2 − e1 = log (1/y)
α3 = e3 − e2 = logw

α4 = e4 − e3 = log (z/w) .

(Notice that the set (5.2) of roots is not a set of simple roots for a single Weyl
chamber, however it does span the root lattice.) We obtain 24 of the 120
Weyl chambers by the 24 permutations of {x, y, z, w} in (5.3). The longest
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element of the Weyl group is then given by

y/x ↔ w/z
1/y ↔ 1/w
w ↔ y

z/w ↔ x/y.

Passing from roots to their negatives corresponds to the Cremona trans-
formation

(5.4)

x ↔ 1
x

y ↔ 1
y

z ↔ 1
z

w ↔ 1
w

that in turn corresponds to the orientation-reversing symmetry of CUBE
given by reflection through the origin.

5.2. Tracking symmetry-breaking within the Cartan
subalgebra of EC

8

As mentioned above, the Tate form tracks symmetry breaking to

SU (5)gauge × SU (5)Higgs

Z5
→֒ E8.

As we have shown in [4] symmetry-breaking must be compatible with the
three-dimensional commutative diagram

(5.5)

SL (5;C)
κ̇
→֒ ĖC

8

↑ ↑ ↖
SU (5) → E8 ι

↓ ↓ ↙

SL (5;C)
κ̈
→֒ ËC

8

where the top row of (5.5) is mapped to the bottom row by the isomorphism
ι given by complex conjugation where ι induces the involutions

(5.6)
−I4 : hSL(5;C) → hSL(5;C)

−I8 : hEC
8
→ hEC

8
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on complex Cartan subalgebras. Identifying maximal tori also identifies

(5.7) hSL(5;C)
gauge

⊕ hSL(5;C)
Higgs

= hEC
8

as well as inducing the inclusion

W
(

SU (5)gauge

)

×W
(

SU (5)Higgs

)

→֒ W (E8) .

While −I8 is also the longest element the Weyl group W (E8), it does

not restrict to an element of the Weyl group W
(

SU (5)gauge

)

or an ele-

ment of the Weyl group W
(

SU (5)Higgs

)

. However −I8 and the pair of

longest elements in W
(

SU (5)gauge

)

×W
(

SU (5)Higgs

)

differ by the invo-

lutive symmetries of the two A4-Dynkin diagrams.
Our strategy will be to build B3 and its symmetries from the group

W
(

SU (5)Higgs

)

acting on on the right-hand sum in (5.7). Throughout we

maintain the relationship with W (E8) as per (5.6) and (5.7) so that the Z2-
action on B3, that we have denoted as β3 in [4] and [5] and interchangeably
as Cu,v below, acts as the composition of the complex conjugation −I8 on 5.7

and the longest element of W
(

SU (5)Higgs

)

on B3.

5.3. CUBE as a toric polyhedral fan

The standard toric presentation of P3 is given by a real vector space NR =
NZ ⊗ R = R3 with fan equal to the union of four strongly convex rational
polyhedral cones σxyz, σxyw, σxzw, σyzw ⊆ NR such that for the duals

S (σ) = {m ∈ Hom(NZ,Z) : m · σ ≥ 0}

the associated group algebras C [S (σ)] are identified with the respective
affine rings C [x/w, y/w, z/w], C [x/w, y/z, w/z], C [x/y, z/y, w/y], and
C [y/x, z/x,w/x]. The edges ex, ey, ez, ew of the fan are identified with the
four divisors on P3 given by the vanishing of the respective variables.

We have two such toric presentations of P3 in CUBE, one given by the
blue tetrahedron that we will denote as

Ṗ := P[ẋ,ẏ,ż,ẇ]

and the other given by the red tetrahedron that we will denote as

P̈ = P[ẍ,ÿ,z̈,ẅ].
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Both toric representations are given with respect to the same toric lattice
N∧, the one generated by either the red four or the blue four vertices of
CUBE. P[ẋ,ẏ,ż,ẇ] has toric fan given by the vertices of the blue tetrahedron
and P[ẍ,ÿ,z̈,ẅ] has toric fan given by the vertices of the red tetrahedron.

This allows us to use CUBE to torically represent the resolution of the
graph of the Cremona transformation (5.4). Namely the graph of the Cre-
mona transformation is given by the relations

(5.8) ẋẍ = ẏÿ = żz̈ = ẇẅ = 1

on the Zariski-open subset

{ẋ · ẏ · ż · ẇ ̸=0} × {ẍ · ÿ · z̈ · ẅ ̸=0} ⊆ P[ẋ,ẏ,ż,ẇ] × P[ẍ,ÿ,z̈,ẅ].

We define

B∧
3 :=

{

([ẋ, ẏ, ż, ẇ] , [ẍ, ÿ, z̈, ẅ]) ∈ P[ẋ,ẏ,ż,ẇ] × P[ẍ,ÿ,z̈,ẅ] :

ẋẍ = ẏÿ = żz̈ = ẇẅ = 1
}

as simply the closure of the graph of the Cremona transformation.
B∧

3 is a toric manifold with respect to the same toric lattice N∧. The
polyhedral fan has vertices at the eight vertices of CUBE together with
the six additional points (±2,0,0), (0,±2,0), and (0, 0,±2). These fourteen
vertices correspond to the fourteen toroidal divisors whose sum is the an-
ticanonical divisor of B∧

3 . The inclusion of cones generate two birational
morphisms

π̇ : B∧
3 → Ṗ

π̈ : B∧
3 → P̈.

The Cremona involution is given toroidally by the reflection C of CUBE
through the origin.

To further describe the toroidal divisors, we denote the red vertices of the
fan as eẋÿz̈ẅ, eẏẍz̈ẅ, eżẍÿẅ, eẇẍÿz̈ and the blue vertices as eẋẏżẅ, eẋẏẇz̈, eẋżẇÿ,
eẏżẇẍ. Set

eẋżÿẅ

the vertex above CUBE that lies on the ray through the origin that bisects
the segment joining eẋÿz̈ẅ and eżẍÿẅ. This same ray bisects the segment
joining eẋẏżẅ and eẋżẇÿ. This choice will force the top vertices of the cube
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to be

eẋÿz̈ẅ, eẋẏżẅ, eżẍÿẅ, eẋżẇÿ.

We use the analogous notation for the other five possible (2, 2)-partitions.
We obtain a toroidal fan:

The toroidal divisors are given by the vertices of the polyhedral fan pic-
tured above where the blue-red colorations of the variables in the monomial

xyzw

correspond to the decorations { ,̇ }̈ in P[ẋ,ẏ,ż,ẇ] × P[ẍ,ÿ,z̈,ẅ].
Passing from roots to their negatives corresponds to the orientation-

reversing symmetry of the above cube given by reflection through the origin.
The reflection also interchanges the blue tetrahedron with the red one. In
fact, the full subgroup S4 ⊆ W (SU (5)) of symmetries of CUBE acts the
set of decorated monomials, dividing them into sets with an even number of
blue variables and sets with an odd number of blue variables. The toroidal
divisors are just the restriction to B∧

3 of the divisors

(5.9)

Eẋÿz̈ẅ := {ẋ = 0} × {ÿ = z̈ = ẅ = 0} ⊆ Ṗ× P̈

Eẋżÿẅ := {ẋ = ż = 0} × {ÿ = ẅ = 0} ⊆ Ṗ× P̈

Eẏżẇẍ := {ẏ = ż = ẇ = 0} × {ẍ = 0} ⊆ Ṗ× P̈
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etc., where of course E· is the divisor given in toric notation by e·. For
example, the toric dictionary gives

Eẋÿz̈ẅ ↔ eẋÿz̈ẅ

and the normal bundle to Eẋÿz̈ẅ in P̃3 is

OEẋÿz̈ẅ
(−1,−1) .

So by adjunction

(5.10) K
P̃3 · Eẋÿz̈ẅ = OEẋÿz̈ẅ

(−1,−1) .

If we classify the above components (5.9) to be of type (1, 3), (2, 2), and
(3, 1) respectively, there are four divisors of type (3, 1), four divisors of type
(1, 3) and six divisors of type (2, 2). All non-empty intersections occur as
intersections of a component of type (2, 2) with a component of type (1, 3)
or (3, 1) obtained by changing the decoration on exactly one of its four
variables, for example

Eẋẏżẅ ∩ Eẋẏz̈ẅ = {ẋ = ẏ = ż = z̈ = 0} .

There are exactly 24 = 2·4!
2 such intersections, 12 projecting to a vertex in

Ṗ and an edge in P̈ and 12 projecting to a vertex P̈ and an edge in Ṗ. The
divisors of type (3, 1) are the four vertex rays in N∧

R
in the original toric

description of P3, those of type (1, 3) are the rays through the barycenters
of the cones and those of type (2, 2) are the rays through the barycenters of
the faces.

The anti-canonical bundle of B∧
3 is represented by 14-hedron given by

the (reduced) support of the total transform of the tetrahedron in Ṗ or in
P̈, that is

(5.11)

K−1
B∧

3
:= Eẋÿz̈ẅ + Eẏẍz̈ẅ + Eżẍÿẅ + Eẇẍÿz̈

+ Eẋżÿẅ + Eẋẏz̈ẅ + Eẋẇÿz̈ + Eẏżẍẅ + Eẏẇẍz̈ + Eżẇẍÿ

+ Eẏżẇẍ + Eẋżẇÿ + Eẋẏẇz̈ + Eẋẏżẅ.

5.4. Toric quotients of B∧

3

Next define the ‘over-lattice’

NZ =

{(

a

2
+

b

2
+

c

2

)

: (a, b, c) ∈ N∧, a+ b+ c ≡2 0

}

⊇ N∧
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inducing a toric quotient of B∧
3 . With respect to the lattice NZ, the poly-

hedral fan generated by the polyhedral fan for B∧
3 becomes

where the vertices of the fan are circled.
Now the six red-blue-green crossing points generate NZ. The green oc-

tahedron with vertices at the six red-blue-green crossing points

is the toric representation of

Pu,v := P[u0,v0] × P[u1,v1] × P[u2,v2]

where

[u0, v0] =
[

xz
yw

, yw
xz

]

[u1, v1] =
[

xy
zw

, zw
xy

]

[u2, v2] =
[

xw
yz

, yz
xw

]

and again circled vertices are those of the polyhedral fan. The toric Pu,v

is invariant under the the action of the longest element ((e0e4) (e1e3)) of
W (SU (5)), namely the toric involution given by

P[u1,v1] × P[u2,v2]
((e0e4)(e1e3))

−→ P[u1,v1] × P[u2,v2]

([u1, v1] , [u2, v2]) 7→ ([v1, u1] , [v2, u2]) .

We will distinguish the ’vertical’ P1 = P[u0,v0]. Thus {u0 = 0} will corre-
spond to the ’top’ of the cube and {v0 = 0} will correspond to the ’bottom.’
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Our distinguished ’vertical’ P[u0,v0] in CUBE is the one spanned by

fẋżÿẅ :=
1

2
· eẋżÿẅ and fẏẇẍz̈ = −fẋżÿẅ

that is, this P1 is the one corresponding to the partition ({x, z} , {y, w}) of
{x, y, z, w}. Analogously we have P[u1,v1] corresponding to the fan vertices

fẋẏz̈ẅ and fżẇẍÿ = −fẋẏz̈ẅ,

and finally P[u2,v2] corresponding to the fan

fẋẇÿz̈ and fẏżẍẅ = −fẋẇÿz̈.

The following Lemma then follows immediately from the toroidal pic-
ture together with the fact that the Cremona involution on B∧

3 reverses the
decorations on the xyzw-monomials, whereas the action of S4 permutes the
variables x, y, z, w.

Lemma 3. i) The involution

Cu,v : Pu,v → Pu,v

induced by the Cremona involution C on B∧
3 is given by

[uj , vj ] 7→ [vj , uj ]

for j = 0, 1, 2.
ii) The Z4-action by the cyclic permutation

(5.12) T0 := ({±e0} {±e1} {±e4} {±e3})

is a rotation of 90° of the green octahedron shown above in this Subsection
around its vertical axis.

iii) The cyclic permutation ({±e0} {±e1} {±e4} {±e3}) is the Z4-action
on P[u1,v1] × P[u2,v2] generated by

[u1, v1] , [u2, v2]
T0−→ [u2, v2] , [v1, u1]

that we also denote as T0.
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iv) Replacing the homogeneous coordinates [u0, v0] for P[u0,v0] with the
single affine coordinate u0−v0

u0+v0
, there exists a Z4-action that we denote as

Tu,v on B3 = P[u0,v0] ×B2 defined by

(

u0 − v0
u0 + v0

, [u1, v1] , [u2, v2]

)

(5.13)

Tu,v

−→

(

i ·

(

u0 − v0
u0 + v0

)

, T0 ([u1, v1] , [u2, v2])

)

.

iii) Furthermore

(5.14)
T 2
u,v

(

u0−v0

u0+v0
, [u1, v1] , [u2, v2]

)

=
(

v0−u0

u0+v0
, [v1, u1] , [v2, u2]

)

.

= Cu,v

(

u0−v0

u0+v0
, [u1, v1] , [u2, v2]

)

.
.

6. B2, B3 and their symmetries

The toroidal blow-up of Pu,v at the eight points of

{u0v0 = u1v1 = u2v2 = 0}

as shown in the previous Section cannot be chosen for B3 since its anti-
canonical line bundle is far from ample. In fact it is given by sections
of OPu,v

(2, 2, 2) that vanish to second order at the eight vertices {u0v0 =
u1v1 = u2v2 = 0} and therefore also vanish to first order along all the edges
of CUBE. So its anti-canonical linear system will not be basepoint-free which
will be necessary for our geometric model. Furthermore it has

(

K−1
)3

= −16.

On the other hand K−1
Pu,v

is ample with

(

K−1
Pu,v

)3
= 48.

In our application to W4/B3 we will need the linear system
∣

∣K−1
B3

∣

∣ basepoint-
free and, in particular, for three-generation we will need

(6.1)
(

K−1
B3

)3
= 12.

To achieve (6.1), we will modify

PB2
:= P[u1,v1] × P[u2,v2].
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Since each blown up point on PB2
reduces

(

K−1
B3

)3
by six, we will need to blow

up PB2
at six points. Furthermore, in order that the F -theory model incor-

porate an eventual Z4-action that induces asymptotically a Z4 R-symmetry,
the six points will have to comprise the union of two orbits of the Z4-action.

The fan of the toric representation of PB2
is the horizontal square of the

green octohedron in the above figures also shown as the tilted square in the
diagram below. We blow up PB2

torically by adjoining the vertices (1, 1) and
(−1,−1) to its fan to obtain the toric fan of D6. But this polyhedral fan can
also be viewed as the toric fan P2 = P[a,b,c] blown up at the three points with
only one non-zero coordinate. It is obtained by adjoining the three vertices
(1, 1),(−1, 0) and (0,−1) to the isosceles triangle fan of P[a,b,c].

In fact this isomorphism is given explicitly by the correspondence

P[a,b,c] PB2
Fan vertex

blow up {a = b = 0} blow up {u1 = u2 = 0} (1, 1)

proper transform {a = 0} proper transform {u2 = 0} (1, 0)

blow up {a = c = 0} proper transform {v1 = 0} (0,−1)

proper transform {c = 0} blow up {v1, v2 = 0} (−1,−1)

blow up {b = c = 0} proper transform {v2 = 0} (−1, 0)

proper transform {b = 0} proper transform {u1 = 0} (0, 1)

We next analyze in detail the construction of the del Pezzo surface B2

for B3 = P[u0,v0] ×B2.

6.1. The del Pezzo B2 and its symmetries

To achieve a Fano B3 = B2 × P[u0,v0] necessary for the F -theory dual, B2

must be a del Pezzo surface. By Castelnuovo’s Rationality Theorem, the
Z2-action on B2, that we call β2, cannot be free. On the other hand, β2
must have at most finite fixpoint set since otherwise the Z2-action β3 on B3

cannot act freely on the ample anti-canonical section SGUT ⊆ B3, a necessary
condition for an F -theory model with Wilson-line symmetry breaking. Now
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by Table 6 and Figure 10 in [1], there is one and only one sequence of del
Pezzo surfaces with involution having finite fixpoint set. These are the four
entries in Table 6 that have no entry in either the Σ column nor in the
R column. The sequence is represented in Figure 10 by the left vertical
column that begins with P[u1,v1] × P[u2,v2] and proceeds by blowing up three
additional pairs of points to obtain the phenomenologically desirable dP7 =
D2, the standard mathematical notation for the family of del Pezzo surfaces
whose anti-canonical divisor has self-intersection 2.2

We will also need the Z4-symmetry inherited from a square root of the
longest element of the Weyl group of SU (5) as in Lemma 3 T0 acts as

(6.2) u1 7→ u2 7→ v1 7→ v2 7→ u1

on the blown up P[u1,v1] × P[u2,v2]. Whether or not B2 is del Pezzo will, as
we see next, depends on on the choice of the orbit of the Z4-symmetry
on P[u1,v1] × P[u2,v2] generated by T0, a cyclic element of the Weyl group of
SU (5) whose square is its longest element.

Theorem 4. For generic choice of the orbit of the action (6.2), the result-
ing B2 is a del Pezzo surface.

Proof. The proof will first transfer the Z4-action from P[u1,v1] × P[u2,v2] to
P[a,b,c] and then check general position for points of an orbit, that is, no
three points of the seven blown up point lie on a line and no six points lie on
a conic. The birational passage from P[u1,v1] × P[u2,v2] to P[a,b,c] is given as
follows. An orbit of the Z4-action (6.2) on P[u1,v1] × P[u2,v2] can be written
as

([u1, v1] , [u2, v2]) =
([

u1

v1
, 1
]

,
[

u2

v2
, 1
])

([u2, v2] , [v1, u1]) =
([

u2

v2
, 1
]

,
[

v1

u1
, 1
])

([v1, u1] , [v2, u2]) =
([

v1

u1
, 1
]

,
[

v2

u2
, 1
])

([v2, u2] , [u1, v1]) =
([

v2

u2
, 1
]

,
[

u1

v1
, 1
])

that translates to

(6.3)

(a, b)
(

b, a−1
)

(

a−1, b−1
)

(

b−1, a
)

2More precisely, ’phenomenologically desirable’ equates to ’3-generation, one
Higgs doublet, and no vector-like exotics.’
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that together with (0, 0), (∞, 0) and (0,∞) become the seven blown-up
points in P[a,b,c] by setting c = 1. One immediately checks that for general
choice of a and b the slopes of the four points in (6.3) are distinct and non-
zero. So no line containing two of the points that are blown up contains any
of the 5 other points that are blown up. Also conics through 6 of the 7 points
fall into one of the two cases:

1) Parabolas with horizontal or vertical major axis containing ((0.0))
and so of the form

(6.4) y = cx (x− 2d)

containing all four points of (6.3). Therefore

(a, b) : b = ca (a− 2d) c = b
a(a−2d)

(

b, a−1
)

: a−1 = cb (b− 2d) c = a−1

b(b−2d)
(

a−1, b−1
)

: b−1 = ca−1
(

a−1 − 2d
)

c = b−1

a−1(a−1−2d)
(

b−1, a
)

: a = cb−1
(

b−1 − 2d
)

c = a
b−1(b−1−2d)

so by high school algebra we obtain a polynomial relationship between a
and b

b
a(a−2d) =

a−1

b(b−2d) :
b3−a
b2−1 = 2d

b
a(a−2d) =

b−1

a−1(a−1−2d) :
ba−2−b−1a2

ba−1−b−1a
= 2d

a
(

b3 − a
) (

b2 − a2
)

=
(

b2 − 1
) (

b2 − a4
)

.

2) Hyperbolae with the two coordinate axes as asymptotes and so of the
form

(6.5) (x− c) (y − d) = e

containing all four points of (6.3) or

(6.6) xy − (cy + dx) = 0

containing three four points of (6.3). In the case of (6.5)

(a, b) : (a− c) (b− d) = e
(

b, a−1
)

: (b− c) (1− ad) = ae
(

a−1, b−1
)

: (1− ac) (1− bd) = abe
(

b−1, a
)

: (1− bc) (a− d) = be.



✐

✐

“3-Clemens” — 2022/12/23 — 23:33 — page 347 — #23
✐

✐

✐

✐

✐

✐

F -theory over a Fano threefold built from A4-roots 347

So

a (a− c) (b− d) = (b− c) (1− ad)
ab (a− c) (b− d) = (1− ac) (1− bd)
b (a− c) (b− d) = (1− bc) (a− d)

and so

d = (b−c)−a(a−c)b
(b−c)a−a(a−c)

d = 1−ac−ab(a−c)b
(1−ac)b−ab(a−c)

d = a(1−bc)−b2(a−c)
(1−bc)−b(a−c) .

As above this gives us two linear equations in c with coefficients that are
polynomials in (a, b). Again as above solving each for cand setting the two
expressions for c equal to each other we get a non-trivial polynomial equation
in (a, b) that must be satisfied so that this conic passes through the six given
points. The case (6.6) is similar. We have three linear equations in (c, d).
Use pairs of these to eliminate d and then set the two expression for c equal
to each other to get a non-trivial polynomial relation in (a, b) that must be
satisfied.

We have therefore shown that if (a, b) does not satisfy any of the above
finite number of polynomial equations, then D6 blown up at the orbit of
(a, b) under the Z4-action is a del Pezzo surface. □

Thus for generic choice of (a, b) the resulting dP7 is in fact a del Pezzo
surface D2. We define

B2 = D2

with

B3 = P[u0,v0] ×B2.

Then we will consider the specialization of (6.2) under the specialization

(

B3 = P[u0,v0] ×B2

)

⇒
(

B3,0 =
(

P[1,a] ∪ P[1,b]

)

×B2

)

to the semi-stable degeneration such that the limit that encodes the structure
of the Heterotic model. Tu,v will act equivariantly on our degenerating family
of Calabi-Yau fourfolds that we will denote W4,δ/B3,δ with δ denoting the
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parameter for the degenerating family of fourfolds. Actually for all δ ̸= 0

B3 = B2 × P[u0,v0]
∼= B3,δ

but at δ = 0 , while B2 remains stationary, we will have the P1-splitting

P[u0,v0] ⇒ P[1,a] ∪ P[1,b]

that will force W4,0 to split into two components dPa/
(

B2 × P[1,a]

)

and
dPb/

(

B2 × P[1,b]

)

. We will thereby equip the semi-stable limit

(6.7)
W4,0/B2 = (dPa ∪ dPb) /B2

V3/B2 = (dPa ∩ dPb) /B2

with an ’asymptotic Z4 R-symmetry.’ The action of the element of order 2
in Z4 is simply the Z2-action β3 employed in (1.2) and papers [4, 5]. This
passage to the semistable limit will be defined and described in detail in
Section 9 of this paper.

6.2. Eigenvectors and eigenvalues for the Z4 symmetry on B3

By Theorem 4, blowing up D6 at the four additional points (6.3) of a generic
orbit of T0 yields a del Pezzo D2 if the four points are in general position.
Since Dr for r < 6 is no longer toric, we have to leave the family of toric
varieties in order to achieve a smooth threefold with the correct numerical
invariants. Now any four points on P[a,b,c] in general position are the base
locus of a pencil of conics on which T0 should act. This action has two
fixpoints q1 (a, b, c) and q2 (a, b, c) and the blow-up of D6 at the four points
given us by the smooth divisor

(6.8)

{∣

∣

∣

∣

q1 q2
k l

∣

∣

∣

∣

= 0

}

⊆ D6 × P[k,l].

T0 also acts equivariantly on the mapping

(6.9) B2 → P
(

H0
(

K−1
B2

))

∼= P2

that turns out to be a double cover with branch locus a smooth quartic
plane curve R ⊆ P

(

H0
(

K−1
B2

))

. We define q[1,0,0], q[0,1,0], q[0,0,1] as the conic
in the pencil (6.8) containing the point indicated by its respective subscript.
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Then
a · q[1,0,0]
b · q[0,1,0]
c · q[0,0,1]

are a basis for the anti-canonical linear system of B2. It turns out that

t1 = log a
t2 = log b
t3 = log c

are natural coordinates for H0
(

K−1
B2

)

so that the final choice of B2 should
be such that, referring to (6.3),

B2 =
{

t20 = f4 (t1, t2, t3)
}

such that the generator T0 of the Z4-action

(log a, log b)
(log b,− log a)
(− log a,− log b)
(− log b, log a) ,

that is, T0 should be an automorphism of B2 the form

(t0; [t1, t2, t3]) 7→


det





0 −1 0
1 0 0
0 0 −1



 · t0;





(

t1 t2 t3
)





0 −1 0
1 0 0
0 0 −1













This automorphism of B2 has characteristic polynomial

λ4 − 1

λ− 1
= λ3 + λ2 + λ+ 1.

In fact we can demand that AutB2 is the entire symmetry group of CUBE,
namely

S4 × Z2 = signedS3,

where

B2 =
{

t20 = t41 + t42 + t43 + α
(

t21t
2
2 + t21t

2
3 + t22t

2
3

)}

.

By elementary algebra there are then bitangent lines toR that we will de-
note as {m1 := cαt1 + t2 = 0} and {m2 := t1 − cαt2 = 0} respectively. Then
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m1 ◦ T0 = m2

m2 ◦ T0 = −m1

with eigenvectors

m+i := m1 − i ·m2

m−i := m1 + i ·m2

indexed by eigenvalues for the action of T0 on H0
(

K−1
B2

)

. The third eigen-
value must be −1. Let n−1 denote the associated eigenvector. In what follows
and associated paper, it will be convenient to appeal to two sets of coordi-
nates for P

(

H0
(

K−1
B2

))

, one being the coordinates P[n−1,m+i,m−i] given by
eigenvectors and the other being P[n0,m1,m2] incorporating the defining forms
for the bitangent lines defined above. To avoid notational confusion

n0 = n−1

defines the same line in P
(

H0
(

K−1
B2

))

but the different index indicates which
coordinate system we are referring to. Then

(6.10)
T ∗
0 (n0) = n0 ◦ T0 = −n0

T ∗
0 (m1) = m1 ◦ T0 = m2

T ∗
0 (m2) = m2 ◦ T0 = −m1

and

(6.11)
T ∗
0 (n−1) = n−1 ◦ T0 = −n0

T ∗
0 (m+i) = m+i ◦ T0 = i ·m+i

T ∗
0 (m−i) = m−i ◦ T0 = −i ·m1.

With respect to the direct-sum decomposition

(6.12) H0
(

K−1
B2

)

= H0
(

K−1
B2

)[+1]
⊕H0

(

K−1
B2

)[−1]

induced by the involution T 2
B2

the first summand is generated by a single
section n0 while the second summand is the two-dimensional T 2

0 -eigenspace
with eigenvalue −1. The second summand is spanned by any two of the four
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vectors

m1,m2,m+i,m−i.

For B3 = B2 × P[u0,v0], the restriction map

(6.13) H0
(

OP[n0,m1,m2]
(1)⊠OP[u0,v0]

(2)
)

→ H0
(

K−1
B3

)

is an isomorphism. Therefore we can write

Tu,v

(

u0 − v0
u0 + v0

, ([n−1,m+i,m−i])

)

=

(

i ·

(

u0 − v0
u0 + v0

)

, T0 ([n−1,m+i,m−i])

)

on H0
(

OP[n−1,m+i,m−i]
(1)⊠OP[u0,v0]

(2)
)

or equivalently

Tu,v

(

u0 − v0
u0 + v0

, ([n0,m1,m2])

)

=

(

i ·

(

u0 − v0
u0 + v0

)

, T0 ([n0,m1,m2])

)

on H0
(

OP[n0,m1,m2]
(1)⊠OP[u0,v0]

(2)
)

. We sum up as follows.

Lemma 5. i)
∣

∣

∣
K−1

P[u0,v0]×B2

∣

∣

∣
is basepoint-free. Also

h0
(

K−1
P[u0,v0]×B2

)

= 9

and

hk
(

K−1
P[u0,v0]×B2

)

= 0

for k > 0.
ii) The quotient

(

P[u0,v0] ×B2

)∨
=

P[u0,v0] ×B2

{Cu,v}

carries a faithful Z2-action Tu,v.
iii) Under the branched double cover

B2 → P[n0,m1,m2]

and the six exceptional curves of D6 listed in the Table at the beginning
of this Section specialize to S3 ≤ Aut (B2) and to bitangents of the branch
curve R. In particular, {m1 = 0} and {m2 = 0} are bitangents to the branch
locus R and satisfy

C∗
u,v (m1) = −m1

C∗
u,v (m2) = −m2.
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Proof. i)

K−1
B3

= K−1
B2

⊠K−1
P[u0,v0]

.

Now use the Künneth formula and the Kodaira Vanishing Theorem.
ii) The Z4-action on B3 is the action Tu,v as constructed above. Since

Cu,v and TB2
commute and T 2

u,v = Cu,v, the action descends to a faithful
Z2-action on the Cu,v-quotient B

∨
3 .

iii) Classical fact deriving from the fact that B2 is the projection of
a cubic surface in P3 from one of its points. Under this projection plane
sections spanned by one of the 27 lines and the center of projection map to
bitangent lines to R ⊆ P[n0,m1,m2] as does the plane section tangent to the
cubic at the center of projection. So the claim follows from the corresponding
assertion for a cubic surface with S3 symmetry. □

We have the direct-sum decomposition

(

πB∨

3

)

∗
K−1

B2×P[u0,v0]
= K−1

B∨

3
⊕
(

K−1
B∨

3
⊗OB∨

3
(εe,v)

)

and, referring to (5.12) and (5.13), we have the following tables of eigenvec-
tors and values for actions on anti-canonical forms on B3,δ:

Table 1: Tu,v Cu,v

h0
(

K−1
B∨

3,0

)

= 4

Cu,v (w) = w
Cu,v (x) = x
Cu,v (y) = −y
Cu,v (z) = −z

(u0 + v0)
2 · n−1 −1 +1

(u0 − v0)
2 · n−1 +1 +1

(

u20 − v20
)

·m−i −1 +1
(

u20 − v20
)

·m+i +1 +1
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Table 2: Tu,v Cu,v

h0
(

K−1
B∨

3,0
⊗OB∨

3
(εu,v)

)

= 5

Cu,v (w) = w
Cu,v (x) = x
Cu,v (y) = −y
Cu,v (z) = −z

(u0 + v0)
2 ·m−i −i −1

(u0 + v0)
2 ·m+i +i −1

(u0 − v0)
2 ·m−i +i −1

(u0 − v0)
2 ·m+i −i −1

(

u20 − v20
)

· n−1 =: z0 −i −1

Lemma 6. The anti-canonical linear system
∣

∣

∣
H0

(

K−1
B∨

3

)∣

∣

∣
is numerically

effective (nef) and big . It has two basepoints

({[1,±1]} × {1, 0, 0}) ∈ P[(u2
0+v2

0),u0v0] × P[n0,m1,m2].

Therefore S∨
GUT is a ’hyperelliptic’ Enriques surface. The rational mapping

φ : S∨
GUT 99K P3

induced by the linear system is resolved be a simple blow-up of the two base-
points iyielding a 2− 1 morphism

φ̃ : S̃∨
GUT → P3

onto a smooth quadric surface P[(u2
0+v2

0),u0v0] × P[m1,m2] where the image the
two exceptional curves is {[1,±1]} × P[m1,m2].

Proof. By direct computation with Table 2 just above, S∨
GUT is identified as

being in case 2c for n = 3 in Theorem 3.2.2 of [13]. Key to this classification
is the fact that in Table 2 all five sections vanish at ([±1, 1], [1, 0, 0]). □

7. Requirements for the Tate form

For the purposes of obtaining phenomenologically consistent numerical data,3

we utilize the B∧
3 -divisors E· in (5.9) and their corresponding rays e· in the

3“...phenomenologically consistent numerical data” refers to the necessity of hav-
ing three 10 and no 1̄0-representations over the matter curve Σ

(4)
10

, three 5̄ and no

5-representations over the matter curve Σ
(41)

5̄
, as well as having exactly one Higgs

doublet over the Higgs curve Σ
(44)

5̄
.



✐

✐

“3-Clemens” — 2022/12/23 — 23:33 — page 354 — #30
✐

✐

✐

✐

✐

✐

354 H. Clemens and S. Raby

lattice N∧. We let the ray f· denote the same ray in the lattice N and denote
the corresponding divisor as F·. Recalling that the fan used in the construc-
tion of B3 contains the ray generated by fẋżÿẅ as well as its negative −fẋżÿẅ
corresponding to the divisors {u0 = 0} and {v0 = 0} respectively.

The Tate form of our eventual F -theory model W4/B3 is written as

y2w = x3 + a5xyw + a4zx
2w + a3z

2yw2 + a2z
3xw2 + a0z

5w3.

The spectral divisor is given by the equation

0 = a5t
5 + a4t

4z + a3t
3z2 + a2t

2z3 + a0z
5

where t = y
x
. By Table 2 above, dimH0

(

K−1
B3

)

= 5 so the spaces

C · u0v0m1 + C ·
(

v20 + u20
)

m2 + C · z

and

C·a4 + C·a3 + C·a2

have a one-dimensional intersection generated by

λ1 · u0v0m1 + λ2 ·
(

v20 + u20
)

m2 + z
= κ4·a4 + κ3·a3 + κ2·a2.

Lemma 7. In order to have the relation

z = κ5·a5 + κ4·a4 + κ3·a3 + κ2·a2

required in §4 of [4], define

(7.1) a5 = −
(

λ1 · u0v0m1 + λ2 ·
(

v20 + u20
)

m2

)

where {mj = 0}
j=1,2 define a distinguished two-orbit of the action of T0 on

the 28 bitangents to the branch locus of B2/P[n0,m1,m2].
4 This pair of Cu,v-

4This assumption is critical so that our model satisfies the condition of three-
generation
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invariant bitangents {mj = 0}
j=1,2 then lifts into the image of

Fẋżÿẅ =
{eẋżÿẅ

2
= 0

}

⇒ {u0 = 0}

and into

Fẏẇẍz̈ =
{eẏẇẍz̈

2
= 0

}

⇒ {v0 = 0} .

Also
(

v20 + u20
)

mj , u0v0mj ∈ H0
(

K−1
B3

)[−1]
.

Therefore, for all allowable choices of z ⊆ H0
(

K−1
B3

)[−1]
there are rational

curves

(7.2)
F+ ⊆ {z = 0} ∩ Fẋżÿẅ

F− ⊆ {z = 0} ∩ Fẏẇẍz̈

lying in SGUT with intersection matrix

· F+ F−

F+ −2 0
F− 0 −2.

Cu,v interchanges F+ with F−. We choose the remaining aj and z and t = y
x

in the space generated by the forms in Table 2.

Additionally we choose t ∈ H
(

K−1
B3

)[−1]
so that it vanishes on {z =

u0v0 = m2 = 0}. This choice guarantees that the surfaces

(7.3) (SGUT ∩ ({u0v0 = m2 = 0}))× P[t,z]

lie in the spectral divisor 2.5), in fact in the component D(4) of

(7.4) D :=
{

a5t
5 + a4t

4z + a3t
3z2 + a2t

2z3 + a0z
5 = 0

}

⊆ P[t,z] ×B3.

Proof. We need only prove the last statement. We have chosen

(7.5) t = l (n0,m1,m2) · u0v0 + q (u0, v0) ·m2

namely as a generic section containing {u0v0=m2=0}⊆P[u0,v0]×P[n0,m1,m2]

and

z = λ1m1 · u0v0 + λ2 ·
(

v20 + u20
)

m2 +

4
∑

j=2

κj · aj
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in (7.1). Since {u0v0 = m2 = 0} ⊆ {z = 0},
∑4

j=2 κj · aj must also vanish
there. That is, we can write

(7.6) z = l′ (n0,m1,m2) · u0v0 ·+q′ (u0, v0) ·m2.

Since all sections of H0 (OB3
(N)) are pull-backs of sections of

H0
(

OP[u0,v0]×P[n0,m1,m2]
(N)

)

under the branched double cover

B3 = P[u0,v0] ×B2 → P[u0,v0] × P[n0,m1,m2],

we first consider (7.4) as an equation over P[u0,v0] × P[n0,m1,m2] . We consider
the blow-up of (7.4) in

P[u0,v0] × P[n0,m1,m2] × P[T,Z]

defined by

t = T · ξ
z = Z · ξ

so that from (7.4)

∣

∣

∣

∣

a4t
2z3 + a2t

2z2 + a0z
5 1

−
(

a5t
5 + a3t

3z2
)

1

∣

∣

∣

∣

= ξ5 ·

∣

∣

∣

∣

a4T
2Z3 + a2T

2Z2 + a0Z
5 1

−
(

a5T
5 + a3T

3Z2
)

1

∣

∣

∣

∣

.

By (7.5) and (7.6)

∣

∣

∣

∣

q −l
u0v0 m2

∣

∣

∣

∣

=

∣

∣

∣

∣

q′ −l′

u0v0 m2

∣

∣

∣

∣

= 0

and the fact that the matrix

(

q −l
q′ −l′

)

is everywhere of rank at least one, the proper transform

(7.7)
D :=

{∣

∣

∣

∣

a4T
2Z3 + a2T

2Z2 + a0Z
5 1

−
(

a5T
5 + a3T

3Z2
)

1

∣

∣

∣

∣

= 0

}

⊆ P[u0,v0] × P[n0,m1,m2] × P[T,Z].
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contains the surface

{ξ = 0} ∩ D =
(

{u0v0 = m2 = 0} × P[T,Z]

)

⊆
(

P[u0,v0] × P[n0,m1,m2]

)

× P[T,Z]

projecting to

{u0v0 = m2 = 0} ⊆ {z = 0} ⊆
(

P[u0,v0] × P[n0,m1,m2]

)

.

With respect to the branched double cover

P[u0,v0] ×B2 →
(

P[u0,v0] × P[n0,m1,m2]

)

we have a cartesian diagram

D → B3 × P[T,Z]

↓ ↓
D′ →

(

P[u0,v0] × P[n0,m1,m2]

)

× P[T,Z].

The pull-back of the the exceptional set

{ξ = 0} ∩ D′ ⊆
(

P[u0,v0] × P[n0,m1,m2]

)

× P[T,Z]

to B3 × P[T,Z] is the reducible surface

(7.8)
(

F± ∪ F opp
±

)

× P[T,Z] ⊆ B3 × P[T,Z]

where F± ∪ F opp
± denote the components of {m2 = 0} in {u0 = 0} ×B2 and

{v0 = 0} ×B2 respectively. So the spectral divisor

(7.9)
D :=

{

a5T
5 + a4T

4Z + a3T
3Z2 + a2T

2Z3 + a0Z
5 = 0

}

⊆ B3 × P[T,Z]

contains the four-component divisor

(

F+ × P[T,Z]

)

+
(

F− × P[T,Z]

)

+
(

F opp
+ × P[T,Z]

)

+
(

F opp
− × P[T,Z]

)

entirely supported in SGUT × P[T,Z] . Therefore the divisor

(7.10)
(

F+ × P[T,Z]

)

−
(

F− × P[T,Z]

)

on D pushes forward to the trivial divisor on B3 but restricts to a non-
trivial divisor on the threefold SGUT × P[T,Z]. Furthermore the difference
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(F+ − F−) defines a non-trivial line bundle on SGUT that has degree zero
with respect to the polarization N . Additionally β3 = Cu,s exchanges F+

with F−. These numerics will allow us to define a Higgs line bundle with the
correct numerical invariants. □

To prevent the existence of vector-like exotics in our F -theory model,
we have required

(7.11) a5 + a4 + a3 + a2 + a0 = 0

so that the section of P/B3 given by

(7.12)
x = z2w
y = z3w

lies inW4. Furthermore this additional assumption forces the spectral divisor
D given by (7.4) to become reducible, with one component given by t = z,
and the other component of degree 4. More precisely

a5t
5 + a4t

4z + a3t
3z2 + a2t

2z3 + a0z
5 =

(t− z)
(

a5t
4 + a54t

3z − a20t
2z2 − a0z

3t− a0z
4
)

where a54 = a5 + a4 and a20 = a2 + a0, etc.

Referring to (3.4) and [5], the Higgs curve Σ
(44)

5̄
is derived from the

surface in D(4) defined by common solutions to the Cu,v-equivariant system
of equations

(7.13)
a5t

4 − a20t
2z2 − a0z

4 = 0
a54t

2 − a0z
2 = 0.

It doubly covers the surface in B3 defined by the resultant equation that,
using a54320 = 0, reduces to

(7.14)

∣

∣

∣

∣

a4 −a5
a3 + a0 a3

∣

∣

∣

∣

= 0

with branch locus defined by the restriction of the divisor class N .

The matter curve Σ
(41)

5̄
is given by the common solutions to

a420 = z = 0.

The other matter curve Σ
(4)
10 is given by

a5 = z = 0.
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7.1. Numerology of divisors on SGUT

Furthermore (6.1) implies that the genus of Z := N · SGUT is 7 and

(7.15) {u0 = 0} ·N2 = {v0 = 0} ·N2 = 2

where, as above, we denote K−1
B3

= OB3
(N).

Proposition 8. The line bundle OB3
(N) is ample and the line bundle

OB3
(2N) is very ample.

Proof. The line bundleOB3
(N) is the pull-back of the very ample line bundle

OP[u0,v0]
(2)⊠OP[n0,m1,m2]

(1) on P[u0,v0] × P[n0,m1,m2]. By Tables 1&2 above,
the pull-back map

H0
(

OP[u0,v0]×P[n0,m1,m2]
(N)

)

→ H0 (OB3
(N))

is an isomorphism. However the injective pull-back map

H0
(

OP[u0,v0]×P[n0,m1,m2]
(2N)

)

→ H0 (OB3
(2N))

has a one-dimensional cokernel generated by the quartic ramification locus
of the branched double cover B2/P[n0,m1,m2] and therefore contains sections
that separate the two sheets. □

To understand the use of these surfaces, one must consider the image
OB3

(2N) is very ample.

CHiggs = C
(4)
Higgs ∪ τ̃ (B3) ⊆ W̃4

of the spectral divisor D in the canonical crepant resolution W̃4 constructed
above. SGUT ⊆ B3 has canonical lifting

S̃GUT ⊆ CHiggs ⊆ W̃4

by means of which the Higgs line bundle is pushed forward to a line bundle
on the divisor CHiggs.
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The push-forward of multiples of this line bundle on SGUT ⊆ B3 will be
denoted as

OSGUT
(m (F+ − F−)) .

The push-forward to SGUT ⊆ B3 of the restriction of the Higgs line bundle
LHiggs to S̃GUT will then become

OSGUT
(N +m (F+ − F−))

for appropriate m where N is the anti-canonical divisor of B3 (again re-
stricted to SGUT). This twisting of the restriction of K−1

B3
by this degree-

zero line bundle is exactly the modification that removes first cohomology
of LHiggs on the matter curves and, by a classical theorem in the theory of
Prym varieties, drops the number of Higgs doublets to one.

Also in our eventual F -theory model, SGUT = {z = 0} will be linearly
equivalent to N , matter curves will have divisor class

Z := SGUT ·N

and the Higgs curve Z2 on SGUT will have class 2Z.
Since B2 is a del Pezzo surface, its anti-canonical bundle is ample as is

the anti-canonical bundle

K−1
B2

⊠K−1
[u0,v0]

allowing us to apply the Kodaira Vanishing Theorem repeated in what fol-
lows. The cohomology sequence for the short exact sequence

(7.16) 0 → OB3
→ OB3

(N) → OSGUT
(Z) → 0

shows that the forms in the left-hand column of Tables 1 and 2 above to-
gether form a basis for H0 (OB3

(N)), that

H0 (OB3
(N))

C · z
∼= H0 (OSGUT

(Z)) ,

that h1 (OB3
(N)) = h1 (OSGUT

(Z)), and that

h2 (OB3
(N)) = h2 (OSGUT

(Z)) = 0.

The cohomology sequence for the short exact sequence

0 → OSGUT
(−Z) → OSGUT

→ OZ → 0
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shows that h1 (OSGUT
(−Z)) = h1 (OSGUT

(Z)) = 0 so that h1 (OB3
(N)) = 0

as well.
For any smooth curve Zn linearly equivalent to nZ, the cohomology

sequence associated to the short exact sequence

0 → OSGUT
(− (n− 1)Z) → OSGUT

(Z) → OZn
(Z) → 0

and Kodaira vanishing and Serre duality show that

(7.17) H0 (OZn
(Z)) ∼= H0 (OSGUT

(Z)) ∼= H2 (OSGUT
(−Z))∗

and

H1 (OZn
(Z)) ∼= H2 (OSGUT

(− (n− 1)Z)) ∼= H0 (OSGUT
((n− 1)Z))∗

and that all these groups have rank seven for n = 1 and eight for n = 2 .
Finally, for F· equal to F+ or F−, consider

0 → OB3
(N − F·) → OB3

(N) → OF
·
(SGUT ∩ F·) → 0

0 → OSGUT
(Z − (F· ∩ SGUT)) → OSGUT

(Z) → OF·∩SGUT
(Z) → 0

and

0 → OSGUT
(Z) → OSGUT

(Z + (F· ∩ SGUT)) → N(F·∩SGUT)|SGUT
(Z ∩ F·) → 0

where N(F·∩SGUT)|SGUT
denotes the normal bundle of the rational curve F· ∩

SGUT in SGUT so that

N(F·∩SGUT)|SGUT
∼= O(F·∩SGUT) (−2) .

8. Z2-quotients B
∨

2 and B
∨

3 and their invariants

Now the involution Cu,v acts freely on SGUT and as

OSGUT
(N +m (F+ − F−)) 7→ OSGUT

(N +m (F− − F+))

Returning to

πS∨

GUT
: SGUT → S∨

GUT :=
SGUT

{Cu,v}
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and letting OS∨

GUT
(εu,v) denote the non-trivial flat (orbifold) line bundle

quotient of the trivial bundle induced by the fixpoint-free action of the in-
volution Cu,v, we have the splitting

(

πS∨

GUT

)

∗
(OSGUT

(N)) = OS∨

GUT
(N)[+1] ⊕OS∨

GUT
(N)[−1]

where

OS∨

GUT
(N)[−1] = OS∨

GUT
(N)[+1] ⊗OS∨

GUT
(εu,v) .

8.1. Cohomology of the Higgs bundle the Higgs curve

We are now ready for the computation of the cohomology

H i
(

Σ
(44)

5̄
;L

(44)

5̄

)

= H i
(

Σ̌
(44)

5̄
;L

∨,[+1]
Higgs

)

⊕H i
(

Σ̌
(44)

5̄
;L

∨,[−1]
Higgs

)

of the Higgs line bundle LSGUT
= OSGUT

(

N +m
(

F+ − F opp
−

))

restricted to

the Higgs curve Σ
(44)

5̄
as defined in (7.14). We have seen in (7.17) above that

on SGUT that the restriction map

H0 (OSGUT
(N)) → H0

(

OΣ
(44)

5̄

(N)
)

is an isomorphism. This fact has the important corollary that, by Tables
1 & 2 above, every section of H0 (OSGUT

(N)) is the pullback of a section
of H0

(

OP[u0,v0]×P[n0,m1,m2]
(N)

)

, i.e. for the reduced image TGUT ⊆ P[u0,v0] ×
P[n0,m1,m2] of SGUT ⊆ B3

H0 (OSGUT
(N)) = ρ∗H0 (OTGUT

(N)) .

Therefore for m > 0 we have the commutative diagram

H0 (OTGUT
(N −m · {m2 = 0})) →֒ H0 (OTGUT

(N))
↕= ↕=

H0
(

OSGUT

(

N −m ·
(

F± + F opp
±

)))

→֒ H0 (OSGUT
(N))

↕= ↕=
H0 (OSGUT

(N −m · F±)) →֒ H0 (OSGUT
(N))

↕= ↕=

H0
(

OΣ
(44)

5̄

(

Σ
(44)

5̄
· (N −m · F±)

))

→֒ H0
(

OΣ
(44)

5̄

(

Σ
(44)

5̄
·N

))
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where all the vertical maps are isomorphisms. Since OΣ
(44)

5̄

(

Σ
(44)

5̄
·N

)

is a

theta characteristic and

C∗
u,v

(

OΣ
(44)

5̄

(

Σ
(44)

5̄
· (m · (F+ − F−))

))

= OΣ
(44)

5̄

(

Σ
(44)

5̄
· (m · (F− − F+))

)

we are exactly in the situation of Step II of Lemma 1 in [11]. When m = 2
the spaces on the left in the inclusion diagram are zero since no non-zero
section of H0 (OTGUT

(N)) vanishes to second-order on {m2 = 0}. Therefore

the eight points of 2
(

Σ
(44)

5̄
·
(

F− + F opp
−

)

)

impose the independent condi-

tions required in Step II for the proof of the Lemma. We start from m = 1
where

H0
(

OΣ
(44)

5̄

(

Σ
(44)

5̄
· (N + (F+ − F−))

))

=

H0
(

OΣ
(44)

5̄

(

Σ
(44)

5̄
· (N − F−)

))

=

H0 (OSGUT
(N − F−)) = H0

(

OP[u0,v0]
(2)

)

·m2.

Since F− · Σ
(44)

5̄
= 2 the two points impose independent conditions on

H0 (OSGUT
(N − F−)) so we conclude by Step II of Lemma 1 in [11] that

1 = h0
(

OΣ
(44)

5̄

(

Σ
(44)

5̄
(N − 2F−)

))

(8.1)

= h0
(

OΣ
(44)

5̄

(

Σ
(44)

5̄
· (N + 2 (F+ − F−))

))

confirmed by the fact that only one section of H0 (OSGUT
(N − F−)), namely

v20 ·m2 vanishes additionally to order 2 at the points of
(

Σ
(44)

5̄
∩ F−

)

and

that the single generator ofH0
(

OΣ
(44)

5̄

(

Σ
(44)

5̄
· (N + 2 (F+ − F−))

))

is given

by

(8.2)
u20
v20

m2 ∈ H0
(

Σ
(44)

5̄
;L

(44)

5̄

)

and the single generator of H0
(

OΣ
(44)

5̄

(

Σ
(44)

5̄
· (N + 2 (F− − F+))

))

is given

by
v20
u20

m2 ∈ H0
(

Σ
(44)

5̄
;C∗

u,v

(

L
(44)

5̄

))

To compute the symmetric/anti-symmetric decomposition of this gener-

ator on Σ̌
(44)

5̄
in

L
∨,[+1]
Higgs ⊕ C∗

u,v

(

L
∨,[+1]
Higgs

)

= L
∨,[+1]
Higgs ⊕ L

∨,[−1]
Higgs
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we consider local sections (γ1 ⊕ δ1) and (γ2 ⊕ δ2) of

LHiggs ⊕ C∗
u,v (LHiggs)

at points p1 and p2 = Cu,v (p1) and write the expression

(

γ1 − C∗
u,v (δ2) , δ1 − C∗

u,v (γ2)
)

.

If this expression is (0, 0) we have a symmetric section, that is, the pull-back

of a local section of L
∨,[+1]
Higgs at p ∈ Σ̌

(44)

5̄
with inverse image {p1, p2}. On the

other hand, if
(

γ1 + C∗
u,v (δ2) , δ1 + C∗

u,v (γ2)
)

= (0, 0)

the section is antisymmetric.
In our case

γ1 = v20m2 γ2 = u20m2

δ1 = u20m2 δ2 = v20m2.

Since C∗
u,v (m2) = −m2 the symmetric summand

γ1 + C∗
u,v (δ2) = v20m2 + C∗

u,v

(

v20m2

)

= v20m2 +
(

−v20m2

)

= 0

is zero and the unique non-zero section

γ1 − C∗
u,v (δ2) = v20m2 − C∗

u,v

(

v20m2

)

= v20m2 −
(

−v20m2

)

= 2v20m2,

the image of 2m2v
2
0 ∈ ρ∗H0 (OTGUT

(N)), generates the anti-symmetric sum-
mand.

Lemma 9. We select m = 2 for our final refinement of the definition of
the Higgs line bundle

LHiggs = OD5
(N + 2 (F+ − F−))

on the spectral variety D5 = D4 ∪ D1. .There is a unique non-zero section

(8.2) of the Higgs line bundle on the Higgs curve Σ
(44)

5̄
. Its image under the

direct sum decomposition

(8.3) H i
(

Σ
(44)

5̄
;L

(44)

5̄

)

= H i
(

Σ̌
(44)

5̄
;L

∨,[+1]
Higgs

)

⊕H i
(

Σ̌
(44)

5̄
;L

∨,[−1]
Higgs

)

lies in the anti-symmeric summand.
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9. Asymptotic Z4 R-symmetry

9.1. Asymptotic Tate form

We next examine an ’asymptotic’ Z4 R-symmetry for these constructions.
For this we will have to lift the Z4-action on B3 described in Tables 1&2
above by lifting it to a Z4-action on the semi-stable degeneration W4,0 in-
troduced in (6.7). The lifting is described by

Table 1asymp: Tu,v Cu,v

h0
(

K−1
B∨

3,0

)

= 4
Tu,v (w) = w
Tu,v (x) = −x
Tu,v (y) = iy

Cu,v (w) = w
Cu,v (x) = x
Cu,v (y) = −y
Cu,v (z) = −z

(u0 + v0)
2 · n−1 −1 +1

(u0 − v0)
2 · n−1 +1 +1

(

u20 − v20
)

·m−i −1 +1
(

u20 − v20
)

·m+i +1 +1

Table 2asymp: Tu,v Cu,v

h0
(

K−1
B∨

3,0
⊗OB∨

3,0
(εu,v)

)

= 5
Tu,v (w) = w
Tu,v (x) = −x
Tu,v (y) = iy

Cu,v (w) = w
Cu,v (x) = x
Cu,v (y) = −y
Cu,v (z) = −z

(u0 + v0)
2 ·m−i −i −1

(u0 + v0)
2 ·m+i +i −1

(u0 − v0)
2 ·m−i +i −1

(u0 − v0)
2 ·m+i −i −1

(

u20 − v20
)

· n−1 =: z0 −i −1

In the F -theory models we are proposing, the semi-stable degeneration

W4,δ ⇒ W4,0 = dPa ∪ dPb

to the union of two bundles of del Pezzo surfaces over B2 we must introduce
deformations

aj,δ = δaj + (1− δ) aj,0
zδ = δz + (1− δ) z0
tδ = δt+ (1− δ) t0
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of the Tate form (1.3) such that aj,0, z0, t0 all are constrained to lie in the
three-dimensional (−i)-eigenspace for Tu,v spanned by the (−i)-eigenvectors
for Tu,v given in Table 2asymp and so that the action of Tu,v on [w, x, y] is
also as indicated in Table 2asymp. These conditions will insure the existence
of an asymptotic Z4 R-symmetry as we discuss next.

First of all

(9.1) [u0, v0] 7→ [u0, v0]

[

1+i
2

1−i
2

1−i
2

1+i
2

]

that is

T ∗
u,v

([

u0
v0

])

=

[

u0 ◦ Tu,v

v0 ◦ Tu,v

]

=

[

1+i
2

1−i
2

1−i
2

1+i
2

]

·

[

u0
v0

]

so that T ∗
u,v (u0 · v0) =

1
2

(

u20 + v20
)

and
(

T ∗
u,v

)

(

u2
0+v2

0

2

)

= u0v0. Next from

(6.10) T ∗
u,v (m1) = m2 and

(

T ∗
u,v

)

(m2) = −m1.
We will require that

z0 =
(

u20 − v20
)

· n−1

so that

T ∗
u,v (z0) = −

(

(

1+i
2 u0 +

1−i
2 v0

)2
−
(

1−i
2 u0 +

1+i
2 v0

)2
)

· n−1

−
(

i
2

(

u20 − v20
)

− i
2

(

−
(

u20 − v20
)))

· n−1 =
−i · z0

As well we require that

a5,0 = u0v0 ·m1 + i ·

(

u20 + v20
2

)

m2

so that
(

T ∗
u,v

)

(a5,0)

=
(

u2
0+v2

0

2

)

m2 − i · u0v0 ·m1

= −i ·
(

u0v0 ·m1 + i ·
(

u2
0+v2

0

2

)

m2

)

= −i · a5.0.

Then, referring to (7.1)

a5,δ ∈ C ·

(

u0v0 ·m1 + i ·

(

u0 + v0
2

)

m2

)

+ δ ·
(

C
(

v20 + u20
)

+ Cu0v0
)

m2 + C · zδ
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and the necessary twisting divisor F+ − F− lie in SGUT for all δ.
To achieve a Z4 R-symmetry in the limiting W4,0 we first note that

in the restriction Tate form to the Heterotic model, the sections aj , z,
y
x
∈

H0
(

K−1
B3

)

specialize by definition to sections

aj,0, z0,
y0
x0

∈ H0
(

K−1
B2

)

= C ·m+i + C ·m−i + C · n−1

whose variation in the fiber variable a = u0−v0

u0+v0
of B3/B2 is absorbed in the

dP9 fiber while [n−1,m+i,m−i] in (6.11) are the coordinates of the base of
the Heterotic model Ṽ3/B2. Secondly the action of Tu,v on H0

(

OP[u0,v0]
(2)

)

,
that is, on the fibers of B3,0/B2 has eigenvalues +i, +1, and −1. Then , so

q+1 (u0, v0) = u0v0 +
1
2

(

u20 + v20
)

q−1 (u0, v0) = u0v0 −
1
2

(

u20 + v20
)

q+i (u0, v0) = u20 − v20.

Then the −i-eigenspace in Table 2 is spanned by the three vectors

q+i · n−1, q+1 ·m−i, q−1 ·m+i.

(

T ∗
u,v

)2
(u0 · v0) = C∗

u,v (u0 · v0) = v0 · u0 as required for compatibility with
the definition of the Higgs bundle for all δ.

Proceeding in this way we can arrange so that the action of Tu,v on the
Heterotic model is given by the action of

aj,0 ◦ Tu,v = (−i) · aj,0 j = 2, 3, 4, 5
a0,0 = − (a2,0 + a3,0 + a4,0 + a5,0) .

z0 = κ2,0 · a2,0 + κ3,0 · a3,0 + κ4,0 · a4,0 + κ5,0 · a5,0.

Notice again that these definitions imply that Tu,v acts on the Heterotic
model as Tu,v on V3/B2 and as (9.1) on the dP9-bundles.

Lemma 10. Under the above assumptions, the specialization of the Tate
form and B2,δ (1.3) to δ = 0 is taken to minus itself under the action of
Tu,v. We will therefore say that our F -theory model satisfies an asymptotic
Z4 R-symmetry.

Proof. One checks directly using (1.3) and the eigenvalues in the Tu,v-column
in the above Table 2asymp that the Tate form is taken to minus itself. □

Therefore Tu,v takes the holomorphic four-form on the semi-stable limit
W4,0 to minus itself [7]. As a consequence Tu,v acts trivially on the global
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section of KSGUT
. Furthermore Tu,v commutes with Cu,v since the action of

T 2
u,v coincides with the action of Cu,v. Thus Tu,v will be our candidate for

the asymptotic Z4 R-symmetry on the quotient Calabi-Yau fourfold

W∨
4,0/B

∨
3,0 :=

W4,0/B3,0

{Cu,v}
.

9.2. Charges for Z4-R symmetry [10]

The generator Tu,v of our asymptotic Z4 R-symmetry on W4,0 and W∨
4,0 has

the defining equations of Σ
(4)
10 and Σ

(41)

5̄
as −i-eigenvectors and the defining

equation of Σ
(44)

5̄
as (−1)-eigenvector. Therefore, since z0 has eigenvalue (−i)

, we apply these values in [5] to obtain the following table:

TABLE 3: Tu,v Equation Tu,v-charge states

matter fields on Σ
(4)
10

{Cu,v}
a5 = z = 0 −1 H0

(

Σ
(4)
10

{Cu,v}
;L

∨,[±1]
Higgs

)

matter fields on
Σ

(41)

5̄

{Cu,v}
a420 = z = 0 −1 H0

(

Σ
(41)

5̄

{Cu,v}
;L

∨,[±1]
Higgs

)

Higgs fields on
Σ

(44)

5̄

{Cu,v}

∣

∣

∣

∣

a4 −a5
a3 + a0 a3

∣

∣

∣

∣

= z = 0
+i

H0

(

Σ
(44)

5̄

{Cu,v}
;L

∨,[−1]
Higgs

)

H1

(

Σ
(44)

5̄

{Cu,v}
;L

∨,[−1]
Higgs

)

bulk matter on SGUT

{Cu,v}
z = 0 −i H2

(

K SGUT

{Cu,v}

)

10. Conclusion

Rather than inventing a base-space B3 and fine-tuning it to yield the right
invariants for a phenomenologically consistent F -theory, we have adopted
the philosophy that the representation theory required by the physics will
dictate the base space for the Tate form and ensuing F -theory. Perhaps
surprisingly, the representation theory contains almost completely within
itself one and only one phenomenologically consistent F -theory. The detailed
presentation of that model, based on the construction and analysis of the
B3 presented in this paper, is the subject of the companion paper [5].
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