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Spectrally determined singularities in a

potential with an inverse

square initial term

Demetrios A. Pliakis

We study the inverse spectral problem for Bessel type operators
with potential v(x): Hκ = −∂2x + k

x2 + v(x). The potential is as-
sumed smooth in (0, R) and with an asymptotic expansion in pow-
ers and logarithms as x→ 0+, v(x) = O(xα), α > −2. Specifically
we show that the coefficients of the asymptotic expansion of the
potential are spectrally determined. This is achieved by comput-
ing the expansion of the trace of the resolvent of this operator
which is spectrally determined and elaborating the relation of the
expansion of the resolvent with that of the potential, through the
singular asymptotics lemma.
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1. Introduction

Let R > 0, α > −2 and v be a real valued function, smooth in C∞
0 ((0, R))

that has an asymptotic expansion together with all its derivatives as x→ 0+
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of the form

v(x) ∼ xα
∞∑

n=0

vnx
kn

where {kn} is an increasing sequence of positive real numbers. This function
appears in the singular Sturm-Liouville operator H = −∂2x + κ

x2 + v(x) on
(0, R) with Dirichlet boundary conditions at 0, R. In this paper we examine
whether the spectrum of this Sturm-Liouville operator uniquely determines
the sequence of asymptotic coefficients {vn} of the potential function.

We prove that this is indeed the case provided that v0 ̸= 0; this is achieved
by the explicit construction of the spectral invariants that in turn determine
the asymptotic coefficients of the potential function v from the spectrum.
The function

fH(η) = η2Tr(1 + η2H)−1

is defined for small η > 0 and is of course spectrally determined. The η →
0 asymptotic expansion of f will provide the desired spectral invariants:
the singularity of the Sturm -Liouville operator H manifests itself in the
appearance of coefficients in the η → 0+ asymptotic expansion of fH(η) that
depend polynomially on the coefficients {vn} of v. Precisely we have that
this asymptotic expansion is of the form

(1) fH(η) ∼
∞∑

n=0

Anη
2n+1 + η4(

∞∑

n=−1

Bnη
2n+1 log η +

∞∑

n=0

Cnη
ln)

where ln is real but not an odd integer. Evidently it contains apart from
pure odd powers also new terms, odd powers with logarithms as well as pure
powers other than the odd ones. The sequences of asymptotic coefficients
Bn, Cn of the asymptotic expansion of f are polynomials in the asymptotic
coefficients of the potential {vn}; it is exactly this fact that allows us to
determine recursively these {vn} from the ”heat invariants” that are equiv-
alent to the η → 0+ asymptotic coefficients of fH(η). The exact formulation
of this tehorem is the following:

Theorem. Let χ be a smooth cutoff function, χ ≡ 1 in a neighborhood of the

origin, then the function fχ,H(η) has an asymptotic expansion of the form

fχ,H(η) ∼
∞∑

k=0

A2k+1η
2k+1 +

∞∑

n=0

Bnη
zn +

∞∑

k=0

C2kη
2k +

∞∑

k=0

D2k+1η
2k+1 log η
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where zn ∈ R \ Z, Bk, Ck, Dk are homogeneous polynomials in the asympotic

coefficients {vn} of the potential of degree z if we define deg(vn) = kn + 2.

Inverse spectral results of the form we described above appeared first
in [4],[5],[6], [10],[9]. Actually in [9] certain coefficients are calculated in the
course of calculations of operator determinats and in the rest the generic case
is studied exhaustively. The general case requires the treatment of certain
exceptional cases. This treatment is provided here and leads to the full result.

The conical singularities have been treated extensively in the literature
for diverse purposes giving rise to diverse results and calculations. We refer
to the first papers that dealt with asymptotics of either the heat [12] or the
wave kernel [13] on spaces with such singularities.

Possible applications of these results are indicated already in [6]. We
recall these briefly here. Potentials of this type arise in the wave equation
for a vibrating rod of variable cross section, when the cross-sectional area of
the rod vanishes quartically (as a function of the distance from the end of
the rod) at one point. In the same spirit we could determine the profile of a
surface of revolution with a conical singularity on the axis, asymptotically
to all orders, from the spectrum of Laplacian restricted to functions with
polar symmetry.

We indicate here briefly two applications in physics. Furthermore the
present study exhausts the determination of a confining potential which is
hydrogen atom-like at short distance [15], from the complete set of bound
state energies. This is indicated in [4] but only for the case of the s−wave.
Hence the present study fills in the higher angular momemtum instances for
potentials of asymptotic expansion of the form given above. We will present
here briefly the construction in [4]. Confinement is expressed by Dirichlet
boundary conditions on the surface of a sphere. The Hamiltonian with a
radial potential is

H = −∆3 + v(|x|)

where v ∈ Γ∞((0, R)) with v(x) = O(xα), α > −2 as x→ 0. The boundary
condition on the domain of H is ψ(R) = 0. The l−th spherical harmonic
Hamiltonian is unitarily equivalent to

H0 = −∂2r +
l(l + 1)

r2
+ v(r)

which is an an unbounded operator on L2((0, R); dr). The boundary con-
ditions inherited from the 3-dimensional problem are f(0) = f(R) = 0. A



✐

✐

“6-Pliakis” — 2022/12/20 — 23:03 — page 738 — #4
✐

✐

✐

✐

✐

✐

738 Demetrios A. Pliakis

physically meaningful question is whether the potential v could be deter-
mined from the mass spectrum of the bound states associated to a given
spherical harmonic because both the mass (the energy) and the angular
momentum (the order of the spherical harmonic) are measurable in the lab-
oratory.

The study we perform answers this affirmatively when the potential is
a real analytic function on (0, R) and that near 0 is written as a convergent
series of the following form

v(x) = x−2
∑

k,j

vk,jx
αk logj x,

for {αk} an increasing sequence of positive real numbers. If the function v is
not of this form then we can only obtain the full asymptotic expansion of the
potential at small distances. Moreover we can deduce several corollaries of
the preceding theorem that are interesting in physics. For instance availing
ourselves of the results of [8] on irregular singularities, we state the following:

Corollary. Let H = −∂2x + v(x) + P (x) be an oprator on R+ with Dirich-

let boundary conditions. Let v be a real valued analytic function, rapidly

decreasing at ∞, while near 0 it is given by a convergent series of the form

v(x) = x−2
∑

k,j

vk,jx
αk logj x

for {αk} an increasing sequance of positive real numbers. The function P is

given and is of the form

P (x) =

N∑

n=0

akx
βn

for 0 ≤ β0 < · · · < βN and aN > 0. Then the spectrum of H determines v.

The preceding result incorporates for instance the case of quantum par-
ticle systems trapped in magnetic fields. An immediate application of the
preceding corollary refers to the 2-dimensional magnetic trap [1], due to a
vanishing magnetic field at ∞. Precisely, let 0 < ϵ < 1 and (r, θ) be the co-
ordinates in R2 and consider the quanutm motion in a magnetic field of
the type B = (2− ϵ)r−ϵ. The Hamilotnian for a particle subject to such a
magnetic field as well as to an unknown radial potential v(r) has the form

H = −∂2r +
1

r2
∂2θ + r2(1−ϵ) + 2ir−ϵ∂θ + v(r)
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Spectrally determined singularities in a potential 739

and restricting to angular momentum m we obtain an 1-dimensional opera-
tor of the above type provided that v(r) is of the required form. We notice
also the example from [17] of a quantum particle moving in a magnetic field
with fixed angular momentum in the direction of the field. Similar conclu-
sions could be obtained in that case as well. The results in [2] allow us to
incorporate the case of a pair of opposite charges with fixed relative an-
gular momentum moving in a homogeneous magnetic field and interacting
through an unknown potential that we wish to determine spectrally when
the latter satisfies the preceding assumptions.

Actually we insert a cutoff function χ, suppχ ⊂ [0, R) in order to deal
the operator in the half line. The η → 0 asymptotic expansion of

fH̃(η) = η2tr(1 + η2H̃)−1

- H̃ is the operator in (0,∞)- coincides mod(η∞) terms with that of fH .
The paper is organised as follows: we start with the neccessary facts con-

cerning the operator domain, the operator estimates and we construct the
resolvent of the unperturbed operator. Next we give the existence and the
precise form of the asymptotic expansion for the operator function we intro-
duced above. We conclude with the calculation of the asymptotic coefficients
that provide the recursive relations that determine the potential asymptotic
coefficients. The solution of these require certain elementary estimates that
are included.

Acknowledgements. I would like to thank my advisor Professor C. Callias
who suggested the problem as well as Professor E. Floratos who pointed out
the possible appliction to the case of magnetic fields.

2. Operator domain and operator estimates

2.1. Function spaces for singular heat expansions

We will consider operators of the form H = Hκ + v, for Hκ = −∂2x + κ
x2 and

v is a real valued potential function belongs to the space Γ∞(0, R) of func-
tions that have an asymptotic expansion as x→ 0+ together with their
derivatives. This space is described as follows that are encountered in the
resolvent expansions that we are going to deal with.

The space Γ∞(R+) consists of the C
∞(R+)− functions that have asymp-

totic expansions as x→ 0+, together with all their derivatives, in com-
plex powers of x and integral powers of log x. Precisely, f ∈ Γ∞(R+) if
f ∈ C∞(R+) and there exists a S : C → Z+ such that

∑
ℜz<a S(z) <∞ for
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each a ∈ R, and

∂mx f(x) =
∑

ℜz≤a

∑

Z+∋j<S(z)

fz,j∂
m
x (xz logj x) +O(xa+δ−m)

for some δ = δa > 0, some fz,j ∈ C and all a ∈ R. S is called the asymptotic
character of the expansion. Define the following differential operators on
C∞(0,∞), for given S : C → Z+ as described above

Pz[S] =
∏

ℜz′≤ℜz

(x∂x − z′)S(z
′),

Pz[S] = Pz[S](x∂x − z)S(z
′) =

∏

ℜz′≤ℜz

(x∂x − z′)S(z
′)

The following proposition is proved in [7]; though it is elementary it provides
criterion that shades light on these spaces

Proposition 1. f ∈ Γ∞(0,∞) iff f ∈ C∞(0,∞) and there is an asymptotic

character such that Pz[S]f(x) = O(xz−ε) for all z ∈ C and ε > 0.

The space Γ∞((R+)
2) consists of all the functions f ∈ C∞((R)2) for which

there exist S1, S2 such that

(x∂x)
s1(y∂y)

s2P x
z1 [S1]P

y
z2 [S2]f(x, y) = O(xℜz1+δ1yℜz2+δ2)

for all z1, z2 ∈ C, s1, s2 ∈ Z+, (x, y) in any compact neighborhood of ∂(R2
+)

and some δj depending on z1, z2.
Evidently (S1, S2) is analogously the asymptotic character of f ∈ Γ∞(R2

+).
If f ∈ Γ∞(R+), we let Dk,jf(0) denote the coefficient of xk logj x in the
expansion of f as x→ 0.

Now let α > −2, {kn} be an increasing sequence of positive real numbers
then we have that S(z) = 1 for z = kn + α and S(z) = 0 otherwise. equiv-
alently, the potential function has the following asymptotic expansion as
x→ 0

v(x) ∼ xα
∞∑

n=0

vnx
kn

Actually for 0 < x < ϵ and α > −2 the obvious estimate xα ≤ ϵx−2 +Bϵ

implies for ϕ ∈ C∞
0 (R+) and c < 1 that

∥V ϕ∥L2 ≤ c∥Hκϕ∥L2 + b∥ϕ∥L2
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which in view of the Kato-Rellich theorem reduces the domain questions of
H to those for Hκ.
Through the Hardy inequality we conclude that if κ ≥ −1

4 then the operator
Hκ is positive and hence possesses at least one self adjoint extension, the
Friedrichs’ extension. Recall that if κ ≥ 3

4 , then Weyl’s criterion implies that
the operator Hκ is essentially self-adjoint and hence the Friedrichs’ is the
only extension. The domain of self adjointness consists of the functions

D(H) = {ϕ ∈ L2(R+), ∥∂2xϕ∥L2 <∞, ∥x−2ϕ∥L2 <∞}

⊂ L2(R+;
dx

x4
) ∩H2(R+).

The Sobolev embedding theorem implies that these are L2-functions with
absolutely continuous first derivative. Additionally, since ϕ ∈ D(H) then
∥ ϕ
x2 ∥ <∞ which in turn expresses the Dirichlet boundary conditions, ϕ(0) =

limx→0 ϕ(x) = 0.

2.2. The resolvent

Let H = −∂2x + v be a Shrödinger operator, with real valued potential func-
tion. Clearly, it is formally symmetric. If ϕ, ψ are the unique elements of
kerH that are integrable at 0,∞ respectively then the resolvent of H is
given by

Rλ(x, y) = Θ(x− y)
ψ(x, λ)ϕ(y, λ)

Wx(ϕ(λ), ψ(λ))
+ Θ(y − x)

ϕ(x, λ)ψ(y, λ)

Wx(ϕ(λ), ψ(λ))

where W is the Wronskian of the solutions of (H − λ)ϕ = 0. In the case of
the operator Hκ,α = −∂2x + κ

x2 + α
x the solutions are expressed through the

confluent hypergeometric functions [19], [16]:

ϕ(x, λ) =Mµ,ν(2x
√
−λ), ψ(x, λ) =Wµ,ν(2x

√
−λ)

where the indices are µ = α√
−λ

and ν =
√
κ+ 1

4 . Their Wronskian 1 is

W =
2
√
−λΓ(2ν + 2)

Γ(ν − µ+ 1)
.

1Since our study is effected in the sector of |ℑλ| ≤ 1
ϵ
(ℜλ+ ϵ) then we assume

that ν − γ > − 1
2
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The confluent hypergeometric functions coincide for α = 0 with the Bessel
functions:

M0,ν(x
√
−λ) = 22νΓ(ν + 1)

√
xIν(

x

2

√
−λ),

W0,ν(x
√
−λ) =

√
x

π
Kν(

x

2

√
−λ),

the resolvent of Hκ,α could be obtained from that of Hκ by Neumann series.
The latter will be used in the operator estimates that follow. Therefore we
form the Whittaker Green’s function:

Rλ(x, y) = Θ(x− y)
Γ(ν − µ+ 1

2)Γ(ν − µ+ 1)Mµ,ν(2y
√
−λ)W−µ,ν(2x

√
−λ)

2
√
−λΓ(2ν + 2)Γ(ν + µ+ 1

2)

+ Θ(y − x)
Γ(ν − µ+ 1

2)Γ(ν − µ+ 1)Mµ,ν(2y
√
−λ)W−µ,ν(2x

√
−λ)

2
√
−λΓ(2ν + 2)Γ(ν + µ+ 1

2)

2.3. Operator estimates

We denote by R0
λ = (λ−Hκ)

−1 the resolvent of Hκ. The positivity of Hκ

implies that
1. The operator norm is

∥R0
λ∥L2 = O(|λ|−1)

for |λ| → ∞ uniformly in the cone |ℑλ| ≥ 1
ϵ (ℜλ+ ϵ):

Since R0
λL

2(R+) ⊂ D(Hκ) we choose then ϕ ∈ L2(R+): R
0
λϕ = ψ. It follows

that for k ≤ −ϵ:

∥(λ−Hκ)ψ∥2L2 = |λ− k|2∥ψ∥2L2 + ∥(k −Hκ)ψ∥2L2 + 2(ℜ(k − λ)(ψ,Hκψ))

≥ |(λ− k)|2∥ψ∥2L2

and the estimate follows.

The resolvent R0
λ is represented by the kernel for σ = 1√

−λ
:

Rσ(x, y) = (xy)1/2[Θ(x− y)Kν(
x

σ
)Iν(

y

σ
) + Θ(y − x)Iν(

x

σ
)Kν(

y

σ
)].

We have the following classical estimates for the classical trace norms
||A||k := tr(|A|k)1/k:
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2. Let ϕ ∈ C∞
0 (R) then ||R0

λϕ||1 = O(|λ|−1/2) for λ in the cone |ℑλ| ≥
1
ϵ (ℜλ+ ϵ).

Proof: For λ ≤ −ϵ and ν in the above cone it holds that

||R0
νϕ||1 ≤ ||(1 + (λ− ν)R0

λ)||−1
L2 ||R0

λϕ||1

as well as that for σ2 = − 1
λ) :

||R0
λϕ||1 =

∫ ∞

0
dxxϕ(x)(KνIν)(

x

σ
).

Hence we have the required estimate for
∫ ∞

0
dxxϕ(x)(KνIν)(

x

σ
) ≤ σ||xϕ||L2 ||KνIν ||L2 .

3. Let α ∈ R−, α+ d ≤ 2 then

∥x−α∂dxR
0
λ∥L2 = O(|λ|α+d

2
−1)

Proof. This follows for d = 0 from the inequality given in the beginning while
for d = 2 it results from the fact that −∂2x ≤ Hκ+ 1

4
and therefore

∥∂2xϕ∥ ≤ ∥Hκ+ 1

4
R0

λϕ∥2 ≤ (∥ϕ∥2L2 + |λ|2∥R0
λϕ∥2L2).

Furthermore for d = 1 we have for ψ = R0
λϕ that

(x−α∂xψ, x
−α∂xψ) = (x−2αψ,−∂2xψ) + 2α(∂xψ, x

2(α− 1

2ψ)

≤ 2δ∥x2αψ∥2L2 + 2δ−1∥∂2xψ∥2L2

+ 2ϵ∥x−(2α+1)ψ∥2L2 + 2ϵ−1∥∂xψ∥2L2

the latter choosing δ = |λ|α− 1

2 and ϵ = |λ|α2 gives the required estimate.

2.4. The Neumann series

Let α > −2, k0 = 0 and {kn}∞n=1 an increasing sequence of positive real num-
bers. The potential v has the asymptotic expansion at the origin of the form:

v(x) ∼ xα
∞∑

n=0

vnx
kn .
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In the sequel we will distinguish two cases:

• Case I. Let α = −1 and v0 ̸= 0.
In this case the distributional trace of the resolventRλ(H), fH( 1√

−λ
) :=

Tr(Rλ(H)) is computed using Neumann series around Hκ,α = −∂2x +
κ
x2 + α

x :

fH(
1√
−λ

) =

N∑

j=0

Tr(Rλ(Hκ,α)(v −
α

x
))jRλ(Hκ,α)

+ Tr(Rλ(Hκ,α)(v −
α

x
))N+1Rλ(H).

• Case II. Let α > −1 and v0 ̸= 0.
The Neumann series is based on the resolvent of the usual Bessel op-
erator Hκ. The case of −2 < α < −1 is treated within the frame of
case B.

The Neumann series around the Bessel operator, due to its behaviour
under scaling, is used in order to obtain the general form of the asymptotic
expansion.

3. The asymptotic expansion

In this paragraph we ’ll establish the existence and the precise form of the
asymptotic expansion of the distributional trace of the resolvent Rλ(H) of
the operator H = −∂2x + κ

x2 + v(x) by means of a Neumann series based on
the resolvent Rλ(Hκ of Hκ = −∂2x + κ

x2 , for a cut off function χ ∈ C∞
0 (R+),

χ ≡ 1 in a neighbourhood of zero :

fχ,H(
1√
−λ

) := Tr(χRλ(H)) =

N∑

j=1

Tr(χ(Rλ(Hκ)v)
jRλ(Hκ)) +O(|λ|

N(α−2)

2 )

Denote by Ij(
1√
−λ

) = Tr(χ(Rλ(Hκ)v)
jRλ(Hκ)). Actually we have the fol-

lowing

Theorem. Let χ be a smooth cutoff function, χ ≡ 1 in a neighborhood of the

origin, then the function fχ,H(η) has an asymptotic expansion of the form

fχ,H(η) ∼
∞∑

k=0

A2k+1η
2k+1 +

∞∑

n=0

Bnη
zn +

∞∑

k=0

C2kη
2k +

∞∑

k=0

D2k+1η
2k+1 log η
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where zn ∈ R \ Z, Bk, Ck, Dk are homogeneous polynomials in the asympotic

coefficients {vn} of the potential of degree z if we define deg(vn) = kn + 2.

The proof will be achieved in two steps: first we prove the existence by
appealing to the singular asymptotics lemma that we recall below and in the
second step we use a scaling argument in conjuction with the asymptotics
of the resolvent of the Bessel operator Hκ = −∂2x + κ

x2 which as it is well
known it is represented by the kernel :

Rσ(x, y) = (xy)
1

2 [Θ(x− y)Kν(
x

σ
)Iν(

y

σ
) + Θ(y − x)Iν(

x

σ
)Kν(

y

σ
)].

Step 1. The trace

Ij = tr(χRλ(Hκ)(vRλ(Hκ))
j−1)

is the j + 1-tuple integral
∫ ∞

0
dx

∫ ∞

0
dx1· · ·

∫ ∞

0
dxjχ(x)Rλ(x, x1) . . . Rλ(xj , x)

which is the sum of integrals, each one for an ordering of the the variables
x, x1, . . . , xj hence for x ≥ x1 ≥ · · · ≥ xj :

∫ ∞

0
dx

∫ ∞

0
dx1· · ·

∫ xj−1

0
dxjx

2χ(x)x21v(x1) . . . x
2
jv(xj)(Kν(

x

σ
)Iν(

xj
σ
))2

×
j−1∏

i=1

Kν(
xi
σ
)Iν(

xi
σ
)

and we perform the coordinate change (blow up)

x1 = xt1, . . . , xj = xj−1tj−1

and

x1 = xθ1, . . . , xj = xθj−1, θk = t1 . . . tk

that leads to a sum of integrals of the form:

∫ ∞

0
dxx2jχ(x)

∫ 1

0

dθ1
θ1

· · ·
∫ 1

0

dθj
θj

j∏

k=1

v(xθj)θ
2
jK

2
ν (
x

σ
)I2ν (

x

σ
θj)

j−1∏

k=1

(KνIν)(
x

σ
θk)

which is finally of the form suggested from the SAL
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Ij(σ) =
∫ ∞

0

dx

x
χ(x)x3 · F (ξ, x)

where

F (ξ, x) :=

∫ 1

0

dθ1
θ1

· · ·
∫ 1

0

dθj
θj

(Bν(ξ, θj)Rjν(ξ; θ1, · · · , θj−1)vj(x; θ1, · · · , θj).

if we set

Bν(ξ, θj) := (Kν(
1

ξ
)Iν(

θj
ξ
))2, Rj

ν(ξ, θ1, · · · , θj−1) :=

j−1∏

i=1

(KνIν)(
θi
ξ
)

and

vj(x; θ1, · · · , θj) :=
j∏

i=1

(xθi)
2v(xθi) = O(xj(α+2))

Now we see that vj ∈ Γ∞((R+)) with asymptotic character S + · · ·+ S︸ ︷︷ ︸
j−times

since

v ∈ Γ∞(R+) has character S, v(x) = O(xα), α > −2. Furthemore the char-
acter of (Qν · Pj

ν)(ξ, θ1, · · · , θj) is S(k) = 1 for k ∈ j + 1 + 2Z+. The esti-
mates for the Bessel functions as ξ → 0:

Kν(
1

ξ
)Iν(

θ

ξ
) = O(ξ), Kν(

θ

ξ
)Iν(

θ

ξ
) = O(ξ).

From these it follows that F (ξ, x) ∈ Γ∞((R+)
2) and also that

|P x
zF (ξ, x)| ≤ (xξ)ℜz+δhz(ξ)

where we have that

P
x
z =

∏

Rez′≤Rez

(x∂x − z′)S(z
′),

∫ ∞

1
hz
dz

z
<∞.

Then we conclude that

Ij(σ) ∼ σ3
∞∑

n

B(j)
n σzn

+ σj+1(

∞∑

k=0

A
(j)
k σ2k +

∞∑

k=0

C
(j)
k σ2k+1 +

∞∑

k=0

D
(j)
k σ2k(log σ))
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where the zn /∈ j + 1 + 2Z+ and the B
(j)
z , C

(j)
k , Dj

k are polynomials in the
coefficients of the potential of the potential of degree k + j if we define
degvz = z + 2. These suffice for the B′s in the expansion.

Step 2. We have to establish the nature of the non classical terms logarith-
mic terms. This will be achieved by induction on the ordered couples (j, k)
where j is the order of the term in the Neumann series and k is order in the
asymptotic expansion of the potential. For k = α the assertion follows from
above: everything depends on v0; indeed j = 0 follows from [5]. Assume that
k > α. Then consider

Ij = Tr(χ(Rλ(Hκ)v)
jRλ(Hκ)

Notice that up to O(λ−∞) we could embody the cutoff function in the
potentials V . Accordingly let N ∈ Z, kN ≥ −2 and split the potential as
v = vN +RN , where vN (x) ∼ xα

∑N
n=0 vnx

kn . The following commutator
identities for kr ≥ kn

2 − 1, r < n and ϵ = kn − kr > 0 give that

xknRλ(Hκ) = xkrRλ(Hκ)x
ϵ + 2ϵxkrRλ(Hκ)(x

ϵ−2(x∂x +
ϵ− 1

2ϵ
)Rλ(Hκ),

x∂xRλ(Hκ) = Rλ(Hκ)x∂x − 2Rλ(Hκ)
2Hκ

and in turn allow us to vary the number of the Rλ(Hκ) factors. This in view
of the fact that the asymptotic expansion of IνKν(x) as x→ ∞ contains only
odd powers, in view of λ∂λRλ(H0) = −2σ∂σRσ, leading to the polynomial
dependence of the coefficients of the logarithms and the even powers:

Ij(η) ∼
∞∑

k=0

A2k+1η
−2k−1 +

∞∑

n=0

Bznη
−zn +

∞∑

k=0

C2kη
−2k +

∞∑

k=0

Dkη
−k−4 log η

where zn ∈ R \ Z, z > −2 and the Bz, Ck, Dk are homogeneous polynomials
in the asympotic coefficients {vn}∞n=0 of v of degree z if we define deg(vz) =
z + 2. Then summing up we obtain an expansion of the same form and we
appeal to the results in par. 5 of [4] in order to keep the odd terms in the
log’s.
In conclusion we supply the asymptotics of

Gt(ξ) := Kν(
1

ξ
)Iν(

t

ξ
)
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as ξ → 0 uniformly in 0 ≤ t ≤ 1. For this we calculate the Mellin transform
using the integral representation:

Gt(ξ) = Kν(
1

ξ
)Iν(

t

ξ
) =

∫ ∞

0

x2

x2 + ξ−2
Jν(tx)Jν(x)

dx

x
.

The Hankel transforms [20] allows us to obtain further:

Gt(ξ)
(2t)ν√

πΓ(ν + 1
2)

∫ ∞

0

xν+2

x2 + ξ−2

∫ 1

0

Jν(x
√
1 + t2 − 2ut)

(1 + t2 − 2ut)
ν

2

du
dx

x
.

From this we get that the Mellin transform is

Ĝt(s) = −2−s+2ν−2Γ(ν − s
2)Γ(− s

2)√
πΓ(ν + 1

2)
(1 + t)s+ν

×
∫ 1

0
ην−

1

2 (1− η)ν−
1

2 (1− 2t

(1 + t)2
η)s−νdη.

A Taylor expansion then leads to the series

Ĝt(s) = −(1 + t)s−2ν 2
−s+2ν−2Γ( s2 + 1

2)Γ(ν − s
2)Γ(− s

2)√
πΓ(ν + 1

2)

×
∞∑

k=0

(−1)kIk(t)

k!(Γ( s2 + 1
2 − k)

(2t)k

(1 + t)2k

where

Ik(t) =

∫ 1

0
ην−

1

2
+k(

1− η

1− 2t
(1+t)2 η

)ν−
1

2dη.

This integral satisfies that Ik = O(k−
1

2
−δ) as k → ∞, uniformly in t, where

δ = 1
2 for 1 > ϵ > 0, ν ≥ 1

2 and δ = ν for ν < 1
2 . Stirling’ s formula then sug-

gests that the summand behaves as O(k−
s

2
−1−δ) and hence it is uniformly

convergent for 0 < t < 1. Finally we conclude that the asymptotic expansion
of gt(ξ) as ξ → 0 contains only odd powers of ξ. 2

4. The recursions for the coefficients of the expansion

We will consider the two cases indicated in section 2.4 as follows:

2In order to extend meromorphically it out of the strip −1 + ν < ℜs < ν we
differentiate with respect to ζ = 2t

(1+t)2 . The poles as t→ 1 remain located there.
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4.1. Case I

The first order term in the Neumann series is reduced mod(λ−∞), to

I1(
1√
−λ

) = tr(Rλ(Hκ,v0
)(v − v0

x
)Rλ(Hκ,v0

)χ)

= −∂λtr(Rλ(Hκ,v0
)(v − v0

x
)χ)

Setting σ = 1√
−λ

we arrive through the formula

I1(σ) =
σ2

2
σ∂σ Ĩ1(σ)

at the integral

(2) Ĩ1(σ) = σ ·
∫ ∞

0
Gµ,ν(

2

y
)V (x)

dx

x

where

V (x) = x(v(x)− v0
x
), Gµ,ν(

2

y
) =

Γ(ν − µ+ 1
2)

2Γ(2ν + 1)
Mµ,νWµ,ν(

2

y
),

for Mµ,ν ,Wµ,ν being the Whittaker functions y = σ
x , µ = v0xy

2 . This Green’s
function could be simplified in the form that we ’ll use in the sequel

Gµ,ν(y) :=
G̃µ,ν(y)

αν(µ)

where

G̃µ,ν(y) = y2ν+1W̃µ,ν(y)M̃µ,ν(y)

for the integrals

M̃µ,ν(y) =

∫ 1

−1
e−y(1−θ1)(1− θ21)

ν− 1

2 (
1− θ1
1 + θ1

)µdθ1,

W̃µ,ν(y) =

∫ ∞

0
e−2yθ2(θ2(1 + θ2)

ν− 1

2 (
1 + θ2
θ2

)−µdθ2,

αν(µ) = Γ(ν − µ+
1

2
)Γ(ν + µ+

1

2
).

The study of the σ → 0 asymptotics of the above intgeral will provide the
inverse spectral result. Indeed the Singular Asymptotics lemma provides the
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asymptotic coefficients of the integral σ → 0. For brevity we introduce the
notation

Cj,ν(y) = ∂jµGµ,ν(
2

y
)|µ=0, cj,ν(y) = ∂jµG̃µ,ν(

2

y
)|µ=0.

Then we distinguish between the following cases:
A. 2ν ∈ Z+, ν = n+ 1

2 . For l = 0, . . . we appeal to the logarithmic terms

D2l+1,1Ĩ1(0) = − 1

(2l)!
Dy

2l,0∂
2l
x |x=0[Gµ,ν(

2

y
) · V (x)]

= −
2l∑

j=0

(
v0
2
)j [(Dy

2l,0(y
jCj,µ(y))]v2l−j−1

and also to the even powers that are given

D2l,0Ĩ1(0) = −
2l∑

j=0

(
vj0
2jj!

)[uy2l,0(y
jCj,µ(y))]v2l−j−1.

Actually for the inverse spectral result we’d like the explicit forms:

D2l+3,1Ĩ1(0) = B0
2l+2(ν)v2l+2 − (l + 1)B1

2l+2(ν)v0v2l+1

− (l + 1)(l +
1

2
)B2

2l+2(ν)v
2
0v2l + P2l+2(v)

and also that

D2n+2j+2,0Ĩ1(0) = C0
2j+2n+1(ν)v2n+2j+1

+ (j + n+
1

2
)C1

2j+2n+1(ν)v0v2n+2j +Q2n+2j+1(v)

where we have denoted the coefficients

Bj
k(n) := Dy

k,0(y
jCj,ν) = Dk−j,0Cj,ν , Cj

k(ν) := uyk,0(y
jCj,ν) = uk−j,0(Cj,ν)

and the P,Q are the polynomials suggested precedingly by the general form
of the asymptotic expansion. Notice that if l = 0, . . . , n then we ’ll see in the
sequel that:

B0
2l(ν) ̸= 0, C0

2l+1(ν) ̸= 0

therefore coefficients vk, k = 1, . . . , 2n+ 1 are determined immediately. For
the remaining we appeal to the pair of equations; hence we have to establish,
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provided that v0 ̸= 0, that the determinant:

∆k(ν) = B1
2n+2k+2(ν)C

1
2n+2k+1(ν)−B2

2n+2k+2(ν)C
0
2n+2k+1(ν)

does not vanish.
B. 2ν ∈ R \ Z+. The inverse spectral result requires again the logarith-

mic odd powers as above, which are provided from the first order terms

D2l+3,1Ĩ1(0) = D
(0)
2l+3(ν)v2l+1 + P2l+2(V )

as well as the the pure powers α ∈ R, α > −2, α ̸= 0, 2, . . . :

Dα,0Ĩ1(0) = uyα,0[(P̄αGµ,ν(
2

y
) · V ]|x=0.

In this formula P̄α =
∏

z≤α(x
zx∂xx

−z) and hence we obtain the set of equa-
tions

Dα+2,0Ĩ1(0) = C0
α+2(ν)vα+1 + C1

α+2(ν)v0vα+1 + C2
α+2(ν)v

2
0vα +Qα+2(v).

Notice that if α ̸= 2ν + 2j + 1 then C0
α+2 ̸= 0 and hence vα is determined

by the first terms for α ̸= 2ν + k. These in particular contain the coefficients
for α = 2ν + 2j + 1, j = 0, . . . .

D2ν+2l+4,0Ĩ1(0) = C1
2ν+2l+3(ν)v0v2ν+2l+2 + C2

2ν+2l+3(ν)v
2
0v2ν+2l+1

+Q2ν+2l+3(v),

D2ν+2l+3,0Ĩ1(0) = C0
2ν+2l+2(ν)v2ν+2l+2 + C1

2ν+2l+2(ν)v0v2ν+2l+1

+Q2ν+2l+2(v)

where Q are the same polynomials that appear also above. Again we have
to stablish that determinant:

∆k(ν) = C1
2ν+2k+2(ν)C

1
2ν+2k+1(ν)− C2

2ν+2k+2(ν)C
0
2ν+2k+1(ν)

of the coefficients of the preceding system of equations is nonvanishing.

The Mellin Transforms of Cj,ν . Finally all these asymptotic coeffi-
cients coincide with the coefficients of the Laurent expansion of the Mellin
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transform

ĉj,ν(s) =

∫ ∞

0
xscj,ν(x)

dx

x

as it is explained in the appendix on the Singular Asymptotics Lemma. In
the sequel we’ ll employ the identification provided by the identities:

(3) Dk,0(cj,ν)(0) = Ress=−k ĉj,ν uk,0(cj,ν) = ĉj,ν(−k)

The function cj,ν(y) is written under the following change of variables

θ1 = 2θ1 − 1, θ2 =
(1− θ1)θ2

1− θ2

in the form:

cj,ν(y) =

∫ 1

0

∫ 1

0

dθ1dθ2
1− θ2

(θ1θ2)
ν− 1

2 (1− θ1θ2)
ν− 1

2 (
1− θ1
1− θ2

)2ν−1

× logj(
1− θ1θ2
θ1θ2

) exp(−2

y

1− θ1
1− θ2

).

Further we perform the change of variables

(0, 1)× (0, 1) ∋ (θ1, θ2) 7→ (ξ, η) ∈ (0, 1)× (0,∞),

ξ = θ1θ2, η =
1− θ1
1− θ2

,

dθ1dθ2
1− θ2

=
dξdη

2r(ξ, η)(1 + η)

where r(ξ, η) = (1− 4ξη
(1+η)2 )

1

2 . In these coordinates the preceding integral is
written as:

cj,ν(y) =

∫ ∞

0

η2ν+1e−
2η

y dη

1 + η

∫ 1

0

dξ

r(ξ, η)
[ξ(1− ξ)]ν−

1

2 logj(
ξ

1− ξ
).

In the sequel we ’ll derive its asymptotics as y → 0. To that end, we perform
the change of variable ξ̃ = ξ

1−ξ to obtain finally by abusing notation for the
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function r(ξ, η) that

cj,ν(y) =

∫ ∞

0

e−
2η

y η2ν+1dη

1 + η

∫ ∞

0

ξν−
1

2dξ

r(ξ, η)

logj ξ

(1 + ξ)2ν+1
.

By a Taylor expansion of the function r(ξ, η) we obtain the Mellin transform
of the function cj,ν(s):

ĉj,ν(s) = (−1)j2s−2ν−1Γ(−s+ 2ν + 1)

∞∑

l=0

djl (ν)Γ(s+ n+ 1)Γ(n− s)

where

d0l (ν) =
(2l + 1)B(l + ν + 1

2 , ν +
1
2)

(Γ(l + 1))2

d1l (ν) = d0l (ν)[ψ(l + ν +
1

2
)− ψ(ν +

1

2
)],

d2l (ν) = d0l (ν)[(ψ(l + ν +
1

2
)− ψ(ν +

1

2
))2 − ψ′(l + ν +

1

2
)− ψ′(ν +

1

2
)]

These combined with Stirilng’s formula suggests that the series converges
absolutely for 0 < ℜs < 1 and represents a meromorphic function with poles
at the integral points. Using the Laurent expansion of the Gamma function
we obtain that for l < k

2s−1Γ(−s+ 2ν + 1)Γ(s+ l + 1)Γ(l − s) =

(−1)k−lΓ(l + k + 1)Γ(k + 2ν + 1)

2k−1Γ(k − l)

× [
1

s+ k
− (ψ(l + k + 1) + ψ(k − l + 1)

− log 2 + ψ(2ν + k + 1) +O(s+ k)]

and for l ≥ k

2s−1Γ(−s+ 2ν + 1)Γ(s+ l + 1)Γ(l − s)

= 2−(k+1)Γ(k + 2ν + 1)Γ(l − k + 1)Γ(l + k + 1) +O(s+ k).
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Furthermore let N = [2ν] then the Taylor expansions at −(2ν + k), k ∈ Z+

give that for l ≤ N + k:

2s−1Γ(−s+ 2ν + 1)Γ(s+ l + 1) · Γ(l − s)

=
Γ(k + 4ν + 1)Γ(2ν + k + l + 1)

sin 2νπΓ(2ν + k − l)
+O(s+ 2ν + k)

and for l ≤ N + k we have

2s−1Γ(−s+ 2ν + 1)Γ(s+ l + 1) · Γ(l − s)

= 2−(2ν+k+1)Γ(k + 4ν + 1)Γ(l + 1− 2ν + k)Γ(2ν + k + l)

+O(s+ 2ν + k)

The identities. At this point notice that since

M̃0,ν(x) = 2νΓ(ν +
1

2
)
√
πx−νe−xIν(x),

W̃0,ν(x) =
2−νΓ(ν + 1

2)√
π

x−νexKν(x)

then

C0,ν(y) = yIν(y)Kν(y)

and this suggests further that

Ĉ0,ν(s) =
Γ(12 − s

2 + ν)Γ(12 − s
2)Γ(

s
2)

4
√
πΓ(12 + ν + s

2)
.

The general form of the asymptotic expansion suggests the absence of loga-
rithms in the odd powers that in turn implies the identities Bj

2m+1−j(ν) = 0.

In parallel the exact form of Ĉ0,ν suggests that for ν = n+ 1
2 then B0

k(n+
1
2) = 0 for k = −2(n+ l) whereas C0

2ν+2k+3(ν) = 0. We ’ll employ later these
identities but prior to that we study the resulting coefficients.
The asymptotic coefficients in the recurrence relation. We treat the
preceding cases separately.

A. ν = n+ 1
2 . The required coefficients are given by

Bj
k+j+1(ν) =

(−1)kΓ(2n+ k + j + 3)

22n+k+j+1
[βjk+j,0(ν)− βjk+j,1(ν)]
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where for j = 1, 2

β12k+1,0(ν) =

k∑

l=0

dj2l(ν)
Γ(2k + 2 + 2l)

Γ(2k + 2− 2l)

β12k+1,1(ν) =

k∑

l=0

dj2l+1(ν)
Γ(2k + 2l + 3)

Γ(2k + 1− 2l)

β22k+2,0(ν) =

k+1∑

l=0

dj2l(ν)
Γ(2k + 3 + 2l)

Γ(2k + 3− 2l)

β22k+2,1(ν) =

k+1∑

l=0

dj2l+1(ν)
Γ(2k + 2l + 4)

Γ(2k + 3− 2l)

as well as that for δij the usual Kronecker symbol:

Cj
k+j+1(ν) = −(−1)kΓ(k + 2n+ j + 2)

2k+j+2n+3
[γjk+j+1,0(ν)− γjk+j+1,1(ν)

+ (1− δj0)[γ
0
k+j+1,0(ν)− γjk+j+1,1(ν)]

+ (ψ(k + j + 2n+ 3)− log 2) + rk+j+1(ν)]

where now for j = 0, 1

γ02k+2,0(ν) =

k+1∑

l=0

dj2l(ν)
Γ(2k + 2l + 4)

Γ(2k + 3− 2l)

(
ψ(2l + 2k + 3) + ψ(2k − 2l + 3)

)

γ02k+2,1(ν) =

k+1∑

l=0

dj2l+1(ν)
Γ(2k + 2l + 4)

Γ(2k + 3− 2l)

(
ψ(2l + 2k + 4) + ψ(2k + 3− 2l)

)

γ12k+1,0(ν) =

k∑

l=0

dj2l(ν)
Γ(2k + 2l + 3)

Γ(2k + 2− 2l)

(
ψ(2l + 2k + 2) + ψ(2k − 2l + 2)

)

γ02k+1,1(ν) =

k∑

l=0

dj2l+1(ν)
Γ(2k + 2l + 3)

Γ(2k + 2− 2l)

(
ψ(2l + 2k + 3) + ψ(2k + 2− 2l)

)

rm(ν) =

∞∑

l=0

djl+m(ν)Γ(l + 1)Γ(l + 2m+ 1)

We will use the above in order to getB1
2n+2k+2(ν),B

2
2n+2k+2(ν), C

0
2n+2k+1(ν),

C1
2n+2k+1(ν).



✐

✐

“6-Pliakis” — 2022/12/20 — 23:03 — page 756 — #22
✐

✐

✐

✐

✐

✐

756 Demetrios A. Pliakis

II. 2ν /∈ Z+. Let N = [2ν] then we get that:

Cj
2ν+k+j(ν) =

Γ(k + 4ν + j + 1)

24ν+k+j+1

× [
π

sin 2νπ
(−1)k

(
γjN+k+j,0(ν)− γjN+k+j,1(ν)

)
+ ρN+k+j+1(ν)]

where

γjN+k+j,0(ν) =

[N+k+j

2
]∑

l=0

dj2l(ν)
Γ(2ν + k + 2l + j + 2)

Γ(2ν + k + j − 2l)

γjN+k+j,1(ν) =

[N+k+j

2
]∑

l=0

dj2l+1(ν)
Γ(2ν + k + 2l + j + 3)

Γ(2ν + k + j − 2l − 1)

ρN+k+j+1(ν) =

∞∑

l=0

djl+N+k+j+2(ν)Γ(l +N − 2ν + 1)

× Γ(l + 2ν +N + 2k + 2j + 1)

The preceding formulae will provide C0
2ν+2k+2(ν), C

1
2ν+2k+1(ν), C

1
2n+2k+2(ν),

C2
2n+2k+2(ν).

Certain elementary estimates. An application of the steepest descent
provides the following elementary estimate for the Γ-function, for δ ∈ (0, 12),
x ≥ 1:

cδ(x+ 1)xe−(1− 4δ2

2−δ2
) ≤ Γ(x) ≤ Cδ(x+ 1)xe−(1−δ2)x

while the Euler-MacLaurin formula gives for the ψ, ψ′-functions and a >
0, k ∈ Z+:

π21(a) < ψ(k + a+ 1)− log(k + 1) +
1

6(k + a)
< π11(a),

π12(a) < ψ′(k + a+ 1)− k − 1

(a+ 1)(k + a)
+

1

3(k + a)2
< π22(a)

as well as that

π11(a) = ψ(a) +
1

a
+

4a+ 3

6(a+ 1)2
, π21(a) = ψ(a) +

1

a
+

2a+ 3

6(a+ 1)2
,

π12(a) = ψ′(a)− 1

a2
+

3a+ 5

6(a+ 1)3
+

a+ 6

8(a+ 1)
,
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π22(a) = ψ′(a)− 1

a2
+

3a+ 5

6(a+ 1)3
− a+ 6

8(a+ 1)
,

Actually we have the elementary inequality for t > 0,

min(a, b) ≤ eat − 1

ebt − 1
≤ max(a, b)

which is used after the

n−s =
1

Γ(s)

∫ ∞

0
tse−ntdt

t

These imply that for βδ < 1:

κ1(δ, ν)β
l
δ

(l + 1)2l+ν+ 1

2

≤ d0l (ν) ≤
κ2(δ, ν)

βlδ(l + 1)2l+ν+ 1

2

.

that allow us to obtain that for ζδ(m) = 2m+ δ2 + 3, η1(δ) =
2δ2−15δ−8

2−δ2 ,

η2(δ) =
2δ2−7δ+14

2−δ2 the estimates

κ1(δ) < β0m,l(ν) ≤
κ2(δ, ν)e

mζδ(m)

m2νζδ(m)ν+
1

2

(1 +O(ζν+
1

2m2νe−ζδ(m)m)),

κ1(ν) < γ0m,l(ν) ≤
κ2(δ, ν)e

mζδ(m)

m2νζδ(m)ν+
1

2

(1 +O(ζν+
1

2m2νe−ζδ(m)m))

κ2(δ, ν)e
(log 4−2−η2(δ))m

(1 +m)ν+
5

2

< rm(ν), ρm(ν) <
κ1(δ, ν)e

(2+log 4−η1(δ))m

(1 +m)ν+
5

2

At this point we remark that the preceding identities are expressed in this
notation in the form

β02k+1,0(n+
1

2
) = β02k+1,1(n+

1

2
),

π

sin 2νπ
(−1)k

(
γ0N+k+j,0(ν)− γ0N+k+j,1(ν)

)
+ ρN+k+j+1(ν) = 0

The determinants of the recurrence relation are given respectively by

∆k(ν) = [B1
2n+2k+2(ν)C

1
2n+2k+1(ν)−B2

2n+2k+2(ν)C
0
2n+2k+1(ν)](n+ k +

1

2
)v20,

∆k(ν) = [C1
2ν+2k+2(ν)C

1
2ν+2k+1(ν)− C2

2ν+2k+2(ν)C
0
2ν+2k+1(ν)]v

2
0.
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The identities in conjuction with the elementary inequality

ε(1− xε) ≤ log x ≤ ε(xε − 1)

allows to exlcude the annihilation of the determinants.

4.2. Case II. The coefficients of the expansion

In the preceding section we assumed that v0 ̸= 0 when the ‘initial power’
α = −1. However we mentioned that when the initial power α > −1 then
we should use the Neumann series around the Bessel operator Hκ. The pre-
ceding paragraph suggests that certain terms are excluded from the first
order perturbational terms and hence signify that the potential is decom-
posed as:

v(x) = x2νv0 + x2νu(x) + ṽ

where u ∈ C∞
0 (R+) and as x→ 0, for u2j = v2ν+2j then u(x) ∼

∑∞
j=1 u2jx

2j

. Expanding the trace we concentrate on the contribution of the first three
terms, abbreviating Rλ ≡ Rλ(Hκ) to obtain mod(λ−∞):

Tr(Rλ · vRλ · v) = 2u0Tr(Rλx
2νRλ · ṽ) + 2u0Tr(Rλx

2νRλx
2ν · u)

+ u20Tr(Rλx
2νRλ · x2ν) + 2Tr(Rλ · ṽRλ · x2νu)

+ Tr(Rλ · ṽRλ · ṽ) + Tr(Rλ · x2νuRλ · x2νu).

However, there we should assume that u0 = v2ν ̸= 0; otherwise we have
through the commutator identity

x2jRλ = Rλx
2j + 2jRλD2j−3x

2(j−1)Rλ

which by iteration allows us to exhaust all the x− powers at the cost of
Rλ-powers. At this point the scaling argument restricts the contribution to
a given order only to that from the first term. Therefore, the traces are
essentially comprised in the general form

I(σ) := Tr(Rσ · x2ν ·Rσ · V)

where V stands for x2νu, ṽ. The identity

∂xx
ν+1Iν+1(x) = xν+1Iν(x)x
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suggests further that

∂xx
2ν+2(I2ν+1(x) + I2ν (x)) = 2(2ν + 1)x2ν+1I2ν (x)

and an integration of the latter reduce the study to that of integrals of the
form for ξ = σ

x :

I(σ) =
σ2

2

∫ ∞

0

dx

x
x2ν+2V(x)F(ξ)

where

F(ξ) = ξ2
1

2ν + 1
(ξ−2B0(

1

ξ
) +B1(

1

ξ
))

having set that

Bj(ξ) := (ξjKνIν+j)(ξ) · (ξjKνIν+j)(ξ),

The Singular asymptotics lemma suggests that if 2ν + α /∈ Z vα ̸= 0 is a
nonvanishing asymptotic coefficient of the “potential ” V then

D2ν+α+2,0I(0) = C2ν+α+2(ν)u0vα + P2ν+α+2(v)

while if 2ν + α ∈ Z then

D2ν+α+2,1I(0) = B2ν+α+2(ν)u0vα +Q2ν+α+2(v).

For these we need the Mellin tranfrom of F(ξ) which are calculated in the
next paragraph since

C2ν+α+2(ν) = u2ν+α+2,0(F) = F̂(−2ν − α− 2),

B2ν+α+2(ν) = D2ν+α+2,0F = Ress=−(2ν+α+2)(F̂).

4.3. Bessel function formulae

We give in some detail the calculation of the Mellin transform of the func-
tions: B0,B1. The calculations of the Mellin transforms are executed using
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the integral representation for j = 0, 1

Bj(ξ) = ξjKνIν+j(ξ) =

∫ ∞

0

xj+2

x2 + ξ2
Jν+j(x)Jν(x)

dx

x

and the classical Weber-Schaftheitlin integral3. The convolution formula al-
lows thus to obtain for:

B̂j(s) =
(Γ(j + ν − s

2))
2

8
√
πΓ(12 + ν)2(2πi)

·
∫ λ+i∞

λ−i∞
F1(w)F2(w)F3(w)F4(w)dw

setting

F1(w) :=
Γ(w−s

2 )Γ(−w
2 + ν + j)

Γ(− s
2 + ν + j)

, F2(w) :=
Γ(−w

2 )Γ(
w−s
2 + ν + j)

Γ(− s
2 + ν + j)

,

F3(w) :=
Γ( s−w+1

2 )Γ(12 + ν)

Γ( s−w
2 + 1 + ν)

, F4(w) :=
Γ(w+1

2 )Γ(12 + ν)

Γ(w2 + 1 + ν)
.

Next we study the meromorphic properties of the function B̂j : the resul-
tant formula implies in the domain D3 = {(u, v, w) ∈ (R+)

3/w ≤ 1, uv ≥ w}
that:

B̂j(s) =
(Γ(j + ν − 1

2s))
2

√
π(Γ(12 + ν))2

· Ij(s)

where

Ij(s) :=

∫

D3

dudvdw

uvw
[u−s((1 + u2)−ν+ s

2 )][v−s+2ν+j(1 + v2)−ν−j+ s

2 ]

· ws+1(1− w2)ν−1/2(
w

uv
) · (1− w2

u2v2
)ν−1/2

This is written further through a Taylor development as

Ij(s) =

∞∑

l=0

Γ( s2 + 3
2 + l)

l!Γ(ν + 1
2 − l)Γ( s2 + ν + 2 + l)

Ijl(s)

3These are condensed in one formula:

∫
∞

0

xj−sJν+j(x)Jν(x)
dx

x
=

Γ( s2 + 1
2 )Γ(− s

2 + ν + j)

Γ( 12s+ 1)Γ( s2 + 1 + ν)
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if we introduce the integral

Ijl(s) :=

∫ ∫

uv≥1

dudv

uv
[u−s−2l−1(1 + u2)−ν+ s

2 )]

· [v−s+2ν+j−2l(1 + v2)−ν−j+ s

2 ][u2νv−(2ν+1) + 1].

This represents a holomorphic function in the left half plane ℜs < 0 positive
on the negative real axis. Furthermore the substitution u2 = 1

1−ξ − 1, v2 =
1
ηξ − 1 leads to the familiar type of integral 4

Ijl(s) =
1

4

∫ 1

0

∫ 1

0

dξdη

ξη
ξ−

s

2
− 1

2
+ j

2 ηl+
j

2 (1− ξ)l+ν− 1

2 (1− ηξ)−
s

2
+ν−l+ j

2
−1

· [1 + ην+
1

2 ξ2ν+
1

2

(1− ξ)ν(1− ηξ)ν+
1

2

]

The following facts allow us to conclude that there exists α > −2 such that
one of the coefficients B2ν+α+2(ν) or C2ν+α+2(ν) is non zero. These are
indeed checked easily:

1) Notice that |I1(s)| ≤ 1
2 |I0(s)|.

2) For s ∈ C,ℜs < 0, l ∈ N we observe that |Ijl(s)| ≤ Ij0(ℜs); precisely

1

(1 +M)2l+2ν+1
≤ Ijl(s)

Ij0(s)
≤ 1 +

1

(1 +M)2l+1+s

3) Actually as l → ∞ then

Γ( s2 + 3
2 + l)

l!Γ(ν + 1
2 − l)Γ(ν + 2 + s

2 + l)
= O(l−1−ν).

The series converges absolutely for all s ∈ C.

4) The function I(s) has poles at the negative of an odd integer.

In the terminology introduced already we have the following lemma that
has appeared in various forms in the literature, [4], [6],[7],[12],[3] as as well
as Melrose refers to it as the push forward lemma.

4If s = 4ν + j or s = 6ν + j − 1 this integral is computed explicitly. We omit the
result since this case falls out of our goals.
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Theorem. (The singular asymptotics lemma) Let f(y, x) ∈ Γ∞(R2
+).

Let (S, S′) be the asymptotic character of f . Suppose that f has compact
x−support and

|P x
z [S

′]f(y, x)| ≤ (xy)ℜz+δhz(y)

for some δ = δz > 0 and hz satisfying
∫ 1
0 hz(

1
t )

dt
t <∞. Let

F (s) =

∫ ∞

0
f(
s

x
, x)

dx

x
.

Then F ∈ Γ∞(R+) and S1 + S2 is an asymptotic character of F . The asymp-
totic coefficients of F are given by

Dk,jF (0) =

S(k)−1∑

r=j

r!

j!
uxk,r−jD

y
k,rf(y, x)|y=0 +

S′(k)−1∑

r=j

r!

j!
uyk,r−jD

x
k,rf(y, x)|x=0

−
j−1∑

r=0

(j − r − 1)!r!

j!
Dx

k,rD
y
k,j−1−rf(y, x)|x=y=0

where uk,j is a linear functional on Γ∞(R+) defined as follows. Let S be an
asymptotic character of f . Let l ≥ S(k) and Dz = x∂x − z. Let

rk(f)(x) = f(x)−
∑

ℜz≤ℜk,z ̸=k

∑

j∈Z+

Dzjf(0)x
z logj x.

We define

uk,j(f) =
1

(j + l)!

∫ ∞

0
x−k(− logj+l x)rk(D

l
kf)(x)

dx

x
.

It can be readily checked that ukj(f) is independent of l and therefore of S,
for S large enough.

The computations are in fact facilitated through Mellin transforms because
of the formula, [7]:

uk,j(f) = f̂j(−k), Dk,j = f̂−j−1(−k)

where fl(z0) is the coefficient of the (z − z0)
j in the Laurent expansion of

the meromorphic extension of the Mellin transform:

f̂(z) =

∫ ∞

0
f(x)xz

dx

x
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(which is defined for Rez ≫ 0 if f is of bounded support) around z = z0.
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