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Transforming Stäckel Hamiltonians of

Benenti type to polynomial form
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and Célestin Kurujyibwami

In this paper we discuss two canonical transformations that turn
Stäckel separable Hamiltonians of Benenti type into polynomial
form: transformation to Viète coordinates and transformation to
Newton coordinates. Transformation to Newton coordinates has
been applied to these systems only very recently and in this paper
we present a new proof that this transformation indeed leads to
polynomial form of Stäckel Hamiltonians of Benenti type. Moreover
we present all geometric ingredients of these Hamiltonians in both
Viète and Newton coordinates.

1. Introduction

The aim of this paper is to investigate two canonical transformations of the
phase space to coordinates in which the so called Stäckel separable systems
of Benenti type attain a polynomial form, as well as to present all geometric
objects, related with such systems (the pseudo-Riemannian metric tensor
and its Killing tensors as well as the conformal Killing tensor, present in the
Hamiltonians of the system) in these new coordinates.

Stäckel systems constitute an important family of quadratic in mo-
menta Hamiltonian systems that are separable, in the sense of Hamilton-
Jacobi theory, in orthogonal coordinates. These systems were introduced by
Paul Stäckel in [10], where he presented the conditions for separability of
Hamilton-Jacobi equation of a natural Hamiltonian system (that is a sys-
tem of the form H = K + V where K is a quadratic in momenta form and
V is a potential defined on the underlying configurational space of the sys-
tem) in orthogonal coordinates, see for example [12] for a comprehensive
review of this subject. Stäckel systems can most conveniently be obtained
from the separation relations [11] that are linear in the Hamiltonians Hi

and quadratic in momenta µi. Further specifications of ingredients in these
separation relations lead to so called Benenti systems (see the next section
for all the necessary definitions and details).

711



✐

✐

“5-Marciniak” — 2022/12/9 — 1:28 — page 712 — #2
✐

✐

✐

✐

✐

✐

712 J. de D. Maniraguha, K. Marciniak, and C. Kurujyibwami

The obtained Stäckel (or Benenti) Hamiltonians Hj , as well as their ge-
ometric components, are usually given by complicated rational functions,
if written in the canonical coordinates in which they were originally cre-
ated through separation relations. In literature, two maps turning Benenti
systems into polynomial form are known: the map to the so called Viète
coordinates [2] and the map to the so called Newton coordinates [7], the
second map discovered only recently.

In [7] the authors set and solved the problem of constructing an in-
tegrable polynomial hierarchy of Hamiltonian dynamical systems on C2N

using symmetric powers of plane algebraic curves of the form

(1)

n
∑

j=1

λn−jHj = F (λ, µ)

where F is thus an arbitrary polynomial in λ and µ. More specifically, the au-
thors construct a canonical map that transforms these hierarchies of Hamil-
tonian dynamical systems to a polynomial form. In this paper we present
our own proof of the polynomiality of these systems. We do it in the spe-
cial, but important, case of systems - called Benenti systems - depending
quadratically on the momenta variables (so that F = 1

2f(λ)µ2 − ϕ(λ)), us-
ing geometric methods and the direct map between the Viète and Newton
coordinates. We also present the explicit form of all the geometric structures
that are present in the Benenti Hamiltonians in Newton coordinates. These
results are new.

2. Stäckel systems

Consider a 2n-dimensional manifold M equipped with a Poisson bracket
π. Suppose also that (λ, µ) = (λ1, . . . , λn, µ1, . . . , µn) are global Darboux
coordinates on M (i.e, {λi, λj} = {µi, µj} = 0 for all i, j = 1, . . . , n while
{λi, µj} = δij). A set of algebraic equations of the form

(2) ϕi(λi, µi, H1, . . . , Hn) = 0, i = 1, . . . , n

is called separation relations if it is globally solvable (except possibly for
a union of lower dimensional submanifolds) with respect to the parameters
Hi.
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Among all possible separations relations (2), a natural subclass consists
of the separation relations that are linear in the Hamiltonians Hk:

(3)

n
∑

k=1

Sik(λi, µi)Hk = ψi(λi, µi), i = 1, . . . , n.

Here Sik and ψi are arbitrary smooth functions of two arguments (λi, µi).
The relations (3) are called the generalized Stäckel separation relations and
the related dynamical systems, obtained by solving (3) with respect to Hk,
are called the generalized Stäckel systems. The matrix S = [Sik(λi, µi)] is
called a generalized Stäckel matrix. Although the restriction to separation
relations linear in Hk seems to be very strong, it appears that an overwhelm-
ing majority of all separable systems considered in the literature falls into
various subclasses of this class. The most important class of systems in (3)
is the class of classical Stäckel systems, that is systems with the matrix S
being a Stäckel matrix (so that Sik = Sik(λi)) and with ψi being quadratic
in momenta µ:

Sik(λi, µi) = Sik(λi), ψi(λi, µi) =
1

2
fi(λi)µ

2
i − ϕi(λi),

so that the separation relations (3) attain the form

(4) ϕi(λi) +

n
∑

k=1

Sik(λi)Hk = 1
2fi(λi)µ

2
i , i = 1, . . . , n.

The relations (4) are called Stäckel separation relations. A particular Stäckel
system is thus defined by a choice of the Stäckel matrix Sik(λi) and by a
choice of 2n functions fi and ϕi. Solving the relations (4) with respect to
Hk we obtain n quadratic in momenta functions (Hamiltonians) on M

(5) Hr =
1

2
µTArµ+ Vr(λ), r = 1, . . . , n,

where Ar are n× n matrices given by

Ar = diag
(

f1 (λ1)
(

S−1
)

r1
, . . . , fn (λn)

(

S−1
)

rn

)

, r = 1, . . . , n.

As the Hamiltonians (5) are defined through separation relations, they are
in involution with respect to the canonical Poisson bracket on M.
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There is a natural geometric interpretation of Stäckel systems given by
(5). If we factorize Ar as Ar = KrG, where

G = A1 = diag
(

f1 (λ1)
(

S−1
)

11
, . . . , fn (λn)

(

S−1
)

1n

)

and

Kr = diag

(
(

S−1
)

r1

(S−1)11
, . . . ,

(

S−1
)

rn

(S−1)1n

)

, r = 1, . . . , n

(so that K1 = I) then we can interpret the matrix G as a contravariant form
of a metric tensor on a manifold Q such that M = T ∗Q is the cotangent
bundle to Q. The corresponding covariant metric tensor will be denoted by g
so that gG = I. It can be shown that the matrices Kr are then (1, 1)-Killing
tensors of the metric G. For a fixed Stäckel matrix S we have thus the whole
family of metrics G parametrized by n arbitrary functions fi of one variable
λi. The tensors Kr are then Killing tensors for any metric from this family.
Thus, the Stäckel Hamiltonians Hr in (5) are geodesic Hamiltonians of a
Liouville integrable system in the Riemannian space (M, g). Further, due
to the linearity of the separation relations (4), the functions Vr(λ) on Q are
defined by the following separation relations

n
∑

k=1

Sik(λi)Vk = −ϕi(λi), i = 1, . . . , n,

and are called in literature separable potentials on Q.

3. Stäckel systems of Benenti type

From now on we restrict ourselves to the case the Stäckel matrix S in (4) is
of the very particular form Sij = λn−j

i or explicitly:

(6) S =







λn−1
1 λn−2

1 . . . 1
...

...
...

...
λn−1
n λn−2

n . . . 1







thus being a Vandermonde matrix. The corresponding Stäckel systems are
thus defined by separation relations of the form

(7) ϕi(λ) +

n
∑

j=1

λn−j
i Hj =

1

2
fi(λi)µ

2
i i = 1, . . . , n,
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and are called in literature Benenti systems. Benenti systems have been
studied much in literature recently, see for example [1, 3] and references
therein.

The inverse of S as given by (6) is given by the following lemma.

Lemma 1. If S is the n× n Vandermonde matrix given by Sij = λn−j
i then

[

S−1
]

ij
= −

1

∆j

∂ρi
∂λj

,

where

ρi = (−1)iσi(λ), ∆j =
∏

k ̸=j

(λj − λk)

and where σr (λ) are elementary symmetric polynomials.

By definition

σi(λ) =
∑

1≤j1<...<ji≤n

λj1 . . . λji , i = 1, . . . , n,

so that

σ0 = 1, σ1 =

n
∑

i=1

λi, σ2 =

n
∑

1≤i<j≤n

λiλj , . . . , σn =
n
∏

i=1
λi.

Lemma 1 can be proved by a direct calculation. By this lemma, solving (7)
with respect to Hr yields n functions (Hamiltonians) Hr on M

Hr = −
1

2

n
∑

i=1

∂ρr
∂λi

fi(λi)µ
2
i

∆i
+ Vr(λ)(8)

≡
1

2
µTKrGµ+ Vr(λ), r = 1, . . . , n

called Benenti Hamiltonians. Thus, for Benenti Hamiltonians the metric
tensor G is given by

G = diag

(

f1 (λ1)

∆1
, . . . ,

fn (λn)

∆n

)

while the Killing tensors Kr are given by

(9) Kr = −diag

(

∂ρr
∂λ1

, . . . ,
∂ρr
∂λn

)

r = 1, . . . , n.
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From now and in what follows, we further assume that all fi are equal, and
likewise all ϕi:

(10) fi := f, ϕi := ϕ

so that all the Hamiltonians (8) are generated by the single separation curve:

(11) ϕ(λ) +

n
∑

j=1

λn−jHj =
1

2
f(λ)µ2

and are given explicitly by:

Hr = −
1

2

n
∑

i=1

∂ρr
∂λi

f(λi)µ
2
i

∆i
+ Vr(λ)(12)

≡
1

2
µTKrGµ+ Vr(λ), r = 1, . . . , n

and thus the metric tensor G is now given by

G = diag

(

f (λ1)

∆1
, . . . ,

f (λn)

∆n

)

.

Of particular interest is the case f(λi) = λmi with m ∈ Z. In such a case the
metric tensor G will be denoted by Gm:

Gm = diag

(

λm1
∆1

, . . . ,
λmn
∆n

)

, m ∈ Z.

Of course, if f is a Laurent polynomial

(13) f(λ) =
∑

α∈A

aαλ
α
i ,

where A ⊂ Z is a finite set, then

(14) G =
∑

α∈A

aαGα.

It can be shown that the metric Gm is flat for m ∈ {0, . . . , n} and of constant
curvature for m = n+ 1 (the same is true for f being a polynomial in λ of
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Transforming Stäckel Hamiltonians of Benenti type 717

order m). Moreover

(15) Gm = LmG0, G0 = diag

(

1

∆1
, . . . ,

1

∆n

)

,

where

L = diag(λ1, . . . , λn)

is a (1, 1)-tensor called special conformal Killing tensor [8]. It can be shown [5]
that all Kr can be calculated from the formula

(16) K1 = I, Kr =

r−1
∑

k=0

ρkL
r−1−k, r = 2, . . . , n.

In order to illustrate the form of separable potentials Vr(λ) in the Benenti
case, we further assume that ϕ is a Laurent sum of the form

(17) ϕ(λ) =
∑

α∈A

cαλ
α
i ,

where A ⊂ Z is a finite set and cα are some real constants. The Benenti
separation relations (7) become

(18)
∑

α∈A

cαλ
α
i +

n
∑

j=1

λn−j
i Hj =

1

2
f(λi)µ

2
i , i = 1, . . . , n

and due to their linearity we have

Vr =
∑

α∈A

cαV
(α)
r ,

where V
(α)
r are so called basic separable potentials. By linearity of (18), the

potentials V
(α)
r satisfy the relations

λαi +

n
∑

r=1

V (α)
r λn−r

i = 0, i = 1, . . . , n

and, again by Lemma 1, they are given by

V (α)
r =

n
∑

i=1

∂ρr
∂λi

λαi
∆i
, r = 1, . . . , n.
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The basic separable potentials V
(α)
r can be explicitly constructed by the

following formula [5]:

(19) V (α) = RαV (0), V (α) = (V
(α)
1 , . . . , V (α)

n )T ,

where

(20) R =













−ρ1 1 0 0
... 0

. . . 0
... 0 0 1

−ρn 0 0 0













and V (0) = (0, . . . , 0,−1)T . The first n basic potentials are trivial

V
(α)
k = −δk,n−α, α = 0, . . . , n− 1.

The first nontrivial positive potential is

V (n) = (ρ1, . . . , ρn)T

and higher potentials are more complicated polynomials in qi. The first
negative potential is

V (−1) =

(

1

ρn
, . . . ,

ρn−1

ρn

)T

and the higher negative potentials are more complicated rational functions
of all ρi. Note also that the recursion formulas (19)-(20) are not tensorial;
they look the same in any coordinate system.

4. Polynomial form of Benenti systems

As we saw in the previous section, even the relatively simple Benenti Hamil-
tonians are complicated rational functions when expressed in the separation
variables (λ, µ). In this section we demonstrate two canonical maps that un-
der certain conditions transform Benenti Hamiltonians (12) to a polynomial
form.
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4.1. Benenti systems in Viète coordinates

Suppose that we change the position coordinates on the base manifold Q
through the map

(21) qi = ρi(λ) i = 1, . . . , n,

where, as in Lemma 1, ρi(λ) = (−1)iσi(λ). This map induces the map (point
transformation) on T ∗Q:

(22) p =
(

J−1
V

)T
µ,

where JV is the Jacobian of the map (21):

(23) (JV )ij =
∂ρi
∂λj

.

Let us find an explicit form of (22). To do this we need the following lemma.

Lemma 2. Denote by ki the i-th column of an n× n nondegenerate matrix
A:

A = (k1|k2| . . . |kn)

and by rj the j-th row of its inverse

A−1 =











r1
r2
...
rn











.

Then, if αi ∈ R for i = 1, . . . , n

(α1k1|α2k2| . . . |αnkn)−1 =











r1/α1

r2/α2
...

rn/αn











.

This elementary lemma follows from the fact that rikj = δij . An analo-
gous lemma is of course true if we consider rows of A instead of its columns.
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Combining lemmas 1 and 2 we obtain that

(24)
(

J−1
V

)

ij
= −

λn−j
i

∆i

and thus the map (22) can be written as

(25) pi = −

n
∑

k=1

λn−i
k

∆k

µk, i = 1, . . . , n.

The coordinates (q, p) defined by (21) and (25) are called Viète coordinates.
To summarize, the map (λ, µ) → (q, p) from separation coordinates to Viète
coordinates is given by

(26) qi = ρi(λ), pi = −

n
∑

k=1

λn−i
k

∆k

µk, i = 1, . . . , n.

Being a point transformation, the map (26) is a canonical map which means
that Viète coordinates are Darboux (canonical) coordinates as well:

{qi, qj} = {pi, pj} = 0, {qi, pj} = δij .

Let us now investigate the structure of Benenti Hamiltonians (12) in Viète
coordinates (q, p). The Hamiltonians (12) are of course written in tensor
form so that in Viète coordinates

(27) Hr(q, p) =
1

2
pTKr(q)G(q)p+ Vr(q), r = 1, . . . , n

where, by transformation laws for tensors,

(28) Kr(q) = JVKr (JV )−1 , G(q) = JVG (JV )T .

The first formula in (28) yields, after some calculation

(29) (Kr(q))
i
j =























qi−j+r−1, i ≤ j and r ≤ j

−qi−j+r−1, i > j and r > j

0 otherwise

.

Here and throughout the whole section we use the convention that q0 = 1 and
qk = 0 for k < 0 and for k > n. Thus, all the Kr(q) are linear in q-variables.
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Further, for the monomial case f(λi) = λmi with m ∈ {0, . . . , n+ 1} we can
obtain from the second formula in (28) that

Gij
m(q) =























qi+j+m−n−1, i, j = 1, . . . , n−m

−qi+j+m−n−1, i, j = n−m+ 1, . . . , n

0 otherwise

m = 0, . . . , n

(30)

Gij
m(q) = qiqj − qi+j , i, j = 1, . . . , n, m = n+ 1.

The formulas (29) and (30) can alternatively be obtained with the help
of the special conformal Killing tensor L by using the formulas (16) and
(15), respectively, and the fact that the tensor L can be easily calculated
in Viète coordinates through tensor transformation law L(q) = JV L (JV )−1.
We obtain

Li
j(q) = −δ1j qi + δi+1

j

that is

(31) L(q) =













−q1 1 0 0
... 0

. . . 0
... 0 0 1

−qn 0 0 0













.

Note therefore that L happens to have the same form in q-coordinates as
the recursion matrix (20). This seems to be a pure coincidence without any
deeper meaning; we stress again that R in (20) is not a tensor. In any case,
due to the fact that all the entries in L are linear in qi we see that all
the entries in Gm are linear in qi for m = 0, . . . , n+ 1, quadratic in qi for
m = n+ 1 and higher order polynomials for higher m. Moreover, by (29),
all entries in Kr(q) are linear in qi. Using all these facts and the formula
(14) we obtain the following important corollary:

Corollary 3. If f is a polynomial in (13), then the geodesic parts of Be-
nenti Hamiltonians (27) have a polynomial form. Moreover, if the right hand
side of (17) is a polynomial, then by the recursive relations (19)-(20) also
the potentials Vr in the Benenti Hamiltonians (12) are in this case polyno-
mials in qi. Thus, in such a case, the whole Hamiltonians Hr(q, p) (and not
just their geodesic parts) are polynomials.
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Example 4. Consider the case n = 2, f(λ) = 1 (i.e. a purely monomial
situation with m = 0 in (30), so that G = G0) and ϕ(λ) = λ3. Then the
separation curve (18) becomes

λ3 + λH1 +H2 =
1

2
µ2

and yields the Hamiltonians Hi in the explicit form

H1 =
1

2(λ1 − λ2)
(µ21 − µ22) − (λ21 + λ1λ2 + λ22)

H2 =
1

2(λ1 − λ2)
(λ1µ

2
2 − λ2µ

2
1) + λ1λ2(λ1 + λ2)

so both Hamiltonians are rational functions of separation coordinates (λ, µ).
The above Hamiltonians have exactly the form (12) with the metric

G = G0 = diag

(

1

∆1
,

1

∆2

)

,

and with the Killing tensors (9) given explicitly by:

K1 = I, K2 = −diag(λ2, λ1).

The map (26) to Viète coordinates has the explicit form:

q1 = −(λ1 + λ2), q2 = λ1λ2,

p1 =
1

λ2 − λ1
(λ1µ1 − λ2µ2), p2 =

1

λ2 − λ1
(µ1 − µ2).

An elementary calculations shows that Hi in these variables attain the form

H1(q, p) =
1

2
q1p

2
2 + p1p2 − q21 + q2

H2(q, p) =
1

2
p21 + q1p1p2 +

1

2
q21p

2
2 −

1

2
p22q2 − q1q2

which is in agreement with (30) and (29). Explicitly:

G0(q) =

(

0 1
1 q1

)

, K1(q) = I, K2(q) =

(

0 1
−q2 q1

)

.

Thus, the Hamiltonians Hr become polynomial in Viète coordinates (q, p).
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Example 5. Consider the case n = 3, f(λ) = λ (so that m = 1 in (30) and
thus G = G1) and ϕ(λ) = λ5. Then the separation curve (18) becomes

λ5 + λ2H1 + λH2 +H3 =
1

2
λµ2.

Solving the corresponding separation coordinates yields the Benenti Hamil-
tonians (12) with the metric G1 = LG0 with

L = diag (λ1, λ2, λ3)

so that

G1 = LG0 = diag

(

λ1
∆1

,
λ2
∆2

,
λ3
∆3

)

and with the Killing tensors (9) given explicitly by

K1 = I, K2 = diag (λ2 + λ3, λ1 + λ3, λ1 + λ2) ,

K3 = −diag (λ2λ3, λ1λ3, λ1λ2) ,

while the potentials Vr = V
(5)
r have the form

V
(5)
1 = λ31 + λ32 + λ33 + λ21λ2 + λ21λ3 + λ1λ

2
2 + λ1λ

2
3 + λ22λ3 + λ2λ

2
3 + λ1λ2λ3,

V
(5)
2 = λ31λ2 + λ31λ3 + λ21λ

2
2 + 2λ21λ2λ3 + λ21λ

2
3 + λ1λ

3
2 + 2λ1λ

2
2λ3

+ 2λ1λ2λ
2
3 + λ1λ

3
3 + λ32λ3 + λ22λ

2
3 + λ2λ

3
3,

V
(5)
3 = λ1λ2λ3

(

λ21 + λ22 + λ23 + λ1λ2 + λ1λ3 + λ2λ3
)

.

The map (26) to Viète coordinates has now the form

q1 = −(λ1 + λ2 + λ3), q2 = λ1λ2 + λ1λ3 + λ2λ3, q3 = −λ1λ2λ3

and




p1
p2
p3



 =
(

J−1
V

)T





µ1
µ2
µ3





with JV and J−1
V given by (4.1) and (24) respectively. Explicitly

JV =





−1 −1 −1
λ2 + λ3 λ1 + λ3 λ1 + λ2
−λ2λ3 −λ1λ3 −λ1λ2
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and

J−1
V = −







λ2

1

∆1

λ1

∆1

1
∆1

λ2

2

∆2

λ2

∆2

1
∆2

λ2

2

∆3

λ2

∆3

1
∆3






.

An elementary calculation shows that Hi in these variables attain the form

H1(q, p) =
1

2
q1p

2
2 + p1p2 −

1

2
q3p

2
3 + q31 − 2q1q2 + q3,

H2(q, p) =
1

2
p21 −

1

2
q2p

2
2 −

1

2
q1q3p

2
3 + q1p1p2 − q3p2p3 + q21q2 − q1q3 − q22,

H3(q, p) = −
1

2
q3p

2
2 −

1

2
q2q3p

2
3 − q3p1p3 − q1q3p2p3 + q21q3 − q2q3,

which is in agreement with (30) and (29). Explicitly:

G0(q) =





0 0 1
0 1 q1
1 q1 q2



 , K1(q) = I, K2(q) =





0 1 0
−q2 q1 1
−q3 0 q1



 ,

K3(q) =





0 0 1
−q3 0 q1

0 −q3 q2



 ,

while the tensor L attains the form as in (31):

L(q) =





−q1 1 0
−q2 0 1
−q3 0 0



 .

Note again that the Hamiltonians Hr become polynomial in Viète coordi-
nates (q, p).

4.2. Benenti systems in Newton coordinates

The second method of turning Benenti Hamiltonian systems (12) into a poly-
nomial form is by using Newton coordinates. A general method, involving
Newton coordinates, suitable for arbitrary algebraic separation curve of the
form (1), has been discovered by V. M. Buchstaber and A. V. Mikhailov [7]
only quite recently. In this section we present our own proof the polynomi-
ality result for the important case of Benenti Hamiltonians (12), i.e. Hamil-
tonians generated from the Benenti separation curve (11), using a geometric
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approach. We also investigate in detail the structure of Benenti Hamiltonians
(12) in Newton coordinates.

Consider the following map (consisting of a sequence of Newton polyno-
mials) on the base manifold Q:

(32) Qi =
1

i

n
∑

s=1

λis.

This map induces the map on T ∗Q:

(33) P =
(

J−1
N

)T
µ,

where P = (P1, . . . , Pn)T and JN is the Jacobian of the map (32),

(JN )ij =
∂Qi

∂λj
= λi−1

j .

Thus, JN = V T , where V is the Vandermonde matrix, but different from S:

(34) V =







1 λ1 . . . λn−1
1

...
...

. . .
...

1 λn λn−1
n






.

This also means that (33) leads to P = V −1µ.

Lemma 6. In the above notation

(

V −1
)

ij
= −

1

∆j

∂ρn−i+1

∂λj
.

The reader should compare this lemma with Lemma 1. Thus, the map
(32) induces the following map on T ∗Q

(35) Qi =
1

i

n
∑

s=1

λis, Pi = −

n
∑

j=1

1

∆j

∂ρn−i+1

∂λj
µj , i = 1, . . . , n

and we call the coordinates (Q,P ) Newton coordinates on M. The reader
should compare this map with the map (26). Again, since the map (λ, µ) →
(Q,P ) is a point transformation map on T ∗Q, the Newton coordinates
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(Q,P ) are Darboux (canonical) coordinates, that is

{Qi, Qj} = {Pi, Pj} = 0, {Qi, Pj} = δij .

Let us now investigate the structure of Benenti Hamiltonians (12) in (Q,P )-
coordinates. The Hamiltonians (12) are written in tensor form and thus

(36) Hr(Q,P ) =
1

2
P TKr(Q)G(Q)P + Vr(Q), r = 1, . . . , n.

In the monomial case, i.e., when f(λ) = λm we have

(37) Hr(Q,P ) =
1

2
P TKr(Q)Lm(Q)G0(Q)P + Vr(Q), r = 1, . . . , n.

Let us now investigate the structure of (36) and in particular (37), in Newton
coordinates. Due to tensor transformation laws, L(Q), Kr(Q) and G(Q) are
given by

(38) L(Q) = JNL (JN )−1 , Kr(Q) = JNKr (JN )−1

and by

(39) G(Q) = JNG (JN )T .

In order to express explicitly the right hand sides of (38) and (39) we need
to invert the map λ→ Q given by (32), which is in general not algebraically
invertible. Let us thus consider the map q → Q between the Viète coordi-
nates (26) and the Newton coordinates. In the recent paper [4] it is proven
that this map is given by

(40) Qr = −
1

r

r
∑

k=1

V
(n+r−k)
k (q), r = 1, . . . , n,

where V
(α)
k (q) are the basic separable potentials as given by (19)-(20). Below

we present a theorem in which we extend the understanding of the above
formula.
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Theorem 7. The map q → Q as given by (40) has the following form:

(41) Qr(q) = −qr + τ (r−1)
r (q1, . . . , qr−1), r = 1, . . . , n,

where τ
(α)
r denotes a polynomial of order α and where τ

(0)
1 = 0. The map

q → Q is algebraically invertible, with the inverse map of the form

(42) qr(Q) = −Qr + η(r−1)
r (Q1, . . . , Qr−1), r = 1, . . . , n,

where η
(α)
r denotes a polynomial of order α with η

(0)
1 = 0. Moreover, neither

τ
(α)
r nor η

(α)
r depend on n.

One proves this theorem by direct calculations, using the properties of

basic separable potentials V
(α)
k . This theorem can also be deduced from

the well-known Newton’s identities (Girard-Newton formulae) between ele-

mentary symmetric polynomials σr (λ) and the r-th power sums
n
∑

s=1
λrs (see

for example [9], Exercise 8, Ch.1., Sec.2, on p. 28). This theorem means
that both the map q → Q and its inverse Q→ q are polynomial maps and
moreover that the transformation between the first n variables, i.e. between
q1, . . . , qn and Q1, . . . , Qn, does not change after increasing n to n+ 1. Ex-
picitly, the first few expressions in both maps are

Q1 = −q1,

Q2 = −q2 +
1

2
q21,

Q3 = −q3 −
1

3
q31 + q2q1,

Q4 = −q4 +
1

4
q41 − q21q2 + q3q1 +

1

2
q22

...
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for the map Q→ q and

q1 = −Q1,

q2 = −Q2 +
1

2
Q2

1,

q3 = −Q3 −
1

6
Q3

1 +Q2Q1,

q4 = −Q4 +
1

24
Q4

1 −
1

2
Q2

1Q2 +Q3Q1 +
1

2
Q2

2

...

for the inverse map q → Q. These maps are simply Newton’s identities but
written in the variables qr and Q r rather than, as it is usually done, in the

variables σr and
n
∑

s=1
λrs. It is now possible to calculate the tensor L in the

Newton coordinates Q. After some calculations we obtain:

(43)

L(Q) = JNL (JN )−1 =











0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . . 1
−qn(Q) −qn−1(Q) −qn−2(Q) . . . −q1(Q)











,

or, equivalently

L(Q)ij = −qn−j+1(Q)δin + δij−1, i, j = 1, . . . , n,

where the functions qi(Q) are given by (42). Thus, the entries of L(Q) are
polynomials, and the same is of course true for any positive power Lm(Q)
of L(Q).

Let us now calculate the Killing tensors Kr in Newton coordinates Q.
We will do it by transforming Kr(q), as given by (29), to Q variables, by
the formula Kr(Q) = JV NKr(q) (JV N )−1, where JV N is the Jacobian trans-
formation from Viète coordinates to Newton coordinates. First we find that

(JV N )i,j =

n
∑

s=0

qs(JV N )i−s,j − q1qi−s + qi, i, j = 1, . . . , n,

with (JV N )1,j = −1, (JV N )2,j = q1, (JV N )3,j = −q21 + q2 for any fixed j.
This also yields that

(JV N )−1
i,j = −qi−j , i, j = 1, . . . , n.
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Note that this last result also means that the map (41) can now be extended
to the whole manifold M = T ∗Q by completing it with the map between
the canonical momenta:

(44) Pi =
[

(JV N )−1
]T

ij
pj = −

n
∑

j=1

qj−ipj , i = 1, ..., n.

After some calculations we obtain that

(45) (Kr(Q))ij =























qi−j+r−1(Q), i− j ≤ 0 and r ≤ n− i+ 1

−qi−j+r−1(Q), i− j > 0 and r > n− i+ 1

0 otherwise

,

cf. (29). Thus, since all qi(Q) by (42) are polynomials then all the entries of
Kr(Q) are polynomials in Qi as well. Finally, let us consider G0(Q), i.e. the
metric G0 in Newton coordinates, by transforming G0(q), as given by (30),
into Q variables, by the transformation formula G0(Q) = JV NG0(q) (JV N )T .

Lemma 8. The metric G0 in Newton coordinates (32) attains the form of
a lower-triangular Hankel matrix given by the recursive formulas

G0(Q)i,j =







−
n
∑

s=1
qs(Q) (G0)i−s,j + q1(Q)qi−1(Q) − qi(Q), i ≥ j

0, i < j
(46)

for i, j = 3, . . . , n,

with G0(Q)1,j = 1, G0(Q)2,j = −q1, and G0(Q)3,j = q21 − q2 for arbitrary
fixed j.

As a consequence, the metric Gm(Q) also attains the form of a lower-
triangular Hankel matrix. This can be verified using induction with respect
to m in

Gm(Q)i,j = L(Q)ijGm−1(Q)i,j .

Taking into account the formulas (43), (45) and Lemma 8 we obtain a corol-
lary that is an analogue of Corollary 3 in case of Newton coordinates.

Corollary 9. If f in (13) is a polynomial, then the geodesic parts of Be-
nenti Hamiltonians Hr(Q,P ) in (36) have in Newton coordinates (35) a
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polynomial form. Moreover, if the right hand side of (17) is a pure polyno-
mial, then the potentials Vr(Q) in the Benenti Hamiltonians (36) are in this
case also polynomials. Thus, in such a case, all the Hamiltonians Hr(Q,P )
(and not just their geodesic parts) are polynomials.

Let us now present some examples.

Example 10. We proceed in the same setting as in Example 4, i.e. we
consider the case n = 2, f(λ) = 1 (so that m = 0) and ϕ(λ) = λ3, but in
Newton coordinates. The map (41)-(44) reads now

Q1 = −q1, Q2 =
1

2
q21 − q2,

P1 = −p1 − q1p2, P2 = −p2

and it transforms the Hamiltonians from Example 26 to the form

H1(Q,P ) =
1

2
P 2
2Q1 + P1P2 −Q2 −

1

2
Q2

1,

H2(Q,P ) = −
1

4
P 2
2Q

2
1 +

1

2
P 2
2Q2 +

1

2
P 2
1 +

1

2
Q3

1 −Q1Q2,

which is in agreement with (46) and (45). Explicitly:

G0(Q) =

(

0 1
1 Q1

)

, K1(Q) = I, K2(Q) =

(

−Q1 1
Q2 −

1
2Q

2
1 0

)

.

Moreover, L becomes

L(Q) =

(

0 1
Q2 −

1
2Q

2
1 Q1

)

.

Example 11. We now consider Example 5 in Newton coordinates i.e. the
case n = 3, m = 1 and ϕ(λ) = λ5. As n = 3 the map (41) is now

(47) Q1 = −q1, Q2 =
1

2
q21 − q2, Q3 = −

1

3
q31 + q1q2 − q3,

and its inverse (42) is

q1 = −Q1, q2 =
1

2
Q2

1 −Q2, q3 = −
1

6
Q3

1 +Q1Q2 −Q3.
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The map (44) between momenta is

(48)





P1

P2

P3



 =





−1 −q1 −q2
0 −1 −q1
0 0 −1









p1
p2
p3



 ,

with the inverse





p1
p2
p3



 =





−1 −Q1 −1
2Q

2
1 −Q2

0 −1 −Q1

0 0 −1









P1

P2

P3



 .

The map (47)-(48) transforms the Hamiltonians Hr(q, p) in Example 5 to
the form

H1(Q,P ) =
1

2
P T





0 1 Q1

1 Q1
1
2Q

2
1 +Q2

Q1
1
2Q

2
1 +Q2 Q3 +Q1Q2 + 1

6Q
3
1



P + V
(5)
1 (Q)

H2(Q,P ) =
1

2
P T





1 0 Q2 −
1
2Q

2
1

0 Q2 −
1
2Q

2
1 Q3 −

1
3Q

3
1

Q2 −
1
2Q

2
1 Q3 −

1
2Q

3
1 − 1

12Q
4
1 −Q2

1Q2 +Q3Q1 +Q2
2



P

+ V
(5)
2 (Q)

H3(Q,P ) =
1

2
P T









0 0 1
6Q

3
1 −Q2Q1 +Q3

0 1
6Q

3
1 −Q2Q1 +Q3

1
6Q

4
1 −Q2Q

2
1 +Q3Q1

1
6Q

3
1 −Q2Q1 +Q3

1
6Q

4
1 −Q2Q

2
1 +Q3Q1

1
12Q

5
1 −

1
3Q

3
1Q2 + 1

2Q3Q
2
1

−Q1Q
2
2 +Q3Q2









P

+ V
(5)
3 (Q),

where

V
(5)
1 (Q) = −

1

6
Q3

1 −Q1Q2 −Q3,

V
(5)
2 (Q) = Q2

1Q2 −Q1Q3 −Q2
2 +

1

12
Q4

1,

V
(5)
3 (Q) = −

1

12
Q5

1 +
1

3
Q3

1Q−
1

2
Q2

1Q3 +Q1Q
2
2 −Q2Q3,
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which is again in agreement with (46) and (45). Explicitly:

G0(Q) =





0 0 1
0 1 Q1

1 Q1
1
2Q

2
1 +Q2



 , K1(Q) = I,

K2(Q) =





−Q1 1 0
0 −Q1 1

1
6Q

3
1 −Q1Q2 +Q3 Q2 −

1
2Q

2
1 0



 ,

K3(Q) =





1
2Q

2
1 −Q2 −Q1 1

1
6Q

3
1 −Q1Q2 +Q3 0 0

0 1
6Q

3
1 −Q1Q2 +Q3 0



 ,

and

L(Q) =





0 1 0
0 0 1

1
6Q

3
1 −Q1Q2 +Q3 Q2 −

1
2Q

2
1 Q1



 .

5. Conclusions

In this paper we have considered Benenti Hamiltonian systems generated
by a single separation curve (11), i.e. given by the separation relations (7)
together with the assumption (10). In the case of these systems we have
presented a new geometric version of Buchstaber and Mikhailov results [7]:
we have shown the polynomiality of these Hamiltonian systems in Newton
coordinates and also presented explicit form of all the geometric objects,
associated with Benenti Hamiltonians, in these coordinates.This has been
done by constructing and analysing the map between the Viète and Newton
coordinates.

A natural questions that arises is whether it is possible to extend our
construction to the case that the Hamiltonians Hi are not generated by
a single separation curve but by the more general separation relations (7)
without the assumption (10), i.e. with different fi and ϕi, and perhaps for
even more general separation relations. This will be a subject of another
research paper.
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E-mail address: krzma@itn.liu.se

College of Science and Technology, University of Rwanda

P.O.Box: 3900, Kigali, Rwanda

E-mail address: celeku@yahoo.fr


	Introduction
	Stäckel systems
	Stäckel systems of Benenti type
	Polynomial form of Benenti systems
	Conclusions
	References

