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Single-valued hyperlogarithms, correlation

functions and closed string amplitudes
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We give new proofs of a global and a local property of the integrals
which compute closed string theory amplitudes at genus zero. Both
kinds of properties are related to the newborn theory of single-
valued periods, and our proofs provide an intuitive understanding
of this relation. The global property, known in physics as the KLT
formula, is a factorisation of the closed string integrals into prod-
ucts of pairs of open string integrals. We deduce it by identifying
closed string integrals with special values of single-valued correla-
tion functions in two dimensional conformal field theory, and by
obtaining their conformal block decomposition. The local property
is of number theoretical nature. We write the asymptotic expansion
coefficients as multiple integrals over the complex plane of special
functions known as single-valued hyperlogarithms. We develop a
theory of integration of single-valued hyperlogarithms, and we use
it to demonstrate that the asymptotic expansion coefficients belong
to the ring of single-valued multiple zeta values.
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1. Introduction

In this work we study the integrals

(1.1) MN+3(sss,nnn, ñ̃ñn)

=


i

2π

N ˆ

CN

∏

0≤i<j≤N+1

♣zi − zj ♣2sij (zi − zj)
nij (z̄i − z̄j)

ñij

N∏

i=1

dzi dz̄i ,

with z0 := 0 and zN+1 := 1, for N ∈ N and nij , ñij ∈ Z, as functions of the
complex variables sij .

These integrals are building blocks of closed string theory amplitudes on
genus-zero surfaces, and are known to admit a meromorphic analytic contin-
uation to sss ∈ CN(N+3)/2 (see Section 3.2).

More specifically, we are interested in a well-established global property,
known in physics as the KLT formula (see below), and in a recently proven lo-
cal property, which concerns the number-theoretical nature of certain asymp-
totic expansion coefficients. These two properties are related, in two different
ways, to the newborn theory of single-valued periods, as explained below.

Periods are special complex numbers, defined as the entries of the matri-
ces P that represent Grothendieck’s isomorphism Hn

dR ⊗Q C→̃Hn
B ⊗Q C be-

tween the de Rham and the Betti (relative) cohomology groups of an algebraic
variety over Q. Single-valued periods are defined as the entries of the matrices
P sv := P̄ −1P , that represent an automorphism Hn

dR ⊗Q C→̃Hn
dR ⊗Q C of the

de Rham cohomology induced by the action of complex conjugation on the
complex points of the variety [Bro13].

To explain the origin of the terminology “single-valued”, consider a family
of algebraic varieties, which depends algebraically on parameters living on
a base space. Then the associated periods also depend on the parameters
and, as functions of them, they satisfy special differential equations, known
as Picard-Fuchs equations. In particular, they can be seen as multi-valued
functions on the base space, in the sense that they are local solutions of the
Picard-Fuchs equations, whose analytic continuation along a path depends
on the homotopy class of the path. The associated single-valued periods are,
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on the other hand, well-defined1 on the base space, so they are single-valued
functions of the parameters, and single-valued periods are special values of
these functions.

There is no canonical way in general to associate to a (motivic) period
a single-valued period. Such a canonical map exists, however, for (motivic)
periods of mixed Tate motives [BD18], which contain all periods appearing
in this article; we call it a single-valued projection2. We remark that single-
valued projections are a priori only defined on motivic periods, but assuming
the period conjecture we can think of them also as maps on actual periods.

The introduction in mathematics of this single-valued formalism was
mainly motivated by the surprising relations noticed in physics between the
integrals (1.1) and the integrals
(1.2)

AN+3(sss,nnn, ρ) =

ˆ

0≤xρ(1)≤···≤xρ(N)≤1

∏

0≤i<j≤N+1

♣xi − xj ♣sij (xi − xj)
nij

N∏

i=1

dxi ,

where x0 := 0, xN+1 := 1, and ρ ∈ SN is a permutation, which are the build-
ing blocks of open string theory amplitudes at genus zero.

The first of these surprising relations is the KLT formula, discovered by
(and named after) Kawai, Lewellen and Tye in [KLT], which expresses closed
string integrals (1.1) in terms of products of pairs of open string integrals (1.2).
This identity is a global property of the integrals (1.1), as it holds for any sss.
It was noticed by Mizera that the KLT formula can be interpreted in terms
of twisted3 cohomology [Miz16, Miz17]. Recently, Brown and Dupont built
on this observation to show that, in all cases relevant for closed string am-
plitudes, while the integrals (1.2) are (twisted) periods4, the integrals (1.1)

1In general, single-valued periods in families are well-defined Zariski locally (the
bundle with connection underlying the family may be non-trivial), but in the cases
that we consider they are well-defined on the whole base space.

2This is standard but perhaps unfortunate terminology in the field of string
amplitudes. In particular, it should not be confused with the single-valued period

map of [BD18, BD19b], which maps de Rham motivic periods to single-valued
periods. Our single-valued projection is the composition of that map with the de

Rham projection from motivic periods to de Rham periods, which exists in the
catgory of mixed Tate motives but not in general.

3The Betti twisted cohomology is the cohomology with coefficients in the local
system associated with the monodromies of a multi-valued “twist function”, in this
case of the form

∏
(xi − xj)sij . The de Rham twisted cohomology is the cohomology

with coefficients in an algebraic vector bundle with a connection integrated by the
twist function.

4These are not periods (in families) in the classical sense.
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are single-valued (twisted) periods, obtained from the former via the single-
valued projection [BD19b]; the KLT formula is then a consequence of the fact
that P sv := P̄ −1P . In other words, the KLT formula is intrinsically related
to the single-valued nature of the closed string integrals (1.1).

The second surprising relation between the closed string integrals (1.1)
and the open string integrals (1.2), discovered experimentally, is of local na-
ture. One of the most important goals in the field of string amplitudes is that
of studying the asymptotic expansion at the pole sss = 0. Standard techniques
allow to show [BSST] that the asymptotic expansion coefficients at sss = 0 of
the integrals (1.2) belong5 to the ring of multiple zeta values, real numbers
defined for k1, . . . , kr ∈ N, kr ≥ 2, by the absolutely convergent nested series

(1.3) ζ(k1, . . . , kr) :=
∑

0<n1<···<nr

1

nk1
1 · · · nkr

r

.

Extensive computations [SS12, Stie13, ST14, FFST] led to conjecture
that the analogous asymptotic expansion coefficients for the closed string
integrals (1.2) should be single-valued multiple zeta values, i.e. single-valued
periods ζsv(k1, . . . , kr) obtained as single-valued projections of multiple zeta
values [Bro13]. Furthermore, it was conjectured in [Stie13] that the whole
asymptotic expansions of closed string integrals could be obtained from those
of open string integrals by applying term-by-term the single-valued projection.
An argument proving this conjecture was recently sketched in [SS18], and
shortly afterwards a (different) full proof appeared in the already mentioned
paper of Brown and Dupont [BD19b]. This result gives a second, different6

relation between the integrals (1.1) and the theory of single-valued periods.
The proofs of the single-valued projection from open to closed string in-

tegrals contained in [BD19b] and in [SS18] are rather abstract, and use some
deep algebraic geometry. The main purpose of our paper is to give new more
elementary analytic proofs of the KLT formula and of the appearence of
single-valued multiple zeta values in the asymptotic expansion, which also
provide a more heuristic explanation for the “single-valued nature” of the
integrals (1.1).

5This is proven only in the cases which are relevant in open string theory.
6Despite the fact that the proofs of the global and of the local results are contained

in the same paper [BD19b], they do not seem to be related in any simple way. The
recent work [BD19a] starts exploring the possibility of relating them via a theory
of hypergeometric motives.
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Our idea, in both cases, is to add a variable7 to obtain single-valued func-
tions (single-valued periods in families), and to study their analytic proper-
ties. More specifically, in the global case our idea is to understand the KLT
formula as a specialisation of the conformal block decomposition of a correla-
tion function, whose single-valuedness is also required for physical reasons. In
the local case, our idea is to develop a theory of integration of single-valued
hyperlogarithms, i.e. single-valued special functions containing single-valued
multiple zeta values as special values, and to use it to algorithmically com-
pute the coefficients of the asymptotic expansion. Precise statements of our
results are contained in the next section.

An important motivation for our work is that it seems suited for studying
analogues of the integrals (1.1) on higher-genus surfaces, i.e. higher orders in
the perturbative expansion of closed string amplitudes. More precisely, the
existence of global and local relations between open and closed string inte-
grals, and their interpretation in terms of suitable single-valued periods and
single-valued projections, is expected to hold in some form also at higher
genus. Since a conformal block decomposition must exist also for correlation
functions on higher-genus surfaces [DMS], it would be interesting to use it to
identify higher-genus analogues of the KLT formula. It would also be interest-
ing to adapt our results on the integration of single-valued hyperlogarithms
to compute (a degeneration of) the asymptotic expansion of genus-one closed
string amplitudes in terms of single-valued multiple zeta values8, along the
lines of our article [VZ].

1.1. Content

1.1.1. Closed string amplitudes and correlation functions. Here we
review our results of global nature. The starting point is that the integrals (1.1)

7The idea of adding an extra variable has been exploited also in other contexts
related to string amplitudes computations, e.g. in [BSST] or [Miz19] at genus zero
or [BK, DGGV] at genus one.

8The building blocks of open and closed genus-one string amplitudes are functions
of the modulus τ of the genus-one surface. One can consider a double expansion,
first at sss = 000, then at the degeneration point τ = i∞. In the open string case,
the coefficients of this expansion are known to be multiple zeta values [BMMS,
BMS, BMRS]. In the closed string case, it is still a conjecture that the coefficients
are single-valued multiple zeta values [Zer15, DGGV], obtained via a single-valued
projection from the open string coefficients [Bro17a, Bro17b, BSZ, Zer18]. Special
cases of this conjecture were proven in [DG, ZZ, VZ].
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can be obtained as special values (either at η = 0 or at η = 1, with the appro-
priate identification of the exponent parameters) of the correlation function

(1.4) GN


aaabbbcccddd

ã̃ãa b̃̃b̃b c̃̃c̃c d̃̃d̃d

∣∣∣η


:=


i

2π

N

×
ˆ

CN

N∏

i=1

zai

i z̄ãi

i (1 − zi)
bi(1 − z̄i)

b̃i(η − zi)
ci(η̄ − z̄i)

c̃i

×
∏

1≤i<j≤N

(zi − zj)
dij (z̄i − z̄j)

d̃ij

N∏

i=1

dzi dz̄i ,

with exponents (aaa, bbb, ccc,ddd, ã̃ãa, b̃̃b̃b, c̃̃c̃c, d̃̃d̃d) ∈ CN(N+5) such that (aaa − ã̃ãa, bbb − b̃̃b̃b, ccc − c̃̃c̃c, ddd −
d̃̃d̃d) ∈ ZN(N+5)/2 (see Section 3.3). This condition on the exponents insures that
the integral (1.4) defines, in its region of absolute convergence, a single-valued
real-analytic function of η ∈ C. This is a physically motivated property of cor-
relation functions in conformal field theory (see Section 3.1).

Conformal field theory also predicts that the function GN has a conformal
block decomposition

(1.5) GN


aaabbbcccddd

ã̃ãa b̃̃b̃b c̃̃c̃c d̃̃d̃d

∣∣∣η


=
M∑

r,s=1

Gr,s


aaabbbcccddd

ã̃ãa b̃̃b̃b c̃̃c̃c d̃̃d̃d


Ir(aaa, bbb, ccc;ddd; η) Is(ã̃ãa, b̃̃b̃b, c̃̃c̃c; d̃̃d̃d; η̄) ,

for some M ∈ N, some coefficients Gr,s independent of η and some functions Ir

which are holomorphic in η, called conformal blocks. This kind of formula is
also called a holomorphic factorisation of the function GN (see Section 3.1).

In order to write down such a formula explicitly, and demonstrate it, we
first study the functions which will play the role of conformal blocks. It turns
out that they are contained in a class of generalised hypergeometric functions,
systematically studied in the 1980s by Aomoto [Aom] and, independently, by
Gel’fand [Gel], given by the integrals
(1.6)

F∆(aaa, bbb, ccc;ddd; η) :=

ˆ

∆

N∏

i=1

♣zi♣ai ♣zi − 1♣bi ♣zi − η♣ci
∏

1≤i<j≤N

♣zi − zj ♣dij

N∏

i=1

dzi ,

where η ∈ (0, 1) and ∆ is a connected component of ¶(z1, . . . , zN ) ∈ RN ♣ zi ̸=
0, 1, η and zi ̸= zj♢. We call the integrals (1.6) Aomoto-Gel’fand hypergeo-
metric functions. As functions of η, they can be extended to holomorphic
multi-valued functions on C \ ¶0, 1♢.

Our first result is to identify a basis of these functions, suitable for our
purposes (see Theorem 4.3).
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Theorem 1.1. Let N ∈ N. The (N + 1)! Aomoto-Gel’fand hypergeometric
functions I(ρ,σ)(aaa, bbb, ccc;ddd; η) := F∆(ρ,σ)(η)(aaa, bbb, ccc;ddd; η) which are associated, for
permutations ρ ∈ Sr, σ ∈ Ss with r + s = N , to the domains

(1.7) ∆(ρ,σ)(η) := ¶0 ≤ zσ(1) ≤ · · · ≤ zσ(s) ≤ η ≤ 1 ≤ zρ(1) ≤ · · · ≤ zρ(r)♢ ,

form a basis the vector space of (N-dimensional) integrals (1.6) over the field
(1.8)
F := Q(eπia1 , . . . , eπiaN , eπib1 , . . . , eπibN , eπic1 , . . . , eπicN , eπid12 , . . . , eπidN−1 N ).

This theorem could be proven using results from the twisted cohomology
literature. In particular, we rely on a result of Aomoto for the linear inde-
pendence [Aom], but we provide an alternative and more constructive proof
that the functions I(ρ,σ)(aaa, bbb, ccc;ddd; η) generate the whole space, using a contour
deformation technique which is well-known in physics [DF84, DF85, BBDV],
but less so in mathematics (see Proposition 4.1).

The Aomoto-Gel’fand hypergeometric functions I(ρ,σ)(aaa, bbb, ccc;ddd; η) take the
role of conformal blocks in our holomorphic factorisation of the correlation
function GN (see Theorem 5.1):

Theorem 1.2. There exist unique coefficients G(ρ,σ),(ρ̃,σ̃)(aaa, bbb, ccc;ddd) ∈ F such
that

(1.9) GN


aaabbbcccddd

ã̃ãa b̃̃b̃b c̃̃c̃c d̃̃d̃d

∣∣∣η


=


i

2π

N

×
∑

(ρ,σ),(ρ̃,σ̃)∈Sr×Ss

r,s≥0, r+s=N

G(ρ,σ),(ρ̃,σ̃)(aaa, bbb, ccc;ddd) I(ρ,σ)(aaa, bbb, ccc;ddd; η) I(ρ̃,σ̃)(ã̃ãa, b̃̃b̃b, c̃̃c̃c; d̃̃d̃d; η̄) .

The fact that GN is a single-valued function of η allows us to immediately
deduce constraints on the form of the matrix of the coefficients G(ρ,σ),(ρ̃,σ̃) (see
Proposition 5.3). In fact, one may try to construct a holomorphic factorisa-
tion by imposing that the monodromies of the Aomoto-Gel’fand functions
must disappear, along the lines of the classical paper of Dotsenko and Fa-
teev [DF84], where the existence (but not the uniqueness) of a holomorphic
factorisation like (1.9) is proven for special kinds of exponents.

Our proof is constructive, and it combines Theorem 1.1 with the contour
deformation method proposed in the original proof of the KLT formula. In
particular, it is not surprising that specialising Theorem 1.2 to η = 1 or to η =
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0 one gets back the original KLT formula9. In other words, the KLT relations
are obtained by specialising a physically motivated formula which combines
a chosen basis of holomorphic and anti-holomorphic multi-valued functions,
which are twisted periods in families, into a (uniquely determined) single-
valued function. This is a heuristic and physically motivated justification of
the fact that the KLT formula is related to the theory of single-valued periods.

1.1.2. Closed string amplitudes and single-valued hyperlogarithms.
Let us now turn our attention to local aspects of the integrals (1.1). More
precisely, we focus on the subfamily of integrals

(1.10) Mρ,σ(sss) :=


i

2π

N

×
ˆ

(P1
C

)N

∏
0≤i<j≤N+1 ♣zj − zi♣2sij

∏N
i=1 dz dz̄

zρ(1) zσ(1)(1 − zρ(N))(1 − zσ(N))
∏N

i=2(zρ(i) − zρ(i−1))(zσ(i) − zσ(i−1))
,

where ρ, σ ∈ SN , which is obtained for special values of nnn, ñnn and which con-
tains all relevant information for closed superstring theory, and we look at
the asymptotic expansion at sss = 000 of these integrals. We then give a new10

proof of the following (see Theorem 7.1):

Theorem 1.3. The asymptotic expansion coefficients of the integrals (1.10)
are single-valued multiple zeta values.

As explained in Section 5.3, one may combine Theorem 1.2 with folk-
lore results on the asymptotic expansion of Aomoto-Gel’fand hypergeometric
functions (see Section 4.4) to deduce information on the asymptotic expan-
sion coefficients of the integrals (1.10). Unfortunately, this does not suffice to
prove Theorem 1.3. Our proof takes instead a completely different route, and
it relies on a technical result for the integration of a class of functions called
single-valued hyperlogarithms.

Hyperlogarithms are homotopy invariant iterated integrals of rational func-
tions on the punctured complex plane. Once the starting point of the inte-
gration path is fixed, hyperlogarithms only depend on the position of the

9More precisely, we introduce J(ρ,σ)(aaa,bbb, ccc;ddd; η) := I(ρ,σ)(aaa,bbb, ccc;ddd; 1 − η), which
can also be seen as Aomoto-Gel’fand functions F∆ for suitable domains ∆, and
constitute an alternative basis (see Corollary 4.4). This basis is then best suited,
after specialising to η = 1, to a comparison with a version of the KLT formula stated
in [Miz16].

10This statement was first proved (in a stronger form) in [SS18] and [BD19b]
while we were writing our paper.
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endpoint (holomorphically) and on the homotopy class of the path, and so
they are multi-valued functions of the endpoint. Brown described a way to
combine hyperlogarithms and their complex conjugates to remove their de-
pendence on the homotopy class of the path, thus constructing a family of
(real-analytic) functions defined on the whole punctured plane, called single-
valued hyperlogarithms [Bro04a]. This construction can also be explained, a
posteriori, with the theory of single-valued periods: hyperlogarithms are peri-
ods in families, and single-valued hyperlogarithms are their images under the
single-valued projection.

In the case where the points removed from C are 0 and 1, (single-valued)
hyperlogarithms are called (single-valued) multiple polylogarithms, and their
special values at z = 1 are (single-valued) multiple zeta values. Even though
all the integrals that we consider can eventually be expressed in terms of
(multi-valued or single-valued) multiple polylogarithms and multiple zeta val-
ues, our analysis of the asymptotic expansion of the integrals (1.10) crucially
relies on the general theory of hyperlogarithms.

Our idea is to generalise at the same time results of Panzer on the integra-
tion of (multi-valued) hyperlogarithms [Pan15], and results of Schnetz on the
integration of single-valued multiple polylogarithms [Sch13]. We demonstrate
that (absolutely convergent) integrals of the kind

(1.11)

ˆ

C

f(z) dz dz̄∏m
r=1(z − σir

)
∏n

s=1(z − σjs
)
,

for σi ∈ C and f a single-valued hyperlogarithm, can be written as single-
valued hyperlogarithms in any of the variables σi, with coefficients contained
in a ring of special values of single-valued hyperlogarithms which depends
on f (see Theorem 6.7 for a precise statement). This is the key result to
prove Theorem 1.3, but it is also an interesting general result11 which can be
useful in other contexts, as already shown in [VZ].

The asymptotic expansion coefficients of (1.10) can be written12 as multi-
ple integrals over CN of single-valued hyperlogarithms. As integrals over any

11Similar kinds of results were obtained with a more geometric approach
in [D5MPV] to study multi-Regge kinematics or in [BPP] to study Kontsevich’s
deformation quantization.

12This is a rather delicate point, as one first needs to separate a polar part
from an absolutely convergent part of the integrals (1.10). We indicate an analytic
procedure to do this, but we do not give the details in the general case. A different
approach to separate and compute the polar part in the general case can be found
in [BD19b].
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of the coordinates zi, they have the form (1.11), hence they can be recur-
sively integrated using our above-mentioned result, which eventually implies
the statement of Theorem 1.3. It is possible (see Sections 7.1 and 7.2) to im-
plement our proof’s method and explicitly compute the asymptotic expansion
coefficients of (1.10), without any knowledge of the analogous open string co-
efficients, contrary to all previous approaches. Moreover, our method exposes
the fact that these coefficients are special values of single-valued functions,
thus providing an intuitive explanation for their single-valued period nature.

1.1.3. Organisation of the paper. Sections 2 and 3 contain the mathe-
matical and physical background of the article, respectively. In Section 2, we
give an overview of some aspects of the theory of hyperlogarithms. In par-
ticular, we introduce multiple polylogarithms and multiple zeta values (both
multi-valued and single-valued). A reader who is already familiar with these
notions can skip Section 2 and still be able to read the paper until Section 6,
where we go back to the general theory of hyperlogarithms and discuss their
integration. In Section 3, we give an overview of the physics involved in this
paper. In particular, we introduce correlation functions, and genus-zero closed
string amplitudes.

In Sections 4 and 5 we focus on global aspects of the closed string ampli-
tudes. In Section 4, which may also be read independently from the rest of
the paper, we introduce Aomoto-Gel’fand functions and study some of their
properties. The results obtained are used in Section 5, where we prove the
holomorphic factorisation of the correlation function (1.4) and deduce some
of its consequences. In particular, in Section 5.4 we derive the KLT formula.

In Sections 6 and 7 we focus on local aspects of the closed string ampli-
tudes. In Section 6, which is the logical continuation of Section 2, we recall
some known results on the integration of hyperlogarithms, and we present new
results for the integration of single-valued hyperlogarithms. These results are
then used in Section 7, which is entirely devoted to prove Theorem 1.3. Be-
fore proving the general case in Section 7.3, where due to notation complexity
we omit some details, we give detailed proofs in Sections 7.1 and 7.2 of the
N = 1 and N = 2 cases, respectively. This is also intended to help the reader
interested in a practical algorithmic implementation of our method.

Finally, in Appendix A we discuss the convergence of the integrals con-
sidered.
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2. Hyperlogarithms

The material presented in this section is not original, except for the formu-
lation of some results in slightly more general contexts. We prove only those
statements whose proof is not an obvious adaptation of arguments from the
literature, and we provide precise references for the omitted proofs.

2.1. Definition and first properties

Let M be a smooth manifold, let ω1, . . . , ωr be smooth complex-valued 1-
forms on M and let γ : [0, 1] → M be a parametrization of a piecewise smooth
path. We can write γ∗ωi = fi(t)dt for some piecewise smooth function fi :
[0, 1] → C, where 1 ≤ i ≤ r. The iterated integral of ω1, . . . , ωr along γ (which
does not depend on the chosen parametrisation of γ) is

(2.1)

ˆ

γ

ω1 · · · ωr :=

ˆ

1≥t1≥···≥tr≥0

f1(t1) · · · fr(tr) dt1 · · · dtr.

We say that r is the length of the iterated integral. We will need the following
properties:

• Composition of paths.

(2.2)

ˆ

γ1·γ2

ω1 · · · ωr =
r∑

i=0

ˆ

γ1

ω1 · · · ωi

ˆ

γ2

ωi+1 · · · ωr

• Shuffle product. Denote by ✁(r, s) the set of permutations ρ of ¶1, . . . ,
r + s♢ such that ρ(1) < ρ(2) < · · · < ρ(r) and ρ(r + 1) < ρ(r + 2) <
· · · < ρ(r + s). Then

(2.3)

ˆ

γ

ω1 · · · ωr

ˆ

γ

ωr+1 · · · ωr+s =
∑

ρ∈✁(r,s)

ˆ

γ

ωρ−1(1) · · · ωρ−1(r+s).

Let X := ¶x0, x1, . . . , xn♢ be an alphabet of n + 1 letters, and let Σ :=
¶σ0, σ1, σ2 . . . , σn♢ ⊂ C be a set of n + 1 distinct complex numbers obtained
as the image of an injective map X →֒ C (so σi is associated to the let-
ter xi). We always assume that σ0 = 0 and σ1 = 1. We denote by X∗ the free
non-commutative monoid containing all possible words in the alphabet X,
including the empty word e, and denote by R⟨X⟩ the free R-module on X∗,
equipped with the (commutative) shuffle product ✁ which makes it into a
ring. A string of r consecutive letters xi will be denoted by xr

i , and the length
of a word w = xi1 · · · xir

is ♣w♣ = r.
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Define D := C \ Σ, then any iterated integral of the differential forms
dx/(x − σi) is homotopy invariant on D (by holomorphicity). Let us fix a
simply connected domain U obtained from D by cutting out closed half-lines
l(σi) starting at the points σi and not intersecting among themselves, and let
us choose a branch of the logarithm on C \ l(0). If w = xi1 · · · xir

and ir ̸= 0,
we define for z ∈ U the hyperlogarithm associated with w as the homotopy
invariant iterated integral

(2.4) Lw(z) =

ˆ

[0,z]

dx

x − σi1

· · · dx

x − σir

,

where [0, z] is any path contained13 in U starting at 0 and ending at z. In order
to define hyperlogarithms for any word w ∈ X∗, we set Lxr

0
(z) = logr(z)/r!,

Le(z) = 1, and we require that w → Lw(z) respects the shuffle product (which
by (2.4) and (2.3) is already true for words not ending with x0). We say that w
is the label and z is the argument of Lw(z).

All hyperlogarithms extend to holomorphic multi-valued functions on D.
For instance, for i ̸= 0

(2.5) Lxr
i
(z) =

1

r!
logr


1 − z

σi


.

If X = ¶x0, x1♢ and Σ = ¶0, 1♢ then hyperlogarithms are called multiple
polylogarithms (in one variable) [Bro04b], and they contain for instance all
the classical polylogarithms:

(2.6) Lxn−1
0 x1

(z) = −
∑

k>0

zk

kn
= −Lin(z).

Hyperlogarithms are characterised as follows:

Theorem 2.1 (Brown, [Bro04a]). The hyperlogarithms ¶Lw(z) : w ∈ X∗♢
constitute the unique family of holomorphic functions satisfying for z ∈ U

(2.7)
∂

∂z
Lxiw(z) =

Lw(z)

z − σi
,

such that Le(z) = 1, Lxr
0
(z) = logr(z)/r! for all n ∈ N and Lw(z) → 0 as z →

0 for any other word w.

13The starting point 0 lies outside U . This forces us to define separately the
hyperlogarithms associated with words ending with x0, because the corresponding
iterated integral would diverge. Alternatively, one can define all hyperlogarithms
as iterated integrals making use of a regularization procedure.
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2.2. Rings of hyperlogarithms

For any ring14 R ≤ C and any alphabet X we define the R-module HX,R :=
R⟨Lw(z) ♣ w ∈ X∗⟩ (which implicitly depends also on the set Σ associated to
X). Because all hyperlogarithms satisfy shuffle-product identities, HX,R is
also a ring, contained in the ring of holomorphic functions on U .

We consider also the ring AX,R := OΣ,R ⊗R HX,R, where

(2.8) OΣ,R := R


z, σi,

1

z − σi
,

1

σj − σi
: σi, σj ∈ Σ, σi ̸= σj


.

AX,R is closed under holomorphic differentiation, and via w → Lw it is
isomorphic, as a differential ring, to the universal ring of hyperlogarithms
OΣ,R ⊗R R⟨X⟩, equipped with a suitable derivation ∂ [Bro04a, Theorem 3.7].
Using this, one can prove that every function f(z) ∈ AX,R has a primitive
in AX,R, which is unique up to a constant, and that shuffle-product identities
between hyperlogarithms are the only algebraic relations in AX,R [Bro04a,
Corollary 3.13]. In particular, both AX,R and HX,R inherit a grading by the
length of the labels, and HX,R is then isomorphic as a graded ring to R⟨X⟩
via w → Lw.

2.3. Special values of hyperlogarithms

For any w ∈ X∗ and for any σi ∈ Σ there exists an integer Ki(w) ≥ 0 such
that, in the intersection of a neighborhood of σi with the cut plane U ,

(2.9) Lw(z) =

Ki(w)∑

k=0

∑

j≥0

c
(i)
k,j(w) (z − σi)

j logk(z − σi) ,

where c
(i)
j,k(w) ∈ C. Similarly, for z ∈ U close to ∞ there are K∞(w) ≥ 0 and

c
(∞)
k,j (w) ∈ C such that

(2.10) Lw(z) =

K∞(w)∑

k=0

∑

j≥0

c
(∞)
k,j (w) z−j logk(z).

For σi ∈ Σ ∪ ¶∞♢ we define the regularized value of Lw(z) at σi to be

Lw(σi) := c
(i)
0,0(w). In particular, Lw(0) = δw,e. From now on, whenever we talk

14All results of [Bro04a] presented here were originally demonstrated only in the
case R = C. If their proof can be straightforwardly adapted to any ring R, we will
state the more general version and still attribute them to [Bro04a].
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of special values of hyperlogarithms, we implicitly mean regularized values.
For i ̸= 0, we define the weight W (Lw(σi)) of Lw(σi) to be the length ♣w♣ of
the label w.

For an alphabet X = ¶xj♢0≤j≤n, a ring R ≤ C and for every15 1 ≤ j ≤
n we define the R-module SX,R,j = R⟨Lw(σj) : w ∈ X∗⟩ (keeping again the
dependence on the set Σ associated to X implicit). This is a subring of C
because of the shuffle-product property (2.3) of iterated integrals. Then we
define SX,R to be the smallest subring of C containing all SX,R,j . This ring is
endowed with a filtration16 induced by the weight.

If X = ¶x0, x1♢ and Σ = ¶0, 1♢, the special values Lw(1) are multiple
zeta values. These (real) numbers generate a Q-algebra Z := S¶x0,x1♢,Q,1 ≡
S¶x0,x1♢,Q and are usually defined as the nested series

(2.11) ζ(k1, . . . , kr) :=
∑

0<n1<···<nr

1

nk1
1 · · · nkr

r

,

where ki ∈ N, kr ≥ 2. It is a simple exercise to verify that ζ(k1, . . . , kr) =
L

xkr−1
0 x1···x

k1−1
0 x1

(1). The weight of ζ(k1, . . . , kr) is therefore

♣xkr−1
0 x1 · · · xk1−1

0 x1♣ = k1 + · · · + kr.

2.4. Generating series and monodromy

For a given alphabet X (and its associated set Σ) consider the C⟨⟨X⟩⟩-valued
generating series

(2.12) LX(z) =
∑

w∈X∗

Lw(z) w

of all hyperlogarithms, where C⟨⟨X⟩⟩ denotes the ring of formal series in X∗

with complex coefficients. Theorem 2.1 is then equivalent to saying that

(2.13)
∂

∂z
LX(z) =

n∑

i=0

xi

z − σi
LX(z),

15We exclude the trivial case where j = 0.
16Computer experiments, as well as the period conjecture, suggest that this fil-

tration should be a grading in some cases, including that where SX,R = S¶x0,x1♢,Q

leading to multiple zeta values, but such conjectures seem out of reach.
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and that LX is the only C⟨⟨X⟩⟩-valued solution of (2.13) on the simply con-
nected domain U such that

(2.14) LX(z) = f0(z) exp(x0 log(z)),

where f0(z) is a holomorphic function on U with limz→0 f0(z) = 1 [GL]. If
X = ¶x0, x1♢ and Σ = ¶0, 1♢, the generating series L¶x0,x1♢(1) of regular-
ized special values at z = 1 is known as the Drinfel’d associator, and equa-
tion (2.13) is known as the Knizhnik-Zamolodchikov equation. More generally,
we will be interested in all (regularized) special values LX(σi).

Let now C∞(U) denote the algebra of real-analytic functions on U , and
let us fix z0 ∈ U . The fundamental group π1(D, z0) of the punctured plane D
is the free group on generators γ0, . . . , γn, where each γi is a loop based at z0

and winding around σi once in the positive direction. For each 0 ≤ i ≤ n we
write Mσi

: C∞(U) → C∞(U) for the monodromy operator given by analytic
continuation of functions around γi.

Proposition 2.2 (Brown, [Bro04a]). For each 0 ≤ i ≤ n we have

(2.15) Mσi
LX(z) = LX(z)(LX(σi))

−1e2πixiLX(σi).

2.5. Single-valued hyperlogarithms

We define a map ∼: X∗ → X∗ by sending w = xi1 · · · xir
to w̃ := xir

· · · xi1 ,
and we extend it by linearity to C⟨⟨X⟩⟩. We call single-valued hyperlogarithms
the coefficients Lw(z) of words w ∈ X∗ in the generating series

(2.16) LX(z) := LX(z)L̃X′(z),

where X ′ is an alphabet associated to the same set Σ formed by letters x′
i ∈

C⟨⟨X⟩⟩ which satisfy

(2.17) L̃X′(σi)x
′
iL̃X′(σi)

−1 = LX(σi)
−1xiLX(σi).

This construction was first proposed by F. Brown in [Bro04a], where
eq. (2.17) was proven to admit a unique solution x′

i ∈ C⟨⟨X⟩⟩. In particular,
one has x′

0 = x0 and, for i ̸= 0, x′
i = xi modulo words w ∈ X∗ with ♣w♣ ≥ 4.

Knowing that such a solution exists, Proposition 2.2 implies that, for all
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0 ≤ i ≤ n,

Mσi
LX(z) = LX(z)LX(σi)

−1e2πixiLX(σi)L̃X′(σi)e
−2πix′

iL̃X′(σi)
−1L̃X′(z)

= LX(z)L̃X′(z) = LX(z),(2.18)

which proves that LX(z) is indeed well-defined, i.e. single-valued, on the whole
punctured complex plane D.

The simplest examples of single-valued hyperlogarithms are Lxn
0
(z) =

logn ♣z♣2/n! and (for i ̸= 0)

(2.19) Lxn
i
(z) =

1

n!
logn

∣∣∣∣1 − z

σi

∣∣∣∣
2

.

They are indeed “single-valued versions” of the corresponding hyperloga-
rithms Lxn

0
(z) and Lxn

i
(z).

One can characterise single-valued hyperlogarithms as follows.

Theorem 2.3 (Brown, [Bro04a]). The series LX(z) is the unique real-
analytic solution on D to the differential equations

(2.20)
∂

∂z
LX(z) =

n∑

i=0

xi

z − σi
LX(z)

and

(2.21)
∂

∂z
LX(z) = LX(z)

n∑

i=0

x′
i

z − σi

such that LX(z) ∼ exp(x0 log ♣z♣2) as z → 0.

2.6. Rings of single-valued hyperlogarithms

For any subring R ≤ C and any alphabet X consider HX,R ⊗R HX,R and
AX,R ⊗R AX,R, which are subrings of C∞(U). The only algebraic relations in-
side both rings are induced by shuffle identities, and so in particular all prod-
ucts Lw1(z) Lw2(z) are linearly independent over17 OΣ,C ⊗C OΣ,C [Bro04a,
Corollary 7.2].

17OΣ,R is the ring generated over R by the complex conjugates of the generators
of OΣ,R from (2.8).
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We define the R-module Hsv
X,R := R⟨Lw(z) ♣ w ∈ X∗⟩, as well as Asv

X,R :=

OΣ,R ⊗R OΣ,R ⊗R Hsv
X,R. They are both contained in C∞(D). By construc-

tion, the restriction of Hsv
X,R and Asv

X,R to the simply connected subdomain

U ⊂ D are submodules of HX,R ⊗R HX,R and AX,R ⊗R AX,R, respectively.
An important result of [Bro04a] (see Theorem 7.4) is that, even though single-
valued hyperlogarithms are not defined as iterated integrals, they satisfy shuf-
fle identities

(2.22) Lw1(z)Lw2(z) =
∑

w∈w1✁w2

Lw(z),

so that Hsv
X,R and Asv

X,R are rings and are isomorphic (as graded rings) to

R⟨X⟩ and OΣ,R ⊗R OΣ,R ⊗R R⟨X⟩, respectively, via the map w → Lw. More
precisely, the ring Asv

X,R is isomorphic as a differential graded ring (with re-

spect to the holomorphic differentiation) to OΣ,R ⊗R OΣ,R ⊗R R⟨X⟩; it is a
single-valued realisation of the universal ring of hyperlogarithms mentioned
in Section 2.2. The “single-valued projection”18 sv : Lw 7→ Lw then induces
isomorphisms HX,R ≃ Hsv

X,R and AX,R ⊗R OΣ,R ≃ Asv
X,R.

As in the multi-valued case, there are important consequences of these
isomorphisms. First of all, the only algebraic relations inside both Hsv

X,R

and Asv
X,R are induced by shuffle identities. Moreover, importantly for us,

every element in Asv
X,R has a primitive in Asv

X,R with respect to ∂/∂z.
One may also consider the anti-holomorphic differentiation. Eq. (2.21)

implies that Asv
X,R is closed under its action as soon as R is a subring of

C which contains the coefficients of every series x′
i, and in fact with these

assumptions every element in Asv
X,R has a primitive in Asv

X,R with respect to
∂/∂z.

We conclude with a characterisation of Hsv
X,R and Asv

X,R.

Proposition 2.4. Let F be a single-valued function on D which is an R-
linear combination (resp. OΣ,R ⊗R OΣ,R-linear combination) of products
Lw1(z)Lw2(z). Then F ∈ Hsv

X,R (resp. F ∈ Asv
X,R).

Proof. These statements were proven by Brown in [Bro04a] (see Theorem 8.1)
for R = C. We want to prove them for general subrings R < C, and we only
prove the first, as the proof of the second is completely similar. Suppose
that F (z) =

∑
u1,u2

cu1,u2Lu1(z)Lu2(z) is single-valued and that cu1,u2 ∈ R.
By Brown’s result, we can also write F (z) =

∑
w kwLw(z) for some kw ∈ C.

18This is a single-valued projection from periods to single-valued periods, in the
sense of the introduction.
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Because x′
i = xi+ higher-length terms, for any word w we have Lw(z) =

Lw(z) + (Lw(z) − Lw(z)), with Lw(z) − Lw(z) =
∑

w1,w2
lw1,w2Lw1(z)Lw2(z)

such that ♣w2♣ ≥ 1. We have mentioned at the beginning of this section that
all products Lw1(z)Lw2(z) are linearly independent over OΣ,C ⊗C OΣ,C. In
particular, we can compare our two different expressions for F (z) term by
term. Comparing the holomorphic monomials, obtained in the second expres-
sion by discarding the terms kw(Lw(z) − Lw(z)), we find kw = cw,e ∈ R, as
claimed. □

2.7. Special values of single-valued hyperlogarithms

Similarly to the holomorphic case, for each σi ∈ Σ there exists an integer
Ki(w) ≥ 0 such that, in a neighborhood of σi,

(2.23) Lw(z) =

Ki(w)∑

k=0

∞∑

m=0

∞∑

n=0

c
(i)
k,m,n(w) (z − σi)

m (z − σi)
n logk ♣z − σi♣2 ,

and also there exists K∞(w) ≥ 0 such that, in a neighborhood of ∞,

(2.24) Lw(z) =

K∞(w)∑

k=0

∞∑

m=0

∞∑

n=0

c
(∞)
k,m,n(w) z−m z−n logk ♣z♣2 ,

where c
(i)
k,m,n(w), c

(∞)
k,m,n(w) ∈ C.

Just as we did in the holomorphic case, we can therefore define regularized
values of single-valued hyperlogarithms at points σi ∈ Σ ∪ ¶∞♢ as Lw(σi) :=

c
(i)
0,0,0(w), we can consider their regularized generating series LX(σi), and for

i ̸= 0 we can define their weight W (Lw(σi)) := ♣w♣.

Definition 2.5 (Single-valued multiple zeta values [Bro13]). Let X =
¶x0, x1♢ and Σ = ¶0, 1♢. We call single-valued multiple zeta values the (regu-
larised) special values Lw(1).

We denote by Zsv the Q-algebra generated by single-valued multiple
zeta values. The restriction to z = 1 of the morphism sv : Lw 7→ Lw from
the previous section induces a surjective map19 from Z to Zsv. Using the
notation ζ(k1, . . . , kr) for multiple zeta values from (2.11), and denoting by
ζsv(k1, . . . , kr) the image of ζ(k1, . . . , kr) in Zsv via sv, so that ζsv(k1, . . . , kr) =

19Assuming the period conjecture, this is a morphism of Q-algebras [Bro13],
otherwise it must be regarded as a map of sets.
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L
xkr−1

0 x1···x
k1−1
0 x1

(1), one finds that ζsv(2k) = 0 and that ζsv(2k + 1) = 2 ζ(2k +

1) for all k ≥ 1. We refer to [Bro13] for more details on Zsv, including a con-
jectural description of its Q-algebra structure.

It is important to remark the fact that Zsv is contained in Z, as ex-
plained below. By definition, for any X and any w ∈ X∗ the single-valued
hyperlogarithm Lw(z) can be written in a unique way as a C-linear combi-
nation of products Lw1(z)Lw2(z). Looking more carefully at the equations
defining the alphabet X ′, however, one can see that the coefficients of these
linear combinations must in fact belong to SX,Q ⊗Q SX,Q ⊂ C. In particular, if
X = ¶x0, x1♢ and Σ = ¶0, 1♢, the coefficients belong to Z, and so Lw(1) ∈ Z.
The next proposition refines this observation and provides an optimal state-
ment about the ring containing these coefficients, generalising the analogous
result for the alphabet ¶x0, x1♢ demonstrated by Schnetz in [Sch13]. In order
to be able to state it, however, we need some notation.

For an alphabet X and a ring R ≤ C, we define Ssv
X,R,j = R⟨Lw(σj) : w ∈

X∗⟩ (by eq. (2.22) this is a ring) and Ssv
X,R to be the ring generated over R by

all Ssv
X,R,j with j ̸= 0. Therefore if X = ¶x0, x1♢ we have Zsv = Ssv

¶x0,x1♢,Q,1 ≡
Ssv

¶x0,x1♢,Q. The ring Ssv
X,R is endowed with a filtration induced by the weight.

In particular, we say that c ∈ Ssv
X,R has homogeneous weight if it is an R-

linear combination of monomials (given by products of special values), and
each monomial has the same weight.

Proposition 2.6. For all w ∈ X∗ one can write

(2.25) Lw(z) =
∑

w1,w2∈X∗

cw1,w2Lw1(z)Lw2(z),

where the coefficients cw1,w2 belong to Ssv
X,Q and have homogeneous weight

W (cw1,w2) = ♣w♣ − ♣w1♣ − ♣w2♣.

Proof. First of all, by Theorem 2.3 we have for all 0 ≤ j ≤ n

lim
z→σj

(z − σj)
∂

∂z
LX(z) = lim

z→σj

(z − σj)LX(z)
(x′

0

z
+ · · · +

x′
n

z − σn



= LX(σj)x
′
j ,(2.26)

which implies that

(2.27) lim
z→σj

(z − σj)
∂

∂z
Lw(z) = (x′

j ♣w) +
∑

uv=w
♣v♣<♣w♣

Lu(σj)(x
′
j ♣v) ,

where (x′
j ♣w) denotes the coefficient of the word w in the series x′

j ∈ C⟨⟨X⟩⟩.
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In particular, since for j = 0 we know that x′
0 = x0 and that Lw(0) = δw,e,

we get

(2.28) lim
z→0

z
∂

∂z
Lw(z) = δw,x0 .

Moreover, we have the following:

Lemma 2.7. For any 1 ≤ i ≤ n consider the injection ϕi : X →֒ C given by
xj 7→ σi − σj for 0 ≤ j ≤ n. Let LX,ϕi

(z) be the generating series of single-
valued hyperlogarithms associated to the alphabet X and to the set of points
ϕi(X), then

(2.29) LX(σi − z) = LX,ϕi
(z)LX(σi)

Proof of the lemma. Formula (2.2) for the composition of paths of iterated
integrals implies that

(2.30)
∑

j≥0

ˆ σi−z

0

ωX(z) · · · ωX(z)︸ ︷︷ ︸
j

=
∑

j≥0

ˆ σi−z

σi

ωX(z) · · · ωX(z)︸ ︷︷ ︸
j

∑

j≥0

ˆ σi

0

ωX(z) · · · ωX(z)︸ ︷︷ ︸
j

where ωX(z) :=
∑n

i=0
xi dz
z−σi

. The left-hand side of this formula is LX(σi − z),
while the second term on the right-hand side is LX(σi). Substituting z′ =
σi − z in the integrands of the first term on the right-hand side leads to the
identity

(2.31) LX(σi − z) = LX,ϕi
(z)LX(σi),

where LX,ϕi
(z) is the generating series of hyperlogarithms associated to the

alphabet X and to the set of points ϕi(X). This implies that

(2.32) LX(σi − z) = LX,ϕi
(z)LX(σi)L̃X′(σi)L̃X′,ϕi

(z).

The right-hand sides of (2.29) and (2.32) both satisfy the differential equation

(2.33)
∂

∂z
F (z) =

n∑

j=0

xj

z − τj
F (z),

where τj := ϕi(xj) = σi − σj . Since their asymptotic behaviour at z = 0 is the
same, they must coincide. □
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Combining this lemma and eq. (2.28) we find that for any w ∈ X∗

(2.34) lim
z→σj

(z − σj)
∂

∂z
Lw(z) = lim

z→0
z

∂

∂z
Lw(σj − z) ∈ Ssv

X,Q,j .

Comparing eqs. (2.27) and (2.34) and using induction on the length of the
words, we conclude that the coefficients of x′

j belong to Ssv
X,Q,j (recall that x′

j =
xj+ higher-length terms). This immediately implies the first statement of the
proposition. To demonstrate the second statement about the homogeneity of
the weight, we observe that if we assign weight −1 to each letter xj of the
alphabet X, we obviously have that LX(z) has weight zero. Therefore, by
the definition of LX(z), it is enough to show that each x′

j has homogeneous
weight −1, i.e. that (x′

j ♣w) has weight ♣w♣ − 1 for any word w. Once again,
this follows by comparing eqs. (2.27) and (2.34) and using induction. □

3. Correlation functions and closed string amplitudes

3.1. Single-valuedness of CFT correlators

Conformal field theories are local two dimensional quantum field theories.
Correlation functions are vacuum expectation values of the product of dy-
namical composite fields (or vertex operators in string theory) Vi(xxx) with
xxx = (x, y) ∈ R2 (see [Gin, DMS] for some review and introduction)

(3.1) G(xxx1, . . . ,xxxn) =

〈
n∏

i=1

Vi(xxxi)

〉
=

1

Z

ˆ

DV
n∏

i=1

Vi(xxxi) e−S .

Z is the partition function. The action S is a function of the elementary fields
and of the two-dimensional metric. This metric is determined by the geometry
of the Riemann surface Σ on which the theory is considered.

One axiom of conformal field theories is the requirement of single-
valuedness of the correlation functions as functions of the positions xxxi =
(xi, yi) of the vertex operators in the euclidean plane R2 (locality of the
theory depends on the absence of branch cuts) [DMS, Chap. 5]. It means
that a physical correlator should not have monodromies when one varies the
position of a given operator around the position of other operators.

After complexification one can consider that the composite fields are func-
tions Vi(z, z̃) on C × C. The correlation function becomes a multi-valued func-
tion of the doubled coordinates G(z1, . . . , zn, z̃1, . . . , z̃n) in Cn × Cn. The eu-
clidean real space is recovered when z̃ is identified with the complex conjugate
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of z, so that Vi(z, z̄) = Vi(x, y) for z = x + iy and z̄ = x − iy with x, y ∈ R.
It is only on the real slice that the correlation functions are single-valued.

This is particularly clear in the case of the two-point correlation function
determined by the SL(2,C) × SL(2,C) Ward identities

(3.2) G(z1, z̃1, z2, z̃2) = ⟨V1(z1, z̃1)V2(z2, z̃2)⟩ =
δ∆1=∆2δ∆̃1=∆̃2

N12

(z1 − z2)2∆1(z̃1 − z̃2)2∆̃1
.

The two-point correlation function is non-vanishing only for fields Vi(z, z̃)
with the same conformal dimensions20 ∆1 = ∆2 and ∆̃1 = ∆̃2, as indicated
by the Kronecker delta functions, and it is therefore single-valued for z̃ = z̄,
as required. N12 is a constant determined by the normalisation of the fields.
Likewise, the three-point correlation function is fixed to be

(3.3) G(z1, z̃1, z2, z̃2, z3, z̃3) =

〈
3∏

i=1

Vi(zi, z̃i)

〉

=
C123

(z1 − z2)∆1+∆2−∆3(z1 − z3)∆1+∆3−∆2(z2 − z3)∆2+∆3−∆1

× 1

(z̃1 − z̃2)∆̃1+∆̃2−∆̃3(z̃1 − z̃3)∆̃1+∆̃3−∆̃2(z̃2 − z̃3)∆̃2+∆̃3−∆̃1
.

In this case, there is no restriction on the individual conformal dimensions
and C123 is a constant depending the type of fields.

The single-valuedness of the correlation functions (3.2) and (3.3) on the
real slice z̃ = z̄ imposes that the difference of the conformal weights ∆i − ∆̃i

(the spins) has to be integral. The single-valued condition does not determine
the value of the constants N12 nor C123.

The four-point correlation function is a non-trivial function of the unique
independent cross-ratio in two dimensions

(3.4) η =
(z1 − z2)(z3 − z4)

(z1 − z3)(z2 − z4)
,

20The holomorphic and anti-holomorphic conformal dimensions are
the exponents ∆ and ∆̃ under a coordinate transformation V (z, z̃) →(

∂f(z)
∂z

∆ (
∂f̃(z̃)

∂z̃

∆̃

V (f(z), f̃(z̃)).
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and reads

(3.5) G(z1, z̃1, . . . , z4, z̃4) =

〈
4∏

i=1

Vi(zi, z̃i)

〉

=
G12♣34(η, η̃)

∏
1≤i<j≤4(zi − zj)∆i+∆j−∆(z̃i − z̃j)∆̃i+∆̃j−∆̃

,

with ∆ = 1
3

∑4
i=1 ∆i and ∆̃ = 1

3

∑4
i=1 ∆̃i.

Using the associativity of the operator product expansion one can expand
the four-point function on the conformal blocks F1234(k; η) and F̃1234(k; η̃) as

(3.6) G12♣34(η, η̃) =
∑

k,k̃

Gk,k̃
12♣34F12♣34(k; η)F̃12♣34(k̃; η̃) .

The conformal blocks F1234(k; η) are holomorphic functions of η and the con-
formal blocks F̃1234(k; η̃) are holomorphic functions of η̃. We call this formula
a holomorphic factorisation. Keeping in mind that we are interested in the
case η̃ = η̄, we call anti-holomorphic blocks the functions of η̃ only. The n-
point correlation function G(z1, z̃1, . . . , zn, z̃n) can be inductively decomposed
into a sum of holomorphically factorised contributions generalising the n = 4
case. We refer to [DMS, §9.3] for a more extensive discussion.

These four-point conformal blocks are not single-valued when η or η̃ move
in the complex plane because they have monodromy around the points η = 0

and η = 1. The coefficients Gk,k̃
12♣34 need to be such that the correlation function

G12♣34(η, η̄) evaluated on the real slice η̃ = η̄ is free of monodromies.
For the minimal models described by a Coulomb-gas, Dotsenko and Fa-

teev in [DF84, DF85] showed that the single-valuedness condition of the four-
point correlation function determines the correlation functions, up to an over-
all constant.

We will determine the higher point correlations functions that evaluate
to closed string building blocks at a special value, but with the important
difference that we will determine the overall constant.

3.2. Closed string theory amplitudes building blocks

Let N ∈ N. Any closed string tree-level amplitudes are finite linear combina-
tions [DP, GSW, Pol98a, Pol98b]

(3.7) MN+3(sss, ϵϵϵ) =
∑

r

cr(sss, ϵϵϵ) MN+3(sss,nnnr, ñ̃ñnr)
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of the building blocks given by the following integrals

(3.8) MN+3(sss,nnn, ñ̃ñn)

=

ˆ

CN

N∏

i=1

♣zi♣2s0i ♣1 − zi♣2si N+1zn0i

i z̄ñ0i

i (1 − zi)
ni N+1(1 − z̄i)

ñi N+1

×
∏

1≤i<j≤N

♣zi − zj ♣2sij (zi − zj)
nij (z̄i − z̄j)

ñij

N∏

i=1

d2zi ,

with the integration measure d2z := dzdz̄/(−2πi). The exponents nij and ñij ,
which depend on the theory, belong to Z and form tuples nnn := (nij)0≤i<j≤N+1

and ñ̃ñn := (ñij)0≤i<j≤N+1. The tuple of (Mandelstam) kinematic invariants
sss := (sij := α′ki · kj)0≤i<j≤N+1 is the (dimensionless) product of the inverse
string tension α′ with a tuple of scalar products of the external momenta ki,
which are N + 3 vectors of a D-dimensional21 Minkowsky space-time R1,D−1

with metric (+ − · · · −), subject to the momentum conservation condition
k0 + · · · + kN+2 = 0 and the condition α′k2

i ∈ −4 + 4N.
As explained in Appendix A, for any fixed tuples nij , ñij there exists a

non-empty domain U contained in CN(N+3)/2 (which depends on nij , ñij) such
that the integrals (3.8) converge absolutely for sss ∈ U . In fact, as (holomor-
phic) functions of the Mandelstam variables sss ∈ U , all closed string building
blocks MN+3(sss,nnn, ñ̃ñn) can be analytically continued22 to define meromorphic
function on CN(N+3)/2. For given values of the scalar products ki · kj , with
0 ≤ i ≤ j ≤ N + 1, the small α′-expansion, which is a Laurent series in α′,
gives the higher-order string corrections to the field theory limit α′ → 0.

The coefficients cr(sss, ϵϵϵ) in (3.7) depend on sss as above and on a polarisation
vector ϵϵϵ = (ϵi)0≤i≤N+1, with ϵi ∈ R1,D−1 and ki · ϵi = 0. More precisely, they
are rational functions in the kinematic invariants sij , in the product of the ex-
ternal momenta and the polarisation vectors

√
α′ ki · ϵj and in the product of

the components of the polarisation vector ϵi · ϵj (for 0 ≤ i < j ≤ N + 1). The
precise form of the coefficients cr(sss, ϵϵϵ) depends on the closed string theory one
considers—i.e. the bosonic string, or the type-II superstring or the heterotic
string. For the heterotic string with external gauge fields they would depend
as well on the colour factors through a product of traces (see e.g. [GSW,
Vol 1, Chap. 6]). Expressions for the four-point amplitudes can be found in

21Tree-level amplitudes are defined for dimension D ≤ 26 in bosonic string theory
, and for D ≤ 10 in superstring theory.

22One rigorous direct way to do this is described in [BGVZG]. Alternatively,
one can define the analytic continuation combining the KLT relations with the
(well-known) analytic continuation of open string building blocks.
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e.g [GSW, DP, GS], higher-point open superstring amplitudes in [MSS], while
open and closed bosonic string and heterotic string amplitudes can be found
in [ACJS].

The simplest tree-level bosonic closed string amplitude is that between
N + 3 tachyon fields which is given by one building block [DP, GSW, Pol98a,
Pol98b]

(3.9) Mtachyon
N+3 (sss) =

ˆ

CN

N∏

i=1

♣zi♣2s0i ♣1 − zi♣2si N+1
∏

1≤i<j≤N

♣zi − zj ♣2sij

N∏

i=1

d2zi

with the on-shell condition α′k2
i = −4 for 0 ≤ i ≤ N + 2.

The building blocks in (3.8) arise from the correlation functions between
N + 3 physical vertex operators Vi(z) := Vi(z, z̄):

(3.10) MN+3(sss,nnn, ñ̃ñn) =

ˆ

CN

N∏

i=1

d2zi

〈
V0(0)

N∏

i=1

Vi(zi) VN+1(1)VN+2(∞)

〉
.

We refer to [DP, GSW, Pol98a, Pol98b] for details about the form of the
vertex operators in string theory. The results of this work do not depend on
the precise form of the vertex operators, but only on the structure of the
integrals given in (3.8).

3.3. Conformal correlators for closed string building blocks

For η ∈ C and N ∈ N we introduce the function

(3.11) GN


aaabbbcccddd

ã̃ãa b̃̃b̃b c̃̃c̃c d̃̃d̃d

∣∣∣η


:=

ˆ

CN

N∏

i=1

zai

i z̄ãi

i (1 − zi)
bi(1 − z̄i)

b̃i(η − zi)
ci(η̄ − z̄i)

c̃i

×
∏

1≤i<j≤N

(zi − zj)
dij (z̄i − z̄j)

d̃ij

N∏

i=1

d2zi ,

where the tuples of exponents aaa, bbb, ccc,ddd, ã̃ãa, b̃̃b̃b, c̃̃c̃c, d̃̃d̃d are formed by complex num-
bers which satisfy

(3.12)
ai − ãi, bi − b̃i, ci − c̃i, ∈ Z 1 ≤ i ≤ N,

dij − d̃ij ∈ Z 1 ≤ i < j ≤ N .
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We will often omit these parameters from the notation and simply write
GN (η). By condition (3.12), the integrand of GN (η) is single-valued, which
implies that the integral over CN makes sense and defines a real-analytic
single-valued function of η ∈ C \ ¶0, 1♢ for any values of the parameters such
that the integral is absolutely convergent. The region of absolute convergence
is a non-empty subset of CN(N+5) explicitly worked out in Appendix A. As
mentioned in Section 3.1, single-valuedness in η is a fundamental physics
requirement for correlation functions of conformal field theories23.

The function GN (η) evaluates at η = 1 (or η = 0, with a different parame-
ter identification) to the closed string amplitude building block MN+3(sss,nnn, ñ̃ñn)
given by the integral in eq. (3.8), if we set

(3.13)

ai := s0i + n0i, bi + ci := si N+1 + ni N+1, 1 ≤ i ≤ N,

ãi := s0i + ñ0i, b̃i + c̃i := si N+1 + ñi N+1, 1 ≤ i ≤ N,

dij := sij + nij , d̃ij := sij + ñij , 1 ≤ i < j ≤ N.

We will explain how to make use of the generalisation (3.11), and of the fact
that it is a single-valued function of η, to deduce informations about the
closed string partial amplitudes.

Following the standard rules for the correlation functions of conformal
field theory minimal models [DMS] and string theory in [DP, GSW, Pol98a,
Pol98b], one can write the function GN (η) (3.11), with the integer spin con-
dition (3.12), as the integrated correlation function over the positions of the
N + 3 vertex operators Vi(zi) and one unintegrated auxiliary vertex operator
U(η) := U(η, η̄)

(3.14) GN (η) =

ˆ

CN

N∏

i=1

d2zi

〈
V0(0)

N∏

i=1

Vi(zi)VN+1(1)VN+2(∞)U(η)

〉

It will not be necessary for our purposes (and it is not the case in general)
that the total amplitude MN+3(sss, ϵϵϵ) is given by the special value at η =
1 of a single-valued correlation function. In particular, in order to obtain
qualitative results on the coefficients of the α′-expansion, it is enough that
each partial amplitude MN+3(sss,nnnr, ñ̃ñnr) arises this way because the kinematic
coefficients cr(sss, ϵϵϵ) in (3.7) are rational functions with rational coefficients of
the kinematic invariants (see [MSS] for some expressions using the pure spinor
formalism, and [ACJS] for bosonic open and closed string and heterotic string

23Conformal fields with non-integer spin, like the twist fields or spin fields [GSW,
Pol98a, Pol98b], induce branch cuts. We are not considering amplitudes with such
fields, whose α′-expansion would not be given by single-valued multiple zeta values.
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amplitudes). This is the case, for instance, of the single- and double-trace
contributions to the heterotic-string amplitude given in [GS].

4. Aomoto-Gel’fand hypergeometric functions

Let p ≥ 2, N ≥ 1, let zN+1 < · · · < zN+p be real variables, and let us consider
generalised hypergeometric functions given by the integrals

(4.1) F∆(λλλ; zN+1, · · · , zN+p) :=

ˆ

∆

∏

1≤i<j≤N+p

♣zi − zj ♣λij

N∏

i=1

dzi .

with ∆ a connected component of ¶(z1, . . . , zN ) ∈ RN ♣ zi ̸= zj for 1 ≤ i ≤
N, 1 ≤ j ≤ N + p♢, depending on some tuple λλλ of complex parameters λij

such that (4.1) is absolutely convergent. This kind of functions, and natural
generalisations thereof, was systematically studied by Aomoto (see eq. (0.1)
of [Aom]) and Gel’fand [Gel, VGZ] at the end of the 1980s. More specifi-
cally, here we are interested in the case where p = 3 and (zN+1, zN+2, zN+3) =
(0, η, 1), given by24

(4.2)

F∆(aaa, bbb, ccc;ddd; η) :=

ˆ

∆

N∏

i=1

♣zi♣ai ♣zi − 1♣bi ♣zi − η♣ci
∏

1≤i<j≤N

♣zi − zj ♣dij

N∏

i=1

dzi .

We will call the integrals (4.2) Aomoto-Gel’fand hypergeometric functions.
For any fixed η and ∆, the region of absolute convergence in terms of the
complex parameters ai, bi, ci, dij is non-empty (see Appendix A), and the in-
tegrals make sense also in the divergent case by analytic continuation25, thus
defining meromorphic functions over CN(N+5)/2, whose polar set is a union of
affine hyperplanes defined over Z [Aom]. As functions of η, which originally
belongs to the interval (0, 1), I(ρ,σ)(aaa, bbb, ccc;ddd; η) can be analytically contin-
ued (by deforming the integration path) to define multi-valued functions on
P1
C \ ¶0, 1, ∞♢.

4.1. Basis of Aomoto-Gel’fand hypergeometric functions

Let us denote by XN a set of indices ¶1, . . . , N♢ of cardinality N . We consider
for r + s = N (r, s ≥ 0, N ≥ 1) all inclusions ρ : Xr →֒ XN and σ : Xs →֒ XN

24We have set λij = ai for j = N + 1, λij = bi for j = N + 3, λij = ci for j =
N + 2, λij = dij otherwise.

25This can be done by taking the “finite part of divergent integrals” in the sense
of Hadamard [Aom].
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such that XN = ρ(Xr) ⊔ σ(Xs). We denote by Sr the set of permutations
of r elements. By abuse of notation, we sometimes consider ρ and σ also
as elements of Sr and Ss, respectively. For (ρ, σ) as above, we introduce a
special family of Aomoto-Gel’fand hypergeometric functions

(4.3) I(ρ,σ)(aaa, bbb, ccc;ddd; η) := F∆(ρ,σ)(η)(aaa, bbb, ccc;ddd; η) ,

integrated over

(4.4) ∆(ρ,σ)(η) := ¶0 ≤ zσ(1) ≤ · · · ≤ zσ(s) ≤ η ≤ 1 ≤ zρ(1) ≤ · · · ≤ zρ(r)♢ .

Let us now fix η ∈ P1
C \ ¶0, 1, ∞♢, and consider the parameters aaa, bbb, ccc,ddd as

complex variables over any complex domain where the analytic continuation
of the Aomoto-Gel’fand hypergeometric functions (4.2) does not have poles.
Let us introduce the field
(4.5)
F := Q(eπia1 , . . . , eπiaN , eπib1 , . . . , eπibN , eπic1 , . . . , eπicN , eπid12 , . . . , eπidN−1 N )

and the (finite dimensional) vector spaces

(4.6) HN,η := F⟨F∆(aaa, bbb, ccc;ddd; η) ♣ dim(∆) = N⟩ ,

spanned over F by all Aomoto-Gel’fand functions associated with N -
dimensional integrals.

Proposition 4.1. For any fixed η ∈ P1
C \ ¶0, 1, ∞♢ the functions

I(ρ,σ)(aaa, bbb, ccc;ddd; η) generate the vector space HN,η over F.

Proof. We use a contour deformation method which was proposed in [DF84]
to study the special case where a1 = · · · = aN , b1 = · · · = bN , c1 = · · · = cN

and d12 = · · · = dN−1 N (corresponding to correlation functions in 2D statis-
tical models). The same argument was later used in [BBDV, Stie09, BBDSV]
to study open string amplitudes, which can be seen as special values of
Aomoto-Gel’fand hypergeometric functions at η = 1. We only need to adapt
this method to our slightly more general context, following [BBDV, BBDSV].
For this reason, we will skip a few details, which can be found in the above-
mentioned references.
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We prove the statement for aaa, bbb, ccc,ddd contained in the region of com-
mon convergence of the functions F∆(aaa, bbb, ccc;ddd; η) (which is specified in Ap-
pendix A). Since these integrals depend holomorphically on the parame-
ters aaa, bbb, ccc,ddd, and the region of convergence is open and non-empty, the re-
sult remains true also for their analytic continuations. Moreover, we sup-
pose for simplicity that η ∈ [0, 1], but our argument can be adapted to any
η ∈ P1

C \ ¶0, 1, ∞♢ by deforming the real line.
Suppose now that we can prove the following two claims:

• Claim 1 : Let F∆(aaa, bbb, ccc;ddd; η) be associated with an N -dimensional
domain ∆ which contains m ≤ N negative coordinates zi1 < · · · < zim

<
0. Then F∆(aaa, bbb, ccc;ddd; η) can be written as an F-linear combination of
Aomoto-Gel’fand hypergeometric functions F∆′(aaa, bbb, ccc;ddd; η) associated
with N -dimensional domains ∆′ with m − 1 negative coordinates.

• Claim 2 : Let F∆(aaa, bbb, ccc;ddd; η) be associated with a non-negative do-

main ∆ ⊂ (
R+
)N

such that m ≤ N coordinates η < zi1 < · · · < zim
<

1 belong to the interval [η, 1]. Then F∆(aaa, bbb, ccc;ddd; η) can be written
as an F-linear combination of Aomoto-Gel’fand hypergeometric func-
tions F∆′(aaa, bbb, ccc;ddd; η) associated with positive domains ∆ ⊂ (

R+
)N

with
m − 1 coordinates contained in [η, 1].

Then, if we consider an Aomoto-Gel’fand function F∆(aaa, bbb, ccc;ddd; η), we
could recursively use the first claim to write it as an F-linear combination of
Aomoto-Gel’fand functions with all points contained in [0, ∞]. Subsequently,
we could recursively use the second claim to write F∆(aaa, bbb, ccc;ddd; η) in terms
of Aomoto-Gel’fand functions of the kind I(ρ,σ)(aaa, bbb, ccc;ddd; η), with all points
contained either in [0, η] or in [1, ∞], which therefore generate the whole
space HN,η over F.

Hence we are left with proving the two claims, both of which rely on the
following observation.

Lemma 4.2. Fix a connected component ∆ ⊂ RN−1 of ¶(z1, . . . , zN−1) ∈
(R \ ¶0, η, 1♢)N−1 ♣ zi ̸= zj for 1 ≤ i, j ≤ N♢. Let ∆(1), . . . , ∆(N+3) ⊂ RN de-
note the N + 3 distinct connected components of ¶(z1, . . . , zN ) ∈ ∆ × (

R \
¶0, η, 1♢) ♣ zN ̸= zi for 1 ≤ i ≤ N − 1♢. Then the N + 3 associated Aomoto-
Gel’fand functions F∆(j)(aaa, bbb, ccc;ddd; η) are F-linearly dependent.

Proof. We fix (z1, . . . , zN−1) ∈ ∆. Without loss of generality, we can suppose
that ∆ is such that 0 < z1 < · · · < zN−1 < η < 1 (the proof works in the same



✐

✐

“5-Vanhove” — 2022/11/29 — 2:33 — page 484 — #30
✐

✐

✐

✐

✐

✐

484 P. Vanhove and F. Zerbini

0 z1 zN−1 η 1

zN

Figure 4.1: Integration contour of Lemma 4.2.

way for any orderings). Let D be the simply connected complex domain ob-
tained by removing from the lower26 half-plane N + 2 non-intersecting half-
lines starting at the points 0, z1, . . . , zN−1, η, 1.

The function

(4.7)
N∏

i=1

zai

i (1 − zi)
bi (η − zi)

ci
∏

1≤i<j≤N

(zj − zi)
dij

is well-defined for zN real and zN−1 ≤ zN ≤ η, and we denote in the same way
its (unique) holomorphic extension27 to zN ∈ D. Its integral over the closed
contour ¶Im(zN ) = ε, ♣zN ♣ ≤ ε−1♢ ∪ ¶♣zN ♣ = ε−1, Im(zN ) ≥ ε♢ depicted in
Figure 4.1 vanishes for any ε > 0 by Cauchy’s theorem. Taking the limit
ε → 0, the integral over the semi-circle ¶♣zN ♣ = ε−1, Im(zN ) ≥ ε♢ also van-
ishes. This implies that

(4.8) lim
ε→0

ˆ

Im(zN )=ε
♣zN ♣≤ε−1

N∏

i=1

zai

i (1 − zi)
bi (η − zi)

ci
∏

1≤i<j≤N

(zj − zi)
dij dzN = 0.

On the other hand, the integration domain of (4.8) can be divided into the
N + 3 possible relative positions of the real part of the variable zN with re-
spect to the points 0, z1, . . . , zN−1, η, 1. Doing this, it is possible to (explicitly)

26The proof would work (with obvious adaptations) also if we chose the upper
half-plane. This freedom will be very important in the proof of Claim 2.

27Here we made a choice by fixing the branch of the integrand in the domain D
associated to zN−1 ≤ zN ≤ η, but we could have chosen any other branch.
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determine phases φ1, . . . , φN+3 ∈ F such that

(4.9) lim
ε→0

ˆ

Im(zN )=ε
♣zN ♣≤ε−1

N∏

i=1

zai

i (1 − zi)
bi (η − zi)

ci
∏

1≤i<j≤N

(zj − zi)
dij dzN

=
N+3∑

j=1

φj F∆(j)(aaa, bbb, ccc;ddd; η).

For instance, in the region zN−1 < Re(zN ) < η the corresponding phase φN+1

is simply equal to 1, because of our definition of (4.7), while in the next region
η < Re(zN ) < 1 we have φN+2 = e−iπc.

The statement follows by combining (4.8) and (4.9). □

• Proof of Claim 1. We can suppose that the negative coordinates in ∆
are z1, . . . , zm. For each 1 ≤ i ≤ m, let us fix a permutation αi ∈ Sm−1 of
the indices ¶1, . . . , i − 1, i + 1, . . . m♢. We define ∆(i,αi) to be the N − 1-
dimensional domains of Aomoto-Gel’fand functions with m − 1 negative coor-
dinates zαi(1) < · · · < zαi(i−1) < zαi(i+1) < · · · < zαi(m) < 0 and the same N −
m positive ordered coordinates of the original domain ∆. The number of such
domains is m!.

We apply Lemma 4.2 to each ∆(i,αi), denoting by zi the extra-variable
integrated over the contour of Figure 4.1. We obtain m! different relations
of F-linear dependence between Aomoto-Gel’fand functions associated with
two kinds of N -dimensional domains: those where the inserted variable zi

is > 0, and those where it is < 0. The former kind of domains has m − 1
negative coordinates, the latter has m negative coordinates. In particular, all
of the possible m! Aomoto-Gel’fand functions associated with domains with
negative z1, . . . , zm appear in these relations.

Since the m! relations obtained are F-linearly independent, we can solve
the system and express any Aomoto-Gel’fand function associated with an
N -dimensional domain with m negative coordinates, and in particular that
associated with our initial domain ∆, in terms of Aomoto-Gel’fand functions
associated with N -dimensional domains ∆′ with m − 1 negative coordinates,
as claimed.

• Proof of Claim 2. Here the idea is the same as above: we want to find
enough equations to express all of the possible domains with m coordinates
in the interval [η, 1] in terms of “better” domains ∆′, with m − 1 coordinates
in the interval [η, 1] and still no negative coordinates. We cannot, however,
repeat the exact same steps as above, because when we integrate a variable zi

over the contour described by Lemma 4.2, we obtain also an Aomoto-Gel’fand
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function associated with the domain where zi < 0, which is not one of the
desired domains ∆′.

This issue is circumvented by integrating zi not only on the contour of
Figure 4.1 (while picking the branch cuts in the lower half-plane), but also
on the same kind of contour in the lower half-plane (while picking the branch
cuts in the upper half-plane). In this way, for any ∆(i,αi) we obtain a pair
of independent equations with coefficients in F, which can be combined to
cancel the contribution from the domain with zi < 0 (see Section 4.2 for more
details). At this point, we are in the same situation as that of the proof of
Claim 1, and we conclude by the same argument. □

We remark that the relations constructed in the proof among
F∆(aaa, bbb, ccc;ddd; η), viewed as functions of the parameters aaa, bbb, ccc,ddd for fixed η ∈
P1
C \ ¶0, 1, ∞♢, do not depend on the position of η; they can therefore be

viewed also as relations among functions of η.
For fixed r ≥ 0 and s = N − r ≥ 0 there are r! permutations ρ and s! per-

mutations σ, for a total of r! × s! × (N
r

)
= N ! distinct ordered integrals, hence

since 0 ≤ r ≤ N the total number28 of distinct generators I(ρ,σ)(aaa, bbb, ccc;ddd; η)
of HN,η is N ! × (N + 1) = (N + 1)!. It follows29 from a theorem of Aomoto
(see Theorem 1 of [Aom]) that the dimension of HN,η is precisely (N + 1)!.
Therefore, combining this counting with the above proposition, we obtain the
following:

Theorem 4.3 (Basis of integrals). For any fixed η ∈ P1
C \ ¶0, 1, ∞♢ the

functions I(ρ,σ)(aaa, bbb, ccc;ddd; η) are a basis of HN,η.

We also consider a different special family of Aomoto-Gel’fand hypergeo-
metric function, related to our basis by a change of variables:

(4.10) J(ρ,σ)(aaa, bbb, ccc;ddd; η) := I(ρ,σ)(bbb,aaa, ccc;ddd; 1 − η) .

28Another way to obtain this counting is to realise that the sets α =
¶σ(1), . . . , σ(s), N + 1, ρ(1), . . . , ρ(r)♢ run over all permutations of ¶1, . . . , N + 1♢
as the permutations σ and ρ vary.

29In order to apply this result, one needs to interpret the vector spaces HN,η

in terms of twisted homology. This would also allow to give an alternative proof
Proposition 4.1, by adapting the construction in [Aom] of an explicit (different) basis
of the twisted homology to our context. A nice dictionary between the homological
approach and the more elementary methods presented here is provided in [CMT].
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By the change of variables zi 7→ 1 − zi, with 1 ≤ i ≤ N , in the integrand
of J(ρ,σ), we can also write

(4.11) J(ρ,σ)(aaa, bbb, ccc;ddd; η) = F∆̃(ρ,σ)(η):(aaa, bbb, ccc;ddd; η) ,

integrated over the domain

(4.12) ∆̃(ρ,σ)(η) := ¶zρ(r) ≤ · · · ≤ zρ(1) ≤ 0 ≤ η ≤ zσ(s) ≤ · · · ≤ zσ(1) ≤ 1♢ .

By (4.10) and Theorem 4.3, for any fixed η the functions J(ρ,σ)(aaa, bbb, ccc;ddd; η)
are a basis of the vector space HN,1−η. Moreover, eq. (4.11) implies that they
can also be seen as (linearly independent) elements of the space HN,η, and
therefore constitute an alternative basis of HN,η. We want to study this change
of basis. Let us introduce the vector notation

I⃗N (aaa, bbb, ccc;ddd; η) :=
(
I(ρ,σ)(aaa, bbb, ccc;ddd; η)

)
(ρ,σ)∈Sr×Ss,r+s=N

J⃗N (aaa, bbb, ccc;ddd; η) :=
(
J(ρ,σ)(aaa, bbb, ccc;ddd; η)

)
(ρ,σ)∈Sr×Ss,r+s=N

(4.13)

such that the first N ! rows of the vectors are the integrals I(ρ,∅) and J(ρ,∅),
respectively, obtained by setting s = 0, and the last N ! rows of the vectors are
the integrals I(∅,σ) and J(∅,σ), respectively, obtained by setting r = 0. Then
one has the following consequence of the previous theorem:

Corollary 4.4 (Change of basis). The vectors I⃗N (aaa, bbb, ccc;ddd; η) and
J⃗N (aaa, bbb, ccc;ddd; η) are related by

(4.14) I⃗N (aaa, bbb, ccc;ddd; η) = RN (aaa, bbb, ccc;ddd) J⃗N (aaa, bbb, ccc;ddd; η) ,

where RN (aaa, bbb, ccc;ddd) is an invertible (N + 1)! × (N + 1)! matrix with coeffi-
cients in F. In particular, RN (aaa, bbb, ccc;ddd) is invariant under integer shifts of its
parameters, and its inverse is

(4.15) RN (aaa, bbb, ccc;ddd)−1 = RN (bbb,aaa, ccc;ddd) .

Proof. We only need to prove (4.15), which follows from

(4.16) I⃗N (aaa, bbb, ccc;ddd; η) = RN (aaa, bbb, ccc;ddd) I⃗N (bbb,aaa, ccc;ddd; 1 − η)

= RN (aaa, bbb, ccc;ddd) RN (bbb,aaa, ccc;ddd) I⃗N (aaa, bbb, ccc;ddd; η) ,

and the fact that the integrals I(ρ,σ)(aaa, bbb, ccc;ddd; η) are linearly independent
over F. □
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4.2. The N = 1 matrix R1(a, b, c)

We derive an explicit expression for the matrix RN (aaa, bbb, ccc;ddd) when N = 1 by
specialising to this case the method of the proof of Proposition 4.1. Since
N = 1, the tuple ddd is empty and we omit it from the notation. Let us assume
that the integrals considered are all absolutely convergent30. The vectors of
Aomoto-Gel’fand integrals for N = 1 read

I⃗1(a, b, c; η) =

(
I(Id,∅)(a, b, c; η))
I(∅,Id)(a, b, c; η)

)
=




ˆ +∞

1

za(z − 1)b(z − η)cdz
ˆ η

0

za(1 − z)b(η − z)cdz


 ,

J⃗1(a, b, c; η) =

(
J(Id,∅)(a, b, c; η))
J(∅,Id)(a, b, c; η)

)
=




ˆ 0

−∞

(−z)a(1 − z)b(η − z)cdz
ˆ 1

η

za(1 − z)b(z − η)cdz


 .

(4.17)

Consider now the function za(1 − z)b(η − z)c, first defined on 0 < z < η < 1
and then extended by analytic continuation to the complex plane, with branch
cuts contained in the complex upper (resp. lower) half-plane. We integrate it
along the contour contained in the lower (resp. upper) half-plane depicted in
Figure 4.2.

0 η 1

z

z

Figure 4.2: Two contours leading to eqs. 4.18.

30This is the case in the non-empty open region where Re(a), Re(b), Re(c),
Re(−2 − a − b − c) > −1, and the relations obtained extend by analytic contin-
uation.
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Since there are no poles contained inside the integration contour, and the
integrals over the half-circles tend to zero as the radius tends to infinity, we
deduce the two linear relations (corresponding to the two different contours)

(4.18)

e−iπ(b+c)I(Id,∅)(a, b, c; η) + eiπaJ(Id,∅)(a, b, c; η)

+ e−iπcJ(∅,Id)(a, b, c; η) + I(∅,Id)(a, b, c; η) = 0,

eiπ(b+c)I(Id,∅)(a, b, c; η) + e−iπaJ(Id,∅)(a, b, c; η)

+ eiπcJ(∅,Id)(a, b, c; η) + I(∅,Id)(a, b, c; η) = 0 .

These relations, which remain valid for η ∈ C \ ¶0, 1♢, can be written in ma-
trix form as
(4.19)

I⃗1(a, b, c; η) =
1

sin(π(b + c))

(
sin(πa) − sin(πc)

− sin(π(a + b + c)) − sin(πb)

)
J⃗1(a, b, c; η)

or as
(4.20)

J⃗1(a, b, c; η) =
1

sin(π(a + c))

(
sin(πb) − sin(πc)

− sin(π(a + b + c)) − sin(πa)

)
I⃗1(a, b, c; η) .

Therefore we have that

(4.21) R1(a, b, c) =
1

sin(π(b + c))

(
sin(πa) − sin(πc)

− sin(π(a + b + c)) − sin(πb)

)

and, as expected,
(4.22)

R1(a, b, c)−1 =
1

sin(π(a + c))

(
sin(πb) − sin(πc)

− sin(π(a + b + c)) − sin(πa)

)
= R1(b, a, c) .

Of course there are problems with defining or inverting R1 if a + c ∈ Z or
b + c ∈ Z, but we can discard these values since they correspond to singularity
divisors of I⃗1 and J⃗1.

4.3. Monodromies of the Aomoto-Gel’fand hypergeometric
functions

We consider closed loops γ0 and γ1 around the points η = 0 and η = 1. We
want to study the monodromy transformations of the Aomoto-Gel’fand hy-
pergeometric functions I(ρ,σ)(aaa, bbb, ccc;ddd; η) when η moves around these loops
(this only depends on the homotopy class of the loops, and does not depend
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on the starting point). We will then apply these results to our analysis of the
correlation functions GN in Section 5.1.

4.3.1. The monodromy around η = 0. The monodromy matrix around
η = 0 of the functions in (4.3) is obtained by performing the change of variable

zρ(m) = ζρ(m) for 1 ≤ m ≤ r ,

zσ(n) = ηζσ(n) for 1 ≤ n ≤ s ,(4.23)

which gives (setting dij := dji if j < i)

(4.24) I(ρ,σ)(aaa, bbb, ccc;ddd; η) =
s∏

n=1

η1+aσ(n)+cσ(n)
∏

1≤k<l≤s

ηdσ(k)σ(l)

ˆ

∆∗
(ρ,σ)

N∏

j=1

♣ζj ♣aj

×
r∏

m=1

s∏

n=1

♣ζρ(m) − 1♣bρ(m) ♣ζρ(m) − η♣cρ(m) ♣ηζσ(n) − 1♣bσ(n) ♣ζσ(n) − 1♣cσ(n) ♣ζρ(m) − ηζσ(n)♣dρ(m)σ(n)

×
∏

1≤h<i≤r

♣ζρ(h) − ζρ(i)♣dρ(h)ρ(i)
∏

1≤k<l≤s

♣ζσ(k) − ζσ(l)♣dσ(k)σ(l)

N∏

j=1

dζj ,

integrated over the domain

(4.25) ∆∗
(ρ,σ) := ¶0 ≤ ζσ(1) ≤ · · · ≤ ζσ(s) ≤ 1 ≤ ζρ(1) ≤ · · · ≤ ζρ(r)♢ .

Only the powers of η in front of the integral give monodromies when η makes
a loop around 0. This shows that, if we write

(4.26) I⃗N (aaa, bbb, ccc;ddd; η)
γ0→ g0(aaa,ccc;ddd) I⃗N (aaa, bbb, ccc;ddd; η),

then the monodromy matrix g0 is a diagonal matrix independent of bbb.
When s = 0 and σ is the empty permutation then all the points zi of

the integration domain (4.4) belong to (1, ∞) and the integrals have trivial
monodromies around η = 0, i.e.

(4.27) I(ρ,∅)(aaa, bbb, ccc;ddd; η)
γ0→ I(ρ,∅)(aaa, bbb, ccc;ddd; η) .

When s = N and ρ is the empty permutation then all the points zi of
the integration domain (4.4) belong to (0, 1) and the integrals have the same
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monodromies around η = 0, i.e.
(4.28)

I(∅,σ)(aaa, bbb, ccc;ddd; η)
γ0→

N∏

m=1

e2πi(am+cm)
∏

1≤m<n≤N

e2πidmnI(∅,σ)(aaa, bbb, ccc;ddd; η) .

Note that the arguments of the exponential phase factors can differ from
am, cm, dmn by arbitrary integers.

Therefore the monodromy matrix around η = 0 has the diagonal form

(4.29) g0(aaa,ccc;ddd) =



I 0 0
0 δ0 0

0 0
∏N

m=1 e2πi(am+cm)∏
1≤m<n≤N e2πidmnI




where I is the size N ! identity matrix and δ0 is a diagonal matrix of size
(N − 1)N ! whose diagonal elements arise from the phases of the prefactor
in (4.24).

4.3.2. The monodromy around η = 1. The vectors I⃗(aaa, bbb, ccc;ddd; η) do not
have diagonal monodromy matrix around η = 1. If instead we look at the
integrals J⃗(aaa, bbb, ccc;ddd; η) = I⃗(bbb,aaa, ccc;ddd; 1 − η) and at the transformation

(4.30) J⃗N (aaa, bbb, ccc;ddd; η)
γ1→ g1(bbb, ccc;ddd) J⃗N (aaa, bbb, ccc;ddd; η),

we find that the monodromy matrix g1 is diagonal and independent of aaa,
given by

(4.31) g1(bbb, ccc;ddd) =




∏N
m=1 e2πi(bm+cm)∏

1≤m<n≤N e2πidmnI 0 0
0 δ1 0
0 0 I




where I is the size N ! identity matrix and δ1 is a diagonal matrix of size
(N − 1)N !.

4.4. Asymptotic expansion of Aomoto-Gel’fand functions

We have already mentioned that the integrals (4.3), considered as functions
of the N(N + 5)/2 parameters aaa, bbb, ccc,ddd, can be analytically continued to de-
fine meromorphic functions on CN(N+5)/2, whose poles can only occur along
divisors given by certain affine hyperplanes defined over Z.

With string theory applications in mind, it is of interest to consider the
asymptotic expansion of Aomoto-Gel’fand functions at points with integer co-
ordinates. Such points always belong to some polar divisor. It is believed but
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probably not rigorously demonstrated in such generality that, in the intersec-
tion of a small neighborhood of a singular point (aaa0, bbb0, ccc0, ddd0) ∈ ZN(N+5)/2

with the complement of the polar divisors, any Aomoto-Gel’fand function
F∆(aaa, bbb, ccc;ddd; η) can be written as

(4.32) F∆(aaa, bbb, ccc;ddd; η) =
F hol(aaa, bbb, ccc;ddd; η)

P (aaa, bbb, ccc;ddd)
,

for some homogeneous polynomial P with integer coefficients and some holo-
morphic function F hol whose Taylor coefficients at (aaa0, bbb0, ccc0, ddd0) belong to
the algebra H¶0,1♢,Z[2πi] of Z[2πi]-linear combination of multiple polyloga-
rithms (see Section 2.2). A proof for certain special points (at the boundary
of the convergence region) follows, for instance, by combining the methods
of [BD19b] with Brown’s work on periods of moduli spaces of genus zero
curves [Bro09]. A proof of the general case would require a careful study of
the analytic continuation.

Note that it is known that the coefficients of genus-zero amplitudes in
open superstring theory, obtained by setting η = 0 or η = 1 and considering
special integer points, belong to Z [BSST]. The previous statement about
Aomoto-Gel’fand functions would only imply that they belong to Z[2πi]. We
do not know whether the coefficients of the asymptotic expansion of the func-
tions F∆(aaa, bbb, ccc;ddd; η) should belong to the smaller ring H¶0,1♢,Z (thus implying
the optimal result for string theory amplitudes).

We also remark that the polynomials P give massless field theory poles,
and can be considered as well-understood in physics [GSW, Pol98a, Pol98b].

5. Holomorphic factorisation

The starting point of this section is a formula to write the correlation function
GN (η) defined by (3.11) as a bilinear product in our basis of (holomorphic)
Aomoto-Gel’fand hypergeometric functions (4.3) or (4.11) and their complex
conjugates. This yields an explicit conformal block decomposition, that we
call the holomorphic factorisation of GN (η), which generalises known formulas
from the literature (see e.g. [DF84, DF85]).

Our proof partly relies on the original method introduced in [KLT] to
construct holomorphic factorisations of closed string building blocks in terms
of open string building blocks, now known as KLT relations. It is of course
necessary to adapt the method to our context with the extra-variable η, which
can be set to 1 (or to 0) to get the KLT relations back (see Section 5.4.1).
Some more details, omitted in the general case, can be found in Section 5.2 for
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the N = 1-case, or for instance in [BBDSV] for the general (string amplitude)
case.

Theorem 5.1. (Holomorphic factorisation).

(i) There exist square matrices GN (aaa, bbb, ccc;ddd) and ĜN (aaa, bbb, ccc;ddd) of size (N +
1)! with coefficients in the field F such that

(5.1)

GN


aaabbbcccddd

ã̃ãa b̃̃b̃b c̃̃c̃c d̃̃d̃d

∣∣∣η


=


i

2π

N

I⃗N (ãaa, b̃bb, c̃cc; d̃dd; η̄)T GN (aaa, bbb, ccc;ddd) I⃗N (aaa, bbb, ccc;ddd; η)

and
(5.2)

GN


aaabbbcccddd

ã̃ãa b̃̃b̃b c̃̃c̃c d̃̃d̃d

∣∣∣η


=


i

2π

N

J⃗N (ãaa, b̃bb, c̃cc; d̃dd; η̄)T ĜN (aaa, bbb, ccc;ddd) J⃗N (aaa, bbb, ccc;ddd; η) .

(ii) The matrices GN (aaa, bbb, ccc;ddd) and ĜN (aaa, bbb, ccc;ddd) such that (5.1) and (5.2)
hold are unique.

Proof. (i) For each 1 ≤ r ≤ N we set zr = xr + iyr with xr, yr ∈ R. The main
idea is to consider the real variables yr as complex variables integrated over
the real line, and to rotate these integration paths to the straight lines yr →
(i − 2ϵ)yr contained in C, with ϵ ∈ R+, which tend to be purely imaginary
as ϵ → 0. Because the poles of the integrand with respect to the variable yr

are located on the purely imaginary axis, and the integrand behaves nicely
as yr → ∞, our original integral is invariant under this path deformation for
any positive ϵ.

The complex variable zr = xr + iyr is thus deformed to zr = xr − yr +
2iϵyr, and so z̄r = xr − yr − 2iϵyr. Setting v±

r := xr ± yr ∈ R and δr := v+
r −

v−
r ∈ R, so that zr = v−

r + iϵδr and z̄r = v+
r − iϵδr, the integral in (3.11) is

therefore equal, for any positive ϵ, to31

(5.3) Gϵ
N (η) :=


i

2π

N ˆ

R2N

N∏

r=1

(v−
r + iϵδr)ar (v+

r − iϵδr)ãr (v−
r − 1 + iϵδr)br

× (v+
r − 1 − iϵδr)b̃r (v−

r − η + iϵδr)cr (v+
r − η̄ − iϵδr)c̃r

∏

1≤r<s≤N

(v−
r − v−

s + iϵ(δr − δs))
drs(v+

r − v+
s − iϵ(δr − δs))

d̃rs

N∏

r=1

dv+
r dv−

r .

31The prefactor comes from the change of variables.
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We are interested in the limit of this integral as ϵ → 0, which leads to the
sought for factorisation. One must be careful when taking this limit and pay
attention to the branch cuts of the integrand, in order for limϵ Gϵ

N (η) to be
well-defined and equal to GN (η). This leads to the formula

(5.4)

GN (η) =


i

2π

N ˆ

R2N

N∏

r=1

♣v−
r ♣ar ♣v+

r ♣ãr ♣v−
r − 1♣br ♣v+

r − 1♣b̃r ♣v−
r − η♣cr ♣v+

r − η̄♣c̃r

∏

1≤r<s≤N

♣v−
r − v−

s ♣drs ♣v+
r − v+

s ♣d̃rs φ(aaa, bbb, ccc,ddd;vvv+, vvv−)
N∏

r=1

dv+
r dv−

r ,

where φ takes different values in F depending on the positions of each v+
r

relative to its singular points 0, 1, η, v+
1 , . . . , v+

N , and on the positions of each
v−

r relative to its singular points 0, 1, η, v−
1 , . . . , v−

N (compare with [KLT, eq.
(3.21)]). It is very important to remark that these phases do not depend on
the relative positions of the v+

r and v−
r variables, as one may expect from the

factors v+
r ± v−

r appearing in the imaginary parts of the integral (5.3), due
to the complete symmetry of the integrand with respect to v+

r ↔ v−
r modulo

integer shifts of the exponents. The consequence is that

(5.5) GN (η) =


i

2π

N ∑

α,β∈SN

cα,β(aaa, bbb, ccc,ddd)

ˆ

∆α(vvv+)×∆β(vvv−)

N∏

r=1

♣v−
r ♣ar ♣v+

r ♣ãr ♣v−
r − 1♣br ♣v+

r − 1♣b̃r

N∏

r=1

♣v−
r − η♣cr ♣v+

r − η̄♣c̃r
∏

1≤r<s≤N

♣v−
r − v−

s ♣drs ♣v+
r − v+

s ♣d̃rs

N∏

r=1

dv+
r dv−

r ,

where the domains ∆α (resp. ∆β) range over all the possible simplexes for
which the v+

r -part (resp. v−
r -part) is well-defined, and the coefficients

cα,β(aaa, bbb, ccc,ddd) belong to F. Each of the integrals in the sum is therefore the
product of two Aomoto-Gel’fand hypergeometric functions, one in η and one
in η̄. The statement follows from Theorem 4.3.

(ii) Suppose that eq. (5.1) holds for two matrices GN and G′
N with coef-

ficients in F. This implies that, for any η,

(5.6) I⃗N (ãaa, b̃bb, c̃cc; d̃dd; η̄)T (GN (aaa, bbb, ccc;ddd) − G′
N (aaa, bbb, ccc;ddd)

)
I⃗N (aaa, bbb, ccc;ddd; η) = 0 .



✐

✐

“5-Vanhove” — 2022/11/29 — 2:33 — page 495 — #41
✐

✐

✐

✐

✐

✐

Single-valuedness of closed string amplitudes 495

Suppose by contradiction that GN ̸= G′
N . We can assume that (ãaa, b̃bb, c̃cc, d̃dd) =

(aaa, bbb, ccc;ddd), because integer shifts leave GN and G′
N invariant.

As explained in Section 4.4, the coefficients of the asymptotic expansion
of Aomoto-Gel’fand functions at some32 singular points with integer coordi-
nates are known to belong to H¶0,1♢,Z , while those of the entries of GN − G′

N

obviously belong to Q[2πi]. Combining these expansions with eq. (5.6) yields
non trivial Z[2πi]-linear relations between products Lw1(z)Lw2(z), but this
contradicts the fact, mentioned at the beginning of Section 2.2, that such
products are linearly independent over OΣ,C ⊗C OΣ,C. □

Our construction applies as well to the holomorphic factorisation of the
four point correlation function of the minimal models considered in [DF84],
where the authors used an approach based on differential equations satisfied
by the conformal blocks and on the fact that correlation functions are single-
valued to construct a solution. They could only determine the solution up to
an overall scale, and the argument that we have used fixes this scale.

Corollary 5.2. The intertwining matrices GN and ĜN in the holomorphic
factorisation in (5.1) and (5.2) are related by

(5.7) GN (aaa, bbb, ccc;ddd) = RN (aaa, bbb, ccc;ddd)T ĜN (aaa, bbb, ccc;ddd) RN (aaa, bbb, ccc;ddd) .

where RN (aaa, bbb, ccc;ddd) is the matrix of change of basis from Corollary 4.4.

Proof. This follows from the holomorphic factorisations (5.1) and (5.2) by
combining the unicity of the factorisation with Corollary 4.4. □

5.1. Single-valuedness and holomorphic factorisation

We derive constraints on the matrices GN and ĜN in the holomorphic factori-
sation of Theorem 5.1 from the absence of monodromies around η = 0 and
η = 1 of the function GN (η).

32Conjecturally, this should be true for all such points.
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Proposition 5.3. The intertwining matrices GN and ĜN in the holomorphic
factorisation have the block diagonal form

(5.8) GN =




G
(1)
N 0 0

0 G
(2)
N 0

0 0 G
(3)
N


 , ĜN =




Ĝ
(1)
N 0 0

0 Ĝ
(2)
N 0

0 0 Ĝ
(3)
N


 ,

where G
(i)
N and Ĝ

(i)
N for i = 1, 3 are square-matrices of size N ! while G

(2)
N and

Ĝ
(2)
N are diagonal matrices of size (N − 1)N !.

Proof. The absence of monodromies of GN (η) around η = 0 implies that

(5.9) I⃗N (ãaa, b̃bb, c̃cc; d̃dd; η̄)T GN (aaa, bbb, ccc;ddd) I⃗N (aaa, bbb, ccc;ddd; η)

= I⃗N (ãaa, b̃bb, c̃cc; d̃dd; η̄)T
(
g0(ãaa, c̃cc; d̃dd)T GN (aaa, bbb, ccc;ddd) g0(aaa,ccc;ddd)


I⃗N (aaa, bbb, ccc;ddd; η) ,

where g0 is the monodromy matrix from (4.26). The form of the entries of
g0 and equation (3.12) imply that g0(ãaa, c̃cc; d̃dd) = g0(aaa,ccc;ddd). The unicity of the
holomorphic factorisation implies that

(5.10) GN = gT
0 GN g0 .

Decomposing GN into block matrices (GN )ij with 1 ≤ i, j ≤ 3, and using the
block diagonal form for g0 given in Section 4.3.1, we have the following set of
equations

(GN )12(1 − δ0) = 0

(GN )13


1 −

N∏

m=1

e2πi(am+cm)
∏

1≤m<n≤N

e2πidmnI


= 0

(1 − δ0)(GN )21 = 0


1 −
N∏

m=1

e2πi(am+cm)
∏

1≤m<n≤N

e2πidmnδ0


(GN )23 = 0


1 −

N∏

m=1

e−2πi(am+cm)
∏

1≤m<n≤N

e−2πidmnI


(GN )31 = 0


1 −

N∏

m=1

e−2πi(am+cm)
∏

1≤m<n≤N

e−2πidmnδ0


(GN )32 = 0 .(5.11)

The matrix δ0 is a diagonal matrix with diagonal elements given by the phases
factors in (4.28). Since the complex parameters am, bm, cm, dmn belong to a
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non-empty open domain, one concludes that GN has the block diagonal form

(5.12) GN =




G
(1)
N 0 0

0 G
(2)
N 0

0 0 G
(3)
N


 ,

where G
(i)
N := (GN )ii for i = 1, 3 are square-matrices of size N ! and G

(2)
N :=

(GN )22 is a diagonal matrix of size (N − 1)N !.
Similarly, the absence of monodromies around η = 1 implies that the ma-

trix ĜN in the holomorphic factorisation (5.2) satisfies the condition

(5.13) ĜN = gT
1 ĜN g1 .

Since g1 has the block diagonal form given in Section 4.3.2 then ĜN has the
block diagonal form

(5.14) ĜN =




Ĝ
(1)
N 0 0

0 Ĝ
(2)
N 0

0 0 Ĝ
(3)
N


 ,

where Ĝ
(i)
N for i = 1, 3 are square-matrices of size N ! and Ĝ

(2)
N is a diagonal

matrix of size (N − 1)N !. □

5.2. The N = 1 case

We want to perform the holomorphic factorisation of the integral

(5.15) G1


a b c

ã b̃ c̃

∣∣∣η


=

ˆ

C

zaz̄ã(z − 1)b(z̄ − 1)b̃(z − η)c(z̄ − η̄)c̃d2z ,

with a, ã, b, b̃, c, c̃ such that (5.15) is absolutely convergent33 and such that
the integer spin conditions a − ã ∈ Z, b − b̃ ∈ Z, c − c̃ ∈ Z are satisfied.

33This region is specified by the conditions Re(a + ã), Re(b + b̃), Re(c + c̃) ≥ −2
and Re(a + ã + b + b̃ + c + c̃) ≤ −2.
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As in the proof of the general case, we deform the integration path of the
imaginary part so that G1(η) is equal, for any positive ϵ, to

(5.16) Gϵ
1(η) =

i

2π

ˆ

R2

(v− + iϵδ)a(v+ − iϵδ)ã(v− − 1 + iϵδ)b

× (v+ − 1 − iϵδ)b̃(v− − η + iϵδ)c(v+ − η̄ − iϵδ)c̃dv+dv− ,

with δ := v+ − v−. Taking correctly the limit of this expression leads to the
formula

(5.17) G1(η) =
i

2π

ˆ

R2

♣v−♣a♣v+♣ã♣v− − 1♣b

× ♣v+ − 1♣b̃♣v− − η♣c♣v+ − η̄♣c̃φ(a, b, c; v+, v−)dv+dv− ,

where φ(a, b, c; v+, v−) ∈ F, and it takes different values depending on whether
v+ and v− belong to (−∞, 0), (0, η), (η, 1) or (1, ∞). For instance, φ = 1 if v+

and v− both belong to (−∞, 0) or (0, η) or (η, 1) or (1, ∞), but if v+ (or v−)
belongs to (−∞, 0) and v− (or v+) belongs to (1, ∞) we get φ = eiπ(a+b+c).
We invite the reader to do the instructive exercise of determining the phase
φ in each possible domain.

Since our purpose is to explicitly obtain the holomorphic factorisation,
we now need to write each Aomoto-Gel’fand function in terms of our basis
I⃗1(a, b, c; η) or J⃗1(a, b, c; η). To do so, we first follow a method of [KLT] to sim-
plify the computation, and then we use the explicit change of basis worked
out in Section 4.2. We therefore take a step back from (5.17), and we con-
sider (5.16). We fix v+ in one of the four possible domains (−∞, 0), (0, η),
(η, 1) or (1, ∞), and consider the integration path of the variable v− + iϵδ for
each of these cases, as in Figure 5.1 below.

The situation in the four different cases is the following:

▶ If v+ ∈ (−∞, 0) then the integration contour for v− + iϵδ is given in
Figure 5.1(a). Since the only poles in the variable v− + iϵδ are at 0, 1, η,
we obtain that the integral vanishes.

▶ If v+ ∈ (1, +∞) then the integration contour for v− + iϵδ is given in
Figure 5.1(b). Since the only poles in the variable v− + iϵδ are at 0, 1, η,
we obtain that the integral vanishes.

▶ If v+ ∈ (0, η) then the integration contour for v− + iϵδ is given in Fig-
ure 5.1(c). By deforming the part of the contour which is in the lower
half-plane to the left to get a loop around 0 based at −∞, one picks the
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v+

0 η 1

C−

0 η 1

v+

(a) (b)

C−

0

v+

η 1

C−

0 η
v+

1

(c) (d)

C−

Figure 5.1: The contour of integration C− for the variable v− + iϵδ depending
on the position of v+ on the real axis.

contribution from v− = 0. Hence we get

(5.18) lim
ϵ→0

ˆ

C−

(v− + iϵδ)a(v− − 1 + iϵδ)b(v− − η + iϵδ)cdv−

= 2i sin(πa)

ˆ 0

−∞

(−v−)a(1 − v−)b(η − v−)cdv−.

▶ If v+ ∈ (η, 1) then the integration contour for v− + iϵδ is given in Fig-
ure 5.1(d). By deforming the part of the contour which is in the upper
half-plane to the right to get a loop around 1 based at −∞, one picks
the contribution from v− = 1. Hence we get

(5.19) lim
ϵ→0

ˆ

C−

(v− + iϵδ)a(v− − 1 + iϵδ)b(v− − η + iϵδ)cdv−

= 2i sin(πb)

ˆ 1

η

(−v−)a(1 − v−)b(η − v−)cdv−.

Therefore we obtain that

(5.20) G1


a b c

ã b̃ c̃

∣∣η


= −sin(πa)

π

ˆ η

0

(v+)ã(1 − v+)b̃(η̄ − v+)c̃dv+

×
ˆ 0

−∞

(−v−)a(1 − v−)b(η − v−)cdv−

− sin(πb)

π

ˆ 1

η

(v+)ã(1 − v+)b̃(v+ − η̄)c̃dv+

ˆ +∞

1

(v−)a(v− − 1)b(v− − η)cdv− .
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Following the notations and results of Section 4.2, we have

(5.21) I⃗1(a, b, c; η) =

(
I(Id,∅)(a, b, c; η)
I(∅,Id)(a, b, c; η)

)
=




ˆ +∞

1

za(z − 1)b(z − η)cdz
ˆ η

0

za(1 − z)b(η − z)cdz




and
(5.22)

J⃗1(a, b, c; η) =

(
J(Id,∅)(a, b, c; η)
J(∅,Id)(a, b, c; η)

)
=




ˆ 0

−∞

(−z)a(1 − z)b(η − z)cdz
ˆ 1

η

za(1 − z)b(z − η)cdz


 .

The linear relations (4.20) give

J(Id,∅)(a, b, c; η) =
sin(πb)I(Id,∅)(a, b, c; η) − sin(πc)I(∅,Id)(a, b, c; η)

sin(π(a + c))
,

J(∅,Id)(ã, b̃, c̃; η̄) =
− sin(π(a + b + c))I(Id,∅)(ã, b̃, c̃; η̄) − sin(πa)I(∅,Id)(ã, b̃, c̃; η̄)

sin(π(a + c))
.

(5.23)

We can therefore rewrite (5.20) as

(5.24) G1


a b c

ã b̃ c̃

∣∣η


=
i

2π
I⃗1(ã, b̃, c̃; η̄)T G1(a, b, c) I⃗1(a, b, c; η) .

The off-diagonal elements of G1 are (G1)12 = 0 and

(5.25) (G1)21 = 2i sin(πb)


sin(πa)

sin(π(a + c))
− sin(πa)

sin(π(a + c))


= 0 ,

as required by the absence of monodromies for G1

(
a b c
ã b̃ c̃

∣∣η

. Hence we have

(5.26)

G1(a, b, c) =
−2i

sin(π(a + c))

(
sin(π(a + b + c)) sin(πb) 0

0 sin(πa) sin(πc)

)
.

Similarly, by expressing the holomorphic factorisation using the other
basis of Aomoto-Gel’fand hypergeometric functions

(5.27) G1


a b c

ã b̃ c̃

∣∣η


=
i

2π
J⃗1(ã, b̃, c̃; η̄)T Ĝ1(a, b, c) J⃗1(a, b, c; η),
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we get
(5.28)

Ĝ1(a, b, c) =
−2i

sin(π(b + c))

(
sin(π(a + b + c)) sin(πa) 0

0 sin(πb) sin(πc)

)
.

The relation between this expression and the holomorphic factorisation of
closed string theory amplitudes in [KLT, BBDSV] is discussed in Section 5.4.2.
The arbitrariness in choosing to close the contour of integration to the left or
to the right is taken care by the linear relations derived earlier between the
various integrals appeared, as discussed in details in [BBDSV].

5.3. The α′-expansion of the correlation function GN (η)

The meromorphic continuation in the parameters (aaa, bbb, ccc,ddd) ∈ CN(N+5)/2 of
the Aomoto-Gel’fand hypergeometric functions can be combined with the
holomorphic factorisation to analytically continue the correlation function
GN (η) outside the region of convergence of its defining integral. In particular,
with the identification of the parameters in (3.13), we can consider the small
α′-expansion (in the sense of Section 4.4) of GN (η) for fixed values of the
integers nij and ñij .

We have mentioned in Section 4.4 that the coefficients of the expansion of
the Aomoto-Gel’fand functions should be Z[2πi]-linear combinations of mul-
tiple polylogarithms. Moreover, since the entries of the matrix GN belong to
the field F, the coefficients of their expansion belong to Q[2πi]. Therefore,
by the holomorphic factorisation, the asymptotic expansion coefficients of GN

should be Z[(2πi)±1]-linear combinations34 of products of holomorphic and
anti-holomorphic multiple polylogarithms, which are single-valued as func-
tions of η. By Proposition 2.4 (with R = Z[(2πi)±1]) we conclude that these
coefficients should then belong to the ring Hsv

¶0,1♢,Z[(2πi)±1] of Z[(2πi)±1]-linear
combinations of single-valued multiple polylogarithms (see Section 2.6).

We believe that these coefficients should even belong to Hsv
¶0,1♢,Zsv , and a

proof of this fact, at least for special points at the boundary of the convergence
region, should follow from the methods used in Section 7 in the case of string
amplitudes.

34The negative powers of π come from the prefactor (i/2π)N . In fact, following
more closely [BBDSV], it is possible to prove that the coefficients of the α′-expansion
of GN belong to (2πi)NQ[π], which implies that we can get rid of all negative powers
of π, but we have preferred to skip these technical details.
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5.4. Back to closed string amplitudes

We now specialise some of the previous results on GN (η) to the value η = 1.
With the parameter identification from eq. (3.13), these special values corre-
spond to the partial amplitudes MN+3(sss,nnn, ñnn), which are the building blocks
of the closed string amplitude MN+3(sss, ϵϵϵ) (see eq. (3.7)). We could have also
specialised GN (η) to η = 0, using a different parameter identification. Our
choice of setting η = 1 will lead us to use the holomorphic factorisation (5.2)
rather than (5.1) (which would be more convenient if we set η = 0 instead).

First of all, we remark that the considerations from the previous sec-
tion, even if rigorously proven, would not imply that the coefficients of the
α′-expansion of MN+3(sss,nnn, ñnn) belong to the ring Zsv of single-valued mul-
tiple zeta values (specializing to η = 1 we would land in the larger space
Z[(2πi)±1]). As announced in the introduction, we will give a proof of the
single-valued nature of these coefficients (see Section 7), but for this we will
have to take a different route. We therefore turn to other aspects of the holo-
morphic factorisation.

5.4.1. Relation with the KLT representation of closed string am-
plitudes. Setting η = 1 in the expression for the holomorphic factorisation
in (5.2) leads to a fairly simple expression, because at η = 1 only the first
N ! rows ȷ⃗N of the vector of Aomoto-Gel’fand hypergeometric functions J⃗N

in (4.13) are non-vanishing:

(5.29) J⃗N (aaa, bbb, ccc;ddd; 1) =

(
ȷ⃗N (aaa, bbb, ccc;ddd)

0

)
,

and ȷ⃗N (aaa, bbb, ccc;ddd) = (J(ρ,∅)(aaa, bbb, ccc;ddd; 1))ρ∈SN
with

(5.30) J(ρ,∅)(aaa, bbb, ccc;ddd; 1) =

ˆ

zρ(N)≤···≤zρ(1)≤0

N∏

1≤m<n≤N

(zρ(m) − zρ(n))
dρ(m)ρ(n)

×
N∏

m=1

(−zρ(m))
aρ(m)(1 − zρ(m))

bρ(m)+cρ(m)

N∏

i=1

dzi .

Hence, using the parameter identification (3.13), the partial closed string
amplitudes read

(5.31) MN+3(sss,nnn, ñ̃ñn) = GN


aaabbbcccddd

ã̃ãa b̃̃b̃b c̃̃c̃c d̃̃d̃d

∣∣∣1


=


i

2π

N

ȷ⃗N (ãaa, b̃bb, c̃cc;ddd)T Ĝ
(1)
N (aaa, bbb, ccc;ddd) ȷ⃗N (aaa, bbb, ccc;ddd).
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In other words, although the end result for the closed string building block
only depends on Ĝ

(1)
N , it was necessary to have the full matrix ĜN to be able

to cancel the monodromies when η varies.
The integrals in (5.30) are colour-ordered open string amplitudes. The

expression for the closed string amplitudes in (5.31), which is equivalent to
the original KLT relations [KLT], is the same appeared in [Miz16, eq. (4.3)]
or [Miz17, Example 3.1], involving the inverse of the momentum kernel from
[BBDV, Stie09].

5.4.2. The single-valued expansion of the four-point amplitude. We
illustrate the previous results on the N = 1 case corresponding to the four-
point amplitude

(5.32) M4(sss,nnn, ñ̃ñn) =

ˆ

C

♣z♣2s01zn01 z̄ñ01 ♣1 − z♣2s12(1 − z)n12(1 − z̄)ñ12 d2z .

We can write

(5.33) M4(sss,nnn, ñ̃ñn) = G1


a b c

ã b̃ c̃

∣∣1


,

with the identification of the parameters a = s01 + n01, ã = s01 + ñ01, b +
c = s12 + n12 and b̃ + c̃ = s12 + ñ12 and the assumption that the Mandelstam
variables s01, s02, s12 /∈ Z satisfy the momentum conservation condition s01 +
s02 + s12 = 0.

With such identifications, the holomorphic decomposition in (5.27) eval-
uated at η = 1 gives

(5.34) M4(sss,nnn, ñ̃ñn) = − sin(πs01) sin(πs02)

π sin(πs12)
×

×
(
ˆ 0

−∞

(−z)s01+n01(1 − z)s12+n12 dz

)(
ˆ 0

−∞

(−z)s01+ñ01(1 − z)s12+ñ12 dz

)
.

By specialising the change of basis equation (4.19) to η = 1 one gets35

(5.35) sin(πs02)

ˆ 0

−∞

(−z)s01+n01(1 − z)s12+n12 dz

= sin(πs12)

ˆ 1

0

zs01+n01(1 − z)s12+n12 dz .

35Alternatively, one can substitute z → 1/(1 − z), use Euler’s formula for the
beta integral in terms of Γ-functions and Euler’s reflection formula Γ(x)Γ(1 − x) =

π
sin(πx)
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Plugging this relation in (5.34) (or specialising (5.20) to η = 1) we recover, up
to a normalisation prefactor, the original KLT expression [KLT, eq. (3.11)]

M4(sss,nnn, ñ̃ñn) = − 1

π
sin(πs01)

(
ˆ 0

−∞

(−z)s01+n01(1 − z)s12+n12 dz

)
(5.36)

×
(
ˆ 1

0

zs01+ñ01(1 − z)s12+ñ12 dz

)

= − 1

π
sin(πs01)

(
ˆ 0

−∞

(−z)s01+ñ01(1 − z)s12+ñ12 dz

)

×
(
ˆ 1

0

zs01+n01(1 − z)s12+n12 dz

)
.

This illustrates how in this case the momentum kernel S := sin(πs01)
from [BBDSV] arises (up to a normalisation factor) as the product of the

holomorphic factorisation matrix Ĝ
(1)
N times a change of basis matrix between

colour-ordered amplitudes.
The Γ-function representations of the integrals appearing in eq. (5.35) are

ˆ 1

0

zs01+n01(1 − z)s12+n12 dz

=
Γ(1 + s01 + n01)Γ(1 + s12 + n12)

Γ(2 + s01 + s12 + n01 + n12)
ˆ 0

−∞

(−z)s01+n01(1 − z)s12+n12 dz

=
Γ(1 + s01 + ñ01)Γ(−1 − (s01 + s12) − ñ01 − ñ12)

Γ(−s12 − ñ12)
.(5.37)

By momentum conservation and Euler’s reflection formula the four-point
partial amplitude reads

M4(sss,nnn, ñ̃ñn) = (−1)n̄12
Γ(1 + s01 + n01)

Γ(−s01 − ñ01)

Γ(1 + s12 + n12)

Γ(−s12 − ñ12)

× Γ(−1 + s02 − ñ01 − ñ12)

Γ(2 − s02 + n01 + n12)
.(5.38)
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Using repeatedly that Γ(1 + x) = xΓ(x), one can find a rational function
Q(s01, s12, s02) with integer coefficients (depending on the integer parame-
ters n01, n12, ñ01, ñ12) such that

(5.39) M4(sss,nnn, ñ̃ñn) = Q(s01, s12, s02)
Γ(1 + s01)

Γ(1 − s01)

Γ(1 + s12)

Γ(1 − s12)

Γ(1 + s02)

Γ(1 − s02)
.

Euler’s formula

(5.40) Γ(1 + x) = e−γx exp


∑

m≥2

ζ(m)

m
(−x)m


 ,

where γ is the Euler-Mascheroni constant, implies that

(5.41)
Γ(1 + x + n)

Γ(1 − x − n)
= e−2γ(x+n) exp

(
−2

∞∑

m=1

ζ(2m + 1)

2m + 1
(x + n)2m+1

)
.

Therefore, by momentum conservation, the four-point partial amplitude takes
the form

(5.42) M4(sss,nnn, ñ̃ñn) = Q(s01, s12, s02)

× exp

(
−2

∞∑

m=1

ζ(2m + 1)

2m + 1

(
s2m+1

01 + s2m+1
12 + s2m+1

02

)
.

The argument of the exponential factor only involves odd Riemann zeta val-
ues, i.e. single-valued multiple zeta values (we recall that ζsv(2n) = 0 and
ζsv(2n + 1) = 2ζ(2n + 1)). This shows that M4(sss,nnn, ñ̃ñn) is the product of a ra-
tional function in s01, s12, s02 times a function whose Taylor expansion only
involves single-valued multiple zeta values. The rest of the paper is devoted
to prove the same statement for any N .

6. Integration of single-valued hyperlogarithms

We recall that in Section 2, starting from an abstract alphabet X and its as-
sociated set of points Σ = ¶0, 1, σ2, . . . , σn♢ ⊂ C, we have defined two families
of functions: hyperlogarithms Lw(z), which are multi-valued on D := C \ Σ,
and their single-valued analogues Lw(z). Both families are indexed by labels
w ∈ X∗, i.e. words in the abstract non-commutative letters xi ∈ X. Through-
out this and the next section, in order to lighten the notation, we will denote
by X both the alphabet and the set of complex points, and by σi both a
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point and a formal letter. The meaning will always be clear from the context.
The goal of this section is to prove a qualitative result on integrals of single-
valued hyperlogarithms over P1

C (Theorem 6.7) which plays a crucial role in
Section 7.

6.1. Label dependence in the multi-valued case

For every 2 ≤ i ≤ n we consider the alphabets Xi := X \ ¶σi♢. We also recall
from Section 2.3 that SX,R denotes the ring of regularised special values
of hyperlogarithms over a ring R with respect to an alphabet X. The next
proposition, due to Panzer36, clarifies the behaviour of (special values of)
hyperlogarithms as functions of a letter σi in their label. We include a sketch
of the proof, where we explain the main idea but omit the technical details37.

Proposition 6.1 (Panzer [Pan15]). For any w ∈ X∗, any 0 ≤ j ≤ n and
any 2 ≤ i ≤ n

(6.1) Lw(σj) =
∑

u

cuLu(σi),

where cu ∈ SXi,Q[2πi] and the sum runs over a finite number of words u ∈ X∗
i .

Proof. The statement is proven by induction on the length ♣w♣ of the word
w. If ♣w♣ = 1 then the only interesting case is w = σi, where one needs to
rewrite log(1 − σj/σi) in terms of L0(σi) and Lσj

(σi). This introduces an
integer multiple of πi which depends on the chosen branch of the logarithm.
To prove the general case, we need the following:

Lemma 6.2. For any w ∈ X∗, any z ∈ C and any 2 ≤ i ≤ n

(6.2)
∂

∂σi
Lw(z) =

∑

τ∈Xi∪¶z♢
v∈X∗

λτ,v

σi − τ
Lv(z),

where λτ,v ∈ Q, ♣v♣ < ♣w♣ and the sum is finite.

36This is a key ingredient of the Maple procedure HyperInt developed by
Panzer [Pan14] which allows to compute multiple integrals of hyperlogarithms.

37Special values of hyperlogarithms are defined in the divergent cases by a regular-
isation procedure. Here we will not verify that the steps of the proof are compatible
with such regularisation. The omitted details can be found in [Pan15].
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Proof of the lemma. If we denote σi0 := z, σir+1 := 0, d log(0) := 0, a simple
computation shows that the total differential of any Lσi1 ···σir

(z) is given (in
terms of regularised values) by

(6.3) dLw(z) =
n∑

k=1

Lσi1 ···σik−1
σik+1

···σir
(z) d log


σik

− σik−1

σik+1
− σik


.

Comparing the two sides of eq. (6.3) we get (6.2). □

By the lemma and the inductive hypothesis,

(6.4)
∂

∂σi
Lw(σj) =

∑

τ∈Xi

u∈X∗
i

cu

σi − τ
Lu(σi),

where cu ∈ SXi,Q[2πi]. Hence we have

(6.5) Lw(σj) =
∑

τ∈Xi

u∈X∗
i

cuLτu(σi) + c,

and c = Lw(σj)
∣∣
σi=0

∈ SXi,Q[2πi]. □

6.2. Label dependence in the single-valued case

We have seen that (special values of) hyperlogarithms, as functions of the
letters in the label, are again hyperlogarithms. We want to prove a similar
result for single-valued hyperlogarithms. The first necessary step is to prove
the following:

Lemma 6.3. For each w ∈ X∗, each 2 ≤ i ≤ n and each z ∈ C the single-
valued hyperlogarithm Lw(z) is single-valued also as a function of σi ∈ C.

Proof. We need to show that σi → Lw(z) is a well-defined function for all
w ∈ X∗ and all σi, z ∈ C. Recall that, by Theorem 2.3, Lw(z) is a uniquely
determined and well-defined function of z ∈ D for any σi ∈ C, which we have
extended to a function of z ∈ C. This precisely means that Lw(z) takes a
unique value for any z and any w, so σi → Lw(z) is well-defined. □

We are now ready to prove the single-valued analogue of Proposition 6.1,
which will play an important role in the computation of multiple integrals of
single-valued hyperlogarithms. We recall from Section 2.7 that Ssv

X,R denotes
the ring of regularised special values of single-valued hyperlogarithms over
the ring R with respect to the alphabet X.
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Theorem 6.4. For any w ∈ X∗, any 2 ≤ i ≤ n and any 0 ≤ j ≤ n

(6.6) Lw(σj) =
∑

u

cuLu(σi),

where cu ∈ Ssv
Xi,Q

and the sum runs over a finite number of words u ∈ X∗
i .

Proof. If ♣w♣ = 1 we have Lσk
(σj) = log ♣1 − σj/σk♣2. Therefore if k ̸= i then

Lσk
(σj) ∈ Ssv

Xi,Q
and if k = i then Lσi

(σj) = Lσj
(σi) − L0(σi). In order to pro-

ceed by induction on ♣w♣, we first need the following single-valued analogue
of Lemma 6.2:

Lemma 6.5. For any w ∈ X∗, any z ∈ C and 2 ≤ i ≤ n, we have

(6.7)
∂

∂σi
Lw(z) =

∑

τ∈Xi∪¶z♢
v∈X∗

λτ,v

σi − τ
Lv(z),

where the sum is finite and all λτ,v ∈ Ssv
X,Q have homogenous weight38

W (λτ,v) = ♣w♣ − ♣v♣ − 1.

Proof of the lemma. We will use induction on the length ♣w♣. If ♣w♣ = 1 the
statement clearly holds. For ♣w♣ ≥ 2 let

(6.8) Lw(z) =
∑

w1,w2

cw1,w2Lw1(z)Lw2(z).

By Proposition 2.6, cw1,w2 ∈ Ssv
X,Q and W (cw1,w2) = ♣w♣ − ♣w1♣ − ♣w2♣. Since

some cw1,w2 may depend on σi and ∂
∂σi

Lw(z) = 0 for all w, we have

∂

∂σi
Lw(z) =

∑

w1,w2

( ∂

∂σi
cw1,w2


Lw1(z)Lw2(z)(6.9)

+
∑

w1,w2

cw1,w2

( ∂

∂σi
Lw1(z)


Lw2(z).

It is trivial to see from the definition of single-valued hyperlogarithms that
♣w1♣ + ♣w2♣ > 0. Therefore we can use the inductive hypothesis on the special
values of single-valued hyperlogarithms at points of X which constitute the

38The notion of weight was introduced in Section 2.7.
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coefficients cw1,w2 , obtaining that

(6.10)
∂

∂σi
cw1,w2 =

∑

τ∈Xi

µτ,w1,w2

σi − τ
,

where each µτ,w1,w2 ∈ Ssv
X,Q has homogeneous weight given by W (µτ,w1,w2) =

W (cw1,w2) − 1.
Moreover, by Lemma 6.2 we have

(6.11)
∂

∂σi
Lw1(z) =

∑

τ∈Xi∪¶z♢
v∈X∗

λτ,v

σi − τ
Lv(z)

with λτ,v ∈ Z and ♣v♣ = ♣w♣ − 1. Hence we are left with

(6.12)
∂

∂σi
Lw(z) =

∑

τ∈Xi∪¶z♢

fτ (z)

σi − τ
,

where each fτ (z) is a single-valued Ssv
X,Q-linear combination of products

Lv1(z)Lv2(z) of homogeneous weight ♣w♣ − 1. By applying Proposition 2.4 to
the ring R = Ssv

X,Q, we conclude that each fτ (z) is a Ssv
X,Q-linear combination of

single-valued hyperlogarithms
∑

v λτ,vLv(z) and W (λτ,v) + ♣v♣ = ♣w♣ + 1. □

Let us now continue our inductive argument. By Lemma 6.5 we have

(6.13)
∂

∂σi
Lw(σj) =

∑

τ∈Xi

v∈X∗

λτ,v

σi − τ
Lv(σj),

with λτ,v ∈ Ssv
X,Q of homogenous weight W (λτ,v) = ♣w♣ − ♣v♣ − 1. We can there-

fore apply the inductive hypothesis both on the coefficients λτ,v and on the
hyperlogarithms Lv(σj), obtaining (after performing enough shuffle products)

(6.14)
∂

∂σi
Lw(σj) =

∑

τ∈Xi

u∈X∗
i

µτ,u

σi − τ
Lu(σi)

with µτ,u ∈ Ssv
Xi,Q

, which implies by Theorem 2.3 that

(6.15) Lw(σj) =
∑

τ∈Xi

u∈X∗
i

µτ,uLτu(σi) + f(σi)

for some function f annihilated by ∂/∂σi. Because of Proposition 6.1, the
function f(σi) must belong to the ring of anti-holomorphic hyperlogarithms
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HX,C. By Lemma 6.3 we know that f is a single-valued function of σi, but
by Proposition 2.2 every non-constant element of HX,C has non-trivial mon-
odromy, hence f must be constant. Since ♣τu♣ ≥ 1 we have Lτu(0) = 0. There-
fore we conclude that f = Lw(σj)

∣∣
σi=0

, which belongs to Ssv
Xi,Q

. □

6.3. Integrals of single-valued hyperlogarithms over P1

C

Let us consider a function f(z) belonging to the ring Asv
X,C introduced in Sec-

tion 2.6. We define the holomorphic and anti-holomorphic residues of f at
a point σi ∈ X as Resz=σi

f(z) := c
(i)
0,−1,0, Resz=σi

f(z) := c
(i)
0,0,−1, respectively,

referring to the coefficients c
(i)
k,m,n in the asymptotic expansions obtained from

eqs. (2.23) and (2.24) by multiplication with elements in OΣ,C ⊗ OΣ,C. Simi-

larly, at ∞ we set Resz=∞f(z) := c
(∞)
0,−1,0 and Resz=∞f(z) := c

(∞)
0,0,−1. The fol-

lowing residue formula was first stated by Schnetz in [Sch13] for X = ¶0, 1♢.
We include the proof, because the same argument will occur again in Sec-
tion 7.

Proposition 6.6. (Schnetz, [Sch13]) Suppose that f(z) ∈ Asv
X,C and that

´

P1
C

f(z)d2z < ∞, where we set d2z := dzdz/(−2πi). Then

ˆ

P1
C

f(z)d2z = Resz=∞G(z) −
n∑

i=0

Resz=σi
G(z)(6.16)

= Resz=∞F (z) −
n∑

i=0

Resz=σi
F (z)(6.17)

for any F, G ∈ Asv
X,C such that ∂zF (z) = ∂zG(z) = f(z).

Proof. First of all we remark that, as mentioned in Section 2.6, the ring Asv
X,C

is closed under the operation of taking primitives with respect to ∂z and ∂z, so
we can always find such F and G. Moreover, F is uniquely determined up to
adding a function in OΣ,C, as well as G up to adding a function in OΣ,C. We
will only show the first equality, as the second follows by repeating exactly
the same steps in the anti-holomorphic case. One has

f(z)d2z = −f(z)

2πi
dz ∧ dz = d


G(z)

2πi


dz,

therefore f(z)d2z is exact on P1
C \ (X ∪ ¶∞♢). Let Ba(r) denote the ball cen-

tered in a of radius r, S±
a (r) = ∂±Ba(r) and ε > 0 such that Bη(ε) ∩ Bθ(ε) =

∅ for all finite η, θ ∈ X. Then f(z)d2z is exact on the oriented manifold
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Vε := P1
C \ (

⋃
η∈X Bη(ε) ∪ B0(ε−1)) with boundaries S+

0 (ε−1), S−
η (ε), and so

by Stokes’s theorem we have

ˆ

Vε

f(z)d2z = − 1

2πi

ˆ

S+
0 (ε−1)

+
∑

η∈X

ˆ

S−
η (ε)


G(z)dz.

Parametrizing Sη(ε) = ¶z = η + εeiθ : 0 ≤ θ < 2π♢ and integrating term by
term the expansion of the integrand given by eqs. (2.23) and (2.24) we obtain
the first formula in (6.16). Moreover, this does not depend on the choice of G,
because the sum of the residues of a function belonging to OΣ,C is zero. □

Proposition 6.6 gives us a powerful instrument to compute integrals of
single-valued hyperlogarithms over the Riemann sphere, and it is one of the
ingredients of the proof of the following theorem, which is the main new result
of this section.

Theorem 6.7. Let X = ¶0, 1, σ2, . . . , σN ♢, XN = X \ ¶σN ♢, m, n ≤ N and
¶σir

♢m
r=1, ¶σjs

♢n
s=1 ⊂ X (with possibly non-empty intersection). Let f(z) =∑

u cuLu(z) be a finite linear combination of single-valued hyperlogarithms
with coefficients cu ∈ Ssv

X,Q such that the integral

(6.18) I :=

ˆ

P1
C

f(z) d2z∏m
r=1(z − σir

)
∏n

s=1(z − σjs
)

is absolutely convergent. Then there exists a finite linear combination g(σN ) =∑
v∈X∗

N
kvLv(σN ) with kv ∈ Ssv

XN ,Q such that

(6.19) I =
m∑

r=1

n∑

s=1

hrhsg(σN ),

where

(6.20) hr :=
m∏

k=1
k ̸=r

1

σir
− σik

, hs :=
n∏

k=1
k ̸=s

1

σjs
− σjk

.

Proof. First of all, we recall the partial-fraction identities

m∏

r=1

1

z − σir

=
m∑

r=1

hr

z − σir

,(6.21)

n∏

s=1

1

z − σjs

=
n∑

s=1

hs

z − σjs

,(6.22)
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with hr, hs as in eq.( 6.20). As mentioned in Section 2.6, the ring Asv
X,C is

closed under the operation of taking primitives with respect to ∂/∂z. In the
case of the integrand of (6.18), it is easy to see from (6.21) and (6.22) that a
primitive in Asv

X,C is given by

(6.23)
m∑

r=1

n∑

s=1

hr
hs

z − σjs

∑

u

cuLσir u(z),

and so by Proposition 6.6 we have

(6.24) I = −
m∑

r=1

n∑

s=1

hrhs

∑

u

cuLσir u(σjs
).

Theorem 6.4, applied for each u both to Lσir u(σjs
) and to its coefficient cu,

concludes the proof. □

It is possible with a little more work to obtain an effective version of this
theorem, which could be implemented on a computer. More precisely, this
would follow from an effective version of Theorem 6.4, and in particular of
Lemma 6.5. Part of this work was recently done by Schnetz (see his Maple
procedures [Sch18]).

7. The α′-expansion of closed string amplitudes

For N ≥ 1 let sss denote as usual the collection of Mandelstam kinematic in-
variants sij := α′ki · kj with 0 ≤ i < j ≤ N + 1, as introduced in Section 3.2.
We define a family of integrals39

(7.1)

Mρ,σ(sss) :=

ˆ

(P1
C

)N

∏
1≤i<j≤N

♣zj−zi♣
2sij
∏N

i=1
♣zi♣2s0i ♣zi−1♣2siN+1 d2zi

zρ(1) zσ(1)(1−zρ(N))(1−zσ(N))
∏N

i=2
(zρ(i)−zρ(i−1))(zσ(i)−zσ(i−1))

,

indexed by two permutations ρ, σ ∈ SN . These integrals have non-empty con-
vergent regions, which we denote by Cρ,σ, and the origin sss = 0 always belongs
to the boundary of Cρ,σ (see Appendix A).

This is a special subfamily of the closed string partial amplitudes
MN+3(sss,nnn, ñ̃ñn) defined by (3.8), obtained for very specific choices of the integer
tuples nnn, ñ̃ñn. It is known (see e.g. [SS12]), that all MN+3(sss,nnn, ñ̃ñn) which arise
from superstring theory can be written in terms of the functions Mρ,σ(sss).

39The usual notation for this family in the literature is rather Jρ,σ(sss).
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It is also known40 that, for each ρ, σ, there are sets I of pairs of indices
(i, j) such that the product

(7.2)
∏

I

 ∑

(i,j)∈I

sij


× Mρ,σ(sss)

has a Taylor series expansion at sss = 0, which is the α′-expansion of the closed
string integrals Mρ,σ(sss).

This section is devoted to prove the following statement, which was con-
jectured in [Stie13]41.

Theorem 7.1. For any N ≥ 1 and any ρ, σ ∈ SN the coefficients of the
α′-expansion of Mρ,σ(sss) belong to Zsv.

The method of the proof is constructive, it ultimately relies on the ma-
chinery developed in Section 6, and it allows in principle to determine also the
precise form of the first factor of (7.2). We begin by proving the statement
in two special cases. First we will look at the only 1-dimensional integral of
the family, which corresponds to the classical Virasoro amplitude, and which
is also the only closed string integral for which the statement was already
proven (see Section 5.4.2). In particular, we will explain in details how to
isolate and calculate, by analytic considerations, the polar contributions, and
we will obtain the explicit asymptotic behaviour at sss = 0. Then we will look
at a 2-dimensional integral, where both the analysis of the polar contributions
and that of the Taylor coefficients become more subtle than in dimension one,
and resemble those of the general case. Finally, we will prove the general case,
but we will skip details, especially on the analysis of the polar contributions,
in order to avoid a lenghty discussion of different cases involving very com-
plicated notations; we believe that the familiarity with our methods aquired
from the previous special cases should suffice to understand how to work the
missing steps out.

40See for instance [BD19b] for a more precise statement and a rigorous proof.
41Other two different proofs of this result, obtained independently, have appeared

in [SS18, BD19b] while we were writing this paper.
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7.1. Dimension one

Let N = 1. The symmetric group S1 only contains the identity, and so the
only 1-dimensional integral in our family is

(7.3) MId,Id(s01, s12) =

ˆ

P1
C

♣z♣2s01−2♣1 − z♣2s02−2d2z.

This complex analogue of Euler’s beta function is essentially the Virasoro
bosonic string amplitude [Vir], and it is a special case of the integrals
M4(sss,nnn, ñ̃ñn) from Section 5.4.2, obtained by setting n01 = ñ01 = n12 = ñ12 =
−1.

The region of absolute convergence is Re(s01) > 0, Re(s12) > 0 and
Re(s01 + s12) < 1. In particular, the point s01 = s12 = 0 lies at the bound-
ary of this region. It is well known, and it also directly follows from the
computations of Section 5.4.2, that

(7.4) MId,Id(s01, s12) =
s01 + s12

s01s12

Γ(1 + s01) Γ(1 + s12) Γ(1 − s01 − s12)

Γ(1 − s01) Γ(1 − s12) Γ(1 + s01 + s12)

=
s01 + s12

s01s12
exp


−
∑

n≥1

2ζ(2n + 1)

(2n + 1)

(
s2n+1

01 + s2n+1
12 − (s01 + s12)2n+1


.

Recall from Section 2 that 2ζ(2n + 1) = ζsv(2n + 1) = L02n1(1), and therefore
the coefficients of this series expansion belong to Zsv. This gives a proof of
the following special case of Theorem 7.1:

Proposition 7.2. The product s01s12MId,Id(s01, s12) is holomorphic at s01 =
s12 = 0, and its Taylor coefficients belong to Zsv.

However, as already mentioned, we find it very instructive to give an
alternative proof, which will be later generalised to demonstrate Theorem 7.1.

Alternative proof. We write

MId,Id(s01, s12) =

ˆ

P1
C

(♣z♣2s01 − 1)(♣1 − z♣2s02 − 1)

♣z♣2♣1 − z♣2 d2z(7.5)

+

ˆ

P1
C

♣z♣2s01 + ♣1 − z♣2s02 − 1

♣z♣2♣1 − z♣2 d2z ,

and we first look at the first term of the right hand side. This term is abso-
lutely convergent at s01 = s12 = 0 and thereby has a Taylor expansion, given
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by Taylor expanding the integrand and then interchanging summation and
integration (this is justified by the absolute convergence). We get
(7.6)̂

P1
C

(♣z♣2s01 − 1)(♣1 − z♣2s02 − 1)

♣z♣2♣1 − z♣2 d2z =
∑

p,q≥1

sp
01sq

12

ˆ

P1
C

L0p(z)L1q (z)

♣z♣2♣1 − z♣2 d2z ,

where we recall that L0p(z) = (log ♣z♣2)p/p! and L1q (z) = (log ♣1 − z♣2)q/q!.
Since single-valued hyperlogarithms satisfy shuffle product identities, we

have

L0p(z)L1q (z)

♣z♣2♣1 − z♣2 =
∑

w=0p
✁1q

Lw(z)

♣z♣2♣1 − z♣2(7.7)

=
∑

w=0p
✁1q

1

z(1 − z)

Lw(z)

z
− Lw(z)

z − 1


,

hence if we set

(7.8) F (z) :=
∑

w=0p
✁1q

L0w(z) − L1w(z)

z(1 − z)

we find that

(7.9) ∂zF (z) =
L0p(z)L1q (z)

♣z♣2♣1 − z♣2 .

Therefore by Proposition 6.6 and by a careful analysis of the asymptotic
expansion of F we obtain

ˆ

P1
C

L0p(z)L1q (z)

♣z♣2♣1 − z♣2 d2z = Resz=∞F (z) − Resz=0F (z) − Resz=1F (z)

=
∑

w=0p
✁1q

L0w(1) − L1w(1),

which belongs to the algebra Zsv. This proves the statement for the first term.
We consider now the second term. For ε ∈ R+ we define Uε := P1

C \
(B0(ε) ∪ B1(ε) ∪ B0(ε−1)), where we denote by Bx(r) the ball centered at x
of radius r. On the one hand, the integrand is an entire function in s01 and s12

for any z ∈ Uε, so it admits a Taylor expansion at the origin. Moreover, its
integral over Uε is absolutely convergent for any s01 and s12 and also defines
an entire function of s01 and s12, whose Taylor expansion at the origin is
simply given, because of absolute convergence, by interchanging summation
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and integration:

(7.10)

ˆ

Uε

♣z♣2s01 + ♣1 − z♣2s02 − 1

♣z♣2♣1 − z♣2 d2z =
∑

p,q≥0
p·q=0

sp
01sq

12

ˆ

Uε

L0p(z)L1q (z)

♣z♣2♣1 − z♣2 d2z.

On the other hand, for any s01 and s12 inside the region of absolute
convergent we have

(7.11)

ˆ

P1
C

♣z♣2s01 + ♣1 − z♣2s02 − 1

♣z♣2♣1 − z♣2 d2z = lim
ε→0

ˆ

Uε

♣z♣2s01 + ♣1 − z♣2s02 − 1

♣z♣2♣1 − z♣2 d2z,

hence we find that, in this region,
(7.12)
ˆ

P1
C

♣z♣2s01 + ♣1 − z♣2s02 − 1

♣z♣2♣1 − z♣2 d2z = lim
ε→0

 ∑

p,q≥0
p·q=0

sp
01sq

12

ˆ

Uε

L0p(z)L1q (z)

♣z♣2♣1 − z♣2 d2z


.

By the Stokes theorem and by eq. (7.9) we can write the right hand side
of eq. (7.10) as
(7.13)
∑

p,q≥0
p·q=0

sp
01sq

12

( ˆ

∂+B0(ε−1)

+

ˆ

∂−B0(ε)

+

ˆ

∂−B1(ε)

 ∑

w=0p
✁1q

L0w(z) − L1w(z)

z(1 − z)

idz

2π
.

Analysing separately the contributions over the three boundary components,
and using polar coordinates (see the proof of Proposition 6.6), we find that
the contribution from ∂−B0(ε) is

(7.14) −
∑

p≥0

(
(log ε2)p+1

(p + 1)!

)
sp

01 + O(ε) =
1

s01
(1 − ε2s01) + O(ε),

the contribution from ∂+B0(ε−1) is O(ε) and the contribution from ∂−B1(ε)
is

∑

q≥1

L01q (1) sq
12 −

∑

q≥0

(
(log ε2)q+1

(q + 1)!

)
sq

12 −
∑

p≥1

L10p(1) sp
01 + O(ε)(7.15)

=
∑

q≥1

L01q (1) sq
12 +

1

s12
(1 − ε2s12) −

∑

p≥1

L10p(1) sp
01 + O(ε).
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Taking the limit ε → 0 and noting42 that L01n(1) = ζsv(n + 1) = −L10n(1)
for n ≥ 1, we conclude that the product s01s12MId,Id(s01, s12) is holomorphic
at s01 = s12 = 0 and the coefficients of its Taylor expansion, explicitly given
by

s01 + s12 + 2
∑

n≥1

ζ(2n + 1)(s2n+1
01 s12 + s01s2n+1

12 )(7.16)

+
∑

p,q≥1

 ∑

w=0p
✁1q

L0w(1) − L1w(1)


sp+1

01 sq+1
12 ,

belong to the ring Zsv. □

We remark that our proof implies that there exists a rational function, in this
case s−1

01 + s−1
12 , which can be subtracted to MId,Id(s01, s12) to obtain a function

which is holomorphic at s01 = s02 = 0. This is stronger than the statement
of the proposition43, and it should be possible to prove this stronger kind of
statement also in the general case, by refining our proof of Theorem 7.1.

7.2. Dimension two

Let N = 2. We have four 2-dimensional integrals Mρ,σ(sss) with ρ, σ ∈ S2. We
content ourselves to study their sum

(7.17)
∑

ρ,σ∈S2

Mρ,σ(α1, α2, β1, β2, γ)

=

ˆ

(P1
C

)2

♣z♣2α1−2♣u♣2α2−2♣1 − z♣2β1−2♣1 − u♣2β2−2♣z − u♣2γd2zd2u,

where we have set αi := s0,i, βi := si,3 and γ := s12 to lighten the notation.
This is a good prototype of all of the 2-dimensional integrals, whose singu-
larities are slightly simpler.

42Recall that L0n1(1) = −ζ(n + 1). The first identity follows from the fact that
L01n(1) = (−1)n+1L0n1(1), which can be seen by substituting xi → 1 − xi in the
integrand of L01n(z), and from the fact that ζsv(2n) = 0. The second identity follows
from the more general formula given in [Sch13, Example 2.10].

43For instance, the case where s01s02MId,Id(s01, s12) only depends on s01 and is
not rational would not satisfy this stronger condition.
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Proposition 7.3. The product

(7.18) α1 α2 β2 β2 (α1 + α2 + γ) (β1 + β2 + γ)
∑

ρ,σ∈S2

Mρ,σ(α1, α2, β1, β2, γ)

is holomorphic at α1 = α2 = β1 = β2 = γ = 0, and its Taylor coefficients be-
long to Zsv.

Proof. We want to study the asymptotic behaviour at the origin, which is
situated at the boundary of the region of convergence (see Appendix A).
Similarly to the 1-dimensional case, we first consider the integral
(7.19)
ˆ

(P1
C

)2

(♣z♣2α1 − 1)(♣u♣2α2 − 1)(♣1 − z♣2β1 − 1)(♣1 − u♣2β2 − 1)♣z − u♣2γ

♣z♣2♣u♣2♣1 − z♣2♣1 − u♣2 d2zd2u,

which is absolutely convergent in a strictly bigger region of convergence which
contains the origin, and then we will take care of the difference between (7.17)
and (7.19), which diverges at the origin.

Writing log ♣z − u♣2 = Lz(u) − L0(z) and using absolute convergence to
interchange summation and integration, we can rewrite (7.19) as

∑

p1,p2,q1,q2≥1
r1,r2≥0

αp1

1 αp2

2 βq1

1 βq2

2 γr1+r2(−1)r2

(
r1 + r2

r2

)
×

×
ˆ

(P1
C

)2

L0p1+r2 (z)L0p2 (u)L1q1 (z)L1q2 (u)Lzr1 (u)

♣z♣2♣1 − z♣2♣u♣2♣1 − u♣2 d2zd2u.(7.20)

We first compute the integral over u, given by

(7.21) Jp2,q2,r1(z) :=

ˆ

P1
C

L0p2 (u)L1q2 (u)Lzr1 (u)

♣u♣2♣1 − u♣2 d2u.

By Proposition 6.6 we can write Jp2,q2,r1(z) as

(7.22) Resu=∞F (z, u) − Resu=0F (z, u) − Resu=1F (z, u) − Resu=zF (z, u),

where

(7.23) F (z, u) :=
∑

w=0p2✁1q2✁zr1

(L1w(u) − L0w(u)
) 1

u − 1
− 1

u


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is such that ∂uF (z, u) is equal to the integrand of (7.21). The only non-
vanishing residues in (7.22) are obtained at u = 1, thus

(7.24) Jp2,q2,r1(z) =
∑

w=0p2✁1q2✁zr1

(L0w(1) − L1w(1)
)
.

By Theorem 6.4, this is a Zsv-linear combination of single-valued multiple
polylogarithms in the variable z. Therefore, the same argument used in 1-
dimensional case44 applies to

(7.25)

ˆ

P1
C

Jp2,q2,r1(z)L0p1+r2 (z)L1q1 (z)

♣z♣2♣1 − z♣2 d2z,

thus proving the desired statement for the integral (7.19).
We are now left with computing the asymptotic expansion of the difference

between (7.17) and (7.19), that we will call P2(α1, α2, β1, β2, γ). Let ε ∈ R+,
and let

Uε,1 = ¶z, u ∈ P1
C : ♣z♣, ♣1 − z♣, ♣u♣, ♣1 − u♣, ♣z♣ − ♣u♣ > ε, ♣z♣, ♣u♣ < ε−1♢,(7.26)

Uε,2 = ¶z, u ∈ P1
C : ♣z♣, ♣1 − z♣, ♣u♣, ♣1 − u♣, ♣u♣ − ♣z♣ > ε, ♣z♣, ♣u♣ < ε−1♢.(7.27)

The same argument used for the 1-dimensional case allows us to write (7.17) −
(7.19), inside the region of convergence of (7.17), as

(7.28) P2(α1, α2, β1, β2, γ) = lim
ε→0

∑

p1,p2,q1,q2,r≥0
p1·p2·q1·q2=0

αp1

1 αp2

2 βq1

1 βq2

2

γr

r!

×
ˆ

Uε,1

+

ˆ

Uε,2

L0p1 (z)L0p2 (u)L1q1 (z)L1q2 (u)
(

log ♣z − u♣2)r

♣z♣2♣1 − z♣2♣u♣2♣1 − u♣2 d2zd2u.

44We remark that, since p2, q2 ≥ 1, both limz→0 Jp2,q2,r1
(z) and

limz→1 Jp2,q2,r1
(z) are finite, which serves as a double-check that the integral (7.25)

is absolutely convergent.
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Writing log ♣z − u♣2 = Lz(u) − L0(z) on Uε,1 and log ♣z − u♣2 = Lu(z) − L0(u)
on Uε,2 we can rewrite P2(α1, α2, β1, β2, γ) as

(7.29) lim
ε→0

∑

p1,p2,q1,q2,r1,r2≥0
p1·p2·q1·q2=0

αp1

1 αp2

2 βq1

1 βq2

2 γr1+r2(−1)r2

(
r1 + r2

r2

)
×

×
ˆ

Uε,1

L0p1+r2 (z)L0p2 (u)L1q1 (z)L1q2 (u)Lzr1 (u)

♣z♣2♣1 − z♣2♣u♣2♣1 − u♣2 d2zd2u

+

ˆ

Uε,2

L0p1 (z)L0p2+r2 (u)L1q1 (z)L1q2 (u)Lur1 (z)

♣z♣2♣1 − z♣2♣u♣2♣1 − u♣2 d2zd2u


.

We now distinguish between different cases.
The case q1 = q2 = 0. First of all, this case is identical to the case p1 =

p2 = 0, which is therefore omitted. We consider the integrals over Uε,1 and
Uε,2 separately. Since the situation is symmetric, we just focus on

´

Uε,1
. This

integral (as well as
´

Uε,2
) is not convergent because of the singularity of the

integrand at the origin. Let us consider the change of variables t = z, st =
u, which means that s = u/z and that d2z d2u = ♣t♣2 d2t d2s. Moreover, let
us denote by Ũε,1 the image of Uε,1 under the change of coordinates. By
deforming the shape of Uε,1, we can suppose that Ũε,1 is obtained by removing
a neighborhood of the origin which is a sphere of radius ε. What we need to
compute is

(7.30)
∑

p1,p2,r≥0

αp1

1 αp2

2 γr

p1! p2! r!

ˆ

Ũε,1

(log ♣t♣2)p1(log ♣s♣2 + log ♣t♣2)p2(log ♣1 − s♣2 + log ♣t♣2)r

♣t♣2♣s♣2♣1 − t♣2♣1 − ts♣2

=
∑

p1,p2,r≥0

αp1

1 αp2

2 γr

p1!

∑

i+j=p2

k+l=r

1

i! j! k! l!

ˆ

Ũε,1

(log ♣t♣2)p1+i+k(log ♣s♣2)j(log ♣1 − s♣2)l

♣t♣2♣s♣2♣1 − t♣2♣1 − ts♣2

=
∑

n,j,l≥0

(α1 + α2 + γ)nαj
2γl

ˆ

Ũε,1

L0n(t)L0j (s)L1l(s)

♣t♣2♣s♣2♣1 − t♣2♣1 − ts♣2 .

In the last integral we can separate the variables and use the same method
seen in the 1-dimensional case to obtain the polar part in the limit ε → 0,
producing the quadratic-denominator term α−1

2 (α1 + α2 + γ)−1 as well as
other polar contributions with a linear denominator given either by α2 or
by (α1 + α2 + γ) (note that the coefficients of the linear-denominator contri-
butions are not rationals anymore, but they still belong to Zsv). It is at this
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point an easy exercise to see that the remaining contributions around u = 1
or z = 1 give rise to power series with coefficients in Zsv.

The case q1 = p2 = 0. Again, this case is identical to the case q2 = p1 = 0,
which is therefore omitted. Moreover, this case is simpler than the previous
one, because the only problem occurs at (z, u) = (0, 1). One can therefore
simply consider the integral over the union of Uε,1 and Uε,2 and split it lo-
cally into a product of integrals like those considered in the 1-dimensional
case, obtaining the quadratic-denominator polar contribution α−1

1 β−1
2 as well

as linear-denominator polar contributions (with denominator α1 or β2) and
power series contributions with coefficients in Zsv.

The remaining cases. The other possible cases with just one pi or qi

vanishing are analogous but simpler; they give linear-denominator polar con-
tributions as well as power series contributions, both with coefficients in Zsv,
and the denominators are always given by one of the factors of the quadratic
contributions.

Summary. The product of P2(α1, α2, β1, β2, γ) by the expression
α1α2β2β2(α1 + α2 + γ)(β1 + β2 + γ) is a function which is holomorphic at
the origin, whose Taylor coefficients belong to Zsv. By the previous analysis
of the Taylor expansion of (7.19), the same is true also for (7.17). □

7.3. The general case

Sketch of the proof of Theorem 7.1. We need to prove that, for any N ≥ 1
and any ρ, σ ∈ SN , there are sets I of distinct pairs of indices (i, j) with
0 ≤ i < j ≤ N + 1 such that the product

(7.31)
∏

I

 ∑

(i,j)∈I

sij


× Mρ,σ(sss)

is holomorphic at sss = 0, and its Taylor coefficients belong to Zsv.
The main challenge of generalising the constructive analysis of the polar

contributions seen in the 2-dimensional case, is to find an acceptable notation.
Otherwise, it is just a lengthy distinction of different cases, each of which
can be proven exactly as in the N = 2 case to be given, close to the origin,
by a quotient between a holomorphic function with Zsv-coefficients, and a
product of at most N linear terms of the kind

∑
I sij . The relation between

the combinatorics of these denominators, and that of the singularity of the
integrand, is nicely described in [BD19b], and it can be explicitly worked out
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also from our method. For this reason, we only focus on the integrals
(7.32)
ˆ

(P1
C

)N

∏
1≤i<j≤N

(♣zj − zi♣2sij − 1
)∏N

i=1

(♣zi♣2s0i − 1
)(♣zi − 1♣2siN+1 − 1

)
d2zi

zρ(1) zσ(1)(1 − zρ(N))(1 − zσ(N))
∏k

i=2(zρ(i) − zρ(i−1))(zσ(i) − zσ(i−1))
,

which are absolutely convergent and holomorphic at the origin, and prove
that their Taylor coefficients belong to Zsv (proving the same statement for
the “polar terms” is simpler). More precisely, after Taylor-expanding the inte-
grand and interchanging summation with integration, we want to demonstrate
that for mi, ni, li,j ≥ 1 and for arbitrary ρ, σ ∈ SN the (absolutely convergent)
integrals
(7.33)
ˆ

(P1
C

)N

∏
1≤i<j≤N L

z
li,j
i

(zj)
∏N

i=1 L0mi (zi)L1ni (zi) d2zi

zρ(1) zσ(1)(1 − zρ(k))(1 − zσ(k))
∏N

i=2(zρ(i) − zρ(i−1))(zσ(i) − zσ(i−1))

belong to Zsv.
To do this, the idea is to iteratively integrate (7.33) one variable at a

time, and use Theorem 6.7 at each step. This can be done, because of the
following remarks:

(i) The special cyclic structure of the denominator of (7.33) implies that
after each integration, even though hr and hs from the statement of
Theorem 6.7 introduce new factors, we always get a denominator which
is the product of distinct linear holomorphic factors with distinct linear
anti-holomorphic factors, as required by the assumptions of Theorem 6.7
(we leave this as an exercise to the reader).

(ii) The fact that mi, ni, li,j are bigger than 1, together with the previous
remark, implies that at each step we get a numerator f(z) of the inte-
grand such that the integral converges absolutely45, as required by the
assumptions of Theorem 6.7.

It is clear that, after performing N integrations using Theorem 6.7, we land
on a number belonging to Zsv = Ssv

¶0,1♢,Q, as claimed. □

45This and the previous remark can be seen also as a double-check that the
integrals (7.33) are indeed absolutely convergent: suppose for instance that at some
integration step we could get a factor (zi − zj)2(zi − zj), then the next integral in
zi would be divergent, and therefore (7.33) must be divergent too.
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Appendix A. Regions of absolute convergence of the
integrals considered

Proposition A.1. For each subset of indices I = ¶i1, . . . , ih♢ ⊂ ¶1, . . . N♢,
with i1 < i2 < · · · < ih, and for (aaa, ãaa, bbb, b̃bb, ccc, c̃cc,ddd, d̃dd) ∈ CN(N+5) as in Section 3.3,
we define
(A.1)

UI,0 :=


(aaa, ãaa, bbb, b̃bb, ccc, c̃cc,ddd, d̃dd) : Re

 h∑

s=1

ais
+ ãis

2
+

∑

1≤s<r≤h

dis,ir
+ d̃is,ir

2


> −h


,

(A.2)

UI,1 :=


(aaa, ãaa, bbb, b̃bb, ccc, c̃cc,ddd, d̃dd) : Re

 h∑

s=1

bis
+ b̃is

2
+

∑

1≤s<r≤h

dis,ir
+ d̃is,ir

2


> −h


,

(A.3)

UI,η :=


(aaa, ãaa, bbb, b̃bb, ccc, c̃cc,ddd, d̃dd) : Re

 h∑

s=1

cis
+ c̃is

2
+

∑

1≤s<r≤h

dis,ir
+ d̃is,ir

2


> −h


.
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Morever, if ♣I♣ = h ≥ 2 we define

(A.4) DI :=


(aaa, ãaa, bbb, b̃bb, ccc, c̃cc,ddd, d̃dd) : Re

 ∑

1≤s<r≤h

dis,ir
+ d̃is,ir

2


> 1 − h


.

Finally, let

(A.5) U∞ :=


(aaa, ãaa, bbb, b̃bb, ccc, c̃cc,ddd, d̃dd) :

Re

 N∑

i=1

ai + ãi + bi + b̃i + ci + c̃i

2
+

∑

1≤i<j≤N

di,j + d̃i,j

2


< −N


.

The region of absolute convergence CN ⊂ CN(N+5) of the correlation function
GN (η) (3.11) is, for any fixed η ̸= 0, 1, given by the intersection of all the do-
mains UI,0, UI,1, UI,η, DI , U∞. Moreover, the region of common absolute con-
vergence DN ⊂ CN(N+5)/2 of all the Aomoto-Gel’fand functions (4.2), i.e. the
region of absolute convergence of the integral

(A.6)

ˆ

RN

N∏

i=1

♣zi♣ai ♣zi − 1♣bi ♣zi − η♣ci
∏

1≤i<j≤N

♣zi − zj ♣dij

N∏

i=1

dzi ,

is also given by the intersection of all the domains UI,0, UI,1, UI,η, DI , U∞

restricted to CN(N+5)/2 via ãaa := aaa, b̃bb := bbb, c̃cc := ccc and d̃dd := ddd.

Idea of the proof. Proving this result is essentially a long exercise in elemen-
tary analysis. In fact, there are different ways of computing this convergence
region, which give seemingly different but equivalent conditions on the pa-
rameters. The method that we suggest is to divide the domain of integra-
tion into all possible regions 0 ≤ ♣zik

♣ ≤ · · · ≤ ♣zi1 ♣ and operate the change of
variables uj = zij

/zij−1 (setting zi0 = 1). From this, passing to polar coordi-
nates, one easily works out the domains UI,0 and U∞, where the integral is
convergent near some uj = 0 or near u1 = ∞, respectively. The regions UI,1

and UI,η, which take into account the singularies zi = 1 and zi = η, respec-
tively, are then obtained by substituting (aaa, ãaa) ↔ (bbbi, b̃bbi) and (aaa, ãaa) ↔ (ccc, c̃cc),
respectively. Finally, one must take care of integrals over ♣ui♣ ∈ [0, 1] of terms∏

i<j ♣1 − ui+1 · · · uj ♣dij+d̃ij , which account for singularities along the diago-
nals but away from 0 or ∞. This can be done by substituting ui = 1 − ρie

iθi

and analysing the asymptotics as ρi → 0, and it leads to considering the re-
gions DI . The region of convergence of the real integrals (A.6) turns out to be
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the same as that of the complex ones with ãaa := aaa, b̃bb := bbb, c̃cc := ccc and d̃dd := ddd.
This is easily seen immediately after passing to polar coordinates. □

This result can be specialised (either by setting η = 0 or η = 1, or by
setting ccc = 000) with the correct parameter identifications to obtain the con-
vergence region for the closed string building blocks (3.8). For instance, con-
sidering the tachyonic integral (3.9) for N = 1 and N = 2 we find that

(A.7) Ctachyon
1 = ¶(a1, b1) : Re(a1), Re(b1) > −1, Re(a1 + b1) < −1♢,

Ctachyon
2 = ¶(a1, a2, b1, b2, c1,2) : Re(a1), Re(a2), Re(b1), Re(b2), Re(c1,2)>−1

Re(a1 + b1 + c1,2), Re(a2 + b2 + c1,2) > −2,

Re(a1 + a2 + b1 + b2 + c1,2) < −2♢(A.8)

We remark that the point (aaa, ãaa, bbb, b̃bb, ccc, c̃cc,ddd, d̃dd) with aaa = ãaa = bbb = b̃bb = ccc =
c̃cc = (−1, . . . , −1) and ddd = d̃dd = (0, . . . , 0) belongs to the boundary of CN , and
that for Re(ε) > 0 small enough all the points (aaa, ãaa, bbb, b̃bb, ccc, c̃cc,ddd, d̃dd) with aaa = ãaa =
bbb = b̃bb = ccc = c̃cc = (−1 + ε, . . . , −1 + ε) and ddd = d̃dd = (0, . . . , 0) are contained in
CN , which in particular is always non-empty.
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