
✐

✐

“7-Schenck” — 2022/12/30 — 21:52 — page 765 — #1
✐

✐

✐

✐

✐

✐

ADV. THEOR. MATH. PHYS.
Volume 26, Number 3, 765–792, 2022

Calabi-Yau threefolds in P
n and

Gorenstein rings

Hal Schenck, Mike Stillman, and Beihui Yuan

A projectively normal Calabi-Yau threefold X ⊆ P
n has an ideal

IX which is arithmetically Gorenstein, of Castelnuovo-Mumford
regularity four. Such ideals have been intensively studied when IX
is a complete intersection, as well as in the case where X is codi-
mension three. In the latter case, the Buchsbaum-Eisenbud theo-
rem shows that IX is given by the Pfaffians of a skew-symmetric
matrix. A number of recent papers study the situation when IX
has codimension four. We prove there are 16 possible betti ta-
bles for an arithmetically Gorenstein ideal I with codim(I) = 4 =
regularity(I), and that exactly 8 of these occur for smooth irre-
ducible nondegenerate threefolds. We investigate the situation in
codimension five or more, obtaining examples of X with hp,q(X)
not among those appearing for IX of lower codimension or as com-
plete intersections in toric Fano varieties. A key tool in our work
is the use of inverse systems to identify possible betti tables for X.
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1. Introduction

In their 1985 paper [6], Candelas-Horowitz-Strominger-Witten showed that
Calabi-Yau threefolds play a central role in string theory. This was further
developed in works by Candelas-Lynker-Schimmrigk [8] and Candelas-de la
Ossa-Green-Parkes [7]; the book of Cox-Katz [10] gives a comprehensive
overview of the field.

Definition 1.1. A smooth variety X of dimension n is Calabi-Yau if

KX ≃ OX and H1(OX), · · · , Hn−1(OX) = 0.

From the perspective of physics, the case n = 3 is of paramount inter-
est, and a first example of a CY threefold is a quintic hypersurface in P

4.
Generalizing the hypersurface case, when X is a complete intersection (CI)
of type {d1, . . . , dn−3} ⊆ P

n we have

KX ≃ OX(−n− 1 +
∑

di).

So a complete intersection Calabi-Yau (CICY) threefold in P
n must have

{d1, . . . , dn−3} satisfying

{5} in P
4

{2, 4} in P
5

{3, 3} in P
5

{2, 2, 3} in P
6

{2, 2, 2, 2} in P
7

Green-Hübsch-Lütken characterize CICY’s X ⊂
∏m

i=1 P
ni in [17]; when m =

1, h1,1(X) = 1 and h1,2(X) ∈ {65, 73, 89, 101}. Projective space is the sim-
plest complete toric variety [11], and in [1], Batyrev shows how to obtain
CY’s as hypersurfaces in toric varieties corresponding to reflexive polytopes.
Much activity over the last three decades has been devoted to this situation.
A complete intersection is the first avatar of a Gorenstein ring; a Goren-
stein ideal of codimension two is a complete intersection, and Buchsbaum-
Eisenbud [5] show that a codimension three Gorenstein ideal is generated by
the Pfaffians of a skew-symmetric matrix. From the CY perspective, this is
investigated in [28], [31] and subsequent papers. The codimension four case
was first studied systematically by Bertin in [2]; in [9] Coughlan-Golebiowski-
Kapustka-Kapustka list 11 Gorenstein Calabi-Yau (GoCY) threefolds in P

7

and ask if the list is complete. For more on GoCY’s, see [3], [4], and [27].
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1.1. Preliminaries

For algebraic background, we refer to [12]. The first observation to make is
that if S = K[x0, . . . xn] and I is a nondegenerate (i.e. containing no linear
form) homogeneous ideal in S such that R = S/I is arithmetically Cohen-
Macaulay, then the canonical module ωR is isomorphic to a shift R(a) exactly
when R is arithmetically Gorenstein (henceforth Gorenstein). In general,

ωR ≃ R(−n− 1 + regularity(R) + codim(R)), so we have

Lemma 1.2. If X = Proj(R) is a arithmetically Cohen-Macaulay three-
fold, then
(1.1)
KX = OX ←→ −n− 1 + n− 3 + regularity(R) = 0←→ regularity(R) = 4.

For R Gorenstein, we may quotient by a regular sequence of linear forms,
reducing to an Artinian Gorenstein ring with the same homological behav-
ior, described below. Any Artinian Gorenstein ring arises ([12], §21) via
Macaulay’s inverse system construction: Let F be a homogeneous polyno-
mial in S of degree d over a field K of characteristic zero. The set of dif-
ferential operators P ( ∂

∂x0

, . . . , ∂
∂xn

) which annihilate F generates an ideal

IF in T = K[ ∂
∂x0

, . . . , ∂
∂xn

], which is called the inverse system IF ⊆ T . The
corresponding ring T/IF is an Artinian Gorenstein ring of regularity d.

Definition 1.3. For I ⊆ S = K[x0, . . . , xn] homogeneous, the graded betti
numbers are

bij = dimK Tori(S/I,K)j .

In betti table notation [13], these numbers are displayed as an array with top
left entry in position (0, 0) and position (i, j) equal to bi,i+j. The reason for
this indexing is so that

regularity(S/I) = sup{j | bi,i+j ̸= 0}

is given by the index of the bottom row of the betti table.

Example 1.4. For a GoCY threefold X ⊆ P
6 given by the Pfaffians of a

skew-symmetric 7× 7 matrix M of generic linear forms, Rødland [28] shows
that h1,1(X) = 1 and h1,2(X) = 50. By [5] and [15], for a generic quartic F
in K[x0, x1, x2], IF is the Pfaffians of a skew 7× 7 matrix M of linear forms,
with betti table below. So for this example, the betti table of IF can be
realized by a GoCY.
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total 1 7 7 1

0 1 – – –

1 – – – –

2 – 7 7 –

3 – – – –

4 – – – 1

In [31], Tonoli finds smooth CY’s X ⊆ P
6 with 12 ≤ deg(X) ≤ 17. By

Lemma 1.5 below, only those with deg(X) ≤ 14 are GoCY’s; all have
h1,1(X) = 1. Ordered by increasing degree of X from {12, . . . , 17}, the re-
spective h1,2(X) are {73, 61, 50, 40, 31, 23}.

For S/I Artin Gorenstein of regularity 4, the Hilbert function of S/I is

HF (S/I, t) =
(

1, n+ 1, h2, n+ 1, 1
)

, with h2 ≤
(

n+ 2

2

)

.

Migliore-Zanello [26] show that Stanley’s example of a Gorenstein ring with
non-unimodal H-vector (1, 13, 12, 13, 1) is minimal, so for n ≤ 11, n+ 1 ≤
h2. If I can be lifted to a prime ideal in four more variables (Example 2.1
shows this can occur), the corresponding threefold X will have degree

(1.2) deg(X) =
∑

t

HF (S/I, t) = 2n+ 4 + h2.

Lemma 1.5. A GoCY X ⊆ P
n with n ≤ 15 has

(1.3) 3n− 7 ≤ deg(X) ≤ n2 − n− 2

2
.

Proof. Apply Equations 1.1 and 1.2 and the result of [26] to the Artinian
reduction of S/IX . □

This generalizes Lemma 2.1 of [9], which shows that a GoCY X ⊆ P
7 has

14 ≤ deg(X) ≤ 20.

2. Gorenstein codimension four

There have been several recent works on GoCY threefolds in P
7. In [2],

Bertin finds four distinct families. In addition to Reid’s work [27] on a
structure theory for Gorenstein codimension four ideals, work on GoCY’s
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in P
7 appears in [3], [4], and [9], where Coughlan-Golebiowski-Kapustka–

Kapustka give a table with 11 types of GoCY threefolds in P
7. They

ask if the list is complete; on their list h1,1(X) ∈ {1, 2} and h1,2(X) ∈
{34, 36, 37, 45, 46, 54, 55, 58, 65, 76, 86}. In this section, we use Betti tables
to explore their question. The hp,q(X) cannot be read from the betti table
of S/IX : the two families of degree 18 GoCY’s appearing in [9] have the
same betti table, but h1,2(X) can be either 45 or 46.

Example 2.1. The inverse system of a generic quartic in four variables
yields an ideal with betti diagram CGKK 11 in Table 1. For an n× n matrix
M with Mi,j = xij , Gulliksen-Negȧrd [18] determine the resolution of the
ideal In−1 of n− 1× n− 1 minors: it is Gorenstein of codimension four, and
has regularity 2n− 4. Hence if n = 4, this yields a Gorenstein codimension
four ideal in P

15. Quotienting with a regular sequence of eight linear forms
yields a smooth GoCY threefold in P

7, with betti diagram equal to that of
CGKK 11. The Hodge numbers are h1,1 = 2 and h1,2 = 34; this example was
first identified by Bertin in [1].

Theorem 2.2. An Artin Gorenstein algebra A = S/I with I nondegenerate
and regularity(A) = 4 = codim(A) has one of the 16 betti diagrams appear-
ing in Table 1 and Table 2 on the following two pages. Table 1 corresponds
to the 11 classes of GoCY in [9], and Table 2 to the remaining classes.

We defer the proof until the end of this section. The first four columns on the
left of Table 1 have degrees {14, 15, 16, 17}, while the columns on the right
of Table 1 have degrees {17, 18, 19, 20}, as noted above the corresponding
GoCY’s can have different Hodge numbers. The other 8 betti tables for an
AG algebra A with regularity(A) = 4 = codim(A) appear in Table 2.

Theorem 2.3. No diagram in Table 2 occurs for a smooth, irreducible
nondegenerate threefold in P

7.

Proof. In §3.4 we apply results of [33] to prove a structure theorem for any
irreducible nondegenerate threefold in P

7 with betti diagram of Type 2.4,
and show the resulting variety cannot be smooth. For the other betti tables,
we apply a result of [30]. A matrix of linear forms is 1-generic if no entry
can be reduced to zero by (scalar) row or column operations; a linear nth

syzygy is an element of TorSn+1(S/I,K)n+2. For a nondegenerate prime ideal
P , Theorem 1.7 of [30] shows:

1) P cannot have a linear nth syzygy of rank ≤ n+ 1, or P is not prime.
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CGKK 1 1 9 16 9 1 CGKK 5,6 1 9 16 9 1

0: 1 . . . . 0: 1 . . . .

1: . 6 8 3 . 1: . 3 2 . .

2: . . . . . 2: . 6 12 6 .

3: . 3 8 6 . 3: . . 2 3 .

4: . . . . 1 4: . . . . 1

CGKK 2 1 6 10 6 1 CGKK 7,8 1 10 18 10 1

0: 1 . . . . 0: 1 . . . .

1: . 5 5 . . 1: . 2 . . .

2: . 1 . 1 . 2: . 8 18 8 .

3: . . 5 5 . 3: . . . 2 .

4: . . . . 1 4: . . . . 1

CGKK 3 1 4 6 4 1 CGKK 9,10 1 13 24 13 1

0: 1 . . . . 0: 1 . . . .

1: . 4 . . . 1: . 1 . . .

2: . . 6 . . 2: . 12 24 12 .

3: . . . 4 . 3: . . . 1 .

4: . . . . 1 4: . . . . 1

CGKK 4 1 7 12 7 1 CGKK 11 1 16 30 16 1

0: 1 . . . . 0: 1 . . . .

1: . 3 . . . 1: . . . . .

2: . 4 12 4 . 2: . 16 30 16 .

3: . . . 3 . 3: . . . . .

4: . . . . 1 4: . . . . 1

Table 1: Betti table for GoCY’s in [9].

2) If P has a linear nth syzygy of rank n+ 2, then P contains the 2× 2
minors of a 1-generic 2× (n+ 2) matrix.

3) If P has a linear nth syzygy of rank n+ 3, then P contains the 4× 4
Pfaffians of a skew-symmetric 1-generic n+ 4× n+ 4 matrix.

A betti table of Type 2.1 is ruled out by (1), and a betti table of Type
2.2 is ruled out by (2), since the 2× 2 minors of a 2× 3 matrix have two
independent linear syzygies. For the three betti tables having top row of the
form (c, c, 1), we argue as follows. When c = 3, the linear second syzygy can
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Type 2.1 1 11 20 11 1 Type 2.5 1 11 20 11 1

0: 1 . . . . 0: 1 . . . .

1: . 2 1 . . 1: . 3 3 1 .

2: . 9 18 9 . 2: . 7 14 7 .

3: . . 1 2 . 3: . 1 3 3 .

4: . . . . 1 4: . . . . 1

Type 2.2 1 8 14 8 1 Type 2.6 1 9 16 9 1

0: 1 . . . . 0: 1 . . . .

1: . 3 1 . . 1: . 4 4 1 .

2: . 5 12 5 . 2: . 4 8 4 .

3: . . 1 3 . 3: . 1 4 4 .

4: . . . . 1 4: . . . . 1

Type 2.3 1 7 12 7 1 Type 2.7 1 7 12 7 1

0: 1 . . . . 0: 1 . . . .

1: . 4 3 . . 1: . 5 5 1 .

2: . 3 6 3 . 2: . 1 2 1 .

3: . . 3 4 . 3: . 1 5 5 .

4: . . . . 1 4: . . . . 1

Type 2.4 1 6 10 6 1 Type 2.8 1 9 16 9 1

0: 1 . . . . 0: 1 . . . .

1: . 4 2 . . 1: . 5 6 2 .

2: . 2 6 2 . 2: . 2 4 2 .

3: . . 2 4 . 3: . 2 6 5 .

4: . . . . 1 4: . . . . 1

Table 2: Betti tables for the remaining 8 Artin Gorenstein algebras.

have rank at most 3, since it involves the 3 first syzygies. Hence by (1), the
ideal cannot be prime. When c = 4, the linear second syzygy can have rank
at most 4, and in this case by (2) it contains the 2× 2 minors of a 1-generic
2× 4 matrix, which would yield a top row of the betti table with entries
(6, 8, 3). When c = 5, (3) implies that P contains the Pfaffians, and since
there are only five quadrics, the quadratic part of the idea is exactly the
Pfaffians, which do not have a linear second syzygy.

For Type 2.3, we will show that a prime non-degenerate ideal P cannot
have top row of the betti table equal to (4, 3, 0). Let J2 be the subideal of
P generated by quadrics in P . By (1) and (3) the first syzygies all have
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rank three; take a subideal I ⊆ J2 consisting of three elements, which by (2)
is generated by the 2× 2 minors of a 2× 3 matrix, and let F denote the
remaining quadric, so J2 = I + ⟨F ⟩. Consider the mapping cone resolution
of S/J2 from the short exact sequence

(2.1) 0 −→ S(−2)/I : F −→ S/I −→ S/I + F −→ 0.

It follows that I : F must have a linear generator L, so LF ∈ I. If I is prime,
then either L ∈ I or F ∈ I, a contradiction. So suppose I is not prime, and
take a primary decomposition

I = ∩mi=1Qi, with
√

Qi = Pi all codimension two.

Since I is codimension two and Cohen-Macaulay and deg(I) = 3, we must
have m ≤ 3.

1) Case 1: m = 3. Then Qi = Pi and I = ∩3i=1Pi with Pi generated by
two linear forms.

2) Case 2: m = 2. Then deg(Q1) = 1, deg(Q2) = 2, so
√
Q1 is generated

by two linear forms.

3) Case 3: m = 1. Then
√
Q1 = P1, with deg(P1) ∈ {1, 2, 3}. If deg(P1) =

3, then I is prime, and if deg(P1) = 1 or 2, P1 contains a linear form.

In particular, we see that P is degenerate. For Type 2.8, both second syzy-
gies must have rank six, because if either had lower rank, then we would
be in one of the cases (1), (2), (3), all of which are inconsistent with a betti
table having top row (5, 6, 2). Let M be the corresponding 6× 2 matrix of
linear second syzygies; M is 1-generic: if not, there is a second syzygy of rank
≤ 5, a contradiction. We claim that M t has no linear first syzygies (notice
that kernel of M t will contain any linear first syzygies on J2, which is the
subideal of P generated by quadrics in P ). This follows because coker(M t)
has a Buchsbaum-Rim resolution [12], Theorem A2.10. The Buchsbaum-Rim
complex is a resolution for coker(M t) iff the 2× 2 minors of M have depth
6− 2 + 1 = 5; since M is 1-generic, the 2× 2 minors are Cohen-Macaulay
with an Eagon-Northcott resolution; so depth(I2(M)) = 5. As the first syzy-
gies in the Buchsbaum-Rim complex for M t come from Λ3(S6) via the splice
map described in [12], they are quadratic. So there are no linear syzygies on
coker(M t), hence no linear first syzygies on J2, a contradiction. □
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For the proof of Theorem 2.2, we will need the theorems of Macaulay and
Gotzmann [29]: for a graded algebra S/I with Hilbert function hi, write

hi =

(

ai
i

)

+

(

ai−1

i− 1

)

+ · · · and

h
⟨i⟩
i =

(

ai + 1

i+ 1

)

+

(

ai−1 + 1

i

)

+ · · · , with ai > ai−1 > · · ·

Macaulay proved that hi+1 ≤ h
⟨i⟩
i , and Gotzmann proved if I is generated in

a single degree t and equality holds in Macaulay’s formula in the first degree
t, then

ht+j =

(

at + j

t+ j

)

+

(

at−1 + j − 1

t+ j − 1

)

+ · · ·

We also need the following lemma

Lemma 2.4. Let I2 be the subideal of I generated by the quadrics in I, and
let v = (b23, b24), which are the number of linear first and second syzygies on
I2. Then

(a) v ̸= (2, 1).

(b) if a = b12 ≥ 4, then v ̸= (3, 1).

Proof. To see that v = (2, 1) cannot occur, observe that if it did then there
would be a unique relation L1 · V1 + L2 · V2 = 0 where L1, L2 are linear
forms, and Vi are vectors of linear first syzygies. Changing variables so
L1 = x1 and L2 = x2, we have that x1 · Vi1 + x2 · Vi2 = 0 for all i, implying
V1 is x2 · C and V2 is −x1 · C, with C a vector of constants, a contradiction.
So v = (2, 1) is impossible.
To prove part (b), the key point is that v = (3, 1) implies that I2 contains
{Lx1, Lx2, Lx3} with L a linear form. When a ≥ 4 the mapping cone con-
struction implies I2 is inconsistent with the Gorenstein hypothesis (IGH). If
v = (3, 1) then the unique linear second syzygy S must have rank 3, other-
wise the argument showing that v = (2, 1) is impossible applies. After change
of variables, we may write S as below, with ai, bi, ci linear forms:









a1 b1 c1
a2 b2 c2
a3 b3 c3
a4 b4 c4









·





x1
x2
x3



 = 0
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So the rows of the matrix of linear first syzygies on I2 are Koszul syzygies
on [x1, x2, x3]

t, that is to say









a1 b1 c1
a2 b2 c2
a3 b3 c3
a4 b4 c4









= C





x2 −x1 0
−x3 0 x1
0 x3 −x2





where C is a full rank 4× 3 scalar matrix. This forces I2 to contain
{Lx1, Lx2, Lx3}.
If a ≥ 4, I2 must contain a quadric Q which is a nonzero divisor on
{Lx1, Lx2, Lx3}. To see this, note that if Q ∈ ⟨L⟩ then codim(I2) = 1. After
a change of variables I2 consists of a linear form times a subset of the vari-
ables, so that I2 has a Koszul resolution, hence b45(I2) ̸= 0 which is IGH; if
Q ∈ ⟨x1, x2, x3⟩ then there is at least one additional linear first syzygy, so
b ≥ 4. Now we know Q must be a non-zero divisor on {Lx1, Lx2, Lx3}. This
implies that if v = (3, 1), then I2 has mapping cone betti table





1 0 0 0 0
0 4 3 1 0
0 0 3 3 1



 .

This is IGH, because Tor4(R/I2,K)6 ̸= 0, and adding additional generators
to I2 cannot force cancellation: for a cubic F , we have the short exact se-
quence

(2.2) 0 −→ R(−3)/I2 : F −→ R/I2 −→ R/I2 + F −→ 0

and the associated long exact sequence gives exact sequence of vector spaces

0→ Tor4(R(−3)/I2 : F,K)6 → Tor4(R/I2,K)6 → Tor4(R/I2 + F,K)6.

Note that

Tor4(R(−3)/I2 : F,K)6 = Tor4(R/I2 : F,K)3 = 0.

Hence Tor4(R/I2,K)6 ̸= 0 implies Tor4(R/I2 + F,K)6 ̸= 0. Therefore we
conclude v = (3, 1) is IGH. □

Remark 2.5. When a = 3, v = (3, 1) occurs.

Now we can prove Theorem 2.2:
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Proof of Theorem 2.2: We use the Hilbert function to establish the possible
shape of the betti table, combined with an analysis of the structure of the
subideal I2 generated by the quadrics in I and subideal C3 generated by
the quadrics and cubics in I. Let a = b12(I) be the number of quadratic
generators of I ⊆ R = K[x1, . . . , x4], and let v = (b23, b34) = (b, c), which are
the number of linear first and second syzygies on I2. Note that b45(I2) ̸= 0
is inconsistent with the Gorenstein hypothesis (IGH), so cannot occur.

For an Artinian Gorenstein ideal I with codim(I) = 4 = regularity(4)
and fixed Hilbert series, v determines the entire betti table. If codim(I2) = 1
then after a change of variables I2 consists of a linear form times a subset of
the variables, so that I2 has a Koszul resolution; in particular for a ≥ 4 this
is IGH. Similarly, codim(I2) = 4 can only occur if I2 contains a complete
intersection. When a ∈ {0, 1, 2} the analysis is straightforward, so we begin
with a = 3.

1) a = 3: The Hilbert function is (1, 4, 7, 4, 1) and a computation shows
the betti table must be (dropping the 1 in upper left and lower right
corners)





3 b c
b+ 4 2c+ 12 b+ 4
c b 3



 .

By Macaulay’s theorem

h2 = 7 =

(

4

2

)

+

(

1

1

)

, so h
⟨2⟩
2 = 11 ≥ h3 = 20− 3 · 4 + b, so b ≤ 3.

A direct computation shows that for an ideal generated by three
quadratic monomials in R, v ∈ {(0, 0), (1, 0), (2, 0), (3, 1)}, all of which
occur in Tables 1 and 2. By uppersemicontinuity, I2 must have v =
(b, c) ≤ (b′, c′) for (b′, c′) in the list above, so we need only show that
v ∈ {(3, 0), (2, 1)} do not occur. If b = 3 then we are in the situation
where Gotzmann’s theorem applies, and we compute

h
⟨3⟩
3 = h4 = 16 = 35− 3 · 10 + 3 · 4− c+ b24(I2).

In particular, c ≥ 1 + b24(I2), so c ≥ 1 and v = (3, 0) does not occur.
By Lemma 2.4, v = (2, 1) is impossible. When a ≥ 4, the set of betti
tables possible for quadratic monomial ideals has an element that is so
large that a similar analysis via the initial ideal becomes cumbersome.

2) a = 4: The Hilbert function is (1, 4, 6, 4, 1) and the betti table is:
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



4 b c
b 2c+ 6 b
c b 4



 .

Values for v which actually occur are v ∈ {(0, 0), (2, 0), (3, 0), (4, 1)}.
Applying Macaulay’s theorem to the ideal I2 generated by the quadrics
in I shows b ≤ 6. Now let C3 denote the ideal generated by the quadrics
and cubics in I.

h3(C3) = h3(I) = 4 =

(

4

3

)

so h
⟨3⟩
3 (C3) = 5 ≥ h4(C3) = c+ 1.

Hence c ≤ 4. The case b = 6 is extremal, and applying Gotzmann’s
theorem we find

h4(I2) = 35− 4 · 10 + 6 · 4 + b24(I2)− c = 15, so c = 4 + b24(I2).

Combined with our work above, this shows b = 6⇒ c = 4. As h4(C3) =
h4(I) + 4 = 5, we have

h
⟨4⟩
4 (C3) = 6 ≥ h5(C3) = 56− 80 + 40 + b25(C3)− 6,

we conclude b25(C3) ≤ −4, which is impossible. Thus, b ∈ {0, . . . , 5}. If
b ∈ {0, 1} then c = 0; clearly v = (0, 0) yields a complete intersection,
which occurs, while v = (1, 0) leads to an almost complete intersec-
tion (ACI), and by [23] there are no Gorenstein ACI’s. Henceforth we
assume b ∈ {2, 3, 4, 5}. We saw above that c ≤ 4; we now show that
c ∈ {2, 3, 4} is IGH.

h5(C3) = 56− 80 + 4(c+ 6) + b25(C3)− b.

So

c = 2 =⇒ h4(C3) = 3 =⇒ h
⟨4⟩
4 (C3) = 3 ≥ h5(C3) = 8 + b25(C3)− b

c = 3 =⇒ h4(C3) = 4 =⇒ h
⟨4⟩
4 (C3) = 4 ≥ h5(C3) = 12 + b25(C3)− b

c = 4 =⇒ h4(C3) = 5 =⇒ h
⟨4⟩
4 (C3) = 6 ≥ h5(C3) = 16 + b25(C3)− b

As b ≤ 5, only the case b = 5, c = 2, b25(C3) = 0 is possible; this has
betti table





4 5 2
5 10 5
2 5 4



 .
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Computing, we find that in this situation h5(C3) = 3, so

h
⟨5⟩
5 (C3) = 3 ≥ h6(C3) = 84− 140 + 80− 20 + b26(C3)− b36(C3).

In particular, b36(C3) ≥ 1 + b26(C3), which means the 5× 4 submatrix
M of d3 representing the “bottom right corner” of the table for I, one
of the four columns of M is zero. By symmetry of the free resolution
this means that one of the four rows of the matrix M t of linear first
syzygies on I2 is zero. Hence the five linear first syzygies on I2 only
involve a subideal J ⊆ I2 generated by 3 quadrics, which is impossible.

It remains to deal with c ∈ {0, 1}. When c = 0, we know v ∈
{(0, 0), (2, 0), (3, 0)} occur, and we have already shown that v = (1, 0)
is IGH. As b ≤ 5, we need to show v ∈ {(4, 0), (5, 0)} are IGH. To do
this, we use the ideal I2 of four quadrics; h3(I2) = 20− 16 + b = 4 + b,
so we have

b = 4⇒ h3(I2) = 8⇒ h
⟨3⟩
3 (I2) = 10

≥ h4(I2) = 35− 40 + 16 + b24(I2) = 11 + b24(I2)

b = 5⇒ h3(I2) = 9⇒ h
⟨3⟩
3 (I2) = 12

≥ h4(I2) = 35− 40 + 20 + b24(I2) = 15 + b24(I2),

both of which force b24(I2) ≤ −1, which is impossible. When c = 1, the
only change to the second equation above is to subtract one (because
c = 1) from the right hand side, so h4(I2) = 14 + b24(I2), forcing b24 ≤
−2, which is impossible.

3) a = 5: The Hilbert function is (1, 4, 5, 4, 1) so the betti table is




5 b c
b− 4 2c b− 4
c b 5



 .

Note that h3 = 20− 5 · 4 + b, so h3 = b. By Macaulay’s theorem

h2 = 5 =

(

3

2

)

+

(

2

1

)

, so h
⟨2⟩
2 = 7 ≥ h3 = b, so 7 ≥ b.

If b = 7, applying Gotzmann’s theorem gives c = b24(I2) + 4. Let C3

denote the subideal of I generated in degrees two and three; applying
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Macaulay’s theorem to h3(C3) = 4 yields

5 ≥ h4(C3) = 35− 5 · 10 + 4 · 4 + c,

so c ≤ 4; combined with c = b24(I2) + 4 this forces c = 4. Since

h
⟨4⟩
4 (C3) = 6, we find

6 ≥ h5(C3) = 56− 5 · 20 + 4 · 10 + 4 · 4 + b25(C3)− 3 = 9 + b25(C3).

This shows b25(C3) ≤ −3, hence b = 7 is IGH, and b ∈ {4, 5, 6}.
Case 1: Suppose b = 4. This means there are no cubics in the ideal,
and

h3 = 4 =

(

4

3

)

so h
⟨3⟩
3 = 5 ≥ h4 = 35− 5 · 10 + 4 · 4 + c.

We conclude c ≤ 4. We can immediately rule out c = 0, as then I would
be an ACI, which is IGH. The possibilities c ∈ {2, 3, 4} are also ruled
out by Macaulay; we illustrate for c = 2:

h4 = 35− 5 · 10 + 4 · 4 + 2 = 3, so h
⟨4⟩
4 = 3 ≥ h5 = 4 + b25(I2),

which would force b25(I2) ≤ −1. Finally, suppose c = 1, so I = I2 + q
for a single quartic q. Since I2 + q has codimension four, the codimen-
sion of I2 must be three or four, and if codim(I2) = 4 then I2 contains a
complete intersection C. We claim this is impossible: write I2 = C + f
with f ∈ I2 \ C. Since b23(C) = 0 the fact that b23(I2) = 4 means that
C : f = ⟨x1, x2, x3, x4⟩, whose mapping cone is inconsistent with the
betti table for I2. Hence codim(I2) = 3, and q is a nonzero divisor
on the codimension three associated primes of I2. Since h4(I2) = 2,
Macaulay’s theorem implies the degree of I2 is one or two. Observe
that the rank of the linear second syzygy S cannot be 4; if it was then
S = [x1, x2, x3, x4]

t. By the symmetry of the differentials in the free
resolution, this means that I2 : q = ⟨x1, . . . , x4⟩. By additivity of the
Hilbert polynomials on the short exact sequence

0 −→ R(−4)/(I2 : q) −→ R/I2 −→ R/I −→ 0,

this is impossible. Hence rank(S) = 3, and as in the proof that v =
(3, 1) is impossible for a = 4, I2 must contain, after a change of vari-
ables, {L · x1, L · x2, L · x3} for a linear form L. Since codim(I2) = 3,
this forces L, q4, q5 to be a regular sequence. In particular, deg(I2) = 4,
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a contradiction.
Case 2: Suppose b = 5. The cases v ∈ {(5, 0), (5, 1)} do occur.

h3 = 5 =

(

4

3

)

+

(

2

2

)

so h
⟨3⟩
3 = 6 ≥ h4 = 35− 5 · 10 + 4 · 5 + b24(I2)− c.

So c+ 1 ≥ b24(I2). Let C3 denote the subideal of I generated in degrees
two and three.

h3(C3) = 4 so h
⟨3⟩
3 = 5, thus 5 ≥ h4 = 35− 50 + 16 + c,

implying c ≤ 4. Since c ∈ {0, 1} does occur, we need to rule out c ∈
{2, 3, 4}. Computing values for h4, we find

c = 2 implies h4 = 3 hence h5 ≤ 3
c = 3 implies h4 = 4 hence h5 ≤ 4
c = 4 implies h4 = 5 hence h5 ≤ 6

Since h5 = 56− 100 + 40 + 4c− 1 + b25(C3), combining this with the
above shows

c = 2 implies h5 = 3 + b25(C3) ≤ 3
c = 3 implies h5 = 7 + b25(C3) ≤ 3
c = 4 implies h5 = 11 + b25(C3) ≤ 6

This rules out c ∈ {3, 4}, and shows if c = 2 then b25(C3) = 0. So in
this case h5(C3) = 3, and

h
⟨5⟩
5 (C3) = 3 ≥ h6(C3) = 84− 175 + 80 + 20− 4 + b26(C3)− b36(C3).

In particular, we have 3 ≥ 5 + b26(C3)− b36(C3), hence b36(C3) ≥ 2,
so the betti table for C3 is at least





5 5 2
1 4 1
0 0 2



 .

Hence in the 5× 5 submatrix M of d3 representing the “bottom right
corner” of the table for I, two of the five columns of M are zero, which
by symmetry of the betti table means that two of the five rows of
the matrix M t of linear first syzygies on I2 are zero. Hence the five
linear first syzygies on I2 only involve a subideal J ⊆ I2 generated by
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3 quadrics, which is impossible.
Case 3: Suppose b = 6; the only case that actually occurs is v = (6, 2).

h3 = 6 =

(

4

3

)

+

(

2

2

)

+

(

1

1

)

so h
⟨3⟩
3 = 7 ≥ h4 = 35− 5 · 10 + 4 · 6 + b24(I2)− c.

So c ≥ b24(I2) + 2. Let C3 denote the subideal of I generated in degrees
two and three.

h3(C3) = 4 =

(

4

3

)

so 5 ≥ h4 = 35− 50 + 16 + c

Thus, c ≤ 4. To show that c ∈ {3, 4} do not occur, we compute

If c = 4, then h4(C3) = 5 and h5(C3) ≤ 6
If c = 3, then h4(C3) = 4 and h5(C3) ≤ 4

Since h5(C3) = 56− 100 + 40 + 4c+ b25(C3)− 2, we see that

If c = 4 then h5 = 10 + b25 ≤ 6, so b25(C3) ≤ −4
If c = 3 then h5 = 6 + b25 ≤ 4, so b25(C3) ≤ −2

We have shown that when b = 6, the only value possible for v is (6, 2).

4) a = 6: The Hilbert function is (1, 4, 4, 4, 1) so the betti table is




6 b c
b− 8 2c− 6 b− 8
c b 6



 .

As

h2 = 4 =

(

3

2

)

+

(

1

1

)

,

Macaulay’s theorem shows h
⟨2⟩
2 = 5 ≥ h3 = 20− 6 · 4 + b.

So b ≤ 9. If b = 9 there is a unique cubic F ∈ I; since b = 9 is ex-
tremal we may apply Gotzmann’s theorem, yielding b24(I2) = c− 5.
Since (2c− 6)− (c− 5) = c− 1 and c ≥ 5, this means there are al-
ways at least four independent syzygies which are linear on F and
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quadratic on elements of I2. Hence I2 : F = ⟨x1, . . . x4⟩ and the map-
ping cone arising from short exact sequence

0 −→ S(−3)/I2 : F −→ S/I −→ S/I2 + F −→ 0,

gives a resolution of S/I. The top row of the mapping cone is simply
the Koszul complex on the variables, and a check of the degrees shows
the second syzygies involve a summand R6(−5) which cannot cancel.
This would imply b35(I) = b− 8 ≥ 6, which is impossible since b = 9.

Finally, we need to show that when b = 8 we must have c = 3. From
the Hilbert function constraint on the betti table, c ≥ 3. When b = 8,
there are no cubics in I; this means

b24(I2)− c = c− 6.

We compute

h3 = 4 =

(

4

3

)

so h
⟨3⟩
3 = 5 ≥ h4 = 35− 6 · 10 + 8 · 4 + c− 6,

hence c ≤ 4. Finally, if c = 4, then h4 = 5 and h
⟨4⟩
4 = 6. So

6 ≥ h5 = 56− 6 · 20 + 8 · 10− 2 · 4 + b25(I2).

This would force b25(I2) ≤ −2. We have shown that the only betti
table possible for a = 6 is





6 8 3
0 0 0
3 8 6



 .

Hence there are 16 betti tables for an Artin Gorenstein algebra A with
regularity(A) = 4 = codim(A). All diagrams in Table 1 and Table 2 do occur,
which can be checked via a Macaulay2 search. □

3. Gorenstein deviation two

The deviation of an ideal I is the number of generators of I minus the
codimension of I. Complete intersections are the simplest Gorenstein rings,
and have deviation zero; in [23], Kunz shows a Gorenstein ring cannot have
deviation one. In this section, we study Gorenstein rings of deviation two.
This is similar to the codimension three case, where the classification of
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[5] shows that such ideals come from Pfaffians. In [20], Huneke-Ulrich give
a construction for Gorenstein rings of deviation two; Let Y be a 2n× 2n
skew symmetric matrix of variables, and Z a 1× 2n vector of variables.
Then the ideal generated by the quadrics in Y · Z plus the Pfaffian of Y is
Gorenstein deviation two. Such an ideal will have regularity four iff n = 3,
and we analyze this case in §3.2. The corresponding GoCY threefold X ⊆ P

8

has Hodge numbers different from the hp,q(X) for any X ⊆ P
n with n ≤ 7.

By the Buchsbaum-Eisenbud theorem, the Pfaffians of a skew 5× 5 ma-
trix M also have deviation two, and quotienting such an ideal by a regular
sequence preserves the deviation two property. If M is a matrix of linear
forms, in order to have regularity four, the regular sequence must consist
of two quadrics or a single cubic; if M has linear and quadratic entries, the
regular sequence is a single quadric. We analyze these ideals in §3.3.

3.1. Huneke-Ulrich ideals

Let I be the ideal consisting of the six quadrics of Y · Z
















0 −y12 · · · · · · · · · −y16
y12 0 −y23 · · · · · · · · ·
· · · y23 0 −y34 · · · · · ·
· · · · · · y34 0 −y45 · · ·
· · · · · · · · · y45 0 −y56
y16 · · · · · · · · · y56 0

















·

















z1
z2
z3
z4
z5
z6

















= 0

along with the cubic Pfaffian of Y . By [20], I is Gorenstein, with V (I) of
dimension 15 in P

20, and is singular in dimension 8. Therefore quotienting
by a regular sequence of 12 linear forms yields a smooth GoCY threefold in
P
8 with betti diagram identical to that of I:

total 1 7 22 22 7 1

0 1 – – – – –

1 – 6 1 – – –

2 – 1 21 21 1 –

3 – – – 1 6 –

4 – – – – – 1

This yields a GoCY threefold in P
8, whose Artinian reduction has H-vector

(1, 5, 9, 5, 1). So deg(X) = 21, and a Macaulay2 computation shows that for
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a generic X the Hodge numbers are

1
0 0

0 1 0
1 52 52 1

0 1 0
0 0

1

These are not the hp,q(X) for any GoCY X of codimension ≤ 4, and corre-
spond to a point on the line connecting the Hodge numbers of the degree 13
and 14 examples of Tonoli–see Figure 1 in [31]. While X can be projected to
a smooth CY in P

7, it is no longer projectively normal (hence not a GoCY).

3.2. Quotients of Pfaffians, I

A second class of Gorenstein ideals of deviation two and regularity four come
from quotienting the Pfaffians Pf(M) of a 5× 5 matrix M of linear forms
by a regular sequence. If M is generic, then Pf(M) is codimension 3 in P

9,
and is smooth. Quotienting by a regular sequence of degrees {2, 2, 1} yields
a smooth GoCY threefold X ⊆ P

8 of degree 20, with betti table

total 1 7 16 16 7 1

0 1 – – – – –

1 – 7 5 – – –

2 – – 11 11 – –

3 – – – 5 7 –

4 – – – – – 1

For the generic case, h1,1(X) = 1 and h1,2(X) = 61, which are attained by
Tonoli’s degree 13 example. On the other hand, if we quotient the pfaffians
of M by a generic cubic, this yields an ideal I with betti table CGKK 2.
Quotienting with two generic linear forms yields a smooth GoCY X ⊆ P

7 of
degree 15, discovered in [32], which has h1,1(X) = 1 and h1,2(X) = 76.

3.3. Quotients of Pfaffians, II

We now show that the betti diagram of Type 2.4 corresponds to a mapping
cone, and that any nondegenerate irreducible GoCY in P

7 with betti table
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of Type 2.4 must be singular. Recall Type 2.4 has betti diagram

total 1 6 10 6 1

0 1 – – – –
1 – 4 2 – –
2 – 2 6 2 –
3 – – 2 4 –
4 – – – – 1

A key tool in our analysis is a result of Vasconcelos-Villereal [33], which
shows that if R is a Gorenstein local ring and 2 ∈ R is a unit, then if I
is a Gorenstein ideal of codimension 4 and deviation two, such that I is
a generic complete intersection (the localization at all minimal primes is a
complete intersection), then I is a hypersurface section of a Gorenstein ideal
of height 3. Table 1 and Table two contain two examples of Gorenstein ideals
of codimension four and deviation two: CGKK 2, and Type 2.4; the first can
be obtained by quotienting the Pfaffians of a skew matrix of linear forms by
a cubic.

Theorem 3.1. A nondegenerate irreducible threefold in P
7 with betti dia-

gram of Type 2.4 is singular.

We start with several preparatory lemmas. Note that a betti diagram of
Type 2.4 cannot arise as the mapping cone of a cubic, so will arise from
quotienting the Pfaffians by a quadric.

Lemma 3.2. There is a prime subideal J ⊆ I2 generated by three quadrics,
such that J consists of the 2× 2 minors of a 1-generic 2× 3 matrix M , and
the quadric q4 ∈ I2 \ J is a nonzero divisor on R/J .

Proof. By Theorem 1.7 of [30], a linear first syzygy on I2 of rank four would
imply that I2 contains the Pfaffians of a 5× 5 skew matrix of linear forms,
while if there was a linear first syzygy on I2 of rank two, I would not be
prime. So Theorem 1.7 implies that I2 contains a subideal J of 2× 2 minors
of a 1-generic 2× 3 matrix of linear forms. The ideal J must be prime, for if
not, it would have a primary decomposition into components of degrees one
or two, which would force I to be degenerate. Finally, q4 is regular on J , for
if not, then codim(I2) = 2 and degree one or two; the two cubics in I must
be nonzero divisors on the codimension two primary component, because
codim(I) = 4. But this would imply that deg(I) is 9 or 18, contradicting the
fact that deg(I) = 16. □
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In what follows, we use the notation of Lemma 3.2, so J is the ideal of 2× 2
minors of the one-generic matrix M . The entries of M are linear forms,
because J is prime the linear forms span a space of dimension {4, 5, 6}.
This means V (J) is a cone, with singular locus of dimension (respectively)
{3, 2, 1}. Let C be the ideal generated by q4 and the two cubic generators
of I; intersecting V (J) with V (C) drops the dimension by two, so if the
linear forms of M span a space of dimension four or five, V (I) is singular. It
remains to deal with the case that the span of the linear forms has dimension
six; after a change of variables we may assume

M =

[

x1 x2 x3
x4 x5 x6

]

Lemma 3.3. Let I be a codimension four Gorenstein prime ideal with betti
diagram Type 2.4. If I2 contains an ideal J consisting of the 2× 2 minors of
M as above, then I = I ′ + ⟨F ⟩, with codim(I ′) = 3 and I ′ Gorenstein, and
F a nonzero divisor on R/I ′. Hence R/I has a mapping cone resolution.

Proof. Because the two linear first syzygies on I2 are of the form [x1, x2, x3]
t

and [x4, x5, x6]
t and I is nondegenerate, I contains no linear form, so

{x1, . . . , x6} are all units when R/I is localized at I. Thus, in the local-
ization, two of the generators for J are redundant, and therefore I is a
generic complete intersection, of deviation two, so the result of [33] applies
(we assume henceforth that 2 is a unit). □

Lemma 3.4. Assume Y is an arithmetically Gorenstein variety of codi-
mension 3 and X is a nondegenerate hypersurface section of Y with betti
diagram of Type 2.4. Then Y must have betti diagram:

total 1 5 5 1

0 1 – – –
1 – 3 2 –
2 – 2 3 –
3 – – – 1

Proof. The Hilbert series of X is

ht(X) =
1

(1− t)n
(1− t2)4.
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Assume ht(Y ) = 1
(1−t)n f(t). Then

f(t)(1− td) = (1− t2)4.

So d ∈ {1, 2}. But X does not lie in any hyperplane. Therefore d must be 2
and Y has the desired betti table. □

Proposition 3.5. Let V (I) be GoCY in P
7 with betti diagram of Type 2.4.

If the linear forms of the matrix M span a space of dimension six, then up to
a change of basis, I is generated by the Pfaffians of a 5× 5 skew symmetric
matrix N as below, along with a quadric q4 which is a nonzero divisor on
R/Pfaff(N). The ideal Pfaff(N) is singular along a P

1, and so V (I) has at
least two singular points.

N =













0 x1 x2 x3 0
−x1 0 q1 q2 x4
−x2 −q1 0 q3 x5
−x3 −q2 −q3 0 x6
0 −x4 −x5 −x6 0













where the qj’s are quadrics.

Proof. Combining Lemmas 3.2, 3.3, and 3.4 and the results of [33] shows
that I is of the form above. To see that the singular locus is as claimed, we
compute that

Pfaff(N) = J + ⟨x3q1 − x2q2 + x1q3, x6q1 − x5q2 + x4q3⟩,

where J is the ideal of the minors of the matrix M above Lemma 3.3. In
particular,

V (x1, . . . x6) ≃ P
1 ⊆ V (Pfaff(N)),
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and V (Pfaff(N)) is singular along this P
1, because the Jacobian matrix of

Pfaff(N) is

Jac(Pfaff(N)) =

























x5 x6 0 ∗ ∗
−x4 0 x6 ∗ ∗
0 −x4 −x5 ∗ ∗
−x2 −x3 0 ∗ ∗
x1 0 −x3 ∗ ∗
0 x1 x2 ∗ ∗
0 0 0 ∗ ∗
0 0 0 ∗ ∗

























where ∗ are quadrics. Hence when {x1, . . . , x6} vanish, Jac(Pfaff(N)) has
rank ≤ 2, so is singular along the P

1. Intersecting V (Pfaff(N)) with the
hypersurface V (q4), we find that V (I) must be singular (at least) at a degree
two zero scheme. □

4. Computational aspects and ideals with mostly quadratic

generators

As noted earlier, GoCY’s were first investigated systemically from a compu-
tational standpoint by Bertin in [2]. Below we describe algorithms which, in
certain situations, offer a substantial speed up in processing; in some cases,
we have seen an improvement in runtime by a factor of 500.

Let I be the ideal sheaf of a smooth Calabi-Yau threefold in P
n. This

implies that

H1(OX) = H2(OX) = 0,

and Kodaira vanishing and Serre duality give that

H1(OX(−1)) = H2(OX(−1)) = 0.

From the fundamental short exact sequence

(4.1) 0 −→ I/I2 −→ Ω1
Pn ⊗OX −→ Ω1

X −→ 0,

we have that

χ(Ω1
X) = χ(Ω1

Pn ⊗OX)− χ(I/I2).

The Euler characteristic of both sheaves can be computed from the cor-
responding modules of global sections via Gröbner bases; it turns out we
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actually only need one computation. Tensoring the short exact sequence

(4.2) 0 −→ Ω1
Pn −→ On+1

Pn (−1) −→ OPn −→ 0

with OX , and using the cohomology vanishings for H1(OX) and H2(OX)
yields that

χ(Ω1
Pn ⊗OX) = (n+ 1)HP (S/IX ,−1).

In particular, all the computational expense to compute χ(Ω1
X) comes from

computing in(I/I2). To compute h1,1(X), we use the long exact sequence in
cohomology of Equation 4.1. Vanishing of H0(Ω1

X) due to the Calabi-Yau
property and the long exact sequence in cohomology yield

0 −→ H1(I/I2) −→ H1(Ω1
Pn ⊗OX) −→ H1(ΩX)

−→ H2(I/I2) −→ H2(Ω1
Pn ⊗OX) −→ · · ·

Now, H2(Ω1
Pn ⊗OX) = 0, because it sits in the exact sequence

· · · −→ H1(OX) −→ H2(Ω1
Pn ⊗OX) −→ H2(On+1

X (−1)) −→ · · · ,

and from Equation 4.2 we have h1(Ω1
Pn ⊗OX) = 1. Hence

h1,1(X) = h2(I/I2)− h1(I/I2) + 1.

Writing I/I2 for both the graded S-module and the sheaf, by local duality
(see [12])

h1(I/I2) = dimExtn−1(I/I2, S)−n−1(4.3)

and h2(I/I2) = dimExtn−2(I/I2, S)−n−1

If the projective dimension of the S-module I/I2 is less than n− 2, then
the vanishing of the Ext modules above is automatic, and h1,1(X) = 1. If
not, we can compute h1,1(X) from the formula. Projective dimension can be
computed quickly using the Macaulay2 command minimalBetti, which we
illustrate below.

Example 4.1. We revisit the Huneke-Ulrich ideal appearing in §3, defining
a smooth Calabi-Yau 3-fold in P

8 of degree 21.

-- Input: a homogeneous ideal I defining a dim 3 smooth

Calabi-Yau variety X

-- Output: Euler characteristic of Omega^1_X
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CYEuler = (I) -> (

M := coker prune presentation (I/I^2);

MM := coker leadTerm gb presentation M;

HP1 := hilbertPolynomial MM;

F := source vars ring I;

HP2 := hilbertPolynomial(F ** coker gens I);

euler HP2 - euler HP1)

i47 : time CYEuler HunekeUlrich

-- used 28.3018 seconds

o47 = 51

i48 : time minimalBetti M

-- used 2.71652 seconds

0 1 2 3 4 5

o48 = total: 7 50 140 154 78 21

2: 6 1 . . . .

3: 1 42 27 1 . .

4: . 6 107 132 21 .

5: . 1 6 21 57 21

By Equation 4.3, h1,1(X) = 1, because Extn−2(I/I2, S) = 0, so in particular
Extn−2(I/I2, S)−n−1 = 0. Since the Euler characteristic is 51, h1,2(X) = 52.

Remarks and Open Questions:

1) For codimension four and regularity two, only one betti table occurs:
for the 2× 2 minors of a generic 3× 3 matrix, and for regularity three,
there are three betti tables. The calculations are the same as in the
proof for Theorem 2.2, and we leave them to the interested reader.

2) For regularity four and codimension five, and regularity five and codi-
mension four there are, respectively, 68 and 36 possibilities, which can
be tackled with the same approach.

3) Relate Theorem 2.2 to the parameter space GorT , studied in [21].
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4) Theta characteristics are Gorenstein of regularity 4. Is there a connec-
tion to GoCY’s?

5) Gorenstein point configurations [14] have Gale duality. Does this lead
to a mirror construction?
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