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We consider the classification of asymptotically flat, stationary,
vacuum black hole spacetimes in four and five dimensions, that
admit one and two commuting axial Killing fields respectively. It
is well known that the Einstein equations reduce to a harmonic
map on the two-dimensional orbit space, which itself arises as the
integrability condition for a linear system of spectral equations.
We integrate the Belinski-Zakharov spectral equations along the
boundary of the orbit space and use this to fully determine the
metric and associated Ernst and twist potentials on the axes and
horizons. This is sufficient to derive the moduli space of solutions
that are free of conical singularities on the axes, for any given rod
structure. As an illustration of this method we obtain constructive
uniqueness proofs for the Kerr and Myers-Perry black holes and
the known doubly spinning black rings.

1 Introduction 372

2 Stationary spacetimes with D − 3 axial Killing fields 378

3 Integrability of Einstein equations 392

4 Four dimensions 411

5 Five dimensions 418

6 Discussion 439

Appendix A Rod structure of Gibbons-Hawking solitons 441

Appendix B Geometry near corners of orbit space 443

Appendix C Ernst potential identities 446

371



✐

✐

“4-Lucietti” — 2022/11/29 — 2:36 — page 372 — #2
✐

✐

✐

✐

✐

✐

372 J. Lucietti and F. Tomlinson

Appendix D Proof of Proposition 3 447

References 449

1. Introduction

The classification of equilibrium black hole solutions is a fundamental prob-
lem in General Relativity (GR). In four spacetime dimensions this is es-
sentially answered by the celebrated black hole uniqueness theorem, which
roughly states that the only asymptotically flat, stationary black hole solu-
tion to the vacuum Einstein equations is the Kerr solution [1]. A striking
consequence of this is that any such solution is simply labelled by two pa-
rameters, the mass M and angular momentum J which must obey

(1) |J | ≤M2.

One of the key underlying structures which allows one to establish this
theorem is the remarkable fact that the vacuum Einstein equations for sta-
tionary and axisymmetric spacetimes reduce to a harmonic map on the
two-dimensional orbit space.

In higher dimensional spacetimes, it has been known for some time that
there can be no such simple uniqueness theorem. This was revealed by the
striking discovery of the black ring, a five-dimensional, asymptotically flat
black hole solution with horizon topology S2 × S1 [2]. Alongside the spheri-
cal topology black hole discovered by Myers-Perry [3], this explicitly shows
that even vacuum black holes are not uniquely specified by their mass and
angular momenta. A natural problem which then presents itself is to clas-
sify all higher-dimensional stationary black hole solutions to the Einstein
equations. This is a central open problem in higher-dimensional GR and is
largely unsolved, see the reviews [4, 5].

Nevertheless, substantial progress has been made for D-dimensional sta-
tionary spacetimes which admit D − 3 commuting axial Killing fields that
commute with the stationary Killing field [6, 7]. These generalise the four-
dimensional stationary and axisymmetric spacetimes that contain the Kerr
solution. Crucially, the vacuum Einstein equations for spacetimes with such
symmetry reduce to an integrable harmonic map on the two-dimensional
orbit space. However, asymptotic flatness is only compatible with such a
symmetry assumption for D = 4, 5. This is because if D > 5 the rank of
the rotation group SO(D − 1) is less than D − 3 (however, this symmetry
assumption is compatible with Kaluza-Klein asymptotics). For this reason,
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most advances in constructing and classifying higher-dimensional black hole
solutions has been for the class of D = 5 asymptotically flat, stationary
spacetimes admitting two commuting axial Killing fields. Indeed, both the
Myers-Perry black hole and the black ring belong to this class of solutions.

In this paper we will considerD = 4, 5 asymptotically flat stationary vac-
uum spacetimes that admit D − 3 commuting axial Killing fields. For such
spacetimes it has been shown that the two-dimensional orbit space can be
identified with a half plane {(ρ, z) | ρ > 0} ⊂ R2, where (ρ, z) are the global
Weyl-Papapetrou coordinates [8, 9]. The following uniqueness theorem for
black hole spacetimes in this class has been previously established by Hol-
lands and Yazadjiev (an analogous result also holds for the D-dimensional
asymptotically Kaluza-Klein case):

Theorem 1 ([8, 9]). There is at most one D = 4 or 5-dimensional asymp-
totically flat, stationary, vacuum spacetime with D − 3 commuting axial
Killing fields, containing a non-degenerate1 event horizon, for a given rod
structure and a given set of horizon angular momenta.

Roughly speaking, the rod structure is data that encodes the fixed points
of the axial Killing fields and the topology of the horizons. More precisely,
the boundary of the orbit space can be identified with the z-axis of the
half-plane which divides into a set of intervals, called rods, each of which
either corresponds to a component of the axis or horizon. Each axis rod is
defined by the vanishing of a certain periodic linear combination of the axial
Killing fields, called the rod vector (of course, for D = 4 there is only one
axial Killing field and hence only one type of axis rod). The rod structure
corresponds to this set of rods together with their lengths and the axis rod
vectors.

For D = 4 and a connected horizon the above theorem reduces to the
classic black hole uniqueness theorem for the Kerr black hole: it says that
any solution is uniquely parameterised by the horizon rod length ℓH and
angular momentum J (there are no finite axis rods). The (nonextreme) Kerr
solution realises all possible values of this data, ℓH > 0, J ∈ R, and hence the
classification for this case is complete (in this case one can of course also use
the M,J to label solutions as is traditionally done). As in the classic D = 4
case, the proof of Theorem 1 is nonconstructive and involves a nonlinear
divergence identity (Mazur identity) which characterises the ‘difference’ of

1An analogous theorem can be established for degenerate horizons, i.e. for ex-
treme black holes in this class [10]. In this paper we will only consider non-
degenerate horizons.
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two solutions to the corresponding harmonic map problem. Therefore this
theorem does not address the crucial question of existence: for what rod
structures and horizon angular momenta do regular solutions actually exist?

Indeed, the existence question is largely open even for D = 4. In this
case the other possible rod structures correspond to black holes with multiple
horizons, with finite axis rods separating the disjoint horizon rods. There is a
general expectation that equilibrium configurations describing such solutions
in the vacuum cannot exist due to their mutual gravitational attraction.
In fact, by adapting existence results for harmonic maps to this problem,
Weinstein has shown that a unique N -component black hole solution exists
given any rod structure and horizon angular momenta, which is regular
everywhere away from the axis [11–13]. However, such solutions may still
suffer from conical singularities on the finite axis components (i.e. those
not connected to infinity). Physically, these singularities are related to the
force of attraction between the black holes and it is conjectured that for
N > 1 such solutions always do possess conical singularities. Evidence that
this force is always attractive has been obtained by studying various special
cases [13, 14].

Candidate multi-black hole solutions, known as the multi-Kerr-NUT so-
lutions, have been known for some time [15–17], although an analysis of the
potential conical singularities has proven to be essentially intractable. Natu-
rally, the N = 2 case corresponding to a double-black hole has been the most
extensively studied. From the above theorem this solution depends on five-
parameters (two horizon rod lengths, one axis rod length and the angular
momentum of each horizon), that are related by the equilibrium condition
(i.e. the condition for removal of the conical singularity on the finite axis
rod). The study of the equilibrium condition for the double-Kerr-NUT so-
lution has been the subject of much work, see e.g. [18, 19]. However, even if
one can give a general proof that the equilibrium condition for the double-
Kerr-NUT solution is never satisfied, this would still not give a proof of the
nonexistence of a regular double-black hole, since it is not a priori clear that
it contains the general solution with these boundary conditions. Recently,
this conjecture has been settled by Hennig and Neugebauer [20]: a regular
double-black hole solution does not exist. The proof consists of two steps: (i)
employing the inverse scattering method from integrability theory to prove
that the general solution with such boundary conditions is contained in the
known double-Kerr-NUT solution (this was already shown in earlier work
by Varzugin [21] and Meinel and Neugebauer [22]); (ii) showing that the
equilibrium conditions are incompatible with the area-angular momentum
inequality for a marginally trapped surface [23–25].
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The D = 5 case is more complicated for two principle reasons. Firstly,
there are more horizon topologies compatible with biaxial symmetry: S3,
S2 × S1 and lens spaces L(p, q). Secondly, for every horizon topology (in-
cluding multi-horizons) there can be an arbitrary number of finite axis rods
on which different linear combinations of the two axial Killing fields vanish
– these correspond to nontrivial 2-cycles in the domain of outer communi-
cation (DOC). Recently, a theorem which partially addresses the existence
question in this context has been established by Khuri, Weinstein and Ya-
mada [26]. It is a five-dimensional analogue of Weinstein’s theorem forD = 4
multi-black holes. Indeed, the proof involves the theory of harmonic maps
adapted to this setting, although it requires one to make a certain technical
assumption on the rod structure.

Theorem 2 ([26]). Given any admissible rod structure obeying a com-
patibility condition, and given any set of horizon angular momenta, there
exists exactly one 5-dimensional, asymptotically flat, stationary, vacuum,
spacetime with two commuting axial Killing fields and containing a non-
degenerate event horizon, if and only if the metric is smooth at the axes.

The rod structure is required to be admissible in order to avoid potential
orbifold singularities at the fixed points of the biaxial symmetry; on the
other hand the compatibility condition on the rod structure appears to be a
technical condition required for the proof (see Section 2.1 for details). While
Theorem 2 does not settle the classification of regular solutions, it greatly
simplifies the problem. In particular, it reduces it to a regularity analysis of
the axes that requires two conditions to be met: (i) the metric components
must be smooth and even functions of ρ up to the axes, (ii) there are no
conical singularities at the inner axis rods (it has been shown that there are
no conical singularities at the two semi-infinite axis rods [27]).

In contrast to the D = 4 case, it is known there are a number of regular
solutions with nontrivial rod structure. In addition to the black ring, several
remarkable multi-black hole solutions have been constructed: the black Sat-
urn [28] – an equilibrium configuration comprising of a black hole surrounded
by a black ring – and various double-black ring configurations [29–31]. These
were constructed using the inverse scattering method of Belinski-Zakharov
(BZ) which is based on their spectral equations [17, 32]. Notably, however,
the existence of a regular vacuum black lens, i.e. a black hole with lens
space horizon topology, has remained an open problem. Several attempts at
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constructing such solutions have been made, again using the BZ method [33–
35]. These have all resulted in singular solutions, the mildest being a conical
singularity on an inner axis rod. Unfortunately, the BZ method is not fully
systematic and requires guesswork at various stages and therefore does not
necessarily reproduce the most general solution for a given rod structure (cf.
the D = 4 multi-Kerr black hole discussed above). Therefore, these works
cannot be taken as proof of the nonexistence of regular vacuum black lenses.

The purpose of this paper is to use the spectral equation of BZ to sys-
tematically investigate all possible solutions for any given rod structure. In
particular, we explicitly integrate the BZ spectral equations along the axes
and horizons, and around infinity. Then, using this we show that one can
determine the metric everywhere on the axes and horizons for any given rod
structure purely algebraically. Our main result can be summarised as follows
(see Theorem 4 for a precise statement):

Theorem 3. Consider a D = 4, 5 stationary vacuum spacetime as in The-
orem 1. On every component of the axis and horizon, the general solution
for the metric components and the associated Ernst or twist potentials are
rational functions of z. These functions are explicitly determined in terms of
the rod structure, horizon angular momenta, horizon angular velocities and
certain gravitational fluxes, which are subject to a set of nonlinear algebraic
constraints.

Thus the solution depends on a number of continuous parameters which
are geometrically defined: the rod lengths, the angular momenta and angular
velocities of each horizon, and certain gravitational fluxes. The gravitational
fluxes are invariants associated to each finite axis rod. In the spacetime the
finite axis rods correspond to noncontractible (D − 3)-cycles and the fluxes
are integrals of certain closed (D − 3)-forms constructed from the Killing
fields. For every axis rod one can define an associated Ernst potential from
the Killing fields which are nonzero on that rod. The change in Ernst poten-
tial across the associated rod is then precisely the gravitational flux through
the corresponding 2-cycle. It is worth noting that similar gravitational fluxes
arise in the recently found thermodynamic identities for D = 5 black holes
in this class [36].

As mentioned in our theorem, the parameters in the general solution
must obey certain nonlinear algebraic equations. These arise from integrat-
ing the BZ spectral equations along the z-axis and around the ‘semi-circle’
at infinity. Furthermore, imposing the metric is free of conical singularities
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on the axes and horizons typically imposes further constraints on the pa-
rameters. Thus we are able to address part (ii) of the regularity problem
left open by Theorem 2. Hence, our method is particularly useful for ruling
out regular solutions with a prescribed rod structure. For example, one can
prove that a D = 5 solution with no horizon and one finite axis rod must be
conically singular at the finite axis rod; this is of course guaranteed by the
no-soliton theorem for vacuum solutions (even without biaxial symmetry),
although it illustrates that our method is capable of showing that certain
rod structures must lead to conically singular solutions.

In principle, using our theorem one can determine the full moduli space
of regular black holes in this class, up to the regularity problem (i). Indeed,
specialising Theorem 3 to the rod structures of the known nonextremal black
holes with connected horizons allows us to show that the full moduli space
of regular solutions coincides with that of the Kerr black holes, the Myers-
Perry black holes and the known doubly spinning black rings. For the latter
case, this proves that the Pomerasky-Sen’kov doubly spinning black ring [37]
is indeed the most general solution with that rod structure, a fact which does
not seem to have been addressed in the previous literature. In a subsequent
paper we will apply our method to investigate the (non)existence of new
types of regular black hole solutions, most notably a black lens; in the Dis-
cussion we present our preliminary findings.

Our method may be thought of as a higher-dimensional analogue of the
D = 4 methods of Varzugin [21, 38] and Meinel and Neugebauer [22], which
both lead to simple constructive uniqueness proofs for Kerr. In particular,
Varzugin integrated the BZ spectral equations along the axis and horizons
and used this to show that the N -black hole solution is contained in the 2N -
soliton solution of BZ [17]. We also integrate the BZ spectral equations along
the boundaries, although our analysis of its solution differs, and we give a
simple method to extract the spacetime metric, so even for D = 4 it offers an
alternative approach. On the other hand, Meinel and Neugebauer integrated
a different spectral equation along the axis, whose integrability condition
gives the Ernst equations, and used this to determine the Ernst potential
on the axis. It would be interesting to investigate the precise relationship
between these various methods.

This paper is organised as follows. In Section 2 we recall well-known
properties of stationary vacuum spacetimes with D − 3 commuting axial
Killing fields and introduce various Ernst potentials which will feature later
(this section also serves to set our notation). In Section 3 we derive the gen-
eral solution to the BZ spectral equations on the axes, horizons and around
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infinity, and use this to construct the general solution to the Einstein equa-
tions on the axes and horizons. In Section 4 we specialise to D = 4: we
compute the asymptotic charges of the general solution and derive the mod-
uli space of Kerr black holes. In Section 5 we specialise toD = 5: we compute
the asymptotic charges of the general solution and derive the moduli spaces
of the Myers-Perry black hole and the doubly spinning black ring. In Sec-
tion 6 we discuss our results and future work. We relegate various results to
the Appendix.

2. Stationary spacetimes with D − 3 axial Killing fields

2.1. Einstein equations and rod structure

Let (M,g) be a D-dimensional stationary spacetime with D − 3 commut-
ing axial Killing vector fields that also commute with the stationary Killing
field. We denote the stationary Killing field k and the remaining D − 3 axial
Killing fields mi, i = 1, . . . , D − 3, and assume these generate an isometry
group G = R× U(1)D−3. We define coordinates (t, ϕi) adapted to the sta-
tionary and axial symmetries, so k = ∂t and mi = ∂ϕi , and choose mi to be
generators with 2π-periodic orbits, i.e. the angles ϕi are 2π-periodic. We also
assume that there is at least one point in spacetime that is a fixed point of
the axial symmetry (as is the case for asymptotically flat spacetimes).

As is well known, under such assumptions the spacetime metric can be
written in Weyl-Papapetrou coordinates [6, 7]

(2) g = gAB(ρ, z)dx
AdxB + e2ν(ρ,z)(dρ2 + dz2),

where A ∈ {0, 1, . . . , D − 3}, ∂A are the Killing fields and

(3) det gAB = −ρ2.

The vacuum Einstein equations reduce to

(4) ∂ρU + ∂zV = 0,

where

(5) U = ρ∂ρgg
−1, V = ρ∂zgg

−1
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and the conformal factor, e2ν , is then determined by

(6) ∂ρν = − 1

2ρ
+

1

8ρ
Tr(U2 − V 2), ∂zν =

1

4ρ
TrUV .

Indeed, the integrability condition for (6) is (4).
We now turn to global assumptions. We will restrict to asymptotically

flat spacetimes, i.e., asymptotically Minkowski such that k = ∂t in the stan-
dard Cartesian chart. This is only compatible with our symmetry assump-
tion if D = 4, 5, which we assume throughout. In fact, it is necessary to
make a number of further global assumptions (see review [5]). In particular
we assume: (i) there exists a spacelike hypersurface Σ with asymptotically
flat end that intersects the event horizon (if there is one) on a compact
cross-section H; (ii) the stationary Killing field k is complete; (iii) the do-
main of outer communication (DOC) is globally hyperbolic; (iv) the horizon
is non-degenerate.

Under these assumptions, a number of global results have been de-
rived [5, 8, 9]. In particular, it has been shown that Weyl-Papapetrou coordi-
nates (2) provide a global chart in the DOC away from the horizon and axes
of symmetry. Furthermore, the orbit space of M under the isometry group
M̂ =M/G ∼= Σ/U(1)D−3, is a 2d simply connected manifold with bound-
aries and corners, which may therefore be identified with the half-plane

(7) M̂ = {(ρ, z) | ρ > 0} .

The boundary of the orbit space ρ = 0 corresponds to the z-axis and this
splits into intervals, called rods, (−∞, z1), (z1, z2), . . . , (zn,∞), with z1 <
z2 < · · · < zn, each of which corresponds to a connected component of the
horizon orbit space Ĥ = H/U(1)D−3, or an axis where an integer linear
combination of the axial Killing fields – called the rod vector – vanishes. For
D = 4 there is only one axial Killing field and therefore only one type of axis
rod. The endpoints of the rods za, a = 1, . . . , n, correspond to the corners
of the orbit space, each of which corresponds to where an axes intersects a
horizon, or for D > 4, a fixed point of the U(1)D−3-action (i.e. mi = 0 for
all i = 1, . . . , D − 3, which occurs precisely where two axes intersect).

Let us denote the rods by Ia, for a = 1, . . . , n+ 1, and the length of the
finite rods Ia = (za−1, za) by ℓa = za − za−1 for a = 2, . . . , n. Given any axis
rod Ia the corresponding rod vector takes the form

(8) va = viami
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where (via)i=1,...,D−3 are coprime integers. If D = 5, for any adjacent axis
rods Ia and Ia+1 separated by the corner z = za the associated rod vectors
must satisfy the condition

(9) det

(

v1a v2a
v1a+1 v2a+1

)

= ±1 .

Following [26], we will call any rod structure satisfying (9) admissible. We
will denote the union of all axis rods by Â and all horizon rods by Ĥ. The
collection of all this data

(10) {(ℓa, va) | Ia ⊂ Â} ∪ {ℓa | Ia ⊂ Ĥ}

is known as the rod structure. We will often denote the semi-infinite axis
rods by IL = I1 = (−∞, z1) and IR = In+1 = (zn,∞). For definiteness, in
the D = 5 case we will choose the mi such that m2 = 0 on IL and m1 = 0
on IR, i.e., the rod vectors vL = (0, 1) and vR = (1, 0) relative to the basis
(m1,m2).

For D = 5 any finite axis rod Ia lifts to a 2-cycle in the spacetime.
Explicitly this is given by the surface Ca obtained from the fibration of the
nonzero U(1) Killing field ua = uiami over the closure of Ia (recall va = 0
on Ia). If the adjacent rods are both axis rods then ua must vanish at the
endpoints of Ia and Ca has the topology of S2; if only one adjacent rod
is an axis rod (and hence the other a horizon) then ua only vanishes at
the corresponding endpoint so Ca is topologically a 2-disc; finally if both
adjacent rods are horizon rods then ua does not vanish at either endpoint
and Ca is topologically a cylinder.

Another important set of invariants for such solutions are the Komar
angular momenta of each connected component of the horizon Ha defined
by

(11) Jai =
1

16π

∫

Ha

⋆dmi,

where we fix the orientation ϵ01...D−3ρz > 0. From a standard argument,
invoking Stokes’ theorem and the Einstein equation, these are related to the
total angular momenta of the spacetime Ji =

∑

a J
a
i . Due to the assumed

symmetry these can be reduced to integrals over the horizon rods using

(12)

∫

Ha

⋆α = (2π)D−3

∫

Ia

⋆(m1 ∧ · · · ∧mD−3 ∧ α)
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where α is any U(1)D−3-invariant 2-form. This gives

(13) Jai =
1

8
(2π)D−4(χi(za)− χi(za−1)) ,

where χi are the twist potentials defined by

(14) dχi = ⋆(m1 ∧ . . .mD−3 ∧ dmi) .

The existence of globally defined twist potentials follows from the fact the
vacuum Einstein equations imply the RHS of (14) is a closed 1-form and
that under our assumptions the DOC is simply connected. Observe that
the twist potentials are constant on any axis rod. Therefore, they can only
vary across a horizon rod and the above shows that the change in twist
potential across any horizon rod is precisely the angular momenta of the
corresponding horizon in spacetime.

We now are now in a position to consider the uniqueness and existence
theorems mentioned in the Introduction in more detail. Theorem 1 guaran-
tees that there is at most one solution for a given rod structure (10) and
horizon angular momenta (13). However, as highlighted in the Introduction,
the main limitation of this theorem is that it does not address the cru-
cial question of existence: for what rod structure and angular momenta do
there exist regular black hole solutions? This is not an issue for D = 4 as
the uniqueness theorem reduces to the classic no-hair theorem for the Kerr
black holes (although for multi-black holes this is largely open, as explained
in the Introduction).

However, for D = 5 the uniqueness theorem is less powerful as even for a
connected horizon an arbitrary number of axis rods are allowed in principle.
To this end, Theorem 2 has been recently established, which guarantees
the existence of a solution for any admissible rod structure that obeys the
following compatibility condition: if there are three consecutive axis rods
Ia−1, Ia, Ia+1, then the compatibility condition states that

(15) v1a−1v
1
a+1 ≤ 0 ,

whenever the admissibility condition (9) between the pairs Ia−1, Ia and
Ia, Ia+1 are obeyed with positive determinant. As explained in the Intro-
duction, this theorem guarantees the solution is regular in the DOC away
from the axes. Therefore it does not address regularity of the solution on
the axes, which generically will possess conical singularities on the finite axis
rods. It is instructive to consider certain special cases of Theorem 1 and 2.
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First, consider the case of no horizon. Then, it is well known from the
no-soliton theorem that the only regular solution in this class of spacetimes
is Minkowski spacetime (indeed, this result does not even assume biaxial
symmetry). Hence, it must be that the only regular solution with the same
rod structure as Minkowski spacetime is Minkowski spacetime itself. Fur-
thermore, any solution with non-Minkowski rod structure must be singular
on some component of the axis. For example, consider the Eguchi-Hanson
soliton

ds2EH = −dt2 +
dR2

1− a4

R4

+ 1
4R

2

(

1− a4

R4

)

(dψ + cos θdϕ)2(16)

+ 1
4R

2(dθ2 + sin2 θdϕ2) ,

where R ≥ a. As is well known, if ψ is periodically identified with period
2π this gives a smooth metric with a bolt at R = a which is asymptotically
locally Euclidean with S3/Z2 topology for large R. However, if instead we
take (θ, ψ, ϕ) to be Euler angles on S3, we get an asymptotically Minkowski
spacetime, except now with a conical singularity at the bolt. This example
then gives a nontrivial rod structure with one finite axis rod corresponding to
the bolt R = a separating the two semi-infinite rods. In particular, relative
to the basis (m1,m2) introduced above, the rod vectors are vL = (0, 1), vB =
(1, 1) and vR = (1, 0), where vB is the rod vector on the bolt, thus giving an
admissible rod structure (9). It is a one parameter family of solutions, where
the parameter can be taken to be length of the axis rod, in line with the above
theorems (since there is no horizon the only moduli are the rod lengths). One
might wonder whether the more general Gibbons-Hawking solitons similarly
give solutions with multiple axis rods in Theorem 2. In Appendix A we show
that in fact these do not possess an admissible rod structure (instead they
possess orbifold singularities at the corners z2, . . . , zn−1 and thus correspond
to solutions of a different theorem in [26]).

Now consider black hole solutions with a single horizon. First, suppose
that the angular momenta Ji = 0. Then it can be shown that the solution
must be static [10] and hence by the static uniqueness theorem the solution
must be the Schwarzschild black hole [39]. This implies that any regular
solution in this class must have the same rod structure as Schwarzschild, i.e.
one horizon rod separating the two semi-infinite axis rods. In other words,
any solution with a single horizon, Ji = 0 and finite axis rods, must be
conically singular on the axis rods. This shows that for single black holes,
not all rod structures and angular momenta lead to regular solutions.
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Next, consider the rod structure of the Myers-Perry solution: a single
horizon rod and two semi-infinite axis rods (i.e. this is the same as that
of Schwarzschild). Then, since the Myers-Perry solution realises all possible
data ℓH > 0 and (J1, J2) ∈ R2 it is the only solution in this class. A self-
contained proof of this was given in earlier work [40]. This case is analogous
to the Kerr solution in four dimensions.

For a black ring something more interesting happens. Consider the rod
structure of the known black ring, i.e. one horizon rod and one finite axis
rod (and two semi-infinite axis rods). In this case there are four parameters
in the uniqueness theorem, namely the horizon and finite axis rod lengths
ℓH , ℓA and the angular momenta Ji. However, the most general known regu-
lar black ring solution is the three parameter doubly spinning solution [37].
Thus, in this case the known regular solutions do not occupy all parts of
the possible parameter space. A way to understand this is that generically
one has a conical singularity at the finite axis rod and its removal imposes a
constraint on the four available parameters thus leaving a three parameter
subset. Nevertheless, this raises the question: are there other regular black
rings which occupy different parts of the possible moduli space? A defini-
tive answer requires constructing the most general solution with such a rod
structure. We answer this question in the negative in this work.2

Remarkably, regular multi-black hole solutions do exist in five dimen-
sions. The first such example constructed was the black Saturn, an equilib-
rium configuration of a spherical black hole surrounded by a black ring that
is balanced by angular momentum [28]. This solution is a four parameter
family corresponding to the horizon rod lengths and one angular momentum
for each black hole (the rod length of the finite axis rod between the black
holes is fixed by removing the associated conical singularity). There should
be a more general six-parameter family where both the spherical black hole
and black ring are doubly spinning which is yet to be constructed. Similarly,
regular four-parameter multi-black rings have been constructed: di-rings are
concentric rings rotating in the same plane [29], and bi-rings rotate in or-
thogonal planes [30, 31]. Again, these should be part of a more general

2In fact, a four parameter family of ‘unbalanced’ doubly spinning back rings has
been constructed [41], i.e., these suffer from a conical singularity at the axis rod. It
is possible that these do fill out the whole moduli space, although as far as we aware
this has not been checked in the literature. If so, then by the uniqueness theorem
this would have to be the general solution and hence the known three-parameter
family of black rings would have to be the most general regular solution with this
rod structure.
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six-parameter family of two doubly spinning black rings that remains to be
constructed.

Let us now consider the dimension of the moduli space of solutions in
the above theorems. Suppose we have h horizon rods and a finite axis rods.
Then, counting the number of continuous parameters appearing in the above
theorems (i.e. h+ a rod lengths and (D − 3)h horizon angular momenta),
shows the dimension of the moduli space of solutions with h horizons and a
finite axis rods that are potentially singular on the axis is,

(17) dim Mh,a
sing = (D − 2)h+ a .

From experience with the known solutions one expects that removal of the
conical singularities on each finite axis rod reduces the number of parameters
by one, thus reducing the total by a. Hence, a natural conjecture, which
agrees with the known solutions, is that provided regular solutions actually
exist, the dimension of the moduli space of regular solutions Mh,a

reg with h
horizon rods and a finite axis rods is simply

(18) dimMh,a
reg

?
= (D − 2)h .

2.2. Geometry of axes and horizons

In this section we write down a general form for the metric near ρ = 0, i.e.,
near any axis or horizon, which will be useful for our purposes. The analysis
of the geometry near an axis and near a horizon is very similar, although for
clarity of presentation we will use different notations for the metric in these
two cases. Most of the material in this section is well-known. In Appendix B
we also include a regularity analysis at the corners of the orbit space which
is perhaps less well-known.

2.2.1. Axes. First consider an axis rod Ia. For simplicity of notation we
temporarily drop the labelling of each rod. It is convenient to introduce an
adapted basis for the D − 2 commuting Killing fields ẼA = (eµ, v) where
µ = 0, . . . , D − 4 and v = vimi is the rod vector corresponding to Ia. For
D = 4 we simply take e0 = k. For D = 5 we take eµ = (k, u) where u is an
axial Killing field

(19) u = uimi, such that A =

(

u1 u2

v1 v2

)

∈ GL(2,Z) ,

i.e. (u, v) are 2π-periodic generators of the U(1)2-action. It is worth empha-
sising that u is defined only up to an additive integer multiple of the rod
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vector v. Then, relative to the adapted basis the metric on the orbits of the
isometry can be written as

(20) g̃ =

(

hµν − ρ2h−1wµwν h−1ρ2wµ
h−1ρ2wν −h−1ρ2

)

.

Note that the normalisation (3) is automatically imposed in this basis.
Here, hµν is an invertible (D − 3)× (D − 3) matrix and its determinant
h = dethµν < 0. A regular axis requires hµν , wµ to be smooth functions of
(ρ2, z) and

(21) lim
ρ→0, z∈Ia

ρ2e2ν

|v|2 = 1 .

This ensures the absence of a conical singularity at Ia [7].
The inverse metric in this adapted basis is

(22) g̃−1 =

(

hµν wµ

wν −hρ−2 + wρwρ

)

where hµν is the inverse matrix of hµν and wµ = hµνwν . The requirement of
a smooth axis implies the following limits exist

(23) Ů = lim
ρ→0

U , V̊ = lim
ρ→0

V

ρ
,

where here and throughout we denote quantities evaluated in the limit ρ→ 0
by a circle above. Explicitly, relative to the adapted basis we find

(24) ˚̃U =

(

0 −2wµ
0 2

)

, ˚̃V =

(

(∂zhµρ)h
ρν −hhµν∂z(h−1wν)

0 −(h−1∂zh)

)

where here, and in what follows, all quantities on the RHS are understood
to be evaluated at ρ = 0. Taking the ρ→ 0 limit of the second equation in
(6) it follows that the conformal factor on the axis obeys

(25) ∂z ν̊ = −∂zh
2h

which integrates to

(26) e2ν̊ = −c
2

h

where c is a constant.
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Collecting these results, we deduce that the metric induced on the axis
component associated to Ia is

(27) ga = −c
2
adz

2

ha(z)
+ haµν(z)dx

µdxν ,

where xµ are adapted coordinates so that eµ = ∂µ, µ = 0, . . . , D − 4, and
we have reinstated the rod labels. This is a (D − 2)-dimensional smooth
Lorentzian metric for z ∈ Ia. The condition for the absence of a conical
singularity in the spacetime at Ia (21) is

(28) ca = 1 ,

which is sometimes referred to as the equilibrium or balance condition.
For D = 5 one or both of the adjacent rods to Ia may be another axis

rod (for D = 4 it must be the case that any adjacent rod is a horizon rod). If
Ia+1 is another axis rod then u = ∂/∂x1 = 0 at z = za and the above metric
will have a conical singularity at this endpoint unless

(29)
ha′(za)

2

ha00(za)
= −4c2a ,

in which case the metric extends smoothly at this point. Note that we used
ha′(za) = ha00(za)h

a
11

′(za) to simplify the above expression which in turn
comes from haµ1(za) = 0 and smoothness. Similarly, if Ia−1 is an axis rod
then u = ∂/∂x1 = 0 at z = za−1 and the above metric extends smoothly at
this endpoint iff

(30)
ha′(za−1)

2

ha00(za−1)
= −4c2a .

Therefore, if Ia is a finite axis rod and provided these regularity conditions
are met, the axis metric extends to a smooth Lorentzian metric on R× Ca.
The 2-cycle Ca is topologically S2, a 2-disc or a 2-cylinder depending on
if Ia−1, Ia are either both axis rods, one axis rod and one horizon, or both
horizon rods, respectively. In Appendix B we analyse the geometry where
two axis rods meet and derive further relations that follow from the above
regularity analysis. In particular, we find that for two axis rods Ia and
Ia+1 the function |z − za|e2ν̊ is continuous at z = za, a result that has been
previously proven in [42].

2.2.2. Horizons. The analysis of the metric near a horizon is very similar.
Consider a component of the horizon, Ha, with corresponding rod Ia (again,
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for simplicity of notation we will temporarily drop the labelling of each rod).
The Killing field null on the horizon is

(31) ξ = k +Ωimi ,

where Ωi are the angular velocities of the black hole. Now, working in an
adapted basis for the D − 2 commuting Killing fields, ẼA = (mi, ξ), the met-
ric can be written as

(32) g̃ =

(

γij − ρ2γ−1ωiωj γ−1ρ2ωi
γ−1ρ2ωj −γ−1ρ2

)

,

where γij is an an invertible (D − 3)× (D − 3) positive definite matrix with
determinant γ = det γij (again the normalisation (3) is automatically im-
posed in this basis). A regular non-degenerate horizon requires ωi, γij to be
smooth functions of (ρ2, z) and

(33) lim
ρ→0, z∈Ia

ρ2e2ν

|ξ|2 = − 1

κ2
,

where κ ̸= 0 is the surface gravity [7].
The analysis of the metric induced on the horizon proceeds in an essen-

tially identical fashion to the axis metric analysis above. The inverse metric
in this adapted basis is

(34) g̃−1 =

(

γij ωi

ωj −γρ−2 + ωiωi

)

where γij is the inverse matrix of γij and ωi = γijωj . The requirement of
a smooth horizon then implies the limits (23) exist, which relative to the
adapted basis are

(35) ˚̃U =

(

0 −2ωi
0 2

)

, ˚̃V =

(

(∂zγik)γ
kj −γγij∂z(γ−1ωj)

0 −(γ−1∂zγ)

)

.

Then the second equation in (6) integrates to

(36) e2ν̊ =
c̃2

γ

where c̃ is a constant and imposing the smoothness condition (33) gives

(37) c̃ = κ−1 .
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We deduce that the metric induced on the horizon component Ha associated
to the rod Ia is

(38) g|Ha
=

dz2

κ2γ(z)
+ γij(z)dϕ

idϕj ,

which is a (D − 2)-dimensional smooth Riemannian metric for z ∈ Ia (recall
the axial Killing fields mi = ∂ϕi

).
Given the metric on a horizon Ha, one can determine the surface gravity

as follows. In general there are conical singularities in the metric (38) at the
endpoints z = za−1, za and demanding that they are absent will fix κ. For
D = 4 we have m = ∂ϕ vanishing at each endpoint so the condition for no
conical singularities is simply

(39) κ =
2

γ′(za−1)
= − 2

γ′(za)
.

In order to fix the sign we have used the fact that γ′(za−1) > 0 and γ′(za) < 0
(these follow from γ > 0 in the interior of Ia). Observe this gives two ways
of calculating κ and hence in principle can provide a nontrivial constraint
on the parameters of the solution. For D = 5 the adjacent rods Ia−1 and
Ia+1 are axis rods with rod vectors va−1 and va+1. In particular va−1 = 0
at z = za−1 and va+1 = 0 at z = za, so that the horizon metric has conical
singularities at the endpoints of Ia. The horizon metric extends to a smooth
metric at these end points iff the surface gravity

(40) κ2 =
4

γ′(za−1)γ′ij(za−1)via−1v
j
a−1

=
4

γ′(za)γ′ij(za)v
i
a+1v

j
a+1

.

Therefore, again, in principle this gives two independent expressions for κ
and hence may provide a constraint on the parameters of the solution. In
Appendix B we obtain further relations for the surface gravity by studying
the geometry near where an axis rod meets a horizon rod. Similarly to the
analysis of a corner between two axes described in the previous section, we
find that if an axis rod and horizon rod meet at z = za then |z − za|e2ν̊ is
continuous at z = za.

Using (38) one can also compute the area of a cross-section of the horizon

(41) A =

∫

Ha

κ−1dzdϕ1 · · · dϕD−3 =
(2π)D−3ℓa

κ
,

a relation which has been previously derived [9].



✐

✐

“4-Lucietti” — 2022/11/29 — 2:36 — page 389 — #19
✐

✐

✐

✐

✐

✐

Moduli space of stationary vacuum black holes 389

2.2.3. Standard basis. In order to compare the solutions on each rod it
is useful to write them in a common basis of Killing fields. For definiteness we
will take a basis adapted to the semi-infinite rod IL, i.e. the standard basis
EA = (k,m1, . . . ,mD−3). We can relate the adapted bases ẼA associated
to each rod Ia to the standard basis by ẼA = (L−1

a ) BA EB where La is a
change of basis matrix. The metric g̃ in the adapted basis ẼA, relative to
the standard basis is thus

(42) g = Lag̃L
T
a ,

where g̃ is given by (20) or (32) for an axis rod or horizon rod respectively.
If Ia is a horizon rod then ẼA = (mi, ξa) where ξa is the corotating

Killing field (31) for the component of the horizon Ha, so

(43) La =

( −Ωaj 1

δij 0

)

.

On the other hand, now suppose Ia is an axis rod. In 4d there is of course
only one axial Killing field and so there is only one type of axis rod and
hence the transformation matrices La are the identity matrix for all axis
rods. In 5d we take the basis ẼA = (k, ua, va), where (ua, va) is a basis of
U(1)2 Killing fields such that va is the rod vector, which gives

(44) La =

(

1 0
0 A−1

a

)

,

with Aa a GL(2,Z) matrix given by (19). In particular, in 5d the right
semi-infinite rod IR has rod vector vR = m1 and choosing uR = m2 gives

(45) LR =





1 0 0
0 0 1
0 1 0



 .

It is worth noting that for any horizon and axis rods detLa = ±1. There-
fore, using (42) we deduce that the normalisation (3) is also obeyed in the
standard basis.

2.3. Ernst potentials and gravitational fluxes

We will need to introduce the following Ernst potentials baµ associated to
each axis rod Ia,

(46) dbaµ = (−1)D−1⋆̃(e0 ∧ · · · ∧ eD−4 ∧ deµ) ,
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where ẼA = (eµ, va) is the adapted basis defined above and we fix an orien-
tation ϵ̃0···D−3ρz > 0. Therefore ⋆̃ = (detLa)⋆ where ⋆ is the Hodge dual with
respect to the standard orientation (defined above) and La is the transfor-
mation matrix between the adapted basis and the standard basis. Closure of
the 1-form on the RHS of (46) follows by the vacuum Einstein equations and
simple connectedness ensures the potentials are globally defined. Explicitly,
in Weyl coordinates we have

(47) ∂ρb
a
µ = ρg̃D−3Ag̃Aµ,z , ∂zb

a
µ = −ρg̃D−3Ag̃Aµ,ρ .

From the explicit form of the metric in the adapted basis (20) it follows that
near each axis rod Ia

(48) ∂zb
a
µ = 2wµ +O(ρ) , ∂ρb

a
µ = O(ρ)

as ρ→ 0.
The above Ernst potentials associated to each axis rod depend on the

corresponding rod vector. For D = 4 there is only one type of axis rod and
the corresponding Ernst potential is simply

(49) db = − ⋆ (k ∧ dk) .

For D = 5, there are many possible axis rods, although there are two rods
which appear in any asymptotically flat solution: the two semi-infinite axis
rods IL and IR on which m2 = 0 and m1 = 0 respectively. The Ernst poten-
tials (46) associated to IL and IR are

dbLµ = ⋆(k ∧m1 ∧ deLµ), eLµ = (k,m1) ,(50)

dbRµ = − ⋆ (k ∧m2 ∧ deRµ ), eRµ = (k,m2) .(51)

where the sign in the latter arises from the transformation (45) between the
adapted basis and the standard basis being orientation reversing, detLR =
−1.

We will also need similar potentials associated to any horizon rod Ia.
We define these analogously to the Ernst potentials (46). Thus, given our
adapted basis for a horizon rod ẼA = (mi, ξ), these potentials are precisely
the usual twist potentials (14) (observe our choice of orientation in these
two formulas is consistent). Therefore, similarly to the Ernst potentials, we
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find the twist potentials obey

(52) ∂ρχi = ρg̃0Ag̃Ai,z , ∂zχi = −ρg̃0Ag̃Ai,ρ

and using (32) we find that near a horizon rod Ia

(53) ∂zχi = 2ωi +O(ρ) , ∂ρχi = O(ρ)

as ρ→ 0.
As shown earlier, the change in twist potential over a horizon rod is

related to the Komar angular momenta of the horizon (13). Similarly, one
can relate the change in the Ernst potentials (46) across their associated
axis rods Ia to certain gravitational fluxes. For D = 4 we can define the flux

(54) G[Ia] = −
∫

Ia

⋆(k ∧ dk)

for any finite axis rod. Since the integrand is closed by the vacuum Einstein
equations these fluxes may be evaluated over any curve homotopic to Ia.
Clearly, from (49) we deduce

(55) G[Ia] = b(za)− b(za−1),

which gives a geometric interpretation to the change in Ernst potential over
an axis rod.

Similarly, for D = 5, given any finite axis rod Ia we may define gravita-
tional fluxes on the corresponding 2-cycle Ca. Explicitly, for each 2-cycle Ca
one can define a set of fluxes

(56) Gµ[Ca] =
1

2π

∫

Ca

⋆̃(e0 ∧ deµ),

where eµ = (k, ua), µ = 0, 1, is our adaped basis of Killing fields on Ca (recall
ẼA = (k, ua, va) is the adapted basis of Killing fields in the full spacetime).
The integrand is closed by the vacuum Einstein equations so one can evaluate
these fluxes over any 2-surface homologous to Ca so it only depends on
the homology class [Ca]. Thus these fluxes define gravitational topological
charges. Due to the invariance under the Killing fields these integrals can be
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reduced to ones over the corresponding axis rods,3

(57) Gµ[Ca] =
∫

Ia

⋆̃(e0 ∧ e1 ∧ deµ) = baµ(za)− baµ(za−1) ,

where we have used the definition of the Ernst potentials (46). Thus we
see that the fluxes Gµ[Ca] precisely correspond to the change in the Ernst
potential baµ(z) over the associated axis rod Ia giving it a geometric interpre-
tation. A similar set of topological charges have appeared in recent identities
that relate the thermodynamic variables to the topology of solutions in this
class [36].

Finally, it is worth noting that one can also relate the changes in Ernst
potentials baµ(z) (46) over a horizon rod Ia to the standard thermodynamic
quantities. We give these expressions in Appendix C.

3. Integrability of Einstein equations

3.1. Belinski-Zakharov spectral equations

As shown by Belinski and Zakharov (BZ), the Einstein equations (4) are the
integrability conditions for the following auxiliary linear system [17, 32],

(58) DzΨ =
ρV − µU

µ2 + ρ2
Ψ, DρΨ =

ρU + µV

µ2 + ρ2
Ψ ,

where

(59) Dz = ∂z −
2µ2

µ2 + ρ2
∂µ, Dρ = ∂ρ +

2µρ

µ2 + ρ2
∂µ

are commuting differential operators, µ is a complex ‘spectral’ parameter and
Ψ is an invertible (D − 2)× (D − 2) complex matrix function of (ρ, z, µ).

We will work with a slightly different version of the BZ linear system [21,
43, 44]. This is obtained by a change of spectral parameter defined by the

3Here we are using the identity
∫

Ca
⋆̃α = −2π

∫

Ia
⋆̃(ua ∧ α), valid for any U(1)2-

invariant 3-form α. This also shows that
∫

Ca
⋆̃(e1 ∧ deµ) = 0 so that these quantities

do not give rise to new charges.
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coordinate change (ρ, z, µ) → (ρ, z, k) where

(60) k = z +
µ2 − ρ2

2µ
,

which in particular implies Dz → ∂z, Dρ → ∂ρ. This results in the linear
system

(61) ∂zΨ =
ρV − µU

µ2 + ρ2
Ψ, ∂ρΨ =

ρU + µV

µ2 + ρ2
Ψ ,

where µ = µ(k) is defined implicitly by (60) and k is the new complex spec-
tral parameter. We will assume Ψ is a smooth function of (ρ, z) and mero-
morphic in k (in a suitable domain). Henceforth we will work exclusively
with this alternate form of the BZ linear system (61). It turns out to be
more useful for our purposes since, as (60) shows, the spectral parameter k
is defined on a two-sheeted Riemann surface.

Independently of (58), one can check directly from (61) that ∂z∂ρΨ =
∂ρ∂zΨ iff

(62) ∂ρ

(

V

ρ

)

− ∂z

(

U

ρ

)

− 1

ρ2
[U, V ] = 0

and

(63) ∂ρµ =
2ρµ

µ2 + ρ2
, ∂zµ = − 2µ2

µ2 + ρ2

and the Einstein equations (4) are satisfied. Equation (62) is in fact identi-
cally satisfied as it is the integrability condition for the existence of a matrix
g such that (5), whereas the general solution to (63) is given by (60) where k
is the integration constant. For some purposes it will be convenient to write
the linear system in the equivalent form

(64) (ρ∂ρ − µ∂z)Ψ = UΨ, (µ∂ρ + ρ∂z)Ψ = VΨ.

In particular, this form will be useful when evaluating on the boundary of
the half-plane.

Although solving for Ψ in general is complicated, it is straightforward
to solve for the general form of detΨ. Right multiplying (61) by Ψ−1 and
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taking the trace gives

(65) ∂ρ detΨ =
2ρ detΨ

µ2 + ρ2
, ∂z detΨ = −2µ detΨ

µ2 + ρ2
,

where we have used TrU = 2 and TrV = 0. Comparing to (63) it follows
that

(66) detΨ = µf(k),

where f(k) is an arbitrary function of k (i.e independent for ρ, z).
As we will take k to be a complex parameter we need to take care to

treat the implicitly defined function µ in (60) properly. Locally, we may solve
for µ to get

(67) µ = k − z ±
√

ρ2 + (k − z)2 .

Thus there are branch points at k = w and k = w̄ where w = z + iρ and so
we take the branch cut to be the finite line in the complex k-plane between
these points. Hence we consider the linear system (61) on the two sheeted
Riemann surface Σw ⊂ C2 defined by

(68) y2 = (k − w)(k − w̄) , (k, y) ∈ C
2 .

The square root function (67) is then defined by µ : Σw → C where

(69) µ(k, y) = k − z + y

We will denote y on the two sheets (i.e. the two square roots) by y±(k) and
use k as a local coordinate on each sheet. For definiteness we define y+ by
having positive real part for Re (k − w) > 0. We also define µ± = µ(k, y±)
and note the useful identity µ+µ− = −ρ2.

We will also denote the corresponding Ψ on the two sheets by Ψ± and
similarly for any other quantity on Σw. Since Ψ± corresponds to Ψ evaluated
on the two sheets of the same Riemann surface we must require a continuity
condition at the branch points:

(70) Ψ+(ρ, z, k) = Ψ−(ρ, z, k) at k = z ± iρ .

This condition will be important in our later analysis. Taking the determi-
nant of this and comparing to (66) shows that f+(k) = f−(k) (for Im k ̸= 0,
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and by continuity, for all k except perhaps at isolated points) and so we
drop the subscript on this quantity.

The spectral equations have an important involution symmetry which
allow one to map solutions on one Riemann sheet to the other. The matrices
defined by

(71) Ψ̃± = gΨT−1
∓ ,

obey the same equations as Ψ±, i.e.,

(72) (ρ∂ρ − µ±∂z)Ψ̃± = UΨ̃±, (µ±∂ρ + ρ∂z)Ψ̃± = V Ψ̃± .

It is easy to show that given two solutions Ψ± and Ψ̃∓ to the above equations
their ‘difference’ B± = Ψ̃−1

± Ψ± must be independent of (ρ, z). Therefore, it
follows from (71) that

(73) Ψ± = gΨT−1
∓ B± ,

where B± = B±(k) are invertible matrices. It immediately follows from this
that B± = BT

∓. Furthermore, for ρ > 0 we can write (73) as B± = ΨT
∓g

−1Ψ±

and evaluating this at the branch points k = z ± iρ and using the continuity
condition (70) shows that B±(k) is symmetric (for Im k ̸= 0, and by conti-
nuity, for all k except perhaps at isolated points). Putting all this together
we deduce that B+ = BT

− = B− so we may drop the subscript on B. Thus
this symmetry may be simply written as

(74) Ψ± = gΨT−1
∓ B

where B = B(k) is an invertible symmetric matrix. Taking the determinant
shows

(75) detB(k) = f(k)2 .

3.2. Spectral equations on semi-circle at infinity

We will consider asymptotically flat spacetimes in four and five dimensions.
In both cases the asymptotic region corresponds to the semi-circle at infinity
in the half-plane (7). Thus it is convenient to introduce polar coordinates
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(r, θ) on the half-plane where

(76) ρ = r sin θ, z = r cos θ

and 0 ≤ θ ≤ π. In terms of the complex coordinate w = z + iρ we have w =
reiθ. The semi-circle at infinity then simply corresponds to r → ∞. More
precisely, we introduce the contour Cr = {reiθ : 0 ≤ θ ≤ π} in the half-plane
with anticlockwise orientation and consider large r.

Now, fix a sheet of Σw with local coordinate k and consider traversing
Cr starting at θ = 0. The branch points w, w̄ trace out corresponding semi-
circles in the upper and lower half of the complex k-plane with a moving
branch cut between the upper and lower semi-circle. Any fixed value of k on
the sheet must pass through the moving branch cut as we traverse Cr for
large enough r (i.e. r > |k|). This occurs at an angle given by Re(k − w) = 0,
i.e.

(77) cos θ∗ =
Re(k)

r
=⇒ θ∗ =

π

2
− Re(k)

r
+O(r−3) .

Now, passing through the branch cut corresponds to changing sheet of
Σw. Therefore, in effect, traversing Cr imposes a change of sheet as we
pass through θ = θ∗. In particular, given a solution to the linear system
Ψ±(r, θ, k) on the two sheets, this implies the following continuity condi-
tions on the semi-circle at infinity

(78) lim
ϵ→0+

Ψ±(r, θ∗ − ϵ, k) = lim
ϵ→0+

Ψ∓(r, θ∗ + ϵ, k) .

Notice this provides a relation between the Ψ+ and Ψ− fields at infinity.
The above considerations also affect the asymptotic expansion of quan-

tities defined on each sheet along infinity. For instance, consider µ+ on the
+ sheet. Traversing Cr from θ = 0, it is easy to see that the branch cut
approaches a fixed k from the right (where y+(k) has negative real part) so

(79) µ+(r, θ, k) = (k − r)(1 + cos θ) +O(r−1) 0 ≤ θ < θ∗ ,

whereas traversing Cr from θ = π, the branch cut approaches k from the left
so

(80) µ+(r, θ, k) = (k + r)(1− cos θ) +O(r−1) θ∗ < θ ≤ π .
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A similar argument for µ− shows that

µ−(r, θ, k) =

{

(k + r)(1− cos θ) +O(r−1) 0 ≤ θ < θ∗
(k − r)(1 + cos θ) +O(r−1) θ∗ < θ ≤ π

.(81)

Observe that the continuity conditions

lim
ϵ→0+

µ±(r, θ∗ − ϵ, k) = lim
ϵ→0+

µ∓(r, θ∗ + ϵ, k)

are indeed satisfied.
It is convenient to write our linear system (61) in polar coordinates,

which gives,

∂rΨ = YrΨ, Yr =
r sin2 θS − µT

µ2 + r2 sin2 θ
(82)

∂θΨ = YθΨ , Yθ =
r sin θ(µS + rT )

µ2 + r2 sin2 θ
(83)

where S = r∂rgg
−1 and T = sin θ∂θgg

−1. We now consider the solution to
the spectral equations in the limit r → ∞.

The explicit solution depends on the dimension, although it has some
common features which will be key in our analysis. Let ḡ denote the
Minkowski metric and Ψ̄ a corresponding solution to the spectral equation
(83). Now define the ‘difference’,

(84) ∆ = Ψ̄−1Ψ ,

between a Minkowski solution Ψ̄ and a solution Ψ to (83) for any asymp-
totically flat metric g. Then, it easily follows that

(∂r∆)∆−1 = Υr, Υr ≡ Ψ̄−1(Yr − Ȳr)Ψ̄,

(∂θ∆)∆−1 = Υθ , Υθ ≡ Ψ̄−1(Yθ − Ȳθ)Ψ̄ .(85)

The matrices Υ depend on the explicit solution in Minkowski spacetime
and the definition of asymptotic flatness, which for D = 4, 5 will be given
later. All that we need at this stage is that for both dimensions, all matrix
entries of Υr and Υθ are O(r−2) and O(r−1) respectively, as r → ∞. Thus,
asymptotically, ∆ must be only a function of k. In other words, the solution
to the spectral equation for an asymptotically flat spacetime is asymptotic
to that for Minkowski spacetime, as one would expect.
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More precisely, consider the solution on the + sheet of Σw

(86) Ψ+ = Ψ̄+∆+ .

From the above it follows that

(87) ∆+ =

{

NR(k) +O(r−1) 0 ≤ θ < θ∗
NL(k) +O(r−1) θ∗ < θ ≤ π

,

where NR,L(k) are invertible matrices and R,L denote the right and left
segment (these in general are different since Υr+,Υθ+ are discontinuous on
Cr at θ = θ∗). Using the involution symmetry (74) we find that

(88) Ψ− = gΨ̄T−1
+ ∆T−1

+ B ,

and hence imposing the continuity conditions (78) we deduce that

C ≡ NT−1
R (k)B(k)NL(k)

−1(89)

= lim
r→∞

Ψ̄T
+(r, θ

−
∗ , k)g(r, θ∗)

−1Ψ̄+(r, θ
+
∗ , k) .(90)

The relation (90) allows one to compute C given the asymptotics of the
Minkowski solution. It is worth remarking that although (78) consists of
two continuity equations, the fact that B is a symmetric matrix (74) ensures
that they are equivalent.

There is a certain freedom in the choice of Ψ̄+ corresponding to right-
multiplication by a matrix function of k. Since the asymptotic expansion
(80) for µ+ to leading order is independent of k, we may choose Ψ̄+(r, θ, k)
such that as r → ∞ the leading term in each entry is independent of k.
Making this choice, one then expects from (90) that C is independent of k
and hence is a constant matrix (we will confirm this explicitly later).

3.3. General solution on the axes and horizons

We will now show that the linear system simplifies when evaluated on the
boundary of the half-plane. Recall that smoothness of the axes and horizons
requires the metric must be a smooth function of (ρ2, z). Therefore we may
assume Ψ is a smooth function of (ρ2, z).
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First we make a few general remarks. In order to evaluate limits to the
boundary we will need the following useful relations

(91) µ+ ∼ 2(k − z), µ− ∼ − ρ2

2(k − z)

as ρ→ 0. Thus taking the limit of the determinant detΨ± and using (66)
shows that Ψ+ is generically a nonsingular matrix on the boundary whereas
Ψ− is singular. Therefore we will only consider Ψ+ and use (74) to deduce
Ψ−.

We are now in a position to evaluate the limit of the linear system (64)
for Ψ+ as ρ→ 0. It is easy to see this system reduces to an ODE

(92) (z − k)∂zΨ̊ = 1
2 ŮΨ̊,

where we define Ψ̊(z, k) = limρ→0Ψ+(ρ, z, k) and the second equation van-
ishes identically due to our assumption that Ψ+ is a smooth function of ρ2.
We will explicitly solve the linear system along the boundary ρ = 0.

First consider an axis rod Ia. In the corresponding adapted basis the
metric is given by (20). The general solution to the linear system (92) on Ia
in this basis can be written as

(93) X̃a(z, k)M̃a(k), X̃a(z, k) =

(

−δ ν
µ baµ(z)

0 2(k − z)

)

, z ∈ Ia

where we have used (24, 48) and M̃a(k) is an arbitrary integration matrix.
The particular solution X̃a(z, k) satisfies

(94) ∂zX̃a = −˚̃Ua.

We note there is a lot of freedom in the choice of particular solution X̃a(z, k).
In particular, the integration constant for the Ernst potential baµ(z) may be
set to any value we like by right multiplying the particular solution by a
constant upper triangular matrix with unit diagonals (which can then be
absorbed into a redefinition of M̃a(k)). For convenience we will choose the
potentials to vanish at the lower endpoint of the finite rods

(95) baµ(za−1) = 0

for a = 2, . . . , n and

(96) lim
z→−∞

bLµ(z) = 0 , lim
z→∞

bRµ (z) = 0 .
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The latter are consistent with the asymptotics bLµ → 0 and bRµ → 0 at infinity
(even off axis).

In order to compare the solutions on each rod we will write them all
relative to the standard basis. The metric near each axis rod Ia relative to
the standard basis is given by (42), which implies U = LaŨL

−1
a . Hence, from

(93), we deduce that the general solution to the linear system (92) on an
axis rod Ia relative to the standard basis takes the form

(97) Ψ̊a(z, k) = Xa(z, k)Ma(k) , z ∈ Ia ,

where

(98) Xa(z, k) = La

(

−δ ν
µ baµ(z)

0 2(k − z)

)

L−1
a

and Ma(k) are arbitrary matrices. It is also worth recording that the metric
on Ia relative to the standard basis (42) is simply

(99) g̊(z) = La

(

haµν(z) 0

0 0

)

LTa .

Recall that in these formulas, if D = 4 the matrix La is the identity matrix,
whereas if D = 5 it is given by (44).

Now consider a horizon rod Ia. An entirely analogous derivation of the
solution can be given in this case using (35, 53). Thus we find the general
solution to the linear system (92) on a horizon rod Ia relative to the standard
basis can be again written as (97) where

Xa(z, k) = La

(

−δ j
i χai (z)
0 2(k − z)

)

L−1
a(100)

and χai (z) = χi(z)− χi(za−1) (which corresponds to a choice of integration
constant), the matrix La is given by (43) and Ma(k) are arbitrary matrices.
The metric on Ia relative to the standard basis (42) is simply

(101) g̊(z) = La

(

γij(z) 0
0 0

)

LTa .

We now have the general solution to the linear system on all components of
the boundary ρ = 0.
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Before moving on it is worth noting that for both axis and horizon rods
we have

(102) detXa(z, k) = 2(−1)D−3(k − z)

and combining this with (66) implies

(103) detMa(k) = (−1)D−3f(k) ,

for all a = 1, . . . , n+ 1.
Clearly we must impose continuity of Ψ̊(z, k) at z = za for a = 1, . . . , n,

where adjacent rods Ia and Ia+1 touch, i.e.,

(104) Ψ̊a(za, k) = Ψ̊a+1(za, k) .

Upon using the general solution this gives

(105) Ma(k) = Pa(k)Ma+1(k)

where we have introduced the matrices

(106) Pa(k) = Xa(za, k)
−1Xa+1(za, k) ,

for each a = 1, . . . n. Observe that from (102) it follows that detPa(k) = 1
automatically. Iterating we find

Ma(k) = Qa(k)MR(k),(107)

Qa(k) ≡ Pa(k)Pa+1(k) · · ·Pn(k)(108)

for a = 1, . . . , n+ 1 with Qn+1(k) understood as the (D − 2)-dimensional
identity matrix. In particular

(109) ML(k) = Q1(k)MR(k) .

Note the fact Pa(k) is unit determinant implies detQa(k) = 1 automatically.
We may now match the solution on the semi-infinite axis rods to the

solution for an asymptotically flat spacetime near infinity (86) and (87).
Firstly, the solutions for Minkowski spacetime on the semi-infinite axes can
be deduced from the above by setting bL,Rµ (z) = 0. A convenient choice, such
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that these solutions are independent of k to leading order as |z| → ∞, is

(110)

˚̄ΨL(z, k) =

(

−δ ν
µ 0

0 2(k − z)

)

,

˚̄ΨR(z, k) = LR

(

−δ ν
µ 0

0 2(k − z)

)

L−1
R .

Thus from (86) we get

(111) ∆̊+L =ML(k) +O(z−1), ∆̊+R =MR(k) +O(z−1) ,

where we have used (96) and further assumed the asympotic expansion for
bL,Rµ (z) = O(z−1) (this follows from the definition of asymptotic flatness as
we will see later). Therefore, comparing to (87) we deduce that

(112) NR(k) =MR(k) , NL(k) =ML(k) .

We may use this to eliminate the matrices NL/R in favour ofML/R and thus
from (89) we obtain

(113) ML = C−1(MR)
T−1B .

Recall that the choice of asymptotic solutions corresponds to a choice of
matrix C (90). Later we will see that our choice (110) fixes C to be a
dimension dependent constant matrix. In any case, taking the determinant
of (113) and using (75) and (103) implies

(114) detC = 1

independently of the dimension.
It is convenient to define the following matrix

(115) Q̃1(k) = CQ1(k) .

We are now ready to state our first result.

Proposition 1. The matrices

(116) Fa(k) = −Qa(k)Q̃1(k)
−1Qa(k)

T ,

are symmetric for a = 1, . . . , n+ 1.
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Proof. Clearly, if Q̃1(k) is symmetric then Fa(k) is also symmetric for all
a = 1, . . . , n+ 1. Combining the condition arising from asymptotic flatness
(113) with the continuity condition (109) gives

(117) MR(k)B(k)−1MR(k)
T = Q̃1(k)

−1

which immediately implies the result (recall B is symmetric). Symmetry of
Fa(k) for a = 1, . . . , n, also directly follows from the relation

(118) Ma(k)B(k)−1Ma(k)
T = −Fa(k) .

which can be established by combining (117) with (107). □

Remarks.

1) The matrices Fa can be rewritten explicitly in terms of Pa(k) to give

(119)

FL = −C−1QT1 = −C−1P Tn · · ·P T1 ,
Fa = −P−1

a−1 · · ·P−1
1 C−1P Tn · · ·P Ta ,

FR = −Q̃−1
1 = −P−1

n · · ·P−1
1 C−1,

where a = 2, . . . , n.

2) In general the determinant of Fa is

(120) detFa(k) = (−1)D−2

as a consequence of Qa(k) being unit determinant and (114).

We are now ready to state the main result of this section.

Proposition 2. The metric data on each rod satisfies the algebraic equation

(121) g̊(z) = Xa(z, z)Fa(z) , z ∈ Ia

where Fa(z) is given by (116), whereas g̊(z) and Xa(z, z) are given by (99),
(98) for an axis rod and (101), (100) for a horizon rod.



✐

✐

“4-Lucietti” — 2022/11/29 — 2:36 — page 404 — #34
✐

✐

✐

✐

✐

✐

404 J. Lucietti and F. Tomlinson

Proof. We impose continuity at the branch points (70) on the axis ρ = 0:

(122) lim
k→z

Ψ+(0, z, k) = lim
k→z

Ψ−(0, z, k) .

Using (74) to write Ψ− in terms of Ψ+, the continuity condition (122) reads

(123) Ψ̊(z, z) = lim
k→z

g̊(z)Ψ̊(z, k)T−1B(k) .

Evaluating on each rod and using the general solution (97), equation (118)
and the elementary identity g̊(z)Xa(z, k)

T−1 = −g̊(z), gives (121) as claimed.
□

We emphasise that, crucially, equation (121) does not depend on the ar-
bitrary matrices Ma(k) and hence provides a constraint on the spacetime
geometry. In fact, (121) fully determines the metric on each rod Ia. Indeed,
both g̊(z) and Xa(z, z) for z ∈ Ia are rank-(D − 3) so (121) gives 1

2(D −
3)(D − 2) +D − 3 algebraic equations for the 1

2(D − 3)(D − 2) +D − 3 un-
knowns, either (haµν(z), b

a
µ(z)) or (γij(z), χi(z)) (depending on if Ia is an axis

or horizon rod).

3.4. Classification theorem and moduli space of solutions

We now show that (121) fully determines the metric on each rod. The explicit
solution is summarised by the following theorem which is the main result of
this paper.

Theorem 4. Consider a D = 4 or 5-dimensional vacuum spacetime as in
Theorem 1.

1) The general solution (haµν(z), b
a
µ(z)) on any axis rod Ia is

(124) haµν(z) = −F̃aµν(z) +
F̃aµN (z)F̃aNν(z)

F̃aNN (z)
, baµ(z) =

F̃aµN (z)

F̃aNN (z)
,

where µ = 0, . . . , D − 4 and N = D − 3 and the matrices F̃a(k) are
defined by

(125) Fa(k) = La

(

F̃aµν(k) F̃aµN (k)

F̃aNν(k) F̃aNN (k)

)

LTa .
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In particular, this implies

(126) dethaµν(z) = − 1

F̃aNN (z)

and

(127) F̃aNN (z) > 0 , z ∈ Ia .

2) The general solution (γij(z), χ
a
i (z)) on any horizon rod Ia is

(128) γij(z) = −F̃aij(z) +
F̃ai0(z)F̃a0j(z)

F̃a00(z)
, χai (z) =

F̃ai0(z)

F̃a00(z)
,

where i = 1, . . . , D − 3 and F̃a(k) is defined by

(129) Fa(k) = La

(

F̃aij(k) F̃ai0(k)

F̃a0j(k) F̃a00(k)

)

LTa .

In particular,

(130) det γij(z) = − 1

F̃a00(z)

and

(131) F̃a00(z) < 0 , z ∈ Ia .

In both cases Fa(k) are the matrices defined by (116). The solution depends
on the ‘moduli’
(132)
{bLµ(z1), bRµ (zn)} ∪ {(ℓa, va, baµ(za)|Ia ̸=L,R ⊂ Â} ∪ {(ℓa,Ωai , χai (za)|Ia ⊂ Ĥ},

where Â and Ĥ are the union of axis and horizon rods respectively, subject to
algebraic constraints arising from Proposition 1 and the inequalities (127),
(131).

Proof. First consider an axis rod Ia and let us write Fa(k) as (125). Then,
using (99) and (98) reveals that (121) is equivalent to haµν = −F̃aµν + baµF̃aNν
and F̃aµN = FaNNb

a
µ. We can solve this for baµ = F̃aµN/F̃aNN , since F̃aNN ̸=

0 for any z ∈ Ia; to see this latter condition simply note that if F̃aNN = 0
then F̃aµN = 0 which contradicts the fact Fa(k) must be unimodular (120).
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Thus we find the unique solution on an axis rod Ia is (124). Then, recalling
that detLa = ±1 for any rod, (120) implies that (126). Finally, since haµν(z)
must be a smooth Lorentzian metric on Ia we must require (127).

A completely analogous analysis holds for any horizon rod Ia, with the
only difference being that γij(z) must be a smooth positive definite metric
on Ia so we must require (131).

The matrices Fa(k) are given by (119), where the matrices Pa(k) are
defined by (106). From the explicit form for Xa(z, k) on each axis rod (98)
or horizon rod (100), it is clear that the set of matrices Pa(k) depend on the
parameters za, va, b

a
µ(za), b

R
µ (zn), χ

a
i (za),Ω

a
i . However, due to the translation

freedom in the choice of origin of the z-axis the solution can only depend
on the constants za via the rod lengths ℓa = za − za−1 and therefore the
solution depends on (132). □

Remarks.

1) If D = 4 the determinant fully fixes the metric ha(z) = −F̃aNN (z)−1

and γ(z) = −F̃a00(z)−1 if Ia is an axis or horizon rod. If D = 5 sym-
metry of Fa(k) implies symmetry of the metric haµν and γij (but not
vice-versa).

2) Alternate forms of the general solution can be obtained by replacing
Fa(k) with Fa(k)

T for some a ∈ {1, . . . , n+ 1}. Of course, these are
all equivalent since Fa(k) must be symmetric by Proposition 1. In fact
the symmetry of Fa(k) implies the moduli (132) satisfy a complicated
set of algebraic constraint equations which will be discussed below.

3) The horizon moduli χai (za) are (up to a constant) the horizon angular
momenta Jai (13). We will recover this result from an asymptotic anal-
ysis of the general solution later. On the other hand, the axis moduli
baµ(za) are equal to the gravitational fluxes (55) and (57).

4) From the explicit form of the matrices (119), (106), (98), (100) it is
easy to see that the metric components and potentials on each rod are
rational functions of z.

5) In general, regularity of the axes imposes further constraints on these
moduli from the conditions for the removal of conical singularities (28),
(29), (30), (39), (40) (see also Appendix B). Observe that these regu-
larity conditions also require that dethaµν vanishes at the endpoints of
the associated axis rod Ia and that det γij vanishes at the endpoints
of a horizon rod.
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The parameters (132) that the general solution for the Ernst and twist
potentials {baµ(z), χai (z)} on the finite rods depend on include {baµ(za), χai (za)},
so there are potential constraints on these from the obvious consistency re-
lations: baµ(z)|z→za−1

= 0 (recall (95)) and baµ(z)|z→za = baµ(za) and the cor-
responding constraints for horizon rods. In total these amount to 2(D −
3)(n− 1) conditions, (D − 3)(n− 1) of which are automatically satisfied by
our solution as the following shows.

Proposition 3. For the general solution (124), (128) the following identi-
ties are satisfied for generic values of the moduli:

lim
z→za−1

baµ(z) = 0,(133)

lim
z→za−1

χai (z) = 0,(134)

if Ia is a finite axis rod or horizon rod respectively.
On the other hand, for the general solution with Fa(k) replaced by Fa(k)

T

the following identities are satisfied for generic values of the moduli:

lim
z→za

baµ(z) = baµ(za),(135)

lim
z→za

χai (z) = χai (za),(136)

if Ia is a finite axis rod or horizon rod respectively.

Proof. First, using (119), we can write Fa(k) = Xa(za−1, k)
−1Ga(k), where

Ga(k) is a matrix with a finite limit as k → za−1, for a = 2, . . . , n. Then, if
Ia is an axis rod, from (98) we get

(137) F̃a(k) =

( −δ ν
µ 0

0 1
2(k−za−1)

)

G̃a(k),

where F̃a(k) is defined in Theorem 4, and Ga ≡ LaG̃aL
T
a is defined similarly.

Using (124) implies the solution

(138) baµ(z) = −2(z − za−1)G̃aµN (z)

G̃aNN (z)
.

Therefore, if limk→za−1
G̃aNN (k) ̸= 0 for generic parameter values, the claim

(133) follows. This is proved in Appendix D. The analysis for a horizon rod
is essentially identical.
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Next, we can write Fa(k)
T = Xa(za, k)

−1Ha(k), where Ha(k) is a matrix
with a finite limit as k → za. Using (98) we find

(139) F̃a(k)
T =

(

−δ ν
µ

baµ(za)

2(k−za)

0 1
2(k−za)

)

H̃a(k),

where Ha ≡ LaH̃aL
T
a . Therefore the general solution (124) with Fa(k) re-

placed with Fa(k)
T gives

(140) baµ(z) = baµ(za)−
2(z − za)H̃aµN (z)

H̃aNN (z)
,

which implies (135), since limk→za H̃aNN (k) ̸= 0 for generic parameter val-
ues (again, see Appendix D). The analysis for a horizon rod is completely
analogous. □

Remarks.

1) Conversely, for the general solution the conditions (135) and (136)
generically provide nontrivial constraints on the moduli (132). Simi-
larly, for the solution with Fa(k) replaced by Fa(k)

T , the conditions
(133) and (134) generically give nontrivial constraints. Thus, in either
case these consistency relations on the finite rods generically provide
(D − 3)(n− 1) constraints on the moduli (132).

2) There are analogous relations that are satisfied automatically on the
semi-infinite rods, i.e. for the solution (124) using FR on IR and F TL
(rather than FL) on IL one finds that

(141) lim
z→zn

bRµ (z) = bRµ (zn) , lim
z→z1

bLµ(z) = bLµ(z1) .

3) An important consequence of this Proposition is that if Q̃1(k) (and
hence Fa(k)) is symmetric, then both sets of consistency conditions
(133, 134) and (135, 136) are satisfied and thus provide no further
constraint on the moduli.

We now consider the constraints on the parameters (132) that arise from
the symmetry of the matrices Fa(k). As can be seen from their definition
(116), the symmetry of Fa(k) is equivalent to the symmetry of the single
matrix Q̃1(k). To this end, we establish the following result.
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Lemma 1. Q̃1(k) is a rational function of the form

(142) Q̃1(k) =

∑n+1
p=0 qpk

p

∏n
a=1(k − za)

,

where qn+1 = 0 for D = 4 and qn+1 = −2Cdiag(0, 1, 0) for D = 5.

Proof. To see this, it is convenient to rewrite (108) for a = 1, as

(143) Q1(k) = XL(z1, k)
−1R(k)XR(zn, k),

where we have defined

R(k) = R2(k) . . . Rn(k),(144)

Ra(k) = Xa(za−1, k)Xa(za, k)
−1(145)

for a = 2, . . . , n. Using our solution (98) we find that for any axis rod Ia
(excluding IL, IR)

(146) Ra(k) = ID−2 +
Sa

k − za
, Ra(k)

−1 = ID−2 −
Sa

k − za−1
,

where

(147) Sa ≡ La

(

0 −1
2b
a
µ(za)

0 ℓa

)

L−1
a

and ID−2 is the (D − 2)-dimensional identity matrix. The same expression
holds for any horizon rod upon the obvious replacement of baµ(za) with
χai (za). The lemma now follows straightforwardly from (143) and the defi-
nition (115). □

Remarks.

1) For D = 4, qn+1 is trivially symmetric. For D = 5, the explicit form of
C is computed in Section 5, see (202), which also ensures that qn+1 is
automatically symmetric. Therefore, symmetry of Q̃1(k) is equivalent
to symmetry of the coefficient matrices

(148) qTp = qp ,

for p = 0, 1, . . . , n. (148) are a set of nonlinear algebraic constraints for
the moduli (132) which together with the inequalities ℓa > 0 and (127,
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131) define the moduli space of solutions. The moduli space equations
(148) can impose up to 1

2(D − 3)(D − 2)(n+ 1) constraints on the
parameters. For D = 4 these must be equivalent to the n+ 1 equations
obtained by Varzugin [21].

2) Consider the special case where all the continuous moduli (132) are
set to zero, except for the rod lengths ℓa. Also, for D = 5, suppose
that any finite axis rods have rod vectors vL or vR. Then it is straight-
forward to see that Q̃1(k) is diagonal (the matrix C turns out to be
diagonal for D = 4, 5, see (162, 202)). Thus, in particular, Q̃1(k) is au-
tomatically symmetric and there are no constraints on the remaining
moduli ℓa, i.e. we obtain a solution to (148). This class corresponds to
the (generalised) Weyl solutions which are defined by the additional
requirement that the D − 2 commuting Killing fields are hypersurface-
orthogonal [6] (so all Ernst/twist potentials must be constants which
can be fixed to zero).

3) The matrices FL(k) and FR(k) which determine the general solution
on IL and IR respectively can be written in terms of Q1(k) and C
using (119). Therefore, the asymptotics of the general solution can be
deduced from the asymptotic expansion for Q̃1(k) for k → ∞, which
from the Lemma takes the form

(149) Q̃1(k) = qn+1k + qn + qn+1

n
∑

a=1

za +O(k−1) .

The coefficients can be easily extracted from the decomposition (143)
together with

(150) R(k) = ID−2 +
S

k
+O(k−2), S =

n
∑

a=2

Sa .

The computation of the matrix C is dimension dependent so we present
this and the coefficients in the asymptotic expansion in later sections.

We are now ready to consider the moduli space of solutions with n+ 1
rods and h horizons (thus there are n− 1− h finite axis rods) that are
potentially singular on the axis. The general solution on the z-axis we have
found depends on a number of moduli (132): the rod structure, the change in
Ernst and twist potentials across each axis and horizon rod, and the horizon
angular velocities. Thus, the number of continuous parameters is given by
n− 1 + (n+ 1 + h)(D − 3). On the other hand, from the uniqueness and
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existence Theorems 1 and 2 we know that the solutions can be specified
by the rod structure and the change in twist potentials across each horizon
rod (recall by (13) these are equal to the horizon angular momenta {Jai }),
which consists of n− 1 + (D − 3)h parameters (see (17)). Thus we expect
(D − 3)(n+ 1) relations on the moduli (132); these may be thought of as
determining {Ωai , baµ(za), bLµ(z1), bRµ (zn)} in terms of the fundamental moduli
{ℓa, va, χai (za)} (although in practice these may not be the best parameters
to express the solution with).

For D = 4 we see that this coincides with the number of conditions
that symmetry of Q̃1(k) can impose, i.e. (148), which gives n+ 1 relations.
However, for D = 5 we find that symmetry of Q̃1(k) imposes too many con-
ditions, i.e. it imposes 3(n+ 1) rather than 2(n+ 1) conditions. Hence, for
D = 5, there must exist n+ 1 independent redundancies in the symmetry
relations (148). Therefore, we conclude that while for D = 4 equations (148)
provide a good description of the moduli space of solutions, for D = 5 im-
posing symmetry of Q̃1(k) leads to a redundant description of the moduli
space. In Section 5 we will discuss an alternate description for the D = 5
moduli space.

4. Four dimensions

4.1. General solution and physical parameters

In four spacetime dimensions the general solution on each components of
the axis and horizon simplifies. It is therefore worth recording some of the
key formulas and the solution again in this case. The main simplification
arises because there is only one axial Killing field and hence the rod vector
which vanishes on any axis rod is always m = ∂ϕ (this of course includes the
semi-infinite rods IL and IR).

Near any axis rod Ia, the metric (20) relative to the standard basis (k,m)
is simply

(151) g =

(

h− h−1ρ2w2 ρ2h−1w
h−1ρ2w −h−1ρ2

)

,

where h < 0. The general solution to the linear system (92) on the each axis
rod can be written as (97) where

(152) Xa(z, k) =

(

−1 ba(z)
0 2(k − z)

)
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and ba(z) = b(z)− b(za−1) for a = 2, . . . , n, bL(z) = bR(z) = b(z), and b(z)
is the Ernst potential (49) fixed by imposing that b→ 0 at infinity.

On the other hand, near a horizon rod Ia the metric (32) relative to the
standard basis is

(153) g = La

(

γ − γ−1ρ2ω2 ρ2γ−1ω
γ−1ρ2ω −γ−1ρ2

)

LTa ,

where γ > 0 and

(154) La =

(

−Ωa 1
1 0

)

.

The general solution to the linear system on Ia is (97) where

(155) Xa(z, k) = La

(

−1 χa(z)
0 2(k − z)

)

L−1
a

and χa(z) = χ(z)− χ(za−1) is the twist potential defined by (14).
We now consider the general solution with rods Ia=1,...,n+1. This is given

by Theorem 4 in terms of the matrices Fa(k). In turn, the matrices Fa(k)
are constructed from the matrices Pa(k) and a constant matrix C arising
from the solution to the linear system at infinity using (119). To fix C
we need to explicitly compute asymptotic solutions to the linear system
(86), (87) which match on to the axis solution (110), (111). Then, from
the definition (106) for matrices Pa(k), we deduce that the general solution
on the axis and horizons depends only on the following constants: the rod
lengths ℓa = za − za−1, the angular velocity of each horizon Ωa, the jump
in Ernst potentials b(za)− b(za−1) over each axis rod and jump in twist
potentials χ(za)− χ(za−1) over each horizon rod.

We now turn to the computation of the constant matrix C. Firstly,
Minkowski spacetime in polar coordinates (76) is given by

(156) ḡ = diag(−1, r2 sin2 θ), ν̄ = 0 ,

which implies S̄ = diag(0, 2) and T̄ = diag(0, 2 cos θ), where S, T are defined
in (83). The general solution to (83) in Minkowski space, which agrees with
the axis solution (110), is

(157) Ψ̄+ = diag(−1, µ+) .
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Thus, using the asymptotic expansion for µ+ in polar coordinates, given in
section 3.2, we find that

(158) Ψ̄+(r, θ, k) =

{

diag (−1, −r(1 + cos θ) +O(1)) 0 ≤ θ < θ∗
diag (−1, r(1− cos θ) +O(1)) θ∗ < θ ≤ π

as r → ∞.
More generally, any four-dimensional asymptotically flat spacetimes in

polar coordinates (76) must take the form

(159) g =

(

−1 + 2M
r +O(r−2) −2J sin2 θ

r (1 +O(r−1))

−2J sin2 θ
r (1 +O(r−1)) r2 sin2 θ(1 +O(r−1))

)

,

as r → ∞, whereM,J are the ADMmass and angular momentum. It follows
that the corresponding matrices S, T in the linear system (83) are now given
by
(160)

S − S̄ =

(

O(r−1) O(r−3)
O(r−1) O(r−1)

)

, T − T̄ =

(

O(r−2) O(r−3)
O(r−2) O(r−1)

)

,

which together with (158) imply that the RHS of equations (85) are

(161) Υr+ =

(

O(r−2) O(r−3)
O(r−3) O(r−2)

)

, Υθ+ =

(

O(r−1) O(r−2)
O(r−2) O(r−1)

)

for all 0 ≤ θ ≤ π. This justifies the claim (87). Thus we may compute C
from (90) using (158), which gives

(162) C = −I2 .

Note that from (115) we deduce Q̃1(k) = −Q1(k) and hence that Q1(k) must
be a symmetric matrix.

As a simple example, consider the rod structure of Minkowski spacetime,
which is given by a single rod consisting of the whole z-axis. Thus the right
and left semi-infinite axes are identified IL = IR and there are no continuity
conditions to be imposed. Then combining (113) with (123) gives

(163) g̊(z) = X(z, z)

which using (152) is equivalent to

(164) h(z) = −1, b(z) = 0 .
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This is indeed the data for Minkowski spacetime (156). In itself this a non-
trivial result: it shows that any asymptotically flat stationary and axisym-
metric vacuum solution with the same rod structure as Minkowski spacetime
is isometric to Minkowski spacetime on the axis. This of course follows from
the well known no-soliton theorems.

Given a solution (h(z), b(z)) on IL or IR we can compute the mass and
angular momentum. Comparing to (159) we find as |z| → ∞

(165) h(z) = −1 +
2M

|z| +O(z−2) , b(z) = −sign(z)2J

z2
+O(z−3)

where b(z) is determined using (48) and we have fixed the integration con-
stant so that it vanishes at infinity.

Finally, given the solution on a horizon rod, the surface gravity can be
computed from (39), which in principle may impose a nontrivial constraint
on the parameters.

4.2. Asymptotics of general solution

We now confirm our general solution (124) is asymptotically flat and com-
pute the asymptotic charges. In particular, the metric and Ernst potential
on IL are given by the components of FL(k) = Q1(k)

T . Using the decompo-
sition of Q1(k) given in equation (143) we find

FL(k) =

(

R 0
0 (k)− R 0

1 (k)b(z1)
2(k−z1)

− R 0
1 (k)

2(k−z1)

F̃L10(k)
R 0

1 (k)b(zn)+2(k−zn)R 1
1 (k)

2(k−z1)

)

,(166)

F̃L10(k) = 2(k − zn)

(

−R 1
0 (k) +

R 1
1 (k)b(z1)

2(k − z1)

)

− b(zn)

(

R 0
0 (k)− R 0

1 (k)b(z1)

2(k − z1)

)

and R B
A (k) denote the components of the matrix (144) in the standard basis.

Hence using (124) we find that the solution on IL is

h(z) = − 2(z − z1)

R 0
1 (z)b(zn) + 2(z − zn)R 1

1 (z)
,(167)

b(z) = − R 0
1 (z)

R 0
1 (z)b(zn) + 2(z − zn)R 1

1 (z)
,(168)
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where we have used the fact that h(z) = −F̃L11(z)−1 (see Remark 2 below
Theorem 4). We may now compute the asymptotics of the solution as z →
−∞. Using (150) we find

(169) h(z) = −1− S 0
0

z
+O(z−2), b(z) = −S

0
1

2z2
+O(z−3)

where S B
A denote the components of the matrix S defined in (150).

We can evaluate these relations more explicitly using (147). We find that

Sa =

(

0 −1
2b
a(za)

0 ℓa

)

, Ia ̸=L,R ⊂ Â ,(170)

Sa =

(

ℓa +
1
2Ω

aχa(za) Ωa(ℓa +
1
2Ω

aχa(za))
−1

2χ
a(za) −1

2Ω
aχa(za)

)

, Ia ⊂ Ĥ .(171)

Therefore, from the asymptotics of the general solution derived above we
deduce

M =
∑

Ia⊂Ĥ

Ma , Ma =
1
2(ℓa +

1
2Ω

aχa(za)),(172)

J =
∑

Ia⊂Ĥ

Ja , Ja = 1
8χ

a(za) .(173)

Observe that these expressions for the angular momenta are the well-known
relations (13). The expressions for the mass (172) together with (41) imply
the Smarr relation (for multi-black holes).

On the other hand, suppose instead we use the alternate form of the
solution where FL(k) is replaced by FL(k)

T . Then the only change in the
solution is that now b(z) = F̃L10(z)/F̃L11(z). Working to first order in the
expansion for R(z) as in (150) allows us only to determine the O(1) term,

(174) b(z) = b(z1)− 2S 1
0 − b(zn) +O(z−1).

Therefore b(z) → 0 implies

b(zn)− b(z1) = −2S 1
0 =

∑

Ia⊂Â
a ̸=L,R

ba(za)− 4
∑

Ia⊂Ĥ

ΩaMa .(175)

We provide an alternate derivation of this relation in Appendix C (the same
relation was also found in [21]). It is worth emphasising that the coefficient



✐

✐

“4-Lucietti” — 2022/11/29 — 2:36 — page 416 — #46
✐

✐

✐

✐

✐

✐

416 J. Lucietti and F. Tomlinson

qn appearing in Lemma 1 can be deduced from the above to be

(176) qn = −
(

1 b(z1)− b(zn)− 2S 1
0

0 1

)

and thus symmetry of this is equivalent to (175). Therefore this asymptotic
analysis solves the p = n moduli space equation (148).

We can similarly consider the asymptotics of the solution on IR which
is given by the matrix FR(k) = Q1(k)

−1. The computation is essentially the
same as above and one finds the formulas (172) and (175). Furthermore,
imposing symmetry of FR(k) one now gets (173).

4.3. Kerr solution

We now consider solutions with the same rod structure as Kerr. Namely,
we assume there are three rods IL = (−∞, z1), IH = (z1, z2), IR = (z2,∞)
where IH is a horizon rod. The solution is given by Theorem 4 in terms of
the matrices Fa(k) given by (119), which in this case are simply
(177)
FL(k) = Q1(k)

T , FH(k) = P1(k)
−1P2(k)

T , FR(k) = Q1(k)
−1 ,

where Q1(k) = P1(k)P2(k) and the Pa(k) are defined by (106).
First, let us consider z < z1. It is convenient to use the alternate form of

the solution (h(z), b(z)) on IL where FL(k) is replaced with FL(k)
T = Q1(k)

in (124). We then compute the mass and angular momentum by comparing
to the asymptotic expansions (165), which in fact also fixes b(z1), b(z2). We
find

M = 1
2 [ℓH + 1

2Ω(χ(z2)− χ(z1))] ,(178)

b(z1) = −b(z2) = 2ΩM ,(179)

J = ΩM2[4M − 1
2Ω(χ(z2)− χ(z1))] ,(180)

where ℓH = z2 − z1 and we have written the latter quantities in terms ofM .
On the other hand, from our general asymptotic analysis, (173) reduces

to

(181) χ(z2)− χ(z1) = 8J ,
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while the expressions (172) and (175) already follow from (178) and (179).
We can use (181) to eliminate χ(z2)− χ(z1). Then (178) gives4

(182) ℓH = 2(M − 2ΩJ)

and (180) can be solved for J

(183) J =
4ΩM3

1 + 4Ω2M2
.

One can now check that Q1(k) is symmetric and therefore we have fully
solved the moduli space equations (148).

Substituting (183) back into (182) we find

(184) ℓH =
2M(1− 4Ω2M2)

1 + 4Ω2M2

and hence positivity of the horizon rod length ℓH > 0 and of the massM > 0
implies

(185) |Ω| < 1

2M
.

This determines the full moduli space of nonextreme Kerr black hole solu-
tions. Indeed, the relation (183) now implies the well-known inequality

(186) |J | < M2 .

In terms of the physical quantities the solution simplifies a little. We find
for z < z1:

h(z) =
−(z − z1)(z − z2)

(z − z2)2 − 4ΩJ(z − z2) + 4MΩJ
,(187)

b(z) =
2J

(z − z2)2 − 4ΩJ(z − z2) + 4MΩJ
.(188)

It is worth noting that the relation for b(z1) in (179) is automatically sat-
isfied by this solution (as it must be by Remark 2 below Proposition 3).
Thus from the above analysis we see that the solution is naturally param-
eterised by (M,Ω)5. It is interesting to note that we have fully determined

4Combining this with (41) leads to the standard Smarr relation.

5Eq (183) can be solved for Ω, yielding ΩJ =M −
√

M2 − J2

M2 . Using this, the

solution can be equivalently uniquely parameterised in terms of (M,J).
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the moduli space (186) of non-extremal Kerr solutions by only analysing one
semi-infinite axis (this was also found in [22]).

A similar analysis can be performed for the other semi-infinite axis z >
z2. One again finds (178)-(180) and the solution for z > z2:

h(z) =
−(z − z1)(z − z2)

(z − z1)2 + 4ΩJ(z − z1) + 4MΩJ
,(189)

b(z) =
−2J

(z − z1)2 + 4ΩJ(z − z1) + 4MΩJ
.(190)

Again, the relation (179) is automatically satisfied by this b(z2) (as it must
be). Thus, the analysis of this semi-infinite axis yields equivalent results.

Finally, consider the horizon rod z1 < z < z2. We find that (128) gives

γ(z) =
−4(z − z1)(z − z2)

1 + 4Ω2(z − (z1 −M))(z − (z2 +M))
,(191)

χ(z) =
−8Ω(z − z1)

2(z − (z2 +M))

1 + 4Ω2(z − (z1 −M))(z − (z2 +M))
,(192)

where we have used (179) and (178). The solution for χ(z) can be shown
to automatically satisfy (181) as a consequence of the above relations (as
guaranteed by Proposition 3). Furthermore, it can be checked that γ′(z1) =
−γ′(z2) automatically so (39) implies that the metric on the horizon has no
conical singularities and the surface gravity simplifies to

(193) κ =
1− 4Ω2M2

4M
.

Notice that (185) is equivalent to the non-extremality condition κ > 0.
To summarise, we have fully determined the metric on the whole z-

axis for any solution with the same rod structure as Kerr and computed
all asymptotic and horizon physical quantites. We find this reproduces the
full moduli space of nonextremal Kerr black holes, as it must from the no-
hair theorem. It is interesting to note that our analysis does this without
knowledge of the full spacetime metric.

5. Five dimensions

5.1. General solution and physical parameters

For D = 5 the general solution for the metric data (haµν(z), b
a
µ(z)) on any

axis rod Ia takes the explicit form (124), with an analogous expression for
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the data (γaij(z), χ
a
i (z)) on any horizon rod (128). The solution is given in

terms of components of the matrices Fa(k), which depend on the moduli
(132) and a matrix C. The matrix C arises in the asymptotic solution (86),
(87), in particular it relates the solution in the left and right segments (89).
Therefore, to fully fix the general solution on the axis and horizon rods we
need to find the solution to the linear system in Minkowski spacetime which
matches onto our axis solution (110) and compute the corresponding matrix
C using (90).

Five-dimensional Minkowski spacetime in polar coordinates (76) is

(194) ḡ = diag (−1, r(1− cos θ), r(1 + cos θ)) , e2ν̄ =
1

2r
,

which gives

(195) S̄ = diag(0, 1, 1), T̄ = diag(0, 1 + cos θ,−(1− cos θ)) .

For r > |k|, the solution to (83) on Minkowski space which agrees with the
axis solution (110) is

(196) Ψ̄+ = diag (−1, r(1− cos θ)− µ+, r(1 + cos θ) + µ+)N(r, θ, k) ,

where the matrix

(197) N(r, θ, k) =

{

diag(1, −1, −2k)−1 0 ≤ θ < θ∗
diag(1, 2k, 1)−1 θ∗ < θ ≤ π

is needed to ensure the solution matches with the one on the axes. In par-
ticular, using the asymptotic expansions in Section 3.2 we find that

(198) Ψ̄+(r, θ, k) =























diag
(

−1, −2r +O(1), −1
2(1 + cos θ) +O(r−1)

)

0 ≤ θ < θ∗

diag
(

−1, −1
2(1− cos θ) +O(r−1), 2r +O(1)

)

θ∗ < θ ≤ π

,

as r → ∞.
Now, any five-dimensional asymptotically flat spacetimes in polar coor-

dinates must take the form [7]
(199)

g =







−1 + 4M
3πr +O(r−2) −J1(1−cos θ)

πr (1 +O(r−1)) −J2(1+cos θ)
πr (1 +O(r−1))

−J1(1−cos θ)
πr (1 +O(r−1)) r(1− cos θ)(1 +O(r−1)) ζ sin2 θ

r (1 +O(r−1))

−J2(1+cos θ)
πr (1 +O(r−1)) ζ sin2 θ

r (1 +O(r−1)) r(1 + cos θ)(1 +O(r−1))






,
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as r → ∞, where M,Ji are the ADM mass and angular momenta and ζ is
a gauge invariant constant. From this one can show that S, T appearing in
the linear system in polar coordinates (83) satisfy

(200)

S − S̄ =





O(r−1) O(r−2) O(r−2)
O(r−1) O(r−1) O(r−2)
O(r−1) O(r−2) O(r−1)



 ,

T − T̄ =





O(r−2) O(r−2) O(r−2)
O(r−2) O(r−1) O(r−2)
O(r−2) O(r−2) O(r−1)



 .

Then using (198) we find that the matrices Υ defined in (85) satisfy6

(201) Υr+ = O(r−2), Υθ+ = O(r−1) ,

for all 0 ≤ θ ≤ π, thus justifying (87). Finally, from (90) we find

(202) C =





−1 0 0
0 1 0
0 0 −1



 .

We therefore have fully fixed the general solution.
We now relate the parameters of the solution to the asymptotic quanti-

ties. Given a solution (hLµν , b
L
µ) on IL we can compute the mass and angular

momenta. From (199) we deduce that

hLµν(z) =

(

−1− 4M
3πz +O(z−2) 2J1

πz +O(z−2)
2J1

πz +O(z−2) −2z +O(1)

)

,

bLµ(z) =

(

−2J2

πz +O(z−2)
4ζ
z +O(z−2)

)

,(203)

as z → −∞, where bLµ is determined using (48) and we have fixed the inte-

gration constant so that bLµ → 0 at infinity. Similarly, given a solution on IR
we can compute the asymptotic quantities again from (199) which in this

6In fact one obtains different fall-offs for 0 ≤ θ < θ∗ and θ∗ < θ ≤ π where some
components have faster fall-offs. We will not need these in our analysis.
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case implies that

hRµν(z) =

(

−1 + 4M
3πz +O(z−2) −2J2

πz +O(z−2)

−2J2

πz +O(z−2) 2z +O(1)

)

,

bRµ (z) =

(

−2J1

πz +O(z−2)
4ζ
z +O(z−2)

)

,(204)

as z → ∞, again using (48) and fixing constants so bRµ → 0 at infinity.
On the other hand, given a solution on a horizon rod Ia we may compute

the surface gravity from (40), which in principle may provide one constraint
on the parameters. Similarly, given a solution on an axis rod Ia, smoothness
requires that there are no conical singularities at any endpoint of the rod,
the conditions for which are given by (29) and (30).

The moduli (132) that appear in the general solution in Theorem 4 are
constrained by the symmetry of Q̃1(k), which is equivalent to the mod-
uli space equations (148). As noted at the end of Section 3.4, these equa-
tions give a redundant description of the moduli space. On the other hand,
Proposition 3 and Remark 1 that follows it show that the consistency con-
ditions on the potentials baµ(z), χ

a
i (z) for the finite rods generically provide

(D − 3)(n− 1) constraints on the parameters for the general solution. Thus
supplementing these with the asymptotic conditions for the potentials (96)
gives (D − 3)(n+ 1) constraints on the parameters as required. This leads
to the following conjecture.

Conjecture 1. Given the D = 5 solution (124), (128) with Fa(k) replaced
by Fa(k)

T for a = 1, . . . , n and the inequalities ℓa > 0, (127) and (131), the
moduli space equations (148) are satisfied if and only if (133), (134) and
(96) are imposed.

The converse statement for finite rods is true by Remark 3 below Propo-
sition 3. The motivation for using the alternate form of the general solution
in Theorem 4 with Fa(k) replaced by Fa(k)

T for a = 1, . . . , n comes from the
following observations. Firstly, Proposition 3 shows that imposing (133) on
the solution baµ(z) for the finite axis rods gives an equation for baµ(za) (and
similarly for the horizon rods). To see this note that since (135) is automatic
we can write baµ(z) = baµ(za) + (z − za)fa(z) for some smooth function fa(z).
Then, evaluating at z = za−1 gives baµ(za) = ℓafa(za−1), which can be taken
as an equation for baµ(za) (of course, fa(za−1) will typically be a function of
the moduli including baµ(za) itself, so this is a nonlinear equation). Secondly,
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the asymptotic analysis in the next section shows that bLµ(z)|z→−∞ = 0 fixes

bLµ(z1) and b
R
µ (z)|z→∞ = 0 fixes bRµ (zn).

In any case, in all the examples that we study below we find this conjec-
ture is valid and is a convenient way of solving the moduli space equations
(more precisely, for single black holes we use a slightly modified version of
this conjecture, given below). In particular, in practice it is easier to im-
pose the (D − 3)(n+ 1) relations listed in the conjecture, rather than the
symmetry of Q̃1(k) which as argued earlier must include redundancies.

5.2. Asymptotics of general solution

We now confirm our general solution is asymptotically flat and deduce the
asymptotic charges. First, consider the solution (124) on IL which is given
by the components of FL(k) = −C−1Q1(k)

T defined by (125). Using (143) to
write Q1(k) in terms of R(k) defined in (144) and then using the asymptotic
expansion (150) gives

hLµν(z) =

(

−1− S 0
0

z +O(z−2) −S 0
1

z +O(z−2)
−2S 1

0 − bR0 (zn) +O(z−1) −2z + 2(zn − S 1
1 ) +O(z−1)

)

,

(205)

bLµ(z) =

(

S 0
2

z +O(z−2)
2S 1

2 + bR1 (zn) +O(z−1)

)

,

(206)

as z → −∞. Thus comparing to the asymptotics (203) we deduce that

(207) M =
3πS 0

0

4
, Ji = −πS

0
i

2
, bRµ (zn) = −2

(

S 1
0

S 1
2

)

.

Using (147) we can evaluate these expressions more explicitly. We find that

Sa =





0 −1
2v

1
ab
a
0(za) −1

2v
2
ab
a
0(za)

0 −1
2ϵav

1
a(2u

2
aℓa + v2ab

a
1(za)) −1

2ϵav
2
a(2u

2
aℓa + v2ab

a
1(za))

0 1
2ϵav

1
a(2u

1
aℓa + v1ab

a
1(za))

1
2ϵav

2
a(2u

1
aℓa + v1ab

a
1(za))



, Ia ̸=L,R ⊂ Â ,

(208)

Sa =





ℓa +
1
2Ω

a
i χ

a
i (za) Ωa1(ℓa +

1
2Ω

a
i χ

a
i (za)) Ωa2(ℓa +

1
2Ω

a
i χ

a
i (za))

−1
2χ

a
1(za) −1

2Ω
a
1χ

a
1(za) −1

2Ω
a
2χ

a
1(za)

−1
2χ

a
2(za) −1

2Ω
a
1χ

a
2(za) −1

2Ω
a
2χ

a
2(za)



, Ia ⊂ Ĥ ,

(209)

where (ua, va) is a basis of U(1)2-Killing fields such that va is the rod vector
and ϵa = (u1av

2
a − u2av

1
a)

−1. Therefore, from the asymptotics of the general
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solution derived above we deduce

M =
∑

Ia⊂Ĥ

Ma , Ma =
3π
4 (ℓa +

1
2Ω

a
i χ

a
i (za)),(210)

Ji =
∑

Ia⊂Ĥ

Jai , Jai = π
4χ

a
i (za),(211)

bRµ (zn) =
∑

Ia⊂Ĥ

4Ωa1
3π

(

−2Ma

3Ja2

)

(212)

+
∑

Ia⊂Â
a ̸=L,R

v1a

(

ba0(za)
−ϵa(2u1aℓa + v1ab

a
1(za))

)

.

Note that again we reproduce the well-known relations between angular
momenta and the change in twist potential across a horizon rod (13). Com-
bining these with the above formulae for the mass, together with (41), gives
the Smarr relation. Notice that in the absence of a black hole M = 0 and
Ji = 0, in line with the no-soliton theorem.

If instead we use the alternate general solution with FL(k) replaced by
FL(k)

T we find

(213) bLµ(z) = bLµ(z1)− 2

(

S 2
0

S 2
1

)

+O(z−1),

with hLµν(z) given by the transpose of (205). Thus the asymptotics of bLµ now
give

bLµ(z1) = 2

(

S 2
0

S 2
1

)

=
∑

Ia⊂Ĥ

4Ωa2
3π

(

2Ma

−3Ja1

)

(214)

−
∑

Ia⊂Â
a ̸=L,R

v2a

(

ba0(za)
ϵa(2u

2
aℓa + v2ab

a
1(za))

)

.

The O(z−1) term, and hence J2, requires a higher order calculation than the
one given by (150). On the other hand, the asymptotics of hLµν(z) give the

mass (210), the angular momentum J1 (211) and the Ernst potential bR0 (zn)
(212).

We may perform an analogous calculation on IR. Using the general solu-
tion (124) and the explicit form FR(k) = −Q̃1(k)

−1, together with (143) and
(150), the asymptotics yield the same expressions as above forM,J2, b

R
µ (zn),
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bL0 (zn); here J1 requires the O(z−1) term in bRµ (z) which needs a higher or-
der calculation. If one instead considers the solution with FR(k) replaced by
FR(k)

T one obtains M,Ji, b
L
µ(z1) to this order.

We remark that if one uses the alternate solution as in Conjecture 1,
then the above shows that the solution on IL fixesM,J1, b

L
µ(z1) (and b

R
0 (zn))

and the solution on IR fixes M,J2, b
R
µ (zn) (and bL0 (z1)), so taken together

these give all the asymptotic quantities. Indeed, this partially motivates our
conjecture. On the other hand using the solution on IL or IR, together with
symmetry of FL(k) or FR(k), also gives all the asymptotic quantities. In
Appendix C we show how to derive these expression for bRµ (zn), b

L
µ(z1) from

general properties of the Ernst potentials.
It is also worth noting that the leading coefficients appearing in Lemma 1

and (149) can be deduced from the above analysis and are qn+1 =
−2diag(0, 1, 0) and

(215) qn =





−1 bR0 (zn) + 2S 1
0 0

0 2(zn +
∑n

a=1 za − S 1
1 ) 0

0 0 0



 .

Therefore, the p = n moduli space equation (148) only gives the µ = 0 com-
ponent of (212).

In the case of a single black hole the above formulas simplify. In partic-
ular, if say IH = (z1, z2), the mass and angular momenta become

M = 3π
4 (ℓH + 1

2Ωiχi(z2)),(216)

Ji =
π
4χi(z2),(217)

where ℓH = z2 − z1 and we have chosen a gauge in which χi(z1) = 0 (for a
single horizon one is always free to do this). In this case we find it convenient
to work with the dimensionless parameters
(218)

ji = JiM
−3/2

(

27π

32

)1/2

, ωi = ΩiM
1/2

(

8

3π

)1/2

, λH =
3π

4M
ℓH ,

where we are of course now assuming M > 0. Then (216) gives

(219) λH = 1− ωiji .
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For any finite axis rods Ia, a = 2, . . . , n we also define the associated dimen-
sionless parameters

(220) fa0 = ba0(za)

(

3π

8M

)1/2

, fa1 = ba1(za)

(

3π

8M

)

, λa =
3π

4M
ℓa ,

and fLµ , f
R
µ are similarly defined with baµ(za) replaced by bLµ(z1), b

R
µ (zn) re-

spectively.
For the single black hole cases we study below, we in fact use a method

based on a slightly modified version of Conjecture 1, which appears to be
more convenient. Given a single horizon rod, the condition (134) can be
thought of as an equation for Ji, as follows. Since (136) is automatic we can
write χai (z) = χai (za) + (z − za)ga(z) for some smooth function ga(z). Then
evaluating at z = za−1 and using (13) we deduce that Ji = πℓaga(za−1)/4
which gives a nonlinear equation for Ji (typically ga(za−1) depends on all
the moduli, including Ji). On the other hand, from the asymptotics (203)
and (204), the O(z−1) term in bL0 (z) and b

R
0 (z) gives J2 and J1 respectively.

The above asymptotic analysis showed that, for the alternate solution, the
computation of these O(z−1) terms requires a higher order calculation, which
in general will give different formulas for Ji than (211). Thus, one can take
these asymptotic equations as new equations for Ji, instead of those from
(134) described above. Thus we reformulate Conjecture 1 as follows.

Conjecture 2. Given the D = 5 single black hole solution (124), (128)
with Fa(k) replaced by Fa(k)

T for a = 1, . . . , n and the inequalities ℓa > 0,
(127) and (131), the moduli space equations (148) are satisfied if and only if
(133), (203) and (204) are imposed (the latter two conditions also determine
M,Ji and ζ).

Of course, for the case of no black hole the two conjectures are equivalent.
On the other hand, for multi-black holes, Conjecture 2 would need to be
revisited. We will not consider this here.

5.3. Minkowski spacetime

First consider the rod structure of Minkowski spacetime as in Figure 1. Thus
we have two rods IL = (−∞, z1) and IR = (z1,∞). In this case the matrices
which give the general solution in Theorem 4 are FL(k) = −C−1P1(k)

T and
FR(k) = −(CP1(k))

−1 where P1(k) = XL(z1, k)
−1XR(z1, k).

Let us first consider z < z1. We use the alternate form of the solution ob-
tained by replacing FL(k) with FL(k)

T in (124) as described in Conjecture 1.
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(0, 1) (1, 0)

Figure 1. Rod structure for Minkowski spacetime.

Explicitly, we find

(221) FL(k)
T =









1 bR0 (z1)−
bL0 (z1)b

R
1 (z1)

2(k−z1)
− bL0 (z1)

2(k−z1)

0 2(k − z1)− bL1 (z1)b
L
1 (z1)

2(k−z1)
− bL1 (z1)

2(k−z1)

0 − bR1 (z1)
2(k−z1)

− 1
2(k−z1)









,

which gives

(222)

hLµν(z) =

(

−1 −bR0 (z1)
−bR0 (z1) +

bL0 (z1)b
R
1 (z1)

2(z−z1)
−2(z − z1)

)

,

bLµ(z) =

(

bL0 (z1)
bL1 (z1)

)

, z < z1 .

Imposing our boundary condition bLµ(z) → 0 as z → −∞ then implies

(223) bLµ(z1) = 0 ,

which then immediately fixes bLµ(z) = 0 for z < z1.
The analysis for z > z1 is analogous. One gets

(224) FR(k) =









1 −bL0 (z1) +
bR0 (z1)bL1 (z1)

2(k−z1)
bR0 (z1)
2(k−z1)

0 −2(k − z1) +
bR1 (z1)bL1 (z1)

2(k−z1)
bR1 (z1)
2(k−z1)

0 bL1 (z1)
2(k−z1)

1
2(k−z1)









,

and hence using the general solution (124) the metric data reads

(225)

hRµν(z) =

(

−1 bL0 (z1)

bL0 (z1)−
bL1 (z1)b

R
0 (z1)

2(z−z1)
2(z − z1)

)

,

bRµ (z) =

(

bR0 (z1)
bR1 (z1)

)

, z > z1 .
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Imposing the boundary condition bRµ (z) → 0 as z → ∞ implies

(226) bRµ (z1) = 0

and thus bRµ (z) = 0 for z < z1.
We have now fixed all nontrivial parameters. Indeed, given the above pa-

rameter conditions the matrices Fa(k) are automatically symmetric in line
with Conjecture 1. Also notice that the asymptotic conditions for hLµν , h

R
µν

are both satisfied automatically with M = J1 = J2 = ζ = 0. The final solu-
tion is simply

hLµν(z) =

(

−1 0
0 2(z1 − z)

)

, bLµ(z) = 0, z < z1(227)

hRµν(z) =

(

−1 0
0 2(z − z1)

)

, bRµ (z) = 0, z > z1 .(228)

This of course is the metric data on axis for Minkowski spacetime (194). As
in four dimensions this is a nontrivial result, showing that the only asymp-
totically flat spacetime in this symmetry class with the same rod structure
as Minkowski spacetime is Minkowski spacetime itself. Of course, this is ex-
pected and follows from the more general no-soliton theorem for vacuum
gravity.

5.4. Eguchi-Hanson soliton

Let us now attempt to construct a soliton solution, i.e. a non-trivial solu-
tion with no horizon. Of course, we know from the no-soliton theorem for
asymptotically flat vacuum solutions that there can be no smooth solution
in this case. Nevertheless, it is interesting to see how this emerges from our
formalism.

The simplest rod structure without a horizon which is not flat space
is given by three axis rods IL = (−∞, z1), IB = (z1, z2) and IR = (z2,∞)
with rod vectors (0, 1), vB = (p, q) and (1, 0) respectively, where (p, q) are
coprime integers. The finite axis rod IB corresponds to a 2-cycle, or bolt, in
the spacetime. The admissibility condition (9) between adjacent axis rods
fixes p = ±1 and q = ±1 and without loss of generality we can fix p = 1
(since vB is only defined up to a sign). We also fix q = 1 which can always
be arranged since vR is only defined up to a sign. Thus we take the rod vector
for IB to be vB = (1, 1). The rod structure is depicted in Figure 2. We choose
the other independent axial vector to be uB = (1, 0), so the change of basis
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(0, 1) (1, 1) (1, 0)

Figure 2. Rod structure for the simplest soliton spacetime.

matrix (44) is

(229) LB =





1 0 0
0 1 0
0 −1 1



 .

The general solution in this case is determined by (124) where

(230)
FL(k) = −C−1Q1(k)

T , FB(k) = −P1(k)
−1C−1P2(k)

T ,

FR(k) = −(CQ1(k))
−1

and Q1(k) and Pa(k) are given by (108) and (106). It is convenient to write
the general solution on each rod given in Theorem 4 with Fa(k) replaced by
Fa(k)

T for a = L,B as described in Conjecture 1.
First, imposing that the general solution (hLµν(z), b

L
µ(z)) on IL obeys our

boundary condition bLµ(z) → 0 as z → −∞ fixes the constants

(231) bLµ(z1) = −bBµ (z2) ,

with bLµ(z)|z→z1 = bLµ(z1) being automatically satisfied (as guaranteed by

(141)). Next, imposing that (hRµν(z), b
R
µ (z)) on IR obeys bRµ (z) → 0 as z → ∞

fixes

(232) bRµ (z2) =

(

bB0 (z2)
−bB1 (z2) + 2(z1 − z2)

)

with bRµ (z)|z→z2 = bRµ (z2) being automatically satisfied (again, as guaranteed
by (141)). These relations also follow from our general asymptotic analysis
(214) and (212) respectively.

Finally, the solution (hBµν(z), b
B
µ (z)) on IB satisfies bBµ (z)|z→z2 = bBµ (z2)

automatically (as guaranteed by Proposition 3) and bBµ (z)|z→z1 = 0 fixes

(233) bBµ (z2) =

(

0
z1 − z2

)

,
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where we have used the above to simplify this expression. All parameters
have been now fixed except for the axis rod length ℓB = z2 − z1. The matri-
ces Fa(k) are now all symmetric demonstrating the validity of Conjecture 1
in this case. The resulting solution is

hLµν(z) =

(

−1 0

0 −4(z−z1)(z−z2)
2z−z1−z2

)

, bLµ(z) =

(

0

− (z2−z1)2

2z−z1−z2

)

, z ∈ IL

(234)

hBµν(z) =

(

−1 0

0 − (z−z1)(z−z2)
z2−z1

)

, bBµ (z) =

(

0
(z−z1)(z+z1−2z2)

z2−z1

)

, z ∈ IB

(235)

hRµν(z) =

(

−1 0

0 4(z−z1)(z−z2)
2z−z1−z2

)

, bRµ (z) =

(

0

− (z2−z1)2

2z−z1−z2

)

, z ∈ IR.

(236)

From the asymptotics z → ±∞, we immediately deduce from (203) or (204)
that

(237) M = 0, J1 = J2 = 0, ζ = −1
8(z2 − z1)

2 .

This corresponds to the unique unbalanced solution which is guaranteed to
exist by Theorem 2.

We may now analyse regularity of the solution. The metric induced on
the bolt (27) is
(238)

gB = −dt2 + ℓB

(

c2Bdy
2

1− y2
+

1

4
(1− y2)(dx1)2

)

, y =
2z − z1 − z2
z2 − z1

,

where (t, x1) are coordinates such that k = ∂t, u = ∂x1 and recall (k, u) is
the adapted basis for IB. Recall that u = m1 and hence x1 is a 2π-periodic
angle. Therefore, it is clear that the spatial part of the metric on the bolt is
a smooth round metric on S2 iff cB = 1/2 (indeed, one can check that the
conditions for the removal of the conical singularity (29) and (30) at z = z1
and z = z2 are satisfied iff cB = 1/2). Although this gives a smooth metric
on the bolt, this shows that in this case the balance condition cB = 1 (28) is
violated so there must be a conical singularity at IB. On the other hand, if
we impose the balance condition cB = 1, then inspecting the metric on the
bolt shows that there must be conical singularities at the endpoints of IB.

We have shown that any asymptotically flat solution with a single bolt
must have a conical singularity. This is indeed consistent with the no-soliton
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theorem mentioned above. In fact, in this case it is easy to write down the
full solution off axis. It is given by the Eguchi-Hanson soliton (16) where
(θ, ψ, ϕ) are Euler angles on S3. The rods IL, IB and IR can be identified
with θ = π,R = a and θ = 0. It then follows that vL = ∂ψ + ∂ϕ and vR =
∂ψ − ∂ϕ are the 2π-periodic rod vectors on the semi-infinite axes, which
implies ϕ1 = (ψ − ϕ)/2 and ϕ2 = (ψ + ϕ)/2. Weyl coordinates (t, ϕ1, ϕ2, ρ, z)
for this metric are

(239) ρ = 1
2

√

R4 − a4 sin θ, z = 1
2(z1 + z2) +

1
2R

2 cos θ

and the corresponding metric data is

g = −dt2 + 1
4R

2

(

1− a4

R4

)

[

(1− cos θ)dϕ1 + (1 + cos θ)dϕ2
]2

+ 1
4R

2 sin2 θ(dϕ1 − dϕ2)2 ,

e2ν =
R2

R4 − a4 cos2 θ
.(240)

Using a2 = ℓB, it is straightforward to show that g gives the same (haµν , b
a
µ)

on each rod as our general solution above (234)-(236). In addition e2ν on
the axes and the bolt agrees with our expressions (26) with cL = cR = 1 and
cB = 1/2.

5.5. Myers-Perry solution

We now consider the simplest rod structure of a single black hole with
S3 topology, i.e., the same rod structure as the Myers-Perry solution, see
Figure 3. Thus we have three rods IL = (−∞, z1), IH = (z1, z2) and IR =

(0, 1) H (1, 0)

Figure 3. Rod structure for the Myers-Perry black hole.

(z2,∞) where IH is a horizon rod.
The general solution can be obtained from Theorem 4 where the Fa(z)

are again given by (230) (although X2(z, k) now refers to the horizon rod).
Again, it is convenient to use the alternate form of the solution with Fa(k)
replaced by Fa(k)

T for a = 1, 2 as described in Conjecture 2. The solution
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depends on the parameters (ℓH , b
L
µ(z1), b

R
µ (z2), χi(z2),Ωi) where ℓH = z2 −

z1 and we choose a gauge in which χi(z1) = 0.
From the asymptotics for the solution on IL and IR given in (203) and

(204) we find the mass M and angular momenta Ji are given by (216) and
(217), the Ernst potentials are7

(241) bLµ(z1) = Ω2

(

8
3πM

−4J1

π

)

, bRµ (z2) = Ω1

(

− 8
3πM
4J2

π

)

,

and

(242) J1 =
16
9πMΩ1

(

M − 3
2Ω2J2

)

, J2 =
16
9πMΩ2

(

M − 3
2Ω1J1

)

,

where we have eliminated ℓH and χi(z2) in favour of M and Ji using (216)
and (217). It is worth noting that the solutions on IL and IR automatically
obey bLµ(z)|z→z1 = bLµ(z1) and b

R
µ (z)|z→z2 = bRµ (z2) and therefore no further

constraints arise from these rods (as guaranteed by (141)). Observe that
(242) are linear in Ji so we can straightforwardly solve these for Ji and
therefore express all parameters in terms of the physical variables M,Ωi.

It is convenient to use the dimensionless quantities (218). Then solving
(242) gives

(243) j1 =
ω1(1− ω2

2)

1− ω2
1ω

2
2

, j2 =
ω2(1− ω2

1)

1− ω2
1ω

2
2

and |ω1ω2| ≠ 1.8 Thus as promised we can express all quantities in terms of
M,ωi. In particular, eliminating ji we find that (219) becomes

(244) λH =
(1− ω2

1)(1− ω2
2)

1− ω2
1ω

2
2

.

It is now readily verified that the matrices Fa(k) are symmetric in accordance
with Conjecture 2. We have thus fully solved the moduli space equations
(148).

7Equation (241) also follows from our general asymptotic analysis (214) and
(212). The same result can be established from general considerations using (C.28)
and (C.30), together with the fact that bLµ(z) = 0 on IR and bRµ (z) = 0 on IL (from
their definition (50, 51) the potentials bLµ , b

R
µ are constant on IR, IL respectively

and vanish at infinity).
8If |ω1ω2| = 1 then (242) imply λH = 0 which contradicts our nonextremality

assumption.
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To determine the precise moduli space, we will also need the invariants

dethLµν(z) = −2(z − z1)(z − z2)

z̄1 + z1 − z
, z̄1 =

4M

3π

1− ω2
1

1− ω2
1ω

2
2

, z < z1 ,(245)

dethRµν(z) = −2(z − z1)(z − z2)

z − z2 + z̄2
, z̄2 =

4M

3π

1− ω2
2

1− ω2
1ω

2
2

, z > z2 .(246)

A smooth Lorentzian metric on IL requires that the determinant dethLµν(z) <
0 and is smooth for z < z1 (see (127)) and from the above expression we see
this is equivalent to z̄1 > 0. Similarly, the requirement that dethRµν(z) is
smooth and negative on IR is equivalent to z̄2 > 0. The inequalities λH >
0, z̄1 > 0, z̄2 > 0 are equivalent to

(247) |ωi| < 1 ,

for i = 1, 2. This fully constrains the moduli space of solutions which is
simply given by (247) and M > 0. One can show (247) implies

(248) |j1|+ |j2| < 1 ,

which is a well-known inequality for the Myers-Perry black holes.
Now we turn to the solution (γij(z), χi(z)) on the horizon rod z1 < z <

z2 which can be deduced from (128). Writing the parameters in terms of
M,ωi as above, we find that both χi(z)|z→z1 = 0 and (217) are automatically
satisfied (as they must be). Furthermore, using (40), we find that removal
of the conical singularities of the horizon metric at the endpoints z = z1, z2
imposes no further constraints and fixes the surface gravity to be

(249) κ =

√

3π

8M
(1− ω2

1)(1− ω2
2) .

The horizon topology is of course S3 with m2 = 0 at z = z1 and m1 = 0 at
z = z2. Notice that the moduli space (247) is equivalent to the nonextremal-
ity condition κ > 0.

It is straightforward to check that the metric data for above solution
agrees precisely with the Myers-Perry solution restricted to the z-axis, and
the parameter region |ωi| < 1 we have derived agrees with the full moduli
space of non-extremal Myers-Perry black holes (of course, this includes 5d
Schwarzschild for ωi = 0). It is interesting to note that by combining (242)
we obtain the thermodynamic identity recently obtained by integrating the
sigma model equation over the boundary of the orbit space [36]. Thus our
present method leads to a refinement of these identities.
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5.6. Black ring

We now consider the rod structure of the black ring as depicted in Figure 4.
Thus we have four rods IL = (−∞, z1), IH = (z1, z2), ID = (z2, z3) and IR =

(0, 1) H (0, 1) (1, 0)

Figure 4. Rod structure for the black ring.

(z3,∞), where IH is a horizon rod and ID is an axis rod with rod vector
vD = (0, 1). The topology of the horizon is S2 × S1 and the finite axis rod
ID lifts to a noncontractible 2-disc in spacetime. We use the adapted basis
ẼA = (k,m1,m2) for ID, i.e. uD = (1, 0), so the change of basis matrix LD
(44) is simply the identity matrix.

The general solution is given by Theorem 4 and once again it is con-
venient to use the alternate form of the solution where Fa is replaced with
F Ta for a = L,H,D as described in Conjecture 2. The solution depends on
the parameters (ℓH , ℓD, b

L
µ(z1), χi(z2), b

D
µ (z3), b

R
µ (z3),Ωi) where ℓH = z2 −

z1, ℓD = z3 − z2 and we choose a gauge in which χi(z1) = 0.
From the asymptotics for the solution on IL and IR given in (203) and

(204) we find the mass M and angular momenta Ji are given by (216) and
(217) and the Ernst potentials are

(250) bLµ(z1) + bDµ (z3) = Ω2

(

8
3πM

−4J1

π

)

, bRµ (z3) = Ω1

(

− 8
3πM
4J2

π

)

,

where we have eliminated ℓH and χi(z2) in favour of M and Ji using (216)
and (217). The solution on IL and IR automatically obeys bLµ(z)|z→z1 =

bLµ(z1) and bRµ (z)|z→z2 = bRµ (z2) and therefore no further constraints arise
from these rods (as must be from (141)).

The asymptotics of the solution also give nontrivial equations for Ji
which in terms of dimensionless variables introduced in (218) and (220) are
given by

(251)
j1 = ω1(1 + λD + j2(f

D
0 − ω2)) ,

j2 = ω2 − ω1(j1ω2 + fD1 ) + fD0 (ω1j1 − 2) ,
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where the previous relations have been used to eliminate variables in favour
of ji, ωi, f

D
µ , λD. These equations correspond to (242) for the Myers-Perry

solution.
Next consider ID. We find that bDµ (z)|z→z3 = bDµ (z3) is automatically sat-

isfied (see Proposition 3), however bDµ (z)|z→z2 = 0 gives the new constraints
(252)

fDµ =
j2λD
D

(

1− ω2
1

−ω1λD

)

, D ≡ (1− ω1j1)
2 − j2(f

D
0 + ω1(ω1j2 + fD1 )).

For these equations to be well-defined D must be nonzero. These relations
were obtained by evaluating limz→z3 b

D
µ (z), so if D = 0 then the numera-

tors j2λD(1− ω2
1) and −ω1j2λ

2
D would have to vanish as well to ensure that

bDµ (z3) was well-defined. This implies that j2 = 0 (since λD > 0), which com-
bined with (219) and D = 0 implies that λH = 0. Since λH > 0 this means
that D ̸= 0 and so (252) are well-defined.

Equations (251) and (252) are significantly more complicated than the
corresponding parameter constraints for the Myers-Perry solution (243).
Therefore it is instructive to first consider the S1 singly spinning case.

5.6.1. Singly spinning black ring. The S1 spinning black ring corre-
sponds to setting j2 = 0 in the above equations. In this case (252) simply
gives that fDµ = 0. Substituting this back into the equations for ji (251)
gives

(253)
j1 = ω1(1 + λD)

ω2(1− ω1j1) = 0.

The first of these two equations gives j1 and the second implies that ω2 = 0
since 1− ω1j1 = λH ̸= 0.

This gives the solution for the general unbalanced S1 spinning black ring
parameterised in terms of (M,ω1, λD). Note that the matrices Fa(k) are now
automatically symmetric in accordance with Conjecture 2. The horizon rod
length λH = 1− ω2

1(1 + λD) and so λH > 0 gives the constraint

(254) ω2
1 <

1

1 + λD
,

which together with the conditions M > 0 and λD > 0 determines the mod-
uli space of unbalanced solutions. It can then be checked that (127) and
(131) are satisfied automatically and so impose no further constraints.
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Next consider conical singularities on ID. The balance condition (28)
and regularity condition at z = z3 (29) is equivalent to

(255) (1− ω2
1)

2 − λDω
2
1(2− ω2

1) = 0

which implies ω2
1 > 0 and

(256) λD =
(1− ω2

1)
2

ω2
1(2− ω2

1)
.

Substituting this back in we obtain

(257) λH =
1− ω2

1

2− ω2
1

,

which gives the moduli space of the balanced solution as

(258) M > 0, 0 < ω2
1 < 1.

In addition, the expression for j1 (253) now takes the simple form

(259) j1 =
1

ω1(2− ω2
1)
.

Extremising this over the moduli space (258) gives the well-known inequality
|j1| ≥

√

27/32. Finally, condition (40) for the removal of conical singularities
on IH imposes no further constraints and fixes the surface gravity to be

(260) κ =

√

3π

8M

√

1− ω2
1

|ω1|
.

5.6.2. Doubly spinning black ring. Now we consider the doubly spin-
ning solution corresponding to j2 ̸= 0. In this case it is no longer straight-
forward to solve (251) and (252) in terms of any of the variables already
defined. Firstly, using (251) and (252), together with the balance condition
(28) on ID and the condition for removal of the conical singularity on ID
at z = z3 (29), one can show that ω2 = 0 implies j2 = 0 (here we are also
assuming λH , λD > 0). Thus we deduce ω2 ̸= 0.
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It turns out it is convenient to define a new parameter t, using the
denominator D defined in (252), by

(261) t =
ω2D

j2λD
.

Note that t ̸= 0. This gives

(262) fDµ =
ω2

t

(

1− ω2
1

−ω1λD

)

.

Now we can solve (251) for ji
9

(263)

j1 =
ω1(t

2(1 + λD)− ω2
2(t− 1 + ω2

1)(t− 2 + ω2
1(2 + λD))

t2 − ω2
1ω

2
2(t− 1 + ω2

1)
2

,

j2 =
tω2(t− 2 + ω2

1)(1− ω2
1(1 + λD))

t2 − ω2
1ω

2
2(t− 1 + ω2

1)
2

,

and then (261) for ω2
10

(264) ω2
2 =

t2(1− ω2
1 − λD(t− 2 + 2ω2

1))

(t− 2 + 2ω2
1)(1− ω2

1(1 + λD))
.

This gives two branches of solutions corresponding to either ω2 > 0 or ω2 <
0. We have now solved for the generic11 unbalanced doubly spinning black
ring solution parameterised in terms of (M,ω1, t, λD). The matrices Fa are
now indeed symmetric as expected from Conjecture 2.

Now consider the possible conical singularities on ID. To remove this the
balance condition (28) and the regularity condition (29) at z = z3 must be

9Using (251) and (261) one can show that the denominator of (263) being zero
is incompatible with λH , λD > 0 and the conditions for the removal of conical sin-
gularities (28) and (29).

10The denominator of (264) can never vanish since the denominator of (263) is
nonzero and j2 ̸= 0.

11As explained above, a couple of possible special cases were ruled out using the
balance condition.
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satisfied, which in this case reduces to

(265) ω4
1λD + ω2

1(1 + tλD)− 1 = 0.

Note that this implies that ω1 ̸= 0. Solving this for λD one finds12

(266) λD =
1− ω2

1

ω2
1(t+ ω2

1)
.

The expressions (263), (264) and (219) can be simplified with this result and
one finds
(267)

j1 =
1 + (t− 1 + 2ω2

1)(t− 1 + ω2
1)

ω1(t+ ω2
1)

2
, j2 =

ω2(t− 1 + ω2
1)(t− 2 + 2ω2

1)

t(t+ ω2
1)

2
,

(268) ω2
2 =

t2(ω4
1 − (t− 2)(1− ω2

1))

ω2
1(t− 1 + ω2

1)(t− 2 + 2ω2
1)
,

(269) λH =
(1− ω2

1)(t− 2 + ω2
1)

ω2
1(t+ ω2

1)
= λD(t− 2 + ω2

1).

This gives the balanced doubly rotating solution, however one still needs to
find the bounds on the parameters (M,ω1, t). These turn out to be given by
M > 0,

(270) 0 < 1− ω2
1 < t− 1, t < ((1− ω2

1) + (1− ω2
1)

−1).

Positivity of the rod lengths λH , λD > 0 is equivalent to the first condition
and the second condition then corresponds to ω2

2 > 0. The conditions (127)
and (131) are then automatically satisfied and impose no further constraints.

Note that the limit curve given by t→ ((1− ω2
1) + (1− ω2

1)
−1) corre-

sponds to the ω2 → 0 (or equivalently j2 → 0) singly spinning limit. It turns
out that taking this limit one recovers the results of the previous section on
the S1 spinning ring as one might expect. Therefore, although the original
definition of t (261) only holds when j2 ̸= 0, this parameterisation can be
extended to cover the singly spinning case as well.

Finally consider the horizon rod IH . Using the parameters (M,ω1, t), we
find that both χi(z)|z→z1 = 0 and (217) are automatically satisfied (as they

12If t+ ω2

1
= 0, using (265) and (264) one can show that the denominator of (263)

is zero which is a contradiction. Therefore (266) is the unique solution of (265).
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must be). There are no further constraints from removing conical singular-
ities at the endpoints of IH since (40) is also satisfied automatically for a
surface gravity given by

(271) κ =

√

3π

8M(t− 1 + ω2
1)

(1− ω2
1)(t− 2 + ω2

1)(t+ ω2
1)

|ω1|(t− 2 + 2ω2
1)

.

From this one can explicitly see that the limit curve ω1 →
√
2− t, which

is a boundary of the moduli space of solutions, corresponds to extremal
solutions as one might expect. On the other hand although κ = 0 as ω1 → 1,
this corresponds to a singular solution since λD → 0 in this limit.

We have now constructed the most general regular solution on the axes
and horizon with the given rod structure. We will now show that our solution
maps exactly to the Pomeransky-Sen’kov solution for the balanced doubly
rotating black ring. Chen, Hong and Teo [41] present the solution for ω1 >
0, ω2 > 0 in terms of the parameters (χ, µ, ν), satisfying

(272) χ > 0, 0 < ν < µ < 1.

Note that we take ν ̸= µ since we are considering non-extremal solutions
and ν ̸= 0 since we are considering ω2 ̸= 0. To find an expression for t in
terms of these variables, first use (269) to give

(273) t = (2− ω2
1) +

λH
λD

.

Using this, combined with the expressions for M,Ω1, ℓH , ℓD from the known
solution gives
(274)

M =
3πχ2(µ+ ν)

(1− µ)(1− ν)
, ω2

1 =
2(µ+ ν)

(1 + µ)(1 + ν)
, t =

2(1 + µ2)(1− ν)

(1− µ2)(1 + ν)
.

Inverting these relations for χ2, µ and ν gives

(275) χ2 =
2M

3π

(1− ω2
1)

ω2
1

, µ =
x− (1− ω2

1)

x+ (1− ω2
1)
, ν =

1− x

1 + x
,

where

(276) x =
√

(1− ω2
1)(t− 1 + ω2

1).

A short calculation also demonstrates that these expressions give bijections
between the subspaces defined by (272) and (270) restricted to ω1 > 0, ω2 >
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0. One can also show that the metric data on the axis and horizon rods
agrees precisely under this map. Therefore, we deduce that the Pomeransky-
Sen’kov black ring is the most general regular solution within this class of
rod structures (for ω2 = 0 see the singly spinning case above).

6. Discussion

In this paper we have considered the classification ofD = 4, 5 asymptotically
flat stationary vacuum black hole spacetimes that admit D − 3 commuting
axial Killing fields. We have developed a general method based on integra-
bility of the Einstein equations for this class of spacetimes. In particular,
we have presented a general solution for the metric and associated Ernst
and twist potentials on each axis and horizon component, see Theorem 4.
This solution depends on a number of geometrically defined moduli which
obey a set of algebraic equations and inequalities. Generically the solutions
possess conical singularities on the axes and correspond to the moduli space
of solutions guaranteed to exist in Theorem 2. However, by imposing that
the axis and horizon metric is free of conical singularities we obtain, at least
in principle, the moduli space of regular black hole solutions in this class
for any given rod structure (which may be empty depending on the rod
structure).

In practice the equations which define the moduli spaces increase in
complexity as one increases the number of rods. Therefore an analysis of the
general solution remains out of reach. To this end, it would be interesting to
prove Conjecture 1 and 2, as this may lead to a better understanding of the
moduli space equations. Nevertheless, we have studied various special cases
in which it is possible to fully solve the moduli space equations. In particular,
for rod structures corresponding to the Kerr black hole, the Myers-Perry
black holes and the known doubly spinning black rings, we find that the
resulting moduli space of regular solutions coincide precisely with that of
the known solutions. Thus our analysis, together with Theorem 2, provides
a proof of uniqueness of these solutions within their class of rod structures
(of course, for the Kerr case we recover the classic no-hair theorem). These
proofs are constructive in the sense that we also obtain the metric and
associated Ernst or twist potentials on the axes and horizon.

More interestingly, our general solution can be used to determine the
(non)existence of new types of regular black hole solution in this context.
For D = 5 an open question is whether a regular vacuum black lens exists.
We are currently investigating this question for the simplest rod structure
compatible with a L(n, 1) horizon topology (i.e. a single finite axis rod). It
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turns out that the analysis of the moduli space equations is much more com-
plicated than the black ring case. We have proven that the singly spinning
case J2 = 0 must always possess a conical singularity on axis. This explains
why the previously constructed singly spinning solutions did not lead to reg-
ular black lens spacetimes [34, 35]. The analysis of the doubly spinning case
is far more involved and details will be presented in a forthcoming paper.

By construction, we have obtained the general solution only on the
boundary of the orbit space, i.e. on the axis and horizon rods. On the other
hand, Theorem 2 shows that for given boundary data, there exists a unique
solution that is smooth everywhere away from the axes. An interesting ques-
tion is to write down this full solution explicitly, given our boundary solution.
We expect that further methods from integrability theory will be required
for this, e.g., by employing the technique used for the Ernst equations [45].
In particular, this would be useful to analyse regularity of the full solution at
the axes (i.e. to show that the metric components are even functions of ρ2).
In any case, we anticipate that this regularity issue will likely be satisfied
automatically as in four-dimensions (even for conically singular solutions).
Therefore, given the general regular boundary solution, we expect a unique
spacetime that is regular everywhere on and outside the axes and horizon
to exist. Thus the analysis in this paper should be sufficient to determine
the full moduli space of regular black hole solutions.

It would be interesting to develop our method to study the analogous
classification problem for other types of boundary conditions. In particular,
for D = 5 one can have asymptotically Kaluza-Klein (KK) or Taub-NUT
(TN) vacuum solutions. This could be of interest, as in these cases, the space
of regular solutions is richer since one can have regular soliton spacetimes
(e.g. R× Euclidean Schwarzschild and the KK monopole, for KK and TN
asymptotics respectively). Presumably our analysis can be adapted to these
cases, although clearly one would have to revisit the solution of the spectral
equations near infinity.

Our method is based on the existence of an auxiliary linear system whose
integrability condition is the vacuum Einstein equations for spacetimes in
this symmetry class. It seems likely that this method could be employed
in other theories of gravity which are integrable for spacetimes with D − 2
commuting Killing fields. For example, it is well-known that this is the case
for D = 4 Einstein-Maxwell equations and an analogous inverse scattering
method has been developed [22]. This was recently used to construct the
general charged, rotating, double-black hole solution [46].

More generally, any theory which reduces to a two-dimensional sigma-
model with coset target space is integrable in this sense. A notable example is
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D = 5 minimal supergravity (Einstein-Maxwell-CS theory) [47]. This theory
could be particularly interesting to study as it is already known to contain
a rich class of regular spacetimes with these symmetries. Besides the well-
known charged versions of the Myers-Perry black holes and black rings, this
theory also admits positive energy soliton solutions (a.k.a microstate ge-
ometries) [48], supersymmetric black lenses, and black holes with nontrivial
topology in the DOC (2-cycles) [49–54]. Recently a complete classification
of supersymmetric spacetimes in this class was obtained revealing an infinite
class of new black holes, black lenses and rings in spacetimes with nontrivial
2-cycles [53]. It would be very interesting to provide a complementary clas-
sification based on integrability as this would also capture the much larger
moduli space of nonsupersymmetric solitons and black holes.

Acknowledgements. FT is supported by an EPSRC studentship. We would
like to thank Harry Braden and Hari Kunduri for helpful discussions.

Appendix A. Rod structure of Gibbons-Hawking solitons

In Section 2.1 we showed that the Eguchi-Hanson soliton can be interpreted
as an asymptotically Minkowski solution which is regular everywhere except
for a conical singularity on its bolt. In particular, it gives a rod structure
which satisfies the admissibility condition (9) and hence gives the corre-
sponding solution that is guaranteed to exist in Theorem 2. It is natural to
wonder whether the more general Gibbons-Hawking solitons can be simi-
larly interpreted. In fact, we find that within this class of solutions, the only
case which gives an admissible rod structure is the Eguchi-Hanson soliton.

The Gibbons-Hawking solitons are

(A.1) ds2GH = −dt2 +H−1(dτ + χidx
i)2 +Hdxidxi , H =

n
∑

a=1

1

|x− pa|
,

where xi are Cartesian coordinates on R3, pa ∈ R3 are constants and χ is
determined by dχ = ⋆3dH. We assume n > 1 and note that for n = 2 this
is the Eguchi-Hanson soliton (16) in different coordinates (for n = 1 this of
course Minkowski spacetime). If we take the pa = (0, 0, za) collinear then the
metric has biaxial symmetry and in cylindrical coordinates reads

ds2GH = −dt2 +H−1(dτ + χdϕ)2 +Hρ2dϕ2 +H(dρ2 + dz2) ,

H =

n
∑

a=1

1
√

ρ2 + (z − za)2
, χ =

n
∑

a=1

z − za
√

ρ2 + (z − za)2
.(A.2)
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Observe that this metric is also in Weyl coordinates. As is well-known, if
(τ, ϕ) are identified as Euler angles on S3 (i.e. such that the orbits of ∂ϕ ± ∂τ
are independently 2π-periodic) this gives a smooth ALE metric with S3/Zn
topology at infinity and any curve between the centres pa corresponds to a
2-cycle (or bolt).

On the other hand, one can identify (τ, ϕ) such that the topology at
infinity is S3 resulting in an asymptotically Minkowski spacetime. Explicitly,
as r = |x| → ∞ we have H ∼ n/r and χ ∼ n cos θ, where (r, θ) are standard
polar coordinates on R3, so

(A.3) ds2GH ∼ −dt2 + dR2 +
1

4
R2
[

(dψ + cos θdϕ)2 + dθ2 + sin2 θdϕ2
]

,

where we have defined coordinates ψ = τ/n and R2 = 4nr. Thus identify-
ing (θ, ψ, ϕ) to be Euler angles on S3 gives an asymptotically Minkowski
spacetime. In particular, the rod vectors with 2π-periodic orbits on the two
semi-infinite axes θ = 0 and θ = π are vR = ∂ϕ − ∂ψ and vL = ∂ϕ + ∂ψ re-
spectively. Let us compute the rod structure for this asymptotically flat
vacuum solution.

It is clear there are n+ 1 axis rods I1 = (−∞, z1), Ia = (za−1, za) for
a = 2, . . . , n and In+1 = (zn,∞). The rod vector on each rod is a multiple
of

(A.4) ṽa = ∂ϕ − χa∂τ

where

(A.5) χa ≡ χ|Ia =

n
∑

b=1

sign(z − zb) = 2(a− 1)− n

for a = 1, . . . , n+ 1. For a = 1 and a = n+ 1 this expression reduces to vL
and vR respectively and hence is correctly normalised. With respect to the
2π-periodic basis (vR, vL) the rod vectors are

(A.6) ṽa =

(

a− 1

n
, 1− a− 1

n

)

so ṽ1 = v1 = (0, 1) and ṽn+1 = vn+1 = (1, 0) as previously noted. However,
for a = 2, . . . , n rod vectors must be rescaled to ensure they have integer
entries with respect to a 2π-periodic basis. Thus for a = 2, . . . , n the rod
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vectors are

(A.7) va =
1

gcd(a− 1, n)
(a− 1, n− a+ 1) ,

where the prefactor is included to ensure the components are coprime and
hence va has 2π-periodic orbits.

We will now examine whether this rod structure satisfies the admissibil-
ity condition (9). In general we have

(A.8) v2 = (1, n− 1) , vn = (n− 1, 1) ,

so det(v1, v2) = −1 and det(vn, vn+1) = −1 satisfy (9). Therefore, if n = 2,
we have an admissible rod structure v1 = (0, 1), v2 = (1, 1), v3 = (1, 0). This
is the Eguchi-Hanson soliton discussed in the main text (16). However, for
n > 2 and a = 2, . . . , n− 1 we have

(A.9) det(va, va+1) = − n

gcd(a− 1, n)gcd(a, n)
,

which is never equal to ±1 and hence the admissibility condition (9) is always
violated for n > 2. Instead, for these cases the corners of the orbit spaces
z2, . . . , zn−1 are orbifold singularities.

Appendix B. Geometry near corners of orbit space

B.1. Intersection of axes

Here we consider the geometry of a D = 5 spacetime near a fixed point of
the U(1)2-action, i.e., we consider the geometry near a corner of the orbit
space z = za where two consecutive axis rods Ia and Ia+1 meet.

Then, as shown in Section 2.2.1, smoothness of the metric on Ia at z = za
requires (29), whereas smoothness of the metric on Ia+1 at z = za requires
(30) with a replaced by a+ 1, i.e., ha+1′(za)

2/ha+1
00 (za) = −4c2a+1. On the

other hand, for any axis rod

(B.10) ha00(z) = g̊ABk
AkB

is simply the squared norm of the stationary Killing field k on the axis.
Therefore, ha00(za) = ha+1

00 (za) and hence eliminating the norm of k between
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the aforementioned regularity conditions we deduce that

(B.11) c−1
a ha′(za) = −c−1

a+1h
a+1′(za) ,

where in order to fix the sign we have used the fact that ha′(za) > 0 and
ha+1′(za) < 0 (these follow from ha < 0 in the interior of Ia).

Finally, observe that using (26) the condition (B.11) is equivalent to
continuity of |z − za|e2ν̊ at z = za. In fact this continuity condition for the
conformal factor e2ν has been previously proven in [42].

B.2. Intersection of horizon and axis

We now consider the geometry where a horizon rod Ia meets an axis rod
Ia+1. In particular, the geometry on the axis corresponding to Ia+1 (27) is
a (D − 2)-dimensional Lorentzian spacetime that must have a regular (D −
3)-dimensional horizon as z → za corresponding to where the full horizon
intersects the axis corresponding to Ia+1. We will now compute the surface
gravity of this ‘axis horizon’ z = za, which must of course coincide with the
surface gravity of the full horizon.

For D = 5, the Killing field null on the horizon ξ restricted to the axis
rod Ia+1 is ξ = k +Ωua+1 where (k, ua+1) is the adapted basis of Ia+1 and
Ω is a constant angular velocity. Therefore, the metric on this component of
the axis (27) must be of the form

ga+1 = −c
2
a+1dz

2

ha+1(z)
+ (p1(z − za) +O((z − za)

2)(dx0)2

+O(z − za)dx
0(dx1 − Ωdx0) + (p2 +O(z − za))(dx

1 − Ωdx0)2 ,(B.12)

as z → z+a , where we choose adapted coordinates such that k = ∂/∂x0, ua+1

= ∂/∂x1. The expansions of the metric components follow from smoothness,
together with ξ being null on the axis horizon and ua+1 being tangent to
the axis horizon. Here p1 < 0, p2 > 0 are constants related to the metric
components (p1 = 0 would correspond to an extremal horizon which we do
not consider here). It follows that the determinant ha+1(z) = p1p2(z − za) +
O((z − za)

2) and hence defining ϵ2 = z − za, the first two terms in (B.12)
approach the Rindler metric

(B.13) −4c2a+1

p1p2

(

dϵ2 − κ2ϵ2(dx0)2
)

,
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as ϵ→ 0, with surface gravity

(B.14) κ2 =
p21p2
4c2a+1

=
ha+1′(za)

2

4c2a+1h
a+1
11 (za)

.

The second equality follows from the relations p2 = ha+1
11 (za) and p1p2 =

ha+1′(za). A similar analysis for D = 4 (which effectively can be obtained
from dropping the dx1 terms above) gives

(B.15) κ2 =
ha+1′(za)

2

4c2a+1

.

This analysis confirms the axis geometry on Ia+1 has a smooth non-
degenerate horizon at z = za with surface gravity (B.14) for D = 5 and
(B.15) for D = 4.

On the other hand, as shown above, smoothness of the horizon metric
at the corner z = za leads to a different expression for κ. For D = 4 this is
given by (39) and combining this with (B.15) implies

(B.16) κ2γ′(za) = c−1
a+1h

a+1′(za) ,

where the signs are fixed from the fact that γ′(za) < 0 and ha+1′(za) < 0.
For D = 5, the expression for the surface gravity (40), written in coordinates
ϕ̂i, i = 1, 2, adapted to the horizon rod Ia so that ua+1 = ∂1̂ and va+1 = ∂2̂,
becomes

(B.17) κ−2 =
γ′(za)

2

4γ1̂1̂(za)
,

where we used γ′(za) = γ1̂1̂(za)γ
′
2̂2̂
(za). Next, note that

(B.18) ha+1
11 (z) = g̊ABu

A
a+1u

B
a+1, γ1̂1̂(z) = g̊ABu

A
a+1u

B
a+1 ,

on the rods Ia+1 and Ia respectively, are both equal to the norm squared
of ua+1, so in particular ha+1

11 (za) = γ1̂1̂(za). Hence eliminating the norm
of ua+1 between (B.14) and (B.17) we deduce that (B.16) also holds for
D = 5. The analysis for a horizon rod Ia meeting an axis rod Ia−1 is entirely
analogous and similarly to (B.16) one can derive that

(B.19) κ2γ′(za−1) = c−1
a−1h

a−1′(za−1)

for D = 4, 5.
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Finally, using (26) and (36) we see that (B.16) is equivalent to the con-
tinuity of |z − za|e2ν̊ at z = za (with a similar condition at z = za−1 for
(B.19)), just as in the case of a corner separating two axis rods.

Appendix C. Ernst potential identities

Consider a component of the horizon H with corresponding rod Ia and we
drop rod labels when convenient and unambiguous. First, recall the well-
known identity

(C.20)

∫

H
⋆dξ = −2κA ,

where ξ is the horizon Killing field (31), κ is the surface gravity and A is
the area of H. Therefore, using (12) we deduce that

(C.21) ζ(za)− ζ(za−1) = − 2κA

(2π)D−3
,

where we have defined a new potential ζ by

(C.22) dζ = ⋆(m1 ∧ . . .mD−3 ∧ dξ) .

Also, we will need the following fact: in coordinates adapted to the horizon
rod (32) implies that the 1-form dual to the corotating Killing field is

(C.23) ξA = g̃AD−3 = O(ρ2)

near the horizon. Thus, in particular, ξ = 0 on the horizon (although dξ ̸= 0
since ρ is not a good coordinate on the horizon).

For D = 4 we can write (49) in terms of the corotating Killing field

(C.24) db = − ⋆ (ξ ∧ dξ) + Ω ⋆ (ξ ∧ dm) + Ωdζ − Ω2dχ ,

where we have used the definition of the twist potential (14) and (C.22).
Evaluating this on the horizon we see that the first two terms must vanish
due to (C.23). Thus we find that on the horizon

(C.25) db = Ω(dζ − Ωdχ)

and integrating this over the horizon rod Ia gives

(C.26) b(za)− b(za−1) = −Ω

(

κA

π
+ 8ΩJ

)

= −4ΩM ,
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where in the first equality we used (C.21) and (13) and in the final equal-
ity the standard Smarr relation for the Komar mass of the horizon M =
1
8π

∫

H ⋆dξ. This implies the identity (175).
For D = 5, one can show again using (C.23) that on the horizon

(C.27) dbLµ =

(

−Ω2Ωidχi +Ω2dζ
Ω2dχ1

)

and hence integrating this over the horizon rod

(C.28) bLµ(za)− bLµ(za−1) = Ω2

(

− 4
π

(

ΩiJi +
κA
8π

)

4J1

π

)

= Ω2

(

−8M
3π

4J1

π

)

,

where in the first equality we used (13) and (C.21) and in the second the
Smarr relation. Similarly, one finds that on the horizon

(C.29) dbRµ =

(

−Ω1Ωidχi +Ω1dζ
Ω1dχ2

)

and hence

(C.30) bRµ (za)− bRµ (za−1) = Ω1

(

−8M
3π

4J2

π

)

.

In a similar manner, one can also evaluate the change in Ernst potential
associated to any other axis rod over a horizon rod. Formulae for bLµ(za)−
bLµ(za−1) and b

R
µ (za)− bRµ (za−1) across axis rods can also be derived, which

combined with (C.28) and (C.30) imply the identities (214) and (212).

Appendix D. Proof of Proposition 3

First we observe that for an axis rod G̃aNN (k) = vTaGa(k)va where in the
standard basis vTa = (0, v1a, . . . , v

D−3
a ) is the rod vector. Similarly, for a hori-

zon rod we can write G̃a00(k) = vTaGa(k)va where vTa = (1,Ωa1, . . . ,Ω
a
D−3)

denotes the horizon null vector. Similar statements hold for the matrices
Ha(k). Thus, to complete the proof of Proposition 3 we need to establish

(D.31) lim
k→za−1

vTaGa(k)va ̸= 0

and

(D.32) lim
k→za

vTaHa(k)va ̸= 0,
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for each finite rod Ia, for generic values of the parameters. We will only
explicitly prove (D.31), though (D.32) can be proved in an almost identical
fashion.

Writing outGa explicitly in terms of the Pa matrices using the expression
for Fa (119) gives
(D.33)

G2(k) = −XL(z1, k)C
−1Pn(k)

T · · ·P2(k)
T ,

Ga(k) = −Xa−1(za−1, k)Pa−2(k)
−1 · · ·P1(k)

−1C−1Pn(k)
T · · ·Pa(k)T ,

where a = 3, . . . , n. Consider a fixed, but arbitrary set of axis rod vectors va
(this is of course only relevant for D = 5). Then, from the definition of the
matrices Ga(k) it is clear that the LHS of (D.31) is a rational function Ra(φ⃗)
where the vector φ⃗ denotes the continuous moduli in (132) (i.e. excluding
the axis rod vectors). For the purposes of the proposition we need to prove
Ra(φ⃗) ̸= 0 for generic values of the moduli φ⃗, i.e. the zero set of Ra is lower-
dimensional. A simple strategy to prove this is to find an explicit value of
the moduli φ0 for which Ra(φ0) ̸= 0, since when combined with analyticity
of the numerator of Ra, implies that the zero-set of Ra does not contain an
open set. It is worth noting that for this argument the value φ0 does not
need to belong to the actual moduli space of solutions (defined by (148)).

It is convenient to choose φ0 for each rod Ia such that Pb(za−1) = ID−3

for all b ̸= a− 1 and 1 ≤ b ≤ n. This is achieved by setting bbµ(zb) = 0 or

χbi(zb) = 0, depending on whether Ib is an axis or horizon rod, and zb =
za−1 + 1/2. The result of this is that for any finite rod Ia

(D.34) lim
k→za−1

vTaGa(k)va → −vTaXa−1(za−1, za−1)C
−1va

under these parameter identifications. Therefore in order to prove (D.31)
all that remains is to show that the right hand side of (D.34) is generically
nonzero.

First consider D = 4. Using the explicit expression for C (162) one finds
that

(D.35) −vTaXa−1(za−1, za−1)C
−1va =























−1 + Ωa−1χa−1(za−1),

Ia−1 horizon rod, Ia axis rod,

−1 + Ωaba−1(za−1),

Ia−1 axis rod, Ia horizon rod,

which are indeed generically nonzero.
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Now consider D = 5, in which case C is explicitly given by (202). If Ia−1

is an axis rod and Ia is a horizon rod, we can also set Ωai = 0 which implies
that the right hand side of (D.34) is simply given by −1. If Ia−1 is a horizon
rod and Ia is an axis rod then the right hand side of (D.34) is given by

(D.36) [viaχ
a−1
i (za−1)][ṽ

T
a va−1]− vTa ṽa,

where ṽTa =
(

0 −v1a v2a
)

, which is generically nonzero. Finally, if both Ia−1

and Ia are axis rods then the right hand side of (D.34) is given by

(D.37) (detAa−1)
−1 det

(

v1a v2a
v1a−1 v2a−1

)

ṽTa (b
a−1
1 (za−1)va−1 − ua−1),

where the matrix Aa−1 and the axial Killing field ua−1 are introduced in
(19). The first factor is nonzero since Aa−1 ∈ GL(2,Z), the second factor is
nonzero since va and va−1 must be linearly independent (in particular see
(9)), and the third factor is generically nonzero since ṽa cannot be orthogonal
to both va−1 and ua−1. This establishes the claim.
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[53] V. Breunhölder and J. Lucietti, “Moduli space of supersymmetric soli-
tons and black holes in five dimensions,” Commun. Math. Phys. 365
(2019) no. 2, 471–513.
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