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Asymptotics of the Banana Feynman

amplitudes at the large

complex structure limit

Hiroshi Iritani

Recently Bönisch-Fischbach-Klemm-Nega-Safari [3] discovered, via
numerical computation, that the leading asymptotics of the l-loop
Banana Feynman amplitude at the large complex structure limit
can be described by the Gamma class of a degree (1, . . . , 1) Fano
hypersurface F in (P1)l+1. We confirm this observation by using a
Gamma-conjecture type result [10] for F .

1. Introduction

The l-loop Banana Feynman amplitude (see [16, (8.1)-(8.2)], [3, (2.1)]) is the
integral

F(q, t) =

∫

(R>0)l

1

t− φq(y)

dy1 · · · dyl
y1 · · · yl

where φq is the Laurent polynomial

φq(y) = (q1y1 + · · ·+ qlyl + ql+1)(y
−1
1 + · · ·+ y−1

l + 1).

The parameters qi, denoted by ξ2i in [3], are the squares of the internal
masses and t is the square of the external momentum. When t is a large
positive number, the integrand has a pole along the hypersurface (φq(y) = t)
and the integral diverges. We regularize the integral by means of analytic
continuation: we know that the integral converges for t < 0, and it can then
be analytically continued to the complex plane (of t) minus the branch cut
[T,∞), where T := (

∑l+1
i=1

√
qi)

2 = min{φq(y) : y ∈ (R>0)
l}.

The Feynman amplitude can be regarded as a relative period of the
mixed Hodge structure of the pair (P∆ \Mq,t, ∂P∆ \Mq,t), where P∆ is an
l-dimensional toric variety such that φ−1

q (t) ⊂ (C×)l is compactified to an
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anticanonical hypersurfaceMq,t ⊂ P∆ (intersecting every toric stratum prop-
erly) and ∂P∆ = P∆ \ (C×)l is the toric boundary. As such, it satisfies inho-
mogeneous Picard-Fuchs differential equations with respect to the parame-

ters q and t, which extend the Picard-Fuchs equations for Mq,t = φ−1
q (t). We

refer the reader to [1–3, 13, 16] and references therein for differential equa-
tions, Hodge-theoretic and arithmetic aspects of the Feynman amplitudes.

In the present notes, we study the asymptotics of the Banana Feynman
amplitude F(q, t) near the large complex structure limit t = ∞ (or equiva-
lently q1 = · · · = ql+1 = 0) of Mq,t.

Theorem 1. Let F be a degree (1, . . . , 1) Fano hypersurface in (P1)l+1

and let p1, . . . , pl+1 ∈ H2(F ) denote the hyperplane classes pulled back from
(P1)l+1. For q1, . . . , ql+1, t > 0, we have

F(q, t∓ i0) ∼ 1

t

∫

F
e−p log(q/t) ∪ Γ̂F · e±πic1(F )Γ(1− c1(F )) as t → ∞

where p log(q/t) =
∑l+1

i=1 pi log(qi/t) and the sign depends on whether we per-
form the analytic continuation anti-clockwise or clockwise from a negative
real t.

This follows from the power series expansion of F(q, t) we give in The-
orem 8 below. The class Γ̂F ∈ H∗(F ) in the theorem is the Gamma class
[9, 11, 14] of the tangent bundle TF ; it is explicitly given as

Γ̂F =
Γ(1 + p1)

2 · · ·Γ(1 + pl+1)
2

Γ(1 + p1 + · · ·+ pl+1)
=

e−2γc1(F )

Γ(1 + c1(F ))

where Γ(1 + z) =
∫∞
0 e−ttzdt is the Euler Γ-function (when evaluating it at

a cohomology class, we take its Taylor expansion) and γ = 0.577 · · · is the
Euler constant. We also note that c1(F ) = p1 + · · ·+ pl+1.

Remark 2. Kerr [12, Example 9.10] outlined another way to evaluate the
asymptotics of the l-loop Banana Feynman integral.

Remark 3. Theorem 1 confirms the numerical computation by Bönisch-
Fischbach-Klemm-Nega-Safari [3, §3-4]. By taking the imaginary and the
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real parts of Theorem 1, we get the following asymptotics as t → ∞:

ℑF(q, t− i0) ∼ 1

t

∫

F
e−p log(q/t) ∪

∏l+1
j=1 Γ(1 + pj)

2

Γ(1 + c1(F ))2
πc1(F )

=
π

t

∫

W
e−p log(q/t) ∪ Γ̂W(4)

ℜF(q, t− i0) ∼ 1

t

∫

F
e−p log(q/t) ∪ cos(πc1(F ))

Γ(1− c1(F ))

Γ(1 + c1(F ))
e−2γc1(F )(5)

where W ⊂ F is an anticanonical hypersurface, i.e. the intersection of two
degree (1, . . . , 1) hypersurfaces in (P1)l+1; this is a mirror of Mq,t. These
asymptotics coincide1 with [3, (3.18); (4.19), (4.20)].

Remark 6. By the reflection principle, the imaginary part of F(q, t− i0)
with t > 0 can be understood as the difference 1

2i(F(q, t− i0)−F(q, t+
i0)) of two analytic continuations. This can then be equated with the residue
integral

π

∫

φ−1
q (t)∩(R>0)l

Res

(
1

t− φq(y)

dy1 · · · dyl
y1 · · · yl

)

over the vanishing cycle φ−1
q (t) ∩ (R>0)

l ⊂ Mq,t. The Calabi-Yau Gamma
conjecture [8, 10] predicts that the asymptotics of such vanishing periods
should be given by the Gamma class of the mirror partner W of Mq,t, as
in (4); in the case at hand this has been proved in [10, Theorem 5.7]. On
the other hand, the asymptotics (5) of the real part of F(q, t) discovered
in [3] is slightly beyond the scope of the Calabi-Yau Gamma conjecture; it
is related to (a degeneration of) the mixed Hodge structure (see also the
recent work [7]). In this paper, we will derive this from the Fano Gamma
conjecture [5, 6, 9–11].

Remark 7. We can interpret Γ̂F · Γ(1− c1(F )) as the Gamma class of the
total space KF of the canonical bundle of F . See [2] for the relation to local
mirror symmetry.

2. Proof of the asymptotics

Theorem 1 follows immediately from the following result (compare [10,
Proposition 5.1]).

1The factor e−2γc1(F ) is missing in the second expression of [3, (4.20)].
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Theorem 8. Let q1, . . . , ql+1 be positive real numbers. For t ≪ 0, we have

F(q, t) =
1

t

∫

F
IW (q/(−t),−1) ∪ Γ̂F · Γ(1− c1(F ))

where IW (q, z) is the cohomology-valued hypergeometric series

IW (q, z) = ep log q/z
∑

d=(d1,...,dl+1)∈Nl+1

∏d1+···+dl+1

k=1 (p1 + · · ·+ pl+1 + kz)2
∏l+1

i=1

∏di

k=1(pi + kz)2
qd

with p log q =
∑l+1

i=1 pi log qi and qd = qd1

1 · · · qdl+1

l+1 .

Remark 9. The hypergeometric series IW (q, z) is the Givental I-function
[4] for the anticanonical hypersurface W ⊂ F , which is mirror to Mq,t. Here
we regard it as a function taking values in H∗(F ), rather than in H∗(W ).

A crucial observation [17, p.41] is the fact that the Laurent polynomial
φq(y) is a mirror of the Fano manifold F . The Givental mirror [4, p.150,
equation (∗∗)] of the (1, . . . , 1)-hypersurface F ⊂ (P1)l+1 is given by the
oscillatory integral

∫

C⊂{u1+···+ul+1=1}
e
−(

q1

u1
+···+

ql+1

ul+1
)d log u1 · · · d log ul+1

d(u1 + · · ·+ ul+1)
.

By the Przyjalkowsky change of variables [15]

u1 =
y1

1 + y1 + · · ·+ yl
, · · · ul =

yl
1 + y1 + · · ·+ yl

,

ul+1 =
1

1 + y1 + · · ·+ yl
,

the above oscillatory integral can be rewritten as

∫

C′

e
−(1+y1+···+yl)(

q1

y1
+···+

ql

yl
+ql+1)dy1 · · · dyl

y1 · · · yl
.

The phase function equals the Laurent polynomial−φq(y) after the change of
variables yi → y−1

i . Therefore, the Gamma-conjecture type result [10, The-
orem 5.7] implies that we have

(10)

∫

(R>0)l
e−φq(y)dy1 · · · dyl

y1 · · · yl
=

∫

F
IF (q,−1) ∪ Γ̂F
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for q1, . . . , ql+1 > 0, where IF is the Givental I-function [4] for F

IF (q, z) = ep log q/z
∑

d=(d1,...,dl+1)∈Nl+1

∏d1+···+dl+1

k=1 (p1 + · · ·+ pl+1 + kz)
∏l+1

i=1

∏di

k=1(pi + kz)2
qd.

We substitute rqi for qi in the equation (10) and perform the Laplace trans-
formation with respect to r. We find

(11)

∫ ∞

0
ertdr

∫

(R>0)l
e−φrq(y)dy1 · · · dyl

y1 · · · yl
=

∫ ∞

0
ertdr

∫

F
IF (rq,−1) ∪ Γ̂F

for t < 0. A similar computation appeared in [10, Section 5.1]. Using φrq(y) =
rφq(y) and performing the integration in r first2, the left-hand side yields
the Feynman amplitude

∫

(R>0)l

(∫ ∞

0
e(t−φq(y))rdr

)
dy1 · · · dyl
y1 · · · yl

= −
∫

(R>0)l

1

t− φq(y)

dy1 · · · dyl
y1 · · · yl

= −F(q, t).

The right-hand side can be computed termwise, using

∫ ∞

0
ert

l+1∏

i=1

(rqi)
di−pidr = Γ(1 +

∑l+1
i=1(di − pi))

qd−p

(−t)1+
∑

l+1

i=1
(di−pi)

.

Note that the coefficient of qd in the series IF (q,−1) has the norm bounded
by C1+|d|/|d|! for some C > 1, where |d| = d1 + · · ·+ dl+1. From this it fol-
lows that, for a sufficiently negative t ≪ 0, we can interchange the sum over d
and the integral and that the right-hand side of (11) converges; in particular
the left-hand side also does. This proves Theorem 8.
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✐

✐

“5-Iritani” — 2023/3/30 — 0:15 — page 1244 — #6
✐

✐

✐

✐

✐

✐

1244 Hiroshi Iritani

References

[1] Spencer Bloch, Matt Kerr, Pierre Vanhove, A Feynman integral via
higher normal functions, Compositio Math. 151 (2015), 2329–2375.

[2] Spencer Bloch, Matt Kerr, Pierre Vanhove, Local mirror symmetry and
the sunset Feynman integral, Adv. Theor. Math. Phys. 21 (2017), 1373–
1453.

[3] Kilian Bönisch, Fabian Fischbach, Albrecht Klemm, Christoph Nega,
Reza Safari, Analytic structure of all loop Banana integrals, J. High
Energ. Phys. 2021, 66 (2021).

[4] Alexander B. Givental: A mirror theorem for toric complete intersec-
tions, Topological field theory, primitive forms and related topics, (Ky-
oto, 1996), pp.141–175, Progr. Math., 160, Birkhäuser. Boston, Boston,
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