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supermanifolds
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On a group G, a filtration by normal subgroups is referred to as
a normal series. If subsequent quotients are abelian, the filtration
is referred to as an abelian-quotient normal series, or ‘AQ normal
series’ for short. In this article we consider ‘sheaves of AQ normal
series’. From a given AQ normal series satisfying an additional
hypothesis we derive a complex whose first cohomology obstructs
the resolution of an ‘integration problem’. These constructs are
then applied to the classification of supermanifolds modelled on
(X,T ∗

X,−), where X is a complex manifold and T ∗

X,− is a holomor-
phic vector bundle. We are lead to the notion of an ‘obstruction
complex’ associated to a model (X,T ∗

X,−) whose cohomology is
referred to as ‘obstruction cohomology’. We deduce a number of
interesting consequences of a vanishing first obstruction cohomol-
ogy. Among the more interesting consequences are its relation to
projectability of supermanifolds and a ‘Batchelor-type’ theorem: if
the obstruction cohomology of a ‘good’ model (X,T ∗

X,−) vanishes,
then any supermanifold modelled on (X,T ∗

X,−) will be split.
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1. Introduction

1.1. Motivation

A pair (X,T ∗
X,−) comprising a complex manifold X and holomorphic vector

bundle T ∗
X,− is referred to as a model. It is the data required to define the

notion of a ‘supermanifold’. Hence a supermanifold might be viewed as a
structure associated to a model (X,T ∗

X,−). In this article we are interesting
in studying models (X,T ∗

X,−) by reference to the supermanifolds modelled
on them, in the hopes of gaining a greater understanding of supermanifolds
in general.

1.2. Sheaves of AQ normal series

We begin from a general setting: ‘sheaves of AQ normal series’ H on a
topological space X. Associated to any H satisfying a centrality hypothesis
we obtain a complex of vector spaces referred to as the linearisation complex
associated to H. This construction allows for the formulation of a problem
which we refer to as an ‘integration problem’. Loosely put, it concerns the
problem of ‘integrating’ elements in certain abelian sheaf cohomology groups
to torsors which, for our purposes, are elements in degree 1, non-abelian sheaf
cohomology sets. This general setting is then applied to Green’s classification
of supermanifolds in [Gre82]. We interpret Green’s constructions in [Gre82]
as a sheaf of AQ normal series associated to any model (X,T ∗

X,−). This allows
us to then readily recover the main results in [Bet19] as an application of
our earlier, more general study.

1.3. Obstruction cohomology

As mentioned above, to any model (X,T ∗
X,−) we obtain a sheaf of AQ normal

series. It defines a complex of vector spaces whose cohomology is referred
to as the obstruction cohomology associated to (X,T ∗

X,−). We are primar-
ily interested in its degree 1 component. In [Bet19] a general classification
of thickenings was proposed. Thickenings were classified as: supermanifolds,
pseudo-supermanifolds or obstructed thickenings. Then, almost by construc-
tion:

if the 1-obstruction cohomology of a model (X,T ∗
X,−) vanishes, there will

not exist any pseudo-supermanifolds modelled on (X,T ∗
X,−).
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In this way we relate the obstruction cohomology of a model with the classifi-
cation of thickenings from [Bet19]. Indeed, with the vanishing of the obstruc-
tion cohomology we identify conditions under which the results in [Bet19]
are markedly improved (c.f., Theorem 5.16). Therefore, determining condi-
tions under which the obstruction cohomology of a model vanishes becomes a
meaningful endeavour. We will see that when the model (X,T ∗

X,−) is ‘good’,
in the sense of [Bet18b], the vanishing of its obstruction cohomology is syn-
onymous with the injectivity of a certain map (Theorem 5.20), leading then
to a nice simplification when X is a Riemann surface in Corollary 5.21.

1.4. Classification of models

In [Bet18b] the notion of a ‘good model’ was introduced. We continue this
classification-of-models by introducing notions of ‘projectablility’ and ‘split-
ness’ in analogy with supermanifolds. A model (X,T ∗

X,−) is said to be pro-
jectable resp., split if every supermanifold modelled on (X,T ∗

X,−) is pro-
jectable resp., split. Our ultimate applications in this article concerns con-
ditions under which a model (X,T ∗

X,−) will be projectable or split. Results
of the latter kind are thought of as ‘Batchelor-type’ theorems as they gener-
alise the classical Batchelor’s theorem in the smooth setting to the complex-
analytic setting. We find:

• (Theorem 6.11) if the 1-obstruction cohomology of a model vanishes, then
the model is projectable;

• (Theorem 6.17) if the 1-obstruction cohomology of a good model vanishes,
then the model is split.

Hence we see that the 1-obstruction cohomology plays an integral role in
the classification of models. As an application of Theorem 6.11 on the pro-
jectability of models and Donagi and Witten’s result in [DW15] on the non-
projectability of the supermoduli space of curves, we deduce in Example 6.13
that the obstruction cohomology of the modelling data for supermoduli space
cannot vanish.

En route to proving Theorem 6.11 and 6.17, we will need a vanishing result
mentioned by Donagi and Witten in [DW15]. An exposition of these results
are presented and, subsequently, we derive a stronger vanishing statement
in Theorem 6.5. The results culminating in Theorem 6.5 is referred to as
the Vanish-Lift-Vanish principle and Appendix A is devoted to a proof of
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this principle. As a further consequence of this principle we obtain in Theo-
rem 6.2 a condition under which Berezin’s lift, a brief exposition of which is
given in Section 6, will be unique. This may serve as a result of independent
interest.

1.5. Outlook for future work

This article is largely theoretical and illuminating examples are not so forth-
coming. What ought to be clear however is that the obstruction cohomology
of a model (X,T ∗

X,−) carries important information pertaining to the clas-
sification of thickenings and supermanifolds. Following Berezin’s notion of
‘splitness’ (referred to as ‘simple’ in [Ber87]), Green in [Gre82] provided a
set-theoretic classification and Onishchik in [Oni99] considered the moduli
problem for this classification. Where the deformation theory is concerned,
Vaintrob in [Vai90] gave a general account, largely independent of the work
by Green and Onishchik, i.e., in that ‘splitness’, or lack thereof, was not
explicitly considered. More recently Donagi and Witten in [DW14] com-
mented on the difficulties behind deforming non-split supermanifolds. With
the material presented in this article we hope, in future works, to apply
it to interesting deformation problems involving supermanifolds and, more
generally, to variational problems involving superfields in physics (thought
of as morphisms between supermanifolds).

2. Sheaves of AQ-normal series

2.1. Definitions

The terminology appearing in this section is largely standard and can be
found, e.g., in texts such as [Hun74, p. 107].

2.1.1. Normal series. Let G be a group and H ≤ G a subgroup. As sets,
we can form the quotient G/H which is the set of H-orbits. If H is a normal
subgroup, then the orbit set G/H will admit a natural group structure. The
condition of normality is generally not transitive. That is, if H ′ ◁H and
H ◁G, it need not be the case that H ′ ◁G.

Definition 2.1. Let G be a group. A finite collection of subgroups H =
(Hj)j=0,...,N of G satisfying:

(i) HN = {1};
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(ii) Hj+1 ◁Hj for all 0 ≤ j < N and;

(iii) H0 = G

is called a subnormal series for G of length N .

Definition 2.2. Let G be a group. A subnormal series H = (Hj) for G is
said to be a normal if each Hj ∈ H is a normal subgroup of G.

In what follows we will reference the normal seriesH = (Hj)j≥0 withG = H0

understood. A very general result which we will make use of a number of
times in this article is the following:

Lemma 2.3. Let H = {H ′, H,G} be a normal series. Then there exists an
isomorphism of groups

H/H ′ ∼
−→ ker{G/H ′ → G/H}.

Proof. Since {H ′, H,G} is a normal series we know that H ′ ◁H, H ◁G and
H ′ ◁G. Thus we can form the following commutative diagram with exact
rows in the category of groups,

{e} // H ′

��

// G // G/H ′

��

// {e}

{e} // H // G // G/H // {e}.

(2.1.1)

The induced map G/H ′ → G/H is surjective. Let K be its kernel. By exact-
ness of the rows in (2.1.1) we get a surjective homomorphism H → K with
kernel H ′. Hence by the First Isomorphism Theorem for groups, H/H ′ and
K are isomorphic. □

To reiterate Lemma 2.3: associated to any normal series {H ′ ◁H ◁G} is a
short exact sequence of groups:

{1} −→ H/H ′ −→ G/H ′ −→ G/H −→ {1}.(2.1.2)

In what follows we look at normal series whose subsequent quotients are
Abelain groups.

2.1.2. AQ normal series.
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Definition 2.4. Let G be a group and H ◁G be a normal subgroup. If the
quotient G/H is abelian, then H is said to be an abelian-quotient subgroup.
We will abbreviate by referring to H ◁G as an AQ subgroup.

With Definition 2.4 we can form the notion of an ‘AQ normal series’

Definition 2.5. A normal series H = (Hj)j≥0 is said to be an AQ normal
series if Hj+1 is an AQ subgroup of Hj for each j.

Note that if H = (Hj) is a normal series, then Hj′ will be a normal sub-
group of Hj for any j′ ≥ j and so we can form the quotient Hj/Hj′ . This
observation leads to the notion of an ‘AQ degree’ of a normal series.

Definition 2.6. Let H = (Hj)j=0,...,N be a normal series. We say H has
AQ degree d if, for each j, the quotients Hj/Hj+d, Hj/Hj+d−1, . . . , Hj/Hj+1

are abelian.

Remark 2.7. Any AQ normal series will have AQ degree 1 and any normal
series of AQ degree d will define a series with AQ degree d′ for any d′ ≤ d.
In particular, any normal series with AQ degree d > 1 will be an AQ normal
series.

2.2. Sheaves of AQ central series

Let X be a topological space. We will consider on X a sheaf of AQ normal
series H = (Hj)j≥0. This means, for each j:

• Hj is a sheaf of groups;

• the inclusion Hj+1 ⊂ Hj realises Hj+1 as a sheaf of normal subgroups of
Hj ;

• the inclusion Hj ⊂ H0 = G realises Hj as a sheaf of normal subgroups of
G;

• the quotient Hj/Hj+1 is a sheaf of abelian groups for all j.

The notion of AQ degree in Definition 2.6 adapts straightforwardly to sheaves
of AQ series H = (Hj) here. By (2.1.2) there will be a short exact sequence
of sheaves of groups for each j > k,

{e} −→ Hj/Hj+1 −→ Hk/Hj+1 −→ Hk/Hj −→ {e}.(2.2.1)
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Since H is an AQ normal series the quotient Hj/Hj+1 is abelian. We will say
H = (Hj) is central if, for each j > 0, there exists some k < j such that the
sequence in (2.2.1) is central, i.e., that the inclusion Hj/Hj+1 is contained
in the centre of Hk/Hj+1 for some k.

Definition 2.8. A sheaf of AQ normal series which is central will be re-
ferred to as an AQ central series.

We can now derive the following structure.

Proposition 2.9. Let X be a topological space and H = (Hj)j≥0 a sheaf
of AQ central series on X with successive quotients denoted Aj = Hj/Hj+1.
Then for each j there exists a complex of pointed sets

H0
(
X,Aj

) ∂1
j+1

−→ H1
(
X,Aj+1

) ∂2
j+2

−→ H2
(
X,Aj+2

)
,

i.e., that the composition ∂2
j+1∂

1
j+1 is trivial for each j.

Proof. By definition of an AQ central series in Definition 2.8 there will exist,
for each j, some k < j such that the following short exact sequence of sheaves
is central,

{e} −→ Aj −→ Hk/Hj+1 −→ Hk/Hj −→ {e}.(2.2.2)

Grothendieck in [Gro55] observed that a short exact sequence of sheaves
of groups will give rise to a long-exact sequence on Čech cohomology (in
degrees zero and one). It extends to a map in degree two when the sequence
is central and so we can apply this observation to (2.2.2), yielding:

{1} // H0
(
X,Aj

) ι0j+1
// H0

(
X,Hk/Hj+1

)
// H0

(
X,Hk/Hj

)

δ1j
��

Ȟ
1(
X,Hk/Hj

)

δ2j
��

Ȟ
1(
X,Hk/Hj+1

)
oo H1

(
X,Aj

)ι1j+1
oo

H2
(
X,Aj

)

(2.2.3)
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Thus we obtain the following maps comparing the cohomology of the abelian
sheaves Aj for differing j,

H0
(
X,Hk/Hj+1

)

δ1j+1

((

H0
(
X,Aj

)

ι0j+1

66

∂1
j+1

// H1
(
X,Aj+1

)

∂2
j+2

��

ι1j+2

((

Ȟ
1(
X,Hk/Hj+2

)

δ2j+2vv

H2
(
X,Aj+2

)

(2.2.4)

The composition ∂2
j+2∂

1
j+1 vanishes since the composition ι1j+1δ

1
j+1 is trivial

(c.f., (2.2.3)). The proposition now follows. □

2.2.1. As Z-graded abelian sheaves. We can reformulate Proposition
2.9 in a more succinct manner as follows. To a sheaf of AQ central series
H = (Hj) on X we can construct the Z-graded, abelian sheaf A = ⊕jAj ,
where Aj = Hj/Hj+1.

Definition 2.10. The sheaf A = ⊕jAj is referred to as the linearisation
of H.

Since cohomology commutes with direct sums, the Z-grading on A gives a
Z-grading on the cohomology groups Hn(X,A). Proposition 2.9 then says:

there exists a complex H0
(
X,A[−1]

) ∂1

→ H1
(
X,A

) ∂2

→ H2
(
X,A[1]

)
of set-

theoretic maps with respect to the induced Z-grading.

Definition 2.11. The complex

(
H0

(
X,A[−1]

) ∂1

→ H1
(
X,A

) ∂2

→ H2
(
X,A[1]

))

of pointed sets will be referred to as the primary complex of the AQ central
series H. Its cohomology will be referred to as the primary cohomology of
H and will be denoted H•

∂(X,A).

Any AQ normal series H with AQ degree d > 1 will be central. Hence Propo-
sition 2.9 will apply to any such a series H. Now, a point to emphasise
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presently is that the primary complex of H in Definition 2.11 is a complex
of pointed sets. In the section to follow we will deduce linearity.

3. Linearity

3.1. The long exact sequence

If 0 → A → B → C → 0 is a short exact sequence of abelian sheaves on X,
then there exists a long exact sequence of complex vector spaces, a piece of
which in degree n is:

· · · → Hn(X,A) → Hn(X,B) → Hn(X, C)
δ
→ Hn+1(X,A) → · · ·(3.1.1)

Importantly the maps involved in (3.1.1), including the boundary map δ,
are linear maps between vector spaces. Now if we are given a mapping ∂ :
Hn(X, C) → Hn+1(X,A), defined at the level of sets, we can show ∂ is linear
if we can find an extension B of C by A such that ∂ is the boundary map δ
induced on cohomology in (3.1.1). This is the strategy we employ to deduce
linearity of the maps in the primary complex of a sheaf of AQ central series.

3.2. Linearity of the primary complex

In this section we will be concerned with the proof of the following.

Theorem 3.1. Let X be a topological space and H = (Hj) a sheaf of AQ
normal series with degree 2. Then the primary complex of H will be a complex
of vector spaces.

Proof. From Definition 2.6, if H = (Hj) has AQ-degree 2 then for each j the
quotient Hj/Hj+2 will be abelian. Adapting (2.1.2) we have, for each j, an
exact sequence of sheaves of abelian groups

0 −→ Aj+1 −→ Hj/Hj+2 −→ Aj −→ 0(3.2.1)

where Aj = Hj/Hj+1. The sequence in (3.2.1) induces the following linear
maps, which are the boundary maps in the long exact sequence on sheaf
cohomology,

Hn(X,Aj)
∂̃n+1

j+1

−→ Hn+1(X,Aj+1).(3.2.2)
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Thus there are linear maps,

0 −→ H0(X,Aj)
∂̃1
j+1

−→ H1(X,Aj+1)
∂̃2
j+2

−→ H2(X,Aj+2) −→ · · ·(3.2.3)

We now claim the following:

∂̃1
j+1 = ∂1

j+1 and ∂̃1
j+2 = ∂1

j+2(3.2.4)

where ∂1
j+1 and ∂2

j+2 are the maps in Proposition 2.9. To confirm (3.2.4)
consider the following commutative diagram of sheaves with exact rows and
columns,

Aj+1
// Hj/Hj+2

��

// Aj

��
Aj+1

// Hk/Hj+2

��

// Hk/Hj+1

��
Hk/Hj Hk/Hj .

(3.2.5)

Evidently we obtain a commutative diagram on cohomology in degrees zero
and one:

H0
(
X,Aj

)

ι0j+1

��

∂̃1
j+1

// H1
(
X,Aj+1

)

H0
(
X,Hk/Hj+1

) δ1j+1
// H1

(
X,Aj+1

)

and H1
(
X,Aj+1

)

ι2j+2

��

∂̃2
j+2

// H2
(
X,Aj+2

)

Ȟ
1(
X,Hk/Hj+2

) δ2j+2
// H2

(
X,Aj+2

)

Comparing with (2.2.4) in Proposition 2.9, we see that commutativity of the
above diagrams are precisely the equalities in (3.2.4). The present theorem
now follows. □

Our applications in this article will ultimately rest on the interpretation of
the first primary cohomologyH1

∂(X,A) of a sheaf of AQ central seriesH and
its relation to what we will term the ‘integration problem’. We conclude this
section now with the observation that it is possible to extend the primary
complex to obtain a larger complex of vector spaces.
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3.3. An extension of the primary complex

With the boundary maps in (3.2.2) the sequence in (3.2.3) of course contin-
ues into the ellipses. In Theorem 3.1 the assumption that the AQ series have
degree 2 ensured only that the primary complex will be a complex of vector
spaces. In what follows, the assumption on the AQ degree will be crucial
in showing that the sequence in (3.2.3) will also define a complex of vector
spaces.

Theorem 3.2. Let X be a topological space and suppose H is an AQ series
with degree 4. Then the primary complex of H extends to give a bounded
linear complex

(
C•(X,A), ∂

)
which, in degree n, is:1

Cn(X,A) = Hn(X,A) and ∂ : Hn
(
X,A

)
−→ Hn+1

(
X,A[1]

)
.

Proof. The construction of the data in the alleged complex was given in the
proof of Theorem 3.1. It remains to show that the composition

Hn(X,Aj−1)
∂n+1

j
−→ Hn+1(X,Aj)

∂n+2

j+1

−→ Hn+1(X,Aj+1)

will vanish. Here the assumption on the AQ degree will be essential. If H =
(Hj) is an AQ normal series with degree 4, then the following quotients will
be abelian:

Hj−1/Hj+3;Hj−1/Hj+2;Hj−1/Hj+1 and Hj−1/Hj .

Hence we can form their cohomology in any degree. Now observe that we
have the following diagram,

Aj+1

��
Aj+2

// Hj−1/Hj+3
// Hj−1/Hj+2

��
Aj

// Hj−1/Hj+1
// G/Hj

1for a Z-graded module F = ⊕jFj , the shift F [ℓ] is the module F with the
grading: (F [ℓ])j = Fℓ+j .
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On cohomology we therefore have:

Hn
(
X,Aj

)

∂n+1

j+1 ))

// Hn
(
X,Hj−1/Hj+1

)

��

Hn+1
(
X,Aj+1

)

��

∂n+2

j+2

))

Hn+1
(
X,Hj−1/Hj+2

)
// Hn+2

(
X,Aj+2

)

(3.3.1)

Since middle column in (3.3.1) is exact it follows, by commutativity, that
∂n+2
j+2 ∂

n+1
j+1 = 0. We therefore have a linear complex, as claimed. It is bounded

since the terms in this complex, being cohomology groups of abelian sheaves
on X, are trivial in negative degrees and degrees higher than the dimension
of X. □

3.4. Linearity on global sections

In previous sections (see Theorem 3.1 and 3.2) we deduced linearity of the
boundary maps in the primary and extended complex of a sheaf of AQ
series H by making an assumption on its degree. We note here however that
linearity of the map on global sections will be immediate and independent
on any further assumptions on the AQ degree. This is based on the following
general result.

Lemma 3.3. Let {e} → A → G → C → {e} be a short exact sequence of
sheaves of groups on a topological space X and suppose A and C are abelian.
Then the induced map on cohomology

H0
(
X, C

) δ
−→ H1

(
X,A

)

will be linear.

Proof. The map δ is constructed as follows. Let U = (Ui) → X be an open
covering of X and c ∈ H0(X, C). Then c defines local sections ci = c|Ui

. Since
{e} → A → G → C → {e} is a short exact sequence of sheaves we will have
a cochain g = (gi) ∈ C0(U,G) where gi ∈ G(Ui) and such that gi 7→ ci for all
i. Observe that (gig

−1
j )ij will define a 1-cocycle valued in C. If [(gig

−1
j )ij ]
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denotes its cohomology class we can define,

δ : c 7−→
[
(gig

−1
j )ij

]
.(3.4.1)

This mapping depends on the cochain g = (gi) up to boundary terms and so
(3.4.1) gives a well defined mapping H0(X, C) → H1(X,A). Grothendieck in

[Gro55] observed that there exists a group action H0(X, C)×H1(X,A)
⋆
→

H1(X,A),

(c, a) 7−→ c ⋆ a given on cocycles by (c ⋆ a)ij = giaijg
−1
j .

where gi 7→ ci = c|Ui
. Evidently, by construction of the boundary map δ in

(3.4.1) we find:

δ(c) = c ⋆ {e},(3.4.2)

for {e} the base-point in H1(X,A). With this formulation it is clear that

δ(c · c′) = c ⋆
(
c′ ⋆ {e}

)
(3.4.3)

where c · c′ above is formed with respect to the natural group structure on
H0(X, C). In using that δ preserves the base-point we have δ({e}) = {e}. And
hence from (3.4.2) that δ({e}) = {e} = {e} ⋆ {e}. With this identity we can
therefore conclude from (3.4.3) that δ(cc′) = δ(c) ⋆ δ(c′). Hence the subset

δ(H0(X, C)) ⊂ Ȟ
1
(X,A) admits a group structure with δ a homomorphism

onto its image. IfA is abelian then Ȟ
1
(X,A) ∼= H1(X,A) is an abelian group

and therefore, with this isomorphism we see that δ : H0(X, C) → H1(X,A)
will be a homomorphism of groups. As a result when C and A are abelian,
these groups are vector spaces and δ is a linear map. □

The desired corollary of Lemma 3.3, mentioned in the remarks leading up
to this lemma, is now the following.

Corollary 3.4. Let H = (Hj)j≥0 be a sheaf of AQ central series on a space
X with linearisation A. Then the differential ∂ : H0(X,A) → H1(X,A[1])
in the primary complex of H is linear. It is given by

θ′
∂1
j+1

7−→ θ′ ⋆ {e}

for θ′ ∈ H0
(
X,Aj

)
.
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Proof. For each j the differential ∂ is induced from the short exact sequence
of sheaves

{e} −→ Aj+1 −→ Hj/Hj+2 −→ Aj −→ {e}

and by assumption Aj+1 and Aj are abelian. □

Remark 3.5. We can also drop the condition that the AQ series in Corol-
lary 3.4 be central. More generally, for any AQ normal series H we can form
its linearisation A and a mapping ∂ : H0(X,A) → H1(X,A[1]) in Propo-
sition 2.9 (see (2.2.4)). Lemma 3.3 then asserts that this mapping will be
linear.

4. The integration problem

4.1. Torsors

For a sheaf of groups G on a topological space X one can, in general, form
its cohomology in degrees zero and one. The degree zero cohomology of G
comprise the global sections over X, G(X). This is a group. In contrast, the

degree one cohomology of G, Ȟ
1(
X,G

)
, is a pointed set and it is unclear how

to endow it with any further structure, such as that of a group.2 Elements

of Ȟ
1
(X,G) are represented by a covering (U → X) together with G-valued

functions on each open set in the covering U subject to relations on intersec-
tions and triple intersections. Such data is referred to as a torsor or principle

homogeneous G-space and, by construction, Ȟ
1(
X,G

)
is the set classifying

such objects (see e.g., [Bry08, p. 190]). The base-point in Ȟ
1(
X,G

)
corre-

sponds to the trivial torsor which is constructed by reference to the identity
section over X.3

4.2. AQ series, linearisations and torsors

The purpose of a sheaf of AQ normal series H = (Hj)j≥0 is to study the
1-cohomology of the sheaf of groups Hj by reference to the 1-cohomology

2Of course, if G is a sheaf of abelian groups, its cohomology exists in any degree
and is, in addition, a finite dimensional vector space.

3Any morphism of sheaves of groups G′ → G induces a morphism on 1-cohomology

Ȟ
1
(X,G′) → Ȟ

1
(X,G). Let (e) be the trivial group. It is the initial object in the

category of groups and so we have the inclusion (e) → G with e mapping to the

identity section in G. As a set, {e} = Ȟ
1
(X, {e}). The basepoint in Ȟ

1
(X,G) is then

the image of {e} = Ȟ
1
(X, {e}) under the morphism (e) → G.
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of the linearisation of H, being H1
(
X,A

)
. The problem of starting with a

element in the cohomology of the linearisation, θ ∈ H1
(
X,A

)
, and finding

a Hj-torsor ‘linearising’ to θ is what we will term the ‘integration problem’.
To obtain a more precise formulation, let X be a topological space and H =
(Hj)j≥0 a sheaf of AQ normal series on X. With A = ⊕jAj the linearisation
of H we have a short exact sequence of groups,

{e} −→ Hj+1 −→ Hj −→ Aj −→ {e}

leading to a long exact sequence of pointed sets, terminating on the following
piece:

· · · −→ Ȟ
1(
X,Hj+1

)
−→ Ȟ

1(
X,Hj

) ωj∗
−→ H1

(
X,Aj

)
.(4.2.1)

We term the map ωj∗ in the following.

Definition 4.1. Let H = (Hj)j≥0 be a sheaf of AQ normal series on a
topological space X. For each j, the mapping of pointed sets ωj∗ in (4.2.1)
is referred to as the j-th linearisation map. It sends any Hj-torsor h to its
linearisation ωj∗(h) ∈ H1

(
X,Aj

)
.

Accordingly, Definition 4.1 above motivates the following.

Definition 4.2. Let H = (Hj)j≥0 be a sheaf of AQ normal series on a
topological space X with linearisation A. The first cohomology H1(X,A)
is referred to as the space of H-torsor linearisations; and H1

(
X,Aj

)
is the

space of Hj-torsor linearisations.

Remark 4.3. In our applications to supermanifolds, the objects in Defi-
nition 4.1 and Definition 4.2 will undergo a change-in-terminology owing to
their interpretations there. Indeed, what we are calling torsors here will be
referred to as ‘supermanifold atlases’.

With Definition 4.1 and 4.2, a natural question begs to be asked. It is this
question which forms the basis of what we refer to as the integration problem.

Question 4.4. Let H = (Hj)j≥0 be a sheaf of AQ normal series on a topo-
logical space X. Then, given a homogeneous element θ in the space of H-
torsor linearisations, when will θ be the linearisation of some Hj-torsor, for
some j?
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Given θ ∈ H1
(
X,Aj

)
, if there exists some Hj-torsor h realising θ as its

linearisation, then we will say θ ‘integrates’ to h. Hence, to be more specific,
Question 4.4 will be referred to as the integration problem for θ.

Remark 4.5. While θ might integrate to h, this h linearising to θ certainly
need not be unique. There will typically exist many other h′, different to h,
and having θ as its linearisation.

4.3. The integration problem: necessary conditions

Sufficient conditions to resolving the integration problem are not generally
apparent. A general necessary condition however is easier to deduce. As we
will see below, it will involve the primary complex.

Proposition 4.6. Let H be a sheaf of AQ central series on X. Denote
by A the linearisation of H. If the integration problem can be resolved for
some θ ∈ H1

(
X,Aj

)
, then ∂θ = 0 where ∂ : H1

(
X,Aj

)
→ H2

(
X,Aj+1

)
is

the boundary map in the primary complex of H.

Proof. For each j we have a commutative diagram of sheaves,

Hj
// Hj/Hj+2

��
Hj

// Aj .

Hence on cohomology we get

Ȟ
1(
X,Hj

)
// H1

(
X,Hj/Hj+1

)

��

Ȟ
1(
X,Hj

)
// H1

(
X,Aj

)

∂
��

H2
(
X,Aj+1

)

��
...

The proposition now follows from exactness of the column. □
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Hence for each j we have the inclusion

im
{
ωj∗ : Ȟ

1
(X,Hj) → H1(X,Aj)

}
(4.3.1)

⊆ ker
{
∂ : H1(X,Aj) → H2(X,Aj+1)

}
.

In Proposition 4.6 we obtained necessary conditions for resolving the inte-
gration problem. In particular, we can comfortably conclude the following:
if θ ∈ H1(X,Aj) and ∂θ ̸= 0, then there will not exist any Hj-torsor with
θ as its linearisation. Regarding sufficient conditions, this will involve the
primary cohomology in degree one.

Theorem 4.7. Let H = (Hj) be a sheaf of AQ central series on X with
linearisation A and suppose its first primary cohomology vanishes, i.e., that
H1

∂(X,A) = (0). Then the following statements are equivalent for any j:

(i) θ ∈ H1(X,Aj) will integrate to a Hj-torsor;

(ii) ∂θ = 0.

Proof. Theorem 4.6 concerns the implication (i) ⇒ (ii). Conversely, suppose
∂θ = 0. Recall from Theorem 3.1 the construction of the primary complex
from the AQ central series H = (Hj). From this construction, along with the
identifications in (3.2.4) and the diagram in (2.2.3), note that the following
diagram will commute:

Ȟ
1(
X,Hj

)

ωj∗

&&

H0
(
X,Aj−1

)

δ1j
77

∂
// H1

(
X,Aj

)

(4.3.2)

Now if H1
∂(X,A) = (0) then we can equate,

ker
{
∂ : H1(X,Aj) → H2(X,Aj+1

}
= im

{
∂ : H0(X,Aj−1) → H2(X,Aj)

}

Hence if ∂θ = 0 we can write θ = ωj∗δ
1
j θ

′. In particular that θ ∈ im ωj∗ and
we therefore obtain the implication (ii) ⇒ (i), as desired. □
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5. Applications to supermanifolds I: Generalities

5.1. Preliminaries

5.1.1. Supermanifolds. A pair (X,T ∗
X,−), with X is a complex mani-

fold and T ∗
X,− a holomorphic vector bundle, is referred to as a model. It is

the data required to define the notion of a supermanifold X . We reserve
the prefix ‘abstract’ to refer to supermanifolds without a choice of cover-
ing. A supermanifold is then an abstract supermanifold X equipped with
a covering U = (Ui)i∈I and glueing data ρ on intersections. It is denoted
((U , ρ) → X ) or more simply (U → X ). Before describing supermanifolds
abstractly we will firstly deliberate on the prototypical example, the split
model. To a model (X,T ∗

X,−) the split model is the locally ringed space
S(X,T ∗

X,−) = (X,∧•T ∗
X,−). As described in more detail in [Bet16, Bet19]

any covering U = (Ui)i∈I for X with prescribed glueing data will lift to give
a covering and glueing data on the split model

(
Ũ → S(X,T ∗

X,−)
)
, giving

rise then to a (split) supermanifold. An abstract supermanifold X modelled
on (X,T ∗

X,−) is a locally ringed space which is locally isomorphic to the split
model S(X,T ∗

X,−).

Definition 5.1. An abstract supermanifold is split if it is isomorphic to
the split model. Otherwise, it is non-split.

Remark 5.2. If we take the model (X,T ∗
X,−) to be comprised of a smooth

resp. complex manifold and a smooth resp. complex-smooth vector bundle,
then we can form the notion of smooth and complex-smooth supermanifolds
analogously. With T ∗

X,− holomorphic we have complex analytic supermani-
folds and it is these which we will be primarily concerned with in this article.

5.1.2. Green’s AQ series. Green in [Gre82] laid the foundations for
a classification of complex supermanifolds, building on Batchelor’s classi-
fication in [Bat79] in the smooth setting. We review Green’s work in the
language used in this article. To a model (X,T ∗

X,−) we have the sheaf of
exterior algebras ∧•T ∗

X,−. This is a finite, non-negatively graded, sheaf of
OX -modules, where OX is the structure sheaf of X coming from its com-
plex structure. Let J be the irrelevant ideal and Jk its k-th power. As OX -
modules, J ∼= ⊕j>0 ∧

j T ∗
X,− and Jk ∼= ⊕j≥k ∧

j T ∗
X,−. Now ∧•T ∗

X,− is a sheaf
of supercommutative algebras with respect to the wedge product. Denote by
AutZ2

∧• T ∗
X,− those automorphisms which preserve the Z2-grading. Then
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with respect to J we can form the following sheaf of groups,

G
(k)
T ∗

X,−

∆
=

{
α ∈ AutZ2

∧• T ∗
X,− | α(u)− u ∈ Jk

}
.(5.1.1)

Set GT ∗

X,−
=

(
G
(k)
T ∗

X,−

)
k>1

. The following properties, relevant for the purposes

of this article, were derived by Green in [Gre82]:

• GT ∗

X,−
is a finite collection of groups and, for all k > rank T ∗

X,−, the k-th

term, GT ∗

X,−,k = G
(k)
T ∗

X,−
is trivial;

• for each k we have an inclusion of sheaves of groups

GT ∗

X,−,k+1 ⊂ GT ∗

X,−,k

realising GT ∗

X,−,k+1 as a sheaf of normal subgroups of GT ∗

X,−,k;

• the quotient GT ∗

X,−,k/GT ∗

X,−,k is a sheaf of abelian groups;

• for each k, GT ∗

X,−,k is a sheaf of normal subgroups of GT ∗

X,−,2.

With these bullet points we can deduce the following.

Proposition 5.3. To any model (X,T ∗
X,−) the collection GT ∗

X,−
defines a

sheaf of AQ normal series on X. □

Onishchik in [Oni99] observes that the AQ series GT ∗

X,−
will have degree 2.

With the aid of the Campbell-Baker-Hausdorf this observation of Onishichik
is improved upon in [Bet18a].

Proposition 5.4. The sheaf of AQ normal series GT ∗

X,−
has AQ degree 4.

□

Definition 5.5. To a model (X,T ∗
X,−), the AQ normal series GT ∗

X,−
will be

referred to as the AQ series of the model (X,T ∗
X,−).

In what follows we set GT ∗

X,−

∆
= GT ∗

X,−,2, for notational convenience.

5.2. Classification of supermanifolds

Fix a model (X,T ∗
X,−). Then any supermanifold (U → X ) modelled on

(X,T ∗
X,−) will define a class in the set Ȟ

1(
X,GT ∗

X,−

)
. This allows for a classi-

fication of supermanifolds. One of the main results in [Gre82] is in presenting
such a classification.
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Theorem 5.6. To a model (X,T ∗
X,−) there exists an action of the group

of global automorphisms Aut T ∗
X,− on Ȟ

1(
X,GT ∗

X,−

)
and, moreover, there

exists a bijective correspondence of pointed sets:

Ȟ
1(
X,GT ∗

X,−

)

Aut T ∗
X,−

∼=

{
isomorphism classes of supermanifolds
modelled on (X,T ∗

X,−)

}

with the Aut T ∗
X,−-orbit of the base-point in Ȟ

1(
X,GT ∗

X,−

)
corresponding to

the isomorphism class of the split model
(
U → S(X,T ∗

X,−)
)
. □

Hence by Green’s classification in Theorem 5.6, a supermanifold modelled

on (X,T ∗
X,−) will be a representative of an element in Ȟ

1(
X,GT ∗

X,−

)
, up to

an action of the global automorphisms Aut T ∗
X,−.

5.2.1. Strong splitting. The starting point behind the study of super-
manifolds and higher obstructions in [Bet18b] is from Green’s classification
in Theorem 5.6, which motivated the notion of a ‘strongly split supermani-
fold atlas’. We review this notion here, starting with the following.

Definition 5.7. Let (X,T ∗
X,−) be a model and GT ∗

X,−
its AQ series. Any

representative of an element in the 1-cohomology Ȟ
1(
X,GT ∗

X,−,j

)
is called a

j-th order supermanifold atlas, or simply ‘j-th order atlas’.

For any j we have the inclusion GT ∗

X,−,j → GT ∗

X,−
inducing a map on cohomol-

ogy Ȟ
1(
X,GT ∗

X,−,j

) τj∗
→ Ȟ

1(
X,GT ∗

X,−

)
. Hence any j-th order supermanifold

atlas will define a supermanifold modelled on (X,T ∗
X,−).

Definition 5.8. For each j the image of a j-th order atlas under the map

τj∗ : Ȟ
1(
X,GT ∗

X,−,j

)
→ Ȟ

1(
X,GT ∗

X,−

)
is referred to as its associated super-

manifold. The atlas is split if its associated supermanifold is split.

Conversely, we can refer to supermanifold atlases relative to a supermanifold.

Definition 5.9. Let (U → X) be a supermanifold modelled on (X,T ∗
X,−).

We say (U → X) admits a level j structure if there exists a j-th order atlas

whose image in Ȟ
1(
X,GT ∗

X,−

)
coincides with the class defined by (U → X).

Similarly, starting from a j-th order supermanifold atlas, we say it admits
a j′-th order structure, for some j′ > j, if it lies in the image of an element

in Ȟ
1(
X,GT ∗

X,−,j′
)
.
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By Definition 5.1 a supermanifold is split if it is isomorphic to its split model.
The classification in Theorem 5.6 then asserts: if a supermanifold modelled
on (X,T ∗

X,−) is split then it will lie in the orbit of the base-point under the
action of Aut T ∗

X,−. Disregarding the Aut T ∗
X,−-action then, we arrive at the

following notion of splitting.

Definition 5.10. A j-th order supermanifold atlas modelled on (X,T ∗
X,−)

is strongly split if its associated supermanifold represents the base-point in

Ȟ
1(
X,GT ∗

X,−

)
.

To justify the terminology in the above definition, any strongly split super-
manifold atlas is split but not necessarily conversely.

5.3. Obstructions to existence and splitting

5.3.1. Obstructions to splitting. With Proposition 5.3 and 5.4 we can
apply the derivations in previous sections to the AQ series GT ∗

X,−
. Let AT ∗

X,−

denote the linearisation of GT ∗

X,−
. It is a Z-graded sheaf of abelian groups

and in other articles by the auther, e.g., in [Bet19, Bet18a, Bet18b], it is
referred to as the obstruction sheaf of the model (X,T ∗

X,−). This is because
its 1-cohomology, referred to as the obstruction space of (X,T ∗

X,−), houses
the obstruction classes to splitting. More precisely:

Definition 5.11. Fix a model (X,T ∗
X,−). Then

• the linearisation AT ∗

X,−
of the AQ series GT ∗

X,−
is referred to as the ob-

struction sheaf of (X,T ∗
X,−);

• the 1-cohomology of the obstruction sheaf of (X,T ∗
X,−), H

1
(
X,AT ∗

X,−

)
, is

referred to as the obstruction space of (X,T ∗
X,−) and;

• the linearisation of a given supermanifold atlas modelled on (X,T ∗
X,−) is

referred to as its obstruction to splitting ;

The term ‘obstruction to splitting’ in Definition 5.11 can be traced back to
the works of Berezin, collected in [Ber87]. Indeed, it is shown there that if the
obstructions to splitting a supermanifold vanishes, then the supermanifold
is split. This statement relies on the following statements which we present
here without proof, for completeness of exposition:

• if the obstruction to splitting a j-th order supermanifold atlas vanishes,
then the supemanifold atlas will admit a (j + 1)-th order structure;
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• with respect to a model (X,T ∗
X,−) with q = rank T ∗

X,−, any j-th order
supermanifold atlas with j > q is strongly split and;

• any j-th order supermanifold atlas which admits a j′-th order structure,
for j′ > q, is strongly split.

The integration problem here is then concerned with the following question:

Question 5.12. To a homogeneous class θ in the obstruction space of a
model, when will there exist a supermanifold atlas realising θ as its obstruc-
tion to splitting?

5.3.2. The obstruction complex of a model. In Theorem 3.2 we con-
structed a complex of vector spaces from the data of a sheaf of AQ normal
series of degree 4. By Proposition 5.3 and 5.4 we have precisely such data
GT ∗

X,−
associated to any model (X,T ∗

X,−). Since the linearisation of GT ∗

X,−

are the obstruction sheaves of the model (X,T ∗
X,−) we arrive now at the

notion of an ‘obstruction complex’.

Definition 5.13. Fix a model (X,T ∗
X,−) with AQ series GT ∗

X,−
and lineari-

sation AT ∗

X,−
. Then the complex

(
C•(X,AT ∗

X,−
), ∂

)
with n-th term

Cn
(
X,AT ∗

X,−

)
= Hn

(
X,AT ∗

X,−

)
and

∂ : Hn
(
X,AT ∗

X,−

)
−→ Hn

(
X,AT ∗

X,−
[1]

)
,

whose existence is guaranteed by Proposition 5.4 and Theorem 3.2, will be
referred to as the obstruction complex of the model (X,T ∗

X,−). Its cohomol-
ogy will be referred to as the obstruction cohomology of (X,T ∗

X,−), denoted

H•
∂

(
X,AT ∗

X,−

)
.

The significance of the higher order terms in the obstruction complex and
cohomology are presently unclear. In degrees zero, one and two which con-
stitutes the ‘primary complex’ by Definition 2.11, we have a clear relation
to the integration problem posed in Question 5.12.

5.3.3. The primary complex. To a model (X,T ∗
X,−), its primary com-

plex is the following complex of maps of Z-graded vector spaces:

H0
(
X,AT ∗

X,−
[−1]

) ∂ // H1
(
X,AT ∗

X,−

) ∂ // H2
(
X,AT ∗

X,−
[1]

)
(5.3.1)

The maps ∂ are linear and fit into the larger, obstruction complex. For the
applications we give here however, knowledge about the primary complex is
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sufficient. In [Bet16, Bet19], Question 5.12 was raised and motivated much of
the study presented there. A necessary condition to resolving Question 5.12
was identified in [Bet19, Theorem 3.14, p. 31]. We recover this result below
as an application of Proposition 4.6.

Theorem 5.14. To any model (X,T ∗
X,−) the boundary map

∂ : H1
(
X,AT ∗

X,−

)
→ H2

(
X,AT ∗

X,−
[1]

)

in its primary complex in (5.3.1) measures the failure for a homogeneous
element θ ∈ H1

(
X,AT ∗

X,−

)
to represent an obstruction to splitting a super-

manifold atlas modelled on (X,T ∗
X,−). □

Remark 5.15. We note that Theorem 5.14 is not in itself a new result and
was known at least to Eastwood and LeBrun in [EL86]. The derivation of
Theorem 5.14 by Eastwood and LeBrun is different than here and involves
spectral sequences.

In the course of resolving Question 5.12, three categories of classification
were identified in [Bet19] pertaining to homogeneous elements θ in the ob-
struction space of a model. We say θ represents:

(i) a supermanifold if there exists a supermanifold atlas realising θ as its
obstruction to splitting;

(ii) a pseudo-supermanifold if there does not exist any such supermanifold
atlas, and yet ∂θ = 0 and;

(iii) an obstructed thickening if ∂θ ̸= 0.

In contrast with obstructed thickenings, where examples were constructed
over the projective plane in [Bet19], examples of pseudo-supemanifolds are
not so forth-coming. In what follows we will see how the obstruction coho-
mology of a model ‘anti-obstructs’ the existence of pseudo-supermanifolds.

Theorem 5.16. Let (X,T ∗
X,−) be a model and suppose its first obstruction

cohomology vanishes, i.e., that H1
∂(X,AT ∗

X,−
) = (0). Then any homogeneous

element θ ∈ H1(X,AT ∗

X,−
) will be the obstruction to splitting some super-

manifold atlas if and only if ∂θ = 0.

Proof. This is precisely an adaptation of Theorem 4.7 to the present setting.
□
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Hence if H1
∂(X,AT ∗

X,−
) = (0), there will not exist any pseudo-supermanifolds

modelled on (X,T ∗
X,−). It is in this sense that H1

∂(X,AT ∗

X,−
) ‘anti-obstructs’

the existence of pseudo-supermanifolds. In what follows we will deduce fur-
ther relations between the first obstruction cohomology of a model and
‘goodness’ of a model in the sense of [Bet18b].

5.4. Exotic atlases and good models

One of the central concepts underpinning much of the work in [Bet18b] is
the notion of an exotic atlas, discussed by Donagi and Witten in [DW15],
leading then to the definition of a ‘good model’. We present the definition
from [Bet18b].

Definition 5.17. A j-th order supermanifold atlas is said to be exotic if:

• it is strongly split and;

• defines a non-vanishing obstruction to splitting.

Definition 5.18. A model (X,T ∗
X,−) is said to be good if there do not exist

any exotic supermanifold atlases modelled on (X,T ∗
X,−).

One of the main results in [Bet18b] concerned necessary and sufficient condi-
tions for a model to be ‘good’. Presently, we will see how the first obstruction
cohomology of a model is related to ‘goodness’ of the model. We begin with
the following existence result.

Proposition 5.19. Let (X,T ∗
X,−) be a model and suppose H1

∂(X,AT ∗

X,−
) =

(0). Then for any element θ ∈ H1(X,AT ∗

X,−,j) satisfying ∂θ = 0, there will
exist a j-th order supermanifold atlas which is strongly split and realises θ
as its obstruction to splitting.

Proof. Assuming H1
∂

(
X,AT ∗

X,−

)
= (0) we can equate,

ker
{
∂ : H1

(
X,AT ∗

X,−

)
→ H2

(
X,AT ∗

X,−
[1]

)}

= im
{
∂ : H0

(
X,AT ∗

X,−
[−1]

)
→ H1

(
X,AT ∗

X,−

)}
.
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Hence if ∂θ = 0 we can write θ = ∂θ′, for some θ′ ∈ H0
(
X,AT ∗

X,−,j−1

)
. We

reproduce the commutative diagram in (4.3.2) below:

Ȟ
1(
X,GT ∗

X,−,j

)

((

H0
(
X,AT ∗

X,−,j−1

)
δ

66

∂
// H1

(
X,AT ∗

X,−,j

)

(5.4.1)

Hence with ∂θ = 0 giving θ = ∂θ′, commutativity of (5.4.1) shows that θ
will be the obstruction to splitting the atlas δθ′. Now note that δ fits into
the following exact sequence of pointed sets,

. . . −→ H0
(
X,AT ∗

X,−,j−1

) δ
−→ Ȟ

1(
X,GT ∗

X,−,j

) ι∗−→ Ȟ
1(
X,GT ∗

X,−,j−1

)
−→ · · ·

Therefore ι∗δθ
′ = {e}. Now for any j the following diagram will commute,

Ȟ
1(
X,GT ∗

X,−,j

)

τj∗
''

ι∗ // Ȟ
1(
X,GT ∗

X,−,j−1

)

τj−1∗
vv

Ȟ
1(
X,GT ∗

X,−

)

(5.4.2)

Since ι∗δθ
′ = {e} commutativity of (5.4.2) implies τj∗δθ

′ = {e}, further im-
plying δθ′ is strongly split. □

A corollary now is the following relation between the obstruction space and
obstruction cohomology, resulting from ‘goodness’ of a model.

Theorem 5.20. Let (X,T ∗
X,−) be a good model. Then H1

∂(X,AT ∗

X,−
) = (0)

if and only if ∂ : H1
(
X,AT ∗

X,−

)
→ H2

(
X,AT ∗

X,−
[1]

)
is injective.

Proof. If ∂ : H1
(
X,AT ∗

X,−

)
→ H2

(
X,AT ∗

X,−
[1]

)
is injective, then

H1
∂(X,AT ∗

X,−
) = (0).

Conversely, with (X,T ∗
X,−) a good model, supposeH1

∂(X,AT ∗

X,−
) = (0). Then

by Proposition 5.19 we know that for any homogeneous element θ in the ob-
struction space with ∂θ = 0, there will exist a strongly split supermanifold
atlas realising θ as its obstruction to splitting. If θ ̸= 0, this supermanifold
atlas will be exotic by Definition 5.17, contradicting our assumption that
(X,T ∗

X,−) is a good model. Hence if ∂θ = 0, it must be the case that θ = 0.
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Since ∂ is a linear map between vector spaces, this condition means ∂ is
injective. □

On a Riemann surface then we have the corollary.

Corollary 5.21. Let (X,T ∗
X,−) be a good model with X a Riemann surface.

Then H1
∂(X,AT ∗

X,−
) = (0) if and only if H1

(
X,AT ∗

X,−

)
= (0).

Proof. For dimensional reasons H2(X,F) = (0) for any abelian sheaf F on
a Riemann surface X. □

Hence, on a Riemann surface, if the obstruction space of a good model does
not vanish, then neither can its first obstruction cohomology.

6. Applications to supermanifolds II: Lift, project, split

6.1. Berezin’s lifting theorem and uniqueness

6.1.1. Existence. We recall here the notions in Definition 5.11 and the
subsequent discussion there. Fix a model (X,T ∗

X,−). Any supermanifold atlas
(U → X ) modelled on (X,T ∗

X,−) will define an obstruction to splitting. If
(U → X ) has order j, it will define an obstruction to splitting in the j-th
graded component of the obstruction spaceH1

(
X,AT ∗

X,−

)
. If this obstruction

vanishes, then (U → X ) will admit a (j + 1)-th order structure. This last
statement is based on the observation that the following sequence of pointed
sets is exact:4

Ȟ
1(
X,GT ∗

X,−,j+1

)
−→ Ȟ

1(
X,GT ∗

X,−,j

) ωj∗
−→ H1

(
X,AT ∗

X,−,j

)
.

Berezin observed (see [Ber87, pp. 164-5]) that when j is even, any j-th order
supermanifold atlas with vanishing obstruction will admit a (j + 2)-th order
structure. In terms of cohomology, Berezin’s observation can be formulated
as follows. Firstly note that for any j we have the following diagram of

4recall that it is a piece of the long exact sequence on cohomology induced from
the short exact sequence of sheaves {e} → GT∗

X,−,j+1 → GT∗

X,−,j → AT∗

X,−,j → {e}.



✐

✐

“1-Bettadapura” — 2023/3/2 — 14:57 — page 1079 — #27
✐

✐

✐

✐

✐

✐

Sheaves of AQ normal series and supermanifolds 1079

sheaves:

AT ∗

X,−,j+1

��
GT ∗

X,−,j+2
// GT ∗

X,−,j
// GT ∗

X,−,j/GT ∗

X,−,j+2

��
GT ∗

X,−,j
// AT ∗

X,−,j

(6.1.1)

where the middle row and the right-most column are short exact sequences.
From (6.1.1) we get the following diagram on 1-cohomology,

H1
(
X,AT ∗

X,−,j+1

)

ιj∗

��

Ȟ
1(
X,GT ∗

X,−,j+2

) τ j+2

j∗
// Ȟ

1(
X,GT ∗

X,−,j

)
// H1

(
X,GT ∗

X,−,j/GT ∗

X,−,j+2

)

pj∗

��

Ȟ
1(
X,GT ∗

X,−,j

) ωj∗
// H1

(
X,AT ∗

X,−,j

)

(6.1.2)

When j = 2ℓ is even, Berezin’s observation is:

Theorem 6.1. To any x ∈ Ȟ
1(
X,GT ∗

X,−,2ℓ

)
with ω2ℓ∗(x) = 0, there exists

x′ ∈ Ȟ
1(
X,GT ∗

X,−,2ℓ+2

)
such that τ2ℓ+2

2ℓ∗ : x′ 7→ x. □

6.1.2. Uniqueness. To x ∈ Ȟ
1(
X,GT ∗

X,−,2ℓ

)
if we think of x as a thick-

ening of order 2ℓ, to use the language in [Bet19], then Berezin in [Ber87,
pp. 163-4] argues that x will admit a unique, first order extension. Note that
this is regardless of whether ω2ℓ∗(x) vanishes or not. When ω2ℓ∗(x) = 0,
Proposition 6.1 guarantees the existence of a lift τ2ℓ+2

2ℓ∗ : x′ 7→ x. It is the
uniqueness now of this lift x′ which will concern us here. To present the
result firstly recall that the right-most column in (6.1.1) is a short exact
sequence and leads, on cohomology, to the following left exact piece:

{e} → H0
(
X,AT ∗

X,−,j+1

)
−→ H0

(
X,GT ∗

X,−,j/GT ∗

X,−,j+2

)
(6.1.3)

H0(pj)
−→ H0

(
X,AT ∗

X,−,j

)
.
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Hence H0
(
X,AT ∗

X,−,j+1

)
is a subgroup of H0

(
X,GT ∗

X,−,j/GT ∗

X,−,j+2

)
for each

j. By Proposition 5.4 we know that GT ∗

X,−,j/GT ∗

X,−,j+2 is abelian. Hence we
can form the quotient on cohomology, giving

im H0(pj) ∼= H0
(
X,GT ∗

X,−,j/GT ∗

X,−,j+2

)
/H0

(
X,AT ∗

X,−,j+1

)
.

In the case where j = 2ℓ, we have:

Theorem 6.2. Let x ∈ Ȟ
1(
X,GT ∗

X,−,2ℓ

)
and suppose ω2ℓ∗(x) = 0. Then

there exists a unique (i.e., one and only one) lift τ2ℓ+2
2ℓ∗ : x′ 7→ x if and only

if im H0(p2ℓ) is trivial.

Our proof of Theorem 6.2 will involve another lifting phenomenon which
was observed by Donagi and Witten in [DW15]. We present this result in
the section to follow and so our proof of Theorem 6.2 will appear there.

6.2. Vanish, lift and vanish

6.2.1. Donagi and Witten’s vanishing. We will firstly set up some
notation. Fix a model (X,T ∗

X,−) with obstruction sheaf AT ∗

X,−
. Recall that

it is Z-graded. Hence it will be Z2-graded. Let AT ∗

X,−,+ and AT ∗

X,−,− denote
its even and odd graded components respectively. Then as OX -modules,

AT ∗

X,−,+ =
⊕

j>1

AT ∗

X,−,2j and AT ∗

X,−;− =
⊕

j>0

AT ∗

X,−,2j+1.

The boundary maps in the obstruction complex of (X,T ∗
X,−) increase the

Z-degree of the obstruction sheaf by one, i.e.,

∂n+1
j : Hn

(
X,AT ∗

X,−,j

)
−→ Hn+1

(
X,AT ∗

X,−,j+1

)
.

Therefore ∂ interpolates between the even and odd graded components of
the obstruction sheaf. This means, for each n, we have:

∂n+1
± : Hn

(
X,AT ∗

X,−,±

)
−→ Hn+1

(
X,AT ∗

X,−,∓

)
(6.2.1)

We will refer to ∂n+1
+ resp. ∂n+1

− as the even resp. odd components of ∂n+1.
Donagi and Witten in [DW15] observed:

Proposition 6.3. To any model (X,T ∗
X,−) the odd component ∂1

− of ∂1 in
(6.2.1) vanishes identically.
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6.2.2. Lifting and vanishing. As a consequence of Proposition 6.3 we
will obtain a lift of a certain map which we describe presently. Consider the
following diagram of solid arrows:

Ȟ
1(
X,GT ∗

X,−,2ℓ+3

)

��

H0
(
X,AT ∗

X,−,2ℓ+1

)

55

δ2ℓ+2
//

∂1
− ))

Ȟ
1(
X,GT ∗

X,−,2ℓ+2

)

ω2ℓ+2∗

��

H1
(
X,AT ∗

X,−,2ℓ+2

)

(6.2.2)

Proposition 6.3 says ∂1
− = 0 above. Hence by exactness of the column, we

can deduce the existence of the following map, represented in (6.2.2) by the
dashed arrow:

δ̃2ℓ+2 : H
0
(
X,AT ∗

X,−,2ℓ+1

)
// Ȟ

1(
X,GT ∗

X,−,2ℓ+3

)
(6.2.3)

for each ℓ. Hence as a result of Donagi and Witten’s vanishing in Proposition
6.3 we can lift the boundary map δ2ℓ+2 in (6.2.2) to δ̃2ℓ+2 in (6.2.3). This
leads to a subsequent vanishing result.

Proposition 6.4. For any ℓ the linearisation of the lift δ̃2ℓ+2 of δ2ℓ+2 van-
ishes, i.e., that the composition,

∂̃ : H0
(
X,AT ∗

X,−,2ℓ+1

) δ̃2ℓ+2

−→ Ȟ
1(
X,GT ∗

X,−,2ℓ+3

) ω2ℓ+3∗

−→ H1
(
X,AT ∗

X,−,2ℓ+3

)
(6.2.4)

vanishes.

The argument in Proposition 6.4 on the vanishing of the linearisation of
δ̃2ℓ+2 generalises and allows us to deduce a more powerful vanishing result.

Theorem 6.5. For any ℓ the boundary map δ2ℓ+2 in (6.2.2) is constant
and sends every global section in H0

(
X,AT ∗

X,−,2ℓ+1

)
to the base-point in

Ȟ
1(
X,GT ∗

X,−,2ℓ+2

)
.

Donagi and Witten’s vanishing in Proposition 6.3, followed by the construc-
tion of the lift δ̃ in (6.2.3), the vanishing of it’s linearisation in Proposition 6.4
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leading finally to the vanishing in Theorem 6.5 above will be referred to col-
lectively as the Vanish-Lift-Vanish principle. We present a proof of this
principle in Appendix A.

6.2.3. Proof of Theorem 6.2. The Vanish-Lift-Vanish principle, culmi-
nating in Theorem 6.5, will be a crucial ingredient in our proof of Theo-
rem 6.2. Before embarking on this proof it will be useful to digress and dis-
cuss the following general observation by Grothendieck in [Gro55], reviewed
by Brylinski in [Bry08, p. 160] and mentioned in the proof of Lemma 3.3.

Lemma 6.6. Let {e} → A → G → C → {e} be a short exact sequence of
sheaves of groups on a space X. Then there exists an action ⋆ of H0(X, C)

on Ȟ
1
(X,A) such that: for any a, a′ in Ȟ

1
(X,A), their image coincides in

Ȟ
1
(X,G) if and only if there exists some global section c ∈ H0(X, C) such

that a′ = c ⋆ a. □

To the short exact sequence of sheaves {e} → A → G → C → {e} onX let δ :

H0(X, C) → Ȟ
1
(X,A) be the boundary map. In the proof of Lemma 3.3 this

boundary map δ was related to the action ⋆ from Lemma 6.6. Importantly,
for our purposes, we have:

Lemma 6.7. Suppose δ : H0(X, C) → Ȟ
1
(X,A) is trivial. Then for any

c ∈ H0(X, C) we have

c ⋆ a = a.

for all a ∈ Ȟ
1
(X,A).

Proof. From Lemma 3.3 the boundary map δ is given by

δ : c 7−→ c ⋆ e

where e ∈ H1(X,A) is the base-point. If δ is trivial, then δ(c) = e for all c.
Using that e ⋆ e = e we find δ(c) = c ⋆ e = e for all c. Now the action ⋆ is
associative. As such, for any c ∈ H0(X, C) and a ∈ H1(X,A) we have:

c ⋆ a = c ⋆
(
e ⋆ a

)
=

(
c ⋆ e

)
⋆ a = δ(c) ⋆ a = e ⋆ a = a.

The lemma now follows. □
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We now resume our proof of Theorem 6.2. Firstly recall the diagram in
(6.1.1). Note that we can ‘fill it in’ to get:

AT ∗

X,−,j+1

��
GT ∗

X,−,j+2

��

// GT ∗

X,−,j
// GT ∗

X,−,j/GT ∗

X,−,j+2

��
GT ∗

X,−,j+1

��

// GT ∗

X,−,j
// AT ∗

X,−,j

AT ∗

X,−,j+1

(6.2.5)

And hence on cohomology,

H0
(
X,AT ∗

X,−,j+1

)

��

H0
(
X,GT ∗

X,−,j/GT ∗

X,−,j+2

)
// Ȟ

1(
X,GT ∗

X,−,j+2

)

τ j+2

j+1∗

��

τ j+2

j∗
// Ȟ

1(
X,GT ∗

X,−,j

)

Ȟ
1(
X,GT ∗

X,−,j+1

)
// Ȟ

1(
X,GT ∗

X,−,j

)

(6.2.6)

By Lemma 6.6 we know that Ȟ
1(
X,GT ∗

X,−,j+2

)
carries actions by

H0
(
X,AT ∗

X,−,j+1

)
and H0

(
X,GT ∗

X,−,j/GT ∗

X,−,j+2

)
with respect to which the

maps τ j+2
j+1∗ and τ j+2

j∗ are invariant, respectively. Specialising to the case
where j = 2ℓ, Theorem 6.5 and Lemma 6.7 guarantee that the action of
H0

(
X,AT ∗

X,−,j+1

)
will be trivial. If we additionally assume im H0(p2ℓ∗) is

trivial, then by (6.1.3) the groups H0
(
X,AT ∗

X,−,j+1

)
and H0

(
X,GT ∗

X,−,j/

GT ∗

X,−,j+2

)
will be isomorphic and hence that the action of the group

H0
(
X,GT ∗

X,−,j/GT ∗

X,−,j+2

)
must also trivial. Uniqueness of the lift τ2ℓ+2

2ℓ∗ :
x′ 7→ x then follows from Lemma 6.6. □
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6.3. Projectable models

6.3.1. Existence. Any model (X,T ∗
X,−) gives rise to a class of supermani-

folds and, rather than studying particular supermanifolds, we might prefer to
study this class of supermanifolds instead. This was the subject of [Bet18b]
where a characterisation of models as being ‘good’ or otherwise was pre-
sented (see Definition 5.18). Presently we will consider another kind of char-
acterisation. Recall that a supermanifold X is a locally ringed space (X,OX)
where OX is globally Z2-graded sheaf which is locally isomorphic to a sheaf
of exterior algebras. With OX the sheaf capturing the complex structure of
X, the global Z2-grading on OX defines an ideal J such that OX/J = OX .
Hence J is the ideal sheaf of an embedding of spaces i : X ⊂ X. As discussed
in [DW15], a highly relevant structure on a supermanifold for the purposes
of theoretical physics is on the existence of a projection map π : X → X with
πi = 1X . Such a map allows for the reduction of measures defined on X to
measures on X and hence allows for a workable notion of ‘integration on
supermanifolds’.

Definition 6.8. A supermanifold X = (X,OX) is said to be projectable if
there exists a projection map π : X → X.

Donagi and Witten in [DW15] identify a collection of classes which obstruct
the existence of a projection map in analogy with the obstructions to split-
ting discussed in the present article. For our purposes we will only need to
know the following (see [DW15, p. 18]):

Lemma 6.9. Any obstruction to the existence of a projection map coincides
with an obstruction to splitting a supermanifold atlas of even order. □

We now consider the following feature definable for models and thereby
refining their classification.

Definition 6.10. A model (X,T ∗
X,−) is said to be projectable if any super-

manifold modelled on (X,T ∗
X,−) is projectable.

In Theorem 5.16 we deduced an interesting, geometric consequence of the
vanishing of the first obstruction cohomology of a model. Subsequently we
related this assumption to the notion of ‘goodness’ of a model (see Proposi-
tion 5.19 and Theorem 5.20). Presently, we find a relation to projectability.
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Theorem 6.11. Let (X,T ∗
X,−) be a model with vanishing first obstruction

cohomology, i.e., with H1
∂

(
X,AT ∗

X,−

)
= (0). Then (X,T ∗

X,−) is projectable.

Proof. By Lemma 6.9 we need only confirm, under the assumption
H1

∂

(
X,AT ∗

X,−

)
= (0), that the obstruction to splitting any supermanifold

atlas of even order will vanish. Central to our proof is Theorem 6.5. Recall
from Theorem 5.14 that any supermanifold atlas modelled on (X,T ∗

X,−) will
define an obstruction to splitting in a homogeneous component in the ker-
nel ker

{
∂ : H1

(
X,AT ∗

X,−

)
→ H1

(
X,AT ∗

X,−
[1]

)}
. Since H1

∂

(
X,AT ∗

X,−

)
= (0)

we can equate,

ker
{
∂ : H1

(
X,AT ∗

X,−

)
→ H1

(
X,AT ∗

X,−
[1]

)}

= im
{
∂ : H1

(
X,AT ∗

X,−
[−1]

)
→ H1

(
X,AT ∗

X,−

)}
.(6.3.1)

Hence any obstruction will come from a homogeneous, global section u of
AT ∗

X,−
. If u is odd, i.e., lies in H0

(
X,AT ∗

X,−;−

)
then by Theorem 6.5 we know

∂(u) = 0. Hence if a supermanifold atlas modelled on (X,T ∗
X,−) defines a

non-vanishing obstruction to splitting, it must come from a global section
of AT ∗

X,−;+ and, in particular, lie in H1
(
X,AT ∗

X,−;−

)
, i.e., the supermanifold

atlas must have odd order. Hence, the obstruction to splitting any super-
manifold atlas of even order must vanish. □

The contrapositive statement to Theorem 6.11 is then the following corollary
on the non-vanishing of the obstruction cohomology.

Corollary 6.12. Let (X,T ∗
X,−) be a model and suppose there exists a non-

projectable supermanifold modelled on (X,T ∗
X,−). Then the first obstruction

cohomology of the model (X,T ∗
X,−) will not vanish. □

Example 6.13. The subject of the works by Donagi and Witten in [DW15,
DW14] is to show that moduli space of super Riemann surfaces Mg is non-
projectable in genus g ≥ 5. Now Mg is a superspace modelled on the moduli
space of spin curves SMg and vector bundle T ∗

SMg,−
whose fiber over a spin

curve (C, T
1/2
C ) is the 1-cohomology T ∗

SMg,−
|(C,T

1/2
C ) = H1(C, T

1/2
C )∨. With

Corollary 6.12 we can then deduce: when g ≥ 5, the first obstruction coho-
mology of the model

(
SMg, T

∗
SMg,−

)
is non-vanishing.

6.4. A batchelor-type theorem

We have so far been concerned with complex-analytic (i.e., holomorphic or
algebraic) supermanifolds. These are supermanifolds whose structure sheaves



✐

✐

“1-Bettadapura” — 2023/3/2 — 14:57 — page 1086 — #34
✐

✐

✐

✐

✐

✐

1086 Kowshik Bettadapura

are sheaves of complex-analytic functions. If we relax this condition to
smooth functions we obtain the notion of a ‘smooth supermanifold’ (c.f.,
Remark 5.2). A classical result in the category of smooth supermanifolds is
Batchelor’s theorem, which originally appeared in [Bat79]. It states:

Theorem 6.14. Any smooth supermanifold is split. □

The subtlety in generalising Theorem 6.14 to the complex-analytic category
is that the splitting from Theorem 6.14 need not be analytic. Now note
that Theorem 6.14 can be formulated as a statement about a class of su-
permanifolds. It leads therefore to the following definition in analogy with
Definition 6.10 of projectable models.

Definition 6.15. A model (X,T ∗
X,−) is said to be split if every superman-

ifold modelled on (X,T ∗
X,−) is split.

Batchelor’s theorem in Theorem 6.14 can now be phrased: any smooth model
(X,T ∗

X,−) is split.5 Hence, results involving the deduction of splitness of
models might be termed ‘Batchelor-type theorems’. An elementary such
theorem is the following (for models now in the complex analytic category).

Lemma 6.16. Let (X,T ∗
X,−) be a model and suppose its obstruction space

vanishes, i.e., that H1
(
X,AT ∗

X,−

)
= (0). Then (X,T ∗

X,−) is split. □

The assumptions in Lemma 6.16 are quite strong. However, Batchelor’s the-
orem in Theorem 6.14 can be deduced from Lemma 6.16 since sheaves of
modules over smooth functions are fine, i.e., have acyclic sheaf cohomol-
ogy. We conclude with a stronger Batchelor type theorem now, invoking the
property of ‘goodness’ of a model and its first obstruction cohomology.

Theorem 6.17. Let (X,T ∗
X,−) be a good model with H1

∂

(
X,AT ∗

X,−

)
= (0).

Then (X,T ∗
X,−) is split.

Proof. We will show that any supermanifold atlas modelled on (X,T ∗
X,−)

will be strongly split (see Definition 5.10) from whence the present theorem
will follow. Recall that for each j we have a commutative diagram (c.f.,

5Following Remark 5.2, a model (X,T ∗

X,−) is smooth if X is taken to be a smooth
manifold and T ∗

X,− a smooth vector bundle.
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(5.4.1)),

Ȟ
1(
X,GT ∗

X,−,j+1

)

ω∗

))

H0
(
X,AT ∗

X,−,j

)
δ

66

∂1
j+1

// H1
(
X,AT ∗

X,−,j+1

)

(6.4.1)

By Theorem 6.5 we know that ∂1
j+1 = 0 for j odd in (6.4.1). Now a central re-

sult in [Bet18b] is in the characterisation of good models. It was found that: a
model (X,T ∗

X,−) is good if and only if δ in (6.4.1) is trivial for all j. Hence if

(X,T ∗
X,−) is a good model we find by commutativity of (6.4.1) that ∂1

j+1 = 0

for all j. Hence that im
{
∂ : H1

(
X,AT ∗

X,−
[−1]

)
→ H1

(
X,AT ∗

X,−

)}
= (0). As-

suming in addition that H1
∂

(
X,AT ∗

X,−

)
= (0) we have the equality in (6.3.1)

giving therefore ker
{
∂ : H1

(
X,AT ∗

X,−

)
→ H1

(
X,AT ∗

X,−
[1]

)}
= (0). This

shows that the obstruction to splitting any supermanifold atlas modelled
on (X,T ∗

X,−) must vanish. Hence this supermanifold atlas must be strongly
split. □

Remark 6.18. In the case where X is a Riemann surface, Corollary 5.21
shows that the conditions in Theorem 6.17 are equivalent to those in
Lemma 6.16.

Appendix A. Proof of Vanish-Lift-Vanish

A.1. Proof of Proposition 6.3

The proof of Proposition 6.3 is outlined in [DW15] and, motivated by this
argument, a particular case is addressed in [Bet18b, Appendix A]. We con-
tinue this argument here.

A.1.1. Group actions on sheaves. We begin with the following defini-
tion of groups acting on sheaves of modules.

Definition A.1. Let F be a sheaf of OX -modules on X and fix a group
G. We say G acts on F if:

• each g ∈ G defines an OX -module homomorphism g· : F → F ;

• the morphism defined by the identity element e ∈ G is the identity mor-
phism e· = 1F : F → F ;
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• for any two g, h ∈ G the following diagram commutes,

F

(gh)·   

h· // F

g·
��
F

(A.1.1)

Evidently, if a group G acts on a sheaf F then commutativity in (A.1.1)
implies that the morphism defined by g ∈ G will be an isomorphism. By
functoriality on cohomology we obtain, for each g ∈ G and integer n, an iso-

morphism on sheaf cohomology g·∗ : H
n(X,F)

∼=
→ Hn(X,F) with g ·∗ h·∗ =

(gh)·∗. We will ultimately be interested in the action induced on cohomology
in degrees zero and one.

A.1.2. The dilation action. Suppose F is a sheaf of Z-graded, OX -
modules on a complex space X. Set

F = ⊕jFj .(A.1.2)

Then there exists a natural action of C× onX known as dilation. It it defined
as follows: firstly, any homogeneous f ∈ F defines a Z-parity p(f) ∈ Z, where
p is defined by sending f to its Z-grading. Clearly the parity map depends
on the choice of Z-grading on F in (A.1.2). With this choice of grading and
parity map consider:

C
× ×F −→ F given by

(
λ, f

)
7−→ λp(f)f(A.1.3)

where f is homogeneous. The mapping extends to inhomogeneous sections
of F by linearity and defines an action of the group C× on the sheaf F in
the sense of Definition A.1. This action is known as the dilation action.

Remark A.2. Any sheaf of OX -modules admits a dilation action as we can
view it as being trivially Z-graded. Hence the choice of Z-grading is a crucial
ingredient in forming the dilation action. We will suppress any mention of
the choice of Z-grading however if it is clear from the context.

Example A.3. Fix a locally free sheaf T ∗
X,− on X. Then the exterior al-

gebra F = ∧•T ∗
X,− carries a natural Z-grading ∧•T ∗

X,− = ⊕j ∧
j T ∗

X,− into
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exterior powers and hence a natural dilation action as in (A.1.3). On ho-
mogeneous components we have,

C
× × ∧jT ∗

X,− −→ ∧jT ∗
X,−

(
λ, u

)
7−→ λju

for all j.

We note that the dilation action in (A.1.3) extends to an action on tensor
products. If F and F ′ are Z-graded the so is their tensor product. Let p and
p′ denote the respective parity maps on F and F ′. Then p+ p′ is the parity
map on F ⊗ F ′ and so the dilation action on the tensor product is:

C×F ⊗ F ′ −→ F ⊗F ′(A.1.4)

given by
(
λ, f ⊗ f ′

)
7−→ λp(f)+p′(f ′)f ⊗ f ′.

If F is Z-graded as in (A.1.2), then we consider its dual be inversely graded
to F , i.e., that

F∗ = ⊕jF
∗
−j .(A.1.5)

Hence if p is the parity map for F then −p is the parity map for its OX -dual
F∗. Its endomorphisms therefore dilate as follows:

C
× × EndOX

F −→ EndOX
F(A.1.6)

with
(
λ, f ⊗ f∗

)
7−→ λp(f)−p(f∗)f ⊗ f∗.

With this observation we continue Example A.3.

Example A.4. The j-th exterior power ∧jT ∗
X,− is the j-th graded compo-

nent of ∧•T ∗
X,−. Dualising, we see that ∧jTX,− is the j-th graded component

of (∧•T ∗
X,−)

∗. Evidently, by (A.1.6) we find for each j and k, the dilation:

C
× × ∧jT ∗

X,− ⊗ ∧kTX,− −→ ∧jT ∗
X,− ⊗ ∧kTX,−

given by
(
λ, u⊗ v

)
7−→ λj−ku⊗ v.

Evidently, the endomorphisms EndOX
T ∗
X,− are invariant under dilation.

A.1.3. On obstruction sheaves. Green in [Gre82] derived the follow-
ing important characterisation of the obstruction sheaves. For AT ∗

X,−
the
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obstruction sheaf of the model (X,T ∗
X−) and AT ∗

X,−,j its j-th graded com-
ponent there exists an isomorphism

AT ∗

X,−,j
∼=

{
∧jT ∗

X,− ⊗ TX if j is even

∧jT ∗
X,− ⊗ T ∗

X,− if j is odd.

In viewing TX as trivially Z-graded (c.f., Remark A.2) we obtain the follow-
ing action on the obstruction sheaf from (A.1.4) and Example A.4.

Lemma A.5. For any j we have the action

C
× ×AT ∗

X,−,j −→ AT ∗

X,−,j (λ,w) 7−→

{
λjw if j is even
λj−1w if j is odd

□

The action in Lemma A.5 gives an action on global sections. We wish to

compare this latter action with that on Ȟ
1(
X,GT ∗

X,−,j+1

)
. Our objective is

thus to prove the following:

Proposition A.6. For any j there exists an action of C× on

Ȟ
1(
X,GT ∗

X,−,j+1

)
commuting the following diagram,

C× ×H0
(
X,AT ∗

X,−,j

)

1×δ
��

// H0
(
X,AT ∗

X,−,j

)

δ
��

C× × Ȟ
1(
X,GT ∗

X,−,j+1

)

1×ω∗

��

// Ȟ
1(
X,GT ∗

X,−,j+1

)

ω∗

��

C× ×H1
(
X,AT ∗

X,−,j+1

)
// H1

(
X,AT ∗

X,−,j+1

)

Proof. We will firstly show that C× acts on the sheaf of groups GT ∗

X,−,k for
any k. We recall the definition of GT ∗

X,−,k from (5.1.1) below for convenience,

GT ∗

X,−,k =
{
α ∈ AutZ2

∧• T ∗
X,− | α(u)− u ∈ Jk, ∀u ∈ ∧•T ∗

X,−

}
(A.1.7)

where J ⊂ ∧•T ∗
X,− is the irrelevant ideal. Now from Example A.3 we see

how C× acts on the exterior algebra ∧•T ∗
X,−. This action clearly preserves

the ideal J . Moreover, for any α ∈ GT ∗

X,−,k, since α ≡ 1 modulo Jk it fol-

lows that λαλ−1 ≡ λ1λ−1 = 1 modulo Jk and for any λ ∈ C×. Hence that
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λαλ−1 ∈ GT ∗

X,−,k for any λ ∈ C×. As can be checked, the conjugation α 7→

λαλ−1 defines a group action C× on GT ∗

X,−,k for each k. Now more explic-

itly, since α(u)− u ∈ Jk we can write α = 1+D + . . ., where D : ∧•T ∗
X,− →

∧•T ∗
X,−[k] and the ellipses contain terms sending ∧•T ∗

X,− → ∧•T ∗
X,−[ℓ] for

ℓ > k. Modulo Jk+1, the term D will define a derivation. Now suppose k
is even. Then for any u ∈ ∧•T ∗

X,− the 0-th graded component maps to an

element in ∧kT ∗
X,−. Therefore, modulo Jk+1 we find

(λαλ−1)(u) = λ
(
α(λ−1u)

)
= λ

(
1(λ−1u) +D(λ−1u) + · · ·

)

= u+ λkD(u) mod Jk+1(A.1.8)

If k is odd the restriction of α to ∧0T ∗
X,− = OX is trivial since it preserves

the Z2-grading ∧•T ∗
X,−. Hence for any u ∈ ∧•T ∗

X,− we find

(λαλ−1)(u) = λ
(
1(λ−1u) +D(λ−1u) + · · ·

)

= u+ λk−1D(u) mod Jk+1(A.1.9)

Comparing (A.1.8) and (A.1.9) with the action in Lemma A.5 we see that the
projection GT ∗

X,−,k → GT ∗

X,−,k/GT ∗

X,−,k+1 = AT ∗

X,−,k will be C×-equivariant,
i.e., that the following diagram will commute

C× ×GT ∗

X,−,k

��

// GT ∗

X,−,k

��
C× ×AT ∗

X,−,k
// AT ∗

X,−,k.

Thus for each λ ∈ C× we get an isomorphism of short exact sequences of
sheaves,

{e} // GT ∗

X,−,k+1

λ·

��

// GT ∗

X,−,k

λ·

��

// AT ∗

X,−,k

λ·

��

// {e}

{e} // GT ∗

X,−,k+1
// GT ∗

X,−,k
// AT ∗

X,−,k
// {e}

(A.1.10)

giving then on cohomology the following commutative diagrams,

H0
(
X,AT ∗

X,−,k

)

δ
��

λ∗ // H0
(
X,AT ∗

X,−,k

)

δ
��

Ȟ
1(
X,GT ∗

X,−,k+1

) λ∗ // Ȟ
1(
X,GT ∗

X,−,k+1

)
.

Ȟ
1(
X,GT ∗

X,−,k

)

ωk∗

��

λ∗ // Ȟ
1(
X,GT ∗

X,−,k

)

ωk∗

��

H1
(
X,AT ∗

X,−,k

) λ∗ // H1
(
X,AT ∗

X,−,k

)
.
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Commutativity of the above diagrams for each λ ∈ C× is precisely the state-
ment in this proposition. □

Proposition 6.3 will now follow from Lemma A.5 and Proposition A.6 as
follows. Firstly, recall that the boundary map

∂ : H0
(
X,AT ∗

X,−,j

)
→ H1

(
X,AT ∗

X,−,j+1

)

was defined by reference to Ȟ
1(
X,GT ∗

X,−,j

)
. That is, the following diagram

commutes for each j (c.f., (5.4.1)),

Ȟ
1(
X,GT ∗

X,−,j+1

)

ω∗

))

H0
(
X,AT ∗

X,−,j

)
δ

66

∂1
j+1

// H1
(
X,AT ∗

X,−,j+1

)

(A.1.11)

Now suppose j = 2ℓ+ 1 is odd. Since ∂1 is linear we have by Lemma A.5
and any w ∈ H0

(
X,AT ∗

X,−,2ℓ+1

)
,

∂1
j+1(λ · w) = ∂1

j+1(λ
2ℓw) = λ2ℓ∂1

j+1(w).(A.1.12)

But now consider that the diagram in (A.1.11) commutes. Therefore, by
Lemma A.5 and Proposition A.6 we find

∂1
j+1(λ · w) = ω∗(δ(λ · w)) = ω∗(λ ⋆ δ(w))(A.1.13)

= λ2ℓ+2ω∗δ(w) = λ2ℓ+2∂1
j+1(w).

This is compatible with in (A.1.12) if and only if ∂1
j+1 = 0 for all j = 2ℓ+ 1,

odd. Hence the odd component of ∂ must vanish. □

Remark A.7. The dilation action is the centrepiece of the proof of Proposi-
tion 6.3 above. By Remark A.2, the formation of the dilation action involves
a choice of grading and hence appears on a first glance to be arbitrary. We
emphasise that while this might be so, what is important is the deduction
of the commutative diagram in Proposition A.6 which meaningfully incor-
porates our construed dilation action.
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A.2. Proof of Proposition 6.4

The argument follows along similar lines to Proposition 6.3. Firstly recall
that the composition ∂1

j+1 in (A.1.11) is linear for all j. Hence the composi-

tion ∂̃ in (6.2.4) will be linear. We can now make an analogous comparison
as in (A.1.12) and (A.1.13). If w ∈ H0

(
X,AT ∗

X,−,2ℓ+1

)
and λ ∈ C× then

∂̃(λ · w) = ∂̃(λ2ℓw) = λ2ℓ∂̃(w).

However, we also have:

∂̃(λ · w) = ω∗

(
δ̃2ℓ+2(λ · w)

)
= ω∗

(
λ ⋆ δ̃2ℓ+2(w)

)
= λ2ℓ+2∂̃(w).

Hence ∂̃ = 0. □

A.3. Proof of Theorem 6.5

In Proposition 6.4 we found that the linearisation of the lift δ̃2ℓ+1 of δ2ℓ+1

vanished. Hence we will obtain a further lift of δ̃2ℓ+1, represented below by
the dashed arrow:

Ȟ
1(
X,GT ∗

X,−,2ℓ+4

)

��

H0
(
X,AT ∗

X,−,2ℓ+1

)

δ2ℓ+2 **

δ̃′2ℓ+2

44

δ̃2ℓ+2
// Ȟ

1(
XGT ∗

X,−,2ℓ+3

)

��

Ȟ
1(
X,GT ∗

X,−,2ℓ+2

)

Arguing as in Proposition 6.4 the linearisation of δ̃′2ℓ+2 will vanish, lead-
ing therefore to a further lift. In this way we see that the map δ2ℓ+2 :

H0
(
X,AT ∗

X,−,2ℓ+1

)
→ Ȟ

1(
X,GT ∗

X,−,2ℓ+2

)
will lift to δ̃(k) : H0

(
X,AT ∗

X,−

)
→

Ȟ
1(
X,GT ∗

X,−,k

)
for any k > 2ℓ+ 2. Since GT ∗

X,−,k = (e) is trivial for suffi-
ciently large k we obtain the following commutative diagram

{e}

��

H0
(
X,GT ∗

X,−,2ℓ+2

)

44

δ2ℓ+2

// Ȟ
1(
X,GT ∗

X,−,2ℓ+2

)
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which therefore shows that δ2ℓ+2 is trivial, as required. □
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