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The quantum Rabi model (QRM) is widely recognized as a partic-
ularly important model in quantum optics and beyond. It is con-
sidered to be the simplest and most fundamental system describing
quantum light-matter interaction. The objective of the paper is to
give an analytical formula of the heat kernel of the Hamiltonian
explicitly by infinite series of iterated integrals. The derivation of
the formula is based on the direct evaluation of the Trotter-Kato
product formula without the use of Feynman-Kac path integrals.
More precisely, the infinite sum in the expression of the heat kernel
arises from the reduction of the Trotter-Kato product formula into
sums over the orbits of the action of the infinite symmetric group
S∞ on the group Z∞

2 , and the iterated integrals are then consid-
ered as the orbital integral for each orbit. Here, the groups Z∞

2 and
S∞ are the inductive limit of the families {Zn

2}n≥0 and {Sn}n≥0,
respectively. In order to complete the reduction, an extensive study
of harmonic (Fourier) analysis on the inductive family of abelian
groups Zn

2 (n ≥ 0) together with a graph theoretical investigation
is crucial. To the best knowledge of the authors, this is the first
explicit computation for obtaining a closed formula of the heat
kernel for a non-trivial realistic interacting quantum system. The
heat kernel of this model is further given by a two-by-two matrix
valued function and is expressed as a direct sum of two respective
heat kernels representing the parity (Z2-symmetry) decomposition
of the Hamiltonian by parity.
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1. Introduction

The quantum Rabi model (QRM) is widely recognized as the simplest and
most fundamental model describing quantum light-matter interactions, that
is, the interaction between a two-level system and a bosonic field mode (see
e.g. [10] for a recent collection of introductory, survey and original articles
after Isidor Rabi’s seminal papers [52, 53] on the semi-classical (Rabi) model
in 1936 and 1937 and the full quantization [33] established in 1963 by Jaynes
and Cummings). Quantum interaction models, of which the QRM may be
considered as a distinguished representative, have been considered not only
by theorists but also by experimentalists (e.g. [67]) as indispensable models
for advancing research on quantum computing and its implementation (see
e.g [11, 21]). In spite of recent progress on theoretical/mathematical and
numerical studies (e.g. see [6, 10, 35, 65] and their references), knowledge
in several fundamental areas is still limited. For instance, explicit formulas
for time evolution of the corresponding systems remain largely unknown
(though certain partial results have been discussed, e.g. in [41] an approx-
imation for the Spin-Boson model and in [1, 15] certain matrix element, a
correlation function, for the Kondo effect), and similarly, qualitative infor-
mation about the spectrum in several coupling regimes (stipulated by the
physical parameters defining the model) and eigenvalues distribution (e.g.
the unsolved conjecture for the QRM in [7]) remains sparse and mysterious
(see, e.g. [57]).

The Hamiltonian HR of the QRM is precisely given by

HR := ωa†a+∆σz + g(a+ a†)σx.

Here, a† and a are the creation and annihilation operators of the single
bosonic mode ([a, a†] = 1), σx, σz are the Pauli matrices (sometimes written
as σ1 and σ3, but since there is no risk of confusion with the variable x
to appear below in the heat kernel, we use the usual notations), 2∆ is the
energy difference between the two levels, g denotes the coupling strength
between the two-level system and the bosonic mode with frequency ω (sub-
sequently, we set ω = 1 without loss of generality). The integrability of the
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QRM was established in [7] using the well-known Z2-symmetry of the Hamil-
tonian HR, usually called parity. The QRM actually appears ubiquitously
in various quantum systems including cavity and circuit quantum electro-
dynamics, quantum dots and artificial atoms with potential applications in
quantum information technologies (see [10, 21]). For instance, recent exper-
imental results [66, 67], aimed at measuring light shifts of superconducting
flux qubits deep-strongly coupled to LC oscillators, agree with theoretical
predictions based on the QRM and its asymmetric version. It is actually
shown in [67] that in the deep-strong regime (i.e. in the case (∆, ω)≪ g),
the energy eigenstates are well described by entangled states.

The purpose of the present paper is to obtain closed explicit expressions
for the heat kernel and the partition function of the QRM. Let us briefly
recall the definitions. The heat kernel KR(x, y, t; g,∆) of HR is the integral
kernel corresponding to the operator e−tHR (one-parameter semigroup), that
is, KR(x, y, t; g,∆) satisfies

e−tHRϕ(x) =

∫ ∞

−∞
KR(x, y, t; g,∆)ϕ(y)dy

for a compactly supported smooth function ϕ : R→ C2. More precisely,
KR(x, y, t; g,∆) is the (two-by-two matrix valued) function satisfying

∂

∂t
KR(x, y, t; g,∆) = −HRKR(x, y, t; g,∆)

for all t > 0 and limt→0KR(x, y, t; g,∆) = δx(y)I2 for x, y ∈ R.
In statistical physics, the partition function of a system is of fundamental

importance as it describes the statistical properties of the system in ther-
modynamic equilibrium as a function of temperature and other parameters,
such as the volume enclosing a gas. The partition function ZR(β; g,∆) of
the quantum system QRM is given by the trace of the Boltzmann factor
e−βE(µ), E(µ) being the energy of the state µ:

ZR(β; g,∆) := Tr[e−tHR ] =
∑

µ∈Ω
e−βE(µ),

where Ω denotes the set of all possible (eigen-)states of HR.
In general, the computation of the heat kernel of an operator is con-

sidered to be a difficult problem and it often involves the use of mathe-
matically transcendental techniques such the Feynman path integrals or the
well-defined (rigorous) Feynman-Kac formulas (for the relation between the
path integral and the (Lie-) Trotter-Kato product formula, see e.g. [12] and
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[26]). For instance, the heat kernel was expressed by the Feynman-Kac path
integral in [22]. In contrast, the method presented in this paper for the ex-
plicit computation of the heat kernel of the QRM is based on detailed calcu-
lations using the Trotter-Kato product formula (or the exponential product
formula for the semigroup) directly for a pair of (in general) self-adjoint
unbounded operators [4, 34]. In particular, we do not employ path-integrals
or probabilistic methods, instead, we deal with the limit appearing in the
Trotter-Kato product formula by using harmonic (Fourier) analysis on the
inductive family of abelian finite groups {Zn2}n≥0. Each elements of Zn2 , for
n ∈ N, may be interpreted as a path between two points alternating be-
tween two “states”. For illustrative purposes, in figure 1 we show two paths
corresponding to two elements of Zn2 where the two states are denoted by
“+” and “-”. In this way, in our computation, in place of all paths in the
path integral, we employ all paths in the inductive limit Z∞

2 := lim−→Zn2 as
n→∞ (with a natural point measure). Our infinite, yet countable, number
of paths in Z∞

2 may then be considered as sort of representatives of all paths
in the Feynman-Kac path integral. Symbolically, we may think there is some
equivalence ∼ such that

{ paths }/ ∼ ←→ Z∞
2

is a bijection. A deeper understanding of this expected relation is an impor-
tant open question.

91 2 3 4 5 6 7 8

Z0
2 = {0} ∞

−

+

Figure 1. Two paths in Zn2 for n = 9.

The resulting formulas for the heat kernel and partition function are
given as infinite series (actually, a uniformly convergent power series in the
parameter ∆) where each of the summands consist of a k-iterated integral
(k = 0, 1, 2, . . .). Concretely, for the heat kernel of QRM, the main result of
this paper, given in Theorem 4.2, is the analytical formula of the form

KR(x, y, t; g,∆) = K0(x, y, t; g)

∞∑

λ=0

(t∆)λe−2g2(coth(
t
2 ))

(−1)λ

Φλ(x, y, t; g).

Here, K0(x, y, t; g) is explicitly given through Mehler’s kernel, that is, the
heat propagator of the quantum harmonic oscillator (see Theorem 4.2 for



✐

✐

“8-Reyes-Bustos” — 2023/3/21 — 17:05 — page 1351 — #5
✐

✐

✐

✐

✐

✐

Heat kernel for the quantum Rabi model 1351

the definition) and Φλ(x, y, t; g) is a 2× 2 matrix-valued function given by

Φλ(x, y, t; g) :=

∫
· · ·
∫

0≤µ1≤···≤µλ≤1

e
4g2

cosh(t(1−µλ))

sinh(t)
( 1+(−1)λ

2
)+ξλ(µλ,t)

×
[
(−1)λ cosh (−1)λ+1 sinh
− sinh cosh

]
(θλ(x, y,µλ, t)) dµλ.

We refer to § 4 for the definition of the functions ξλ(µλ, t) and θλ(x, y,µλ, t)
which are explicitly represented by finite sums of hyperbolic functions. An
analogous expression is given in Corollary 4.3 for the partition function of
QRM obtained from the heat kernel formula by taking trace. In the language
of Z∞

2 -paths described above, the infinite sum (series) in the expression of
the heat kernel is considered to be taken over the orbits Oλ of the infinite
symmetric group S∞ defined by the inductive family of symmetric groups
{Sn}n≥0 and the summand given by iterated integral (over the λth sim-
plex) can be regarded as the orbital integral for each orbit Oλ in Z∞

2 (cf.
Lemma 3.19). A short but detailed discussion is given in §4.2 and we leave to
[55] the more detailed discussion along the induced representation viewpoint
of Tsilevich and Vershik [61].

It is relevant to mention that similar expressions have been found in
the study of evolution operators (propagators) or related quantities in other
physical models. For the Hamiltonian associated to the Kondo problem (the
model for a quantum impurity coupled to a large reservoir of non-interacting
electrons), a special matrix coefficient (a correlation function) of the heat
kernel was obtained in [1] (see Equation (1) therein) as a power series with
coefficients given by iterated integrals (see also [40] for an extensive dis-
cussion). This study is continued in [15] to obtain numerical results on the
behavior of the correlation function for long times and its asymptotics for
the Kondo problem. An attempt to obtain the thermodynamic properties
of a Kondo impurity using the Monte Carlo method was first considered in
[58], but in contrast to the method developed in [15], it involves simulation
in the grand ensemble, a technically more difficult problem. For the Spin-
Boson model, which may be regarded as a generalization of the QRM, the
formal expression for P (t) := ⟨σz(t)⟩ where σz(t) is the Heisenberg repre-
sentation with respect to the full Hamiltonian at time t, a quantity related
to the qualitative behaviour of the system, is given in (4.17-19) of [41] as a
power series in a parameter with iterated integral coefficients. In both cases,
the formulas are obtained by the evaluation of Feynman-Kac path-integrals.
Some recent developments, mainly on the experimental implementation side
can be found in the review [42].
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On the topic of the QRM, in [68] the authors gave an approximated
(or incomplete) formula for the propagator using path-integral techniques.
For the Spin-Boson model, and the QRM as a special case, a Feynman-Kac
formula for the heat kernel (semi-group generator) was obtained in [22, 23]
via a Poisson point process and a Euclidean field. However, for the study
of longtime behavior of the system, the use of numerical computations or
approximations is inevitable (see for instance [13, 43]). In addition, we note
that the heat kernel of the QRM (Theorem 4.2) might be computed from
the Feynman-Kac path integral expression of Theorem 3.2 in [22] using the
method computing P (t) developed in [41] (or, back to the definition of the
path integral and make it to be a Riemann sum as in this paper) but it seems
to require a similar volume of computation with a necessary mathematically
rigorous discussion.

At this point, it is significant to mention a mathematical model that
shares some features with the QRM and that actually, in a specific sense,
may be considered to be a generalization of the QRM. The non-commutative
harmonic oscillator (NCHO) is the model defined by a deformation of the
tensor product of the quantum harmonic oscillator (cf. [25]) and the two di-
mensional trivial representation of Lie algebra sl2 (see [50, 51]). The QRM is
obtained from the NCHO (with generalized parameters in the definition of
the Hamiltonian) through a confluence process (i.e. two regular singularities
merge to an irregular singularity) in the Heun ODE picture of respective
models [63] (for the first description of the Heun ODE picture of the NCHO
see [49]). Considering the NCHO as a sort of covering of the QRM (in the
sense of the confluence procedure), one might expect the explicit derivation
of the heat kernel to be simpler than in the case of the QRM, however,
the heat kernel for the NCHO is yet to be obtained. It is worth remark-
ing here that the spectrum of the NCHO is known to posses many rich
arithmetic structure (e.g. modular forms, particular congruences, automor-
phic integrals) via the special values (i.e. moments of partition function) of
its spectral zeta function [29, 30, 36–39, 45, 47]. We expect the spectrum
of QRM (via spectral zeta function [55, 59]) to have similar rich number
theoretic structure as well.

The paper is organized as follows. In §2, we make preliminary calcula-
tions based on the Trotter-Kato product formula by employing newly defined
two-by-two matrix-valued creation and annihilation operators b and b† de-
pending on the parameter g. The resulting expression is a limit (N →∞)
that, at a glance, resembles a Riemann sum where each of the summands con-

tains a sum of exponential terms over subsets C(ℓ)ij of ZN2 for 2 ≤ ℓ ≤ N and
i, j ∈ {0, 1} (see Definition 2.1 in §2.4). However, the presence of (infinitely
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many) changes of signature with non-trivial coefficients in the exponential
terms is an obstacle for the direct evaluation of this expression.

In order to overcome the aforementioned difficulties in the evaluation
of the limit, in §3 we make use of harmonic analysis on the finite groups

Zk2 (k ∈ Z≥0). Concretely, by noticing a natural bijection between C(ℓ)ij and

Zℓ−2
2 , we transform the sum over C(ℓ)ij into an equivalent sum over the

dual group of Zℓ−2
2 using the Fourier transform. To simplify the resulting

expressions, in addition to the standard theory of harmonic analysis, we
also develop certain graph theoretical and combinatorial techniques in §3.2.
The transformed sum is then seen to consist of a radial function part (for
ρ ∈ Zℓ−2

2 ) that is controlled by fixing |ρ| = λ, while the sum of remaining
part is evaluated as a multiple integral in §3.4. We remark that transforming
the computation into the dual stage (i.e. the Fourier image) is not only indis-
pensable in order to evaluate the sum in practice, but it also reveals certain
structural information that appears in the final expression of the heat kernel
(cf. Lemma 3.15). Precisely, one of the advantages of employing harmonic
analysis on Zk2 is that the product containing sign changes from the non-
commutative part appearing in the (finite approximate) expression of the
heat kernel (2.2) can be transformed into a single trigonometric function of

a alternating sum of “q-numbers” [i]q =
1−qi
1−q (similar to the evaluation of a

Gauss sum in number theory). The remaining advantage is that it gives a
systematic treatment of the object by separating the radial part and the oth-
ers in the dual group of Zk2 (see also Remark 3.4). It should be noticed that
the graph theoretical discussion in §3.2 enables us to obtain such separation.

The limit is evaluated in §4, thus completing the computation of the heat
kernel. The final result (Theorem 4.2) shows that the heat kernel of the QRM
is expressed as an infinite sum of the terms given by k-iterated integrals
(k = 0, 1, 2, . . .). It is important to notice that the point-wise convergence
of the iterated integral kernels to the heat kernel follows from the fact that
the corresponding sequence of the Trotter-Kato approximation operators
converges not only in the strong operator topology but in the operator norm
topology as well (see [4] and references therein). The explicit form of the
partition function (Corollary 4.3) then follows directly from that of the heat
kernel. As mentioned above, the Hamiltonian for the QRM possesses a parity
(Z2-symmetry). From this fact, we see that the heat kernel for the model,
given by two-by-two matrix of operators, is expressed as the direct sum of
two heat kernels which represent the parity decomposition (Theorem 4.4).
We then derive the explicit formula for the partition function for each parity
(Corollary 4.5).
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To the best knowledge of the authors, this is the first non-trivial example
of explicit computation of the heat kernel of an interacting quantum sys-
tem. Although similar formulas have been derived before (e.g. for the spin
dynamics of the Kondo model or of the general Spin-Boson model), this
was done only for the reduced density matrix of the two-level system (the
spin) and not for the full system. Actually, as already mentioned, for the
heat kernel of the Kondo Hamiltonian, only a special matrix element was
obtained in [1, 15] as a sum of iterated integrals (see also Appendices B, C,
D in [41]).

The method developed in this paper using the Trotter-Kato product for-
mula may be generalized to other similar quantum systems. For instance,
it may be extended in a straightforward way for the study of the heat ker-
nel of generalizations of the QRM like the asymmetric quantum Rabi model
(AQRM) or the Dicke model (see e.g [9]) and the two photons quantum Rabi
model (see, e.g. [56]). We also expect it may be used for more complicated
models like the Spin-Boson model. We note, in particular, that the method
does not use any Z2-symmetry of the QRM Hamiltonian (see Remark 3.5).
We believe that this method may play the role of a compass in the study of
other Hamiltonians and their heat kernels. Actually, the time evolution oper-
ator e−itHR (t ∈ R), obtained by analytic continuation of e−tHR with respect
to t, is of great importance in physics. Here, according to Stone’s theorem,
the operator e−itHR (t ∈ R) is unitary and describes a strongly continuous
one-parameter group of unitary transformations in the Hilbert space since
HR is self-adjoint. For the details, we direct the reader to [55]. Moreover,
there have been active studies and significant efforts on the estimation of the
Trotter error in view of potential applications, e.g. to quantum simulation.
See the recent study [16] (and [17] for an updated version) and the refer-
ences therein. Although the QRM Hamiltonian is simpler than the general
quantum systems considered in the aforementioned studies, we expect that
the method for computation developed in the present paper may contribute
to the estimation of the Trotter error. We will consider this point in another
occasion.

Furthermore, we remark that although the QRM is in the scientific spot-
light in theoretical and experimental physics, a full-fledged classification
and consequent theoretical prediction of coupling regimes remains unclear
(see, e.g. [57]). In particular, the current coupling regime classification was
initially based on the agreement between the QRM and its rotating-wave
approximation, for instance, in [46] using a trapped-ion system the authors
demonstrate the breakdown of the rotating-wave approximation of the QRM
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as the parameters move from one coupling regime to another. Further ap-
proximations that work over the different regions under certain conditions
have been proposed (see [44] for the approximation of the ground state for
AQRM in all coupling regimes). A coupling regime classification based on
the spectrum has been proposed in [57], which in addition to the parame-
ters of the system takes into account the energy the system can access. We
expect that precise numerical computations based by the explicit analytical
formulas of the heat kernel and partition function may also contribute to
investigations in this direction.

2. Preliminary calculations based on the Trotter-Kato

product formula

The Hamiltonian of the quantum Rabi model (QRM) is given by

HR = a†a+∆σz + g(a+ a†)σx,

where σx, σz are the Pauli matrices

σx =

[
0 1
1 0

]
, σz =

[
1 0
0 −1

]
,

and a†, a are the creation and annihilation operators of the quantum har-
monic oscillator satisfying the commutation relation [a, a†] = 1. In this paper
we tacitly assume ℏ = ω = 1 without loss of generality.

Since the third term g(a+ a†)σx of the Hamiltonian HR does not com-
mute with a†a and ∆σz, in order to reduce the number of non-commuting
relations, we make a change of operator in the following way. Set b = b(g) :=
a+ gσx (and whence b† = a† + gσx). Thus we easily obtain the following
lemma.

Lemma 2.1. The Hamiltonian HR is expressed as

HR = (a† + gσx)(a+ gσx) + ∆σz − g2

= b†b− g2 +∆σz. □

Notice that while the operators b, b† satisfy the commutation relation
[b, b†] = I2, the operator b does not commute with ∆σz. In this sense, we
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regard

b†b− g2

as a (two dimensional) non-commutative version of the quantum harmonic
oscillator. From the commutation relation [b, b†] = I2, it is clear that the
operator b†b− g2 is self-adjoint and bounded below. The operator ∆σz is
also self-adjoint and bounded for trivial reasons. We remark that is it a well-
known fact (see for example [59]) that HR is a self-adjoint bounded below
operator. Therefore, the operators b†b− g2 and ∆σz satisfy the conditions
of the Trotter-Kato product formula (cf. [12, 34, 64]) and we have

e−tHR = e−t(b
†b−g2+∆σz) = lim

N→∞
(e−t(b

†b−g2)/Ne−t(∆σz)/N )N ,

in the strong operator topology. Moreover, the sequence

{(e−t(b†b−g2)/Ne−t(∆σz)/N )N}N=1,2,...

of Trotter-Kato’s approximation operators convergences in the operator norm
topology when N →∞. In fact, we have

||e−t(b†b−g2+∆σz) − (e−t(b
†b−g2)/Ne−t(∆σz)/N )N ||op = O(N−1),

where ||A||op := supv ̸=0
||Av||
||v|| denotes the operator norm (see the review pa-

per [28] for the general theory leading to this fact). Moreover, pointwise
uniformly convergence of the iterated integral kernels to the heat kernel fol-
lows from the convergence in operator norm topology ([4, 28], cf. [27]). In §5
we briefly discuss how the pointwise and uniform convergence can be verified
directly from the resulting series.

The objective of this section is to compute the integral kernel DN (x, y, t)
of the N -th power operator

(e−t(b
†b−g2)e−t(∆σz))N ,

explicitly. Concretely, in §2.1 we compute the integral kernel D(x, y, t) of
the operator

e−t(b
†b−g2)e−t(∆σz),

following the standard procedure for the quantum harmonic oscillator. The
computation of the N -th power kernel is divided into a scalar part in §2.3
and a non-commutative part in §2.4.
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In this paper we consider the Hamiltonian HR as an operator acting on
the Hilbert space H = L2(R)⊗ C2. For convenience of the reader we recall
that the creation and annihilation operators are realized by

a =
1√
2

(
x+

d

dx

)
, a† =

1√
2

(
x− d

dx

)

as operators acting on the Schwartz space S(R)(⊂ L2(R) which has a basis
consisting of Hermite functions, cf. [2, 25]).

In order to improve clarity, we do not specify dependencies to the system
parameters g,∆ in the notation for the functions used in the intermediate
computations. In other words, it may be assumed that these functions tacitly
depend on the system parameters.

2.1. Quantum Rabi model and quantum harmonic oscillators

As a first step in the computation of the heat kernel of the QRM, in this
subsection we compute the integral kernel D(x, y, t) of the operator

e−t(b
†b−g2)e−t(∆σz).

First, we notice that by the elementary identity

e−t(∆σz) =

[
e−t∆ 0
0 et∆

]
,

the integral kernel for the operator e−t(∆σz) is given by

D2(x, y, t) = e−t(∆σz)δ(x− y),

where δ is the Dirac measure. Thus, the remainder of this subsection is
dedicated to computing the integral kernel of e−b

†b−g2 . As we have remarked
before, the commutation identity [b, b†] = I2 holds and thus the computation
of the integral kernel follows the general procedure for the quantum harmonic
oscillator.

In particular, if we find the ground state ψ0 for b, that is, a solution
of bψ0 = 0, then the spectrum of b†b is equal to Z≥0 with each eigenvalue
having multiplicity 2.
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The general solution of the differential equation system bψ = 0 with
ψ = T (ψ1, ψ2) is given by

ψ1(x) = c1e
−x2/2−

√
2gx − c2e−x

2/2+
√
2gx,

ψ2(x) = c1e
−x2/2−

√
2gx + c2e

−x2/2+
√
2gx

for arbitrary constants c1, c2 ∈ C. It is clear then that

ψ̄
(1)
0 (x) = e−x

2/2−
√
2gx

[
1
1

]
, ψ̄

(2)
0 (x) = e−x

2/2+
√
2gx

[
−1
1

]
,

are two linearly independent eigenfunctions of b†b corresponding to eigen-
value λ = 0. We obtain directly

(
ψ̄
(1)
0 , ψ̄

(1)
0

)
H
=
(
ψ̄
(2)
0 , ψ̄

(2)
0

)
H
= 2e2g

2√
π,

where (·, ·)H is the inner-product induced in H = L2(R)⊗ C2 by the usual
L2(R) inner-product.

For λ = n the orthonormal eigenstates are given by

ψ(1)
n (x) =

1√
2 eg2

Hn(x+
√
2g)

ψ̄
(1)
0

(
√
π n! 2n)1/2

,

ψ(2)
n (x) =

1√
2 eg2

Hn(x−
√
2g)

ψ̄
(2)
0

(
√
π n! 2n)1/2

,

where Hn is the n-th Hermite polynomial. Due to the normalization factor
e−g

2

, we have

ψ(1)
n (x) =

1√
2
Hn(x+

√
2g)

e−(x+
√
2g)2/2

(
√
π n! 2n)1/2

[
1
1

]
,

ψ(2)
n (x) =

1√
2
Hn(x−

√
2g)

e−(x−
√
2g)2/2

(
√
π n! 2n)1/2

[
−1
1

]
.

The heat kernel D1(x, y, t) of b
†b− g2 is given formally by the Schwartz

kernel

D1(x, y, t) :=
∑

λ

ψλ(x)
Tψλ(y)e

−(λ−g2)t,

where the sum is over the eigenvalues λ of b†b (counting multiplicities) and
ψλ(x) is the eigenfunction corresponding to the eigenvalue λ. It is left to
verify the convergence and that D1(x, y, t)→ δ(x− y)I2 as t→ 0.
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Convergence follows component-wise by Mehler’s formula (Poisson ker-
nel expression, cf. [2, 12]) for Hermite polynomials

∞∑

n=0

Hn(x)Hn(y)

2nn!
rn = (1− r2)−1/2e(2xyr−(x2+y2)r2)/(1−r2),

valid for |r| < 1.
For the second property, recall that, as r → 1 the following completeness

identity holds

∞∑

n=0

Hn(x)Hn(y)e
− x2+y2

2√
π 2nn!

rn = δ(x− y), r → 1

in the sense of distributions.
Thus, applying the substitutions x→ x±

√
2g, y → y ±

√
2g we see that

∞∑

n=0

ψ(1)
n (x)Tψ(1)

n (y)rn =
δ(x− y)

2

[
1 1
1 1

]
, r → 1,

and

∞∑

n=0

ψ(2)
n (x)Tψ(2)

n (y)rn =
δ(x− y)

2

[
1 −1
−1 1

]
, r → 1,

giving the desired expression when r = e−t.
We write

D1(x, y, t) =

2∑

j=1

∞∑

n=0

ψ(j)
n (x)Tψ(j)

n (y)e−t(n−g
2),

then, by Mehler’s formula we have

∞∑

n=0

ψ(1)
n (x)Tψ(1)

n (y)unug
2

=
u−g

2

2
√
π

∞∑

n

Hn(x+
√
2g)Hn(y +

√
2g)

2nn!
une−

1

2
((x+

√
2g)2+(y+

√
2g)2)

[
1 1
1 1

]

=
u−g

2

2
√
π(1− u2)

exp

(
−1− u
1 + u

(x+ y + 2
√
2g)2

4
− 1 + u

1− u
(x− y)2

4

)[
1 1
1 1

]
,
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with u := e−t, and similarly, we obtain

∞∑

n=0

ψ(2)
n (x)Tψ(2)

n (y)unug
2

=
u−g

2

2
√
π(1− u2)

exp

(
−1− u
1 + u

(x+ y − 2
√
2g)2

4
− 1 + u

1− u
(x− y)2

4

)[
1 −1
−1 1

]
.

By factoring out common terms we obtain

D1(x, y, t) =
u−g

2

√
π(1− u2)

exp

(
−1− u
1 + u

((x+ y)2 + 8g2)

4
− 1 + u

1− u
(x− y)2

4

)

× 1

2

(
exp

(
−1− u
1 + u

√
2g(x+ y)

)
M11 + exp

(
1− u
1 + u

√
2g(x+ y)

)
M00

)
,

where

M00 :=

[
1 −1
−1 1

]
M11 :=

[
1 1
1 1

]
.

The matrix terms (including the scalar factor 1
2) are equal to

[
cosh − sinh
− sinh cosh

](
1− u
1 + u

√
2g(x+ y)

)
= exp

(
−1− u
1 + u

√
2g(x+ y)σx

)
,

and the final expression for the heat kernel of b†b− g2 is

D1(x, y, t) =
u−g

2

√
π(1− u2)

exp

(
−1− u
1 + u

((x+ y)2 + 8g2)

4
− 1 + u

1− u
(x− y)2

4

)

× exp

(
−1− u
1 + u

√
2g(x+ y)σx

)
.

Summarizing the discussion above, we have the following explicit de-
scription for D(x, y, t).

Proposition 2.2. The integral kernel D(x, y, t) for e−t(b
†b−g2)e−t(∆σz) is

given by

D(x, y, t) =
u−g

2

√
π(1− u2)

exp

(
−1− u
1 + u

((x+ y)2 + 8g2)

4
− 1 + u

1− u
(x− y)2

4

)

× exp

(
−1− u
1 + u

√
2g(x+ y)σx

)
e−t(∆σz),

with u = e−t.
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Proof. Since

D(x, y, t) =

∫ ∞

−∞
D1(x, z, t)D2(z, y, t)dz

the desired expression follows from the definition of the Dirac distribution δ.
□

To simplify later computations we write

D(x, y, t)

= K0(x, y, u) exp

(
−2g2 1− u

1 + u

)
exp

(
−1− u
1 + u

√
2g(x+ y)σx

)
e−t(∆σz),

with

(2.1) K0(x, y, u) :=
u−g

2

√
π(1− u2)

exp

(
− 1 + u2

2(1− u2)(x
2 + y2) +

2uxy

1− u2
)
.

2.2. The N-th power kernel DN(x, y, t)

In the remainder of this section we compute explicitly the integral kernel
DN (x, y, t) of the operator

(
e−t(b

†b−g2)e−t(∆σz)
)N

given by the integral
(2.2)∫ ∞

−∞
· · ·
∫ ∞

−∞
D(x, v1, t)D(v1, v2, t) · · ·D(vN−1, y, t)dvN−1dvN−2 · · · dv1.

Writing v0 = x and vN = y, we see that the integrand of (2.2) is given
by the product of the scalar factor

u−Ng
2

(π(1− u2))N/2 exp
(

N∑

i=1

(
− 1 + u2

2(1− u2)(v
2
i + v2i−1) +

2uvivi−1

1− u2 − 2g2
1− u
1 + u

))

and the matrix factor

−→∏
N
i=1

{[
cosh

(√
2g

1− u
1 + u

(vi−1 + vi)

)
I(2.3)

− sinh

(√
2g

1− u
1 + u

(vi−1 + vi)

)
J

]
u∆σz

}
,
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where
−→∏
N
i=1Ai denotes the (ordered) product A1A2 · · ·AN of the matrices

Ai’s and we write J = σx =

[
0 1
1 0

]
for simplicity.

Let us introduce some general notation. We write Zk2 for {0, 1}k with
k ≥ 1, both as a set and as an abelian group (that is, for the group (Z/2Z)k =
Z/2Z× Z/2Z× · · · × Z/2Z( k-times)), for k = 0 we define Z0

2 = {0} both as
a set and (trivial) group. To simplify the notation, at times we consider an
element s ∈ Zk2 as a function s : {0, 1, · · · , k} → {0, 1} where s(i) is the i-th
component of s ∈ Zk2.

Since, for α ∈ R, we have

cosh (α) I− sinh (α)J =
1

2
(I+ J) e−α +

1

2
(I− J) eα,

the multiplication of matrices in (2.3) gives a linear combination of terms

(2.4) GN (u, s)

N∏

i=1

exp

(
(−1)s(i)

√
2g

1− u
1 + u

(vi + vi−1)

)
,

where the choice of s ∈ ZN2 depends on the expansion of (2.3) and GN (u, s)
is a matrix-valued function given by

GN (u, s) :=
1

2N

−→∏
N
i=1[I+ (−1)1−s(j)J]u∆σz .

In addition, for s ∈ ZN2 , by defining

IN (v0, vN , u, s) :=
u−Ng

2

(π(1− u2))N/2
∫ ∞

−∞
· · ·
∫ ∞

−∞

(2.5)

exp

(
N∑

i=1

(
− 1 + u2

2(1− u2)(v
2
i + v2i−1) +

2uvivi−1

1− u2 − 2g2
1− u
1 + u

))

× exp

(
√
2g

1− u
1 + u

N∑

i=1

(−1)s(i)(vi + vi−1)

)
dvN−1dvN−2 · · · dv1,

we see that DN (x, y, t) is given by

DN (x, y, t) =
∑

s∈ZN
2

GN (u, s)IN (x, y, u, s).(2.6)
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2.3. Scalar part

The computation of DN (x, y, t) is, by (2.6), is divided into a scalar part,
given by IN (x, y, u, s) and a non-commutative part GN (u, s). In this sub-
section we compute the integrals in the expression of IN (v0, vN , u, s) via
multivariate Gaussian integration.

Notice that the variables v0 and vN are not to be integrated in (2.5).
Therefore, IN (v0, vN , u, s) can be rewritten as

u−Ng
2

(π(1− u2))N/2 exp
(
−2Ng2 1− u

1 + u

)

× exp

(
− 1 + u2

2(1− u2)(v
2
0 + v2N ) +

√
2g

1− u
1 + u

((−1)s(1)v0 + (−1)s(N)vN )

)

×
∫ ∞

−∞
· · ·
∫ ∞

−∞
exp

(
−1 + u2

1− u2
N−1∑

i=1

v2i

+
2u

1− u2

[
v0v1 + vN−1vN +

N−2∑

i=1

vivi+1

])

× exp

(
√
2g

1− u
1 + u

N−1∑

i=1

((−1)s(i+1) + (−1)s(i))vi
)
dvN−1dvN−2 · · · dv1.

The quadratic form in variables vi (i = 1, 2, . . . , N − 1) inside of the ex-
ponential in the integrand above is equal to

(1 + u2)

N−1∑

i=1

v2i − 2u

N−2∑

i=1

vivi+1 =
TvAN−1v,

for a vector v = T (v1, v2, · · · , vN−1) ∈ RN−1 and tridiagonal matrix AN−1

given by

AN−1 =




1 + u2 −u 0 · · · 0 0
−u 1 + u2 −u · · · 0 0
0 −u 1 + u2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 + u2 −u
0 0 0 · · · −u 1 + u2



.



✐

✐

“8-Reyes-Bustos” — 2023/3/21 — 17:05 — page 1364 — #18
✐

✐

✐

✐

✐

✐

1364 C. Reyes-Bustos and M. Wakayama

Moreover, by defining

B(s) :=
2u

1− u2 (v0e1 + vNeN−1) +
√
2g

1− u
1 + u

C(s),

where ei is the i-th standard basis vector of RN−1 and

C(s) := T
[
(−1)s(1) + (−1)s(2), (−1)s(2) + (−1)s(3),

· · · , (−1)s(N−1) + (−1)s(N)
]
,

we write IN (v0, vN , u, s) as

u−Ng
2

(π(1− u2)N/2 exp
(
−2Ng2 1− u

1 + u

)(2.7)

× exp

(
− 1 + u2

2(1− u2)(v
2
0 + v2N ) +

√
2g

1− u
1 + u

((−1)s(1)v0 + (−1)s(N)vN )

)

×
∫ ∞

−∞
· · ·
∫ ∞

−∞
exp

(
− 1

1− u2
TvAN−1v + TB(s)v

)
dvN−1dvN−2 · · · dv1.

Next, we obtain the expression for det(AN−1). For that, we need a lemma
on Chebyshev polynomials of the second kind Un(x), defined by the three-
term recurrence relation

Un+1(x) = 2xUn(x)− Un−1(x),

with initial values U0(x) = 1 and U1(x) = 2x.

Lemma 2.3. For n ∈ Z≥0, we have

Un

(
−1 + u2

2u

)
= (−1)n 1− u

2(n+1)

un(1− u2) .

Proof. Set z = −1+u2

2u . Then, the result clearly holds for U0(z) and

U1(z) = 2z = −1 + u2

u
= − 1− u4

u(1− u2) .
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The recurrence relation for Un(z)gives

Un+1(z) = 2zUn(z)− Un−1(z)

= −(−1)n 1 + u2

u

(
1− u2(n+1)

un(1− u2)

)
− (−1)n−1

(
1− u2n

un−1(1− u2)

)

= (−1)n+1 1

un+1(1− u2)
(
(1 + u2)(1− u2(n+1))− u2(1− u2n))

)
.

= (−1)n+1 1− u2(n+2)

un+1(1− u2) ,

as desired. □

Lemma 2.4. For N ≥ 2, the matrix AN−1 is positive definite and its de-
terminant is given by

det(AN−1) = (1 + u2 + u4 + · · ·+ u2(N−1)) =
1− u2N
1− u2 .

Furthermore, the inverse of AN−1 is symmetric and given by

(A−1
N−1)ij = uj−i

(1− u2i)(1− u2(N−j))
(1− u2N )(1− u2) ,

for i ≤ j.

Proof. The matrix AN−1 is symmetric and since 1 + u2 > 2u2 for 0 < u < 1,
by the Gershgorin circle theorem (see [62]) all the eigenvalues of AN−1 are
positive. Therefore, AN−1 is positive definite (see also [3]). The determinant
expression is obtained by direct computation. From [19], it is known that
the inverse AN−1 is given by

(A−1
N−1)ij = (−1)i+j+1 1

u

Ui−1(−1+u2

2u )UN−1−j(−1+u2

2u )

UN−1(−1+u2

2u )

for i ≤ j and where Un(x) is the Chebyshev polynomials of the second kind.
The desired expression then follows from Lemma 2.3. □
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Let us introduce notation to simplify the expression of IN (x, y, u, s). For
s ∈ ZN2 and i, j ∈ {1, 2, · · · , N}, define

ηi(s) := (−1)s(i) + (−1)s(i+1),(2.8)

Λ(j)(u) := uj−1
(
1− u2(N−j)+1

)
,

Ω(i,j)(u) := uj−i
(
1− u2i

) (
1− u2(N−j)

)
.

Theorem 2.5. For N ∈ Z≥1, we have

IN (x, y, u, s) = K0(x, y, u
N ) exp

(
−2Ng2(1− u)

1 + u

)
(2.9)

× exp


√2g (1− u)

(1− u2N )

N∑

j=1

(−1)s(j)
(
xΛ(j)(u) + yΛ(N−j+1)(u)

)



× exp


 g2(1− u)2
2(1 + u)2(1− u2N )

(N−1∑

i=1

ηi(s)
2Ω(i,i)(u) + 2

∑

i<j

ηi(s)ηj(s)Ω
(i,j)(u)

)
 .

Proof. Since AN−1 is positive definite by Lemma 2.4, by multivariate Gaus-
sian integration (see e.g. [18]) in (2.7) we obtain

∫ ∞

−∞
· · ·
∫ ∞

−∞
exp

(
− 1

1− u2
TvAN−1v + TB(s)v

)
dvN−1dvN−2 · · · dv1

=

√
(1− u2)N−1πN−1

det(AN−1)
exp

(
1− u2

4
TB(s)(AN−1)

−1B(s)

)

=

√
πN−1(1− u2)N

(1− u2N ) exp

(
1− u2

4
TB(s)(AN−1)

−1B(s)

)
,

Thus, we see that IN (v0, vN , u, s) is equal to

u−Ng
2

√
π(1− u2N )

exp

(
− 1 + u2

2(1− u2)(v
2
0 + v2N )

+
√
2g

1− u
1 + u

(
(−1)s(1)v0 + (−1)s(N)vN

))

× exp

(
−2Ng2 1− u

1 + u

)
exp

(
1− u2

4
TB(s)A−1

N−1B(s)

)
.
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From the definitions, we see that TB(s)A−1
N−1B(s) is given by

(
2u

1− u2
(
v0
Te1 + vN

TeN−1

))
A−1
N−1

(
2u

1− u2 (v0e1 + vNeN−1)

)

+ 2

(
2u

1− u2
(
v0
Te1 + vN

TeN−1

))
A−1
N−1

(√
2g

1− u
1 + u

C(s)

)

+

(
2g2

(1− u)2
(1 + u)2

)
TC(s)A−1

N−1C(s),

the second line is justified by the symmetry of the inverse of the matrix
A−1
N−1. By Lemma 2.4, we have

1− u2
4

(
2u

1− u2
(
v0
Te1 + vN

TeN−1

))
A−1
N−1

(
2u

1− u2 (v0e1 + vNeN−1)

)

=
u2

(1− u2)

(
1− u2(N−1)

1− u2N (v20 + v2N ) + 2uN−2 1− u2
1− u2N v0vN

)
,

adding the term − 1+u2

2(1−u2)(v
2
0 + v2N ) we obtain

− 1 + u2N

2(1− u2N )(v
2
0 + v2N ) +

2uN

1− u2N v0vN ,

giving the expression K0(x, y, u
N ) of (2.9) by setting v0 = x and vN = y).

For the second term, we have that

2(1− u2)
4

(
2u

1− u2
(
v0
Te1 + vN

TeN−1

))
A−1
N−1

(√
2g

1− u
1 + u

C(s)

)

is equal to

√
2g(1− u)

(1− u2N )(1 + u)

(
v0

N−1∑

j=1

uj(1− u2(N−j))((−1)s(j+1) + (−1)s(j))

+ vN

N−1∑

j=1

uN−j(1− u2j)((−1)s(j+1) + (−1)s(j))
)
.

By rewriting the first sum by using the identity

uj(1− u2(N−j)) + uj−1(1− u2(N−j+1)) = (1 + u)uj−1(1− u2(N−j)+1),
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and adding the term (−1)s(1)(1− u2N )v0, we obtain the expression

v0

N∑

j=1

(−1)s(j)uj−1(1− u2(N−j)+1),

and similarly for the second sum, giving the expression in the sum in the
second line of (2.9). Finally, the term

1− u2
4

(
2g2

(1− u)2
(1 + u)2

)(
TC(s)A−1

N−1C(s)
)
,

is given by

g2(1− u)2
2(1 + u)2(1− u2N )

(N−1∑

i=1

((−1)s(i+1) + (−1)s(i))2(1− u2i)(1− u2(N−i))

+ 2
∑

i<j

((−1)s(i+1) + (−1)s(i))((−1)s(j+1) + (−1)s(j))

× uj−i(1− u2i)(1− u2(N−j))

)
,

yielding the expression in the third line of (2.9). The proof is completed by
setting v0 = x and vN = y. □

2.4. Non-commutative part

In this section we explicitly describe the matrix-valued function Gk(u, s)
for k ≥ 1, then by using the resulting expression and the previous compu-
tation for Ik(x, y, u, s) we give a limit formula for the heat kernel of QRM
resembling a Riemannian sum.

To simplify the notation, we denote by Mij , for i, j = 0, 1, the matrices

M00 :=

[
1 −1
−1 1

]
, M01 :=

[
−1 −1
1 1

]
,(2.10)

M10 :=

[
−1 1
−1 1

]
, M11 :=

[
1 1
1 1

]
,

where we included the previously defined matrices M00 and M11 for refer-
ence.
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Proposition 2.6. For s ∈ Zk2, we have

Gk(u, s) =

∏k−1
i=1 (1 + (−1)s(i)−s(i+1)u2∆)

u(k−1)∆2k
Mk(s)

[
u∆ 0
0 u−∆

]
,

where the matrix Mk(s) is given by

Mk(s) =

[
1 (−1)1−s(1)

(−1)1−s(1) 1

]

×
−→∏

k−1
i=1

([
1 0
0 1

]
+

[
−|s(i)− s(i+ 1)| −(s(i+ 1)− s(i))
(s(i+ 1)− s(i)) −|s(i)− s(i+ 1)|

])
.

Before proving Proposition 2.6, we observe that the matrix Mk(s) can
only be one of the matrices M00, M01, M10, and M11 (see (2.10)). In fact,
Mk(s) only depends on the first and last entry of s ∈ Zk2.

Lemma 2.7. Let s ∈ Zk2. If s(1) = i and s(k) = j, then

Mk(s) = Mij ,

for i, j = 0, 1.

Proof. Let us consider only the case s(1) = 0, since the case s(1) = 1 is
proved in a similar fashion. Notice that if s(i+ 1) = s(i), the matrix in-
side the product in the definition of Mk(s) corresponding to the index
i ∈ {1, 2, · · · , k − 1} is the identity. Let us consider the vector s as a word
on the alphabet Z2 = {0, 1} in the standard way and s̄ the word resulting
of removing contiguous occurrences of ones or zeros. Then, if s(1) = 0, and
s(k) = 0, s̄ = 0(10)n with n ∈ Z≥0 and here exponentiation means concate-
nation of words. From the definition of Mk(s) we see then that

[
1 −1
−1 1

]([
0 −1
1 0

] [
0 1
−1 0

])n
=

[
1 −1
−1 1

]
,

since the expression in the parenthesis is equal to the identity matrix. Simi-
larly, for s(1) = 0 and s(k) = 1, we have s̄ = 0(10)n1 for n ∈ Z≥0. Therefore,

[
1 −1
−1 1

]([
0 −1
1 0

] [
0 1
−1 0

])n [
0 −1
1 0

]
=

[
−1 −1
1 1

]
,

and the result follows.
□
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Proof of Proposition 2.6. The case k = 1 is trivial. Furthermore we easily
see by direct computation that

G2(u, (0, 0)) =
1 + u2∆

22u∆

[
1 −1
−1 1

] [
u∆ 0
0 u−∆

]
,

G2(u, (0, 1)) =
1− u2∆
22u∆

[
−1 −1
1 1

] [
u∆ 0
0 u−∆

]
,

G2(u, (1, 0)) =
1− u2∆
22u∆

[
−1 1
−1 1

] [
u∆ 0
0 u−∆

]
,

G2(u, (1, 1)) =
1 + u2∆

22u∆

[
1 1
1 1

] [
u∆ 0
0 u−∆

]
.

Now, we suppose the result holds for k ∈ Z≥2. Let s ∈ Zk+1
2 and consider

Gk+1(u, s) =
1

2k+1

−→∏
k+1
i=1 [I+ (−1)1−s(j)J]

[
u∆ 0
0 u−∆

]
,

by the hypothesis, this is just

∏k−1
i=1 (1 + (−1)s(i)−s(i−1)u2∆)

u(k−1)∆2k+1
Mk(s

′)

[
u∆ 0
0 u−∆

]

× [I+ (−1)1−s(k+1)J]

[
u∆ 0
0 u−∆

]
,

with s′ ∈ Zk2.
Suppose that s(k + 1) = 0, we consider the product

Mk(s
′)

[
u∆ 0
0 u−∆

] [
1 −1
−1 1

]
,

we are going to verify the result for the possible combinations of s(1) and
s(k).

First, if s(1) = 0 and s(k) = 0, by Lemma 2.7, the above product is

[
1 −1
−1 1

] [
u∆ 0
0 u−∆

] [
1 −1
−1 1

]
=

1 + u2∆

u∆

[
1 −1
−1 1

]

=
1 + u2∆

u∆
Mk(s

′)

[
1 0
0 1

]
,
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which is the desired expression. In the case s(1) = 0 and s(k) = 1, we have

[
−1 −1
1 1

] [
u∆ 0
0 u−∆

] [
1 −1
−1 1

]
=

1− u2∆
u∆

[
1 −1
−1 1

]

=
1− u2∆
u∆

Mk(s
′)

[
0 1
−1 0

]
,

while in the case s(1) = 1 and s(k) = 0 we have

[
−1 1
−1 1

] [
u∆ 0
0 u−∆

] [
1 −1
−1 1

]
=

1 + u2∆

u∆

[
−1 1
−1 1

]

=
1 + u2∆

u∆
Mk(s

′)

[
1 0
0 1

]
,

and finally, the in the case s(1) = 1 and s(k) = 1, we have

[
1 1
1 1

] [
u∆ 0
0 u−∆

] [
1 −1
−1 1

]
=

1− u2∆
u∆

[
−1 1
−1 1

]

=
1− u2∆
u∆

Mk(s
′)

[
0 1
−1 0

]
.

The case of s(k + 1) = 1 is completely analogous. □

By (2.6), the heat kernel of the QRM is given by the limit expression

KR(x, y, t; g,∆) = lim
N→∞

∑

s∈ZN
2

GN (u
1

N , s)IN (x, y, u
1

N , s).

To deal with the sum over ZN2 in the expression above, we introduce a
partition of ZN2 .

Definition 2.1. Let N ∈ Z≥1 and i, j ∈ Z2.

1) The subset C(N)
ij ⊂ ZN2 is given by

C(N)
ij = {s ∈ ZN2 | s(1) = i, s(N) = j}.

2) For 3 ≤ k ≤ N the subset A(k,N)
ij ⊂ ZN2 is given by

A(k,N)
ij = {s ∈ ZN2 | s(1) = i, s(k − 1) = 1− j, s(n) = j for k ≤ n ≤ N},
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3) We have

A(1,N)
00 = {(0, 0, 0, 0, · · · , 0)}, A(2,N)

01 = {(0, 1, 1, 1, · · · , 1)},
A(1,N)

11 = {(1, 1, 1, , 1, · · · , 1)}, A(2,N)
10 = {(1, 0, 0, 0, · · · , 0)},

and A(k,N)
ij = ∅ for k = 1, 2 if it is not one of the four sets above.

For N ≥ 2, the sets A(k,N)
ij ⊂ ZN2 form a partition of ZN2 , that is,

(2.11) ZN2 =
⊔

1≤k≤N

⊔

i,j∈Z2

A(k,N)
ij ,

from where it is clear that for i, j ∈ Z2, we have #A(k,N)
ij = 2k−3 for k ≥ 3

and #A(n,N)
ij = 1 if n = 1, 2.

We frequently use the constant elements

0k = (0, 0, · · · , 0), 1k = (1, 1, · · · , 1) ∈ Zk2

for k ∈ Z≥1. For r ∈ Zk2 and s ∈ Zℓ2 with k, ℓ ∈ Z≥1, we denote by r⊕ s ∈
Zk+ℓ2 the element obtained by concatenation in the natural way.

We note that any element s ∈ A(k,N)
00 for k ≥ 3 can be expressed as

(2.12) s = s̄⊕ 0N−k+1

with s̄ ∈ C(k−1)
01 . Similar expressions hold for elements of A(k,N)

01 , A(k,N)
10 and

A(k,N)
11 .
Additionally, by Lemma 2.7, the matrix Mk(s) only depends on the first

and last entry of s ∈ Zk2 and thus it is fixed over any subset C(k)ij ∈ Zk2 for
i, j = 0, 1 (c.f. Definition 2.1). In practice, it is convenient to work with the
scalar part of the function Gk(u, s) above.

Definition 2.2. For k ≥ 1, the function gk(u, s) is given by

gk(u, s) :=

∏k−1
i=1 (1 + (−1)s(i)−s(i+1)u2∆)

u(k−1)∆2k
.

The result of Proposition 2.6 is then written as

Gk(u, s) = gk(u, s)Mk(s)

[
u∆ 0
0 u−∆

]
,

where we note that the degree of gk(u, s) as a polynomial in u∆ is 2(k − 1).
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With the foregoing notation, the heat kernel KR(x, y, t) of the QRM,
given by

KR(x, y, t; g,∆) = lim
N→∞

DN (x, y, u
1

N )

= lim
N→∞

∑

s∈ZN
2

GN (u
1

N , s)IN (x, y, u
1

N , s),

is, by (2.9) and (2.11), equal to

(2.13) KR(x, y, t; g,∆)

= K0(x, y, u) lim
N→∞

N∑

k=1

1∑

i,j=0

∑

s∈A(k,N)
ij

GN (u
1

N , s)ĪN (x, y, u
1

N , s),

with ĪN (x, y, u, s) given by

exp



√
2g(1− u)
1− u2N

N∑

j=1

(−1)s(j)
(
xΛ(j)(u) + yΛ(N−j+1)(u)

)



× exp

(
−2Ng2(1− u)

1 + u

)

× exp

(
g2(1− u)2

2(1 + u)2(1− u2N )

(N−1∑

i=1

ηi(s)
2Ω(i,i)(u) + 2

∑

i<j

ηi(s)ηj(s)Ω
(i,j)(u)

))
.

Note that for k ≥ 2, by (2.12), the expression inside the limit in (2.13)
is given by

N∑

k≥2

( ∑

s=s̄⊕0N−k+1

s̄∈C(k−1)
01

+
∑

s=s̄⊕0N−k+1

s̄∈C(k−1)
11

+
∑

s=s̄⊕1N−k+1

s̄∈C(k−1)
00

+
∑

s=s̄⊕1N−k+1

s̄∈C(k−1)
10

GN (u
1

N , s)ĪN (x, y, u
1

N , s)

)
,

and we remark that C(1)ij = ∅ with i ̸= j.
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Next, we describe how the term ĪN (x, y, u
1

N , s) factors in each of the
sums. For s̄ ∈ Zk−1

2 with k ≥ 1, write

ĪN (x, y, u, s̄⊕ 0N−k+1) = J
(k,N)
0 (x, y, u)R

(k,N)
0 (x, y, u, s̄),

ĪN (x, y, u, s̄⊕ 1N−k+1) = J
(k,N)
1 (x, y, u)R

(k,N)
1 (x, y, u, s̄),

with functions J
(k,N)
µ (x, y, u) and R

(k,N)
µ (x, y, u, s̄) for µ ∈ {0, 1} given in

Definition 2.3 below. Notice that in the first line s̄ ∈ C(k−1)
i1 and in the second

line s̄ ∈ C(k−1)
i0 for i = 0, 1.

Definition 2.3. For k ≥ 1, the function J
(k,N)
µ (x, y, u) is given by

J (k,N)
µ (x, y, u) = exp


(−1)µ

√
2g(1− u)
1− u2N




N∑

j=k

(
xΛ(j)(u) + yΛ(N−j+1)(u)

)





× exp

(
2g2(1− u)2

(1 + u)2(1− u2N )

(N−1∑

i=k

Ω(i,i)(u) + 2

N−2∑

i=k

N−1∑

j=i+1

Ω(i,j)(u)

)

− 2Ng2
(1− u)
1 + u

)
,

while R
(k,N)
µ (x, y, u, s̄) is given, for s̄ ∈ Zk−1

2 , by

R(k,N)
µ (x, y, u, s̄) = exp



√
2g(1− u)
1− u2N

k−1∑

j=1

(−1)s̄(j)
(
xΛ(j)(u) + yΛ(N−j+1)(u)

)



× exp

(
g2(1− u)2

2(1 + u)2(1− u2N )

[
k−2∑

i=1

ηi(s̄)
2Ω(i,i)(u)

+ 2

k−2∑

i=1

k−2∑

j=i+1

ηi(s̄)ηj(s̄)Ω
(i,j)(u) + 4(−1)µ

k−2∑

i=1

N−1∑

j=k

ηi(s̄)Ω
(i,j)(u)

])
.

Suppose that s = s1 ⊕ 0N−k+1 with s1 ∈ C(k−1)
v1 and v ∈ {0, 1}, then it

is easy to see that

GN (u
1

N , s) =

(
1− u 2∆

N

2u
∆

N

)(
1 + u

2∆

N

2u
∆

N

)N−k

gk−1(u
1

N , s1)MN (s)

[
u

∆

N 0

0 u−
∆

N

]
,
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with similar expressions for other cases. Therefore, the sum inside the limit
(starting from k = 2) is given by

(
1− u 2∆

N

2u
∆
N

)
N∑

k≥2

(
1 + u

2∆
N

2u
∆
N

)N−k

(2.14)

×
[
J
(k,N)
0 (x, y, u

1
N )

(
1∑

v=0

Mv0

∑

s∈C
(k−1)
v1

gk−1(u
1
N , s)R

(k,N)
0 (x, y, u

1
N , s)

)

+ J
(k,N)
1 (x, y, u

1
N )

(
1∑

v=0

Mv1

∑

s∈C
(k−1)
v0

gk−1(u
1
N , s)R

(k,N)
1 (x, y, u

1
N , s)

)]

×
[
u

∆
N 0

0 u−
∆
N

]
.

Next, we make some considerations to further simplify the expression of
the heat kernel. First, we notice that the matrix factor

[
u

∆

N 0

0 u−
∆

N

]

is the identity matrix at the limit N →∞, so we omit it in the subse-
quent discussion. Similarly, without loss of generality, we drop the term
corresponding to k = 2, since it vanishes due to the presence of the factor
(1− u2∆/N ). This is analogous to removing a finite number of terms from a
Riemann sum.

Summing up, the expression for the heat kernel KR(x, y, t; g,∆) is given
by the sum of

K0(x, y, u) lim
N→∞

1

2

(
1 + u

2∆

N

2u
∆

N

)N−1(
J
(1,N)
0 (x, y, u

1

N )

[
1 −1
−1 1

]

+ J
(1,N)
1 (x, y, u

1

N )

[
1 1
1 1

])
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and

K0(x, y, u) lim
N→∞

(
1− u 2∆

N

2u
∆

N

)
N∑

k≥3

(
1 + u

2∆

N

2u
∆

N

)N−k

×
[
J
(k,N)
0 (x, y, u

1

N )

(
M00

∑

s∈C(k−1)
01

gk−1(u
1

N , s)R
(k,N)
0 (x, y, u

1

N , s)

+M10

∑

s∈C(k−1)
11

gk−1(u
1

N , s)R
(k,N)
0 (x, y, u

1

N , s)

)

+ J
(k,N)
1 (x, y, u

1

N )

(
M01

∑

s∈C(k−1)
00

gk−1(u
1

N , s)R
(k,N)
1 (x, y, u

1

N , s)

+M11

∑

s∈C(k−1)
10

gk−1(u
1

N , s)R
(k,N)
1 (x, y, u

1

N , s)

)])
.

Notice that the limit in the expression above resembles a Riemann sum
of the type

lim
N→∞

sinh

(
t

N

) N∑

k=1

f

(
kt

N

)
=

∫ t

0
f(x)dx,

for a Riemann integrable function f : [0, t]→ R. However, due to the pres-

ence of alternating sums depending of k inR
(k,N)
µ (x, y, u, s̄) and in gk−1(u

1

N , s)
it is not possible to interpret the limit directly as a Riemann sum.

3. Harmonic analysis on Zk
2

Denote by C[Zk2] the group algebra of the abelian group Zk2. For f, h ∈ C[Zk2]
the elementary identity (Parseval’s identity)

(3.1)
∑

s∈Zk
2

f(s)h(s) = (f ∗ h)(0) = 1

2k

(̂
f̂ · ĥ

)
(0) =

1

2k

∑

ρ∈Zk
2

f̂(ρ)ĥ(ρ),

holds, where f̂ (resp. ĥ ) is the Fourier transform of f (resp. h) defined below
(see (3.2)).

In this section we use the identity (3.1) to transform the sum appearing
(2.14) into an expression that can be evaluated as a Riemann sum. First,
we compute the Fourier transform of gk(u

1

N , s), then in §3.1 we describe
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the Fourier transform of R
(k,N)
η (x, y, u

1

N , s). In §3.2 we collect a number of
combinatorial results to simplify the expression of the Fourier transform of

R
(k,N)
η (x, y, u

1

N , s). In §3.3, we use identity (3.1) to simplify the expression
(2.14) and in §3.4 we transform finite sums into definite integrals using the
standard method with Riemann-Stieltjes integrations and estimate the order
of the residual terms.

We begin by setting the notation and recalling the basic properties of
the Fourier transform in Zk2, we refer the reader to [14] for more details. For

ρ ∈ Zk2 , define the character χρ(s) ∈ Ẑk2 by

χρ(s) := (−1)(s|ρ),

where (·|·) is the standard inner product in Zk2. It is known that all the

characters in the dual group Ẑk2 are obtained in this way. Then, for f ∈ C[Zk2],

the Fourier transform f̂(ρ) is given by

(3.2) f̂(ρ) = F(f) :=
∑

s∈Zk
2

f(s)χρ(s),

for ρ ∈ Zk2. Since f̂ ∈ C[Zk2], the Fourier inversion formula is given by

f =
1

2k
ˆ̂
f.

Next, we equip the set C(k+2)
vw with a abelian group structure such that

C(k+2)
vw ≃ Zk2. We naturally identify an element s ∈ C(k+2)

vw via the projection
s̄ ∈ Zk2 given by

(3.3) s = (v, s1, s2, · · · , sk, w) 7−→ s̄ = (s1, s2, · · · , sk).

Clearly, the sum (3.1) may be regarded as a sum over C(k+2)
vw by lifting

an element s ∈ Zk2 to C(k+2)
vw by using the inverse of the projection (3.3).

In the case of the function gk(u, s) we define a special notation.

Definition 3.1. Let v, w ∈ {0, 1}. Then, for s ∈ Zk2 with k ≥ 1, define the

function g
(v,w)
k (u, s) by

g
(v,w)
k (u, s) :=

1

2k
(1 + (−1)v+s(1)u2∆)(1 + (−1)w+s(k)u2∆)

×
k−1∏

i=1

(1 + (−1)s(i)+s(i+1)u2∆).
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In addition, for ρ ∈ Z0
2, define

g
(v,w)
0 (u, s) = 1 + (−1)v+wu2∆.

For s ∈ C(k+2)
vw , we have

4u(k+1)∆gk+2(u, s) = g
(v,w)
k (u, s̄),

and we note that the degree of g
(v,w)
k (u, s̄) as a polynomial in u∆ is 2(k + 1).

For fixed u,∆ ∈ R, the function g
(v,w)
k (u, s) is an element of the group

algebra C[Zk2] of the abelian group Zk2. Since the parameters g,∆ > 0 and
u ∈ {0, 1} are assumed to be fixed, in the remainder of this section as it is
obvious we omit the dependence of g,∆ and u from certain functions.

Next, we give an explicit expression for the Fourier transform
̂
g
(v,w)
k (ρ)

for arbitrary character ρ ∈ Zk2.

Definition 3.2. Let ρ = (ρ1, ρ2, · · · , ρk) ∈ Zk2. The function | · | : Zk2 → C

is given by

|ρ| = ∥ρ∥1 :=
k∑

i=1

ρi.

Let j1 < j2 < · · · < j|ρ| the position of the ones in ρ, that is, ρji = 1 for
all i ∈ {1, 2, · · · , |ρ|} and if ρi = 1 then i ∈ {j1, j2, · · · , j|ρ|}. The function

φk : Z
k
2 → C is given by

(3.4) φk(ρ) :=

|ρ|∑

i=1

(−1)i−1j|ρ|+1−i = j|ρ| − j|ρ|−1 + · · ·+ (−1)|ρ|−1j1,

and φk(0) = 0 where 0 is the identity element in Zk2. For k = 0, define
φk(ρ) = |ρ| = 0 where ρ is the unique element of Z0

2.

Let ρ = (ρ1, ρ2, · · · , ρk) ∈ Zk2 and δ = (ρ1, ρ2, · · · , ρk−1) ∈ Zk−1
2 . From

the definition we obtain

φk(ρ) = (−1)ρkφk−1(δ) + ρkk.(3.5)

Proposition 3.1. For ρ ∈ Zk2, we have

̂
g
(v,w)
k (u, ρ) = (−1)v|ρ|

(
u2φk(ρ)∆ + (−1)v+wu2(k+1−φk(ρ))∆

)
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Proof. The identity is immediately verified for the cases k = 0, 1. Next,
suppose that ρ = (ρ1, ρ2, · · · , ρk+1) ∈ Zk+1

2 and let δ = (ρ1, ρ2, . . . , ρk) ∈ Zk2.
Then we have

̂
g
(v,w)
k+1 (u, ρ) =

∑

s∈Zk+1
2

g
(v,w)
k+1 (u, s)χρ(s) =

1∑

i=0

∑

s∈Zk+1
2

s(k+1)=i

g
(v,w)
k+1 (u, s)χρ(s)

=
1

2

1∑

i=0

(−1)ρk+1·i (1 + (−1)w+iu2∆
) ∑

s∈Zk
2

g
(v,i)
k (u, s)χδ(s)

=
1

2

1∑

i=0

(−1)ρk+1·i (1 + (−1)w+iu2∆
)̂
g
(v,i)
k (u, δ)

=
1

2

1∑

i=0

(−1)ρk+1·i (1 + (−1)w+iu2∆
)
(−1)v|δ|

×
(
u2φk(δ)∆ + (−1)v+iu2(k+1−φk(δ))∆

)
,

the last equality holding by the induction hypothesis. The expression above
is equal to

1

2
(−1)v|δ|

[
(
1 + (−1)wu2∆

) (
u2φk(δ)∆ + (−1)vu2(k+1−φk(δ))∆

)

+ (−1)ρk+1
(
1− (−1)wu2∆

) (
u2φk(δ)∆ − (−1)vu2(k+1−φk(δ))∆

)]
,

the result then follows by considering the cases ρk+1 ∈ {0, 1} by the identity
(3.5). and the fact that |ρ| = |δ|+ ρk+1. □

In the subsequent discussion of the heat kernel it is necessary to con-
sider a generalization of the function φk. We motivate the definition via the
Fourier transform of φk ∈ C[Zk2].

Proposition 3.2. Let φk : Z
k
2 → Z be the function of Definition 3.2. We

have

φ̂k(ρ) =





k2k−1 if ρ = 0k

−2k−1 if ρ = 0i ⊕ 1k−i (1 ≤ i ≤ k)
0 in any other case .
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Proof. The case k = 0 is trivial. For k ≥ 1, let ρ = (ρ1, ρ2, · · · , ρk) ∈ Zk2 and
δ = (ρ1, ρ2, · · · , ρk−1) ∈ Zk−1

2 , then we have

φ̂k(ρ) =
∑

s∈Zk
2

φk(s)(−1)(s|ρ) =
∑

s∈Zk
2

sk=0

φk(s)(−1)(s|δ) +
∑

s∈Zk
2

sk=1

φk(s)(−1)(s|δ)

=
∑

r∈Zk−1
2

φk−1(r)(−1)(r|δ) + (−1)ρk
∑

r∈Zk−1
2

(k − φk−1(r))(−1)(r|δ)

= (1 + (−1)ρk+1)φ̂k−1(δ) + (−1)ρkk
∑

r∈Zk−1
2

(−1)(r|δ),

where the equality in the second line follows by (3.5). Next, suppose that
ρk = 0, then

φ̂k(ρ) = k
∑

s∈Zk−1
2

(−1)(s|δ) =
{
k2k−1 if δ = 0k−1

0 if δ ̸= 0k−1

.

On the other hand, if ρk = 1 we have

φ̂k(ρ) = 2φ̂k−1(δ)− k
∑

s∈Zk−1
2

(−1)(s|δ)

=

{
(k − 1)2k−1 − k2k−1 if δ = 0k−1

2φ̂k−1(δ) if δ ̸= 0k−1

,

and the result follows by induction. □

By virtue of the proposition above, for ρ = (ρ1, ρ2, · · · , ρk) we can write

φk(ρ) =
k

2
− 1

2

(
k∑

i=1

(−1)
∑

k
j=i

ρj

)
.

Definition 3.3. For k ≥ 1 and t ∈ C, the function φk(ρ; t) : Z
k
2 → C is de-

fined by

φk(ρ; t) :=
1

2

k∑

i=1

(
1− (−1)

∑

k
j=i

ρj
)
ti−1.

In the following theorem we collect some properties and transformation
formulas for φk(ρ; t). For an integer i ∈ Z≥0 and t ∈ C, we write [i]t =

1−ti
1−t .
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Notice that since

lim
t→1

φk(ρ, t) = φk(ρ),

the identities of the following theorem also apply to φk(ρ).

Theorem 3.3. Let ρ = (ρ1, ρ2, · · · , ρk) ∈ Zk2, ρ̌ = (ρk, ρk−1, · · · , ρ1) ∈ Zk2
and v ∈ {0, 1}. Recall that for r ∈ Zk2, s ∈ Zℓ2, the vector r⊕ s ∈ Zk+ℓ2 de-
notes the concatenation of r and s. Then

1) φk+1(ρ⊕ (v); t) = v[k + 1]t + (−1)vφk(ρ, t),

2) φk+1((v)⊕ ρ; t) = φk(ρ, t)t+
(
1−(−1)v+|ρ|

2

)
,

3) φk(ρ̌; t) = (−1)|ρ|tkφk(ρ; t−1) +
(
1−(−1)|ρ|

2

)
[k + 1]t,

4)
∑k

i=1(−1)
∑

k
j=i

ρj ti−1 = [k]t − 2φk(ρ; t).

Proof. The first claim is just the analog of (3.5), the second follows imme-
diately from the expression of φk in Definition (3.3). For the third one, we
have

φk(ρ̌; t) =
[k]t
2
− 1

2

(
k∑

i=1

(−1)
∑

k+1−i
j=1 ρj ti−1

)

=
[k]t
2
− 1

2

(
k∑

i=2

(−1)
∑

k
j=i

ρj tk+1−i
)
(−1)|ρ| − 1

2
(−1)|ρ|

=
(−1)|ρ|tk

2
[k]t−1 − (−1)|ρ|tk

2

(
k∑

i=1

(−1)
∑

k
j=i

ρj t−i+1

)

+
[k]t
2
− (−1)|ρ|tk

2
[k]t−1 +

tk

2
− 1

2
(−1)|ρ|

= (−1)|ρ|tkφk(ρ; t−1) + [k + 1]t

(
1− (−1)|ρ|

2

)

as desired. The last claim is obtained directly from the definition. □

In addition, it is not difficult to see from the formulas in Theorem 3.3
that if 0 < j1 < j2 < · · · < j|ρ| ≤ k are the position of the ones in ρ ∈ Zk2, we
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have

(3.6) φk(ρ; t) =

|ρ|∑

i=1

(−1)i−1[j|ρ|+1−i]t,

so that φk(ρ; t) is seen to be a t-analogue of the function φk(ρ) of Defini-
tion 3.2.

To close the discussion of the function φn, let us describe with more
detail the relation between the two representations of the function φn. The
main point is the underlying bijection

S(n)k :=
{
ρ ∈ Zk2 : |ρ| = n

}
(3.7)

←→
{
(j1, j2, · · · , jn) ∈ Zn≥1 ; j1 < j2 < · · · < jn ≤ k

}
=: J (k)

n

given by the position of the ones in ρ ∈ Zk2 for |ρ| = n ∈ Z≥0. For n ≥ 1, we
define the function ϕ(n) : Cn+1 → C by

(3.8) ϕ(n)(x, t) :=

n∑

i=1

(−1)i−1[xn+1−i]t,

and for n = 0 we set ϕ(0) = 0. Then, for ρ ∈ S(n)k corresponding to j =

(j1, j2, · · · , jn) ∈ J (k)
n , we have

(3.9) φk(ρ; t) = ϕ(n)(j, t).

We remark that, as a function on the variables x1, x2, · · · , xn, the right hand
side of the equality does not depend on k. This is the key property that we
use in the sequel to evaluate the sums appearing in the heat kernel.

To get a better understanding of equation (3.9), we introduce the induc-
tive limit

Z∞
2 = lim−→

n

Zn2 ,

where, for i ≤ j, the injective homomorphisms fij : Z
i
2 → Z

j
2 are given by

fij(ρ) = (ρ1, ρ2, · · · , ρi, 0, · · · , 0) ∈ Z
j
2

for ρ = (ρ1, ρ2, · · · , ρi) ∈ Zi2. Clearly, the functions φk for k ≥ 1 induce nat-
urally a function φ : Z∞

2 × C→ C.
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Lemma 3.4 (Universality). Let n ∈ Z≥0. There is a bijection

S(n) := {ρ ∈ Z∞
2 : |ρ| = n}

←→ {j1, j2, · · · , jn ∈ Z≥1 ; j1 < j2 < · · · < jn} =: Jn,

Let ρ ∈ S(n), corresponding to j ∈ Jn, then we have

φ(ρ; t) = ϕ(n)(j, t). □

The lemma above means, in practice, that while the function φ (or any of
the individual functions φk for k ≥ 0) is, in general, a complicated function,
when restricted to elements of fixed norm |ρ| = n, it has a simple represen-
tation given by ϕ(n), that is, it is essentially a q-polynomial in the variable
t.

Remark 3.1. The function φk(ρ; t) admits the following characterization.
Denote by E(x; t) the generating function for the elementary symmetric
functions (see e.g. [48])

E(x; t) =

∞∏

i=1

(1 + xit).

Let F (x; t) be a (formal) function defined in infinite vectors x =
(x1, x2, x3, · · · ) given by

F (x; t) := E(x;−2)
∞∑

i=1

[i]txi∏i
j=1(1− 2xj)

,

then we have the equality

φk(ρ; t) = F ((ρ1, ρ2, · · · , ρk, 0, 0, 0, · · · ); t).

Indeed, by successive application of the first transformation formula, we
obtain

(3.10) φk(ρ; t) =

k∑

i=1

[i]tρi

k∏

j=i+1

(1− 2ρj)

since 1− 2ρj = (−1)ρj .
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Remark 3.2. For k ≥ 1, the function φk(ρ, t), with a small modification,
may be interpreted as a morphism of abelian groups. To see this, we notice
that by (3.10) we have

(3.11) φk(ρ+ θ; t) = φk(ρ; t) + φk(θ; t) (mod 2),

for ρ, θ ∈ Zk2. Next, by using equation (3.6) as the definition of φk(ρ; t) we
can consider Z2[t]k, the vector space of polynomials of degree less than k over
the ring Z2, as the codomain of φk(ρ; t), that is, φk(·, t) : Zk2 → Z2[t]k. Thus,
the identity (3.11) exhibits φk(ρ; t) as an isomorphism of abelian groups and
by linear extension, an isomorphism of vector spaces over Z2.

3.1. Fourier transform of R(k,N)
µ

In this section we describe the Fourier transform of the function R
(k,N)
µ . For

convenience, we recall the definition

R(k,N)
µ (x, y, u, s)

= exp



√
2g(1− u)
1− u2N

k−1∑

j=1

(−1)s(j)
(
xΛ(j)(u) + yΛ(N−j+1)(u)

)



× exp

(
g2(1− u)2

2(1 + u)2(1− u2N )

( k−2∑

i=1

ηi(s)
2Ω(i,i)(u)

+ 2

k−2∑

i=1

k−2∑

j=i+1

ηi(s)ηj(s)Ω
(i,j)(u) + 4(−1)µ

k−2∑

i=1

N−1∑

j=k

ηi(s)Ω
(i,j)(u)

))
,

from where is it clear that R
(k,N)
µ ∈ C[Zk−1

2 ]. As in the case of the function

gk(u, s), the Fourier transform is computed in the abelian group C(k−1)
vw ≃

Zk−3
2 , with v, w ∈ {0, 1}, and we denote by R

(v,w)
µ ∈ C[Zk−3

2 ] the function re-

sulting by applying the projection (3.3) to R
(k,N)
µ (x, y, u, s). We note

that R
(v,w,k,N)
µ (x, y, u, s) would be a more appropriate notation for

R
(v,w)
µ (x, y, u, s), but since k,N ∈ Z≥1 remain fixed in the computations of

this section and there is no risk of confusion we have dropped the dependence

of k,N from the notation of R
(v,w)
µ (u, s).
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We start with some general considerations. First, suppose S is subset of

characters S ⊂ ̂
Zk−3
2 and f ∈ C[Zk−3

2 ] is given by

f(s) := exp


∑

χ∈S
aχχ(s)


 =

∑

ξ∈̂
Z

k−3
2

Cξξ(s),

for arbitrary aχ ∈ C with χ ∈ S, and where Cξ ∈ C is the Fourier coefficient

corresponding to ξ ∈ ̂
Zk−3
2 . The Fourier transform f̂ is then given by

f̂(ρ) = 2k−3
∑

ξ∈̂
Z

k−3
2

Cξδξ,χρ
.

Therefore, in order to get the expression for the Fourier transform of
f(s), it is enough to describe the Fourier coefficients Cξ ∈ C in terms of
aχ ∈ C. Let us consider the case |S| = 1, that is, S = {χ}. In this case

f(s) = cosh(aχ) + sinh(aχ)χ(s),

since any character χ ∈ ̂
Zk−3
2 is real.

To describe the general case, we introduce an arbitrary ordering in S =
{χ1, χ2, · · · , χℓ} with ℓ = |S|. Then, for a ∈ Cℓ and an index vector r ∈
{0, 1}ℓ we define

T (r)(a) :=

ℓ∏

i=1

[
cosh(ai)

(1−ri) sinh(ai)
ri
]
,

where ai (resp. ri) denotes the i-th component of a (resp. r).
The Fourier coefficients of f are given by

Cχρ
(= Cρ) =

∑

r∈{0,1}ℓ

χρ=
∏

ℓ
i=1(χi)ri

T (r)(a),

where a = {a1, a2, · · · , aℓ} ∈ Cℓ is the vector of coefficients. In particular,
note that Cχ ̸= 0 if and only if χ is generated by elements in the set S.

Next, we specialise these considerations for the case of the function

R
(v,w)
µ (x, y, u, s) ∈ C[Zk−3

2 ]. In this case, the set Sk−3 (corresponding to the
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set S in the discussion above) is given by

Sk−3 =

{
χ = χρ ∈ ̂

Zk−3
2 | ρ ∈ Zk−3

2 , 0 < |ρ| ≤ 2

}
.

In particular |Sk−3| = (k−3)(k−2)
2 , and if χρ ∈ Sk−3, we have

ρ ∈ {ei + ej | 0 ≤ i < j ≤ k − 3}

where e0 := 0 is the zero vector. For ρ = ei + ej we denote χρ ∈ Sk−3 by
χi,j . Similarly, we denote by ai,j (resp. ri,j) the entries of the coefficient
vector a (resp. the vector r ∈ {0, 1}ℓ) in lexicographical ordering.

Note that the trivial character is omitted from the set, since

R(v,w)
µ (x, y, u, s) = exp


a(µ)0 +

∑

χ∈Sk−3

a(µ)χ χ(s)




= exp(a
(µ)
0 ) exp


 ∑

χ∈Sk−3

a(µ)χ χ(s)


 ,

thus

̂
R

(v,w)
µ (x, y, u, ρ) = 2k−3 exp(a

(µ)
0 )



∑

ξ∈̂
Z

k−3
2

C
(µ)
ξ δξ,χρ


 .

We note here that in the case k = 3, R
(v,w)
µ (x, y, u, s) =

̂
R

(v,w)
µ (x, y, u, ρ) =

exp
(
a
(µ)
0

)
for ρ ∈ Z0

2.

The next lemma describes the coefficients ai,j for the case of the function

R
(v,w)
µ (x, y, u, s). The proof is by direct computation from the definitions and

we omit it.

Lemma 3.5. The trivial character coefficient a
(µ)
0 is given by

a0(u
1

N ) = O( 1
N ).
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For 1 ≤ i ≤ k − 3, the Fourier coefficient a
(µ)
0,i is given by

a
(µ)
0,i (u

1

N ) =

√
2g(1− u 1

N )

1− u2
(
xu

i

N (1− u2− 2i+1

N ) + yu1−
i+1

N (1− u 2i+1

N )
)

+ (−1)µ 2g2(1− u 1

N )

(1− u2)(1 + u
1

N )
u

k

N
− i+1

N (1− u1− k

N )(1− u1− k−1

N )(1− u 2i+1

N )

+O( 1
N2 ).

For 1 ≤ i < j, the Fourier coefficients ai,j are given by

ai,j(u
1

N ) =
g2(1− u 1

N )2

1− u2 u
j

N
− i+1

N (1− u 2i+1

N )(1− u2− 2j+1

N ). □

3.2. Graph theoretical considerations

For the case of Fourier transform
̂
R

(k,N)
µ of R

(k,N)
µ , we have seen in §3.1 that

the elements χρ ∈ Sk−3 correspond to ρ = ei + ej with 0 ≤ i < j ≤ k − 3.
In addition, note that for ρ ∈ Zk−3

2 , defining the set

V (k−3)
ρ =



r ∈ {0, 1}|Sk−3|

∣∣∣χρ =
k−3∏

i=1

(χ0,i)
r0,i

∏

1≤i<j
(χi,j)

ri,j



 ,

the Fourier coefficients Cχρ
are given by

Cχρ
=

∑

r∈V (k−3)
ρ

T (r)(a),

where, for simplicity, and only in this subsection we drop the dependency of

µ from the notation of a
(µ)
i,j . The structure of the sets V

(k−3)
ρ allows a graph-

theoretical (combinatorial) description as we see below in Definition 3.4.
Using this description, in this subsection we prove several properties of the

sets V
(k−3)
ρ used in the Section 3.3 below. In particular, by the reduction

procedure described in Proposition 3.8 we see that for our purposes it is

enough to consider the case of ρ = 0 (see Example 3.12 for case of V
(3)
0 ).

Notice that, by the definition of Sk−3, it is clear that for any ρ ∈ Zk−3
2 ,

the set V
(k−3)
ρ is not empty. In fact, we see in Lemma 3.11 that the set

V
(k−3)
ρ has the same cardinality as V

(k−3)
0 .

Next, we give an alternative description of the elements of the set V
(k−3)
ρ

as an undirected graph allowing loops.
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Definition 3.4. For r ∈ {0, 1}|Sk−3| = Z
1

2
(k−2)(k−3)

2 , the graph G(r) is the
undirected graph with the vertex set

V (G(r)) = {1, . . . , k − 3},

and edges determined by

{
(i, i) ∈ E(G(r)) if r0,i = 1, for 0 < i

(i, j) ∈ E(G(r)) if ri,j = 1, for 0 < i < j,

where E(G(r)) is the edge set of G(r).
We denote by deg(G(r)) the (ordered) list of degree of the vertices of

G(r).

Note that different to usual convention, when the graph G(r) has a loop
(i, i) ∈ E(G(r)) we consider the loop to contribute 1 to the degree of the
vertex i.

Example 3.6. Let k = 7. For r = (0, 0, 1, 1, 1, 1, 1, 0, 0, 1) ∈ Z10
2 the graph

G(r) is shown in Figure 2. Actually, we easily verify that r ∈ V (4)
ρ with

12

4

Figure 2. Graph G(r) associated to the vector r = (0, 0, 1, 1, 1, 1, 1, 0, 0, 1)

ρ = (1, 1, 1, 1). Notice also that deg(G(r)) = (3, 1, 3, 3) ≡ (1, 1, 1, 1) (mod 2).

In fact, the last property of the example determines the set V
(k−3)
ρ , as

we can easily verify and state in the following lemma.

Lemma 3.7. For k ≥ 3, we have

(3.12) V (k−3)
ρ = {r ∈ {0, 1}|Sk−3| | deg(G(r)) ≡ ρ (mod 2)}. □
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Proposition 3.8. For ρ ∈ Zk−3
2 , we have

|V (k−3)
ρ | = |V (k−3)

0 | = 2(k−3)(k−4)/2,

and the bijection σρ : V
(k−3)
0 → V

(k−3)
ρ is given explicitly by the map

r ∈ V (k−3)
0 7→ r+ (ρ⊕ 0(k−3)(k−4)/2) (mod 2) ∈ V (k−3)

ρ .

Furthermore, the map σρ induces the relation

T (σρ(r))(a) =

k−3∏

i=1

(
tanh(ai)

1−2r0,i
)ρi

T (r)(a).

Proof. From (3.12), we see that |V (k−3)
0 | is equal to the number of even

graphs with k − 3 vertices. By §1.4 of [20], the number of such graphs is
equal to 2(k−3)(k−4)/2.

Next, let us consider the effect of the map σρ : V
(k−3)
0 → {0, 1}|Sk−3| on

the associated graphs G(r), in particular on the degree of a given vertex
i ∈ {1, 2, 3, · · · , k − 3}. First, it is clear that any edge (i, j), with i ̸= j, in
G(r) is invariant under σρ, that is, if (i, j) is an edge of G(r) then it is also
an edge of G(σρ(r)). Now, suppose that ρi = 1 and the vertex i does not
have a loop in G(r) (i.e. r0i = 0), then the vertex i has a loop in G(σρ(r)).
On the other hand, if the vertex i has a loop in G(r), then i does not have
a loop in G(σρ(r)). Thus the degree of i in G(σρ(r)) is ±1 the degree of i in
G(r) (see Figure 3 for an example).

(a) r = (0, 1, 1, 1, 1, 0) (b) σρ(r) = (1, 1, 0, 1, 1, 0)

Figure 3. Graphs corresponding to a vector r and its image under σρ for
ρ = (1, 0, 1)

If ρi = 0, there is no change in the degree of the vertex i. Consequently,
we have

deg(G(σρ(r))) ≡ deg(G(r)) + ρ ≡ ρ (mod 2),
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and thus σρ(V
(k−3)
0 ) ⊂ V (k−3)

ρ . It is clear that the map σρ is an involution,
whence the second claim is proved. The third claim follows directly by the
definition of T (r)(a). □

Example 3.9. Suppose k = 6, thus |S3| = 6. Let r = (0, 1, 1, 1, 1, 0) ∈ V (3)
0

and ρ = (1, 0, 1). Then, letting C = sinh(a4) sinh(a5) cosh(a6), we have

T (σρ(r))(a) = sinh(a1) sinh(a2) cosh(a3)C

= (tanh(a1) coth(a3)) cosh(a1) sinh(a2) sinh(a3)C

= (tanh(a1) coth(a3))T
(r)(a).

By the foregoing discussion, the Fourier coefficients are given by

(3.13) Cρ =
∑

r∈V (k−3)
0

T (σρ(r))(a).

Next, we define several projections on set V
(k−3)
0 .

Definition 3.5. Let k ≥ 4, then

• p1 : Z
1

2
(k−2)(k−3)

2 → Zk−3
2 is the projection of the first k − 3 compo-

nents,

• p2 : Z
1

2
(k−2)(k−3)

2 → Z
1

2
(k−3)(k−4)

2 is the projection of the last (k − 3)(k −
4)/2 components.

Let k ≥ 5, then:

• q1 : Z
1

2
(k−2)(k−3)

2 → Zk−4
2 is the projection of the k − 4 components

starting from k − 2,

• q2 : Z
1

2
(k−2)(k−3)

2 → Z
1

2
(k−4)(k−5)

2 is the projection of the last (k − 4)(k −
5)/2 components.

Note that if the appropriate domain of the functions are considered, the
relations

q1 = p1 ◦ p2, q2 = p2 ◦ p2.

hold.
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Example 3.10. Let k = 7 and r = (0, 0, 1, 1, 1, 1, 1, 0, 0, 1) ∈ r ∈ V (4)
ρ , then

p1(r) = (0, 0, 1, 1), p2(r) = (1, 1, 1, 0, 0, 1),

and r = p1(r)⊕ p2(r). Also.

q1(r) = (1, 1, 1), q2(r) = (0, 0, 1).

The next results describes the structure of the set V
(k−3)
0 used in §3.3 to

evaluate the sums over the Fourier transforms of the functions R
(k,N)
µ and

gk(u, s) (cf. Lemma 3.14).

Lemma 3.11. Let r, s ∈ V (k−3)
0 .

1) If r ̸= s, then p2(r) ̸= p2(s). In other words, p2 is a bijection of V
(k−3)
0

onto Z
(k−3)(k−4)/2
2 .

2) If r ∈ V (k−3)
0 , then |p1(r)| ≡ 0 (mod 2). Moreover,

p1(V
(k−3)
0 ) = {ρ ∈ Zk−3

2 | |ρ| ≡ 0 (mod 2)}.

3) We have

V
(k−4)
0 = p2({v ∈ V (k−3)

0 : p1(v) = 0k−3}),

4) For v ∈ Z
(k−4)(k−5)/2
2 ,

p1({σ ∈ V (k−3)
0 : q2(σ) = v}) = {σ ∈ Zk−3

2 : |σ| ≡ 0 (mod 2)},

and

q1({σ ∈ V (k−3)
0 : q2(σ) = v}) = Zk−4

2 .

Moreover, the restriction of p1 and q1 to the above sets are bijections.

5) For v ∈ Z
(k−4)(k−5)/2
2 , let r ∈ V (k−3)

0 such that q2(r) = v. Let r0 ∈
V

(k−3)
0 be the unique element such that p1(r0) = 0k−3 and q2(r0) = v.

Then,

q1(r) = q1(r0) + (r0,2, r0,3, · · · , r0,k−3) (mod 2).
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Example 3.12. We illustrate the statements of Lemma 3.11 with an ex-

ample. For k = 6, the set V
(k−3)
0 is given by

V
(3)
0 = {(0, 0, 0, 0, 0, 0), (0, 0, 0, 1, 1, 1), (0, 1, 1, 0, 0, 1), (0, 1, 1, 1, 1, 0),

(1, 0, 1, 0, 1, 0), (1, 0, 1, 1, 0, 1), (1, 1, 0, 0, 1, 1), (1, 1, 0, 1, 0, 0)}.

Then, we see directly that

p2(V
(3)
0 ) = Z3

2,

and

p1(V
(3)
0 ) = {(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)}.

Moreover,

p2({v ∈ V (3)
0 : p1(v) = 03}) = {(0, 0, 0), (1, 1, 1)} = V

(2)
0 ,

and if v = (0)

p1({σ ∈ V (3)
0 : q2(σ) = v}) = {(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)},

and

q1({σ ∈ V (3)
0 : q2(σ)) = v}) = {(0, 0), (1, 1), (0, 1), (1, 0)} = Z2

2.

Finally, with the notation of (4) in the lemma, let r = (1, 0, 1, 1, 0, 1) and
v = (1). Then r0 = (0, 0, 0, 1, 1, 1), q1(r0) = (1, 1),(r0,2, r0,3) = (0, 1) and

q1(r) = (1, 0) ≡ (1, 1) + (0, 1) (mod 2).

Proof of Lemma 3.11. In this proof we use repeatedly the well-known (ele-
mentary) fact from graph theory that the number of vertices in an undirected
simple graph with odd degree is even.

Suppose v = (v1, v2, · · · , vℓ) ∈ Zℓ2, where ℓ =
(k−3)(k−4)

2 and

r = (0, 0, · · · , 0, v1, v2, · · · , vℓ) ∈ Z
(k−3)(k−2)/2
2 .

The associated graph G(r) is a undirected simple graph on k − 3 vertices.

Then, there is a unique element r̄ ∈ V (k−3)
0 such that p2(r̄) = v, that is, the

one corresponding to the graph obtained by adding loops to the vertices of
G(r) with odd degree. The correspondence establishes an injection of Zℓ2 into



✐

✐

“8-Reyes-Bustos” — 2023/3/21 — 17:05 — page 1393 — #47
✐

✐

✐

✐

✐

✐

Heat kernel for the quantum Rabi model 1393

V
(k−3)
0 , which is actually seen to be a bijection by comparing the cardinality

of the sets (cf. Proposition 3.8), proving (1). Moreover, this argument also

shows that for r ∈ V (k−3)
0 we have |p1(r)| ≡ 0 (mod 2).

Conversely, let v ∈ Zk−3
2 with |v| ≡ 0 (mod 2). Set

r = (v1, v2, · · · , vk−3, 0, 0, · · · , 0) ∈ Z
(k−3)(k−2)/2
2 ,

then the graph G(r) is a graph with exactly an even number of loops. More-
over, the graph G1 with all vertices of even degree obtained by joining
pair of vertices with loops with exactly one edge corresponds to a vector

r1 ∈ Z
(k−3)(k−2)/2
2 such that p1(r1) = v, proving (2).

Let v ∈ V (k−4)
0 , and v̄ = 0k−3 ⊕ v, we are to prove that v̄ ∈ V (k−3)

0 , in
other words, that

χ0 =

k−3∏

i=1

(χ0,i)
v̄0,i
∏

i<j

(χi,j)
v̄i,j ,

equivalently,

0k−3 =

k−3∑

i=1

v̄0,i ei +
∑

i<j

v̄i,j (ei + ej).

Notice that by the definitions, we have

v̄0,i = 0, v̄1,j = v0,j−1, v̄n,m = vn−1,m−1,

where i ∈ {1, 2, · · · , k − 3}, j ∈ {2, 3, · · · , k − 3}, and 2 ≤ n < m ≤ k − 3.
Thus

k−3∑

i=1

v̄0,i ei +
∑

i<j

v̄i,j (ei+ej) =

k−3∑

j=2

v̄1,j(e1 + ej) +
∑

2≤i<j
v̄i,j (ei + ej)

= |p1(v)|e1 +
k−4∑

i=1

v0,iei+1 +
∑

i<j

vi,j(ei+1 + ej+1)

and this is equal to 0k−3 since v ∈ V (k−4)
0 (and |p1(v)| ≡ 0 (mod 2) by (2)).

The converse follows in the same way, proving (3).
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Next, let v ∈ Z
(k−4)(k−5)/2
2 . By (2), we have

p1({σ ∈ V (k−3)
0 : q2(σ) = v}) ⊂ {σ ∈ Zk−3

2 : |σ| ≡ 0 (mod 2)}.

and by (1), we have

|{σ ∈ V (k−3)
0 : q2(σ) = v}| = 2k−4,

thus it suffices to show that for σ̄ ∈ Zk−3
2 with |σ̄| ≡ 0 (mod 2), there is an el-

ement r ∈ {ρ ∈ V (k−3)
0 : q2(ρ) = v} such that p1(r) = σ̄. Let σ̄ ∈ Zk−3

2 with
|σ̄| ≡ 0 (mod 2) and define v̄ = σ̄ ⊕ 0k−4 ⊕ v, then the associated graph
G(v̄), it is a graph on k − 3 vertices with an even number |σ̄| of loops where
the vertex 1 has degree 1 (if it has a loop) or 0. We consider the two cases
separatedly.

Suppose that degree of the vertex 1 is 0. In this case, the subgraph G1
of G(v̄) obtained by removing the vertex 1 is a graph on k − 4 vertices with
n = |σ̄| ≡ 0 (mod 2) loops, let G0 be G1 without the loops. As in (1), we know
that G0 has an even number of vertices with odd degree. Let a (resp. b) be
the number of vertices with odd degree (resp. even degree) in G0 that have a
loop in G1. Let m1 (resp. m0 ) be the number of vertices of odd degree in G1
(resp. G0), then we have m1 = m0 − a+ b. Since a+ b = n ≡ 0 (mod 2) and
m0 ≡ 0 (mod 2), then a and b have the same parity and therefore m1 ≡ 0
(mod 2). Let G be the graph obtained from G(v̄) by adding edges from 1 to
each of the (even number of) vertices with odd degree. Then, G is a graph

where all vertices have even degree. It corresponds to a vector r ∈ V (k−3)
0

with p1(r) = σ̄ and q2(r) = v, as desired. The case where the vertex 1 has a
loop is dealt in a similar way. This proves the first part of (4). The second
part follows directly from (1).

Finally, let v ∈ Z
(k−4)(k−5)/2
2 . By (1) and (3) the existence of a unique

r0 ∈ V (k−3)
0 with p1(r0) = 0k−3 and q2(r0) = v is guaranteed. First, we con-

sider the case v = 0(k−4)(k−5)/2, where we have r0 = 0(k−3)(k−2)/2. Let r ∈
V

(k−3)
0 with q2(r) = 0(k−4)(k−5)/2. Since p1(r) = (r0,1, r0,2, · · · , r0,k−3), we

are to prove (r1,2, r1,3, · · · , r1,k−3)=q1(r)=(r0,2, r0,3, · · · , r0,k−3). The graph
G(r) is a graph with k − 3 vertices of even degree, with an even number of
loops and edges only of the form (1, j) for r1,j = 1. If r0,j = 1 for j ≥ 2 there
is a loop in the vertex j and there must be an edge (1, j) to make the degree
of j even, thus r1,j = r0,j = 1. Similarly, if there is no loop in j, then there
is no edge (1, j) in the graph. This proves (5) for the case r = 0(k−4)(k−5)/2.



✐

✐

“8-Reyes-Bustos” — 2023/3/21 — 17:05 — page 1395 — #49
✐

✐

✐

✐

✐

✐

Heat kernel for the quantum Rabi model 1395

Next, for general v ∈ Z
(k−4)(k−5)/2
2 , let r̄ ∈ V (k−3)

0 the unique vector with
p1(r̄) = p1(r) and q2(r̄) = 0(k−4)(k−5)/2. By our argument above, we have
(r̄1,2, r̄1,3, · · · , r̄1,k−3) = (r̄0,2, r̄0,3, · · · , r̄0,k−3). The graph G(r0) is a simple
graph with no loops and the graph G(r̄) is a graph where the edges that
are not loops are of the form (1, j) for j ≥ 2 and where if such an edge
appears then there is loop in j. Both graphs have all vertices with even
degree. From this, it is easy to see that the graph G(s) corresponding to

s = r0 + r̄ (mod 2) has all even vertices and therefore s ∈ V (k−3)
0 . Moreover,

p1(s) = p1(r) and q2(s) = q2(r), therefore, by (4), we have s = r, proving (5).
This completes the proof of Lemma 3.11. □

3.3. Summation via Fourier transforms

With the preparations of the previous sections, we proceed to compute the
innermost sum appearing in (2.14). By (3.13), we have

∑

s∈C(k−1)
vw

gk−1(u, s)R
(k,N)
µ (x, y, u, s)

=
1

4u(k−2)∆

∑

s∈Zk−3
2

g
(v,w)
k−3 (u, s)R(v,w)

µ (x, y, u, s)

=
1

2k−1u(k−2)∆

∑

ρ∈Zk−3
2

̂
g
(v,w)
k−3 (u, ρ)

̂
R

(v,w)
µ (x, y, u, ρ)

=
1

4u(k−2)∆
exp(a

(µ)
0 )

∑

ρ∈Zk−3
2

̂
g
(v,w)
k−3 (u, ρ)

∑

ξ∈Zk−3
2

C
(µ)
ξ δξ,ρ

=
1

4u(k−2)∆
exp(a

(µ)
0 )

∑

ρ∈Zk−3
2

̂
g
(v,w)
k−3 (u, ρ)

∑

r∈V (k−3)
0

T (σρ(r))(a(µ)).

By Proposition 3.1, the sum in the last line can be written as

∑

ρ∈Zk−3
2

̂
g
(v,w)
k−3 (u, ρ)

∑

r∈V (k−3)
0

T (σρ(r))(a(µ))

=
∑

r∈V (k−3)
0

T (r)(a(µ))
∑

ρ∈Zk−3
2

(−1)v|ρ|
(
u2φk−3(ρ)∆ + (−1)v+wu2(k−2−φk−3(ρ))∆

)

×
k−3∏

i=1

(
tanh(a

(µ)
i )1−r0i

)ρi
.
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Setting A
(r)
i = (−1)v tanh(a(µ)i )1−r0i , we obtain

∑

r∈V (k−3)
0

T (r)(a(µ))

×
∑

ρ∈Zk−3
2

(
u2φk−3(ρ)∆ + (−1)v+wu2(k−2−φk−3(ρ))∆

) k−3∏

i=1

(
A

(r)
i

)ρi
,

or equivalently

(3.14)
∑

r∈V (k−3)
0

T (r)(a(µ))
(
f
(r)
k−3(u

2∆) + (−1)v+wg(r)k−3(u
2∆)
)
,

where the functions f
(r)
k (τ) and g

(r)
k (τ) are given by

f
(r)
k (τ) =

∑

ρ∈Zk
2

τφk(ρ)
k∏

i=1

(A
(r)
i )ρi , g

(r)
k (τ) =

∑

ρ∈Zk
2

τk+1−φk(ρ)
k∏

i=1

(A
(r)
i )ρi .

Next, we compute explicitly the functions f
(r)
k (τ) and g

(r)
k (τ). For sim-

plicity, we consider the general case

fk(τ) =
∑

ρ∈Zk
2

τφk(ρ)
k∏

i=1

Aρii , gk(τ) =
∑

ρ∈Zk
2

τk+1−φk(ρ)
k∏

i=1

Aρii ,

where Ai ∈ C for i ∈ {1, 2, · · · , k}. Note also that gk(τ) = τk+1fk(τ
−1).

Proposition 3.13. For k ∈ Z≥1, we have

fk(τ) + (−1)v+wgk(τ) =
1

2k

k∑

ℓ=0

(1 + τ)k−ℓ(1− τ)ℓ(1 + (−1)v+w+ℓτ)

×
∑

j1<j2<...<jℓ

ℓ∏

i=0




ji+1∏

n=ji+1

(1 + (−1)v+w+ℓ−iAn)


 ,

where in the innermost product we have j0 = 0 and jℓ+1 = k.
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Proof. By property (1) of Theorem 3.3, we obtain the system of simultaneous
recurrence relations

fk(τ) = fk−1(τ) +Akgk−1(τ), gk(τ) = τ (gk−1(τ) +Akfk−1(τ))(3.15)

with initial conditions f0(τ) = 1 and g0(τ) = τ . The recurrence (3.15) can
be written as

[
fk
gk

]
=
←−∏

k
j=1

[
1 Aj
τAj τ

] [
f0
g0

]
,

where f0(τ) = 1 and g0(τ) = τ . Notice that

[
1 Aj
τAj τ

]
=

[
1 0
0 τ

] [
1 Aj
Aj 1

]
.

Actually, we have

[
fk
gk

]
= C
←−∏

k
j=1[aI+ bJ]D(Aj)C

[
f0
g0

]
,(3.16)

where we a = 1+τ
2 , b = 1−τ

2 , C is the Cayley transform

C =
1√
2

[
1 1
1 −1

]
,

and D(x) is a two-by-two matrix-valued function given by

D(x) =

[
1 + x 0
0 1− x

]
.

Indeed, (3.16) follows immediately from the facts

C

[
1 Aj
Aj 1

]
C = D(Aj), C

[
1 0
0 τ

]
C =

1

2

(
(1 + τ)I+ (1− τ)J

)
.

Obviously, we have

←−∏
k
j=1[aI+ bJ]D(Aj) =

k∑

ℓ=0

ak−ℓbℓ
∑

δ∈Zk
2

|δ|=ℓ

←−∏
k
j=1D

δj (Aj),

where Dδj (Aj) := D(Aj) when δj = 0 and Dδj (Aj) := JD(Aj) when δj = 1.
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For δ ∈ Zk2 with |δ| = ℓ, define ji by enumerating

{j | δj = 1} = {(1 ≤)j1 < j2 < . . . < jℓ(≤ k)},

then

←−∏
k
j=1D

δj (Aj)

= D(Ak) · · ·JD(Ajℓ) · · ·D(Ajℓ−1+1)JD(Ajℓ−1
) · · ·JD(Aj1) · · ·D(A1)

= D(Ak) · · ·D(−Ajℓ) · · ·D(−Ajℓ−1+1)

×D((−1)2Ajℓ−1
) · · ·D((−1)ℓAj1) · · ·D((−1)ℓA1)J

ℓ.

It follows that

←−∏
k
j=1[aI+ bJ]D(Aj)

=

k∑

ℓ=0

ak−ℓbℓ
∑

j1<j2<...<jℓ

D(Ak) · · ·D(−Ajℓ) · · ·D(−Ajℓ−1+1)

×D((−1)2Ajℓ−1
) · · ·D((−1)ℓAj1) · · ·D((−1)ℓA1)

=

k∑

ℓ=0

ak−ℓbℓ
∑

j1<j2<...<jℓ

k∏

i=jℓ+1

D(Ai) · · ·
jℓ∏

i=jℓ−1+1

D(−Ai) · · ·
j1∏

i=1

D((−1)ℓAi)Jℓ.

Define, for a vector j = {j1, j2, · · · , jℓ} ∈ Zℓ≥1 with 1 ≤ j1 < j2 < · · · <
jℓ ≤ k, the expressions

S(j) =

ℓ∏

i=0




ji+1∏

n=ji+1

(1 + (−1)ℓ−iAn)


 ,

S̄(j) =

ℓ∏

i=0




ji+1∏

n=ji+1

(1− (−1)ℓ−iAn)


 ,

where j0 := 0 and jℓ+1 := k. Then, for j as above we can write

k∏

i=jℓ+1

D(Ai) · · ·
jℓ∏

i=jℓ−1+1

D(−Ai) · · ·
j1∏

i=1

D((−1)ℓAi) =
(
S(j) 0
0 S̄(j)

)
.
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Noticing that the factor J ℓ depends only on the parity of ℓ, we obtain

fk(τ) =
1

2k+1

[
[k/2]∑

ℓ=0

(1 + τ)k−2ℓ(1− τ)2ℓ

×
∑

j1<j2<...<j2ℓ

(
(1 + τ)S(j) + (1− τ)S̄(j)

)

+

[(k+1)/2]∑

ℓ=1

(1 + τ)k−(2ℓ−1)(1− τ)2ℓ−1

×
∑

j1<j2<...<j2ℓ−1

(
(1− τ)S(j) + (1 + t)S̄(j)

)
]
,

and

gk(τ) =
1

2k+1

[
[k/2]∑

ℓ=0

(1 + τ)k−2ℓ(1− τ)2ℓ

×
∑

j1<j2<...<j2ℓ

(
(1 + t)S(j)− (1− τ)S̄(j)

)

+

[(k+1)/2]∑

ℓ=1

(1 + τ)k−(2ℓ−1)(1− τ)2ℓ−1

×
∑

j1<j2<...<j2ℓ−1

(
(1− τ)S(j)− (1 + τ)S̄(j)

)
]
.

Hence the results follows. □

We remark here that for 1 ≤ ℓ ≤ k, each set of ℓ numbers ji ( 1 ≤ j1 <
j2 < · · · < jℓ ≤ k) determine a unique vector ρ ∈ Zk2 such that |ρ| = ℓ and
where ji is the position of the i-th one in ρ. Likewise, each vector ρ ∈ Zk2
determines a unique set of ℓ = |ρ| integers such that 1 ≤ j1 < j2 < · · · < jℓ ≤
k by setting ji as the position of the i-th one in ρ.

By Proposition 3.13 applied to A
(r)
i , (3.14) is equal to

(3.17)
1

2k−1u(k−2)∆

k−3∑

ℓ=0

(1 + u2∆)k−ℓ(1− u2∆)ℓ(1 + (−1)v+w+ℓu2∆)

×
∑

j1<j2<...<jℓ

∑

r∈V (k−3)
0

T (r)(a(µ))

ℓ∏

i=0




ji+1∏

n=ji+1

(1 + (−1)w+ℓ−i tanh(a(µ)n )1−2r0n)


 .
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Next we deal with the innermost sum over the set V
(k−3)
0 . Let x ∈ Z, ρ =

(ρ1, ρ2, · · · , ρk−3) ∈ Zk−3
2 with |ρ| = ℓ, and 1 ≤ j1 < j2 < · · · < jℓ be the po-

sition of the ones in ρ. We have

∑

r∈V (k−3)
0

T (r)(a(µ))

ℓ∏

i=0




ji+1∏

n=ji+1

(
1 + (−1)x+ℓ−i tanh(a(µ)n )1−2r0n

)



=
∑

r∈V (k−3)
0

T (r)(a(µ))

k−3∏

i=1

(
1 + (−1)v0+vi tanh(a(µ)i )1−2r0i

)
.

with v0 = x and vi = vi(ρ) =
∑k

j=i ρj , for i = 1, 2, . . . , k − 3.

Lemma 3.14. Let vi ∈ C for i ∈ {0, 1, 2, · · · , k − 3}. We have

∑

r∈V (k−3)
0

T (r)(a(µ))

k−3∏

i=1

(
1 + (−1)v0+vi tanh(a(µ)i )1−2r0i

)
(3.18)

= exp



k−4∑

m=0

k−3−m∑

j=1

(−1)vm+vm+ja
(µ)
m,m+j


 .

Proof. The proof is by induction. For simplicity, in this proof we drop the

dependency of µ from the notation of the coefficients a
(µ)
i,j . It is immediate

to verify the result for the cases k − 3 = 1, 2. For r ∈ V (k−3)
0 , the single

summand of (3.18) corresponding to r is

k−3∏

i=1

(
cosh(ai)

1−r0i sinh(ai)
r0n
) (

1 + (−1)v0+vi tanh(ai)1−2r0i
)
T (p2(r))(p2(a)),

it is not difficult to see that it can be written as

(−1)|p1(r)|v0+
∑

k−3
i=1 r0ivi

k−3∏

i=1

cosh(ai)
(
1 + (−1)v0+vi tanh(ai)

)
T (p2(r))(p2(a))

= (−1)
∑

k−3
i=1 r0ivi

k−3∏

i=1

cosh(ai)
(
1 + (−1)v0+vi tanh(ai)

)
T (p2(r))(p2(a)),
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since |p1(r)| ≡ 0 (mod 2). Next, observe that

k−3∏

i=1

cosh(ai)
(
1 + (−1)v0+vi tanh(an)

)
= exp

(
k−3∑

i=1

(−1)v0+via0i
)
,

thus, the expression above is given by

(−1)
∑

k−3
i=1 r0ivi exp

(
k−3∑

i=1

(−1)v0+via0i
)
T (p2(r))(p2(a)).

Next, for v ∈ Z
(k−4)(k−5)/2
2 , we define the set S(v) ⊂ V (k−3)

0 as S(v) =

{σ ∈ V (k−3)
0 : q2(σ) = v}. By Lemma 3.11(4), we have |S(v)| = 2k−4. For

v ∈ Z
(k−4)(k−5)/2
2 , we have

∑

r∈S(v)
T (r)(a)

k−3∏

i=1

(
1 + (−1)v0+vi tanh(ai)1−2r0i

)

= exp

(
k−3∑

i=1

(−1)v0+via0i
)
T (v)(q2(a))

×
∑

r∈S(v)
(−1)

∑

k−3
i=1 r0iviT (q1(r))(q1(a),

Let r̄ ∈ V (k−3)
0 be the unique element such that p1(r̄) = 0k−3 and q2(r̄) = v.

Then, by the proof of Lemma 3.11(5), we can write r ∈ S(v) as

r = r̄+ r̂,

where p1(r̂) = p1(r) and q2(r̂) = 0(k−4)(k−5)/2. Moreover, also by Lemma
3.11(5), we have

r̂ = (r0,1, r0,2, · · · , r0,k−3, r0,2, · · · , r0,k−3)⊕ 0(k−4)(k−5)/2.
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Therefore, by Lemma 3.11(4) we have

∑

r∈S(v)
(−1)

∑

k−3
i=1 r0iviT (q1(r))(q1(a))

=
∑

r∈Zk−3
2

|r|≡0 (mod 2)

(−1)
∑

k−3
i=1 r0iviT ((r0,2,r0,3,··· ,r0,k−3)+q1(r̄))(q1(a))

=
∑

r∈Zk−3
2

|r|≡0 (mod 2)

(−1)
∑

k−3
i=1 r0ivi

k−3∏

i=2

(tanh(a1,i)
1−2r̄1i)r0iT (q1(r̄))(q1(a))

=

k−3∏

i=2

cosh(a1i)
1−r̄1i sinh(a1i)

r̄1i
(
1 + (−1)v1+vi tanh(a1i)

)
,

the last equality holding since |r| ≡ 0 (mod 2).
The sum in (3.18) is given by the sums S(v) over all vectors v ∈

Z
(k−4)(k−5)/2
2 . Namely, we have, by Lemma 3.11(3), that (3.18) is given by

exp

(
k−3∑

i=1

(−1)v0+via0i
) ∑

r∈V (k−4)
0

k−3∏

i=2

cosh(a1i)
1−r1i sinh(a1i)

r1i

×
(
1 + (−1)v1+vi tanh(a1i)

)
T (p2(r))(q2(a))

= exp

(
k−3∑

i=1

(−1)v0+via0i
) ∑

r∈V (k−4)
0

T (r)(p2(a))

k∏

i=2

(
1 + (−1)v1+vi tanh(a1i)

)

where each element r ∈ V (k−4)
0 has entries

r = (r1,2, r1,3, · · · , r1,k, r2,3, r2,4, · · · , rk−4,k−3).

The result follows by induction. □

Next, using Lemma 3.14 with x = w in (3.17) we see that the main limit
in the expression of the heat kernel is given by
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lim
N→∞

(
1− u 2∆

N

2u
∆

N

)
1∑

µ=0

N∑

k≥3

(
1 + u

2∆

N

2u
∆

N

)N−3

(3.19)

× 1

2
J (k,N)
µ (x, y, u

1

N )

{ ∑

ρ∈Zk−3
2

[
(−1)|ρ|+1u

∆

N (−1)|ρ|+µu∆

N

(−1)µ+1u−
∆

N u−
∆

N

](
1− u 2∆

N

1 + u
2∆

N

)|ρ|

× exp


a(µ)0 (u

1

N ) +

k−4∑

m=0

k−3−m∑

j=1

(−1)(|ρ|+µ−1)δ0(m)+
∑

m+j−1
i=m

ρia
(µ)
m,m+j(u

1

N )



}
,

where we wrote the sum appearing at the right hand side of Lemma 3.14 in
terms of the vector ρ and where δy(x) is the Kronecker delta function.

Let us further simplify the factors appearing as arguments in the ex-

ponential function in the above limit. By Lemma 3.5 we have a
(µ)
0 (u

1

N ) =
O
(
1
N

)
. For ρ ∈ Zk−3

2 , we have

(−1)|ρ|
k−3∑

j=1

(−1)
∑

j−1
i=1 ρia

(µ)
0,j (u

1

N
)) =

(1− u 1

N )

1− u2

×
[
√
2g

(
x

k−3∑

j=1

(−1)
∑

k−3
i=j

ρi
(
u

j

N − u2− j+1

N

)

+ yu

k−3∑

j=1

(−1)
∑

k−3
i=j

ρi
(
u−

j+1

N − u j

N

))

+ (−1)µ 2g2

(1 + u
1

N )
u

k

N (1− u1− k

N )(1− u1− k−1

N )

×
k−3∑

j=1

(−1)
∑

k−3
i=j

ρi
(
u−

j+1

N − u j

N

)]

+O( 1
N ).

Using identity (4) of Theorem 3.3, the above is equal to
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u
1

N

1− u2

(
√
2g
[
x(1− u k−3

N )(1− u2− k−1

N )− uy(1− u k−3

N )(1− u− k−1

N )
]

− (−1)µ 2g
2u

k

N (1− u1− k

N )(1− u1− k−1

N )(1− u k−3

N )(1− u− k−1

N )

(1 + u
1

N )

)

+ (−1)µ 2g
2u

k

N (1− u1− k

N )(1− u1− k−1

N )

(1 + u
1

N )

×
(
u

1

N φk−3(ρ;u
1

N )− u− 2

N φk−3(ρ;u
− 1

N )
)

+
2(1− u 1

N )

1− u2

(
√
2g

[
x
(
u2−

2

N φk−3(ρ;u
− 1

N )− u 1

N φk−3(ρ;u
1

N )
)

+ uy
(
u

1

N φk−3(ρ;u
1

N )− u− 2

N φk−3(ρ;u
− 1

N )
)])

+O( 1
N ),

On the other hand, the sum of the Fourier coefficients a
(µ)
i,j (u

1

N ) with
1 ≤ i < j is given by

k−4∑

m=1

k−3−m∑

j=1

(−1)
∑

m+j−1
i=m

ρia
(µ)
m,m+j(u

1

N ) =

k−4∑

m=1

k−4∑

j=m

(−1)
∑

j
i=m

ρia
(µ)
m,j+1(u

1

N )

=
g2(1− u 1

N )2

1− u2
k−4∑

m=1

(u−
m

N − um+1

N )

k−4∑

j=m

(u
j

N − u2− j+3

N )(−1)
∑

j
i=m

ρi

=
g2(1− u 1

N )2

1− u2
k−4∑

j=1

(u
j

N − u2− j+3

N )

j∑

m=1

(u−
m

N − um+1

N )(−1)
∑

j
i=m

ρi ,

and by using Theorem 3.3(4) once more, we see that this is equal to

g2

1− u2

(
(1− u 1

N )(1− u2− 1

N )(k − 4)− u 1

N (1 + u
2

N )(1− u k−4

N )(1− u2− k

N )

+
u

4

N (1− u 2k−8

N )(1− u2− 2k−1

N )

1 + u
1

N

)
+

{
2g2(1− u 1

N )2

(1− u2)

×
k−4∑

j=1

(u
j

N − u2− j+3

N )
(
u

2

N φj(Prej(ρ);u
1

N )− u− 1

N φj(Prej(ρ);u
− 1

N )
)}

,
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where Prej(ρ) is the prefix of lenght j of ρ. Concretely, if ρ ∈ Zk2 and j ≤ k,
then Prej(ρ) : Z

k
2 → Z

j
2 is the projection into Z

j
2 of the first j elements of ρ.

Next, we define auxiliary functions H
(k,N)
η ,P (k,N) and Q

(k,N)
η containing

the expressions appearing above. In §3.4, we describe how to evaluate certain

sums containing H
(k,N)
η and P (k,N)(u

1

N , ρ), restricted to a fixed value |ρ| =
λ ∈ Z≥0, as iterated Riemann integrals.

Definition 3.6. Let ρ ∈ Zk−4
2 and η ∈ {0, 1}. The functions H(k,N)

η , P (k,N)

and Q
(k,N)
η are given by

H(k,N)
η (x, y, u

1

N , ρ)

:= exp

(
(−1)η 2

√
2g(1− u 1

N )

1− u2
[
x
(
u2−

2

N φk−3(ρ;u
− 1

N )− u 1

N φk−3(ρ;u
1

N )
)

+ uy
(
u

1

N φk−3(ρ;u
1

N )− u− 2

N φk−3(ρ;u
− 1

N )
) ])

,

P (k,N)(u
1

N , ρ)

:= exp

(
2g2(1− u 1

N )2

(1− u2)

k−4∑

j=1

(u
j

N − u2− j+3

N )

(
u

2

N φj(Prej(ρ);u
1

N )

− u− 1

N φj(Prej(ρ);u
− 1

N )

))

× exp

(
− 2g2u

k

N (1− u 1

N )

(1− u2) (1− u1− k

N )2
(
u

1

N φk−3(ρ;u
1

N )

− u− 2

N φk−3(ρ;u
− 1

N )

))
,

Q(k,N)
η (x, y, u

1

N )

:= exp

(
(−1)1−µ

√
2g

1− u2
[
x(1− u k

N )(1− u2− k

N )− uy(1− u k

N )(1− u− k

N )
])

× exp

(
g2
tk

N
+

g2

1− u2
(
− 2(1− u k

N )(1− u2− k

N ) +
1

2
(1− u 2k

N )(1− u2− 2k

N )

− (1− u1− k

N )2(1− u k

N )2
))

.
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We note here that in the limit (3.19) the summands of the innermost
sum consists of a sum of a radial function on ρ multiplied by an exponential
factor.Moreover, by Lemma 3.4, the exponential factor is also determined
by fixing the norm |ρ|. This is an essential fact for the evaluation of the limit
appearing in the heat kernel of the QRM as a Riemann sum in §4.

Remark 3.3. In [60], in the context of a test system interacting with a heat
bath consisting of harmonic oscillators, the Laplace transform of the reduced
density matrix (given as a series of iterated integrals) is introduced in order
to recover the evolution equation of the stochastic model in a generalized
form. It may be interesting to compare the discussion in [60] with our method
for obtaining a reasonable evaluation of the sum involving gk−1(s)Rµ(s) over
s using the Fourier transform on Zk2 described in this section.

Remark 3.4. The computations using Fourier transform for the group Zk2
in this section can be interpreted directly in terms of the quantum Fourier
transform for k-qubits (see e.g. [5]). Thus, it may be interesting to describe
the technique developed in this section in the setting of quantum computa-
tion (complex Hilbert spaces of dimension 2k and quantum Fourier trans-
form) in place of the finite group setting (Zk2 and discrete Fourier transform).

Remark 3.5. The HamiltonianHε
R of the asymmetric quantum Rabi model

(AQRM) is given by

Hε
R := a†a+∆σz + g(a+ a†)σx + εσx,

for ε ∈ R ([7, 10] by the name of generalized quantum Rabi model). Here, we
have again assumed the frequency ω of the bosonic mode to be 1. This model
is also important experimentally (see e.g. [67]). Even though the spectrum
of Hε

R is known to have degeneracies of multiplicity two for ε ∈ 1
2Z, no Z2-

symmetry (parity) has been observed in Hε
R (and is hard to expect) for any

nonzero value of ε ∈ R ([35]).
Nonetheless, it is possible to follow the discussion in this section for the

AQRM by using the Trotter-Kato formula with the operators b†b− g2 and
∆σz + εσx. The computation largely remains the same, with more compli-
cated expressions, and, in particular, the finite groups Zk2 (k = 0, 1, 2, . . .)
appear as well. In fact, the appearance of the finite groups in the computa-
tion of this section is due to the decomposition of the matrix terms in (2.3)
(containing σx, σz) and is not related to the existence of a Z2-symmetry in



✐

✐

“8-Reyes-Bustos” — 2023/3/21 — 17:05 — page 1407 — #61
✐

✐

✐

✐

✐

✐

Heat kernel for the quantum Rabi model 1407

the Hamiltonian. For instance, in the case of the AQRM we may use

G
(ε)
N (u, s) :=

1

2N

−→∏
N
i=1[I+ (−1)1−s(j)J]u∆σz+εσx .

in place ofGN (u, s) in (2.4). For more complicated or generalized models (i.e.
Dicke model), other finite groups may appear in the computation depending
on the definition of the simplified self-adjoint operator (the analog of b†b),
the non-commutativity among the terms in the objective Hamiltonian.

We also remark that the choice of a pair of self-adjoint operators to be
used in the Trotter-Kato product formula is non canonical. In fact, even in
the case of the QRM, we have several possibilities. For instance, we can con-
sider the pair of self-adjoint operators a†a+∆σz and g(a+ a†)σx. Since a†a
and ∆σz obviously commute, the heat kernel of a†a+∆σz can be obtained
without difficulty. In this choice, the discussion using the Trotter-Kato prod-
uct formula will be, however, highly complicated though the associated finite
groups are still the family Zk2 (k = 0, 1, 2, . . .). Another option is to note that
the Hamiltonian

H1 := a†a+∆σx + g(a+ a†)σz,

is unitarily equivalent to HR (given by the finite dimensional Cayley trans-

form C = 1√
2

[
1 1
1 −1

]
), thus by defining d := a+ gσz we can consider the

pair d†d− g2 and ∆σx. In this cases, the discussion of this paper should
follow with appropriate changes in the computations.

3.4. Riemann sums and residual terms

In this subsection we compute the sums given in the previous section §2 by
changing sums to integrals with residual terms with explicitly given order.
Concretely, for λ ≥ 1 we proceed to rewrite the sum

∑

ρ∈Zk−3
2

|ρ|=λ

H(k,N)
η (x, y, u

1

N , ρ)P (k,N)(u
1

N , ρ)(3.20)

into an expression that can be interpreted as multiple iterated integrals over
the λ-th simplex.

We start with a lemma used to deal with the sums including terms
φj(Prej(ρ); s). The reader may find useful to interpret the lemma in light of
the bijection (3.7) (cf. equation (3.8) and Lemma 3.4).
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Lemma 3.15. For k ≥ 1 and 1 ≤ λ ≤ k, for the indeterminates t, s we have

∑

ρ∈Zk
2

|ρ|=λ

exp




k∑

j=1

tjφj(Prej(ρ); s)




=

k∑

i1<i2<···<iλ
exp




λ∑

0≤α<β
β−α≡1 (mod 2)

tiβsiα [iα+1 − iα]s[iβ+1 − iβ ]t


 ,

where i0 := 0, iλ+1 := k + 1. Moreover, for ρ ∈ Zk2 with |ρ| = λ, we have

exp




k∑

j=1

tjφj(Prej(ρ); s)




= exp




λ∑

0≤α<β
β−α≡1 (mod 2)

tiβsiα [iα+1 − iα]s[iβ+1 − iβ ]t


 .

where i0 := 0, iλ+1 := k + 1 and ij, for 1 ≤ j ≤ λ, is the position of the j-th
one in ρ.

Proof. Let us first consider the case |ρ| = λ = 1. In this case ρ = ei for 1 ≤
i ≤ k. From the definition of φj , we verify that

φj(Prej(ρ); s) =

{
0 if j < i

[i]s if i ≤ j
,

thus
k∑

j=1

tjφj(Prej(ρ), s) = [i]s

k∑

j=i

tj = ti[k + 1− i]t[i]s.

Next, lets assume the result holds for all |ρ| = λ− 1 and consider the case
|ρ| = λ. Set ω := Preiλ−1(ρ), then we have

k∑

j=1

tjφj(Prej(ρ); s) =

iλ−1∑

j=1

tjφj(Prej(ω); s) +

k∑

j=iλ

tjφk(ρ; s),
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since φj(Prej(ρ); s) = φk(ρ; s) for j ≥ iλ. On the one hand, we have

iλ−1∑

j=1

tjφj(Prej(ω); s) =

λ−1∑

0=α<β
β−α≡1 (mod 2)

tiβsiα [iα+1 − iα]s[iβ+1 − iβ ]t,

by induction since |ω| = λ− 1. On the other hand, we have

φk(ρ; s) =





∑λ

2

n=1[i2n]s − [i2n−1]s if λ ≡ 0 (mod 2)
∑ (λ−1)

2

n=0 [i2n+1]s − [i2n]s if λ ≡ 1 (mod 2)
.

Let us consider the case λ ≡ 0 (mod 2) since the alternative case is com-
pletely analogous. We immediately verify that

λ

2∑

n=1

[i2n]s − [i2n−1]s =

λ

2∑

n=1

si2n−1 [i2n − i2n−1]s,

and substituting in the second sum of the right-hand side we obtain

k∑

j=iλ

tjφk(ρ; s) = tiλ

λ

2∑

n=1

si2n−1 [i2n − i2n−1]s

k−iλ∑

j=0

tj

= tiλ [k + 1− iλ]t
λ

2∑

n=1

si2n−1 [i2n − i2n−1]s,

finally, notice that since λ is even and 2n− 1 for 1 ≤ n ≤ λ
2 runs over all

odd integers smaller than λ we see that the above is equal to

∑

0≤α<λ
λ−α≡1 (mod 2)

tiλstα [iα+1 − iα]s[iλ+1 − iλ]t,

with iλ+1 := k + 1, as desired. □

Let us consider a fixed λ ≥ 1 and ρ ∈ Zk−3
2 with |ρ| = λ. As usual, we

denote by 1 ≤ i1 < i2 < · · · < iλ the position of 1 in ρ. By Lemma 3.15 and



✐

✐

“8-Reyes-Bustos” — 2023/3/21 — 17:05 — page 1410 — #64
✐

✐

✐

✐

✐

✐

1410 C. Reyes-Bustos and M. Wakayama

(3.6), we see that H
(k,N)
η (u

1

N , ρ)P (k,N)(u
1

N , ρ) is given by

exp

(
(−1)η 2

√
2g(1− u 1

N )

1− u2
λ∑

γ=1

(−1)γ−1

[
x
(
u2−

2

N [iγ ]u− 1
N
− u 1

N [iγ ]u 1
N

)

+ uy
(
u

1

N [iγ ]u 1
N
− u− 2

N [iγ ]u− 1
N

)])

× exp

(
−2g2(1− u 1

N )

(1− u2) u
k

N (1− u1− k

N )2
(
u

1

N [iγ ]u 1
N
− u− 2

N [iγ ]u− 1
N

))

× exp

(
2g2(1− u 1

N )2

(1− u2)

λ∑

0=α<β
β−α≡1 (mod 2)

[
u

α

N [iα+1 − iα]u 1
N

×
(
u

2+iβ

N [iβ+1 − iβ ]u 1
N
− u2−

1+iβ

N [iβ+1 − iβ ]u− 1
N

)

− u− α

N [iα+1 − iα]u− 1
N

(
u

iβ−1

N [iβ+1 − iβ ]u 1
N
− u2−

4+iβ

N [iβ+1 − iβ ]u−1
N

)])
.

Next, for 1 ≤ γ ≤ λ, we immediately see that

u2−
2

N [iγ ]u− 1
N
− u 1

N [iγ ]u 1
N

= − u2−
1

N

1− u 1

N

(1− u−2+
iγ+1

N )(1− u−
iγ

N )

u
1

N [iγ ]u 1
N
− u− 2

N [iγ ]u− 1
N

=
u−1/N

1− u 1

N

(1− u
−iγ

N )(1− u
iγ+2

N ),

and similarly, for 1 ≤ β ≤ λ, we have

u
2+iβ

N [iβ+1 − iβ ]u 1
N
−u2−

1+iβ

N [iβ+1 − iβ ]u− 1
N

= −u
2+iβ+1

N (1− u
iβ−iβ+1

N )(1− u2−
iβ+iβ+1+2

N )

1− u 1

N

u
iβ−1

N [iβ+1 − iβ ]u 1
N
−u2−

4+iβ

N [iβ+1 − iβ ]u−1
N

= −u
iβ+1−1

N (1− u
iβ−iβ+1

N )(1− u2−
iβ+iβ+1

N
+2)

1− u 1

N

.
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For λ ≥ 1, define the function

f
(η)
λ (z1, z2, · · · , zλ;u

1

N )

:= (−1)η+1 2
√
2g

1− u2
λ∑

γ=1

(−1)γ−1
[
xu2(1− u−2+

zλ+1−γ

N )(1− u−
zλ+1−γ

N )

− yu(1− u
zλ+1−γ

N )(1− u−
zλ+1−γ

N )
]

− 2g2

1− u2u
k

N (1− u1− k

N )2
λ∑

γ=1

(−1)γ−1(1− u
zλ+1−γ

N )(1− u−
zλ+1−γ

N )

− 2g2

1− u2
λ∑

0≤α<β
β−α≡1 (mod 2)

u
zβ+1−zα

N (1− u2−
zβ+1+zβ

N )(1− u
zβ−zβ+1

N )

× (1− u
zα−zα+1

N )(1− u
zα+zα+1

N ),

where as before, we set z0 := 0 and zλ+1 := k − 2. Notice that for fixed λ,

f
(η)
λ (z;u

1

N ) is a smooth function on zi, with i = 1, 2, · · · , λ, for any u ∈ (0, 1).
With this notation, equation (3.20) is given by

∑

ρ∈Zk−3
2

|ρ|=λ

H(k,N)
η (x, y, u

1

N , ρ)P (k,N)(u
1

N , ρ) =

k−3∑

i1<i2<···<iλ
e
f
(η)
λ (i1,i2,··· ,iλ;u

1
N )+O

(

1
N

)

.

We are now in the position to write this sum as an iterated integral and
a residual term with explicit order. We first describe the behavior of the
function with respect to u ∈ (0, 1). We note that since the terms of order
O( 1

N ) ultimately vanish due to the limit involved in the final computation
of the heat kernel, from this point we omit them to improve the clarity of
the exposition.

Lemma 3.16. Let λ ≥ 1 be fixed. The (real valued) function efλ(z,u
1
N ),

where z = {z1, z2, · · · , zλ}, is uniformly bounded with respect to u (0 < u <
1) for 0 ≤ z1 ≤ z2 ≤ · · · ≤ zλ ≤ k − 3.

Proof. It is enough to observe the behavior when u→ 0 and u→ 1. Clearly,
when u→ 1 there is a limit for fλ(z, u

1

N ) which is bounded for any 0 ≤ z1 ≤
z2 ≤ · · · ≤ zλ ≤ k − 3.

When u = e−t approaches 0, let us observe the leading contribution in
fλ(z, u

1

N ). Let 1 ≤ j ≤ λ, then it is easy to see the leading part in fλ(z, u
1

N )
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as u→ 0+ of the term involving x, y and zj in the first sum is given by

(−1)η+γ−1u−
zj

N (2
√
2g)(xu2 − yu).

Next, we easily see that the limit of the second sum as u→ 0+ is either
−2g2 or 0, according to λ ≡ 1 (mod 2) or λ ≡ 0 (mod 2), respectively. For
0 ≤ α < β with β − α ≡ 1 (mod 2), since 0 ≤ zα ≤ zα+1 and zβ ≤ zβ+1, the

leading part in fλ(z, u
1

N ) as u→ 0+ of the term involving g2, α and β in the
last sum is given by

−2g2u2u−
zα+1

N u−
zβ+zβ+1

N .

Summing up, the leading part of fλ(z, u
1

N ) as u→ 0+ is given by

−2g2c−
λ∑

j=1

u−
zj

N

(
(−1)η+γ(2

√
2g)(xu2 − yu) + 2g2u2

∑λ
j−1<β

β≡j (mod 2)

u−
zβ+zβ+1

N

)
,

for a constant c ∈ {0, 1}. It follows that efλ(z,u
1
N ) is bounded as u→ 0+. □

In order to deal with the multiple summation over the i1, i2, · · · , iλ, we
need the following simple lemma.

Lemma 3.17. For fixed λ ≥ 1 and a ∈ Z≥0 with a ≤ N , we have

a∑

1≤i1<i2<···<iλ
ef

(η)
λ (i1,i2,··· ,iλ;u

1
N ) =

a∑

0≤i1≤i2≤···≤iλ
ef

(η)
λ (i1,i2,··· ,iλ;u

1
N ) +O(aλ−1).

Proof. Since exp
(
f
(η)
λ (i1, i2, · · · , iλ;u

1

N )
)
is uniformly bounded for 0 ≤ ij ≤

a and 0 ≤ u ≤ 1 (this is verified in the same way as Lemma 3.16), we see
that the difference between the number of summands of the two sums is
given by (

a+ λ

λ

)
−
(
a

λ

)
= O(aλ−1).

□

Finally, we transform the sum into integrals using Riemann-Stieltjes
integration. We start by considering the case λ = 1 as it constitutes the
basis for the proof of the general case.
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Proposition 3.18. Let a ∈ Z≥0 with a ≤ N . We have

a∑

i=0

ef
(η)
λ (i;u

1
N ) =

∫ a

0
ef

(η)
λ (z;u

1
N )dz +O

(
1

N

)
.

Proof. We write the sum as a Riemann-Stieltjes integral in the standard way

a∑

i=0

ef1(i,u
1
N ) =

∫ a

0
ef1(z,u

1
N )dΞ(z),

where Ξ(z) =
∑

1≤n<z 1 = z − {z}. By partial integration, we see that

a∑

i=1

ef1(i,u
1
N ) =

∫ a

0
ef1(z,u

1
N )dz +

∫ a

0
{z}f ′1(z, u

1

N )ef1(z,u
1
N )dz

=

∫ a

0
ef1(z,u

1
N ) + 2

∞∑

n=1

∫ a

0
cos(2πnz)ef1(z,u

1
N )dz +O(1),

the last equality is obtained by using the Fourier series of ψ(x) = x− [x]− 1
2 ,

that is ψ(x) = −∑∞
n=1

sin(2nπx)
nπ (see also [32], equation (A26)).

Setting

g(z) =

a−1∑

j=0

ef1(z+j,u
1
N ),

we have

∞∑

n=1

∫ a

0
cos(2πnz)ef1(z,u

1
N )dz =

∞∑

n=1

∫ 1

0
cos(2πnz)g(z)dz.

Now, integration by parts twice yields

∫ 1

0
cos(2πnz)g(z)dz =

1

4π2n2
(g′(1)− g′(0))− 1

4π2n2

∫ 1

0
cos(2πnz)g′′(z)dz.
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Hence

∣∣
∞∑

n=1

∫ 1

0
cos(2πnz)g(z)dz

∣∣

≤
∞∑

n=1

1

4π2n2

[
|g′(1)− g′(0)|+

∣∣
∫ 1

0
cos(2πnz)g′′(z)dz

∣∣
]

≤ 1

4π2
ζ(2)

[
|g′(1)− g′(0)|+

∫ 1

0
|g′′(z)|dz

]
,

where ζ(s) is the Riemann zeta function.
Next, since

g′(z) =
a−1∑

j=0

f ′1(z + j, u
1

N )ef1(z+j,u
1
N ),

we have

g′(1)− g′(0) =
a−1∑

j=0

f ′1(1 + j, u
1

N )ef1(1+j,u
1
N ) −

a−1∑

j=0

f ′1(j, u
1

N )ef1(j,u
1
N )

= f ′1(a, u
1

N )ef1(a,u
1
N ) − f ′1(0, u

1

N )ef1(0,u
1
N ).

Noticing that the summation on j (over a) disappear and that d
dzu

± z

N =
± 1
N (log u)u±

z

N , we immediately observe that g′(1)− g′(0) = O( 1
N ). Further-

more,

g′′(z) =
a−1∑

j=0

{f ′′1 (z + j, u
1

N ) + (f ′1(z + j, u
1

N ))2}ef1(z+j,u
1
N ).

By Lemma 3.16, there is a positive constant C such that

|g′′(z)| ≤ C
a−1∑

j=0

{|f ′′1 (z + j, u
1

N )|+ (f ′1(z + j, u
1

N ))2}.

Since again d
dzu

± z

N = ± 1
N (log u)u±

z

N , there are positive uniform constants
A and B with respect to u such that

|f ′′1 (z, u
1

N )| ≤ log(u)2
A

N2
, |f ′1(z, u

1

N )| ≤ log(u)2
B

N
.

It follows that

|g′′(z)| ≤ C(A+B2) log(u)2
a

N2
.
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Therefore we have

∣∣∣∣∣
∞∑

n=1

∫ a

0
cos(2πnz)ef1(z,u

1
N )dz

∣∣∣∣∣ = O

(
1

N

)
.

□

Lemma 3.19. For fixed λ ≥ 1 and a ∈ Z≥1 with a ≤ N , we have

a∑

1≤i1<i2<···<iλ
ef

(η)
λ (i1,i2,··· ,iλ;u

1
N ) =

∫ a

0

∫ zλ

0
· · ·
∫ z2

0
ef

(η)
λ (z1,z2,··· ,zλ;u

1
N )dz

+O(aλ−1).

Proof. The proof is by induction. The case λ = 1 is given by Lemma 3.17
and Proposition 3.18. Suppose the result holds for some λ− 1 ≥ 1. Then,
by Lemma 3.17, the sum in the left-hand side is, up to a factor of order
O(aλ−1), given by

a∑

0≤i1≤i2≤···≤iλ
ef

(η)
λ (i1,i2,··· ,iλ;u

1
N )

=

a∑

iλ=0

(∫ iλ

0

∫ zλ−1

0
· · ·
∫ z2

0
ef

(η)
λ (z1,z2,··· ,zλ−1,iλ;u

1
N )dz +R

(iλ)
λ−1(z)

)

where the equality is obtained by applying the induction hypothesis with
a = iλ for each iλ. The residual terms are of order

R
(iλ)
λ−1(z) = O

(
iλ−2
λ

)
= O

(
aλ−2

)
,

and thus

a∑

iλ=0

R
(iλ)
λ−1(z) = O

(
aλ−1

)
.
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On the other hand, we observe as in the case of λ = 1 that

a∑

iλ=0

∫ iλ

0

∫ zλ−1

0
· · ·
∫ z2

0
ef

(η)
λ (z1,z2,··· ,zλ−1,iλ;u

1
N )dz

=

∫ a

0

∫ zλ

0
· · ·
∫ z2

0
ef

(η)
λ (z1,z2,··· ,zλ;u

1
N )dz

+ 2

∞∑

n=0

∫ a

0

[∫ zλ

0
· · ·
∫ z2

0
ef

(η)
λ (z1,z2,··· ,zλ;u

1
N )dz

]
cos(2πnzλ)dzλ.

It remains to show that

∞∑

n=0

∫ a

0

[∫ zλ

0
· · ·
∫ z2

0
ef

(η)
λ (z1,z2,··· ,zλ;u

1
N )dz

]
cos(2πnzλ)dzλ = O(aλ−1),

the proof follows in the same way as that of that of Proposition 3.18 by
setting

g(zλ) =

a−1∑

j=0

∫ zλ+j

0
· · ·
∫ z2

0
ef

(η)
λ (z1,z2,··· ,zλ+j;u

1
N )dz,

and noticing, by Leibniz’s rule, that

g′(1)− g′(0) = O(aλ−1), g′′(zλ) = O(aλ−3).

□

4. Heat kernel of the QRM

In this section we complete the derivation of the analytical expression of
the heat kernel and the partition function of the QRM. In addition, we give
the heat kernel and partition function for each of the parities of the QRM,
and, as an application we describe the spectral determinant of the parity
Hamiltonians in terms of the G-function.

Recall from §2.4 that the expression of the heat kernel KR(x, y, t) is the
sum of two limits multiplied by a factor K0(x, y, u). The first limit is given
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by

1

2
lim
N→∞

(
1 + u

2∆

N

2u
∆

N

)N−1(
J
(1,N)
0 (x, y, u

1

N )

[
1 −1
−1 1

]
(4.1)

+ J
(1,N)
1 (x, y, u

1

N )

[
1 1
1 1

])
,

while the second limit, by the results of §3 is given by

lim
N→∞

(
1− u 2∆

N

2u
∆

N

)
N∑

k≥3

[
1

2
J
(k,N)
0 (x, y, u

1

N )Q
(k,N)
0 (x, y, u

1

N )(4.2)

×
{ ∑

ρ∈Zk−3
2

[
(−1)|ρ|+1u

∆

N (−1)|ρ|u∆

N

−u−∆

N u−
∆

N

]

×
(
1− u 2∆

N

1 + u
2∆

N

)|ρ|

H
(k,N)
1 (x, y, u

1

N , ρ)P (k,N)(u
1

N , ρ)

}

+
1

2
J
(k,N)
1 (x, y, u

1

N )Q
(k,N)
1 (x, y, u

1

N )

×
{ ∑

ρ∈Zk−3
2

[
(−1)|ρ|+1u

∆

N (−1)|ρ|+1u
∆

N

u−
∆

N u−
∆

N

](
1− u 2∆

N

1 + u
2∆

N

)|ρ|

×H(k,N)
0 (x, y, u

1

N , ρ)P (k,N)(u
1

N , ρ)

}]

where the functions H
(k,N)
µ , P (k,N) and Q

(k,N)
0 are as in Definition 3.6.

By expanding the geometric series in J
(1,N)
i for i = 0, 1, it is easy to

verify that the limit (4.1) is equal to

e−2g2 1−e−t

1+e−t

[
cosh − sinh
− sinh cosh

](√
2g(x+ y)

1− e−t
1 + e−t

)
.(4.3)

Next, we turn our attention to the limit (4.2). First, we notice that the
matrix factor appearing in the sums is fixed for all ρ with |ρ| ≡ i (mod 2),
with i = 0, 1. Thus, by partitioning the sum appearing in (4.2) according
to the norm λ of the vectors ρ and omitting the matrix factor for now, we
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obtain a sum of the type

(4.4) lim
N→∞

(
1− u 2∆

N

2u
∆

N

)
N∑

λ≡i
(mod 2)

N∑

k=λ+3

J (k,N)
η (x, y, u

1

N )Q(k,N)
η (x, y, u

1

N )

×
{ ∑

ρ∈Zk−3
2

|ρ|=λ

(
1− u 2∆

N

1 + u
2∆

N

)λ
H

(k,N)
1−η (x, y, u

1

N , ρ)P (k,N)(u
1

N , ρ)

}
,

with i, η ∈ {0, 1}. Notice that if λ > N , we have

∑

ρ∈Zk−3
2

|ρ|=λ

(
1− u 2∆

N

1 + u
2∆

N

)λ
H

(k,N)
1−η (x, y, u

1

N , ρ)P (k,N)(u
1

N , ρ) = 0,

whence, (4.4) is equal to

lim
N→∞

(
1− u 2∆

N

2u
∆

N

) ∞∑

λ≡i
(mod 2)

N∑

k=λ+3

J (k,N)
η (x, y, u

1

N )Q(k,N)
η (x, y, u

1

N )

(
1− u 2∆

N

1 + u
2∆

N

)λ

×
{ ∑

ρ∈Zk−3
2

|ρ|=λ

H
(k,N)
1−η (x, y, u

1

N , ρ)P (k,N)(u
1

N , ρ)

}
,

and since the H
(k,N)
µ (x, y, u

1
N , ρ)P (k,N)(u

1
N , ρ) is uniformly bounded (cf. the

discussion at the beginning of §2), the dominated convergence theorem shows
that the above expression is equal to

∞∑

λ≡i
(mod 2)

lim
N→∞

(
1− u 2∆

N

2u
∆

N

)
N∑

k=λ+3

J (k,N)
η (x, y, u

1

N )Q(k,N)
η (x, y, u

1

N )

(
1− u 2∆

N

1 + u
2∆

N

)λ
(4.5)

×
{ ∑

ρ∈Zk−3
2

|ρ|=λ

H
(k,N)
1−η (x, y, u

1

N , ρ)P (k,N)(u
1

N , ρ)

}
.

Thus, the limit (4.2) may be computed termwise for each value of λ ≥ 0.
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The innermost sum in (4.5) is computed as an iterated integral by
the results of §3.4 and the next lemma gives the explicit computation of

J
(k,N)
µ (x, y, u

1

N )Q
(k,N)
µ (x, y, u

1

N ).

Lemma 4.1. For µ = 0, 1, we have

J (k,N)
µ (x, y, e−

t

N )Q(k,N)
µ (x, y, e−

t

N )

= exp

(
(−1)µ 2

√
2ge−t

1− e−2t

(
x(e−

tk

N
+1 + e−t+

2tk

N )− y(e− tk

N + e
tk

N )

−
√
2g

1 + e−t

1− e−t (x− y)
))

× exp

(
− 4g2

1 + e−2t

1− e−2t
+ 2g2

e−
tk

N (1 + e−t+
2tk

N )

1− e−t

+ 2g2
e−

tk

N (1− e−t+ tk

N )(1− e− tk

N )(1 + e−t+
2tk

N )

1− e−2t
+O

(
1

N

))
.

Proof. Direct evaluation of the geometric series using the identity

(1− u 1

N )(N − k − 1) =

[
t

N
+O

(
1

N2

)]
(N − k − 1) = t(1− k

N
) +O

(
1
N

)

as N →∞, gives

J (k,N)
µ (x, y, u

1

N )

= exp
((−1)µ

√
2g

1− u2 (1− u1− k

N )
[
xu

k

N (1− u1− k

N ) + y(1− u1+ k

N )
])

× exp

(
−g2 tk

N
− 2g2(1− u1− k

N )(1− u1+ k

N )

1− u2

+
g2(1− u2− 2k

N )(1− u 2k

N )

2(1− u2) +O
(
1
N

)
)
.

Then, the result is obtained multiplying by Q
(k,N)
µ (x, y, u

1

N ) and setting
u = e−t. □

With these preparations, we proceed to the computation of the limit (4.2),
thus giving the analytic formula for the heat kernel of the QRM.
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4.1. Analytical formula of the heat kernel and partition function

Finally, in this subsection we present the main results of this paper, namely,
the analytical expressions for the heat kernel and the partition function of
the QRM. In the next theorem, for λ = 0, we employ the notation

∫
· · ·
∫

0≤µ1≤···≤µλ≤1

f(x)dµ0 = f(x),

for any function f .

Theorem 4.2. The heat kernel KR(x, y, t) of the QRM is given by the
uniformly convergent series

KR(x, y, t; g,∆) = K0(x, y, t; g)

[ ∞∑

λ=0

(t∆)λe−2g2(coth(
t
2 ))

(−1)λ

×
∫
· · ·
∫

0≤µ1≤···≤µλ≤1

e
4g2

cosh(t(1−µλ))

sinh(t)
( 1+(−1)λ

2
)+ξλ(µλ,t;g)

×
[
(−1)λ cosh (−1)λ+1 sinh
− sinh cosh

]
(θλ(x, y,µλ, t; g)) dµλ

]
,

with µ0 := 0 and µλ = (µ1, µ2, · · · , µλ) and dµλ = dµ1dµ2 · · · dµλ for λ ≥ 1.
Here, K0(x, y, t; g) (cf. (2.1) ) is given by

K0(x, y, t; g) =
eg

2t

√
π(1− e−2t)

exp

(
− 1 + e−2t

2(1− e−2t)
(x2 + y2) +

2e−txy
1− e−2t

)

and the functions θλ(x, y,µλ, t) and ξλ(µλ, t) are given by

θλ(x, y,µλ, t; g)

:=
2
√
2ge−t

1− e−2t

(
x(et + e−t)− 2y

)(1− (−1)λ
2

)
−
√
2g(x− y)1 + e−t

1− e−t

+
2
√
2ge−t

1− e−2t
(−1)λ

λ∑

γ=0

(−1)γ
[
x(et(1−µγ) + et(µγ−1))− y(e−tµγ + etµγ )

]
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ξλ(µλ, t; g) := −
2g2e−t

1− e−2t

(
e

1

2
t(1−µλ) − e 1

2
t(µλ−1)

)2

× (−1)λ
λ∑

γ=0

(−1)γ(e−tµγ + etµγ )

− 2g2e−t

1− e−2t

∑

0≤α<β≤λ−1
β−α≡1 (mod 2)

(
(et(1−µβ+1) + et(µβ+1−1))− (et(1−µβ) + et(µβ−1))

)

× ((etµα + e−tµα)− (etµα+1 + e−tµα+1)),

where we use the convention µ0 = 0 whenever it appears in the formulas
above.

Remark 4.1. Note that the term corresponding to λ = 0 in the series is
given explicitly (see (4.3) and (4.8) below) by

e−2g2 tanh(
t
2 )

[
cosh − sinh
− sinh cosh

](√
2g(x+ y)

1− e−t
1 + e−t

)

)
.

Proof. For clarity, let us first define some notation to be used during the
proof. For λ ≥ 0, the functions ϕ(s, t), αλ(x, y, t) and σλ(s, t) are given by

ϕ(s, t) := −4g2 1 + e−2t

1− e−2t
+ 2g2

e−st(1 + et(2s−1))

1− e−t

+ 2g2
e−st(1− et(s−1))(1− e−st)(1 + et(2s−1))

1− e−2t
,

αλ(x, y, t) :=
2
√
2ge−t

1− e−2t

(
x(et + e−t)− 2y

)(1− (−1)λ
2

)

−
√
2g(x− y)1 + e−t

1− e−t ,

σλ(s, t) := −
4g2e−ts(1− et(s−1))2

1− e−2t

(
1− (−1)λ

2

)

+
2g2e−ts(1− et(s−1))2(ets + e−ts)

1− e−2t



✐

✐

“8-Reyes-Bustos” — 2023/3/21 — 17:05 — page 1422 — #76
✐

✐

✐

✐

✐

✐

1422 C. Reyes-Bustos and M. Wakayama

for µλ = (µ1, µ2, · · · , µλ) ∈ Rλ (where µ0 := 0 ∈ {0} = R0 ), we define

ϑλ(x, y,µλ, t) :=
2
√
2ge−t

1− e−2t
(−1)λ

×
λ∑

γ=0

(−1)γ
[
x(et(1−µγ) + et(µγ−1))− y(e−tµγ + etµγ )

]
.

We note that these functions correspond to the expressions appearing inside

the exponentials in J
(k,N)
µ (x, y, u

1

N ), Q
(k,N)
µ (x, y, u

1

N ) (see Lemma 4.1) and

in the function f
(η)
λ (defined in §3.4).

To complete the computation of the heat kernel it remains to compute
the limits in (4.5). We consider the cases λ = 0 and λ ≥ 1 by separate,
omitting the matrices for simplicity. For λ = 0, the limit (4.2) is given by

1

2
lim
N→∞

(
1− u 2∆

N

2u
∆

N

)
N∑

k=λ+3

J (k,N)
η (x, y, u

1

N )Q(k,N)
η (x, y, u

1

N )

since H
(k,N)
1 (x, y, u

1

N , ρ) = P (k,N)(u
1

N , ρ) = 1 for ρ = 0n with n ≥ 1. By
Lemma 4.1, the limit is the Riemann sum corresponding to the integral

t∆

2

∫ 1

0
e(−1)η(α1(x,y,t)+ϑ1(x,y,µ1,t))+ϕ(µ1,t)dµ1.

Notice that since ξ1(µ1, t; g) + σ1(µ1, t) = 0, we can write

t∆

2

∫ 1

0
e(−1)η(α1(x,y,t)+ϑ1(x,y,µ1,t))+ϕ(µ1,t)+σ1(µ1,t)+ξ1(µ1,t;g)dµ1.(4.6)

Next, we consider the case λ ≥ 1. In this case, since H
(k,N)
η and P (k,N)

are non-vanishing, multiple iterated integrals appear in the computation. Let

hλ(x, y, t) =
2
√
2ge−t

1−e−2t

(
x(et + e−t)− 2y

) ( (1−(−1)λ)
2

)
, then, by Lemma 3.19,
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the limit (4.2) is given by

1

2
lim
N→∞

(
1− u 2∆

N

2u
∆

N

)
N∑

k=λ+3

J (k,N)
η (x, y, u

1

N )Q(k,N)
η (x, y, u

1

N )

(
1− u 2∆

N

1 + u
2∆

N

)λ

×
k−3∑

1≤i1<i2<···<iλ
ef

(1−η)
λ (i1,··· ,iλ,u

1
N )

=
1

2
e(−1)ηhλ+1(x,y,t) lim

N→∞

(
1− u 2∆

N

2u
∆

N

)
N∑

k=λ+3

J (k,N)
η (x, y, u

1

N )Q(k,N)
η (x, y, u

1

N )

×
(
1− u 2∆

N

1 + u
2∆

N

)λ
eσλ+1(

k

N
,t)

∫ k−3

0

∫ µλ

0
· · ·
∫ µ2

0
e(−1)ηϑλ+1(ν,t)+ξλ+1(ν,t;g)dµλ

with ν = ( tN µ1,
t
N µ2, . . . ,

t
N µλ,

tk
N ) and dµλ = dµ1dµ2 · · · dµλ. The change

of variable µi 7→ (k − 3)µi for i ∈ {1, 2, · · · , λ} yields

1

2
e(−1)ηhλ+1(x,y,t) lim

N→∞

(
1− e−t 2∆N
2e−t

∆

N

)

×
N∑

k=λ+3

J (k,N)
η

(
x, y, e−

t

N

)
Q(k,N)
η

(
x, y, e−

t

N

)

× eσλ+1(
k

N
,t)

(
1− e−t 2∆N
1 + e−t

2∆

N

)λ
kλ

∫
· · ·
∫

0≤µ1≤···≤µλ≤1

e(−1)ηϑλ+1(ν2,t)+ξλ+1(ν2,t;g)dµλ,

where ν2 = ( tkN µ1,
tk
N µ2, . . . ,

tk
N µλ,

tk
N ) and where, for clarity, we omitted terms

of order O(kλ−1) that vanish when taking the limit.
The limit is the Riemann sum corresponding to the integral

(t∆)λ+1

2
e(−1)ηαλ+1(x,y,t)

∫ 1

0
(µλ+1)

λeϕ(µλ+1,t)+σλ+1(µλ+1,t)

×
∫
· · ·
∫

0≤µ1≤···≤µλ≤1

e(−1)ηϑλ+1(ν3,t)+ξλ+1(ν3,t;g)dµλ+1,
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where ν3 = (µλ+1µ1, µλ+1µ2, . . . , µλ+1µλ, µλ+1). Finally, the change of vari-
able µi 7→ µi

µλ+1
for i ∈ {1, 2, · · · , λ}, gives

(t∆)λ+1

2

∫
· · ·
∫

0≤µ1≤···≤µλ+1≤1

e(−1)η(αλ+1(t)+ϑλ(µλ+1,t))+ϕ(µλ+1,t)(4.7)

× eσλ+1(µλ+1,t)+ξλ(µλ+1,t;g)dµλ+1,

with µλ+1 = (µ1, µ2, · · · , µλ, µλ+1).
From (4.6) and (4.7), the limit (4.2) is given by

∞∑

λ=1

(t∆)λ
∫
· · ·
∫

0≤µ1≤···≤µλ≤1

eϕ(µλ,t)+σλ+1(µλ+1,t)+ξλ(µλ,t;g)

×
[
(−1)λ cosh (−1)λ+1 sinh
− sinh cosh

]
(αλ(t) + ϑλ(µλ, t)) dµλ.

Notice that for λ ≥ 1, θλ(x, y,µλ, t; g) = αλ(t) + ϑλ(µλ, t) and

ϕ(s, t) + σλ(s, t) = −2g2(coth( t2))(−1)λ + 4g2
cosh(t(s− 1))

sinh(t)

(
1− (−1)λ

2

)
.

Furthermore

θ0(x, y,µ0, t; g) =
√
2g(x+ y)

1− e−t
1 + e−t

,(4.8)

ϕ(0, t) + σ0(0, t) + ξ0(µ0, t; g) = −2g2 tanh( t2),

therefore the expression for the limit (4.1) can be written in a way consistent
with the notation of the limit (4.2). The sum of the two limits multiplied by
K0(x, y, g, t) gives the desired expression. □

Next, we give the explicit expression for the partition function ZR(β; g,∆)
of the QRM using the expression for the heat kernel of Theorem 4.2. First,
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by Theorem 4.2, the trace of KR(x, y, t; g,∆) is equal to

2K0(x, y, t; g)

{
e−2g2 tanh(

t
2 ) cosh (θ0(x, y,µ0, t; g))

+ e−2g2 coth(
t
2 )

∞∑

λ=1

(t∆)2λ
∫
· · ·
∫

0≤µ1≤···≤µ2λ≤1

e
4g2

cosh(t(1−µλ))

sinh(t)
+ξ2λ(µ2λ,t;g)

× cosh
(
θ2λ(x, y,µ2λ, t; g)

)
dµ2λ

}
.

Furthermore, notice that

K0(x, x, t; g) =
eg

2t

√
π(1− e−2t)

exp

(
−1− e−t
1 + e−t

x2
)

and, that for λ ≡ 0 (mod 2), we have

θλ(x, x,µλ, t; g) =
2
√
2gx

1 + e−t

λ∑

γ=0

(−1)γ
(
e−tµγ − et(µγ−1)

)

with µ0 = 0. Thus, we observe that trKR(x, x, t; g,∆) is equal to

2eg
2te−x

2 1−e−t

1+e−t

√
π(1− e−2t)

{
e−2g2 1−e−t

1+e−t cosh

(
2
√
2gx

1− e−t
1 + e−t

)
+ e−2g2 coth(

t
2 )

×
∞∑

λ=1

(t∆)2λ
∫
· · ·
∫

0≤µ1≤···≤µ2λ≤1

e
4g2

cosh(t(1−µλ))

sinh(t)
+ξ2λ(µ2λ,t;g)

× cosh


 2
√
2gx

1 + e−t

2λ∑

γ=0

(−1)γ
(
e−tµγ − et(µγ−1)

)

 dµ2λ

}
,

and we proceed to give the analytical expression for the partition function.

Corollary 4.3. The partition function ZR(β; g,∆) of the QRM is given by

ZR(β; g,∆) =
2eg

2β

1− e−β

[
1 + e−2g2 coth( β

2
)

∞∑

λ=1

(β∆)2λ

×
∫
· · ·
∫

0≤µ1≤···≤µ2λ≤1

e
4g2

cosh(β(1−µ2λ))

sinh(β)
+ξ2λ(µ2λ,β;g)+ψ

−
2λ(µ2λ,β;g)dµ2λ

]
,
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where the function ψ±
λ (µλ, t; g) is given by

ψ±
λ (µλ, t; g) :=

2g2e−t

1− e−2t




λ∑

γ=0

(−1)γ
(
e
t
(

1
2−µγ

)

± et
(

µγ−1
2

)
)

2

.

for λ ≥ 1 and µλ = (µ1, µ2, · · · , µλ) and where µ0 = 0.

Proof. Recall that for α > 0 and γ, η ∈ R, we have the elementary identity

∫ ∞

−∞
e−αx

2

cosh(x η)dx =

√
π

α
e

η2

4α .

In particular,

∫ ∞

−∞
e
− 1−e−β

1+e−β x
2

cosh
(
2
√
2gx

1− e−β
1 + e−β

)
dx = π

1

2

√
1 + e−β

1− e−β e
2g2 1−e−β

1+e−β

and, for λ ≥ 1, we have

∫ ∞

−∞
e
− 1−e−β

1+e−β x
2

cosh


 2
√
2gx

1 + e−β

λ∑

γ=0

(−1)γ
(
e−βµγ − eβ(µγ−1)

)

 dx

= π
1

2

√
1 + e−β

1− e−β e
2g2

1−e−2β [
∑

λ
γ=0(−1)γ(e−βµγ−eβ(µγ−1))]

2

= π
1

2

√
1 + e−β

1− e−β e
ψ−

λ (µ,s,β;g).

The result then follows from

ZR(β; g,∆) :=

∫ ∞

−∞
trKR(x, x, β; g,∆)dx,

and the expression for trKR(x, x, t; g,∆). □

Remark 4.2. The unitary operator e−itHR (associated with the Schrö-
dinger equation of to HR) is of fundamental importance. In our case, the
operator can be obtained from e−βH with β > 0 by meromorphic continua-
tion to imaginary β (with a fixed branch for each β ∈ 2πiZ). We direct the
reader to [55] for the details.
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4.2. Interpretation of discrete paths through the action of S∞

on Z∞

2

In this subsection we aim to clarify the rearrangement of the sums in the
equations leading to (4.2) and the resultant expression of the heat kernel.
Namely, we now revisit the discussion on the “discrete path integrals” ap-
pearing from the Trotter-Kato product formula started in the Introduction.

Let us briefly describe the main points of the computation. First, in §2.4,
by dealing with the non-commutative terms in the expression for the N -th
power kernel DN (x, y, t) we obtained an expression for the product formula
that can be naively seen as a discrete path integral. Then we employed har-
monic analysis to reformulate the sum using Fourier analysis (notably, Par-
seval’s formula) on Zm2 (m ≥ 0). The resulting sum allowed us to ultimately
replace the uncontrollable (infinitely many) changes of signature with non-
trivial coefficients (at Z∞

2 ) appearing in the exponents of exponential terms
of the initial summands by various hyperbolic functions. To complete the
final step, we rearranged the infinite sums according to the norms of the el-
ements of Zm2 (m ≥ 0). This rearrangement is consistent with the discussion
of discrete paths (equivalently, elements of Z∞

2 ), as we now explain.
Recall from §3 that the groups Zn2 for n ≥ 0 may be assumed to be

embedded into the inductive limit Z∞
2 . Next, we consider the action on Z∞

2

of the infinite symmetric group S∞, defined by

S∞ := lim−→
n

Sn,

where, for i ≤ j, the injective homomorphims are given by the natural em-
bedding (as a subgroup) of Si into Sj .

The orbits of the action are exactly the sets

Oλ := {σ ∈ Z∞
2 : |σ| = λ} ,

for λ ≥ 0. Here, | · | : Z∞
2 → R is the function induced by the norms for each

Zn2 for n ≥ 0. Canonical orbits representatives for Oλ (λ = 1, 2, 3, · · · ) are
given by the image of the elements

0 ∈ Z0
2, (1) ∈ Z1

2, (1, 1) ∈ Z2
2, · · · , (1, 1, · · · , 1) ∈ Zn2 , · · ·
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in Z∞
2 . For instance, when λ = 2 we have O2 = S∞.[1, 1], [1, 1] being the

image of (1, 1) ∈ Z2
2 in Z∞

2 . The orbit decomposition is then given by

(4.9) Z∞
2 =

∞⊔

n=0

S∞.[1, .., 1︸ ︷︷ ︸
n

]
label by | · |←−−−−−→ Z≥0.

and, from this point of view, the rearrangement of the sums in (4.2) is
done according to the orbit decomposition of Z∞

2 with respect the action of
S∞ (through the orbit invariant | · |). Each summand given by the iterated
integral over the λ-th simplex (obtained by the computations in §3.4) in the
resulting sums is, by virtue of Lemma 3.4, shown to be an orbit integral Oλ.

As discussed in the Introduction, we might also interpret the elements
of the groups Zn2 for n ≥ 0 as paths between two points alternating between
two states (represented in Figure 1 by “+” and “-”). In this interpretation,
the rearranging of the sum (4.2) according to the norm λ corresponds to
grouping paths according to the number of times that the path is in the
“+” state as shown in Figure 4 (compare with (4.9) above). Therefore, we
might say that the sum over the paths in Zn2 arising from the Trotter-Kato
product formula is ultimately reduced to a sum over points (labeled by Z≥0)
which is then computed in an elementary way with the method described in
this paper.

To summarize, the infinite series of the resultant expression of the heat
kernel is considered as a sum over the orbits Oλ = S∞.ρ (ρ ∈ Z∞

2 with |ρ| =
λ ∈ Z≥0), and each summand, given by an integral over the λ-th simplex,
can be regarded as the integral over the fundamental domain of Sλ(⊂ S∞)
acting on the orbit Oλ in Z∞

2 by looking at the formula in Lemma 3.19 and
Lemma 3.15.

...

...

0

1

0

1

0

1

[0, 1, 0, 1, 0, 1]

[0, 1, 0, 0, 1, 1]

[0, 0, 1, 1, 0, 1]

= S∞.[1, 1, 1]
| · |

“∈ Z≥0”

Figure 4. Paths in the same orbit O3 = S∞.[1, 1, 1] for λ = 3.

Remark 4.3. In the general quantum interaction system case, the com-
putation of the heat kernel using this method for a given Hamiltonian may
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produce the situation where the groups Zn2 are replaced with a family of
finite groups {Gn}n≥0 that constitute a directed set (see also Remark 3.5).
In this case, it is necessary to find an appropriate invariant for the orbit
decomposition with respect to certain group acting on the inductive limit
G∞ of the family {Gn}n≥0. We leave the detailed discussion for another
occasion.

Remark 4.4. In quantum gravity theory, we may find an important exam-
ple where the path integral can be turned into a discrete summation defined
over cosets of the modular group SL2(Z). Loosely speaking, according to
the theory of quantum gravity, in general, the space cannot be divided into
infinity, so there may be no uncountable infinite number of paths to sum
up in a path integral. In other words, as in our study, the path integral
could turn to be discrete or particle-like, i.e. points. Actually, in [31] (see
also [24]), using the Chern-Simons formulation, the partition function of the
three-dimensional pure gravity given by a gravity path integral is exactly
calculated by localization techniques developed in recent years. In addition,
it is also worth noting that the resultant partition function is modular in-
variant.

Remark 4.5. We may describe the situation in (4.9) by the language of
representation theory of S∞, that is, the space of the Fourier image also
on Z∞

2 by the representation induced from the trivial representation of its
Young subgroups (see [55]).

4.3. Parity decomposition of the heat kernel

As we already mentioned in the Introduction, the Hamiltonian HR pos-
sesses a Z2(= Z/2Z)-symmetry indicated by the existence of a parity op-
erator Π = −σze−iπa†a satisfying [Π, HR] = 0 and with eigenvalues p = ±1.
Consequently, the direct decomposition of the full space L2(R)⊗ C2 into the
invariant subspaces (corresponding to the positive and negative parity) is

L2(R)⊗ C2 = H+ ⊕H−.

First, we introduce the decomposition of the Hamiltonian of the QRM. We
follow the discussion in [8] and suggest the reader to consult [9, 35, 54] for
more details.
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Let (T̂ψ)(z) := ψ(−z) (ψ ∈ L2(R) be the reflection operator acting on
L2(R), U be the unitary operator on L2(R)⊗ C2 given by

U :=
1√
2

[
1 1

T̂ −T̂

]
,

and C the Cayley transform

C :=
1√
2

[
1 1
1 −1

]
.

The parity decomposition of the HR is given by

(CU)†HRCU =

[
H+ 0
0 H−

]
,

where the operators H± are given by

H± = a†a+ g(a+ a†)±∆T̂ .

Clearly, the subspaces

H̄+ = L2(R)⊗ span

{(
1
0

)}
and H̄− = L2(R)⊗ span

{(
0
1

)}
(4.10)

are invariant subspaces of the operator (CU)†HRCU. Accordingly, we write
H± = (CU)†HRCU|H̄±

.
Now, we proceed to compute the heat kernel of the parity Hamiltonians

H±.

Recall that σx =

[
0 1
1 0

]
and σz =

[
1 0
0 −1

]
. Notice that

e−tσx =

[
cosh − sinh
− sinh cosh

]
(t) and − σze−tσx =

[
− cosh sinh
− sinh cosh

]
(t).

For ϵ, δ ∈ {+,−}, let us define four operators

Kϵδ = Kϵδ(x, y, t,∆) : L2(R)→ L2(R)

by

(CU)†KR(x, y, t)CU =

[
K++ K−+

K+− K−−

]
.
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It is not difficult to see that

∂

∂t

[
K++ K−+

K+− K−−

]
= −

[
H+ 0
0 H−

] [
K++ K−+

K+− K−−

]
,

and thus (CU)†KR(x, y, t)CU is the heat kernel of the operator
(CU)†HRCU. Similarly, from this we see that K++ (resp. K−−) is the
heat kernel of H+ (resp. H−). One knows from the general discussion
for the G-function and constraint polynomials (see e.g. [7] and [35]) that
K−−(x, y, t,−∆) = K++(x, y, t,∆). We will see this again below.

Recall that the action of the (semigroup) operator e−tHR is given by

e−tHRϕ(x) =

∫ ∞

−∞
KR(x, y, t; g,∆)ϕ(y)dy

for any compactly supported smooth function ϕ ∈ C∞
0 (R)⊗ C2. From this

expression, we have

(CU)†e−tHRCU((CU)†ϕ)(x) =

[
e−tH+ 0

0 e−tH−

]
((CU)†ϕ)(x)

=

∫ ∞

−∞

[
K++ K−+

K+− K−−

]
(x, y, t; g,∆)((CU)†ϕ)(y)dy,

From this expression, we observe the heat kernel is splitting along the
two parities and in Theorem 4.4 we give the explicit expression of the heat
kernel by taking ϕ ∈ H± in the expression above.

For λ ≥ 1, define

Φ±
λ (x, y, t; g) := e−2g2(coth(

t
2 ))

(−1)λ

×
∫
· · ·
∫

0≤µ1≤···≤µλ≤1

e
4g2

cosh(t(1−µλ))

sinh(t)
( 1+(−1)λ

2
)+ξλ(µλ,t;g)±θλ(x,y,µλ,t;g)dµn

and

Φ±
0 (x, y, t; g) : = e−2g2 tanh

(
t

2

)
±
√
2g(x+y) tanh

(
t

2

)

= e−2g2 tanh
(

t

2

)
±θ0(x,y,µ0,t;g).

Since θλ(x, y,µλ, t; g), for λ ≥ 0, is linear on x and y, it is clear that

Φ∓
λ (−x,−y, t; g) = Φ±

λ (x, y, t; g).
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We now observe that

(CU)†K0(x, y, t; g)

[
cosh − sinh
− sinh cosh

](
θ2λ(x, y,µ2λ, t; g)

)
CU

= U†K0(x, y, t; g)Ce
−θ2λ(x,y,µ2λ,t;g)σxCU

= U†K0(x, y, t; g)

[
e−θ2λ(x,y,µ2λ,t;g) 0

0 eθ2λ(x,y,µ2λ,t;g)

]
U

=
1

2

[
1 T̂

1 −T̂

]
K0(x, y, t; g)

[
e−θ2λ(x,y,µ2λ,t;g) 0

0 eθ2λ(x,y,µ2λ,t;g)

] [
1 1

T̂ −T̂

]

=
1

2

[
K0e

−θ2λ + T̂K0e
θ2λ T̂ K0e

−θ2λ − T̂K0e
θ2λ T̂

K0e
−θ2λ − T̂K0e

θ2λ T̂ K0e
−θ2λ + T̂K0e

θ2λ T̂

]
(x, y, t; g).

Similarly

(CU)†K0(x, y, t; g)

[
− cosh sinh
− sinh cosh

](
θ2λ+1(x, y,µ2λ+1, t; g)

)
CU

= U†K0(x, y, t; g)C(−σz)e−θ2λ+1(x,y,µ2λ+1,t;g)σxCU

= −U†K0(x, y, t; g)

[
0 eθ2λ+1(x,y,µ2λ+1,t;g)

e−θ2λ+1(x,y,µ2λ+1,t;g) 0

]
U

= −1

2

[
1 T̂

1 −T̂

]
K0(x, y, t; g)

×
[

0 eθ2λ+1(x,y,µ2λ+1,t;g)

e−θ2λ+1(x,y,µ2λ+1,t;g) 0

] [
1 1

T̂ −T̂

]

= −1

2

[
K0e

θ2λ+1 T̂ + T̂K0e
−θ2λ+1 −K0e

θ2λ+1T̂ + T̂K0e
−θ2λ+1

K0e
θ2λ+1 T̂ − T̂K0e

−θ2λ+1 −K0e
θ2λ+1 T̂ − T̂K0e

−θ2λ+1

]
(x, y, t; g).

From the discussion, we obtain the heat kernel for the parity Hamilto-
nians H±.

Theorem 4.4. The heat kernel K±(x, y, t; g,∆)(= K±±(x, y, t; g,∆)) of
H± = HR|H±

is given by

K±(x, y, t; g,∆) = K0(x, y, t; g)

∞∑

λ=0

(t∆)2λΦ−
2λ(x, y, t; g)

∓K0(x,−y, t; g)
∞∑

λ=0

(t∆)2λ+1Φ+
2λ+1(x,−y, t; g).
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Moreover, K±∓(x, y, t; g,∆) = 0. In other words,

KR(x, y, t; g,∆) = K+(x, y, t; g,∆)⊕K−(x, y, t; g,∆).

Proof. For ϵ, δ∈{+,−}, we define operators kϵδ=kϵδ(x, y, t)∈EndC(H̄ϵ, H̄δ)
by

(kϵδvϵ)(x) =

∫ ∞

−∞
Kϵδ(x, y, t)vϵ(y)dy

for vϵ ∈ H̄ϵ. Further, we write kϵδ as

(kϵδvϵ)(x) =

∞∑

λ=0

(∆t)λkλϵδvϵ(x).

By (4.10), we see that H̄ϵ ≃ L2(R). First, we verify that

K±∓(x, y, t; g,∆) = 0.

Let v ∈ L2(R) be a function with appropriate decay at ±∞ ( e.g. v is a com-
pactly supported function), then by setting x̄ = −x and ȳ = −y we observe
that

(k2λ+−v)(x) = (k2λ−+v)(x)

=
1

2

∫ ∞

−∞
[K0(x, y, t; g)Φ

−
2λ(x, y, t; g)− T̂K0(x, y, t; g)Φ

+
2λ(x, y; g)T̂ ]v(y)dy

=
1

2

[∫ ∞

−∞
K0(x, y, t; g)Φ

−
2λ(x, y, t; g)v(y)dy

−
∫ ∞

−∞
K0(x̄, y, t; g)Φ

+
2λ(x̄, y, t; g)v(ȳ)dy

]

=
1

2

[∫ ∞

−∞
K0(x, y, t; g)Φ

−
2λ(x, y, t; g)v(y)dy

−
∫ ∞

−∞
K0(x̄, ȳ, t; g)Φ

+
2λ(x̄, ȳ, t; g)v(y)dy

]

=
1

2

[∫ ∞

−∞
K0(x, y, t; g)Φ

−
2λ(x, y, t; g)v(y)dy

−
∫ ∞

−∞
K0(x, y, t; g)Φ

−
2λ(x, y, t; g)v(y)dy

]

= 0,
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and

(k2λ+1
+− v)(x) = −(k2λ+1

−+ v)(x)

=
1

2

∫ ∞

−∞
[K0(x, y, t; g)Φ

+
2λ+1(x, y, t; g)T̂

− T̂K0(x, y, t; g)Φ
−
2λ+1(x, y, t; g)]v(y)dy

=
1

2

[∫ ∞

−∞
K0(x, y, t; g)Φ

+
2λ+1(x, y, t; g)v(ȳ)dy

−
∫ ∞

−∞
K0(x̄, y, t; g)Φ

−
2λ+1(x̄, y, t; g)v(y)dy

]

=
1

2

[∫ ∞

−∞
K0(x, y, t; g)Φ

+
2λ+1(x, y, t; g)v(ȳ)dy

−
∫ ∞

−∞
K0(x̄, ȳ, t; g)Φ

−
2λ+1(x̄, ȳ, t; g)v(ȳ)dy

]

=
1

2

[∫ ∞

−∞
K0(x, y, t; g)Φ

+
2λ+1(x, y, t; g)v(ȳ)dy

−
∫ ∞

−∞
K0(x, y, t; g)Φ

+
2λ+1(x, y, t; g)v(ȳ)dy

]

= 0.

Thus, we see that (kλ±∓v)(x) = 0 for v with appropriate decay and λ ≥ 0.
On the other hand, we have

(k2λ++v)(x) = (k2λ−−v)(x)

=
1

2

∫ ∞

−∞
[K0(x, y, t; g)Φ

−
2λ(x, y, t; g)

+ T̂K0(x, y, t; g)Φ
+
2λ(x, y, t; g)T̂ ]v(y)dy

=
1

2

[∫ ∞

−∞
K0(x, y, t; g)Φ

−
2λ(x, y, t; g)v(y)dy

+

∫ ∞

−∞
K0(x̄, y, t; g)Φ

+
2λ(x̄, y, t; g)v(ȳ)dy

]

=
1

2

[∫ ∞

−∞
K0(x, y, t; g)Φ

−
2λ(x, y, t; g)v(y)dy

+

∫ ∞

−∞
K0(x̄, ȳ, t; g)Φ

+
2λ(x̄, ȳ, t; g)v(y)dy

]
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=
1

2

[∫ ∞

−∞
K0(x, y, t; g)Φ

−
2λ(x, y, t; g)v(y)dy

+

∫ ∞

−∞
K0(x, y, t; g)Φ

−
2λ(x, y, t; g)v(y)dy

]

=

∫ ∞

−∞
K0(x, y)Φ

−
2λ(x, y, t; g)v(y)dy

and

− (k2λ+1
++ v)(x) = (k2λ+1

−− v)(x)

=
1

2

∫ ∞

−∞
[K0(x, y, t; g)Φ

+
2λ+1(x, y, t; g)T̂

+ T̂K0(x, y, t; g)Φ
−
2λ+1(x, y, t; g)]v(y)dy

=
1

2

[∫ ∞

−∞
K0(x, y, t; g)Φ

+
2λ+1(x, y, t; g)v(ȳ)dy

+

∫ ∞

−∞
K0(x̄, y, t; g)Φ

−
2λ+1(x̄, y, t; g)v(y)dy

]

=
1

2

[∫ ∞

−∞
K0(x, y, t; g)Φ

+
2λ+1(x, y, t; g)v(ȳ)dy

+

∫ ∞

−∞
K0(x̄, ȳ, t; g)Φ

−
2λ+1(x̄, ȳ, t; g)v(ȳ)dy

]

=
1

2

[∫ ∞

−∞
K0(x, y, t; g)Φ

+
2λ+1(x, y, t; g)v(ȳ)dy

+

∫ ∞

−∞
K0(x, y, t; g)Φ

+
2λ+1(x, y, t; g)v(ȳ)dy

]

=

∫ ∞

−∞
K0(x, y, t; g)Φ

+
2λ+1(x, y, t; g)v(ȳ)dy

=

∫ ∞

−∞
K0(x,−y, t; g)Φ+

2λ+1(x,−y, t; g)v(y)dy

Hence, we see that (k±±v)(x) is equal to

∞∑

λ=0

∆2λ

∫ ∞

−∞
K0(x, y, t; g)Φ

−
2λ(x, y, t; g)v(y)dy

∓
∞∑

λ=0

∆2λ+1

∫ ∞

−∞
K0(x,−y, t; g)Φ+

2λ+1(x,−y, t; g)v(y)dy.
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Thus we have the desired conclusion for Kϵδ as a distribution, whence the
result follows as functions in the standard way. □

Remark 4.6. Note that for v ∈ L2(R), we can write

∫ ∞

−∞
K0(x, y, t; g)Φ

+
2λ+1(x, y, t; g)v(−y)dy

=

∫ ∞

−∞
K0(x, y, t; g)Φ

+
2λ+1(x, y, t; g)(T̂ v)(y)dy.

To conclude this section, we compute the partition function Z±
R (β; g,∆)

of the parity Hamiltonian H±.

Corollary 4.5. The partition function Z±
R
(β; g,∆) for the parity Hamilto-

nian H± is given by

Z±
R
(β; g,∆)

=
eg

2β

1− e−β

[
1 +

{
e−2g2 coth( β

2
)

×
∞∑

λ=1

(β∆)2λ
∫
· · ·
∫

0≤µ1≤···≤µ2λ≤1

e
4g2

cosh(β(1−µ2λ))

sinh(t)
+ξ2λ(µ2λ,β;g)+ψ

−
2λ(µ2λ,β;g)dµ2λ

}]

∓ eg
2β

1 + e−β

{
e−2g2 tanh( β

2
)

×
∞∑

λ=0

(β∆)2λ+1

∫
· · ·
∫

0≤µ1≤···≤µ2λ+1≤1

eξ2λ+1(µ2λ+1,β;g)+ψ
+
2λ+1(µ2λ+1,β;g)dµ2λ+1

}
,

where the function ψ±
λ (µλ, t; g) is as in Corollary 4.3.

Proof. The first part is computed in the same way as in the case of ZR(β)
(cf. Corollary 4.3 ) by noticing that

∫ ∞

−∞
e−αx

2

cosh(x η)dx =

∫ ∞

−∞
e−αx

2±ηxdx =

√
π

α
e

η2

4α .

For the second part, it is enough to observe that

K0(x,−x, t; g) =
eg

2t

√
π(1− e−2t)

exp

(
−1 + e−t

1− e−tx
2

)
,
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and, for λ ≡ 1 (mod 2),

θλ(x,−x,µλ, t; g) = −
2
√
2gx

1− e−t
λ∑

γ=0

(−1)γ
(
e−tµγ + et(µγ−1)

)
,

and then proceed as in the case of ZR(β; g,∆). □

5. Analytic properties of the heat kernel

In this short section, we discuss some estimates for the absolute value of
the components of the heat kernel. These estimates allow a direct proof of
the pointwise and uniform convergence of the series appearing in the heat
kernel and partition function, along with other analytic properties. Despite
the apparent complication of the formulas developed in this paper, it is not
difficult to obtain these estimates. We leave the detailed discussion, including
the analytic continuation, to [55].

Let λ ∈ Z≥1, for fixed x, y > 0 and t > 0, there are real functions
C1(x, y, t; g), C2(t; g), C3(t; g) ≥ 0 bounded in closed intervals of the half
plane ℜ(t) > 0, such that

|θλ(µλ, x, y, t; g)| ≤
∣∣∣∣
√
2g

1− e−2t

∣∣∣∣C1(x, y, t; g)

∣∣ψ±
λ (µλ, t; g)

∣∣ ≤
∣∣∣∣

2g2

1− e−2t

∣∣∣∣C2(t; g)

|ξλ(µλ, t; g)| ≤
∣∣∣∣

2g2

1− e−2t

∣∣∣∣C3(t; g)λ(5.1)

uniformly for 0 ≤ µ1 ≤ µ2 ≤ · · · ≤ µλ ≤ 1. We refer to Lemma 3.1 of [55] for
the proof1.

As mentioned in Section 2, the general theory of the Trotter-Kato prod-
uct formula assures the pointwise uniform convergence of the heat kernel.
However, with the estimates above, we can prove the uniform convergence
of the heat kernel directly. Note that a similar result holds for the partition
function.

1We note that in proof of Lemma 3.1 in [55] the expressions of s(x, y, t) and Sn(t)
are not correct. The correct expression for s(x, y, t) is

s(x, y, t) = t

λ−1
2∑

γ=0

(
x

∫ µ2γ+1

µ2γ

(et(1−α) − et(α−1))dα+ y

∫ µ2γ+1

µ2γ

(etα − e−tα)dα

)
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Theorem 5.1. For any closed interval I ⊂ (0,∞), as a function of t the
series given in Theorem 4.2 are uniformly convergent component-wise for
fixed x, y, g,∆ > 0.

Proof. By the estimates (5.1), it is immediate to verify that there are con-
stants c0, c1, c2, c3(x, y), c4 > 0 such that any matrix component of KR is
bounded above by

M = c0e
c2+c3(x,y)+c1∆ec4 ,

and the result follows in the standard way by the Weierstrass M -test. □

In addition to verifying the convergence of the series, the estimates above
are enough to show that the heat kernel and partition functions of the QRM
are holomorphic functions (with respect to the variable t) on certain regions
of the complex plane. In particular, the analytic continuation of the heat
kernel gives the time evolution propagator of the QRM while the analytic
continuation of the partition function gives the meromorphic continuation
of the spectral zeta function of the QRM. We refer the reader to [55] for
details.

Next, we consider estimates with respect to the spatial variables. It is
well-known, and elementary to verify, that for fixed t > 0 there are positive
constants a, b > 0 such that

(5.2) |K0(x, y, t; g)| ≤ ae−b(x
2+y2).

It is not difficult to extend this result to the case of the heat kernel of the
QRM as follows.

and the correct expression for Sn(t) is

Sn(t) =− t2
(∫ µn+1

µn

(etα − e−tα)dα

)

×
∑

n<β≤λ−1
β−α≡1 (mod 2)

(
e−2t

∫ µβ+1

µβ

etαdα−
∫ µβ+1

µβ

e−tαdα

)
.

These errors do not affect the proof, which follows as written in [55] with no further
changes.
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Proposition 5.2. Let

KR(x, y, t; g,∆) =

[
k1,1(x, y, t; g,∆) k1,2(x, y, t; g,∆)
k2,1(x, y, t; g,∆) k2,2(x, y, t; g,∆)

]
.

Then, for fixed g,∆, t > 0, there are positive constants a, b such that

|ki,j(x, y, t; g,∆)| ≤ ae−b(x2+y2),

for i, j ∈ {1, 2}.

Proof. Let us rewrite the function θλ(x, y,µλ, t; g) as

θλ(x, y,µλ, t; g) =
√
2g(x+ y) tanh(t)−

√
2gt

sinh(t)
sλ(x, y,µλ, t),

with

sλ(x, y,µλ, t) =

λ

2∑

γ=1

(
x

∫ µ2γ

µ2γ−1

(et(1−α) − et(α−1))dα+ y

∫ µ2γ

µ2γ−1

(etα − e−tα)dα
)

if λ ≡ 0 (mod 2) and

sλ(x, y,µλ, t)

=

λ−1

2∑

γ=0

(
x

∫ µ2γ+1

µ2γ

(et(1−α) − et(α−1))dα+ y

∫ µ2γ+1

µ2γ

(etα − e−tα)dα
)

if λ ≡ 1 (mod 2). In any of the two cases we can verify that

0 ≤ sλ(x, y,µλ, t) ≤ (x+ y)(et + e−t).

Then, let Ξ(x, y, t) be the series

∞∑

λ=0

(t∆)λe−2g2(coth(
t
2 ))

(−1)λ
∫
· · ·
∫

0≤µ1≤···≤µλ≤1

e
4g2

cosh(t(1−µλ))

sinh(t)
( 1+(−1)λ

2
)+ξλ(µλ,t)

× (−1)λ cosh (θλ(x, y,µλ, t)) dµλ,
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then, by (5.1) and the foregoing discussion there are positive constants
a, b, c, d such that

|Ξ(x, y, t)| ≤ a
∞∑

λ=0

(t∆b)λ
∫
· · ·
∫

0≤µ1≤···≤µλ≤1

(eθλ(x,y,µλ,t) + e−θλ(x,y,µλ,t))

≤ aec(x+y)
∞∑

λ=0

(t∆b)λ

λ!
= dec(x+y),

and a similar one for the remaining components of the heat kernel. Com-
bining with the estimate (5.2) of the Mehler kernel we obtain the desired
result. □

An immediate corollary of the above result is that the heat kernel is
continuous with respect to the spatial variables x, y.

Corollary 5.3. For fixed g,∆, t > 0, the function KR(x, y, t; g,∆) is con-
tinuous in the variables x, y.

A detailed analysis with the estimates above, or similar ones, may be
used to prove further analytical properties of the heat kernel or the partition
functions of the QRM with respect to the space variables. We do not further
pursue this direction in this paper.
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[39] K. Kimoto and M.Wakayama: Apéry-like numbers for non-commutative
harmonic oscillators and automorphic integrals, arXiv:1905.01775v1,
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