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Extremal 1/2 Calabi–Yau 3-folds and

six-dimensional F-theory applications

Yusuke Kimura

We discuss a method for classifying the singularity types of 1/2
Calabi–Yau 3-folds, a family of rational elliptic 3-folds introduced
in a previous study in relation to various U(1) factors in 6D F-
theory models. A projective dual pair of del Pezzo manifolds re-
cently studied by Mukai is used to analyze the singularity types.
In particular, we studied the maximal rank seven singularity types
of 1/2 Calabi–Yau 3-folds. The structures of the singular fibers
are analyzed using blow-ups. Double covers of the 1/2 Calabi–Yau
3-folds yield elliptic Calabi–Yau 3-folds and applications to six-
dimensional N = 1 F-theory on the Calabi–Yau 3-folds are also
discussed. The deduced singular fibers have applications in study-
ing the gauge groups formed in 6D F-theory compactifications.
The blow-up methods used to analyze the singular fibers and sec-
tions utilized in this research might have applications in studying
the U(1) factors and hypermultiplets charged under U(1) in 6D
F-theory.

1. Introduction

U(1) symmetry is important in realizing the grand unified theory (GUT)
because the presence of a U(1) symmetry helps explain a few of the charac-
teristic properties of GUT, such as the mass hierarchies of the quarks and
leptons, and a suppression of the proton decay. In F-theory [1–3], information
of U(1) gauge symmetry can be extracted from the geometry of the com-
pactification space. F-theory is compactified on elliptic fibrations, and the
modular parameter of the tori as fibers of the elliptic fibration is identified
with axiodilaton, enabling the axiodilaton to exhibit SL(2,Z) monodromy.
The SL(2,Z) symmetry possessed by type IIB superstrings is realized in a
geometric manner in the formulation of F-theory.

A certain structure of elliptic fibration, a global section, relates directly
to the U(1) gauge symmetry that forms in F-theory. When one can choose
a point in every elliptic fiber of the fibration, and the chosen point can
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be moved throughout the base space of the fibration, a genus-one fibration
having such a structure is said to admit a global section, yielding a copy
of the base space inside the total space of the fibration. When an elliptic
fibration has a global section, the set of global sections forms a group, which
is known as the “Mordell–Weil group.” The rank of the Mordell–Weil group
of an elliptic fibration, in the context of physics, is related to the U(1) gauge
group; the rank yields the number of U(1) factors formed in F-theory on
that elliptic fibration [3].

F-theory models on elliptic fibrations having a global section have been
intensively studied, e.g., in [4–40]. U(1) gauge symmetry1 has also been
investigated in F-theory.

In this study, we mainly focus on six-dimensional (6D) F-theory.

Elliptic Calabi–Yau 3-folds of various Mordell–Weil ranks have recently
been constructed by taking double covers of certain class of rational elliptic
3-folds, which are referred to as “1/2 Calabi–Yau 3-folds” [37]. F-theory
on this type of Calabi–Yau 3-folds yields 6D N = 1 theories with various
numbers of U(1) factors [37]. A general construction scheme of elliptically
fibered Calabi–Yau 3-folds by taking double covers of “1/2 Calabi–Yau 3-
folds” is discussed in [37], and some explicit examples of 1/2 Calabi–Yau
3-folds with specific singularity types and Calabi–Yau 3-folds obtained as
their double covers are discussed in [37].

The aim of this study is to discuss a strategy to classify the singularity
types of the elliptic Calabi–Yau 3-folds constructed as double covers of 1/2
Calabi–Yau 3-folds. This result translates, in string theoretic language, to
non-Abelian gauge groups2 forming in 6D F-theory compactifications on
them. Furthermore, this analysis yields a description of the singular fibers3

and sections of 1/2 Calabi–Yau 3-folds and Calabi–Yau 3-folds as double
covers. Therefore, the analysis also directly relates to U(1) gauge groups
and matter fields arising in 6D F-theory compactifications.

There are some obstacles to studying the singularities of 1/2 Calabi–Yau
3-folds. The 1/2 Calabi–Yau 3-folds were constructed as blow-ups of P3 at

1Recent studies of F-theory models in which one or more factors of U(1) form
can be found, for example, in [4, 7, 8, 10, 12, 17, 20, 25, 31, 32, 37, 39–51].

2Discussion of the correspondence between the non-Abelian gauge groups forming
on the 7-branes in F-theory on an elliptic fibration and the fiber types can be found
in [3, 52].

3Kodaira classified the types of the singular fibers of the elliptic surfaces in [53,
54]. The authors of [55, 56] discussed methods to determine the types of the singular
fibers of the elliptic surfaces.
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the intersection points of three quadrics [37]. When studying the singular
fibers of the resulting 1/2 Calabi–Yau 3-folds without resolving the singular-
ity, only two conics meeting in two points can be found, and this generally
does not determine the types of singular fibers. Determining the types of
singular fibers given the equations of three quadrics requires multiple stages
of resolutions, which makes an analysis of the singular fibers difficult to
achieve.

To resolve this difficulty in analyzing the singularity types of 1/2 Calabi–
Yau 3-folds directly, we relate the problem of classifying the singularity types
of the 1/2 Calabi–Yau 3-folds to those of quartic curves in P

2 by consider-
ing the “projective duals.” An interesting mathematical result observed by
Mukai in [57–59], when applied to the 1/2 Calabi–Yau 3-folds, reveals that
the classification of the 1/2 Calabi–Yau 3-folds is actually equivalent to the
classification of the singularity types of the quartic curves in P

2. The singu-
larity types of the 1/2 Calabi–Yau 3-folds and those of plane quartic curves
are actually equivalent based on the notion of the “projective duality” [59].
Making use of this duality, the classification problem of the singularity types
of 1/2 Calabi–Yau 3-folds, which appeared to be obscure and somewhat diffi-
cult, begins to become more transparent, enabling us to find a way to resolve
the problem. By making use of this method, we classify the singularity types
of the 1/2 Calabi–Yau 3-folds when the rank is maximal, and furthermore,
through this approach the singular fibers are described in detail. Based on
this analysis, the structures of the global sections are also described. The
discussion of these are the main goals of this paper.

Because a singularity type of Calabi–Yau 3-fold as a double cover of
the original 1/2 Calabi–Yau 3-fold is identical to the singularity type of
the original Calabi–Yau 3-fold [37], the classification results of singularity
type 1/2 Calabi–Yau 3-folds also yield a classification of the singularity
types of the Calabi–Yau 3-folds as double covers. From the viewpoint of F-
theory, these results yield the non-Abelian gauge groups forming on the 7-
branes in the 6D F-theory on the Calabi–Yau 3-folds. When the classification
scheme is applied to 1/2 Calabi–Yau 3-folds of singularity ranks of strictly
lower than seven, by taking their double covers, 6D N = 1 F-theory models
with (multiple) U(1) factors can also be analyzed. Because our analysis here
includes a description of the singular fibers, the analysis can also be applied
to the matter spectra in the 6D compactifications.

Obtaining the Weierstrass equations of the 1/2 Calabi–Yau 3-folds can
be considerably difficult as pointed out in [37]. Although obtaining the
Weierstrass equations is useful in determining the gauge groups and the
matter spectra, we take an approach to deduce the singularity types and
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the singular fibers directly from the defining equations of the three quadrics,
which specify the complex structure of the 1/2 Calabi–Yau 3-fold described
in this paper.

We focus on 1/2 Calabi–Yau 3-folds with a singularity rank of seven,
which is the maximal rank for the 1/2 Calabi–Yau 3-folds [37], and we clas-
sify the singularity types of such 1/2 Calabi–Yau 3-folds in this study. We
refer to 1/2 Calabi–Yau 3-folds having the maximal rank-seven singular-
ity types as “extremal 1/2 Calabi–Yau 3-folds.” The rank-seven singularity
types of the quartic curves in P

2 were realized in [60] and the classification
of the rank-seven singularities consists of six types [60]. These six types yield
the singularity types of the extremal 1/2 Calabi–Yau 3-folds via applying the
method in [57–59]. Our classification method also applies to 1/2 Calabi–Yau
3-folds having lower singularity ranks.

By analyzing the extremal 1/2 Calabi–Yau 3-folds, we demonstrate that
the structures of the singular fibers and the global sections can be explicitly
seen by conducting blow-ups. Among the classified singularity types of the
extremal 1/2 Calabi–Yau 3-folds, we study in detail two singularity types
to describe the singular fibers and sections. These two types require rela-
tively shallow levels of blow-ups to understand the structures of the singular
fibers. However, other singularity types require deeper levels of blow-ups,
as mentioned in section 3.3, and our study suggests that through multiple
stages of blow-ups the singular fibers can be described in manners similar
to the two singularity types.

Local model buildings [61–64] have been emphasized in recent studies on
F-theory. The global aspects of the models, however, need to be studied to
discuss issues of gravity and problems pertaining to the early universe. The
global aspects of the compactification geometry are analyzed in this study.

Studies on geometric structures of elliptically fibered 3-folds can be found
in [65–67].

This paper is structured as follows: We discuss a method for classifying
the singularity types of 1/2 Calabi–Yau 3-folds in section 2.1. The maxi-
mal rank seven singularity types of 1/2 Calabi–Yau 3-folds are described
in sections 2.2 through 2.7. There are six types of such singularities. Two
of these singularity types are analyzed in detail in sections 3.1 and 3.2. We
demonstrate that the singular fibers and sections can be described after
eight blow-ups. We also mention the remaining rank seven singularity types
in section 3.3. The F-theory application is discussed in section 4. Singu-
larity types of 1/2 Calabi–Yau 3-folds of ranks lower than seven and U(1)
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factors in 6D F-theory are also mentioned. Concluding remarks and remain-
ing problems are mentioned in section 5. Problems that are possibly related
to the swampland conditions are also discussed. Reviews of recent progress
of the swampland criteria can be found in [68, 69]. In [70–72], the authors
discussed the notion of the swampland. A new consistency condition on 6D
N = 1 quantum gravity theories was recently discussed in [73]. The authors
of [74–77] discussed the possible combinations of distinct matter fields and
gauge symmetries for quantum gravity theories in 6D with N = 1 supersym-
metry.

2. Singularity types of 1/2 Calabi–Yau 3-folds and
projective duality

2.1. Method to deduce the equations of three quadrics of 1/2
Calabi–Yau 3-folds

The 1/2 Calabi–Yau 3-folds constructed in [37] are rational elliptic 3-folds
obtained by blowing up P

3 at the intersection points of three quadrics. The
base surface of a 1/2 Calabi–Yau 3-fold is isomorphic to P

2, and taking the
ratio of three quadrics q1, q2, q3, [q1 : q2 : q3], yields the projection. Taking
double covers of the 1/2 Calabi–Yau 3-folds (ramified along appropriate de-
gree 8 hypersurfaces) yields elliptically fibered Calabi–Yau 3-folds, F-theory
compactifications upon which 6D N = 1 theories are provided [37].

The singularity types of the original 1/2 Calabi–Yau 3-fold and the
Calabi–Yau 3-fold as its double cover are identical [37], thus determining
the singular fibers and the singularity types of the 1/2 Calabi–Yau 3-folds
also determines the singularity types of elliptic Calabi–Yau 3-folds as double
covers. This in principle determines the non-Abelian gauge symmetries that
arise in F-theory on the Calabi–Yau 3-folds4.

Pairs of algebraic varieties of different dimensions that are projective
duals were studied in [59]. Applying the analysis in [59] to 1/2 Calabi–Yau
3-folds, the classifications of the singularity types of 1/2 Calabi–Yau 3-folds
and the singularities of the quartic curves in P

2 are found to be identi-
cal. Making use of this mathematical observation reduces the classification
problem of the singularity types of 1/2 Calabi–Yau 3-folds to that of the
singularities of the quartic curves in P

2.

4Whether the singular fibers are split, non-split, or semi-split [52] also needs to
be specified to deduce the precise gauge group.
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In [59], Mukai studied several pairs of del Pezzo manifolds, which are
projective duals to each other. We apply one of these pairs, (X2, Y8), to
1/2 Calabi–Yau 3-folds. Here, X2 is a del Pezzo manifold of dimension
dimCX2 = 9, and del Pezzo manifold Y8 has dimensions of dimCY8 = 3. X2

is a double cover of P
9 ramified over quartic hypersurface D4, and Y8 is

the Veronese 3-fold v2(P
3) embedded inside P

9 [59]. Moreover, X2 and Y8
are projective duals to each other [59]. Here, X2 cut out by seven hyper-
planes yields a double cover of P2 ramified over a quartic curve, which is the
degree-two del Pezzo surface5. Because the projective dual of a hyperplane
is a point, the operation of cutting X2 by seven hyperplanes on the Y8 side
corresponds to the choice of seven points. The seven points span P

6, and
therefore cutting X2 by seven hyperplanes corresponds on the Y8 side to
taking the intersection of Y8 = v2(P

3) and P
6 inside P

9, v2(P
3) ∩ P

6
⊂ P

9.
The intersection is equivalent to cutting v2(P

3) by three hyperplanes in-
side P

9. Because v2(P
3) is a Veronese embedding of P3 into P

9, taking the
intersection v2(P

3) ∩ P
6
⊂ P

9 is equivalent to the intersection of the three
quadrics in P

3 [59]. X2 cut out by seven hyperplanes is isomorphic to the
degree-two del Pezzo surface [59] which is a double cover of P2 ramified over
a quartic curve, and the blow-up of P3 at the intersection points of the three
quadrics yields the Jacobian of the degree-two del Pezzo surface [57–59].
Therefore, the singularity types of the quartic curves in P

2 are identical to
the singularity types of the 1/2 Calabi–Yau 3-folds, and the correspondence
is manifest through the projective duality discussed in [59].

To describe the correspondence of the equations of three quadrics of a
1/2 Calabi–Yau 3-fold and the quartic curve in P

2, when the determinantal
representation of a plane quartic curve is given as a symmetric 4 × 4 matrix,
matrix elements correspond to the equations of the three quadrics in P

3 via
the method discussed in [57–59]. When one finds the determinantal repre-
sentation of a quartic curve, equations of the three quadrics of the dual 1/2
Calabi–Yau 3-fold can be deduced from the determinantal representation.

The maximal singularity rank of 1/2 Calabi–Yau 3-folds is seven [37].
We classify the rank seven singularity types of the 1/2 Calabi–Yau 3-folds
utilizing the method in [57–59]. The 1/2 Calabi–Yau 3-folds possessing the
maximal rank seven singularity types are referred to as extremal 1/2 Calabi–
Yau 3-folds in this note.

5This surface is isomorphic to the blow-up of P
2 at seven points of a general

position.
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Figure 1: The left image describes the quartic curve, which is reducible into
three lines meeting at one point and a line. This curve has D4A

3
1 singularity

[60]. The point at which three lines simultaneously meet yields a D4 singu-
larity, and each of the other three intersection points yields A1 singularity.
The right image describes a quartic curve reducible into one conic and two
tangents. The quartic curve on the right has A2

3A1 singularity [60]. Two
points at which two lines are tangent to the conic yield two A3 singularities.
The intersection of two lines yields A1 singularity.

The classification of the singularity types of the quartic curves in P
2

can be found in [60]. Among the singularities, seven is the maximal rank
and there are six rank-seven singularity types [60]: D4A

3
1, A

2
3A1, A5A2, A7,

D6A1, E7. Therefore, from the argument given, we found that the extremal
1/2 Calabi–Yau 3-folds have six singularity types via applying the method
in [57–59]. The corresponding six singularity types of the plane quartics are
shown in Figures 1, 2, and 3.

As presented in Figures 1, 2, and 3, the quartic curves with rank seven
singularities are reducible into a cubic and a line, two conics, lines and a
conic, or four lines. Considering their determinantal representations, these
situations correspond to a 4 × 4 matrix reducible into smaller blocks of
submatrices.

Given the series of observations, we are now ready to deduce the equa-
tions of the three quadrics of the extremal 1/2 Calabi–Yau 3-folds, which
are described in sections 2.2, 2.3, 2.4, 2.5, 2.6, and 2.7.
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Figure 2: The left image describes a quartic curve reducible into two conics
meeting at a point. The left quartic curve has A7 singularity [60]. The inter-
section point yields A7 singularity. The right image describes a cubic with a
cusp and a line tangent to the flex. The quartic curve on the right has A5A2

singularity [60]. A cusp yields A2 singularity, and the tangent point of the
flex and the line yields A5 singularity.

2.2. D4A
3

1
singularity

We determine the equations of the three quadrics yielding the extremal 1/2
Calabi–Yau 3-fold with the singularity type D4A

3
1, when P

3 is blown up at
the intersections of the three quadrics.

The dual quartic curve with the D4A
3
1 singularity is the sum of three

lines meeting at a point and a line [60], as presented in Figure 1. This quartic
curve is given by the following equation:

(2.1) λ(λ− µ)µν = 0,

where [λ : µ : ν] denotes the coordinates of P2. The three lines λ = 0, µ = 0,
and λ− µ = 0 yield three lines meeting at a point, which we denote as
p1. The determinantal representation of the quartic curve (2.1) is given as
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Figure 3: The left image describes a quartic curve reducible into a conic, a
line tangent to the conic, and another line through the tangent point. The
left quartic curve has D6A1 singularity [60]. The right image is a cubic with
a cusp and cuspidal tangent. The right quartic curve has E7 singularity [60].

follows:

(2.2)









λ 0 0 0
0 µ− λ 0 0
0 0 −µ 0
0 0 0 ν









.

The equations of the three quadrics, q1, q2, q3, can be deduced from the
determinantal representation (2.2). The entries of the matrix (2.2) where λ

appears yield the coefficients of the quadric q1, the entries where µ appears
yield the coefficients of the quadric q2, and the entries where ν appears give
the coefficients of the quadric q3. For example, the variable λ appears in the
(1, 1) and (2, 2) entries of matrix (2.2). Because the coefficient of λ in the (1,
1) entry is 1 and the coefficient of λ in the (2, 2) entry is −1, the equation
of the quadric q1 is given as x2 − y2 (where the (1, 1) entry corresponds to
x2, and the (2, 2) entry corresponds to y2). Here, [x : y : z : w] denotes the
coordinates of P3 (the blow-up of which yields a 1/2 Calabi–Yau 3-fold). The
equations of the remaining two quadrics q2, q3 are determined in a similar
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fashion. The equations of the three quadrics are determined as follows:

q1 = x2 − y2(2.3)

q2 = y2 − z2

q3 = w2.

We denote the curve in the base surface P2 of the 1/2 Calabi–Yau 3-fold
dual to the D4 singularity p1 = [0 : 0 : 1] of the quartic (2.1) by l1. Here,
l1 is given by c = 0 in the base P

2, where we use [a : b : c] to denote the
homogeneous coordinates of the base P

2 of the 1/2 Calabi–Yau 3-folds. We
denote by l2, l3, l4 the three curves dual to the three intersection points,
p2, p3, p4, of the curve ν = 0 with each of the three curves λ = 0, µ = 0, and
λ = µ yielding A1 singularities. The discriminant of the extremal 1/2 Calabi–
Yau 3-fold with D4A

3
1 singularity given by blowing up the base points of the

three quadrics (2.3) is then given by the following:

(2.4) ∆ ∼ l61 · l
2
2 · l

2
3 · l

2
4.

2.3. A
2

3
A1 singularity

We deduce the three quadrics yielding the extremal 1/2 Calabi–Yau 3-fold
with an A2

3A1 singularity type. The plane quartic curve with A2
3A1 singu-

larity is reducible into a conic and two lines tangent to it, as presented in
Figure 1. The equation of the quartic curve is as follows:

(2.5) (µν − λ2)µν = 0,

and the determinantal representation is reducible into two linear factors and
a 2 × 2 submatrix. The determinantal representation is given as follows:

(2.6)









µ λ 0 0
λ ν 0 0
0 0 −µ 0
0 0 0 −ν









.

The equations of the three quadrics can be deduced from the representation
(2.6) in a way similar to that discussed in section 2.2, and the three quadrics
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are given as follows:

q1 = 2xy(2.7)

q2 = x2 − z2

q3 = y2 − w2.

We denote the conic µν − λ2 = 0 as C, and use C∗ to denote the dual
curve of C in the base P

2. We denote the curves in the base P
2 of the 1/2

Calabi–Yau 3-fold dual to the two points p1 = [0 : 0 : 1], p2 = [0 : 1 : 0] at
which each of the two lines µ = 0, ν = 0 is tangent to the conic C yielding A3

singularities by l1, l2. l1 is given by c = 0, and l2 is given by b = 0. The curve
dual to the intersection point p3 of the two lines yielding an A1 singularity is
denoted as l3. The extremal 1/2 Calabi–Yau 3-fold with an A2

3A1 singularity
type then has the following discriminant:

(2.8) ∆ ∼ C∗
· l41 · l

4
2 · l

2
3.

2.4. A7 singularity

We deduce the equations of the three quadrics yielding the extremal 1/2
Calabi–Yau 3-folds with A7 singularity. The quartic curve in P

2 possessing
A7 singularity is two conics meeting at one point, as presented in Figure 2.
The equation of this quartic curve is given as follows:

(2.9) (λν − µ2)
(

λ(λ+ ν)− µ2
)

= 0.

The determinantal representation of the quartic curve is given in the follow-
ing:

(2.10)









λ µ 0 0
µ ν 0 0
0 0 λ µ

0 0 µ λ+ ν









.

The equations of the three quadrics can be deduced from the representation
(2.10), and the three quadrics are given as follows:

q1 = x2 + z2 + w2(2.11)

q2 = 2xy + 2zw

q3 = y2 + w2.
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We denote the two conics of the quartic curve (2.9) by C1 and C2. The
curve in the base P

2 of the 1/2 Calabi–Yau 3-fold dual to the intersection
point p = [0 : 0 : 1] of the two conics C1 and C2 is given by c = 0. We denote
this dual curve in the base P

2 by l, and denote the duals of the conics C1

and C2 by C∗

1 and C∗

2 , respectively. The discriminant of the extremal 1/2
Calabi–Yau 3-fold with an A7 singularity type is then given as follows:

(2.12) ∆ ∼ l8 · C∗

1 · C∗

2 .

2.5. A5A2 singularity

We determine the equations of the three quadrics yielding the extremal 1/2
Calabi–Yau 3-folds with A5A2 singularity. The plane quartic curve possess-
ing A5A2 singularity is a cubic curve with a cusp and a line tangent to the
flex, as presented in Figure 2. The equation of this quartic curve is given as
follows:

(2.13) (λ3 + µν2)µ = 0.

The determinantal representation of the quartic curve is given6 in the fol-
lowing:

(2.14)









−µ 0 λ 0
0 −λ ν 0
λ ν 0 0
0 0 0 µ









.

The equations of the three quadrics are obtained from the representation
(2.14), and the three quadrics are given as follows:

q1 = −y2 + 2xz(2.15)

q2 = −x2 + w2

q3 = 2yz.

The curve in the base P
2 of the 1/2 Calabi–Yau 3-fold dual to the cusp

p0 = [0 : 1 : 0] of the cuspidal cubic in (2.13) yielding A2 singularity is given
by b = 0, and we denote this curve in the base P

2 by l0. The cuspidal cubic
λ3 + µν2 = 0 in (2.13) is denoted as B, and the dual curve in the base P

2 is

6A discussion of a determinantal representation of a cuspidal cubic can also be
found in [78].
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denoted as B∗. The curve in the base P
2 dual to the flex p1 = [0 : 0 : 1] in

the cuspidal cubic B yielding an A5 singularity is given by c = 0 in the base;
we denote this curve in the base P

2 as l1. The discriminant of the extremal
1/2 Calabi–Yau 3-fold is then given by the following:

(2.16) ∆ ∼ l30 · l
6
1 ·B

∗.

2.6. D6A1 singularity

We determine the equations of the three quadrics yielding extremal 1/2
Calabi–Yau 3-folds withD6A1 singularity. The quartic curve in P

2 possessing
D6A1 singularity is a conic and a tangent line to it, and another line passing
through the tangent point, as presented in Figure 3. The equation of this
quartic curve is given as follows:

(2.17) (λν − µ2)λµ = 0.

The determinantal representation of the quartic curve is given in the follow-
ing:

(2.18)









λ µ 0 0
µ ν 0 0
0 0 λ 0
0 0 0 µ









.

The equations of the three quadrics are deduced from the representation
(2.18), and the three quadrics are given as follows:

q1 = x2 + z2(2.19)

q2 = w2 + 2xy

q3 = y2.

The conic λν − µ2 = 0 in the quartic (2.17) is denoted as C. We denote
by l1 the curve in the base P

2 of the 1/2 Calabi–Yau 3-fold dual to point
p1 at which the line λ = 0 is tangent to the conic C yielding D6 singularity.
We denote by l2 the curve in the base P

2 dual to the intersection p2 of the
line µ = 0 and the conic C yielding A1 singularity. The discriminant of the
extremal 1/2 Calabi–Yau 3-fold with D6A1 singularity type is then given by
the following:

(2.20) ∆ ∼ l81 · l
2
2 · C

∗.
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2.7. E7 singularity

We determine the equations of the three quadrics yielding the extremal 1/2
Calabi–Yau 3-folds with the E7 singularity type. The quartic curve in P

2

possessing the E7 singularity type is a cubic with a cusp and the cuspidal
tangent, as presented in Figure 3. The equation of this quartic curve is given
as follows:

(2.21) (λ3 + µν2)ν = 0.

The determinantal representation of the quartic curve is given in the follow-
ing:

(2.22)









−µ 0 λ 0
0 −λ ν 0
λ ν 0 0
0 0 0 ν









.

The equations of the three quadrics are deduced from the representation
(2.22), and the three quadrics are given as follows:

q1 = −y2 + 2xz(2.23)

q2 = −x2

q3 = 2yz + w2.

The cuspidal cubic λ3 + µν2 = 0 in (2.21) is denoted as B. The curve in
the base surface P2 of the 1/2 Calabi–Yau 3-fold dual to the E7 singularity at
the cusp p = [0 : 1 : 0] of the cuspidal cubic B is denoted as l; in addition, the
curve l is given by b = 0. The discriminant of the extremal 1/2 Calabi–Yau
3-fold with singularity type E7 is then given as follows:

(2.24) ∆ ∼ l9 ·B∗.

3. Singular fibers of extremal 1/2 Calabi–Yau 3-fold

Studying the equations of the three quadrics of the extremal 1/2 Calabi–Yau
3-folds, we analyze the singular fibers. We perform operations of blow-ups
to conduct this analysis. The extremal 1/2 Calabi–Yau 3-folds with the
singularity types D4A

3
1 and A2

3A1 require only shallow levels of blow-ups to
understand the structures of the singular fibers and sections. The results
of the blow-ups of the two singularity types are described in sections 3.1
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and 3.2. While the remaining four types of singularities require deeper levels
of blow-ups, the singular fibers and sections are expected to be understood
in a similar fashion. We discuss these cases in section 3.3.

3.1. Extremal 1/2 Calabi–Yau 3-fold with D4A
3

1
singularity

We study the three quadrics yielding the 1/2 Calabi–Yau 3-fold with the
D4A

3
1 singularity deduced in section 2.2 to demonstrate that this extremal

1/2 Calabi–Yau 3-fold has type I∗0 fibers.
From the equations of the three quadrics (2.3), we can see that there

are four base points: [1 : ±1 : ±1 : 0]. Because there are generally eight base
points given three quadrics, this result implies that each of the four base
points has multiplicity 2. This can also be viewed as four points and an
additional four points “ infinitely near” to them.

Blowing up the four base points [1 : ±1 : ±1 : 0] separates the four points
and the four points infinitely near to them. From the equations of the three
quadrics, we can see that the singular fiber corresponding to the D4 singu-
larity is

b(x2 − y2)− a(y2 − z2) = 0(3.1)

w2 = 0,

where a, b denote parameters such that [a : b] parameterizes the discriminant
component. The equation (3.1) represents a double conic. Because the double
conic (3.1) contains the four base points, when the four base points are blown
up, four P1s arise from the four base points in the double conic. As a result
of the four blow-ups, the singular fiber corresponding to D4 singularity is
described as a conic and four P

1s, each of which intersects with the conic
in one point. Therefore, we can explicitly see that, after the four blow-ups,
type I∗0 fibers appear. This situation is shown in Figure 4.

When the total space P
3 is considered, after these four blow-ups occur

at the four base points, four P
2s arise. Each of the P

2s contains one point
of indeterminacy. The morphism from each P

2 arising from the blow-ups
to the base P

2 is not a surjection, and the image is isomorphic to P
1. We

consider the blow-ups of the four points of indeterminacy. These additional
four blow-ups transform the four P2s that appeared from the previous four
blow-ups into Hirzebruch surface F1s, and P

2 arises from each of the four
F1s. Each of the four P

2s that arose from the latter four blow-ups surjects
onto the base P2 under the projection. They yield sections and generate the
Mordell–Weil group.
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Figure 4: The image shows a singular fiber corresponding to D4 singularity.
The vertical line represents a conic, and the four horizontal lines represent
P
1s that result from the initial four blow-ups. This describes a type I∗0 fiber.

3.2. Extremal 1/2 Calabi–Yau 3-fold with A
2

3
A1 singularity

Next, we analyze the singular fibers of the extremal 1/2 Calabi–Yau 3-fold
with the A2

3A1 singularity type by conducting a blow-up. The base points of
the three quadrics (2.7) consist of four points: [0 : 1 : 0 : ±1], [1 : 0 : ±1 : 0].
The singular fibers corresponding to one of the two A3 singularities are given
by the following:

2b xy − a(x2 − z2) = 0(3.2)

y2 − w2 = 0,

([a : b] parameterizes the discriminant component.) The result of the singular
fibers corresponding to the other A3 singularity is analogous to what we now
describe. Without a blow-up, (because y2 − w2 = 0 in (3.2) splits into two
linear factors,) one can only find two conics intersecting at two points, and
the type I4 fiber is not apparent.

The two conics in (3.2) intersect at two points [1 : 0 : ±1 : 0], which are
two among the base points. When these points are blown up, two intersecting
conics are separated as a result of the two blow-ups, and two P

1s arise from
the two intersection points. Consequently, the structure of the type I4 fibers
becomes clear after the two blow-ups, as described in Figure 5. When the
remaining two base points [0 : 1 : 0 : ±1] are blown up, the structure of the
type I4 fibers can also be explicitly seen from the other A3 singularity.
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Figure 5: The left image represents two conics meeting at two points before
the blow-ups. The right image describes type I4 fiber after two blow-ups.
The two vertical lines are two separated conics, and the horizontal blue lines
are two P

1s that arise after two blow-ups.

When conducting four blow-ups of the four points, four P
2s arise from

the total space P
3. When four additional blow-ups of the resulting P

2s are
applied, these latter four blow-ups transform the four P

2s that arise from
the previous four blow-ups into four F1s, and the four P

2s that arise from
the latter four blow-ups surject onto P

2 through projection, yielding global
sections, generating the Mordell–Weil group.

3.3. Extremal 1/2 Calabi–Yau 3-folds with other singularity
types

Extremal 1/2 Calabi–Yau 3-folds with the other four singularity types re-
quire deeper levels of blow-ups to analyze the singular fibers. The extremal
1/2 Calabi–Yau 3-folds with two singularity types discussed in sections 3.1
and 3.2 required two stages of blow-ups: the first four blow-ups and the next
four blow-ups. After these blow-ups, the structures of the singular fibers and
sections can clearly be seen.

For example, concerning the extremal 1/2 Calabi–Yau 3-folds with A7

and A5A2 singularities before a blow-up, only two conics meeting at two
points can be seen from the A7 and A5 singularities. The base points of the
quadrics yielding extremal 1/2 Calabi–Yau 3-folds with the two singularities
A7 and A5A2 consist of two and three points, respectively, implying that
extremal 1/2 Calabi–Yau 3-folds with A7 and A5A2 singularities require
deeper stages of blow-ups to analyze the singular fibers than those described
in sections 3.1 and 3.2. It is expected that, after multiple stages of blow-
ups, P

1s forming an octagon and hexagon can be seen from A7 and A5

singularities, yielding type I8 and I6 fibers.
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For extremal 1/2 Calabi–Yau 3-folds with D6A1 and E7 singularities,
after multiple stages of blow-ups, we expect that type I∗2 and type III∗ fibers
can be explicitly seen from the D6 and E7 singularities. A future study can
focus on investigating the detailed structures of extremal 1/2 Calabi–Yau
3-folds with these singularity types.

4. Application to 6D F-theory

Taking double covers of 1/2 Calabi–Yau 3-folds ramified over a hypersurface
of degree 4 in terms of the three quadrics q1, q2, q3 yields elliptic Calabi–Yau
3-folds [37]. Seven tensor fields arise7 in 6D N = 1 F-theory on the resulting
Calabi–Yau 3-folds [37]. The resulting Calabi–Yau 3-fold and the original
1/2 Calabi–Yau 3-fold have an identical singularity type [37]. Therefore,
taking double covers of the extremal 1/2 Calabi–Yau 3-folds yields elliptic
Calabi–Yau 3-folds with singularity types E7, D6A1, A7, A5A2, A

2
3A1, and

D4A
3
1. E7 gauge group forms in 6D F-theory on the Calabi–Yau 3-fold ob-

tained as double cover of 1/2 Calabi–Yau 3-fold with E7 singularity type as
constructed in section 2.7.

The sum of the Mordell–Weil rank and the rank of the singularity type
of a 1/2 Calabi–Yau 3-fold is always seven [37], and therefore every extremal
1/2 Calabi–Yau 3-fold has Mordell–Weil rank 0. A Calabi–Yau 3-fold as a
double cover of an extremal 1/2 Calabi–Yau 3-fold has Mordell–Weil rank
equal to or greater than the extremal 1/2 Calabi–Yau 3-fold [37], and thus
not much can be stated regarding the U(1) symmetry forming in 6D F-
theory on the resulting Calabi–Yau 3-folds constructed as double covers of
extremal 1/2 Calabi–Yau 3-folds.

The method relating the singularity types of 1/2 Calabi–Yau 3-folds
to those of the quartic curves in P

2 discussed in section 2.1 also applies
to 1/2 Calabi–Yau 3-folds of lower singularity ranks. Thus, we obtain the
classification of the singularity types of 1/2 Calabi–Yau 3-folds from the
classification results of the plane quartic curves [60], by applying the method
in [57–59]. Concrete constructions of the subextremal 1/2 Calabi–Yau 3-
folds (namely 1/2 Calabi–Yau 3-folds possessing the singularity types of
rank 6) can be a likely target of future studies. Because the subextremal
1/2 Calabi–Yau 3-folds have Mordell–Weil rank 1, their double covers yield
Calabi–Yau 3-folds of Mordell–Weil rank of at least 1. 6D N = 1 F-theory

7The base surface of the elliptic Calabi–Yau 3-folds as double covers of the 1/2
Calabi–Yau 3-folds is isomorphic to a degree-2 del Pezzo surface [37].
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compactifications on the resulting Calabi–Yau 3-folds have (at least) one
U(1) factor.

We utilized the “duality” of the singularities of the quartic curves in P
2

and the 1/2 Calabi–Yau 3-folds to deduce the equations of the three quadrics
yielding the extremal 1/2 Calabi–Yau 3-folds. The discriminant of a Calabi–
Yau 3-fold constructed as a double cover of a 1/2 Calabi–Yau 3-fold can be
deduced from the discriminant of the 1/2 Calabi–Yau 3-fold [37]. The dis-
criminants of the extremal 1/2 Calabi–Yau 3-folds were deduced in sections
2.2–2.7 by utilizing the duality of the singularity types of the plane quar-
tic curves and the 1/2 Calabi–Yau 3-folds. This method also applies to 1/2
Calabi–Yau 3-folds of lower singularity ranks; therefore, the discriminants
of the elliptic Calabi–Yau 3-folds as their double covers can also be deduced
in a similar manner. Because matter fields localize at the intersections of
the 7-branes wrapped on the discriminant components, the locations of the
localized matter in 6D F-theory on the Calabi–Yau 3-folds are determined
from the deduced discriminants. The base change lifts the global sections
of the 1/2 Calabi–Yau 3-folds to sections of the Calabi–Yau 3-fold as their
double covers [37].

Because the structures of the singular fibers can be analyzed through
blow-up operations as demonstrated in sections 3.1 and 3.2, there is a chance
that the matter spectra in 6D F-theory on the Calabi–Yau 3-folds can also
be deduced by studying the structures of the singular fibers at the collisions
of the fibers, which correspond to the intersections of the 7-branes, an inves-
tigation into which can be a direction of future study. Because the blow-up
methods described in sections 3.1 and 3.2 revealed the structures of the sec-
tions, they might be used to analyze the explicit forms of the sections. The
data mentioned can be used to determine the charges of the hypermultiplets
charged under the U(1) gauge symmetries [37], when 6D F-theory is com-
pactified on Calabi–Yau 3-folds of positive Mordell–Weil ranks8 constructed
as double covers of 1/2 Calabi–Yau 3-folds.

5. Open problems

We determined the singularity types of extremal 1/2 Calabi–Yau 3-folds,
i.e., 1/2 Calabi–Yau 3-folds with a singularity of rank 7, and deduced the
equations of the three quadrics yielding the extremal 1/2 Calabi–Yau 3-
folds. Double covers of the extremal 1/2 Calabi–Yau 3-folds give elliptic

8The Mordell–Weil ranks of Calabi–Yau 3-folds constructed as the double covers
of 1/2 Calabi–Yau 3-folds of positive Mordell–Weil ranks are positive [37].
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Calabi–Yau 3-folds, the singularity types of which are identical to those
of the original 1/2 Calabi–Yau 3-folds [37]. The methods we described in
sections 3.1 and 3.2 enabled us to analyze the geometric structures of the
singular fibers and sections. These methods might also have applications in
investigating the matter fields arising in 6D F-theory on the Calabi–Yau
3-folds as double covers.

Seven tensor fields arise in 6D N = 1 F-theory on elliptic Calabi–Yau
3-folds as double covers of 1/2 Calabi–Yau 3-folds [37]. The analysis in [37]
suggests that 6D F-theory models with T = 7 on Calabi–Yau 3-folds as dou-
ble covers of 1/2 Calabi–Yau 3-folds are contained in vast numbers of models
of 6D F-theory with T = 7, based on the fact that non-Abelian gauge groups
of ranks of up to only 7 can form in 6D F-theory on Calabi–Yau 3-folds as
double covers of 1/2 Calabi–Yau 3-folds. Analogous to the fact that the
points in the moduli of elliptic K3 surfaces where a K3 surface splits into a
pair of rational elliptic surfaces9 correspond to the stable degeneration limit
[80, 81] at which F-theory/heterotic duality [1–3, 80, 82] is strictly formu-
lated, do the points in the complex structure moduli of Calabi–Yau 3-folds
where a Calabi–Yau 3-fold splits into 1/2 Calabi–Yau 3-folds correspond to
certain limits with a physical significance?

Furthermore, do elliptic Calabi–Yau 3-folds 6D F-theory compactifica-
tions on which have a number of tensor fields other than seven exhibit
an analogous geometric structure wherein Calabi–Yau 3-folds allow split-
ting into building blocks of elliptic 3-folds? If so, investigating such elliptic
Calabi–Yau 3-folds can be an interesting approach. If such Calabi–Yau 3-
folds do not exist, do the 6D N = 1 models with seven tensor fields have a
special meaning? Investigating these questions might be interesting in rela-
tion to the swampland conditions.
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