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We prove that a spectral gap-filling phenomenon occurs whenever a
Hamiltonian operator encounters a coarse index obstruction upon
compression to a domain with boundary. Furthermore, the gap-
filling spectra contribute to quantised current channels, which fol-
low and are localised at the possibly complicated boundary. This
index obstruction is shown to be insensitive to deformations of
the domain boundary, so the phenomenon is generic for magnetic
Laplacians modelling quantum Hall systems and Chern topologi-
cal insulators. A key construction is a quasi-equivariant version of
Roe’s algebra of locally compact finite propagation operators.
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1. Introduction

One insight gained from the study of quantum Hall systems and topologi-
cal insulators, is that their Hamiltonian operators HX , acting on L2(X) for
some manifold X say, have spectral gaps that become filled up with “topo-
logical boundary states” when HX is compressed to an operator HW acting
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on some domain W ⊂ X with boundary. Examples and rigorous proofs of
such gap-filling phenomena are available in the case X = R

2 and W a half-
plane, e.g. [4, 5, 8, 12]. For general domains, not much is rigorously known
about the fate of these boundary states. The physical expectation is that
they persist due their “topological origin” and contribute to a quantised
boundary-following current. Furthermore, to properly qualify as “topologi-
cal” and fulfil their advertised novel applications, the boundary states should
be robust against modifications of boundary conditions, see pp. 8 of [1] for
a physical discussion.

Outline. In this paper, we use the tools of coarse geometry and K-theory to
study the spectral gap-filling phenomenon in very general geometric settings,
and especially its striking consequences in the form of boundary currents.

If HX is invariant with respect to a group action by Γ, the spectral pro-
jection PS onto a separated part S of its spectrum defines an abstract K-
theory class [PS ] for the Γ-equivariant Roe algebra of X, denoted C∗(X,Γ)
(see Thm. 3.2 and [15]). A subset W ⊂ X is not generally invariant under
Γ (or even under any subgroup of Γ), but we nevertheless associate a Roe
type algebra Q∗(W,Γ) to it, which we call the quasi-equivariant Roe algebra
introduced in Section 2. Here a quasi-equivariant operator on L2(W ) has the
crucial property that it eventually becomes equivariant as one moves suffi-
ciently far away from ∂W . This “periodization” procedure maps Q∗(W,Γ)
onto C∗(X,Γ), with kernel the Roe algebra of W localised at ∂W , denoted
C∗
W (∂W ); this gives the short exact sequence

0 C∗
W (∂W ) Q∗(W,Γ) C∗(X,Γ) 0.

In Section 3, we explain how the correspondingK-theoretic exponential map
ExpW : K0(C

∗(X,Γ)) → K1(C
∗
W (∂W )) applied to [PS ] gives a “boundary-

localised” obstruction for the compressed HW acting on L2(W ) to maintain
the spectral gaps adjacent to S. Thus ExpW [PS ] ̸= 0 implies gap-filling when
passing from HX to HW (see Fig. 2).

Here, we observe that ExpW [PS ] ∈ K1(C
∗
W (∂W )) is a non-equivariant

coarse index, so that no invariance property whatsoever is required of ∂W .
This is why our methods can address what is arguably the most astounding
aspect of the gap-filling phenomenon by boundary states — it persists under
deformations of the geometry of ∂W .

The direct computation of the obstruction ExpW [PS ] might seem diffi-
cult except for special choices of W . In Section 4, we prove a certain cobor-
dism invariance of this obstruction, inspired by Roe’s partitioned manifold
index theorem [22, 23]. We exploit this invariance to reduce the problem to
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standard half-spaces W for which ExpW [PS ] can be computed explicitly. For
example, in Section 5, the obstruction is shown to be present for spectral
projections of Chern insulators such as the magnetic Laplacian HLan,X on
X = R

2 (the Landau Hamiltonian in physics), for generic W ⊂ R
2, includ-

ingW with multiple boundary components. Thus we deduce a family of new
results, that HLan,W has no gaps in its spectrum (above the lowest Landau
level), without having to solve the extremely difficult spectral problem for
HLan,W .

In Section 6, under a polynomial growth condition on Γ, we prove Theo-
rem 6.1 which provides a more concrete numerical formula for the gap-filling
indicator ExpW [PS ] ∈ K1(C

∗
W (∂W )). As explained in Remark 6.2, the nu-

merical formula is physically the general expression for the current along the
boundary ∂W due to the gap-filling states of HW , and there is no a priori
reason for it to take on only quantised values. In identifying this boundary
current with a Fredholm index, Theorem 6.1 explains why it is quantised, in-
variant under “coarse modifications” of ∂W and boundary conditions there,
and invariant against perturbations ofHX preserving the spectral separation
of S.

Related work: For certain physical applications, e.g. quantum Hall ef-
fect, it is also important to establish robustness of the gap-filling spectra
with respect to disorder and random potential terms, [3, 8, 12, 19]. We
do not address these issues, but rather focus on introducing new mathe-
matical techniques to establish robustness with respect to choice of domain
W . We mention that the case of discrete X (“tight-binding” Hamiltonians
describing lattice models) was studied recently by the second author [24]
using somewhat different techniques, and it provided preliminary evidence
motivating this work. The authors also expanded the coarse index method
to study gap-filling of Landau operators on the hyperbolic plane [16]. Two
earlier works which introduced (uniform) Roe algebras and coarse geometry
methods in topological phases of lattice models are [7, 13]. Finally, a recent
paper proposes coarse cohomology as invariants for interacting lattice sys-
tems [11], generalising the oft-utilised Chern classes in the non-interacting
case.

2. The quasi-equivariant Roe algebra

We begin with a rather general setting which allows the construction of what
we call the quasi-equivariant short exact sequence of C∗-algebras, Eq. (2.5).
This sequence can be considered a generalisation of the classical Toeplitz
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extension, reviewed in Example 2.5. After this section, we will adopt a more
geometric setting, detailed at the beginning of §3, which is suitable for spec-
tral theory.

Let (X, d, dx) be a proper metric measure space, i.e., one in which
closed balls are compact. For two subsets Y, Z ⊂ X, their distance is de-
noted by d(Y, Z) = inf{d(y, z) : y ∈ Y, z ∈ Z}. We also write BR(A) = {x ∈
X : d(x,A) ≤ R}. For f ∈ L∞(X), we write f for the corresponding multi-
plication operator on L2(X). We say that A ∈ B(L2(X)) is locally compact, if
Af and fA are compact for all compactly supported f ∈ Cc(X). A has finite
propagation if there exists R ≥ 0 such that fAg = 0 whenever f, g ∈ C0(X)
have supports at least R apart. The closure in B(L2(X)) of all locally com-
pact, finite propagation operators is the Roe algebra C∗(X) [23].

Assume moreover that X carries a proper, isometric, measure-preserving
action of a locally compact group Γ. This means that the group Γ acts
from the right on L2(X), via the unitary operators Uγ , γ ∈ Γ defined by
Uγw := γ∗w, w ∈ L2(X). The equivariant Roe algebra C∗(X,Γ) is the norm-
closure in B(L2(X)) of the Γ-invariant locally compact, finite propagation
operators.

Let W ⊂ X be a closed subset, with ∂W having zero measure. Note that
W is not assumed to be preserved under Γ.

We denote by ΠW : L2(X) → L2(W ) the map that restricts functions to
W and by Π∗

W : L2(W ) → L2(X) the map that extends functions by zero to
a function on X. For each γ ∈ Γ, we get the compressed operators

Tγ := ΠWUγΠ
∗
W ∈ B(L2(W )).

We remark that the resulting map Γ → B(L2(W )), γ 7→ Tγ is not a group
homomorphism; in particular, the operators Tγ are not generally invertible
or even isometries.

Definition 2.1 (The quasi-equivariant Roe algebra). We denote
by Q0(W,Γ) ⊆ B(L2(W )) the algebra of all locally compact, finite propaga-
tion operators A for which there exists R ≥ 0 such that (TγA−ATγ)w = 0
whenever both the support of w ∈ Cc(W ) and the support of Tγw have at
least distance R from ∂W . The quasi-equivariant Roe algebra Q∗(W,Γ) is
the closure of Q0(W,Γ) in the operator norm.

Intuitively, when we are far away from ∂W , a quasi-equivariant operator
on L2(W ) behaves like a Γ-invariant one on L2(X). More precisely, we can
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relate the quasi-equivariant and equivariant Roe algebras under the following
assumption on W :

(2.1)
For each x ∈ X, there exists a sequence (γn)n∈N in Γ

such that γnx ∈W and d(γnx, ∂W ) → ∞.

For example, this is automatic if the action is cocompact and d(·, ∂W ) is
unbounded on W . Fig. 1 illustrates some subsets of the Euclidean plane
(with standard Γ = Z

2 action) satisfying/failing this criterion.

Theorem 2.2 (The periodization map). Under the assumption (2.1),
there exists a unique ∗-homomorphism

ϖ : Q∗(W,Γ) −→ C∗(X,Γ), A 7−→ ϖA,

the periodization map, with the property that for all A ∈ Q0(W,Γ), there
exists R ≥ 0 such that whenever the support of w ∈ Cc(W ) has distance at
least R from ∂W , then ϖAΠ∗

Ww = Π∗
WAw.

Proof. To define ϖ, start with A ∈ Q0(W,Γ), and let R ≥ 0 be such that
(TγA−ATγ)w = 0 whenever the supports of w and Tγw have at least dis-
tance R from ∂W . Now by assumption (2.1) on W , for any compactly sup-
ported function w ∈ Cc(X), we can find γ ∈ Γ such that Uγw is supported
in W , with distance at least R+ S from ∂W , where S is the propagation
speed of A. For such a γ, the required properties of ϖ implies that we must
necessarily have

(2.2) ϖAw = U∗
γϖAUγw = U∗

γΠ
∗
WAΠWUγw,

which we raise to a definition. We show that this definition does not depend
on the choice of γ. Indeed, if γ′ is another element such that Uγw is supported
in W , with distance at least R+ S from ∂W , we can write γ′ = γη and get

U∗
γ′Π∗

WAΠWUγ′w = U∗
γU

∗
ηΠ

∗
WAΠWUηUγw

= U∗
γU

∗
ηΠ

∗
WATηΠWUγw

= U∗
γU

∗
ηΠ

∗
WTηAΠWUγw

= U∗
γU

∗
ηUηΠ

∗
WAΠWUγw

= U∗
γΠ

∗
WAΠWUγw

Here in the second step, we used that both UηUγw = Uγ′w and Uγw have
support in W , hence ΠWUηUγw = TηΠWUγw. Then, since the supports of
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ΠWUγw and TηΠWUγw = ΠWUγ′w have distance at least R+ S from ∂W

(by choice of γ, γ′), we have (ATη − TηA)ΠWUγw = 0. Finally, we claim
that Π∗

WTηAΠWUγw = UηΠ
∗
WAΠWUγw, for which we have to show that

both Π∗
WAΠWUγw and UηΠ

∗
WAΠWUγw are supported in W . To see this,

first notice that because A has propagation speed at most S and Uγw has
support with distance at least R+ S from the boundary, the support of
AΠWUγw still has distance at least R from the boundary. Similarly, the
support of UηΠ

∗
WAΠWUγw is contained in

η ·BS

(
supp(Uγw)

)
= BS

(
η · supp(Uγw)

)
= BS(supp(Uγ′w)),

hence is contained in W , with distance at least R from the boundary. This
proves the claim and finishes the proof that Eq. (2.2) is independent of the
choice of γ for all operators A as above and all w ∈ Cc(X).

Since Uγ , Π
∗
W and ΠW have operator norm one, we have the estimate

(2.3) ∥ϖAw∥L2(X) = ∥U∗
γΠ

∗
WAΠWUγw∥L2(X) ≤ ∥A∥∥w∥L2(W )

for all w ∈ Cc(X). Therefore, as Cc(X) is dense in L2(X), the operator ϖA
defined by Eq. (2.2) extends by continuity to a bounded operator on all of
L2(X). Finally, we see that the estimate Eq. (2.3) also implies that the map
ϖ : Q0(W,Γ) → B(L2(X)) is bounded, hence again extends by continuity to
all of Q∗(W,Γ).

We need to show that ϖA is Γ-equivariant. It suffices to verify this for
A ∈ Q0(W,Γ) and w ∈ Cc(X). Let η ∈ Γ be arbitrary and γ as in Eq. (2.2).
Then Uη−1γUηw = Uγw is supported inW , with distance at least R+ S from
∂W , hence

ϖAUηw = U∗
η−1γΠ

∗
WAΠWUη−1γUηw = UηU

∗
γΠ

∗
WAΠWUγw = UηϖAw,

as required.
Finally, we have to show that ϖ is an ∗-homomorphism, which can again

be verified on Q0(W,Γ). By the equivariance ofϖA just verified, it suffices to
check that ϖAϖBw = ϖ(AB)w and (ϖA)∗w = ϖA∗w for w with support
in W , far away from ∂W . However, this case is trivial. □

The map ϖ admits a section,

(2.4) σ : C∗(X,Γ) → Q∗(W,Γ), A 7−→ ΠWAΠ
∗
W ,

in other words, we have ϖσ = id. This follows directly from the formula Eq.
(2.2) for ϖ. We emphasise that this map is not an algebra homomorphism,
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as it is not multiplicative. The existence of σ in particular shows that the
periodization map ϖ is surjective, and its kernel turns out to be the localised
Roe algebra at ∂W (defined below), hence we obtain a short exact sequence
of C∗-algebras,

(2.5) 0 C∗
W (∂W ) Q∗(W,Γ) C∗(X,Γ) 0.ϖ

σ

Definition 2.3 ([10], §9 of [23]). Let CW,0(∂W ) ⊂ B(L2(W )) be the sub-
set of operators A that are locally compact, of finite propagation and sup-
ported near ∂W , meaning that there exists R ≥ 0 such that Aw = 0 for
all w ∈ Cc(W ) the support of which has distance at least R from ∂W . The
Roe algebra of W localised at ∂W , denoted by C∗

W (∂W ), is the closure of
CW,0(∂W ) in the operator norm.

Lemma 2.4. C∗
W (∂W ) is the kernel of ϖ.

Proof. It is clear from the definition Eq. (2.2) that ϖAw = 0 for all A ∈
CW,0(∂W ) and all w ∈ Cc(X). By continuity, we also have ϖAw = 0 for
all w ∈ L2(X), hence CW,0(∂W ) ⊆ ker(ϖ). Suppose, conversely, that A ∈
Q0(W,Γ) ∩ ker(ϖ). Then for all w ∈ Cc(W ), the support of which has dis-
tance at least R+ S from ∂W (where S is the propagation speed of A and
R the constant from Def. 2.1), we have

Π∗
WAw = ΠWϖAΠ

∗
Ww = 0,

by formula Eq. (2.2), where we may choose γ = 1. Hence A is supported
near the boundary, so that A ∈ CW,0(∂W ).

We have shown that CW,0(∂W ) = ker(ϖ) ∩ Q0(W,Γ). Suppose now
that ϖA = 0 for a general A ∈ Q∗(W,Γ), and let A = limnAn with An ∈
Q0(W,Γ). Then A′

n := An − σϖAn ∈ Q0(W,Γ) satisfies ϖA′
n = 0, hence

A′
n ∈ CW,0(∂W ), by our previous considerations. However, by continuity of

ϖ and σ, we have limnA
′
n = A− σϖA = A, hence A is in the closure of

CW,0(∂W ), which is C∗
W (∂W ). □

Example 2.5 (The Toeplitz extension). Consider X = R, with its
canonical action of Γ = Z. The interval [0, 1] is a fundamental domain for
the action, and we get C∗(X,Γ) ∼= K(L2([0, 1]))⊗ C∗

r (Z), where K denotes
the compact operators. The quasi-equivariant algebra for W = R+ ≡ [0,∞)
is Q∗(W,Γ) = K(L2([0, 1]))⊗ T , where T = {ΠNAΠ

∗
N
| A ∈ C∗

r (Z)} ⊂
B(ℓ2(N)) is the Toeplitz algebra obtained by compressing the reduced group
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C∗-algebra C∗
r (Z) ⊂ B(ℓ2(Z)) to ℓ2(N). The Roe algebra of W localised at

∂W is just C∗
W (∂W ) = K(L2(R+)) ∼= K(ℓ2(N))⊗K(L2([0, 1])) in this case,

and the quasi-equivariant short exact sequence Eq. (2.5) is just the Toeplitz
extension

0 K
(
L2(N)

)
T C∗

r (Z) 0

tensored with K(L2([0, 1])).

The short exact sequence Eq. (2.5) yields the cyclic six-term exact se-
quence in K-theory

(2.6)

K0

(
C∗
W (∂W )

)
K0

(
Q∗(W,Γ)

)
K0

(
C∗(X,Γ)

)

K1

(
C∗(X,Γ)

)
K1

(
Q∗(W,Γ)

)
K1

(
C∗
W (∂W )

)
.

ϖ∗

ExpWIndW

ϖ∗

For functorial operations, it is usual to assume that L2(X) is ample (or
adequate, or standard), i.e., the multiplication operator by f ∈ C0(X) is a
compact operator in B(L2(X)) only when f = 0. This condition is always
satisfied in the geometric setting of §3 onwards.

Notice that the algebra C∗
W (∂W ) is the direct limit of its subalgebras of

operators that are supported near the boundary,

C∗
W (∂W ) = lim−→C∗

(
BR(∂W ) ∩W

)
.

Now since the inclusion map ∂W →֒ BR(∂W ) ∩W is a coarse equivalence
for every R ≥ 0, we have C∗(BR(∂W ) ∩W ) ∼= C∗(∂W ), the Roe algebra of
∂W [7, Thm. 2.7]. While this isomorphism is non-canonical, one can choose
it to be implemented by a unitary transformation of the underlying Hilbert
space. Therefore, one obtains a canonical isomorphism of K-theory groups,
cf. §5, Lemma 1 of [10],

(2.7) K∗

(
C∗
W (∂W )

) ∼= K∗

(
C∗(∂W )

)
.

One quick consequence of being able to “thicken” ∂W is an invariance
of the six-term sequence Eq. (2.6) under modifications of ∂W within its
thickening:

Proposition 2.6. Let W,W ′ ⊆ X be two subsets satisfying the condition
(2.1), and assume that there exists R ≥ 0 such that ∂W ′ ⊂ BR(∂W ) and
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Figure 1: The shaded domains in the first three diagrams show allowed
half-spaces W (in the sense of §3) in the Euclidean plane X = R

2; they sat-
isfy condition (2.1). W may be multiply-connected and/or have several un-
bounded boundary components. The last shaded figure fails condition (2.1).

∂W ⊆ BR(∂W
′). Then there is a canonical isomorphism between the corre-

sponding K-theory six-term sequences Eq. (2.6) that is the identity at the
terms Ki(C

∗(X,Γ)).

Proof. We may assume that W ′ ⊆W . Then the map j : B(L2(W ′)) →
B(L2(W )) given by sending A to Π∗

WAΠW is an injective ∗-homomorphism,
which sends Q∗(W ′,Γ) to Q∗(W,Γ) and C∗

W ′(∂W ′) to C∗
W (∂W ).

We claim that j∗ : Ki(C
∗
W ′(∂W ′)) →֒ Ki(C

∗
W (∂W )) is an isomorphism.

To this end, pick an open subset V ⊂W ′ such that ∂W ′, ∂W ⊂ BR(V )
for some R ≥ 0 and such that V ⊂ BR(∂W

′). By the choice of V , both
C∗
W ′(∂W ′) and C∗

W (∂W ) can be described as the closure of the space of lo-
cally compact, finite propagation operators onW ′ (respectivelyW ) that are
supported near V instead of near ∂W ′ (respectively ∂W ). By the consider-
ations before, the inclusions ιW ′ : C∗(V ) →֒ C∗

W ′(∂W ′) and ιW : C∗(V ) →֒
C∗
W (∂W ) each induce isomorphisms inK-theory. On the other hand, we have

ιW = j ◦ ιW ′ , hence j must induce an isomorphism in K-theory as well.
The result now follows from the five lemma. □

For example, W might be the standard half-plane R+ × R in the Euclidean
plane, having straight boundary the vertical axis. Then we could modify
W →W ′ such that ∂W ′ remains within a vertical strip [−R,R]× R but is
otherwise arbitrary. This encompasses the rough boundaries considered in
[18] (see also [24]) in the context of Euclidean lattice models. In §4, we will
develop and exploit such ideas in greater generality.
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3. Spectral gap filling phenomenon

Conventions for the rest of the paper. We will specialise to X a com-
plete connected Riemannian manifold with an effective, cocompact, properly
discontinuous, isometric action of a discrete countable group Γ. Due to co-
compactness of the action, the condition (2.1) on closed subsets W ⊂ X

(still with measure zero ∂W ) becomes the condition that

The function d(x,X \W ) is unbounded.

We will call such a subspace a half-subspace of X, or simply a half-space.

3.1. Functional calculus for Hamiltonians on a subspace

Let H be a Γ-invariant elliptic differential operator on X, which is either of
first order or of Laplace type (hence second order), with smooth coefficients.
We assume thatH is symmetric on the domain C∞

c (X) ⊂ L2(X); the general
theory of such operators then asserts that it has a unique extension to an
unbounded, self-adjoint operator on L2(X), which we denote by HX . In
the Laplace case, we assume additionally that HX is non-negative. More
generally, we can consider E a Γ-equivariant hermitian vector bundle over
X, and a Γ-invariant Hamiltonian HX acting on its sections L2(X;E), but
we will suppress the dependence on E for ease of notation.

Let W ⊆ X be a closed subset as above and consider H on C∞
c (W ◦),

where W ◦ is the interior. We assume that we are given a self-adjoint exten-
sion HW of this operator determined by a local elliptic boundary condition.
In the Laplace case, we assume that HW is still non-negative.

Remark 3.1. A typical example of such a boundary condition is the Dirich-
let boundary condition f |∂W = 0, but there are usually many others ([20]
§X). Let us mention that in the Laplace case, such self-adjoint extensions
HW exist (see [20] §X.3), whereas i d

dx
on the half-line W = [0,∞) gives the

classical first-order example with no self-adjoint extensions.

Theorem 3.2. For each φ ∈ C0(R), we have φ(HX) ∈ C∗(X,Γ), φ(HW ) ∈
Q∗(W,Γ), and ϖφ(HW ) = φ(HX).

Proof. We first discuss the case where H is a Laplace type operator. Since
HX is positive, we have ψ(

√
HX) = φ(HX) with ψ(x) = φ(x2). Since ψ is
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an even function, we have the Fourier transform formula

φ(HX)w = ψ
(√

HX

)
w =

1

π

∫ ∞

0
ψ̂(s) cos

(
s
√

HX

)
w ds,

where ψ̂ is the Fourier transform of ψ. The wave operator cos
(
s
√
HX

)
has

finite propagation, hence if ψ̂ is compactly supported, φ(HX) has finite prop-
agation as well. Local compactness is a consequence of elliptic regularity [9,
Prop. 10.5.1]. Since functions with compactly supported Fourier transform
are dense in C0(R), the result follows.

Let now W be a subset as above. By assumption, HW is still positive,
hence we get again

φ(HW )w =
1

π

∫ ∞

0
ψ̂(s) cos

(
s
√

HW

)
wds.

Now in W , both cos(s
√
HW )w and cos(s

√
HX)w solve the wave equation

(∂2s +H)ws = 0 in W with initial conditions w0 = w and ∂sw0 = 0. By
uniqueness of solutions to the wave equation, we have

cos
(
2πs
√

HW

)
w = cos

(
2πs
√

HX

)
w

for all times s ≤ R, whenever w ∈ Cc(W ) with d(supp(w), ∂W ) > R. In par-
ticular, we have

(
φ(HW )− σφ(HX)

)
w

= 2

∫ ∞

R

φ̂(s)
(

cos
(
2πs
√

HW

)
−ΠW cos

(
2πs
√

HX

)
Π∗

W

)

w ds,

where ΠW : B(L2(X)) → B(L2(W )) denotes the restriction operator with
adjoint Π∗

W : B(L2(W )) → B(L2(X)) the extension-by-zero operator as be-
fore. Now if φ̂ has compactly supported Fourier transform, the right hand
side vanishes if R is large enough. This means that

(
φ(HW )− σφ(HX)

)
w =

0 whenever w has distance larger thanR from the boundary. Hence φ(HW )−
σφ(HX) is supported near ∂W , and the result in this case follows from Eq.
(2.5). For the general case, use the fact that functions φ with compactly
supported Fourier transform are dense in C0(R).

If HX is a first order operator, a similar Fourier transform argument
can be made using the fact that the wave semigroups eisHX and eisHW have
finite propagation speed. □
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3.2. Exponential map in K-theory detects spectral gap filling

Suppose we are given a compact subset S ⊂ Spec(HX), which is separated
from the rest of the spectrum by spectral gaps, say (a, inf S), (supS, b) ⊆
R \ Spec(HX). Let PS ∈ B(L2(X)) be the orthogonal projection onto the
spectral subspace L2

S(X) determined by S. Owing to the existence of spectral
gaps, PS can be written as a smooth, compactly supported function of HX ,
hence by Thm. 3.2, we have PS ∈ C∗(X,Γ) so that we obtain a class [PS ] ∈
K0(C

∗(X,Γ)); compare also [15].
With HW as in §3.1, we note the following easy consequence of Theo-

rem 3.2.

Corollary 3.3. The spectrum of HW contains that of HX .

Proof. Suppose otherwise, that the resolvent ρ(HW ) has some intersection
with Spec(HX). Pick a bounded open subinterval V ⊂ ρ(HW ) such that
V ∩ Spec(HX) ̸= ∅, and let φ̃ be a continuous bump function supported in V
which is not zero on Spec(HX). This means that φ̃(HW ) = 0 but φ̃(HX) ̸= 0.
But Theorem 3.2 would then give 0 ̸= φ̃(HX) = ϖφ̃(HW ) = ϖ(0) = 0. □

So in the passage from HX to HW , a spectral gap of HX may become
partially filled with new spectra of HW . We are interested in whether the
gap persists at all, or whether it instead gets completely filled. The following
theorem gives a criterion for this.

Theorem 3.4 (Spectral gap filling). If ExpW [PS ] ̸= 0 in the 6-term ex-
act sequence Eq. (2.6) associated toW ⊂ X, then either (a, inf S) or (supS, b)
is in Spec(HW ).

Proof. Let φS be any compactly supported smooth function such that φS ≡
1 on S and φS = 0 on Spec(HX) \ S. Then PS = φS(HX). By Thm. 3.2, we
have φS(HX) ∈ C∗(X,Γ), φS(HW ) ∈ Q∗(W,Γ) and ϖφS(HW ) = φS(HX).
Hence by definition of the exponential map, we have

ExpW ([PS ]) =
[
exp
(
−2πiφS(HW )

)]
.

Now suppose that there exist open sets (c, d) ⊆ (a, inf S), (e, f) ⊆ (supS, b)
not contained in Spec(HW ). Then we can choose the above function φS

in such a way that φS ≡ 1 on (d, e) and φS ≡ 0 on (−∞, c] ∪ [f,∞). Since
this function φS takes the values zero and one on Spec(HW ), φS(HW ) is a
projection. Hence exp(−2πiφS(HW )) is the identity, hence Exp([PS ]) = 0.
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This shows that if ExpW ([PS ]) ̸= 0, the spectrum of HW cannot contain
non-empty open subsets of both [a, inf S] and [supS, b]. Since Spec(HW ) is
a closed set, this implies that one of the sets [a, inf S] or [supS, b] must be
contained in Spec(HW ). □

S

φS

a b S1 S2 S3

φS1∪S2
φS1

−φ′
S1

Figure 2: (L) Thick lines indicate the spectrum of HX as a subset of the real
horizontal axis. A compact separated part S of the spectrum has spectral
projection φS(HX) for some smooth function φS which is 1 on S and 0 else-
where in the spectrum. (R) SupposeHX is bounded below, and S1, S2, S3 are
the first three separated parts of its spectrum, with ExpW [φS1∪S2

(HX)] = 0
but ExpW [φS1

] ̸= 0. Then as indicated by the thinner horizontal lines, the
spectrum of HW will include the entire gap between S1 and S2, but not
necessarily the gap between S2 and S3. The dotted curve denotes −φ′

S1
.

Remark 3.5. If HW is bounded below, we may consider S to be the spec-
trum of HX lying below some resolvent value (the Fermi level is one example
of physical interest). If ExpW ([PS ]) ̸= 0 so that gap-filling occurs, it must be
the bounded spectral gap above S which is filled in the passage from HX to
HW , rather the unbounded gap below S. Another way to see this is to choose
φS to be 1 on (−∞, supS] and 0 on [b,∞), see Fig. 2.

4. Cobordism invariance of gap-filling

Guided by the constructions used in the partitioned manifold index theorem
in [23] §4, we shall construct an index map K1(C

∗
W (∂W )) → Z associated

to a partition of W . To avoid confusion in what follows, we mention that in
writing ∂W for ∂XW (the boundary of W in X), we had been keeping the
background X implicit by convention.
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Partitioning a space. Given a subset Z of a topological space W , the
regular complement is defined1 as Z⊥ :=W \ Z◦ =W \ Z, and it is easy to
see that (Z⊥)⊥ = Z◦. We say that Z is regular closed if Z = Z◦ (= (Z⊥)⊥).

Let W+ be a regular closed subset of W , then W− :=W⊥
+ is also regular

closed. The interiors of W+ and W− are disjoint, and the remaining subset

N :=W \ (W ◦
+ ∪W ◦

−) =W⊥
+ ∩W⊥

− =W− ∩W+,

is just their intersection. Note that

∂WW+ =W+ ∩W \W+ =W+ ∩W−
︸ ︷︷ ︸

N

=W \W− ∩W− = ∂WW−,

so that N is simultaneously the boundary (inside W ) of W+ and of W−.
Thus, specifying a regular closed subset W+ ⊂W gives a sensible notion of
partitioning W , and swapping + and − just switches the two “sides” of N .

Example 4.1. The standard example is W the closed right-half Euclidean
plane, andW+ the closed upper-right quadrant. ThenW− is the closed lower-
right quadrant, while the partitioning set N is the positive x-axis. Other
examples are illustrated in Fig. 3.

Since we are primarily interested in partitioning spaces W that them-
selves arise as half-spaces inside X, we make the following restriction to
avoid pathological partitions on W .

Definition 4.2 (Admissible partition). Let W ⊂ X be a half-subspace
(as defined in §3). An admissible subset W+ ⊂W is a regular closed subset
of W , with the following properties:

(i) For each R ≥ 0, there exists S ≥ 0 such that BR(W+) ∩BR(W−) ⊂
BS(N), or equivalently, BR(W+) ∩BR(W−) \BS(N) = ∅. Here N :=
W+ ∩W−.

(ii) For each R ≥ 0, the set Q
W ;W+

R := BR(X \W ) ∩BR(N) is bounded.

(iii) N has measure zero.

Note that W+ is admissible iff its regular complement W− is admissible.

1Here, the symbol ◦ denotes taking the interior, while (·) denotes closure (both
taken in W ).
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Remark 4.3. If W = X, condition (i) is the precisely the notion of a
coarsely excisive decomposition of W [10]. Condition (ii) is a transversality
condition between N and ∂W (the boundary of W in X).

Example 4.4. Two examples of inadmissible partitions of half-spaces W
in the Euclidean plane are illustrated below.

W+

W−

N

∂W

W+

W−

N

∂W

Lemma 4.5. Let ΠW+
be the multiplication operator on L2(W ) by the char-

acteristic function of W+. For any admissible subset W+ ⊂W and any op-
erator A ∈ C∗

W (∂W ), the commutator [ΠW+
, A] is compact.

Proof. Let A ∈ B(L2(W )) have finite propagation strictly less than R > 0.
Then for f ∈ C0(W ) with support inW+ of distance at least R fromW−, Af
is still supported in W+. Hence [ΠW+

, A]f = ΠW+
Af −Af = 0. Moreover,

for any g ∈ C0(W ), we have f [ΠW+
, A]g = fAg − fAΠW+

g = fAΠW−
g. How-

ever, AΠW−
g has support in BR(W−), hence fAΠW−

g = 0.
Similarly, if f has support in W− with distance at least R from W+,

then Af is still supported in W− and [ΠW+
, A]f = ΠW+

Af = 0. Moreover,
for any g, we have f [ΠW+

, A]g = −fAΠW+
g = 0, since AΠW+

g is supported
in BR(W+). Together with the observations from the previous paragraph,
this shows that f [ΠW+

, A]g = 0 whenever one of f, g has support of distance
at least R from either W+ or W−. From the admissibility criterion (i) in
Definition 4.2, f [ΠW+

, A]g = 0 whenever one of f, g has support of distance
at least S from N .

Suppose additionally that A is locally compact and such that fAg = 0
whenever one of f, g has support with at least distance R′ from ∂W . Now if
one of f, g has support at least distance R′ from ∂W , so has ΠW+

f respec-
tively ΠW+

g, hence g[ΠW+
, A]f = 0. Together with the argument before, this

shows that f [ΠW+
, A]g = 0 whenever one of f, g has support outside the rel-

atively compact subset Q
W ;W+

max{R′,S} in Definition 4.2. Choosing a compactly

supported function χ ∈ C(W ) with χ ≡ 1 on W ∩QW ;W+

max{R′,S}, we therefore

obtain that [ΠW+
, A] = χ[ΠW+

, A]χ, and the assumption that A (hence also
[ΠW+

, A]) is locally compact implies compactness of [ΠW+
, A].
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W+

W−

N

↔

W+

W−

N ↔

W+

W ′
−

N ↔ N = N ′

W ′
+

W ′
−

Figure 3: The first two diagrams show two admissible partitions of the
same non-simply-connected half-space W , which are bordant. The second
to fourth diagrams illustrate Theorem 4.12 : while keeping N fixed, we can
modify W− →W ′

− and then W+ →W ′
+ to arrive at the standard parti-

tion of the half-plane W ′ in the last diagram, without changing the map
θW ;W+

◦ ExpW : K0(C
∗(X,Γ)) → Z.

We have now proven the lemma for all operators A ∈ CW,0(∂W ). A gen-
eral A ∈ C∗

W (∂W ) can be written as A = limnAn, where An ∈ CW,0(∂W )
and the limit is in the operator norm. Therefore, [ΠW+

, A] = limn[ΠW+
, An]

is a norm limit of compact operators, hence compact. □

It follows from Lemma 4.5, extended in the obvious way to direct sums,
that for any invertible A ∈Mn(C

∗
W (∂W )+), the compression TA :=

ΠW+
AΠ∗

W+
∈ B(L2(W+)

n) is invertible modulo compact operators, hence

Fredholm (here ΠW+
acts diagonally on L2(W )n).

Definition 4.6. Associated to an admissible subset W+ of W ⊆ X is the
map

θW+
≡ θW ;W+

: K1(C
∗
W (∂W )) → Z, [u] 7→ IndexTu,

where u ∈Mn(C
∗
W (∂W )+) is a representative unitary.

The extra subscript W in θW ;W+
will only be included when the role of

W needs to be emphasised. One easily checks that θW+
is well-defined and

additive.
We proceed to show that θW+

is somewhat insensitive to the choice of
admissible W+ ⊂W .

Definition 4.7. Let W+, W
′
+ be two admissible subsets of W ⊂ X, and let

W+∆W
′
+ denote their symmetric difference, i.e. the set of x ∈W that are

contained in exactly one of W+, W
′
+. We say that W+ and W ′

+ are bordant
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if W+ ∩W ′
+ is another admissible subset of W , and the set BR(X \W ) ∩

(W+∆W
′
+) is bounded for each R ≥ 0.

Fig. 3 and Fig. 5 show some examples of partitions by bordant and
non-bordant admissible subsets.

Proposition 4.8. If W+, W
′
+ are bordant admissible subsets of W ⊂ X,

then θW+
= θW ′

+
.

Proof. By a density argument, it suffices to check θW+
, θW ′

+
on a unitary u =

1 +A ∈ C∗
W (∂W )+ with A ∈ CW,0(∂W ). Write L2(W+) = L2(W+ \W ′

+)⊕
L2(W+ ∩W ′

+). With respect to this splitting, Tu = ΠW+
u has the matrix

representation

Tu =

(
1 + S R0

R1 T̃u

)

, where







R0 = ΠW+\W ′

+
AΠ∗

W+∩W ′

+
,

R1 = ΠW+∩W ′

+
AΠ∗

W+\W ′

+
,

S = ΠW+\W ′

+
AΠ∗

W+\W ′

+
,

and T̃u = ΠW+∩W ′

+
uΠ∗

W+∩W ′

+
is the Fredholm operator obtained by com-

pressing u to W+ ∩W ′
+. Since BR(∂W ) ∩ (W+ \W ′

+) ⊂ BR(X \W ) ∩
(W+∆W

′
+) is bounded for any R (thus relatively compact), and A has finite

propagation with support near ∂W , the operators R0, R1, S have compact
support. They are also locally compact, as A is, hence compact. Since the
index is invariant under compact perturbations, we obtain

Index(Tu) = Index

(
1 0

0 T̃u

)

= Index(T̃u).

Switching the roles of W+ and W ′
+, for T

′
u = ΠW ′

+
u, we also have

Index(T ′
u) = Index(T̃u).

Passing to direct sums, we obtain θW+
[u] = θW ′

+
[u] for any class in

K1(C
∗
W (∂W )). □

The remainder of this section is devoted to demonstrating that the map
θW ;W+

◦ ExpW : K0(C
∗(X,Γ)) → Z depends only on the partitioning subset

N and so we can modify W significantly (Theorem 4.12).

Proposition 4.9. Let W,W ′ ⊂ X be two half-spaces, and suppose W+ ⊂
W ∩W ′ is admissible for both W and W ′, and has the same boundary N in
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W and in W ′. Then the maps θW ;W+
◦ ExpW and θW ′;W+

◦ ExpW ′ coincide
as homomorphisms K0(C

∗(X,Γ)) → Z.

We will need the following lemma.

Lemma 4.10. Let W ⊂ X be closed, and let Z1, Z2 ⊂W be two subsets
such that BR(Z1) ∩BR(Z2) is bounded for each R ≥ 0. Then ΠZ1

AΠZ2
is a

compact operator on L2(W ) for each element of C∗(W ).

Proof. If A has finite propagation, then ΠZ1
AΠZ2

has bounded support by
the assumption on Z1, Z2. It is moreover locally compact since A is, hence
compact. For general A ∈ C∗(W ), write A as a norm limit over a sequence
(An)n∈N of finite propagation operators. Then ΠZ1

AΠZ2
is the norm limit

of the sequence (ΠZ1
AnΠZ2

)n∈N of compact operators, hence compact. □

Proof of Proposition 4.9. Step 1: We show that W+ remains admissible as a
subset of V =W ∪W ′. Denote by V− the regular complement of W+ in V ,
and notice that

V− = (W ∪W ′) \W+ = (W \W+) ∪ (W ′ \W+) = (W \W+) ∪ (W ′ \W+)

=W− ∪W ′
−.

Here, W,W ′, V ⊂ X are closed, so the above closures can be taken inside
X. It follows that W+ is regular closed in V , with boundary in V being
W+ ∩ V− = (W+ ∩W−) ∪ (W+ ∩W ′

−) = N . Thus condition (iii) is satisfied.
Condition (i) also follows: for any R ≥ 0, there is a S ≥ 0 such that

BR(W+) ∩BR(V−) =
(
BR(W+) ∩BR(W−)

)
∪
(
BR(W+) ∩BR(W

′
−)
)

⊂ BS(N)

by admissibility of W+ in both W and W ′.
Since BR(X \ V ) ⊂ BR(X \W ) ∪BR(X \W ′), taking intersection with

BR(N) gives Q
V ;W+

R ⊂ Q
W ;W+

R ∪QW ′;W+

R which is bounded by assumption.
So condition (ii) is satisfied.
Step 2: We show that W−∆W

′
− satisfy that BR(W−∆W

′
−) ∩BR(W+) is

bounded for each R ≥ 0. Given R ≥ 0, pick S ≥ 0 according to condition (i)
to ensure that

BR(W−) ∩BR(W+) \BS(N) = ∅ = BR(W
′
−) ∩BR(W+) \BS(N).
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Then BR(W−∆W
′
−) ∩BR(W+) \BS(N) = ∅ as well. Thus

BR(W−∆W
′
−) ∩BR(W+) = BR(W−∆W

′
−) ∩BR(W+) ∩BS(N)

⊂ BR(W−∆W
′
−) ∩BS(N).

Now note that a point in W−∆W
′
− is in X \W+, and either in (X \W−) or

(X \W ′
−), i.e.

W−∆W
′
− ⊂

(
X \ (W+ ∪W−)

)
∪
(
X \ (W+ ∪W ′

−)
)
= (X \W ) ∪ (X \W ′).

It follows that

BR(W−∆W
′
−) ∩BR(W+) ⊂ BR

(
(X \W ) ∪ (X \W ′)

)
∩BS(N)

⊂
(
BR+S(X \W ) ∩BR+S(N)

)

∪
(
BR+S(X \W ′) ∩BR+S(N)

)

= Q
W ;W+

R+S ∪QW ′;W+

R+S ,

which is bounded by condition (ii).
Step 3: Let p ∈Mn(C

∗(X,Γ)) be a projection. Let q = σp ∈Mn(Q
∗(W,Γ)),

q′ = σ′p ∈Mn(Q
∗(W ′,Γ)) be their canonical lifts by the section maps (2.4).

Extension by zero gives L2(W ), L2(W ′) ⊂ L2(V ), and we may view q, q′ as
elements of C∗(V ), the Roe algebra of V . We note that in passing from
W,W ′ to V , the exponentials exp(−2πiq), exp(−2πiq′) are merely modified
by an identity operator on a complementary Hilbert space, so the indices of
Texp(−2πiq) and Texp(−2πiq′) are not affected.

Let Y1 =W ∩W ′ and Y2 =W−∆W
′
− so that V = Y1 ∪ Y2. Since q and

q′ are obtained from the operator p, they coincide on Y1. We therefore have

(4.1) q − q′ = ΠY2
(q − q′)ΠY2

+ΠY1
(q − q′)ΠY2

+ΠY2
(q − q′)ΠY1

.

Now write

qk − (q′)k =

k∑

j=1

(−1)j+1qk−j(q − q′)(q′)j−1.
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Using Eq. (4.1), we have

ΠW+

(
qk − (q′)k

)
ΠW+

=

k∑

j=1

(−1)j+1
(

ΠW+
qk−jΠY2

(q − q′)ΠY2
︸ ︷︷ ︸

compact

(q′)j−1ΠW+

+ΠW+
qk−jΠY1

(q − q′)ΠY2
︸ ︷︷ ︸

compact

(q′)j−1ΠW+

+ΠW+
qk−j ΠY2

(q − q′)ΠY1
(q′)j−1ΠW+

︸ ︷︷ ︸
compact

)

,

where the indicated operators are compact as W+, Y2 ⊂ V satisfy the as-
sumptions of Lemma 4.10, due to Step 2. We therefore get that the operator
ΠW+

(
qk − (q′)k

)
ΠW+

is compact for each k. In total,

Texp(−2πiq) − Texp(−2πiq′) =

∞∑

k=0

(−2πi)k

k!
ΠW+

(qk − (q′)k)ΠW+
,

where the sum converges in norm. Since each term in the sum is com-
pact, the result is a compact operator. So Texp(−2πiq) = θW ;W+

(ExpW [p])
and Texp(−2πiq′) = θW ;W ′

+
(ExpW ′ [p]) have the same indices. □

Lemma 4.11. Let W+ ⊂W be admissible, and W− its (admissible) regular
complement. Then θW+

= −θW−
.

Proof. Let u ∈Mn(C
∗
W (∂W ))+ represent a class [u] in K1(C

∗
W (∂W )). Since

CW,0(∂W ) ⊂ C∗
W (∂W ) is dense, we may assume that u has finite propaga-

tion and that u− 1 is supported within finite distance of ∂W . Since N has
measure zero, we have the direct sum decomposition L2(W ) = L2(W+)⊕
L2(W−). With respect to this,

u =

(
ΠW+

u K1

K2 ΠW−
u

)

.

Since u has finite propagation, K1 = ΠW+
uΠW−

and K2 = ΠW−
uΠW+

have
compact support as u ∈ CW,0(∂W ). Since u− 1 is locally compact, K1 and
K2 are compact. We obtain

θW+
[u] = Index(ΠW+

u) = −Index(ΠW−
u) = −θW−

[u],

since u is invertible. □
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Theorem 4.12. Let W+ and W ′
+ be admissible subsets of the half-spaces

W,W ′ ⊂ X respectively, such that

N =W+ ∩W− =W+ ∩W ′
− =W ′

+ ∩W ′
− =W ′

+ ∩W−.

Suppose further that W+ remains admissible for the modified half-space
W1 :=W+ ∪W ′

−. Then

θW ;W+
◦ ExpW = θW ′;W ′

+
◦ ExpW ′ .

Proof. With these assumptions, we may verify that W ′
− is the regular com-

plement of W+ inside W1, with common boundary N =W+ ∩W ′
−. So W+

is admissible for both W and W1, while W
′
− is admissible for both W1 and

W ′, with boundary being N in all four cases. Using Lemma 4.11 and Propo-
sition 4.9, we deduce that

θW ;W+
◦ ExpW = θW1;W+

◦ ExpW1

= −θW1;W ′

−

◦ ExpW1

= −θW ′;W ′

−

◦ ExpW ′ .

The theorem follows. □

5. Computations for X the Euclidean plane

In this section, we study the Euclidean plane example, X = R
2, with Γ = Z

2

the standard lattice of translations acting freely with fundamental domain
F = [0, 1]× [0, 1]. The standard half-plane R+ × R is denoted W, and the
standard quarter-plane R+ × R+ is denoted W+.

In this case, the equivariant Roe algebra and reduced group C∗-algebra
are related (see §5.1.4 of [23]),

K0

(
C∗(X,Γ)

) ∼= K0

(
C∗
r (Γ)⊗K

(
L2(F)

)) ∼= K0

(
C∗
r (Γ)

)
= K0

(
C∗
r (Z

2)
)
,

where K denotes the compact operators. Via a Fourier transform C∗
r (Z

2) ∼=
C(T2) and Chern character map, it is easy to see that the RHS is
K0(C

∗
r (Z

2)) ∼= Z⊕ Z, where the two generators can be taken to be repre-
sented by the trivial projection and the Bott projection b. The Bott pro-
jection corresponds under the Serre–Swan theorem to a line bundle with
first Chern class generating H2(T2,Z) ∼= Z. Under the above isomorphism
K0(C

∗
r (Z

2)) ∼= K0(C
∗(X,Γ)), we will also think of b as representing a gen-

erator of the latter.
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5.1. Coarse index and edge-travelling operator in C∗

W
(∂W )

A fairly general class of half-spaces W ⊂ X = R
2 will have ∂W coarsely

equivalent, or even quasi-isometric to R, so thatK1(C
∗
W (∂W )) ∼= K1(C

∗(R))
in view of Eq. (2.7). Because of this, it is instructive to recall and understand
the result K1(C

∗(R)) ∼= Z.

K-theory of the Roe algebra of the line. It is known that K1(C
∗(R)) ∼=

Z is generated by the so-called coarse index Indc(D) of the Dirac opera-
tor D = −i d

dx
on R, see e.g. pp. 33 of [23] and [22]. We give a more con-

crete hopping operator v ∈ (C∗(R))+ which also represents the generator of
K1(C

∗(R)).
Pick any smooth ψ ∈ L2(R) which is supported in [0, 1], as illustrated

in Fig. 4. Then the translates γ∗ψ, γ ∈ Z provide an orthonormal basis for
a copy of ℓ2reg(Z) ⊂ L2(R). Let v ∈ (C∗(R))+ be the unitary operator taking
γ∗ψ 7→ (γ + 1)∗ψ and acting as the identity on the orthogonal complement
of ℓ2reg(Z) in L2(R). Let Π be the multiplication operator on L2(R) by the
characteristic function on R+ (the right half-line), which we use to com-
press an operator A on L2(R) to an operator TA on L2(R+). In much the
same way that we took to construct Definition 4.6, there is a well-defined
homomorphism (details can be found in pp. 28-29 of [23]),

ζ : K1(C
∗(R)) → Z, [u] 7→ Index(Tu).

The truncated hopping operator Tv is essentially the unilateral right shift
on ℓ2(N) (direct summed with an identity operator), so its index is −1. So
ζ is an isomorphism and [v] indeed generates K1(C

∗(R)).

Edge-travelling operator on standard half-plane W. With W = R+ ×
R, so that ∂W = {0} × R, the localisation principle Eq. (2.7) gives

Z ∼= K1(C
∗(∂W)) ∼= K1(C

∗([0, 1]× ∂W)) ∼= K1(C
∗
W(∂W)).

A construction similar to that of v above, will therefore yield a represen-
tative generator of K1(C

∗
W(∂W)) ∼= Z (see Fig. 4). Namely, pick a smooth

ϕ ∈ L2(X) supported in [0, 1]× [0, 1], so that its translates by γ ∈ Z
2 (resp.

γ ∈ N× Z) provide an orthonormal basis for a copy of ℓ2reg(Z
2) inside L2(X)

(resp. ℓ2(N× Z) inside L2(W)). On L2(W), let w denote the “edge-travelling
operator” which acts on the “edge-subspace” ℓ2({0} × Z) by downward trans-
lation (0, n)∗ϕ 7→ (0, n− 1)∗ϕ, and is the identity operator on the orthogonal
complement. Then w is a unitary operator in (C∗

W(∂W))+ representing a
generator of K1(C

∗
W(∂W)) ∼= Z.
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−1 0 1 2 3 4

ψ

v

−1 1 2 3

−1

1

2

3

0

ϕ

w

Figure 4: (L) Hopping operator on a line. (R) Edge-travelling operator on
a half-plane.

Proposition 5.1. With W the standard half-plane in X = R
2, the K-

theory exponential map for

(5.1) 0 → C∗
W(∂W) → Q∗(W,Γ) → C∗(X,Γ) → 0

is surjective. It maps the Bott projection class [b] ∈ K0(C
∗(X,Γ)) to a gen-

erator of K1(C
∗
W(∂W)) ∼= Z (the class of the edge-travelling operator w de-

scribed above).

Proof. The discrete version of Eq. (5.1) is

(5.2) 0 → K(ℓ2(N))⊗ C∗
r (Z) → C∗

r (N× Z) → C∗
r (Z

2) → 0

where C∗
r (N× Z) is the (reduced) semigroup C∗-algebra for N× Z. Let w| be

the restriction of w to ℓ2(N× Z) ⊂ L2(W). Then w| is a unitary operator in
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(K(ℓ2(N))⊗ C∗
r (Z))

+ ⊂ B(ℓ2(N× Z)) which effects “downward translation
along the first column” and does nothing elsewhere. It is clear that w| rep-
resents the generator of K1(K ⊗ C∗

r (Z
2)) ∼= Z. However, when w| is regarded

as an element in the larger algebra C∗
r (N× Z) ⊂ B(ℓ2(N× Z)), a combina-

tion of the Toeplitz extension’s (Example 2.5) K-theory sequence and the
Künneth theorem shows that [w|] trivialises in K1(C

∗
r (N× Z)), see §2.2.3 of

[24]. Since w ∈ C∗
W(∂W) is just the extension of w| by the identity operator

on an orthogonal subspace, it also represents the trivial class when regarded
as an element of the larger algebra Q∗(W,Γ). Exactness of the long exact
sequence for Eq. (5.1) means that ExpW : K0(C

∗(X,Γ)) → K1(C
∗
W(∂W))

must be surjective. The K-theory exponential map is trivial on identity
projections [1], so we must have ExpW([b]) = [w] (up to a sign). □

Remark 5.2. The term edge-travelling operator was coined in [24], in an
investigation of gap-filling by “edge-following topological states” in lattice
models of so-called Chern insulators arising in physics. Eq. (5.2) is an ex-
ample of a semigroup Toeplitz extension, for the case N× Z ⊂ Z

2.

5.2. Application to Chern insulators and Landau Hamiltonian

Quite generally, a Chern insulator can be defined as a Hamiltonian HX =
HChern,X , which has some spectral projection PS = φS(HChern,X) having
K-theory class k[1]⊕ j[b] ∈ K0(C

∗(X,Γ)) with j ̸= 0. Usually, S is taken to
be the subset of the spectrum below some prescribed Fermi energy EF ̸∈
Spec(HChern,X). Such a “topological projection” PS is said to have Chern
number j.

The non-vanishing abstract homotopy invariant of PS has dramatic con-
sequences. First, taking the standard half-plane W as domain, Proposi-
tion 5.1 says that ExpW [PS ] = j[w] ̸= 0. Upon passing to HChern,W , The-
orem 3.4 guarantees that the spectral gap above S is completely filled up. In
particular, the Fermi energy EF is in the spectrum of HChern,W ; physicists
call this property of HChern,W gaplessness (at EF ).

Example 5.3. Let A = x dy be a connection 1-form on X = R
2 with cur-

vature dx ∧ dy, corresponding to a uniform magnetic field applied perpendic-
ularly to the plane, with unit flux per unit area. The magnetic Laplacian, or
Landau Hamiltonian,

HLan,X =
1

2
(d− iA)∗(d− iA)
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is self-adjoint and has the harmonic oscillator spectrum 1
2 + N0, with each

eigenvalue (Landau level) being infinitely degenerate.
For each γ = (a, b) ∈ R

2, define the magnetic translations Uγ on L2(R2)
by (Uγf)(x, y) = f(x− a, y − b)eiay, then HLan,X commutes with each Uγ.
While γ 7→ Uγ only gives a projective unitary representation of the group
R
2, when we restrict to those γ in the lattice Γ = (

√
2πZ)2 ⊂ R

2, we do get
a genuine unitary representation of Γ ∼= Z

2 on L2(R2), and HLan,X is of
course Γ-invariant.

For each j ≥ 1, consider the spectral projection onto the first j Lan-
dau levels 1

2 , . . . ,
2j−1
2 , which can be written as φj(HLan,X) ∈ C∗(X,Γ) ∼=

C∗
r (Γ)⊗K for a suitable function φj. This projection defines an element

[
φj(HLan,X)

]
∈ K0

(
C∗(R2,Z2)

) ∼= K0

(
C∗
r (Z

2)
) ∼= K0(T2).

It is known that after taking the Chern character, [φj(HLan,X)] has Chern
class being j times the generator of H2(T2,Z), see [3] Lemma 5, [14] Eq.
3.55, [6] §3.7. In other words, the HLan,X is a Chern insulator and the
projection φj(HLan,X) has Chern number j.

We deduce that each spectral gap (2j−1
2 , 2j+1

2 ) of HLan,X will be filled
up with new spectra of HLan,W . This deduction is corroborated by an exact
calculation of the spectrum of the half-plane Dirichlet HLan,W as an unbro-
ken half-line [12 ,∞), see [5]. The half-plane Neumann Laplacian HLan,W has
similar features, see [4] and references therein.

The utility of Theorem 4.12 is that we can proceed to deduce the same
gap-filling phenomenon forHChern,W on generic domainsW ⊂ X = R

2, with-
out having to solve the extremely difficult spectral problem for HChern,W !
Even if we modify W quite drastically into another half-space domain W

(within the assumptions of Theorem 4.12) we still have, for a spectral pro-
jection PS = φS(HChern,X) with Chern number j ̸= 0, that

θW ;W+
(ExpW [PS ]) = θW;W+

(ExpW [PS ])

= θW;W+
(j · [w])

= j · Index (Tw) = j · Index (Shift) = j ̸= 0.(5.3)

In the last line, we used the observation that for the edge-travelling oper-
ator w, its compression Tw to the upper-right quadrant is essentially the
unilateral downward-shift operator on ℓ2({0} × N) which has Fredholm in-
dex 1. Then ExpW [φS(HChern,X)] ̸= 0 and Theorem 3.4 implies filling of the
spectral gap above S when passing to HChern,W .
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Remark 5.4. In particular, for the Landau Hamiltonian, this means that
there are no gaps in the spectrum of HLan,W above the lowest Landau level 1

2 .

Remark 5.5. We point out that the existence of extended but boundary-
localised nature of the new states of HW that appear somewhere in spectral
gaps of HX , was deduced in [8] for a large class of magnetic Laplace-type
operators and fairly general domains W ⊂ R

2.

5.3. Domains with multiple boundary components

Consider a half-spaceW with ∂W = Y1 ⨿ Y2 comprising the two components
of a hyperbola. To computeK1(C

∗
W (∂W )) ∼= K1(C

∗(∂W )), we note that ∂W
is coarsely equivalent to the cross+ formed by the asymptotes. Furthermore,
⌟ and ⌜ (which are each quasi-isometric to a Euclidean line) form a coarsely
excisive decomposition [10] of the cross with intersection a single point. It
follows from the coarse Mayer–Vietoris sequence (§5 of [10]) that

K1(C
∗
W (∂W )) ∼= K1(C

∗(∂W ))

∼= K1(C
∗(⌟))⊕K1(C

∗(⌜))⊕K0(C
∗(pt)) ∼= Z

3.

As verified below, representative generators for K1(C
∗
W (∂W )) ∼= Z

3 can be
taken to be the edge-travelling operators wY1

, wY2
hopping along the bound-

ary components Y1 and Y2 respectively, together with the operator wZ hop-
ping rightwards along the horizontal asymptote.

Pick three non-cobordant partitions N1, N2, N3 of W , as illustrated in
the lower row of Fig. 5. These give rise to homomorphisms

θW ;W+,i
: K1(C

∗
W (∂W )) → Z.

For N2, we deduce that θW ;W+,2
◦ ExpW ([b]) = 1 by deforming to the stan-

dard partition W+ ∪W− of the right half-plane W, and using the same in-
variance argument as in Eq. (5.3). Similarly, forN1, we deduce that θW ;W+,1

◦
ExpW ([b]) = −1 by deforming to a standard partition of the left half-plane,
and noticing that the latter problem is just a rotation of the standard
problem on the right half-plane, with W+ and W− exchanged. Finally,
θW ;W+,3

◦ ExpW ([b]) = 0 by deforming to the case where W ′ is the entire
plane, so ∂W ′ = ∅ and ExpW ′ = 0.

By observing how wY1
“flows” across Ni, it follows immediately that

θW ;W+,1
[wY1

] = 0 = θW ;W+,3
[wY1

]
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↕

N1

Y1

Y2
̸↔

N2

↕

̸↔

N3

↕

Figure 5: Lower row of diagrams: the shaded domain W ⊂ R
2 bounded by

the two components Y1, Y2 of a hyperbola, is partitioned in three mutu-
ally non-bordant ways according to Ni, i = 1, 2, 3. The darkly (resp. lightly)
shaded region is W+,i (resp. W−,i). Each lower diagram can be transformed
into the one above it, for the purposes of computing θW ;W+,i

◦ ExpW .

and θW ;W+,2
[wY1

] = 1. Similarly,

θW ;W+,2
[wY2

] = 0 = θW ;W+,3
[wY2

]

and θW ;W+,1
[wY2

] = −1, while

θW ;W+,1
[wZ ] = 0 = θW ;W+,2

[wZ ]

and θW ;W+,3
[wZ ] = 1. So we can think of (θW ;W+,1

, θW ;W+,2
, θW ;W+,3

) as a
surjective Z-linear map from the Z-submodule of K1(C

∗
W (∂W )) spanned by

[wY1
], [wY2

], [wZ ] onto the free Z-module Z3. Then it follows that [wY1
], [wY2

],
[wZ ] span K1(C

∗
W (∂W )) ∼= Z

3. Comparing with (θW ;W+,1
, θW ;W+,2

, θW ;W+,3
)

applied to ExpW ([b]), we deduce that ExpW ([b]) = [wY1
] + [wY2

] is repre-
sented by the sum of edge-travelling operators along each boundary com-
ponent. We conclude that the gap-filling phenomenon persists, for Chern
insulator Hamiltonians HChern,W acting on this domain W with more than
one boundary component.
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6. Quantised boundary currents

Recall the conventions for W ⊂ X from §3: Let X be a complete, connected
Riemannian manifold with an effective, cocompact, properly discontinuous,
isometric action of a discrete countable group Γ. Also given is a half-space
W ⊂ X — a closed subset with measure zero ∂W , such that d(x,X \W ) is
unbounded.

Let S be the compact separated part of Spec(HX) lying below some re-
solvent value of HX (Remark 3.5), and let ∆ denote the (bounded) spectral
gap of HX lying immediately above S. The spectral projection PS for HX

can be obtained as φ(HX) with φ ∈ S(R) chosen to be a Schwartz func-
tion, not just a C0(R) function. Furthermore, we arrange for φ to be 1 on
(−∞, supS] ∩ Spec(HW ), not just on S = (−∞, supS] ∩ Spec(HX). Then
−φ′ ∈ S(R) as a function of Spec(HW ) is nonzero only inside ∆, and we
further arrange for −φ′ to be positive (Fig. 2). In the previous section, we
gave examples of spectral projections PS = φ(HX) ∈ C∗(X,Γ) and parti-
tions W+ of W , such that [PS ] 7→ θW+

(ExpW [PS ]) is a nontrivial homomor-
phism indicating that ∆ ⊂ Spec(HW ). In the remaining subsections, we will
derive the following numerical (i.e. not a priori quantised) formula for this
homomorphism:

Theorem 6.1. Assume that Γ has polynomial growth. With PS = φ(HX) a
spectral projection as in the above paragraph, andW+ an admissible partition
of W , we have

θW+
(ExpW [PS ]) ≡ θW+

(ExpW [φ(HX)])(6.1)

= −2πTr(−φ′(HW ) i[HW,∆,Π]),

where HW,∆ denotes the restriction of HW to its spectral subspace for ∆.

Regarding the polynomial growth condition, see the next subsection for
details. Our proof combines ideas originating in [22] and [12, 19], as well as
some technical results involving smooth integral kernel operators in [15].

Remark 6.2 (Physical significance of Theorem 6.1). When consider-
ing the boundary states of HW with energies lying in ∆, the term i[HW,∆,Π]
is the time-derivative of the observable Π of being in W+, by Heisenberg’s
equation of motion. With −φ′ > 0, we interpret −φ′(HW ) as a statistical en-
semble of generalised eigenstates of HW with energies within ∆ (see Fig. 2),
“normalised” by the condition

∫

∆−φ′ = 1. Furthermore, by Theorem 3.2,
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we have ϖ(−φ′(HW )) = −φ′(HX) = 0, so −φ′(HW ) ∈ C∗
W (∂W ) is localised

near ∂W . Thus, Tr(−φ′(HW ) i[HW,∆,Π]) on the right-hand-side of Eq. (6.1)
is the expected rate of change of probability to be inside W+, in the statistical
ensemble −φ′(HW ) of boundary localised states. Because this is equal to 1

2π
of some integer Fredholm index by Eq. (6.1), we deduce, a posteriori, that
the ∆-filling boundary states of HW constitute a quantised current channel
flowing across N from W+ into W−.

Example 6.3. Applying Eq. (6.1) to the Landau Hamiltonian, we obtain
from Eq. (5.3) that HLan,W has j quantised edge current channels in the
j-th spectral gap of HLan,X — this rule-of-thumb is frequently invoked in
the physics literature. Our analysis generalises the existing rigorous results
obtained for W = W a half-plane, such as §7.1 of [19], [12] and Fig. 1 of
[5].

6.1. Subalgebras of smooth kernel operators

We establish a refinement of §3.1, applicable under the polynomial volume
growth hypothesis on X, which means that

Vµ :=

∫

X

(
1 + d(x, y)

)−µ
dy <∞

for some µ > 0 and some x ∈ X. By Γ-invariance, a similar estimate then
holds for any x ∈ X. By cocompactness of the action and the Milnor–Švarc
Lemma, this is equivalent to requiring that Γ be of polynomial volume
growth with respect to the word metric. In other words, this condition turns
out to be a condition on the group Γ alone. Typical examples of groups that
satisfy this are crystallographic groups.

Definition 6.4. We define the following subsets of the algebras C∗(X,Γ),
C∗
W (∂W ) and Q∗(W,Γ).

(1) A smooth kernel a ∈ C∞(X ×X) has rapid decay away from the di-
agonal if for any ν ∈ R, there exists a constant Cν > 0 such that

|a(x, y)| ≤ Cν

(
1 + d(x, y)

)−ν
, x, y,∈ X.

The set of integral operators in B(L2(X)) with smooth Γ-invariant
kernels a ∈ C∞(X ×X) with rapid decay away from the diagonal, is
denoted C (X,Γ).
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(2) Let CW (∂W ) be the space of integral operators in B(L2(W )) with
smooth kernels that decay rapidly away from the diagonal, and addi-
tionally have the property that for each ν ≥ 0, there exists a constant
Cν > 0 such that

|a(x, y)| ≤ Cν

[(
1 + d∂W (x)

)−ν
+
(
1 + d∂W (y)

)−ν]
, x, y,∈W.

(3) Q(W,Γ) ⊂ Q∗(W,Γ) is the subspace of smooth kernel operators a that
can be written as the sum a = σa′ + b, where b ∈ CW (∂W ) and a′ ∈
C (X,Γ), with restriction σa to W .

It is straightforward to show that both C (X,Γ) ⊂ C∗(X,Γ) and
Q(W,Γ) ⊂ Q∗(W,Γ) are subalgebras, and that the periodization map ϖ

takes Q(W,Γ) to C (X,Γ). Moreover, the kernel of ϖ restricted to Q(W,Γ)
is precisely CW (∂W ) ⊂ C∗

W (∂W ) leading to the short exact sequence

0 CW (∂W ) Q(W,Γ) C (X,Γ) 0.ϖ

This refines the quasi-periodic short exact sequence of C∗-algebras, Eq. (2.5).
We have the following refinement of Theorem 3.2.

Proposition 6.5. If φ lies in the Schwartz space S(R), we have φ(HX) ∈
C (X,Γ) and φ(HW ) ∈ Q(W,Γ).

Proof. For φ(HX), this is Thm. 6.3 in [15]. The case of φ(HW ) can be dealt
with in a similar fashion. □

6.2. Proof of Theorem 6.1

With respect to an admissible partition of W into W+ ∪W−, and writing Π
for ΠW+

as before, the switching elements (1−Π)AΠ and ΠA(1−Π) of an
operators A ∈ B(L2(W )) will be of particular interest to us.

Lemma 6.6. Suppose A,B ∈ B(L2(W )) have trace class switching ele-
ments. Then [Π, A] (and also [Π, B]) is trace class with zero trace. Fur-
thermore,

Tr(A[Π, B]) = Tr([ΠAΠ,ΠBΠ]−Π[A,B]Π) = −Tr(B[Π, A]).
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Proof. [Π, A] = ΠA(1−Π)− (1−Π)AΠ is the sum of two trace class oper-
ators. Since Π2 = Π, it follows from cyclicity of the trace that

Tr(ΠA(1−Π)) = Tr(ΠΠA(1−Π)) = Tr(ΠA(1−Π)Π) = Tr(0) = 0,

so Tr([Π, A]) = 0. For the second statement, observe that the middle term

[ΠAΠ,ΠBΠ]−Π[A,B]Π = −ΠA(1−Π)BΠ+ΠB(1−Π)AΠ

is trace class. Supplementing it with the terms −(1−Π)A(1−Π)BΠ and
ΠB(1−Π)A(1−Π), which are traceless (by cyclicity), we get

Tr([ΠAΠ,ΠBΠ]−Π[A,B]Π) = Tr(−A(1−Π)BΠ+ΠB(1−Π)A)

= Tr(−A(1−Π)BΠ+AΠB(1−Π))

= Tr(−ABΠ+AΠBΠ+AΠB −AΠBΠ)

= Tr(A[Π, B]).

□

Lemma 6.7. Suppose u ∈ C∗
W (∂W )+ is a unitary such that u (or equiva-

lently u− 1) has trace class switching elements. Then

θW+
([u]) = Tr(u[Π, u∗]) = −Tr(u∗[Π, u]) = −Tr((u∗ − 1)[Π, u]).

Proof. The computation that

Π− TuTu∗ = Π−ΠuΠu∗ = Π+Πu(1−Π)u∗ −Πuu∗ = Πu(1−Π)u∗

is trace class, and similarly for Π− Tu∗Tu, shows that modulo trace class
operators, Tu∗ is an inverse for Tu in B(L2(W+)). By Caldéron’s formula,
the Fredholm index of Tu is

θW+
([u]) ≡ IndexTu = Tr(TuTu∗ − Tu∗Tu)

= Tr(ΠuΠu∗Π−Πu∗ΠuΠ)

= Tr(ΠuΠu∗Π−Πu∗ΠuΠ)

= Tr([ΠuΠ,Πu∗Π]−Π[u, u∗]Π)

The result follows from Lemma 6.6 and swapping the roles of u and u∗. □

Remark 6.8. The relative index of a pair of projections (P,Q) is the in-
teger defined (where possible) by dimker(P −Q− 1)− dimker(P −Q+ 1),
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W+

W−

Rn
Rn+1

Figure 6: Let Rn+1 > Rn > 0. With the notation of Prop. 6.9, let x ∈
Wn+1,+ \Wn,+ (dark grey region) and y ∈Wn+1,− \Wn,− (light grey re-
gion). If a ∈ CW (∂W ), then a(x, y) is small because x and y are far apart,
or because x and y are far from ∂W .

and if P −Q is trace class, the formula Ind(P −Q) = Tr(P −Q) holds, see
[2] for details. In particular, the expression Tr(u[Π, u∗]) = Tr(uΠu∗ −Π) in
Lemma 6.7 computes the relative index of the pair (uΠu∗,Π), and we have
another way to see that Tr(u[Π, u∗]) is in fact integral.

Proposition 6.9. If A ∈ CW (∂W ), then it has trace class switching ele-
ments.

Proof. Let Rn, n ∈ N be a positive sequence increasing to ∞, then Wn,+ :=

W+ ∩QW ;W+

Rn
(recall (ii) of Definition 4.2) is an increasing exhaustion ofW+

by compact subsets. The projection Π = ΠW+
is strongly approximated by

the corresponding sequence Πn,+ that projects onto L2(Wn,+); similarly for
(1−Π) = ΠW−

. Then the intermediate switching elements Πn,+AΠn,− is a
sequence of trace-class operators (since A has smooth integral kernel), which
can be arranged to be Cauchy by an appropriate choices of the Rn, due to
the rapid decay of the integral kernel away from the diagonal and from ∂W ,
and polynomial volume growth, see Fig. 6. Thus the limit ΠA(1−Π) is trace
class, and similarly for (1−Π)AΠ. □

Corollary 6.10. Let A ∈ CW (∂W ). If C ∈ B(L2(W )) is such that AC ∈
CW (∂W ), then A[Π, C] is trace class.
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Proof. This follows from Prop. 6.9 applied to the equality

A[Π, C] = (1−Π)AΠC +ΠAC(1−Π)−ΠA(1−Π)C − (1−Π)ACΠ.

□

Example 6.11. If A ∈ CW (∂W ) and C ∈ Q(W,Γ), then AC ∈ CW (∂W )
by the ideal property, so that A[Π, C] is trace class.

We now have all the ingredients needed for the proof of Theorem 6.1.

Proof of Thm. 6.1. As in the beginning of this section, let φ(HX) = φS(HX)
be the spectral projection of HX with φ ∈ S(R). Then the unitary operator

U = exp(−2πiφ(HW ))

satisfies

ϖ(U − 1) = exp
(
−2πi ·ϖ(φ(HW ))

)
− 1

= exp
(
−2πi · φ(HX)

)
− 1

= 1− 1 = 0

by Theorem 3.2 and the projection property of φ(HX), so Proposition 6.5
says that U − 1 ∈ CW (∂W ), and similarly for U∗ − 1. Then (U∗ − 1) has
trace class switching elements (Prop. 6.9), so we can use Lemma 6.7 to
write a trace formula for the left-hand-side of Eq. (6.1),

θW+
(ExpW [φ(HX ]) ≡ θW+

([
exp
(
−2πiφ(HW )

)])

≡ θW+
([U ])

= −Tr
(
(U∗ − 1)[Π, U ]

)
.

Expanding U = e−2πiφ(HW ) as a power series, we have

θW+

(
ExpW [φ(HX)]

)

= −Tr

(

(U∗ − 1)

∞∑

k=1

(−2πi)k

k!

k−1∑

l=0

(φ(HW ))l[Π, φ(HW )](φ(HW ))k−1−l

)

.

By Corollary 6.10, Example 6.11 and the fact that U∗ commutes with
φ(HW )l, (U∗ − 1)[Π, φ(HW )] is trace class, so the above partial sums of
operators under the trace are trace class. Using continuity and cyclicity of
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the trace, we obtain

θW+
(ExpW [φ(HX)]) = −Tr

(

(U∗ − 1)

∞∑

k=1

(−2πi)k

(k − 1)!
(φ(HW ))k−1[Π, φ(HW )]

)

= 2πiTr
(
(1− U)[Π, φ(HW )]

)
.

Let Q∆ be the spectral projection of HW for the interval ∆ (the spec-
tral gap immediately above S), and Q− the spectral projection of HW

for (−∞, supS]; note that Q∆ and Q− are orthogonal to each other. De-
compose φ(HW ) = (χ∆ · φ)(HW ) + (χ∆c · φ)(HW ) = Q∆φ(HW ) +Q−. Let
us write HW,∆ = Q∆HWQ∆ for the operator HW restricted to the spectral
subspace Range(Q∆). Then we can rewrite the decomposition as φ(HW ) =
φ(HW,∆)⊕Q−. The Q− piece will not contribute to Tr((1− U)[Π, φ(HW )]);
observe that the function s 7→ 1− e−2πiφ(s) vanishes on Spec(HW ) \∆, so
(1− U)Q− = 0, and thus

(1− U)[Π, Q−] = (1− U)ΠQ−

= (1−Π)(1− U)ΠQ− −Π(1− U)(1−Π)Q−

is trace class by Prop. 6.9, with

Tr((1− U)[Π, Q−]) = Tr
(
(1− U)ΠQ−

)

= Tr
(
(1− U)ΠQ−Q−

)

= Tr
(
Q−(1− U)
︸ ︷︷ ︸

0

ΠQ−

)
= 0.

We obtain the reduction

θW+

(
ExpW [φ(HX)]

)
= 2πiTr

(
(1− U)[Π, φ(HW,∆)]

)
.

Now, we may regard φ as its restriction to ∆ ⊃ Spec(HW,∆), and approxi-
mate it in the C1 sense by a sequence of polynomials {φn} on Spec(HW,∆).
Also, pick some g ∈ S(R) which restricts to the identity function on ∆, to
see that

(1− U)HW,∆ = (1− U)Q∆g(HW )

= (1− U)g(HW ) ∈ CW (∂W ) · Q(W,Γ) ⊂ CW (∂W )
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is trace class (Corollary 6.10). So we may use cyclicity of the trace and the
fact that HW,∆ commutes with 1− U to re-sum

Tr
(

(1− U)[Π, φn(HW,∆)]
)

=

∞∑

k=0

akTr
(

(1− U)[Π, Hk
W,∆]

)

=

∞∑

k=0

ak

k−1∑

l=0

Tr
(

(1− U)Hk
W,∆[Π, HW,∆]H

k−l−1
W,∆

)

=

∞∑

k=0

akTr
(

(1− U)Hk−1
W,∆[Π, HW,∆]

)

= Tr
(

(1− U)φ′
n(HW,∆)[Π, HW,∆]

)

,

where all except finitely many ak are non-zero, since φn is a polynomial.
Taking the limit, and noting that φ′(HW,∆) = φ′(HW ),

θW+
(ExpW [φ(HX)]) = 2πiTr

(

(1− U)φ′(HW )[Π, HW,∆]
)

.

In fact, for 0 ̸= k ∈ Z, we also have

θW+

(
ExpW [φ(HX)]

)
=

1

k
θW+

(
ExpW [kφ(HX)]

)

=
2πi

k
Tr
(

(1− Uk)kφ′(HW )[Π, HW,∆]
)

= 2πiTr
(

(1− Uk)φ′(HW )[Π, HW,∆]
)

.

We claim that φ′(HW ) ∈ CW (∂W ). First, by Prop. 6.5, we have φ′(HW ) ∈
Q(W,Γ). But then, since φ′ is supported in the spectral gap of HX , we have
0 = φ′(HX) = ϖφ′(HW ) by Thm. 3.2. So φ′(HW ) ∈ ker(ϖ), and Lemma 2.4
implies that φ′(HW ) ∈ C∗

W (∂W ) ∩ Q(W,Γ) = CW (∂W ), verifying the claim.
The final simplification follows §7.1.2 of [19], §10 of [12]. Let ϕ be a

smooth function [0, 1] → R vanishing at the endpoints, with Fourier coeffi-
cients ak, k ∈ Z. Observe that

∑

k∈Z ak = 0, so a0 = −∑0 ̸=k∈Z ak. Further-
more, since φ′(HW ) ∈ CW (∂W ), φ′(HW )[Π, HW,∆] is trace class by another
application of Corollary 6.10. For brevity, write Θ = θW+

(ExpW [φ(HX)]),
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then

a0Θ = −
∑

0 ̸=k∈Z

akΘ = −2πi
∑

k∈Z

akTr
(

(1− Uk)φ′(HW )[Π, HW,∆]
)

= −2πiTr

(
∑

k∈Z

ake
−2πikφ(HW )φ′(HW )[Π, HW,∆]

)

= −2πiTr
(

ϕ(φ(HW ))φ′(HW )[Π, HW,∆]
)

,

= −2πiTr
(

ϕ(φ(HW ))Q∆φ
′(HW )[Π, HW,∆]

)

,

where in the last line, we used φ′(HW ) = Q∆φ
′(HW ). Let ϕ converge point-

wise and boundedly to the indicator function χ(0,1), such that the Fourier
coefficient a0 → 1, then ϕ(φ(HW ))Q∆ → Q∆ in strong operator topology
([21] Theorem VIII.5), thus also in weak operator topology. As this is a
norm-bounded sequence, it also converges in σ-weak topology (i.e. the weak-
∗-topology on bounded operators regarded as the dual of trace class oper-
ators, see Theorem 4.6.14 of [17]). By continuity of the trace pairing with
respect to the σ-weak topology, the sequence of traces converges,

Tr
(

ϕ
(
φ(HW )

)
Q∆φ

′(HW )[Π, HW,∆]
)

ϕ→χ(0,1)−→ Tr
(

Q∆φ
′(HW )[Π, HW,∆]

)

.

Since Q∆φ
′(HW ) = φ′(HW ), the desired Eq. (6.1) follows. □
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no. 3, 405–442.

[9] N. Higson and J. Roe, Analytic K-homology, Oxford Mathemati-
cal Monographs, Oxford University Press, Oxford (2000), ISBN 0-19-
851176-0. Oxford Science Publications.

[10] N. Higson, J. Roe, and G. Yu, A coarse Mayer–Vietoris principle, Math.
Proc. Camb. Phil. Soc. 114 (1993) 85–97.

[11] A. Kapustin and L. Spodyneiko, Higher-dimensional generalizations of
the Berry curvature, Physical Review B 101 (2020) 235130.

[12] J. Kellendonk and H. Schulz-Baldes, Quantization of edge currents
for continuous magnetic operators, Journal of Functional Analysis 209
(2004), no. 2, 388–413.

[13] Y. Kubota, Controlled Topological Phases and Bulk-edge Correspon-
dence, Communications in Mathematical Physics 349 (2017), no. 2,
493–525.

[14] H. Kunz, The Quantum Hall Effect for Electrons in a Random Poten-
tial, Communications in Mathematical Physics 112 (1987) 121–145.

[15] M. Ludewig and G. Thiang, Good Wannier bases in Hilbert modules
associated to topological insulators, Journal of Mathematical Physics
61 (2019) 061902.



✐

✐

“4-Thiang” — 2023/1/1 — 21:32 — page 710 — #38
✐

✐

✐

✐

✐

✐

710 M. Ludewig and G. C. Thiang

[16] ———, Gaplessness of Landau Hamiltonians on hyperbolic half-planes
via coarse geometry, Communications in Mathematical Physics 386
(2021) 87–106.

[17] G. Pedersen, Analysis Now, Vol. 118 of Graduate Texts in Mathematics,
Springer-Verlag (1989).

[18] E. Prodan, The edge spectrum of Chern insulators with rough bound-
aries, Journal of Mathematical Physics 50 (2009), no. 8, 083517.

[19] E. Prodan and H. Schulz-Baldes, Bulk and Boundary invariants for
complex topological insulators: From K-theory to physics, Mathemat-
ical Physics Studies, Springer (2016).

[20] M. Reed and B. Simon, Methods of Modern Mathematical Physics II:
Fourier Analysis, Self-adjointness, Academic Press (1975).

[21] ———, Methods of Modern Mathematical Physics I: Functional Anal-
ysis, Academic Press (1980).

[22] J. Roe, Partitioning noncompact manifolds and the dual Toeplitz prob-
lem, in Operator algebras and applications, Vol. 1, 187–228 (1988).

[23] ———, Index theory, coarse geometry, and topology of manifolds,
Vol. 90, American Mathematical Soc. (1996).

[24] G. Thiang, Edge-following topological states, Journal of Geometry and
Physics 156 (2019) 103796.

School of Mathematical Sciences, University of Adelaide

Adelaide SA 5000, Australia

Fakultät für Mathematik, Universität Regensburg

93053 Regensburg, Germany

E-mail address: matthias.ludewig@mathematik.uni-regensburg.de

School of Mathematical Sciences, University of Adelaide

Adelaide SA 5000, Australia

Beijing International Center for Mathematical Research

Peking University, Beijing 100084, China

E-mail address: thgchuan@gmail.com


	Introduction
	The quasi-equivariant Roe algebra
	Spectral gap filling phenomenon
	Cobordism invariance of gap-filling
	Computations for X the Euclidean plane
	Quantised boundary currents
	References

