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We provide a systematic approach to describing the Ramond-
Ramond (RR) fields as elements in twisted differential K-theory.
This builds on a series of constructions by the authors on geo-
metric and computational aspects of twisted differential K-theory,
which to a large extent were originally motivated by this prob-
lem. In addition to providing a new conceptual framework and a
mathematically solid setting, this allows us to uncover interest-
ing and novel effects. Explicitly, we use our recently constructed
Atiyah-Hirzebruch spectral sequence (AHSS) for twisted differen-
tial K-theory to characterize the RR fields and their quantization,
which involves interesting interplay between geometric and topo-
logical data. We illustrate this with the examples of spheres, tori,
and Calabi-Yau threefolds.
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1. Introduction

The goal of this paper is to combine proposals about the Ramond-Ramond
(RR) fields in type II string theory, going back to [MW00][FH00], with new
geometric and topological insights associated with twists and differential
refinements. This leads to a hierarchy of descriptions of these fields and
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culminating with one in twisted differential K-theory, putting on firm ground
speculations in the literature and uncovering new effects. This crucially uses
the series of constructions by the authors [GS17a][GS17b][GS18a][GS18b]
[GS19a][GS19b], which to a large extent were originally motivated by this
problem. In some sense then, this is the main application of the above works.
The readers interested in the general mathematical theorems are encouraged
to consult the above papers, while here we mainly focus on those results that
are used in the particular physics problem at hand.

The RR fields originate as follows. Introducing fermions into the bosonic
string requires considering boundary conditions for these fermions. Imposing
the periodic boundary conditions on the circle, also known as the Ramond
boundary conditions, leads to the Ramond-Ramond sector, which includes
other fields in addition to the spinors [Ra71]. Among these are the Ramond-
Ramond (RR) fields, which are a priori differential form fields in the 10-
dimensional spacetime of type II supergravity theories, the latter viewed
essentially as the classical limits of type II string theory.

Aside from arising in the spectrum, what is the nature of a Ramond-
Ramond field? One can actually ask a more basic question: What is a form
field in physics? The question might have multiple answers even when re-
ferring to the same field. That is, the mathematical description of the field
might depend on which aspects of the field one is trying to capture. As in
the approach in [Fr00][Fr02][Sa10], one thematically and schematically has
the following picture

RR as Differential form ❀ RR in de Rham cohomology

❀ RR in integral cohomology

❀ RR in generalized cohomology

As we will see this picture also requires further refinements, including
adding periodicity, adding a twist as well as adding the data of a connection.
On the conceptual side, part of this paper hence also proposes one way of
how to approach answering the above question. Thus, in addition the firm
mathematical grounding, we hope to also provide an approach that helps in
the conceptual understanding of the problem.

To start, the spectrum of supergravity a priori provides potentials of
degrees less than half the dimension of the space. However, in a democratic
formulation [To95] one would like to have all the RR potentials, while the
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other half is supplied by a form of Hodge duality. A doubled formalism
in which a Hodge dual potential is introduced for each bosonic form field
is given in [CJLP98], where the equations of motion can then be formu-
lated as a twisted self-duality condition on the total field strength. Duality-
symmetric action for type IIA is given in [BNS04], with the corresponding
duality relations deduced directly from the action. A generalized form of
IIA/IIB supergravity depending on all RR potentials Cp, p = 0, 1, ..., 9, as
the effective field theory of Type IIA/IIB superstring theory [BKORvP01].

The RR field strength at the level of supergravity is then an m-form
Gm ∈ Ωm(X10). The collection of these further occur as even degree forms
in type IIA and odd degrees in type IIB, up to dimension 10. This peri-
odicity or grading can be taken into account. As explained in [Fr02], one
introduces the electromagnetic duals of the supergravity fields and forms
the inhomogeneous RR field strengths

(1.1) Gform =

{
G0 +G2 +G4 +G6 +G8 +G10, Type IIA,
G1 +G3 +G5 +G7 +G9, Type IIB,

where Gm is a differential form of degree m. Classically, these satisfy appro-
priate Hodge duality relations.

Extracting gauge equivalence classes leads to a description via de Rham
cohomology, that is

(1.2) RR field = {G ∈ Ω•(X10)}/{G = dC} ∈ H•
dR(X

10).

Furthermore, taking into account quantum effects, including Dirac quantiza-
tion, leads to a description via integral cohomology. However, as explained
in [MW00] this only works for low degrees and under special conditions.
Nevertheless taking this further and requiring the tangent bundle and the
gauge bundle to satisfy some congruences, as explained in [Sa11], we have
that these restricted RR fields are integral cohomology classes. Taking pe-
riodicity and/or twists into account these would be periodic and/or twisted
integral cohomology classes in the sense of [GS18b][GS19b]. Differentially
refining this setting means that we are taking these restricted fields and
describing them using twisted periodic differential integral cohomology, one
prominent description of which is via twisted periodic Deligne cohomology,
constructed in [GS18b][GS19b].

Taking into account anomalies and properly accounting for torsion leads
to RR fields and fluxes being quantized by K-theory [FH00][MW00]. Re-
taining periodicity via the inverse Bott element u ∈ K2(pt), these can be
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defined to be homogeneous elements (as in [Fr02])
(1.3)

G =

{
G0 + u−1G2 + u−2G4 + u−3G6 + u−4G8 + u−5G10, Type IIA;
u−1G1 + u−2G3 + u−3G5 + u−4G7 + u−5G9, Type IIB.

This element is of degree 0 for IIA and -1 in IIB. For a K-theory class x,
the resulting quantization on a 10-dimensional manifold X takes the form
[MW00][FH00]

(1.4) G(x) = ch(x)

√
Â(X) ,

where

√
Â(X) is the formal square root of the Â-genus expansion in terms

of the Pontrjagin classes, and ch : K∗(X) → H∗(X) is the Chern character,
mapping K0 to even degree cohomology and K1 to odd degree cohomology
of X.

Considering a background field or flux changes the system and can be
defined at more than one level. At the classical level, the fields are just given
by differential forms, so a background field is a closed 3-form H which leads
to modifications of the field equations. More precisely, in the presence of
a B-field or H-flux, the fields satisfy the twisted Bianchi identity, which
combines what traditionally would be called an equation of motion and a
Bianchi identity, at the level of forms 1

dFn +H3 ∧ Fn−2 = 0 .

Using the total field description, this has been written succinctly as

dHF = 0 ,

where dH = d+H3 is the twisted differential on the de Rham complex (see
[BCMMS02][MS04][Ev06] [Sa10]). Hence the fields are then closed under
the differential dH and are classified, up to equivalence, by the H-twisted

1In the presence of a B-field we will denote the (rational) RR fields by F . These
are the improved field strengths which are neither closed nor quantized, but are
twisted closed.
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de Rham cohomology

H∗
dR(X;H) := ker(dH)/im(dH).

When looking at the fields in the presence of a background H-flux, one
needs to extend to twisted setting, that is, RR fields are classified by twisted
K-theory. The quantization condition for the case of a twist which is zero in
cohomology is [MoS03]

G(x) = eB2ch(x)

√
Â(X) ,

while for a cohomologically nontrivial twist it takes the form [MS04][BMRS08]

G(x) = chH

√
Â(X) ∈ H∗

H(X) for x ∈ KH(X)

where chH is the twisted Chern character for K∗
H(X) [BCMMS02][MS02]

[AS06][Ka11][HM15].

Twisted K-theory consistently matches the reduction from M-theory (see
[DMW03][MS04]) and can even be derived from M-theory at the rational
level (see [FSS18] for the truncated case and [BMSS18] for the full case)
and beyond the rational level [BMSS19]. However, incorporating S-duality
in type IIB string theory remains a challenge [DMW03][KS05a][BEJMS05]
[Ev06].

Physical considerations generally require one to work with geometric
representatives of cohomology classes, in the form of differential cohomology
(see [Fr00][Fr02][HS05][Sz12][Sc13][FSS15a] for motivations and surveys). As
our viewpoint involves a hierarchy of descriptions, we start with differential
integral cohomology. This is most succinctly described with the “differential
cohomology diamond diagram” 2

2This diamond (or hexagon) diagram was originally introduced and emphasized
by Simons and Sullivan in [SS10] and for more generalized theories, a full char-
acterization via this diamond was proved in [BNV16]. Parts of it appear in the
foundational work of Cheeger and Simons [CS85].
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(1.5)

Ω∗−1(M)/im(d)

a

''

d // Ω∗
cl(M)

&&
H∗−1

dR (M)

77

''

Ĥ∗(M ;Z)

I

&&

R

88

H∗
dR(M) ,

H∗−1(M ;R/Z)

77

β // H∗(M ;Z)

r
88

where d is the de Rham differential,R is the curvature map, I is the forgetful
map, r is the rationalization, and β is the Beckstein associated with the
exponential coefficient sequence. The corresponding description of various
facets of the RR fields are then captured as

(1.6)

{C ̸= dA}
a

%%

d // {G, dG = 0}

''
{[C]dR}

88

&&

{[Ĝ]}
I

&&

R

88

{[G]dR} ,

{[G]flat}

99

β // {[G]integral}

r
77

An abelian field represented by a differential K-theory class F ∈ K̂∗(X) con-
tains the differential form information R(F ). The latter satisfies dR(F ) = 0
in the absence of D-brane sources, which is what we are assuming here. The
de Rham class represented by R(F ) is quantized to lie in an integral lattice
given by the image of the Chern character, as F also contains the integral
(and possibly torsion) information of the class I(F ) ∈ K∗(X). Note that
I(F ) and R(F ) together do not determine F entirely, as one needs to sup-
ply the extra information, corresponding to a potential with corresponding
gauge transformations.

Differential K-theory as the home for RR fields without H-field has been
advocated in [FH00][Fr00] [Fr02]. The need for twisted differential K-theory
for description of the fields in string with an H-field has been highlighted
in [Fr00][FMS07][BM06b][KV14] for general classical backgrounds and in
[DFM11] for orientifolds. Characterizations of various aspects of twisted dif-
ferential K-theory are given in [CMW09][KV14][BN14], culminating most
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concretely for our purposes in [GS19a]. In fact, one of the original moti-
vations for constructing the latter as the last in a series of papers was to
generally provide a proper receptacle for the RR fields in the presence of
twisting NS fields. The theory sits in the following diagram

Untwisted theory K
twist //

refinement
��

Twisted theory Ktw

refinement
��

Differential theory K̂
twist // Twisted differential theory K̂tw

What is needed to fully describe RR fields explicitly? The general ap-
proach emphasized in [KS04] is to view physical conditions as obstructions
to orientation, or as differentials in the Atiyah-Hirzebruch spectral sequence
(AHSS), extending even beyond K-theory. In that direction, our work es-
tablishes in the series [GS17a][GS18a][GS17b][GS18b][GS19a][GS19b] that
the AHSS can be extended to the differential refinements, that is, we can
refine the AHSS for an untwisted or twisted topological theory E, such as
K-theory, by appropriately adjoining geometric data to it. With our explicit
descriptions of the differentials in the AHSS for twisted differential K-theory,
we are able to make such a general description manifest and precise, supply-
ing the missing ingredients that lead to a more complete picture than was
previously possible.

In the above works we established the differential refinement of the fol-
lowing ingredients which enter into the picture. Note that the differentials
in the untwisted AHSS are primary operations, and the ones in the twisted
theory are secondary operations [AS06].

1) Differential refinement of primary cohomology operations: Steenrod
squares Sq.

2) Differential refinement of secondary cohomology operations: Massey
products ⟨·, ·, · · · ⟩

Massey
.

3) Differential refinement of the AHSS with a concrete identification of
the differentials, such that we have the following diagram for the dif-
ferentials

d
twist //

refinement
��

dtwist = d+ secondary operation

refinement
��

drefined = d̂
twist // d̂twist = d̂+ ̂secondary operation
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Note that, as explained in our work above, differentially refining twisted
K-theory is equivalent to twisting differentially refined K-theory, i.e.,
‘[twisted, differential] = 0’.

The AHSS for twisted differential K-theory [GS19a] will be denoted by

ÂHSSτ̂ , where τ̂ is a representative of a differential cohomology class, i.e. a
higher bundle with connection. When this twisting class is zero in differential
cohomology, we recover the AHSS for differential K-theory [GS17b], which

we denote ÂHSS. On the other hand, if we forget the differential refinement
and reduce the theory to its underlying topological content then we recover
the AHSS for twisted K-theory constructed by Rosenberg and Atiyah-Segal
[Ro89][AS06], which we denote AHSSτ . When we take both a trivial twist
and no differential refinement, then we restrict to the original case considered
by Atiyah and Hirzebruch [AH62]. As explained in [GS19a], we overall have
a correspondence diagram of transformations of the corresponding spectral
sequences

ÂHSSτ̂

τ̂=0
��

Iτ // AHSSτ

τ=0

��
ÂHSS

I // AHSS

where τ is the twist and I is the reduction to the topological part.

From a physics perspective, it is important to determine when a co-
homology class x ∈ H i(M ;Z) lifts to a class α(x) in K-theory K(M) (see
[DMW03]). The obstruction is given by the differential d = Sq3 in the AHSS,
i.e., it is a necessary condition that Sq3x = 0. Likewise, for twisted K-theory,
the obstruction is Sq3x+H ∪ x = 0, which is again the differential in the
AHSSH (see [DMW03][ES06][BEJMS05]). We would like to extend this to
the twisted differential case.

A similar argument holds from the homological point of view of branes
ending on other branes [MMS01][BEJMS05]. Anomalies associated with D-
branes in the presence of a B-field have been considered in [FW99]. This
involves three factors, the holonomy of the B-field over the 2-dimensional
string worldsheet, the holonomy of the Chan-Paton bundle along the bound-
ary of the string, and the Pafaffian associated with the path integral of the
spinors. None of these factors are globally well-defined, leading to a descrip-
tion of the partition function as a section of a tensor product of three line
bundles. The nontriviality of the resulting line bundle is the Freed-Witten



✐

✐

“2-Sati” — 2023/3/30 — 14:42 — page 1105 — #9
✐

✐

✐

✐

✐

✐

Ramond-Ramond fields and twisted differential K-theory 1105

anomaly and the necessary condition for the anomaly to vanish is the Freed-
Witten anomaly cancellation condition W3 +H3 = 0. This has been general-
ized to the case when the two classes differ by a torsion class [Ka99], studied
from the point of view of gerbes in [CJM04][BFS08], interpreted as a push-
forward in twisted K-theory in [CW08][ABG10], and described via higher
geometric quantization and smooth stacks in [FSS15a]. What we would like
to establish is the following:

1) A differential analogue of the Freed-Witten condition [FW99], i.e.,

Ŵ3 + Ĥ3 = 0 .

2) An interpretation as a differential in twisted differential K-theory

ÂHSSτ̂ .

Sufficiency in the presence of branes, involving Steenrod power operations at
odd primes in the context of Steenrod’s problem on realization of homology
classes as submanifolds is discussed in [ES06].

We are also interested in finding a twisted differential version of the
quantization condition (1.4) on the RR fields. Earlier attempts include the
following. Using the language of differential characters, in [BM06a] a ver-
sion of the twisted differential Chern character was proposed with Ĝ(x̂) =√

Â(X,∇g)chB̂(x), where∇g is the metric connection and B̂ is a flat charac-

ter. It was also speculated in [KM13] that the quantization condition for the
RR fields in differential K-theory takes the form (at the level of differential

forms) would be Ĝ(x̂) =

√
Â(X)ch(x̂), for x̂ ∈ K̂(X) while in the twisted

case, the only effect of the B-field was to modify the connection entering in
the form representative of the A-genus (which is argued why it is not mod-
ified). We will define the proper expression and make good mathematical
sense of the quantity

(1.7) Ĝ(x̂) = ĉhĥ(x̂) ∪DB

√
Â(X,∇g) ,

as a differential cohomology class, where ∪DB is the Deligne-Beilinson cup
product, which is in a sense an extension of the cup product to differential
cohomology (see [FSS13][FSS15a]). This involves, for every U(1)-gerbe with
connection ĥ : X → B2U(1)∇, a generally defined twisted differential Chern
character

(1.8) ĉhĥ : K̂∗

ĥ
(X) −→ Ĥ∗

ĥ
(X;Q[u, u−1]) .
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The source of the of the character is twisted differential K-theory and the
target is a differential refinement of twisted periodic rational cohomology,
i.e., considering rational cohomology rolled up into even and odd degrees.
For general twisting classes, making sense of the map (1.8) is highly non-
trivial. In the special case where the twist is torsion, one can make good
sense of the twisted differential Chern character via concrete models (see
[CMW09][Pa18]). In the general case this has only been put on firm ground
recently (see [BN14][GS19a]). The quantity (1.7) also involves a differential
refinement of the Â-genus, which we have addressed in detail in [GS19c].

Note that, as indicated right after (1.2) above, in specialized settings (e.g.
those orientifolds where K-theoretic effects might not be seen) one might con-
sider, for instance, integral cohomology. This then leads to twisted integral
cohomology with twist given as a mod 2 degree one class, as constructed
in [GS18b]. Here one again tries to lift to twisted de Rham cohomology,
obtained by those RR fields that are dH -closed modulo dH -exact, twisting
(1.2).

Mathematical description Physical setting

1-twisted integral cohomology Orientifold fields

1-twisted Deligne cohomology Differential orientifold fields

Alternatively, we can also consider a higher-degree twist (including three)
for a periodic version of Deligne cohomology [GS19b], which can be viewed as
a twisted extension of approaches via differential cohomology or differential
characters (see e.g. [BM06a][Mo16]). While we do not pursue this explicitly
and in detail here, we find it useful to point them out as sort of intermediate
cases between twisted de Rham cohomology and twisted K-theory, in the
sense of the following tables.

Field as element of Twist Field + twist

de Rham cohomology closed 3-form/de Rham 3-class Twisted periodic de Rham cohomology

Deligne cohomology gerbe Twisted Deligne cohomology

K-theory integral 3-class Twisted K-theory

Differential K-theory gerbe Twisted differential K-theory

Mathematical description Physical setting

3-twisted periodic integral cohomology Integral fields

3-twisted periodic Deligne cohomology Differential fields

Twisted differential K-theory General RR fields
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One could also consider higher theories beyond K-theory [KS04][KS05a]
[KS05b][Sa10][SW15][LSW16]. However, we will leave this for a separate
discussion and focus here on K-theory.

The paper is organized as follows. We describe the general setting of
twisted differential K-theory as the receptacle for the RR fields in Sec. 2, re-
calling constructions and results from earlier work. We start with differential
K-theory in Sec. 2.1 and then twisted K-theory in Sec. 2.2, combining the
two into twisted differential K-theory in Sec. 2.3, with the main highlight
being the twisted differential Chern character and the refinement of the Â-
genus. This then leads to a justification of why (1.7) is the right definition.
In Sec. 3 we study the lifting of RR differential forms to twisted differen-
tial K-theory, with the main tool being the twisted differential AHSS. This
involves determining explicitly in Sec. 3.1 the torsion differentials and iden-
tifying obstructions associated to both flat classes and curvature forms. The
detailed analysis leads to shifted quantization conditions on the fields with
the highlight being an explicit and detailed algorithm for characterizing and
detecting RR fields.

Moving to the twisted case in Sec. 3.2, we describe the dynamics of the
twisted RR fields via Massey products, also finding the higher potentials for
the Massey products themselves. We then identify the higher differentials in
the ÂHSSτ via the the differentially refined Massey products from our earlier
work, and determine conditions for lifting flat classes to twisted differential
K-theory. Then we consider the anomalies in Sec. 3.3, where we provide our
refinement of the Freed-Witten anomaly. Finally, in the last section, Sec. 4,
we illustrate the description of RR fields in nontrivial backgrounds by cal-
culating the twisted differential K-theory for prominent examples of impor-
tance to type II string theory, namely spheres in Sec. 4.1, tori in Sec. 4.2,
and Calabi-Yau threefolds CY3 and to some extent compact 6-dimensional
manifolds in Sec. 4.3. The latter generalizes and extends results of Doran and
Morgan [DM07] who computed the topological K-theory of such manifolds.

2. RR fields as twisted differential K-theory classes

2.1. Differential K-theory

In this section, we review the Hopkins-Singer type differential K-theory
[HS05], presented as a sheaf of spectra [BNV16][Sc13]. The material in this
section is well-known to the experts; nevertheless, because the machinery
is highly technical, we have decided to review the construction briefly here.
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For the reader who is not interested in these technicalities, this section can
be safely skipped.

We consider topological (smooth) spaces as modeled using (smooth) in-
finity groupoids, i.e., as objects in ∞Gpd. Let CMon(∞Gpd) denote the
sub ∞-category of commutative monoids in ∞Gpd, and let CGrp(∞Gpd)
be the subcategory of ∞-abelian groups (i.e. connected spectra). The inclu-
sion i : CGrp(∞Gpd) →֒ CMon(∞Gpd) admits a left adjoint K which can
be thought of as taking the group completion. The functor K prolongs to a
functor between presheaves of ∞-monoids and ∞-abelian groups.

Definition 1 (Smooth K-theory spectrum). Let L : PSh∞(Man; Sp) →
Sh∞(Man; Sp) denote the stackification functor (left adjoint to the inclusion
i). We define the smooth KU-spectrum with connections as the connected
sheaf of spectra defined by

kU := L ◦K
( ∐

n∈N

BU(n)∇

)
.

Remark 1 (Vector bundles with connections). Note that it is im-
mediate from the definition (see [GS19c] for the real case) that we have a
natural isomorphism

kU∇(M) ∼= Gr
(
Vectg∇(M)

)
,

where Vectg∇(M) is the category of vector complex vector bundles with Her-
mitian metric connections (with isomorphisms between them) and Gr de-
notes the Grothendieck group completion.

The construction of the Hopkins-Singer refinement of the K-theory spec-
trum proceeds by applying the cohesive ∞-adjoints (δ† ⊢ Γ ⊢ δ ⊢ Π) as in-
troduced in [Sc13] to the sheaf of spectra kU∇. The topological realization3

δΠ induces a morphism of sheaves of spectra (see [BNV16])

(2.1) cyc := δΠ : kU∇ ≃ kU −→ KU.

We will need the following ingredients:

3Thes composite functor takes what is traditionally called the geometric real-
ization of the sheaf of spectra and then embeds it as a constant sheaf of spectra.
However, the term geometric here is misleading, as the result is a topological space.
Hence we have opted to call this operation the topological realization.
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(i) The Eilenberg-MacLane functor H : Ch −→ Sp, which sends an un-
bounded chain complex to a corresponding spectrum.

(ii) Let Ω∗(−;π∗(K)) be the complex of forms with coefficients in π∗(K).
Explicitly, by rationalizing the coefficients of K, this complex is 2-
periodic and looks as follows

Ω∗(−;π∗(K)) =
(
. . . //

⊕
nΩ

2n //
⊕

nΩ
2n+1 //

⊕
nΩ

2n //
⊕

nΩ
2n+1 // . . .

)
.

(iii) We can truncate the complex Ω∗(−;π∗(K)) at degree zero, removing
all forms in negative degrees. We denote this truncated complex by

τ≤0Ω
∗(−;π∗(K)) =

(
. . . // 0 // 0 //

⊕
nΩ

2n //
⊕

nΩ
2n+1 //

⊕
nΩ

2n // . . .
)
,

where the first nonzero component appears in degree zero.

(iv) The Chern character form gives a morphism of smooth stacks (pre-
serving the monoidal structure)

ch :
∐

n∈N

BU(n)∇ // Ω0(−;π∗(K)).

Since Ω0(−;π∗(K)) is already a sheaf of abelian groups, we have

K(Ω0(−;π∗(K))) = H(Ω0(−;π∗(K))).

Postcomposing with the canonical map

i∗ : H(Ω0(−;π∗(K))) → H(τ≤0Ω
∗(−;π∗(K))),

induced by the inclusion i : Ω0(−;π∗(K)) →֒ τ≤0Ω
∗(−;π∗(K)), we get an in-

duced map on completions

(2.2) ch : kU∇ := K

( ∐

n∈N

BU(n)∇

)
// H(τ≤0Ω

∗(−;π∗(K))).

Geometrically (more properly, topologically) realizing this map and using
(2.1) gives rise to a map c̃h : K // H(R[u, u−1]),,Ramond-Ramond fields
and twisted differential K-theory where u is the Bott periodicity element of
degree |u| = 2.
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Definition 2 (Hopkins-Singer differential K-theory).

(i) The differential K-theory spectrum is defined via the pullback in sheaves
of spectra

diff
(
K, c̃h, π∗(K)

)
//

��

H
(
τ≤0Ω

∗(−;π∗(K))
)

��
K

c̃h // H(π∗(K)⊗ R)

.

This pullback depends on the map c̃h and the graded ring π∗(K). We fix this
data once and for all and denote the sheaf of spectra simply as

K̂ := diff
(
K, c̃h, π∗(K)

)
.

(ii) The differential K-spectrum refining higher degree K-groups is given by
the pullback

diff
(
ΣnK,Σn(c̃h), π∗(K)[n]

)
//

��

H
(
τ≤0Ω

∗(−;π∗(K)[n])
)

��
ΣnK

Σn(c̃h) // H(π∗(K)[n]⊗ R)

.

where Σn denotes the n-fold suspension and π∗(K)[n] denotes the shift of
the complex π∗(K) up n-units. Again we fix this data once and for all and
define 4

K̂n := diff
(
ΣnK,Σn(c̃h), π∗(K)[n]

)
.

(iii) Differential K-cohomology of a manifold M is defined as

K̂n(M) := π0Map(M, K̂n).

One has the following properties, as for any differential cohomology the-
ory.

Remark 2 (Basic properties of K̂).

4These sheaves of spectra are not to be confused with the notation for homology,
which we do not consider in this paper.
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(i) (Diamond) From [BNV16, Lemma 6.8], we see that the differential coho-
mology hexagon diagram takes the following form
(2.3)

Ω∗−1(M ;π∗(K))/im(d)

a

&&

d // Ω∗
cl(M ;π∗(K))

&&
H∗−1(M ;π∗(K)⊗ R)

88

''

K̂(M)

I

''

R

88

H∗(M ;π∗(K)⊗ R) ,

K∗−1(M ;U(1))

j
88

β // K∗(M)

88

which related differential K-theory to the underlying topological theory and
differential form representatives for the rationalization.

(ii) (Coefficients) Both diagonals in the diagram are exact and the bottom
sequence is exact – induced from the cofiber/fiber sequence

K ≃ K∧S −→ K∧SR −→ K∧SU(1),

where SR and SU(1) are Moore spectra for R and U(1), respectively. These
correspond to the cohomology theories with coefficients, namely K∗(−),
K∗(−;R), and K∗(−;U(1)), respectively.

(iii) (Mayer-Vietoris) Again applying the general construction of [BNV16] to
our case, if M a smooth manifold and {U, V } an open cover, we also have
a Mayer-Vietoris sequence

· · · // Kn−2(U ∩ V ;U(1)) // K̂n(M) // K̂n(U)⊕ K̂n(V )

00 K̂n(U ∩ V ) // Kn+1(M) // · · · .

2.2. The topological twisted K-theory

For any commutative ring spectrum R, there is a well-defined topological
space of invertible module spectra Pic(R). Heuristically, the elements are
invertible module spectra over R and the paths are equivalences of module
spectra, etc. More precisely, this is defined as the maximal∞-groupoid inside
the full sub ∞-category of RMod on invertible objects. This space is related
to the space of twists BGL1(R) considered in [MQRT77] by

ΩPic(R) ≃ GL1(R).
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Hence the connected component of the identity is equivalent to BGL1(R).
This perspective on the twists for a cohomology theory is essentially the
∞-categorical treatment taken in [ABGHR14]. In general, a twist of a ring
spectrum R, over a space X, is simply a map h : X → Pic(R). This twist can
be thought of in two dual ways: it defines a higher-categorical local system,
given by associating to each point x ∈ X an invertible module spectrum Rx,
and to each path an equivalence between two such spectra, etc.; alternatively,
the ∞-Grothendieck construction [Lu09, Section 3.2] (see [GS19c] for the
construction in the stable case) allows us to construct a canonical bundle of
spectra ξ → Pic(R), the fiber over an element being given by the invertible
module represented by that element. The pullback bundle by a twist

(2.4) Rh
//

��

ξ

��
X

h // Pic(R)

has fibers canonically identified with the spectrum Rx, which h associated
to the point x. This generalizes the classical duality between local systems
and covering spaces.

The ∞-categorical machinery described above is quite powerful and can
be generalized to differential cohomology theories in a fairly natural way
[BN14][GS19c]. We first illustrate how to utilize this machinery in order to
construct the twisted Chern character and then generalize to the differential
setting. The relevant spectra we will need in order to discuss the twisted
Chern character are the K-theory spectrum and a periodic spectrum gener-
alizing rational cohomology. The latter spectrum is constructed as follows.
Let Q[u, u−1] be the graded algebra with u in degree 2. For every such al-
gebra there is an associated Eilenberg-MacLane spectrum HQ[u, u−1]. This
spectrum represents cohomology with coefficients in Q[u, u−1] and we have
an isomorphism of groups

H0(X;Q[u, u−1]) ∼=
⊕

k≥0

H2k(X;Q), H1(X;Q[u, u−1]) ∼=
⊕

k≥0

H2k+1(X;Q).

Algebraically, the elements of H∗(X;Q[u, u−1]) are polynomials in u with
coefficients in H∗(X;Q), graded according to the parity of the coefficients.
Since Q[u, u−1] admits the structure of a graded ring, HQ[u, u−1] admits
the structure of a ring spectrum. The K-theory spectrum K also admits
a commutative ring structure [MQRT77] (see also [Sch19]) and the usual
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Chern character map

ch : K −→ HQ[u, u−1]

defines a map of ring spectra, which rationalizes to an equivalence. The
following proposition shows how to produce the twisted Chern character
using the machinery of [ABGHR14].

Proposition 3 (Twisted Chern character). Let X be a CW-complex
and let h : X → K(Z, 3) be a twist for K-theory. Let Kh → X and
HQ[u, u−1]h → X be the bundles of spectra representing h-twisted K-theory
and rational cohomology (twisted by the post-composition of h with the canon-
ical map K(Z, 3) → K(Q, 3)). There is a morphism of bundles of spectra

chh : Kh −→ HQ[u, u−1]h,

inducing a twisted Chern character map chh : Kh(X) → Hh(X;Q), which
reduces to the untwisted Chern character when h is trivial.

Proof. We will construct this map universally. The morphism of ring spectra
ch : K → HQ[u, u−1] induces an∞-functor on the∞-category of modules via
ch : L 7→ L ∧K HQ[u, u−1], where L is an invertible module spectrum over
K. It is easy to show that this functor preserves the property of invertibility
and sends equivalences to equivalences. Thus, we have an induced map

ch : Pic(K) −→ Pic(HQ[u, u−1]).

But such a map canonically induces a morphism of the corresponding uni-
versal bundles of spectra (see (2.4))

ξ
ch //

��

ξ′

��
Pic(K)

ch // Pic(HQ[u, u−1]),

i.e., ch restricts fiberwise to the map ch described above. Given a twist
h : X → Pic(K), the universal property of the pullback induces a map on
corresponding pullback bundles

chh : Kh −→ HQ[u, u−1]h∗ch.

In addition, it immediately follows from the construction that this reduces
to the usual Chern character (up to equivalence) for a nullhomotopic twist
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h : X → ∗ → Pic(K), where the second map in the composite picks out K,
which is trivially a module over itself. Thus it only remains to show that
for a twist of the form h : X → K(Z, 3) →֒ BGL1(K) →֒ Pic(K), the in-
duced twist h∗ch factors through the rationalization K(Z, 3) → K(Q, 3) →֒
BGL1(HQ[u, u−1]). This can be shown, for example, using Snaith’s theo-
rem, which identifies K(Z, 2) in K with the localization of Σ∞

+ K(Z, 2) at
the Bott element [Sn81]. Under this presentation of K, the Chern char-
acter can be identified with the localization of the rationalization map
Σ∞
+ K(Z, 2) → Σ∞

+ K(Q, 2). □

The Chern character for twisted K-theory has also been considered via
explicit models in various places, including [BCMMS02][MS02][HM15] (see
[GS19a] for an extensive list of references).

2.3. The differential twisted K-theory

We now enhance the previous discussion to twisted differential K-theory.
Following [BN14], and discussed more at-length in [GS19c], we observe that
much of the machinery of [ABGHR14] can be extended to the setting of
differential ring spectra. For a differential refinement R̂ = (R, ch, A) of a ring
spectrum R, equipped with an equivalence ch : R ∧HR ≃ HA, the smooth
stack of twists T̂w(R̂) is defined as the (homotopy) pullback

(2.5) T̂w(R̂) //

��

Picfl(Ω∗(−;A))

��
Pic(R) // Pic(HΩ∗(−;A))

where Picfl(Ω∗(−;A)) represents the twists of the de Rham complex with
coefficients in A (i.e. invertible K-flat modules over Ω∗(−;A)), Pic(R) is
the locally constant stacks on the corresponding Picard infinity groupoid
and Pic(HΩ∗(−;A)) is the stack of locally constant invertible modules over
the sheaf of spectra HΩ∗(−;A). These ingredients are described in detail in
[BN14] and [GS19c].

The case of K-theory is particularly illuminating here. In [GS19c], we
showed that differential K-theory can indeed be twisted by gerbes with con-
nection. In fact, there is a canonical map

(2.6) i : B2U(1)∇ −→ T̂w(K̂) ,
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where T̂w(K̂) is the smooth stack of twists for differential K-theory. This
map is roughly defined as follows (see [GS19c] for details). We recall that
the stack of gerbes with connections B2U(1)∇ fits into a homotopy pullback
(see for example [Sc13, Section 4.4.15])

(2.7) B2U(1)∇ //

��

Ω3
cl

��
B3Z // B3R .

Comparing this with the pullback (2.5), we see that we can get an in-
duced map by via the universal property, provided we produce maps and
homotopies between the corresponding span diagrams. On each manifold
M , the underlying topological twist is defined by h : M → B3Z ≃ K(Z, 3),
where K(Z, 3) is the locally constant stack associated to the K(Z, 3). This
twist is regarded as the twist for topological K-theory, the 3-form curvature
H ∈ Ω3

cl(M) is mapped to the twisted de Rham complex (Ω∗[u, u−1], dH)
on M , and the homotopy filling the diagram is sent to a twisted de Rham
equivalence

d : H((Ω∗[u, u−1], dH))
≃−→ HR[u, u−1]h .

The universal property of the homotopy pullback then induces a map (2.6).
In order to define the twisted differential Chern character, we proceed very
much along the lines of the topological case. For the sake of completeness,
we provide a sketch of the proof of this construction here. A more detailed
account can be found in [GS19c].

Proposition 4 (Twisted differential Chern character). Let X be a
smooth manifold and let ĥ : X → B2U(1)∇ be a twist for differential K-

theory. Let K̂ĥ → X and ĤQ[u, u−1]ĥ → X be the bundles of sheaves of spec-

tra representing ĥ-twisted differential K-theory and rational differential co-
homology (twisted by post-composition with the canonical map B2R/Z∇ →
B2R/Q∇) [GS18b][GS19b]. There is a morphism of bundles of sheaves of
spectra

ĉhĥ : K̂ĥ −→ ĤQ[u, u−1]ĥ

inducing a twisted differential Chern character map ĉhĥ : K̂ĥ(X) →
Ĥĥ(X;Q[u, u−1]), which locally restricts to the untwisted differential Chern
character.
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Proof. We again proceed by constructing this map universally. The differen-
tial Chern character map ĉh : K̂ → ĤQ[u, u−1] defines a morphism of differ-
ential ring spectra (see [BN14] or [GS19c] for the details of differential ring
spectra) and hence induces a morphism on the corresponding stack of twists.
From the ∞-Grothendieck construction, this in turn canonically defines a
morphism of bundles of sheaves of spectra [GS19c]

ξ
ĉh //

��

η

��

Tw(K̂)
ĉh // Tw(ĤQ[u, u−1])

where the bundles ξ and η are the canonical bundles with fiber over an ele-
ment given by the differential function spectra represented by that element.
It can be directly verified, using the fact that such a factorization exists in the
topological case, that precomposition with the map i : B2U(1)∇ → T̂w(K̂)

factors through a map j : B2R/Q∇ → T̂w(ĤQ[u, u−1]), defined analogously
to (2.6). This then induces the desired morphism on pullback bundles. That
this reduces to the untwisted differential Chern character locally follows by
definition and local triviality of the twist. □

This completes our discussion of the twisted differential Chern character.
The only missing ingredient is a differential refinement of the Â-genus, which
we now supply.

Remark 3 (Refinement of the A-genus). (i) In [GS19c], we defined
such a refinement and used it to prove a Riemann-Roch theorem for differ-
ential KO-theory. Characteristic forms admit unique differential refinements
(see [Bu12]) and hence there is a natural candidate for the Â-genus, given
by taking Deligne-Beilinson cup products ∪DB of refined Pontrjagin classes.
For a Riemannian manifold (M, g), this leads to a differential cohomology
class taking values in Ĥ∗(M ;Q[u, u−1]), which depends on the metric g and
which we denote by Â(M ;∇g). The first few terms are

Â(M ;∇g) = 1− 1
24 p̂1 +

1
5760(7p̂

2
1 − 4p̂2) + . . . .

Here products such as p̂21 mean the Deligne-Beilinson cup product p̂1 ∪DB p̂1,
and so on. Taking the formal square root leads to the desired term appearing
in (1.7).

(ii) In the formula for the Riemann-Roch theorem in [GS19c], there is a
secondary differential form that appears, which is related to the η form of
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[BC89]. Such forms appear in type IIA string theory in a novel way [MS04]
and have been interpretated in terms of the string theory fields [Sa10]. In the
full differential refinement, it will be important to include this term when
taking D-brane charge. This will be discussed elsewhere.

We now give some indications for why (1.7) is the right definition. There
is a pairing in twisted K-theory which induces Poincaré duality.

Case 1: X is a Spinc-manifold. Let h : X → K(Z, 3) be a map repre-
senting a twist for K-theory and let −h : X → K(Z, 3) be the inverse twist.
We then have a homotopy commutative diagram

X � � ∆ //

00

X ×X
(h,−h)// K(Z, 3)×K(Z, 3)

+ // K(Z, 3)

∗
55

From the Künneth spectral sequence for twisted K-theory [Bra04] (see also
[MS06, Ch. 22]), we have an induced map

∪ : Kh(X)⊗K−h(X) −→ K(X ×X)
∆∗

−−→ K(X) .

Postcomposition with the index map M! : K(X) → K(∗) ∼= Z, gives a duality
pairing. One can ask what the cohomological reflection of this map is. For
this, we examine the commutativity of the diagram

Kh(X)⊗K−h(X) //

chh⊗ch−h

��

K(X)
X! //

ch
��

K(∗) ∼= Z
� _

��
Hh(X;Q[u, u−1])⊗H−h(X;Q[u, u−1]) //

⊕∞
i=0H

2i(X,Q)
(X!)dX // H(∗;Q) ∼= Q

where the subscript dX indicates that we are taking the dX = dim(X) com-
ponent. As is well-known, the right square does not commute – at least, not
with the usual Thom isomorphism in cohomology giving rise to the isomor-
phism on the bottom. By the Hirzebruch-Riemann-Roch theorem [AH59],
the correction factor to this commutativity is given by the Â-genus, twisted
by the canonical Spinc line bundle L. Thus, in the special case where X

has Spin structure, the proposed correction G(x) = chh(x) ∪
√

Â(X) indeed
makes the diagram commute. In fact, this is essentially the argument orig-
inally used in [MM97] to deduce the form of the anomalous coupling on
the worldvolume of N coincident D-branes. Indeed, there the coupling was
deduced from an anomaly inflow argument (see [CY98]). The descent argu-
ment used to calculate the anomaly amounts to a simple application of the
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index theorem applied to two transversally intersecting branes with Chan-
Paton bundles inherited from the corresponding branes. The argument for
the square root in the formula is then just that one seeks a pair of forms
whose wedge product is the calculated anomaly.

Case 2: X does not admit Spinc structure. In this case one cannot
even define the pushforward X! at the level of K-theory as this requires
taking the index of the Dirac operator, which is not well-defined. This is
precisely the case that leads to an anomalous action [MW00]. However, the
twisted Thom isomorphism allows us to deal even with this case and the
above diagram is modified to

Kh(X)⊗KW3−h(X) //

chh⊗chW3−h

��

KW3
(X)

X! //

chW3

��

K(∗) ∼= Z
� _

��
Hh(X;Q[u, u−1])⊗H−h(X;Q[u, u−1]) //

⊕∞
i=0H

2i(X,Q)
(X!)dX // H(∗;Q) ∼= Q ,

where we have used that, rationally, the twist corresponding to W3 van-
ishes. Note that the top composite map can be obtained via the Künneth
spectral sequence, composed with the pushforward for twisted K-theory (see
[CW08][CMW09]). From the C∗-algebra point of view this is discussed in
[BMRS08].

The machinery established in [GS19c] and [GS19b] allows us to further
promote much of this discussion to the differential case. We avoid the case
where the twist coincides with a differential refinement of W3, since the
twisted Thom isomorphism is no longer presented by the tensor product
with the virtual spinor bundle, and hence one could argue that the Â genus
should be modified from the original formula (we expect that this is not the
case though). We will discuss this elsewhere.

In [GS19c], we defined the differentially refined Â-genus 5 and discussed a
Riemann-Roch formula. The main theorem asserts that if f : (X, g) → (Y, h)
is a smooth map between manifolds Riemannian manifolds, then

ĉh(f!(E,∇)) ∪DB Â(Y,∇h)

=

∫

X/Y
ĉh(E,∇) ∪DB Â(X,∇g+f∗h) + a

(
ch(F∇) ∧ η

)
,

for some odd differential form η, which is related to the η-form of [BC89].
Given that we have a differential Riemann-Roch theorem at our disposal,

5This was done in the context of KO theory, but with minor modifications all the
arguments hold for K-theory – simply replace Spin with Spinc and Â with ec1/2Â.
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along with a twisted differential Chern character, the same argument as in
the topological case then shows that for an RR-field x̂ in twisted differential
K-theory, its charge Ĝ(x̂) should be given by expression (1.7). This is our
proposal for the correct differential cohomological description of the RR
fields.

3. Lifting RR forms

3.1. RR forms arising from differential K-theory

In what follows, we have in mind dim(X) = 10, although many of the state-
ments hold in greater generality. In [MW00], it was proposed that not just
RR charge, but also the RR fields themselves should be regarded as K-
theory classes. More precisely, in the case where H3 = 0, we ought to have
expression (1.4) for some class x ∈ K(X). In [MW00], some simple examples
were considered with Â(X) = 1 which illustrate that, for instance, the fields
G4 and G6 are not unrelated, but rather that the class of G4 has an effect
on the periods of G6 (which are not integral in general). More precisely,
if Sq2(G4) = 0 (and G2 = 0), then G6 necessarily has integral periods. If
Sq2(G4) ̸= 0, it only has half-integral periods in general. This type of effect
is not isolated and we will show that our spectral sequence [GS17b][GS19a]
gives a complete list of such conditions which determine when a differential
form can be lifted to K-theory.

We now turn our attention to the question of which forms G can arise as
in (1.4). In other words, given a differential form G, when does it represent
an RR-field in twisted differential K-theory. This is equivalent to finding G′

such that

G′ =
G√

Â(Rg)
= chH(x̂)

for some element x̂ ∈ K̂ĥ(X). The formal square root can be calculated as
follows. For X a 10-dimensional manifold, we have

Â = 1− 1
24p1 +

1
5760(7p

2
1 − 4p2).

Using the formula for the formal square root

√
Â = 1 + 1

2Â4 +
(
1
2Â8 − 1

8Â
2
4

)
,
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we can calculate the square root in terms of characteristic forms as
√

Â = 1− 1
48p1 +

(
1

11520(7p
2
1 − 4p2)− 1

4608p
2
1

)
.

Now
√

Â is invertible as a differential form (since it is of the form 1 + x with
x nillpotent). Therefore, a differential form G = G0 +G2 + . . . is always in

the image of the map
√

Â∧, with G′ = G√
Â
mapping to G. Using the formula

(1 + x)−1 = 1− x+ x2 − x3 + . . ., we immediately calculate

(√
Â
)−1

= 1 + 1
48p1 −

(
1

11520(7p
2
1 − 4p2)− 1

4608p
2
1

)
+ 1

2304p
2
1

= 1 + 1
48p1 −

(
1

11520(7p
2
1 − 4p2)− 3

4608p
2
1

)
.

The condition then becomes that the formal power series

G′ =
G√
Â

= G0

+G2

+
(
G4 +

1
48p1G0

)

+
(
G6 +

1
48p1 ∧G2

)

+
(
G8 +

1
48p1 ∧G4 − 1

11520(7p
2
1 − 4p2)− 3

4608p
2
1

)
∧G0

)

+
(
G10 +

1
48p1 ∧G6 −

(
1

11520(7p
2
1 − 4p2)− 3

4608p
2
1

)
∧G2

)

is in the image of the Chern character map. The goal for the remainder of this
section will be to calculate the image of the Chern character purely in terms
of conditions in cohomology. In other, words, we seek necessary and sufficient
conditions on G′ so that its components lift through the Chern character
to differential K-theory. To do this, we will utilize the AHSS developed in
[GS17b]. We first review the necessary material.

The AHSS for topological K-theory has E2-page whose groups are given
by cohomology with integral coefficients appearing periodically in the the
degree indexing πq(K). More precisely, we have Ep,q

2 = 0 is q is odd and
Ep,q

2 = Hp(X;Z) if q is even. By degree considerations d2 = 0 and the the
first nonvanishing differential d3 is given by the formula [Ro89][AS06]

d3 = Sq3Z : Hp(X;Z) // Hp+3(X;Z) ,

where Sq3Z is the composite operation βSq2ρ2, and β : Hp(X;Z/2) →
Hp+1(X;Z) is the Bockstein homomorphism associated to the mod 2 re-
duction sequence.
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The AHSS for differential K-theory [GS17b][GS19a] shares some simi-
larities with its topological counterpart with two crucial distinctions. The
E0,0

2 -entry of the spectral sequence is singled out as containing the geometric
information given by differential forms. In fact, E0,0

2 = Ωeven
Z,cl (X) whose ele-

ments are formal combinations of closed differential forms ω = ω0 + ω2 + . . .
with ω0 ∈ Z and ωp has degree p. There is also a difference in coefficients for
the other terms on the E2-page (from Z to U(1)) and a shift in the degree
indexed by q. This shift is essentially due to the shift from the Bockstein
homomorphism Hp(X;U(1)) → Hp+1(X;Z) associated to the exponential
sequence and the permanent cycles at these stages correspond to the tor-
sion information in differential K-theory. Summarizing, the E2-page looks
as follows:
(3.1)

1

0 Ωeven
Z,cl (X)

−1 H1(X;U(1)) H2(X;U(1))

−2 0 0 0

−3 H4(X;U(1))

−4

d2

while the E3-page looks as

1

0 ker(d2)

−1 H2(X;U(1)) H3(X;U(1))

−2 0

−3 H5(X;U(1))

d3

d3
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This pattern continues, taking kernel mod image at each stage. From [GS17b,
Proposition 26], we have the identification of the differentials in the lower
quadrant q < 0 as

Ŝq
3
= jSq2ρ2βU(1) : H

p(X;U(1)) −→ Hp+3(X;U(1)),

where j : Hp(X;Z/2) → Hp(X;U(1)) is the inclusion as the 2-roots of unity
and βU(1) is the Bockstein associated to the exponential sequence. The hat
notation for the above operation is justified by the fact that this operation
is the restriction of the only natural operation in differential cohomology
which refines the second Steenrod square [GS18a]. In general, we have the
following two types of differentials in the spectral sequence [GS17b]

(i) (Obstructions associated to curvature forms): Those give obstructions
for the curvature forms to lift to differential K-theory and are of the
form

(3.2) d0,02k : E0,0
2k−1 ⊂ Ωeven

Z,cl (X) −→ E2k,2k−1
2k−1 ⊂ H2k(X;U(1))/im(dp−1),

where E0,0
2k−1 =

⋂
ker(d2j) for k < j.

(ii) (Obstructions associated to flat classes): These give rise to obstructions
to lifting to flat classes (see e.g. [Lo94] [Ho14] for a description of such
classes):

(3.3) dp,−2q+1
2k+1 : Hp(X;U(1)) −→ Hp+2k+1(X;U(1)),

emanating from the entries Ep,−2q+1
2k+1 , with q ≥ 0.

We will need identifications of both types of differentials to get a good
understanding of the spectral sequence. We now proceed with this identifi-
cation. In the topological case, it was shown in [Bu69][Bu70] that we have
the following differentials in the AHSS for topological K-theory restricted
to the p-primary part of H∗(X;Z). The notation dpn denotes the p-primary
part of the differential dn:

d3(x) = β2Sq
2(x)(3.4)

d25(2x) = β2Sq
4(x), d35(x) = β3P

1
3(x) ,

d27(4x) = β2Sq
6(x)

d29(8x) = β2Sq
8(x), d39(3x) = η3β3P

2
3(x) , d59(x) = η5β3P

1
5(x) ,
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with ηp ̸= 0 mod p. Some of these differentials have appeared in studying
anomalies in M-theory in [Sa08]. Now we have the following in the differential
refinement, which identifies a portion of the differentials of type (3.3).

Proposition 5 (Torsion differentials in the ÂHSS). We have the fol-
lowing p-primary parts of the differentials in the AHSS for K̂, occurring in
the lower quadrant of the half-plane spectral sequence for K̂.

d3(x) = j2Sq
2ρ2βU(1)(x)

d25(2x) = j2Sq
4ρ2βU(1)(x), d35(x) = j3P

1
3ρ3βU(1)(x),

d27(4x) = j2Sq
6ρ2βU(1)(x)

d29(8x) = j2Sq
8ρ2βU(1)(x), d39(3x) = η3j3ρ3P

2
3βU(1)(x), d59(x) = η5ρ5j5P

1
5βU(1)(x),

where ηp ̸= 0 mod p and jp : H
k(X;Z/p) →֒ Hk(X;U(1)) is the induced by

the inclusion as the primitive p-roots of unity.

Proof. The connecting map K∗−1
U(1)(X) → K∗(X) in the exponential exact

sequence for K-theory with coefficients induces a morphism of spectral se-
quences. This morphism vanishes by degree considerations. In such a situa-
tion, there is a well-defined boundary morphism of spectral sequences and
the argument in [GS17b] shows that the Bockstein homomorphism in coho-
mology βU(1) : H

∗(X;U(1)) → H∗+1(X;Z) commutes with the differentials
in the AHSS. From the identification (3.4) and the relation βU(1)jp = βp, the
claim follows. □

Since Pn(x) = 0 for 2n > deg(x), Sqn(x) = 0 for n > deg(x) and
Hk(X;U(1)) = 0 for k > 10, we see that there is only a total of only three
differentials in Proposition 5 which need not vanish. These are

d3(x) = j2Sq
2ρ2βU(1)(x)

d25(2x) = j2Sq
4ρ2βU(1)(x), d35(x) = j3P

1
3ρ3βU(1)(x).

At the level of cohomology, these act by

H0 H1

j2Sq2ρ2βU(1)

  

j3P1
3ρ3βU(1)

99H2 H3

j2Sq4ρ2βU(1)

99H4 H5 H6 H7 H8 H9 H10

where the arrows indicate the first nonvanishing occurrence of the opera-
tions, and other operations are right-translates. The differentials identified
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above provide information on the torsion in K̂ and also constrain the perma-
nent cycles in E0,0

∞ . However, in order to have a truly satisfactory condition
for differential forms to lift to K̂, we really need to identify the differen-
tials of type (3.2). Since these differentials are completely responsible for
calculating the image of the Chern character, it is not surprising that they
are very rich and combine the geometry and topology of the manifold in a
non-trivial way. As a consequence, the formulas for the differentials can be
difficult to parse, and some explanation leading up to the identification is in
order.

For a prime p, we can speak of the p-primary part of the differential
(d0,0n )p as the part of the differential which factors through the inclusion
Hn(X;Z/p) →֒ Hn(X;U(1)) as the primitive p-roots of unity. By conven-
tion, we take p = 0 to be the part of the differential which factors through
the exponential exp : Hn(X;R) → Hn(X;U(1)). The primes p will be re-
sponsible for shifted quantization condition of the form

∫

C
G2k =

1

pr

∫

C
λ+ integer ,

with λ some differential form, r > 1 an integer and C a cycle in spacetime.
As we show below, the differentials take the form

d = Cohomology operation + Exponential of differential form.

The cohomology operations in the formula are only defined on the kernel
of the previous differentials and are a combination of Steenrod squares and
powers. These terms contribute to the p-primary part of d, with p ̸= ∞ and
thus are responsible for shifting the usual quantization. We are now ready to
identify the differentials. In what follows, we only consider the differentials
(3.2) and we drop the superscript indicating the bidegree.

Proposition 6 (Degree two). The differential d2 is given by

d2(ω) = [ω2] mod Z.

Proof. First observe that every exact form lifts to K̂. Indeed, as part of the
data of the differential refinement, there is a canonical map

a : Ωodd(X)/im(d) → K̂
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which makes the diagram

Ωodd(X)/im(d)
d //

a ((

Ωeven
cl (X)

K̂(X)
R

88

commute. Thus, for any exact even form ω with global potential dη = ω,
the class a(η) defines a refinement of ω. Thus, the differential d2 factors
through Heven(X;R) and thus defined a natural transformation of functors
d2 : H

even(−;R) → H2(−;U(1)).
Now Heven(−;R) is representable by the product of Eilenberg-MacLane

spaces
∏

n∈NK(R; 2n) and standard arguments in homotopy theory show
that the d2 must be the projection ontoH2 followed by a map λ : H2(X;R) →
H2(X;U(1)), where λ : x → λx mod Z, with λ ∈ R. From the identification
ch1 = c1, an integral class, one immediately sees that λ = 1 and d2 is as
claimed. □

Proposition 7 (Degree four). The differential d4 is given by

d4(ω) = ([ω4] mod Z) + j2Sq
2ρ2(x2) ,

where x2 is an integral class representing ω2∈ker(d2)=H2(X;Z)∩H2(X;R).

Proof. First observe that the differential d4 is not only natural with respect
to smooth maps f : X → Y between manifolds, but in fact d4(f

∗ω) only de-
pends on the underlying homotopy class of f . Indeed, since exact forms are
necessarily killed by the differential, it must factors through the cohomology
group Heven≥2(X;R). A straightforward argument similar to that in Propo-
sition 6 shows that the restriction of d4 to Heven≥4(X;R) is sends ω 7→ [ω4]
mod Z. We need only identify the restriction to ker(d2) ∩H2(X;R).

The proof proceeds by considering the following universal example. Con-
sider the fiber sequence

K(U(1), 1)
βU(1) // K(Z, 2)

��
K(R, 2)

exp // K(U(1), 2)

and take as a model CP∞ ≃ K(Z, 2). Now if M is any compact smooth
manifold, then a map M → CP∞ factors (up to homotopy) through some
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CPN →֒ CP∞, for N large. By the universal property of the homotopy fiber
and the identification of the differential in Proposition 6, it suffices to prove
the claim for each CPN . Since H∗(CPN ;Z) is torsion free, it follows that
d3 vanishes and ker(d2) ∩H2(CPN ;R) = H2(CPN ;Z) ∼= Z, generated by c1.
Now d4 cannot vanish on H2(CPN ;Z) since this would imply, by the iden-
tification of the restriction of d4 to H4, that every degree 4 component of
a Chern character on CPN has integral periods, which is not true (i.e.,
ch2(L) = 1

2c
2
1(L) with L → CPN the canonical line bundle). The only other

possibility is homotopy class of the map

CPN � � c1 // CP∞ ≃ K(Z, 2)
Sq2ρ2 // K(Z/2, 4)

j2 // K(U(1), 4)

and, therefore, d4 is as claimed. □

Proposition 8 (Degree six). The differential d6 is given by

d6(ω) = ([ω6] mod Z) + j3P
1
3(x2) + j2(Sq

2
)(ω4),

where j2(Sq
2
) is a natural operation, well-defined modulo the image of d3,

which restricts on the classes ω4 ∈ H4(X;Z) ∩H4(X;R) to j2Sq
2ρ2(x4) with

x4 an integral lift of ω4.

Proof. As before, it is straightforward to show that the restriction of d6 to
Heven≤6(X;R) sends ω 7→ [ω6] mod Z. We focus our attention on the re-
striction to ker(d4) ∩H2(X;R)⊕H4(X;R). Again, we proceed by universal
example. Consider the 2-stage Postnikov tower

K(U(1), 3) // X2

��
K(Z, 2)×K(R, 4)

d4 // K(U(1), 4)

with d4 identified as in Proposition 7. The E2-page of the Serre spectral
sequence for the above fibration (with U(1)-coefficients) can be identified in



✐

✐

“2-Sati” — 2023/3/30 — 14:42 — page 1127 — #31
✐

✐

✐

✐

✐

✐

Ramond-Ramond fields and twisted differential K-theory 1127

the relevant part as follows

j2Sq
2ρ2βU(1) 0 j2Sq

2ρ2βU(1) · u
0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

1 0 u 0 (v, j2Sq
2ρ2) j3P

1ρ3 0

OO

//

with u generatingH2(K(Z, 2);R) as a vector space, henceH2(K(Z, 2);U(1))
modulo Z, and v generating H4(K(R, 4);U(1)). The terms on the diag-
onal with bidegrees (p, 6− p) converge to H6(X2;U(1)) and clearly both
j2Sq

2ρ2βU(1) and j2Sq
2ρ2βU(1) survive to the E∞-page. We conclude

that H6(X2;U(1)) is generated by p∗j3P
1ρ3 and j2Sq

2
with i∗j2Sq

2
=

j2Sq
2ρ2βU(1). Through a sequence of surgeries, we can approximate X2 be a

sufficiently connected map f : M → X2, withM a finite-dimensional smooth
manifold. Furthermore, since X2 represents the universal space for which d2
and d4 vanish, it follows that

(3.5) d6(ω) = ([ω6] mod Z) + λj3P
1(x2) + δj2(Sq

2
)(ω4)

with λ = 0, 1, 2 and δ = 0, 1.
It remains only to show that the restriction to H4(X;Z) ∩H4(X;R)

agrees with j2Sq
2ρ2 and that λ = δ = 1. For the former, observe that the

component d4(ω) = [ω4] mod Z vanishes on this restriction. Hence, for such
classes we can restrict to the fiber X ′

2 of j2Sq
2ρ2 : K(Z, 2) → K(U(1), 4).

Again computing via the Serre spectral sequence one easily sees that

k∗(j2Sq
2
) = j2Sq

2ρ2, where k : X ′
2 → X2 is the canonical map. To show that

λ = δ = 1, it suffices to consider the example CPN . The canonical line bun-
dle L → CPN has ch3(L) = 1

3!c
3
1(L) and since c31 generates H

6, the vanishing
condition d6ch3(L) = 0 and equation (3.5) forces us to have

2λ+ 3δ ≡ −1 mod 6.

Hence, δ ≡ 1 mod 2 and λ ≡ 1 mod 3. □

The following condition gives the shifted quantization law for G6 in the
general case.
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Corollary 9 (Shifted quantization for G6). On an arbitrary manifold
X, an RR-field G6 necessarily has periods in 1

6Z.

(i) If Sq
2
vanishes on X, then G6 has periods in 1

3Z.

(ii) If P1
3 = 0, then G6 has half integral periods.

(iii) If both Sq
2
and P1

3 vanish, then G6 has integral periods.

We provide illustrations of the above with the following examples.

Example 1 (Even spheres). Let X = S2n. Then the only relevant non-
trivial differential on forms in the AHSS is

d2n : Ωeven
Z,cl (S

2n) −→ H2n(S2n;U(1)) ∼= U(1).

Hence chn is the component of a Chern-character if and only if chn has
integral periods. Hence, in particular, for any line bundle 1

n!c
n
1 is integral.

Example 2 (Complex projective spaces). Let X = CPn. The first
Chern class of the canonical line bundle L → CPn generates H2(CPn;Z)
and, moreover, cn1 generates H2n(CPn;Z). Thus, the degree 2k component
of the Chern character

ch(L) = 1 + c1 +
1
2c

2
1 + . . .+ 1

n!c
n
1 ,

does not represent an integral class and must have periods in 1
k! . From the

general formula of the differential in Proposition 7 and the basic proper-
ties of the Steenrod algebra, we have that the condition for vanishing of the
differential d4 is

j2(c
2
1) ≡ [ch2] mod Z.

Hence, in particular ch2 has only half integral periods. This is consistent
with the fact that for the canonical line bundle L, the class 1

2c
2
1(L) has only

half integral periods. The general vanishing condition on d6 is

−j3(c
3
1) + j2

(
Sq

2(1
2c

2
1

))
≡ ch3 mod Z.
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and so the periods of ch3 must lie in 1
6Z in general. In the particular case of

ch(L), we have 6

(3.6) −j3(c
3
1) + j2

(
Sq

2(1
2c

2
1

))
= exp(16c

3
1) .

From the right commutative diagram

(3.7) H∗(X;Z)
× 1

2 //

ρ2

��

H∗(X;R)

exp

��
H∗(X;Z/2)

j2 // H∗(X;U(1))

H∗(X;Z)
× 1

3 //

ρ3

��

H∗(X;R)

exp

��
H∗(X;Z/3)

j3 // H∗(X;U(1))

it follows that j3(c
3
1) = exp(13c

3
1). Plugging this into equation (3.6) and using

the left commutative diagram in (3.7), we have

j2
(
Sq

2(1
2c

2
1

))
= j2(c

3
1) .

It is interesting to compare this with the formula for the Steenrod squares
on powers of c1(L)

Sq2r(cn1 ) =

(
n

r

)
cn+r
1 ⇒ Sq2(c21) = 2c31 = 0.

Example 3 (Spinc 4-manifolds). Let M be a 4-dimensional manifold with
Spinc structure and let λ = c1(L), with L → M the canonical line bundle
associated to the structure. Let E be any complex vector bundle on M . Then

ch(E ⊗ L) = ch(E) ∧ ch(L) = ch(E) + (r + c1(E))λ

with r ∈ Z the rank of E → M . Hence

ch(E ⊗ L− E) = (r + c1(E))λ .

Now ch(E ⊗ L− E)4 must be killed by d4, since it is the Chern character of
a virtual bundle. Hence, we must have

c1(E)λ ≡ j2Sq
2ρ2c1(E) mod Z,

6Note that we are denoting the abelian group operation on U(1) by + on the
left. When writing these classes in terms of exponentials, we will denote the group
operation by juxtaposition, or ·, identifying it with multiplication of complex num-
bers.
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which recovers the well-known relation ν2 = w2 = λ mod 2. Clearly, λ de-
pends on the choice of Spinc structure. It defines a characteristic element of
the bilinear pairing on H2(M ;Z), defined by the cup product, i.e.,

∫

M
c1(E)2 ≡

∫

M
c1(E)λ mod 2.

The associated quadratic refinement of the intersection pairing has been stud-
ied in many places, for instance Atiyah [At71] in his work on Riemann sur-
faces. In [HS05], a higher dimensional analogue of this pairing was used in
the construction of the fivebrane partition function.

Remark 4 (Novel quantization conditions). Interestingly, the machin-
ery of our AHSS provides a way to determine the quantization condition on
the fields G2k purely in cohomology. This addresses a key point made in
[MW00], where it is assumed that such conditions would be nearly impos-
sible to determine purely in cohomology. While this certainly seems to be
the case without any reference to K-theory, the spectral sequence uses the
differential K-theoretic interpretation as a starting point and interprets the
quantization conditions in cohomology as an obstruction to lifting a form to
differential K-theory. The differentials in the AHSS precisely measure the
obstruction to lifting.

The following is then a direct consequence of the identification of the
differentials in the AHSS.

Proposition 10 (Algorithm for detecting RR-fields). Let

G = G0 +G2 +G4 +G6 +G8 +G10

be a formal combination of forms on spacetime X. Then the following provide
necessary and sufficient conditions on the components G2k, with k ≤ 3 so
that G2k lifts to differential K-theory.

1) For G′
0 = G0, we have G0 ∈ Z.

2) For G′
2 = G2, we have the condition [G2] ≡ 0 mod Z so that G2 has

integral periods.

3) For G′
4 = G4 +

1
48p1G0, we must have

([G′
4] mod Z) = j2Sq

2ρ2(x2)

for some class x2 ∈ H2(X;Z) which defines an integral lift of [G2].
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4) For G′
6 = G6 +

1
48p1 ∧G2, we must have

([G′
6] mod Z) = j2Sq

2
(x4)− j3P

1
3 ρ3(x2)

for some x4 ∈ ker(d4)⊕ Tor(H4(X;Z)) and x2 ∈ H2(X;Z), where the
x4 and x2 rationalize to [G4] and [G2], respectively. In particular, it is
sufficient that

([G′
6] mod Z) = j2Sq

2(x4)− j3P
1
3 ρ3(x2)

with x4 ∈ H4(X;Z) and x2 ∈ H2(X;Z).

The algorithm can in principle be extended to G8 and G10, but the
expressions would become very complicated.

3.2. RR forms arising from twisted differential K-theory

We now consider the twisted case. The first differential d3 in the twisted
AHSS for twisted K-theory is given by the formula [Ro89][AS06]

d3 = Sq3Z + (−) ∪ λh : Hp(X;Z) // Hp+3(X;Z) ,

where λ is an integer which a priori needed to be determined. To compute
this integer, it is sufficient to consider the spectral sequence on the sphere
S3, where one computes λ = −1 (see [AS06]). To our knowledge, this is the
only differential which is identified explicitly in the twisted case. However,
Atiyah and Segal [AS06] also showed that the higher differentials d5, d7, · · ·
in the AHSS for twisted K-theory are nontrivial even rationally, and are
given by Massey products. In order to work with smooth manifolds, it is
easier to take real coefficients, i.e., work over R, in which case differential
forms can be used as chains.

Working with twisted K-theory over R, i.e. essentially periodic twisted
cohomology, the iterated Massey products with the twist H3 gives (up to
sign) all the higher differentials in the tAHSS for twisted cohomology [AS06]

d2i+1(x) = −⟨ [H3], · · · , [H3]︸ ︷︷ ︸
i times

, x⟩ .

1) The class in the E4-page is given by the triple Massey product
⟨H3, H3, xn⟩, where H3 is the twisting cohomology class and xn is
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the dimension n class under consideration. Since H3 ∧H3 = 0, then

⟨H3, H3, xn⟩ = yn+2 ∧H3 ,

where H3 ∧ xn = dyn+2. This operation corresponds to the differential
d5 : E

p
4 → Ep+5

4 .

2) Next, when ⟨H3, H3, xn⟩ = 0, i.e., ⟨H3, H3, xn⟩ = dzn+4 modulo multi-
ples of H3, then the next step gives the quadruple Massey product

⟨H3, H3, H3, xn⟩ = H3 ∧ zn+4 ,

which corresponds to the differential d7 : E
p
6 → Ep+7

6 on the E6-page.

Example 4 (Dynamics of twisted RR fields via Massey products).
We consider the Ramond-Ramond (RR) fields Fi, twisted by the NS field
H3. We start with a class corresponding to a specific degree, so that xn is
identified with the class of Fn, and we will use the latter as notation. Then
we have

⟨H3, H3, Fn⟩ = Fn+2 ∧H3

where

(3.8) H3 ∧ Fn = dFn+2 ,

which is the correct equation of motion/Bianchi identity for the fields. This
is the differential d5 in the twisted AHSS. Note that because H3 is closed
odd form, and due to equation (3.8), we have the closedness of the Massey
triple product, i.e., d⟨H3, H3, Fn⟩ = 0. Next, if we trivialize the triple Massey
product, i.e., take Fn+2 ∧H3 = dFn+4, which is the correct dynamics in the
next level up in RR degrees, then we can form the quadruple Massey product

(3.9) ⟨H3, H3, H3, Fn⟩ = Fn+4 ∧H3 .

This is the differential d7 in the twisted AHSS. Note, again, that because
H3 is closed odd degree form and due to (3.9) we have the closedness of the
Massey quadruple product, i.e., d⟨H3, H3, H3, Fn⟩ = 0. We can continue in
this fashion until we exhaust the possible degrees allowed by our dimension,
in this case 10. So if we do not trivialize simply by being above dimension
10, then we could start with a degree 2 RR field F2 and form a quadruple
Massey product, leading to F6, and so on.
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The above example could be viewed as the cohomological counterpart
to the homological arguments for modelling the twisted AHSS, given in
[MMS01]. We now consider cohomological trivializations of the Massey prod-
uct, i.e., find the corresponding potentials.

Example 5 (Massey potentials for twisted RR fields). Let F =
F2 + F4 + F6 + F8 be the inhomogeneous RR form fields with dF2 = 0 (in
the absence of F0, i.e., no cosmological constant), so that F2 represents a
cohomology class. Even though classically the class [F2] is annihilated for
dimension reasons by the bare differential Sq3 (when working integrally),
the class is still acted upon nontrivially by operations arising from the twist.
The expressions G = (d−H3∧)F = G3 +G5 +G7 +G9 splits into the ex-
pressions

G3 = dF2 = 0 , G5 = dF4 −H3 ∧ F2 ,

G7 = dF6 −H3 ∧ F4 , G9 = dF8 −H3 ∧ F6 .

Then the class [G5] = −[H3] ∪ [F2] represents d3[F2], so that the differen-
tial d3 in the tAHSS is just multiplication by H3. If [H3 ∧ F2] = 0, so that
H3 ∧ F2 = dF4 then this makes G5 = 0. Then G7 = dF6 −H3 ∧ F4 repre-
sents d5[F2] given by the triple Massey product

d5[F2] = −⟨H3, H3, F2⟩ .

Continuing in a similar fashion, we see that

d7[F2] = −⟨H3, H3, H3, F2⟩

and so on.

Remark 5. (i) In the above examples we could have taken our starting
point any of the fields Fi. However, we choose to start with the lowest term F2

to illustrate that all the fields can be accounted for via a physical modelling of
the differentials of the tAHSS. Furthermore, the ring of invariants identified
in [AS06, Prop. 8.8] (see [BM06b] for an explicit list) will contain the class
F2 in every relevant degree.

(ii) The fact that there are no odd (rational) characteristic classes for twisted
K-theory aside from the twisting class ([AS06, Sec. 8]) is compatible with the
fact that the fields in type IIA string theory, classified by K0(X;H3), are all
of even degree.
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(iii) The above examples have counterparts in type IIB string theory, where
the RR fields are of odd degrees. Here we start with F1 and generate all
the other fields similarly. Again, the ring of invariants will involve F1 in all
relevant degrees.

We now would like to find the relationship between the Massey products
on the higher differentials in the spectral sequence for twisted differential K-
theory. As in [AS06], we need to work rationally. For twisted differential
K-theory, the correct replacement is twisted differential periodic rational
cohomology Ĥ∗

ĥ
(X;Q[u, u−1]) (see [GS18b][GS19b]), where we regard the

twist ĥ : X → B2U(1)∇ as a twist for periodic rational cohomology via the
canonical map B2U(1)∇ → B2R/Q∇.

7 In [GS17a] we established the basic
theory of differential Massey products. Algebraically, these products end up
behaving exactly as their classical counterparts – one simply replaces the
wedge product with the Deligne-Beilinson cup product operation ∪DB.

Example 6 (Differential Massey products). Let ĥ : X → B2R/Q∇ be a
cocycle in (rational) Deligne cohomology refining H and let x̂ : X →
Bp−1R/Q∇ be a cocycle. Suppose there is ŷ : X ×∆[1] → Bp+2R/Q∇ such
that D(ŷ) = ĥ ∪DB x̂, where D = d+ (−1)p+1δ is the Čech-Deligne differen-
tial. By graded commutativity, 2ĥ ∪DB ĥ = 0 and since we are working over
Q, this implies ĥ ∪DB ĥ = 0. Then we can form the cochain

(3.10) ŷ ∪DB ĥ : X ×∆[1] // Bp+5R/Q∇,

representing an element in

π1Map(X,Bp+5R/Q∇) ∼= π1Map(X,Bp+5R/Qδ) ∼= Hp+4(X;R/Q).

The cocycle (3.10) is an element of the Massey product ⟨ĥ, ĥ, x̂⟩ which nec-
essarily lands in the flat part of differential cohomology. Modulo ambiguity
in the Massey product, the restriction of this operation to Hp−1(X;R/Q) →֒
Ĥp(X;R/Q) gives a map

⟨ĥ, ĥ,−⟩ : Hp−1(X;R/Q) // Hp+4(X;R/Q),

raising degree by 5.

7The latter stack can be presented via the Dold-Kan correspondence by the
complex

Q →֒ Ω0 d→ Ω1 d→ Ω2 → . . . ,

i.e., simply replace Z by Q in the Deligne complex.
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This example indicates that the differential Massey products always
represent flat differential cohomology classes, and in fact this is the case
[GS17a]. Thus, we can always restrict these operations to flat classes (coho-
mology with either R/Z or R/Q coefficients) and these restrictions are the
operations appearing as the differentials in the AHSS.

The E2-page of the AHSS for twisted differential K-theory looks identical
to the untwisted case with one exception. In the twisted case, we have E0,0

2 =
Ωeven

Z,dH -cl(X), the group of twisted closed forms of even degree with degree
zero component ω0 ∈ Z (see [GS19b] for details). The following proposition
was proved in [GS17b].

Proposition 11 (Higher differentials in twisted differential K-the-
ory). Let ĥ : X → B2U(1)∇ be a twist for differential K-theory, regarded
as a twist for periodic rational cohomology via the differential Chern char-
acter map (see Prop. 4). Then the differentials d2p+1 can be identified with
the differential Massey product operation

d2p+1 = −⟨ ĥ, ĥ, . . . , ĥ︸ ︷︷ ︸
k times

,−⟩ .

Remark 6 (Rational vs. non-rational differentials). Non-rationally,
there is not much we can say, since these differentials have not been identified
even in the topological case. In parallel to the topological case, we do however
have the identification

dp,−q
3 = Ŝq

3
+ ĥ ∪

DB
(−) ,

for q > 0, where Ŝq
3
is the again the operation jSq2ρ2β as before.

As in the untwisted case, the differentials in the AHSS split into two
types (cf. (3.2) and (3.3)). The flat differentials, which we have identified
rationally in Prop. 11 and differentials of the form

d0,0p : E0,0
p−1 ⊂ Ωeven

dH -cl(X) −→ ker(dp−1) ⊂ Hp(X;U(1)).

In [GS19b] we showed that for p be an even integer, the differential d0,0p take
the form

dp : Ω
even
dH -cl(X) // Hp(X;R/Q) ,

where Ω∗
Q,dH -cl(X) is the subgroup of twisted closed forms with degree zero

term ω0 given by a constant function taking values in Q. Moreover, the
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differential dp maps a twisted closed form of the type ω = 0 + 0 + . . .+
ωp + ωp+2 + . . . to the class of the leading term ωp, modulo Q, i.e.,

(3.11) dp(0 + 0 + . . .+ ωp + ωp+2 + . . .) = [ωp] mod Q .

More generally, for twisted differential cohomology, we find the following.

Proposition 12 (Lifting flat classes to twisted differential K-the-
ory). A necessary condition for lifting a flat differential cohomology class
x̂ ∈ Ĥ i(M ;Z) is the vanishing of the action of the differential in the AHSS
on that class. That is,

Ŝq
3
x̂+ ĥ3 ∪DB

x̂ = 0 .

Recall that, by definition, Ŝq
3
= j2Sq

2ρ2βU(1). We can define a differen-
tial refinement of the 3rd integral Steifel-Whitney class W3 by setting

Ŵ3 = j2w2 ∈ H2(X;U(1)) � � // Ĥ3(X;Z) ,

which defines a flat differential cohomology class refining W3. For X an
oriented 10-manifold and x̂ ∈ Ĥ7(X;Z) a flat differential cohomology class,
the Wu formula implies that

Ŝq
3
x̂ = j2Sq

2βU(1)x = j2w2 ∪ βU(1)x = Ŵ3 ∪DB x̂ .

Note also that the cup product Ŵ3 ∪DB x̂ is invariant under the variation
Ŵ3 7→ Ŵ3 + α, with α ∈ J2(X) = H2(X;R)/H2(X;Z) the intermediate Ja-

cobian. Thus, we might as well assume Ŵ3 is an arbitrary differential refine-
ment of W3 with vanishing curvature.

3.3. Anomalies

We now explain how to refine the Freed-Witten anomaly [FW99] to the dif-
ferential setting and relate to the above constructions. Recall that in [FW99],
it was shown that the Pfaffian of the Dirac operator on the worldsheet of the
string Σ → X, with boundary landing on an oriented submanifold Q →֒ X,
is in general not well-defined as a function but only as a section of a line
bundle on the space of parameters. This line bundle carries a natural metric
and flat connection, but the holonomy of this flat connection is in general
nontrivial and is equal to ±1, determined by the second Stiefel-Whitney
class w2(Q).
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When the B-field vanishes, the relevant factors in the worldsheet path
integral are

(3.12) pfaff(D) · exp
(
i

∮

∂Σ
A
)
,

where A is the U(1)-“gauge field” on Q. In general, we have the additional
contribution of the B-field

(3.13) pfaff(D) · exp
(
i

∮

∂Σ
A+ i

∫

Σ
B
)
.

In [FW99] is was argued that A is not a true gauge field in general, as
the curvature may not have integral periods. In fact, in order to cancel the
anomaly from the Pfaffian, it is necessary for dA = F to have half-integral
periods 8 so that its exponential in (3.12) is allowed to change sign precisely
whenever the Pfaffian does.

In the full differential refinement, the B-field is modeled not just by a
differential form, but by a full U(1)-gerbe with connection. The existence of
the gerbe ĥ3 : X → B2U(1)∇ allows us to define a twisted differential Spinc-
structure, in the sense of [SSS12], which generalizes the notion of a twisted
Spinc structure [Do06][Wa06]. In particular, for an oriented submanifold
i : Q →֒ X (to be thought of as a D-brane worldvolume), the moduli space
of such structures on Q can be identified with the space of sections of the
pullback (see [FSSt12][FSS13][FSS14][FSS15c])

(3.14) TwQ(BSpinc∇)
//

��

BSpinc∇

Ŵ3

��
Q

i∗ĥ3 // B2U(1)∇

and this pullback depends on a preferred choice of Ŵ3, refining W3. Our
goal is to show the following

Proposition 13 (Differential refinement of the Freed-Witten
anomaly). A choice of closed differential 2-form F on Q determines a
flat U(1)-gerbe with connection refining W3 on Q. Moreover, taking F the
curvature of A and the corresponding refinement of W3 in diagram (3.14),
the obstruction to making the quantity (3.13) well-defined is precisely the

8Note that we are dropping the prefactors 1/2πi throughout.
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existence of a twisted differential Spinc structure. More succinctly, we have
the refinement of the Freed-Witten anomaly cancellation

Ŵ3 + ĥ3 = 0 .

The original Freed-Witten anomaly cancellation mechanism says that
when W3 + h3 = 0, there is a choice of U(1)-“gauge field” on Q for which
the potentially anomalous term (3.13) is well-defined, but if one is given
such a field a-priori, this choice may not agree with the given field. Thus the
difference between our anomaly cancellation and the original Freed-Witten
anomaly is the specific choice of field F , which should be identified with the
curvature of the U(1)-“gauge field”.

Note that every 2-form defines a flat refinement of W3. Indeed, the group
of differential refinements of a topological torsion class in H3(Q;Z) with
vanishing curvature is a torsor for H2(Q;R)/H2(Q;Z). Let w2(Q) denote
the second Stiefel -Whitney class. Since

βU(1)j2w2(Q) = β2w2(Q) = W3(Q) ,

it follows that j2w2(Q) defines a refinement of W3(Q). Hence if j :
H2(Q;U(1)) →֒ Ĥ3(Q;Z) is the canonical map identifying flat classes with
U(1)-cohomology classes, we see that every refinement of W3 can indeed be
written

(3.15) Ŵ3(Q) = j2w2(Q)− jexp(F) .

Now, for simplicity, let us first consider the case ĥ3 = 0 so that such a struc-
ture reduces to a differential Spinc-structure. This, in particular, defines a
topological Spinc structure and hence we can consider the canonical line
bundle L associated to the Spinc structure. The vanishing of the class (3.15)
means that the mod 2 reduction of c1(L) can be obtained through the ex-
ponential of a 2-form F , which necessarily has half integral periods (i.e. its
exponential lands in Z/2 →֒ U(1)). If we let F be the curvature of the A-
field, then this indeed implies that the sign ambiguity in (3.12) is cancelled
by the ambiguity in the holonomy, arising from F having only half integral
periods.

More geometrically, the cancellation of (3.12) can be obtained from a
choice of connection on L. Indeed, such a connection determines a differential
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refinement ĉ1(L) ∈ Ĥ2(Q;Z) of c1(L). From the commutative diagram

ĉ1
❴

��

Ĥ2(Q;Z)
1

2
R

//

I

��

Ω2
cl(Q)

��

F
❴

��
c1
❴

��

H2(Q;Z)
1

2
×

//

ρ2

��

H2(Q;R)

exp

��

[F ]R
❴

��
w2 H2(Q;Z/2)

j2 // H2(Q;U(1)) [F ]U(1)

and the identify ρ2c1(L) = w2(Q), one sees immediately that if F is the

curvature of L, then taking 1
2F in (3.15) implies Ŵ3 = 0. In this case, the

differential Spinc structure is defined completely by a choice of connection on
L. In the more general case when ĥ3 ̸= 0, identifying B with the connection
of the gerbe defined by ĥ3 shows that the condition

Ŵ3 + ĥ3 = 0

is precisely what is needed to make (3.13) well-defined.

Remark 7 (A consequence of differential refinement). Another ad-
vantage of the full refinement of the Freed-Witten anomaly is that it gives
a precise geometric meaning to the A-field, even when it cannot be glob-
ally identified with a U(1)-gauge field. It can be identified with a choice of
differential refinement of W3 with vanishing curvature.

4. Explicit classification of RR fields in traditional

backgrounds

4.1. Twisted differential K-theory of spheres

Spheres are important compactification spaces for string theory when con-
sidering background fluxes. We have already considered integrality condi-
tions for (even) spheres and projective spaces in Example 1 and Exam-
ple 2. Here we consider RR fields on the 3-sphere S3, using the careful
calculations in [GS19a], which generalize to differential twisted K-theory
the corresponding twisted K-theory calculations of the Lie group SU(2)
[MMS01][BCMMS02][Bra04][Do06][FHT08][MR17][Ro17]. This was also
studied in [CMW09] using index and group theoretic methods.
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Let h : S3 → K(Z, 3) be a map representing an element (which we also
denote by h) in integral cohomology H3(S3;Z) ∼= Z and denote the corre-
sponding twisted K-theory on S3 by K∗

h(S
3). Note that the map h can be

refined to a gerbe with connection ĥ : S3 → B2U(1)∇, whose curvature form
is H. Now we consider (Ω∗[u, u−1], dH), the sheaf of periodic, H-twisted
de Rham complex on S3, with differential d+H ∧ (−). Thus, the triple
K̂ĥ := (Kh, ch, (Ω

∗[u, u−1], dH)) gives the data of a differential refinement of
the h-twisted K-theory spectrum, and we denote the underlying theory by
K̂∗

ĥ
(S3).

The calculations via the Mayer-Vietoris sequence or the twisted differ-
ential AHSS [GS19a] give the following.

Example 7 (RR fields in type IIA on the 3-sphere). Let ĥ : S3 →
B2U(1)∇ be a differential twist as a gerbe with connection. Recall (see Re-

mark 6) that we identified the differential on the E3-page as d3 = Ŝq
3

Z +
ĥ∪DB. For the 3-sphere, the U(1)-cohomology is calculated from the expo-
nential sequence as

H2(S3;U(1)) ∼= 0 and H3(S3;U(1)) ∼= U(1).

Then for K̂0 we see that all relevant differentials must vanish and the spectral
sequence collapses at the E2-page in Diagram (3.1). There is no extension
problem in this case, and we have the isomorphism

K̂0(S3; ĥ) ∼= (Ωeven(S3), dH)cl ∼= Ω2(S3)cl.

This means that the RR fields in type IIA string theory on S3 are classified by
closed 2-forms on the 3-sphere, an instance of which would be a flat abelian
2-gerbe connection.

Example 8 (RR fields in type IIB on the 3-sphere). For K̂1, we
need to calculate the kernel of the differential d3 as the map

d3 : U(1) −→ U(1) ∼= H3(S3;U(1)).

For degree reasons, the refined integral Steenrod square Ŝq
3

Z vanishes on
U(1), which reduces the task to finding the kernel of ĥ. The formula for the
Deligne-Beilinson cup product ∪DB sends an element in U(1), written in
complex form as e2πiθ, to the element e2πihθ, where h is the integer repre-
senting the underlying topological twist. Hence the kernel can be identified
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with the h-roots of unity, which as an abelian group is isomorphic to Z/hZ.
Furthermore, for degree reasons, there are no nontrivial differentials out of
the term (Ω∗(S3), dH)cl. In this case, there is no extension problem and we
arrive at the isomorphism

K̂1(S3; ĥ) ∼= Z/hZ ⊕ (Ω∗(S3), dH)cl.

In particular, this identification shows that every twisted closed odd RR form
lifts to K̂1.

4.2. The (twisted) differential K-theory of tori

Tori play an important role in (flat) compactifications of string theory. We
begin with some preliminary computations which describe special instances
of the RR fields.

Lemma 14 (RR fields on the k-torus T k). The K-theory of the T k is
given by

K0(T k) =
⊕

n

Λ2n
Z (x1, x2, . . . , xk) and

K1(T k) =
⊕

n

Λ2n+1
Z (x1, x2, . . . , xk)

where the exterior algebras are taken over Z.

Proof. The cohomology of the k-torus is given by the exterior algebra

H∗(T k;Z) ∼= Λ∗(x1, x2, . . . , xk),

where xi are generators of H1(T k) ∼= Zk. Since the cohomology groups con-
tain no torsion, the AHSS degenerates at the E2-page and there is no ex-
tension problem. This immediately implies the claim. □

Note that the above also follows from applying the general results of
Hodgkin [Ho67] on the K-theory of Lie groups. The following is then a
direct consequence of the long exact sequence for K-theory with coefficients
induced by the exponential sequence.
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Corollary 15 (Flat RR fields on the k-torus). The K-theory with
U(1)-cofficients of the T k is given by

K0
U(1)(T

k) =
⊕

n

Λ2n
R (x1, x2, . . . , xk)/Λ

2n
Z (x1, x2, . . . , xk)

∼=
⊕

n

J2n(T k),

K1
U(1)(T

k) =
⊕

n

Λ2n+1
R (x1, x2, . . . , xk)/Λ

2n+1
Z (x1, x2, . . . , xk)

∼=
⊕

n

J2n+1(T k),

where Jm(T k) is the intermediate Jacobian Hm(T k;R)/Hm(T k;Z).

Proposition 16 (Geometric RR fields on the k-torus). The differen-
tial K-theory of the k-torus is given by

K̂0(T k) ∼=
⊕

n

J2n+1(T k)⊕ Λ2n
Z (ω1, ω2, . . . , ωk)⊕ dΩ2n+1

where ωi are normalized harmonic form representatives for the generators
of H1(T k;Z). Similarly,

K̂1(T k) ∼=
⊕

n

J2n(T k)⊕ Λ2n+1
Z (ω1, ω2, . . . , ωk)⊕ dΩ2n.

This isomorphism identifies ωi ∧ ωj with a geometric representative for the
first Chern class and θωi ∈ J1(T k) with the Chern-Simons invariants of flat
bundles.

Proof. Since T k is a formal manifold, there is a choice of metric so that the
Hodge decomposition gives rise to an identification

Ωeven
cl (T k)

g∼= ΛR(ω1, . . . , ωk)⊕ dΩodd(T k),

where ωi are the unique harmonic forms representing the generator 1 ∈
H1

dR(S
1) ∼= R. From the identification in Corollary 15, the AHSS for K̂ de-

generates at the E2-page and the only condition on forms that they lift to
K̂ is that they have integral periods. This shows that K̂0(T k) fits into an
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exact sequence

0 −→
⊕

n

J2n+1(T k) −→ K̂0(T k) −→ ΛZ(ω1, . . . , ωk)⊕ dΩodd(T k).

Since J2n+1(T k) is a divisible group, this sequence splits. The claim for K̂1

is proved similarly. □

Remark 8 (Geometric RR fields with background NS-field and
twisted differential K-theory). We observe that for a differential re-

finement Ŵ3 of W3, we necessarily have Ŵ3 = jexp(F), for some closed

2-form F . If F has integral periods, then Ŵ3 = 0 and the twisted differential
K-theory reduces to the untwisted.

4.3. The (twisted) differential K-theory of Calabi-Yau threefolds

Now we consider Calabi-Yau manifolds, a third main class of compactifi-
cation spaces for type II string theory. In [DM07] it was shown that for a
Calabi-Yau threefold M one has the identification

(4.1) K̃0(M) ∼= H2(M ;Z)⊕H4(M ;Z)⊕ 2 ·H6(M ;Z),

where the isomorphism is exhibited by taking the first, second and third
Chern class [DM07]. The method of proof is direct and amounts to a careful
consideration of the 7th stage of the Postnikov tower for the classifying
space BSU. Alternatively, one can compute these groups (modulo extension)
via the AHSS. If one presents the AHSS using the filtration on the K-
theory spectrum via its Postnikov stages, then solving the extension problem
amounts to the same consideration in [DM07].

In preparation for our computation of differential cohomology, we prove
the following.

Lemma 17 (Flat RR fields and flat K-theory of 6-manifolds). Let
M be a closed oriented 6-dimensional manifold.

(i) We have an isomorphism

K̃−1
U(1)(M) ∼= Tor(K̃0(M))⊕

3⊕

i=1

J2i−1(M),

where J2i−1(M) = H2i−1(M ;R)/H2i−1(M ;Z) is the intermediate Jacobian
and K̃0(M) is computed as in (4.5).
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(ii) If M is a Calabi-Yau threefold, then we further have

K̃−1
U(1)(M) ∼=

3⊕

i=1

Tor(H2i(M ;Z))⊕
3⊕

i=1

J2i−1(M) ∼=
3⊕

i=1

H2i−1(M ;U(1)).

Proof. From the Bockstein sequence, we have an exact sequence

K̃−1
R (M) −→ K̃−1

U(1)(M) −→ K̃0(M) −→ K̃R(M).

This gives an exact sequence K̃−1
R (M) → K̃−1

U(1)(M) → Tor(K̃0(M)) → 0,
which immediately implies the first result. For the second, the Wu formula
implies that Sq2 : H4(M ;Z/2) → H6(M ;Z/2) is representable by cup prod-
uct with w2. Since any Calabi-Yau is Spinc and c1 = 0, it follows that 0 =
rc1 = w2 and Sq2 vanishes. Therefore, Tor(K̃0(M)) ∼=

⊕3
i=1Tor(H

2i(M ;Z))
by (4.1). The final identification follows from the (noncanonical) decompo-
sition

Hk(M ;U(1)) ∼= Hk(M ;R)/Hk(M ;Z)⊕ Tor(Hk+1(M ;Z)) .
□

We now consider the fully differential case.

Proposition 18 (Geometric RR fields and differential K-theory of
6-manifolds).

(i) The differential K-theory of a compact oriented 6-dimensional manifold
fits into an exact sequence

(4.2) Tor(K̃0(M))⊕
3⊕

i=1

J2i−1(M) −→ K̂0(M) −→ Im(ch),

where J2i−1(M) ∼= H2i−1(M ;R)/H2i−1(M ;Z) is the intermediate Jacobian.
Moreover, this sequence splits, but not canonically.

(ii) Let e : H∗(M ;R) → H∗(M ;U(1)) denote the exponential map arising
from coefficients. The image of the Chern character is given by

Im(ch) =
{
(ch1, ch2, ch3) ∈

3⊕

i=1

Ω2i
cl (M) | ch1 ∈ H2(M ;Z), e(ch2) = j2(c

2
1),

e(ch3) = j2(Sq
2
(ch2))− j3(c

3
1)
}
,

where (c1, c2, c3) denote the first, second and third Chern class.
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(iii) For M a Calabi-Yau threefold, we have

K̂0(M) ∼=
3⊕

i=1

Tor(H2i(M ;Z))⊕
3⊕

i=1

J2i−1(M)⊕ Im(ch),

with

Im(ch) =
{
(ch1, ch2, ch3) ∈

3⊕

i=0

Ω2i
cl (M) | e(ch2) = j2c

2
1, e(ch3) = −j3c

3
1

}
.

The isomorphism identifies ch1, ch2, ch3, c1, c2 and c3 with the Chern char-
acters forms and Chern classes, respectively. The torsion group is identified
with torsion Chern classes and the intermediate Jacobian is identified with
Chern-Simons classes.

Proof. For a 6-dimensional manifold, the fact that we have such an exact
sequence follows from Lemma 17 and from the diagonal sequence in the
differential cohomology diamond (2.3). It remains to calculate the image
of the Chern character. For this, we apply the AHSS for differential K-
theory developed in [GS17b][GS19a]. The extension in (4.2) is precisely the
final extension problem for the refined AHSS corresponding to the filtration
level F0K̂(M) := ker(i∗0 : K(M) → K(F0(Č({Uα})), where F0 denotes the
0th level of the filtration. Thus the permanent cycles in

Z ⊕
3⊕

p=1

Ω2p(M) = E0,0
2 =⇒ E0,0

∞

compute the image of ch. Because of the low dimensions, the only possible
nonvanishing odd differentials are (see Proposition 5)

(4.3) d3 = j2Sq
2ρ2βU(1) and d5 = j2Sq

2βU(1) + j2P
1
3βU(1),

while the even differentials are given by (see Propositions 6, 7, and 8)

(4.4) d2 = exp, d4 = exp + j2Sq
2, and d6 = exp + j2Sq

2
+ j3P

1
3 .
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From these identifications, we find that the permanent cycles in E0,0
∞ , which

is the image of the Chern character, are those forms such that

[ch1] mod Z = 0,

[ch2] mod Z ≡ j2c
2
1,

[ch3] mod Z ≡ j2Sq
2
r(ch2)− j3c

3
1.

This implies the first claim. For the splitting, fix a metric g on M and
consider the corresponding Hodge decomposition on forms. The group
Im(ch) is free abelian and defines a maximal rank lattice in

⊕
iH

2i(M ;R) ∼=⊕
i harm

2i(M). From the basic properties of Ext, one then sees that the
splitting will follow provided Ext1(dΩk(M),Z/n) = 0 for any integers n, k.

This is easily deduced via the injective resolution Z/n →֒ U(1)
×n→ U(1) and

the commutative diagram

dΩk(M)
×(1/n) //

φ

��

dΩk(M)

φ

��
U(1) U(1) .

×noo

For the Calabi-Yau case, the simplification of Im(ch) follows from the Wu

formula and vanishing of c1 (i.e., Sq
2
(ch2) = 0). □

This immediately implies the following divisibility conditions and con-
gruences.

Corollary 19 (Periods for CY3). For a Calabi-Yau threefold M and any
vector bundle E → M , ch3(E) has periods in 1

3Z, i.e., c3, c1c2 and c31 are
all divisible by 2. For the tangent bundle, ch1, ch2 and ch3 are all integral.

The above is also useful, for instance, in interpreting the Chern character
as an integral twist, e.g. of a String structure in the context of the Green-
Schwarz anomaly cancellation in the heterotic case [SSS12].

We now turn our attention to the computation of K̂1 for the type IIB
case. In [DM07], it was also shown that for a Calabi-Yau threefold M one
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has

(4.5) K̃1(M) ∼= H1(M ;Z)⊕H3(M ;Z)⊕H5(M ;Z).

From this identification, (4.1) and the exponential sequence for K-theory
with coefficients, we immediately find that

(4.6) K̃−2
U(1)(M) ∼=

3⊕

i=0

Tor(H2k(M ;Z))⊕ J1(M)⊕ J4(M)⊕ 1
2J

6(M),

where 1
2J

6(M) ∼= H6(M ;R)/2 ·H6(M ;Z). Application of the AHSS then
gives the following

Proposition 20 (Geometric RR fields in Type IIB on a Calabi-Yau
threefold). We have an identification

K̂1(M) ∼=
3⊕

i=1

Tor(H2i−1(M ;Z))⊕ J1(M)

⊕ J4(M)⊕ 1
2J

6(M)⊕
3⊕

i=1

Ω2i−1
cl,Z (M),

where Ω2i−1
cl,Z (M) is the group of closed (2i− 1)-forms with integral periods.

The isomorphism identifies the forms and torsion part with the odd Chern
classes (i.e. the generators of H∗(U(n);Z) ∼= Λ∗(a1, a3, . . . , a2n−1)) and the
intermediate Jacobians with Chern-Simons classes associated with the odd
characteristic forms.

Proof. From the identification of the differentials as in Proposition 18 we
find that, from the Wu formula and by degree considerations, all differentials
vanish and the spectral sequence collapses. □

The results of Propositions 18 and 20 exhibit the richness of describing
the RR fields by twisted differential K-theory in a Calabi-Yau background,
which amounts to specifying the following data

1) Purely topological: torsion Chern classes, given by the Tor term.

2) Purely geometric: Chern character forms, given by the last factor.

3) Mixed data: the intermediate Jacobians as the Chern-Simons invari-
ants with values in U(1).

We end by considering a special case of the twisted setting for both type
IIA and type IIB fields, i.e., for both K̂0 and K̂1.
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Remark 9 (Twist by the differential third Stiefel-Whitney class).

Let Ŵ3 be a refinement of W3, determined by a 2-form F as in Section 3.3.
For the twist Ŵ3 = ĥ3, we have Ŵ3 = jexp

(
F
)
. This follows from the fact

that any Calabi-Yau is spinnable and hence j2w2 = 0. If F has integral pe-
riods, then the twist vanishes and the Ŵ3-twisted differential K-theory is
isomorphic to the underlying untwisted differential theory.
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Sati, U. Schreiber (eds.), Mathematical Foundations of Quan-
tum Field and Perturbative String Theory, Proc. Symp. Pure
Math., Amer. Math. Soc., Providence, RI, 2011.

[DM07] C. F. Doran and J. W. Morgan, Algebraic Topology of Calabi-
Yau Threefolds in Toric Varieties, Geom. Topol. 11 (2007)
597–642.



✐

✐

“2-Sati” — 2023/3/30 — 14:42 — page 1151 — #55
✐

✐

✐

✐

✐

✐

Ramond-Ramond fields and twisted differential K-theory 1151

[Do06] C. L. Douglas, On the twisted K-homology of simple Lie groups,
Topology 45 (2006), 955–988.

[Ev06] J. Evslin, What does(n’t) K-theory classify? Second Modave
Summer School in Mathematical Physics, arXiv:hep-th/

0610328.

[ES06] J. Evslin, H. Sati, Can D-branes wrap nonrepresentable cycles?,
J. High Energy Phys. 10 (2006), 50.

[FSS13] D. Fiorenza, H. Sati, and U. Schreiber, Extended higher cup-
product Chern-Simons theories, J. Geom. Phys. 74 (2013), 130–
163.

[FSS14] D. Fiorenza, H. Sati, U. Schreiber, Multiple M5-branes, String
2-connections, and 7d nonabelian Chern-Simons theory, Adv.
Theor. Math. Phys. 18 (2014), 229–321.

[FSS15a] D. Fiorenza, H. Sati, and U. Schreiber, A Higher stacky per-
spective on Chern-Simons theory, Mathematical Aspects of
Quantum Field Theories (Damien Calaque and Thomas Strobl
eds.), Springer, Berlin (2015),

[FSS15b] D. Fiorenza, H. Sati, and U. Schreiber, Super-Lie n-algebra ex-
tensions, higher WZW models and super-p-branes with tensor
multiplet fields, Int. J. Geom. Methods Mod. Phys. 12 (2015),
no. 2, 1550018.

[FSS15c] D. Fiorenza, H. Sati, U. Schreiber, The E8 moduli 3-stack of
the C-field, Commun. Math. Phys. 333 (2015), 117–151.

[FSS18] D. Fiorenza, H. Sati, U. Schreiber, T-duality from super Lie n-
algebra cocycles for super p-branes, Adv. Theor. Math. Phys.
22 (2018).

[FSSt12] D. Fiorenza, U. Schreiber, and J. Stasheff, Čech cocycles for dif-
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