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lar duality between Fano toric varieties to a more general dual-
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Introduction

Polar duality between reflexive polytopes gives the well known Batyrev dual-
ity between Fano toric varieties, inducing a mirror symmetry between generic
sections of their anti-canonical divisors [4]. Borisov and Batyrev extended
this duality to complete intersections described by a nef partition of the
anti-canonical divisor of a Fano toric variety [11], [6]. By thinking of Batyrev
duality as a duality between toric varieties framed by their anti-canonical
divisor, the present paper is devoted to show how deforming the Batyrev-
Borisov duality by allowing a more general framing, in principle just given
by an effective torus invariant Weil divisor (see Definitions 2.1 and 7.1).
In general, such a deformed correspondence, here called framed duality (f -
duality), between framed and weakly framed toric varieties, is not involutive,
but imposing some further conditions on the framing gives back an involutive
duality, here called a calibrated f -process, incorporating the classical duality
between Fano toric varieties as a very particular case. Roughly speaking, f -
duality behaves as follows. Assume Y be a hypersurface of a complete toric
variety X and let DY be an effective torus invariant Weil divisor (the fram-
ing) of X such that Y ∈ |DY |, that is Y ∼ DY : actually we are considering
the family of hypersurfaces described by the linear system |DY |. A suitable
combinatorial procedure (X,DY )⇝ (X, D∨) gives back a dual toric variety
X and a dual framing D∨ whose linear system |D∨| describes an f -mirror
family of |DY | as a family of hypersurfaces of X. Calibration means that
the same combinatorial procedure applied to (X, D∨) gives back (X,DY ) as
an f -dual framed toric variety, that is (X,DY )↭ (X, D∨) is an involutive
process. In particular, if Y is a Calabi-Yau hypersurface of a Fano toric vari-
ety X, then the f -process is involutive giving precisely the Batyrev duality.
Theorems 2.17 and 3.15 will give equivalent conditions to calibration, but it
is difficult to understand how general these conditions are. Certainly there
exist framed toric varieties (ftv) do not admitting any calibrated f -process
even if the framing is given by the anti-canonical divisor (see Example 2.21).

The main goal ot this paper is explaining how f -duality is able to de-
scribe, in a unified way, an enormous number of f -mirror symmetric pairs
of not necessarily Calabi-Yau hypersurfaces and complete intersections in
toric varieties, sensibly improving the current knowledge of mirror partners
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of non Calabi-Yau varieties (see e.g. [29], [35], [54], [23], [37], [40], [34], [32]).
Here the word “mirror” has to be considered in a broader sense, outside the
Calabi-Yau setup: the reader is referred to discussion developed in § 3.2, 3.3.

For instance, as a very particular but interesting case, a generic projec-
tive hypersurface in Pn of degree d ≥ n+ 1, can be thought of a framing of
Pn, so admitting (at least) one f -mirror dual partner given by an hyper-
surface in a suitable finite quotient of a weighted projective n-space, whose
weights are essentially assigned by the framing itself (see §5). This construc-
tion turns out to be a nice extention to higher degrees of the pioneering
description of a mirror partner of the quintic threefold given by Greene and
Plesser [30]. Moreover, for lower degrees, a generic projective hypersurface in
Pn of degree d ≤ n can be thought of a weak framing of Pn, whose associated
f -mirror dual partner can no more be a complete variety, proposing a ratio-
nal re-parametrization of Landau-Ginzburg (LG) mirror models proposed
by Givental [29], [28] (see §7.1).

Furthermore, f -duality turns out to extend, in a unified construction,
many known dualities between Calabi-Yau hypersurfaces and complete in-
tersections in toric varieties: this is the case of the Berglund-Hübsch duality
[9] and, more generally, of the recent Artebani-Comparin-Guilbot duality [2]
(see §3.5 and 3.4).

More in general, f -duality opens up to a lot of stimulating connections
with many expects of the current status of art of research in mirror symme-
try. Here is a list of interesting applications developed in the following.

Givental&Hori-Vafa mirroring: two sides of a same coin. f -duality
suggests a suitable re-parameterization of the Landau-Ginzburg mirror
model of a complete intersection in a toric variety, proposed by Hori and
Vafa in 2000 [35], so getting two interesting consequences: the first one is
that f -duality turns out to exhibit a suitable compactification of this re-
parameterized LG mirror model, extending to higher degrees the Hori and
Vafa construction for Calabi-Yau projective hypersurfaces (see §5.2); the
second one is that Hori-Vafa and Givental mirroring processes turn out to
be two sides of a same coin. The latter has been recently observed by Clarke
(see [17], in particular § 7) and f -duality gives a further confirmation. More
deeply, f -duality seems providing a combinatorial translation of the duality
proposed by Clarke in terms of an exchanging between linear data associated
with a toric variety [17, § 3].

Since most of the currently proposed LG mirror models for varieties
of general type are modelled on the so called Hori-Vafa recipe, the previous
observation introduces possible re-parameterizations of all these LG models,
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which should be compared with the known ones from the point of view of
Homological Mirror Symmetry (HMS) (see considerations given in §8.4).

Landau-Ginzburg/Hypersurface correspondence. By observing a nat-
ural Landau-Ginzburg/Hypersurface correspondence, extending the LG/CY
correspondence studied by [16] (see §3.6.1), a framing turns out to be the
hypersurface counterpart of the “anchoring at infinity” of the compactified
LG models proposed by Katzarkov, Kontsevich and Pantev [38] (see 3.7),
so opening the door to conceivable connections with the log-geometry of the
Gross-Siebert Intrinsic Mirror Symmetry [33].

Moreover, f -duality explains quite well why, passing from a framing to
a weak framing, that is, losing positivity properties, translates in losing
completeness properties of the associated mirror partner, so well justifying
a description of mirror symmetry in terms of a duality between associated
LG models (see Remark 2.11).

Multiple mirror phenomenon and the Mirror Web. A further im-
portant remark, is that, since f -duality is a duality between framed toric
varieties, that is, between pairs given by a complete toric variety and a suf-
ficiently positive torus invariant Weil divisor, multiple mirror partners can,
in principle, be assigned by a changing of framing in the same linear equiv-
alence class (see §3.3). This means that, one should think of mirror duality
more in terms of a connection between nodes in a web (the Mirror Web)
rather than a phenomenon connecting pairs of mirror partners, that is, a
symmetry, as done for Calabi-Yau varieties. Notice that the multiple mirror
phenomenon is a well known one, also for Calabi-Yau varieties, after e.g. the
Rødland example [45] (see Remark 3.7 and references therein).

Beyond the toric setup. Following the lines given by Batyrev for Calabi-
Yau varieties in [5], a conjectural approach, to extending f -mirror symmetry
beyond a toric embedding, is sketched in §8.3, by means of toric degeneration
and geometric transitions.

Mirror theorems As Batyrev-Borisov duality, f -duality is just a construc-
tion to propose candidate mirror partners. After that, one has to prove they
are effectively mirror partners, by checking various instances of mirror sym-
metry. Beyond the Calabi-Yau setup, understanding which are those mirror
symmetric instances is a bit more involved (see §3.2). Probably, the deep-
est way of checking mirror symmetry is the one proposed by Kontsevich’s
HMS. But this seems to be a very difficult approach and we defer it to future
works. In this paper, a large section is dedicated to check several matching
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of (stringy) Hodge numbers in the case of projective hypersurfaces of non-
negative Kodaira dimension (see §5). One side of this check (we call A-side)
turns out to be easily computable (Theorem 5.3). The other side of this check
(so called B-side) is sensibly more intricate. We will state main results in
Theorem 5.13, deferring their proof to [46], where analogous computation
are developed in the broader context of toric complete intersections.

Anyway, this is a case by case checking, quickly becoming essentially
impossible for more general hypersurfaces and complete intersections in
toric varieties, due to the wild singularities f -duality produces. According
with Chiodo and Ruan [16], it is generally believed that considering suit-
ably associated LG models may sensibly simplify singularities and give rise
to alternative way of checking mirror symmetry. The already mentioned
LG/Hypersurface correspondence, presented in §3.6, allows one to drawing
an alternative conjectural approach to checking mirror symmetry (see Re-
mark 3.17).

This paper is organized as follows. §1 is devoted to introduce notation
on toric varieties, their divisors, hypersurfaces and associated stratifications.
§2 is dedicated to the definition of framed toric varieties (ftv) and framed
duality. Then §3 is devoted to present mirror symmetric consequences of
f -duality for hypersurfaces in complete toric varieties. In §4 an important
class of framed toric varieties admitting a calibrated f -process is presented,
namely projective spaces endowed with suitable framings. In the following
§5, all these considerations are applied to the important class of examples
given by hypersurfaces in Pn of degree d ≥ n+ 1. Then in §6, f -duality is
extended to complete intersections subvarieties in complete toric varieties.
§7 is devoted to introduce the concept of a weak framing and weakly framed
toric varieties (wftv) and f -mirror symmetry of negative Kodaira dimension
hypersurfaces: in particular, f -mirrors of hypersurfaces in Pn of degree d ≤ n
are considered and showed matching the Givental LG mirror models. Finally
in §8 many further considerations and open problems are collected, ending
up with studying the f -mirror model of the general hyperelliptic curve, to
propose a comparison with an example which has been extensively studied
in the literature [37], [54], [23].

Acknowledgements. It is a pleasure to thank M. Artebani for several
clarifications about many aspects treated in [2] and T. Hübsch for his in-
terested comments and interesting suggestions, giving rise to perspectives
in §8.2. Many thanks also to S. Filippini, for useful conversation during her
last visit in Turin, and to G. Bini for his considerations. Last but not least,
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Many computations and proofs’ prototypes have been partially per-
formed by means of several Maple routines, mostly of them jointly written
with L. Terracini, and some of them based on the Maple package Convex

[25].

1. Preliminaries and notation on toric varieties

A n–dimensional toric variety is an algebraic normal variety X containing
the torus T := (C∗)n as a Zariski open subset such that the natural multi-
plicative self–action of the torus can be extended to an action T ×X → X.

Let us quickly recall the classical approach to toric varieties by means of
cones and fans. For proofs and details the interested reader is referred to the
extensive treatments [21], [26], [44] and the recent and quite comprehensive
[20].
As usual M denotes the group of characters χ : T → C∗ of T and N the
group of 1–parameter subgroups λ : C∗ → T . It follows that M and N are
n–dimensional dual lattices via the pairing

M ×N −→ Hom(C∗,C∗) ∼= C∗

(χ, λ) 7−→ χ ◦ λ

which translates into the standard paring ⟨u, v⟩ =
∑
uivi under the iden-

tifications M ∼= Zn ∼= N obtained by setting χ(t) = tu :=
∏
tuii and λ(t) =

tv := (tv1 , . . . , tvn).

1.1. Cones and affine toric varieties

Define NR := N ⊗ R and MR :=M ⊗ R ∼= Hom(N,Z)⊗ R ∼= Hom(NR,R).
A convex polyhedral cone (or simply a cone) σ is the subset of NR defined
by

σ = ⟨v1, . . . ,vs⟩ := {r1v1 + · · ·+ rsvs ∈ NR | ri ∈ R≥0}

Vectors v1, . . . ,vs ∈ NR are said to generate σ; vi is called a primitive gener-
ator if it generates the semigroup ⟨vi⟩ ∩N . A cone σ = ⟨v1, . . . ,vs⟩ is called
rational if v1, . . . ,vs ∈ N , simplicial if v1, . . . ,vs are R–linear independent
and non-singular if primitive generators v1, . . . ,vs can be extended to giving
a basis of the lattice N .
A cone σ is called strongly convex or pointed if it does not contain a linear
subspace of positive dimension of NR.
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The dual cone σ∨ of σ is the subset of MR defined by

σ∨ = {u ∈MR | ∀ v ∈ σ ⟨u,v⟩ ≥ 0}

A face τ of σ (denoted by τ < σ) is the subset defined by

τ = σ ∩ u⊥ = {v ∈ σ | ⟨u,v⟩ = 0}

for some u ∈ σ∨. Observe that also τ is a cone.
A facet τ of a cone σ is a codimension 1 face, denoted by τ <1 σ.
Gordon’s Lemma ensures that the semigroup Sσ := σ∨ ∩M is finitely gen-
erated. Then also the associated C–algebra Aσ := C[Sσ] is finitely generated.
A choice of m generators gives a presentation of Aσ

Aσ ∼= C[X1, . . . , Xm]/Iσ

Then Uσ := Spec(Aσ) ⊂ Cm is an affine toric variety. Since a closed point
x ∈ Uσ is an evaluation of elements in C[Sσ] satisfying the relations gener-
ating Iσ, then it can be identified with a semigroup morphism x : Sσ → C
assigned by thinking of C as a multiplicative semigroup. In particular the
characteristic morphism

(1)
xσ : σ∨ ∩M −→ C

u 7−→

ß
1 if u ∈ σ⊥

0 otherwise

which is well defined since σ⊥ < σ∨, defines a characteristic point xσ ∈ Uσ
whose torus orbit Oσ turns out to be a (n− dim(σ))–dimensional torus
embedded in Uσ.

1.2. Fans and toric varieties

A fan Σ is a finite set of cones σ ⊂ NR such that

1) for any cone σ ∈ Σ and for any face τ < σ then τ ∈ Σ,

2) for any σ, τ ∈ Σ then σ ∩ τ < σ and σ ∩ τ < τ .

For every i with 0 ≤ i ≤ n denote by Σ(i) ⊂ Σ the subset of i–dimensional
cones, called the i–skeleton of Σ.
A fan Σ is called simplicial if every cone σ ∈ Σ is rational and simplicial,
and is called non-singular if every such cone is non-singular. The support of



✐

✐

“9-Rossi” — 2023/3/24 — 1:54 — page 1456 — #8
✐

✐

✐

✐

✐

✐

1456 Michele Rossi

a fan Σ is the subset |Σ| ⊂ NR obtained as the union of all of its cones i.e.

|Σ| :=
⋃

σ∈Σ

σ ⊂ NR .

If |Σ| = NR then Σ will be called complete.
Since for any face τ < σ the semigroup Sσ turns out to be a sub-

semigroup of Sτ , there is an induced immersion Uτ →֒ Uσ between the asso-
ciated affine toric varieties which embeds Uτ as a principal open subset of
Uσ. Given a fan Σ one can construct an associated toric variety X(Σ) by
patching all the affine toric varieties {Uσ | σ ∈ Σ} along the principal open
subsets associated with any common face. Moreover for every toric variety
X there exists a fan Σ such that X ∼= X(Σ). It turns out that:

• X(Σ) is non-singular if and only if the fan Σ is non-singular,

• X(Σ) is complete if and only if the fan Σ is complete.

Let vρ be a primitive generator of the ray ρ ∈ Σ(1). Up to an identification
N ∼= Zn, where n := dimX, and setting m := |Σ(1)|

V = (vρ | ρ ∈ Σ(1)) = (v1 · · · vm)

gives a n×m integer matrix called a fan matrix of Σ. Notice that Σ deter-
mines V up to the choice of a basis of N and of a permutation of columns
(i.e. generators vρ), that is, V and V ′ are equivalent fan matrices if

(2) ∃A ∈ GL(n,Z) , ∃B ∈ Sm ≤ GL(m,Z) V ′ = A · V ·B

1.3. Divisors on Toric varieties

Let W(X) denote the group of Weil divisors of a toric variety X = X(Σ).
Then its subgroup of torus–invariant Weil divisors is given by

WT (X) = ⟨Dρ | ρ ∈ Σ(1)⟩
Z
=
⊕

ρ∈Σ(1)

Z ·Dρ

where Dρ = T · xρ, being T ∼= Hom(N,C∗) the acting torus and xρ the dis-
tinguished point of ρ, as defined in (1). Let P(X) ⊂ W(X) be the subgroup
of principal divisors and vρ be the generator of the monoid ρ ∩N . Then the
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morphism

(3)
div : M −→ P(X) ∩WT (X) =: PT (X)

u 7−→ div(u) :=
∑

ρ∈Σ(1)⟨u,vρ⟩Dρ

is surjective. Let V = (v1, . . . ,vn+r) be a fan matrix of Σ, with respect to
a chosen identification N ∼= Zn. Then the transposed matrix V T is a repre-
sentative matrix of the Z-linear morphism div defined in (3), with respect
to the basis {D1, . . . , Dn+r} of WT (X).

Let Pic(X) be the group of line bundles modulo isomorphism. It is well
known that for an irreducible variety X the map D 7→ OX(D) induces an
isomorphism C(X)/P(X) ∼= Pic(X), where C(X) ⊂ W(X) denotes the sub-
group of Cartier divisors. The divisor class group is defined as the group
of Weil divisors modulo rational (hence linear) equivalence, i.e. Cl(X) :=
W(X)/P(X). Then the inclusion C(X) ⊂ W(X) passes through the quo-
tient giving an immersion Pic(X) →֒ Cl(X).

A toric variety X = X(Σ) is called non-degenerate if the support |Σ|
spans NR : in particular this means that it cannot admit torus factors, or,
equivalently, that H0(X,O∗

X)
∼= C∗. Then, the cardinality of the 1-skeleton

is given by

|Σ(1)| = n+ r

where r := rkPic(X) ≥ 1 is the Picard number of X, also called the rank of
X, in the following.

Definition 1.1. [50, Def. 3.10] An F–matrix is a n× (n+ r) matrix V
with integer entries, satisfying the conditions:

a) rk(V ) = n;

b) V is F–complete i.e. ⟨V ⟩ = NR
∼= Rn [50, Def. 3.4];

c) all the columns of V are non zero;

d) if v is a column of V , then V does not contain another column of the
form λv where λ > 0 is a real number.

A F–matrix V is called reduced if every column of V is composed by coprime
entries [50, Def. 3.13].

For instance, a fan matrix of a complete toric variety X(Σ) is always a
reduced F–matrix.
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1.3.1. Notation. Given a reduced F -matrix V , in the following SF(V )
will denote the set of all complete and simplicial fans whose 1-skeleton is
given by all the rays generated by the columns of V . Moreover,

PSF(V ) ⊂ SF(V )

will denote the subset of those fans whose associated toric variety X(Σ) is
projective.

1.4. Polytopes of divisors and associated fans and varieties

A polytope ∆ ⊂MR is the convex hull of a finite set S of points, that is
∆ = Conv(S).
If S ⊆M then ∆ is called a lattice polytope. When ∆ is a full dimensional
polytope its presentation as an intersection of closed half-spaces has an espe-
cially nice form, because each facet Φ <1 ∆ has a unique supporting affine
hyperplane. We denote such an hyperplane and the corresponding closed
half-space as

HΦ = {m ∈ MR | ⟨m,nφ⟩ = −aΦ} , H+
Φ = {m ∈ MR | ⟨m,nφ⟩ ≥ −aΦ}

where (nΦ, aΦ) ∈ NR × R is unique up to multiplication by a positive real
number. We call nΦ an inward pointing normal vector of the facet Φ. It
follows that

(4) ∆ =
⋂

Φ<1∆

H+
Φ = {m ∈MR | ∀Φ <1 ∆ ⟨m,nΦ⟩ ≥ −aΦ}

The relative interior of ∆ will be denoted by Relint∆, or simply Int∆ when
∆ is full dimensional.

In the following we will consider full dimensional polytopes only, unless
otherwise advised.

The polar polytope ∆∗ of a polytope ∆ ⊆MR containing the origin 0 ∈
M as an interior point, that is 0 ∈ Int∆, is defined as follows

(5) ∆∗ := {n ∈ NR | ∀m ∈ ∆ ⟨n,m⟩ ≥ −1} ⊆ NR

It is a full dimensional polytope in NR with 0 ∈ Int∆∗ and (∆∗)∗ = ∆. In
particular, if ∆ admits the presentation given in (4) then

(6) ∆∗ = Conv({a−1
Φ nΦ | ∀Φ <1 ∆}) ⊆ NR
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(see [20, Exer. 2.2.1]). Clearly, in general, ∆∗ is not a lattice polytope in N ,
even if ∆ is a lattice polytope in M . A lattice polytope ∆ is called reflexive
if 0 ∈ Int∆ and ∆∗ is still a lattice polytope. By [4, Thm. 4.1.6]

∆ is reflexive ⇐⇒ Int∆ ∩M = {0}

Given a divisor D =
∑

ρ∈Σ(1) aρDρ ∈ WT (X(Σ)), the following polyhedron
(7)
∆D := {m ∈MR | ∀ ρ ∈ Σ(1) ⟨m,vρ⟩ ≥ −aρ} = {m ∈MR |V T ·m ≥ −a}

is called the polyhedron associated to D, where V = (vρ)ρ∈Σ(1) is a fan matrix

of X and a = (aρ)ρ∈Σ(1) is the column vector of coefficients of D. In general
it is not a polytope, but just a polyhedron as intersection of a finitely many
closed half spaces.

Proposition 1.2 (Prop. 4.3.8 (b) and §6.1 in [20]). If X(Σ) is com-
plete then, for any D in WT (X), the associated polyhedron ∆D is a polytope.
Moreover:

1) D is basepoint free, that is OX(D) is generated by global section, if
and only if ∆D = Conv({mσ ∈M |σ ∈ Σ(n)}),

2) D is ample if and only if ∆D = Conv({mσ ∈M |σ ∈ Σ(n)}) and σ ̸=
σ′ implies mσ ̸= mσ′.

Recall that a Weil divisor D is semi-ample if a positive multiple kD,
k ∈ N, is basepoint free (hence Cartier). In particular, if X(Σ) is complete
and D semi-ample, then

∆kD = k∆D = Conv({mσ ∈M |σ ∈ Σ(n)})

is a lattice polytope.

Proposition 1.3 (Thm. 6.3.10 in [20]). Let |Σ| be convex of full dimen-
sion. Then D is semi-ample if and only if kD is numerically effective (nef),
for some k ∈ N, that is kD is Cartier and kD · C ≥ 0, for any complete
curve C ⊂ X.

Starting from a lattice polytope ∆ one can construct a projective toric
variety P∆ as follows. For any nonempty face ϕ < ∆ consider the dual cone
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σ∨φ ⊆ NR of the cone

σφ := {r(m−m′) | m ∈ ∆ , m′ ∈ ϕ , r ∈ R≥0} ⊆MR

Then Σ⊥
∆ := {σ∨φ | ϕ < ∆} turns out to be a fan, called the normal fan of the

polytope ∆, and P∆ is the associated toric variety. It is projective as there
exists an ample divisor H of P∆ whose associated polytope is precisely ∆.

A further toric variety X∆ can be associated with a lattice polytope ∆
such that 0 ∈ ∆. Namely, for every facet Φ <1 ∆ such that 0 ̸∈ RelintΦ,
consider the cone projecting Φ from the origin, that is

(8) σΦ := {rm |m ∈ Φ , r ∈ R≥0} ⊆MR

Then Σ∆ := {τ | ∃Φ <1 ∆ : τ < σΦ} turns out to be a fan, called the fan
over the polytope ∆, and X∆ is the associated toric variety. If 0 ∈ Int∆, X∆

is complete as the support |Σ∆| is the whole MR (clearly for X∆, the role
of the dual lattices M,N is reversed with respect to P∆). This is a direct
consequence of the following

Proposition 1.4. Given an identification M ∼= Zn and a lattice polytope

∆ := Conv({mi ∈M | i = 1, . . . ,m})

let V∆ =
(
v1 · · · vm

)
be the n×m integer matrix defined by the gen-

erators vi of the semi-groups ⟨mi⟩ ∩M , for any 1 ≤ i ≤ m. Then V∆ is a
reduced F -matrix if and only if 0 ∈ Int∆. In particular, if 0 ∈ Int∆ then
V∆ is a fan matrix of X∆ and the latter turns out to be a complete toric
variety.

Proof. Assume V∆ is an F -matrix. Then V∆ is clearly reduced as all the vi’s
are primitive. Moreover, choosing the first column v1 of V∆, the opposite
vector −v1 belongs to the cone ⟨v2, . . . ,vn⟩, by [50, Prop. 3.5]. Then

0 = v1 − v1 = v1 +

m∑

j=2

λjvj =

m∑

i=1

µimi

where

µ1 =
∥v1∥

∥m1∥
> 0 , ∀ j ≥ 2 µj = λj

∥vj∥

∥mj∥
> 0

One can then conclude that 0 ∈ IntConv({mk}
m
k=1) = Int∆ by setting µ :=∑

k µk and writing 0 =
∑

k(µk/µ)mk .
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Viceversa, assume 0 ∈ Int∆ = IntConv({mk}
m
k=1). Conditions (a), (c)

and (d) in Definition 1.1 are clearly satisfied. To show that V∆ is F -complete,
for any vector v ∈MR consider the polytope

∆′ := Conv(m1 . . . ,mm,−v) ⊆MR

Since ∆ ⊆ ∆′, one has that 0 ∈ Int∆′, meaning that

∃µ1 > 0, . . . , µm > 0, µ > 0 :
∑

k

µk + µ = 1 , 0 =
∑

k

µkmk − µv

meaning that

v =
∑

k

λkvk , with ∀ k λk =
µk ∥mk∥

µ ∥vk∥
> 0 =⇒ v ∈ ⟨V∆⟩

□

Remark 1.5. If ∆ ⊆MR is a reflexive polytope, then

P∆
∼= X∆∗ and X∆

∼= P∆∗

These isomorphisms are induced by identity morphisms of lattices N and
M , respectively.

Corollary 1.6. Let ∆ be a lattice polytope such that 0 ∈ Int(∆) and V∆ be
the fan matrix of X∆, as constructed in the previous Proposition 1.4. Then,
for any Σ ∈ SF(V∆) which is a refinement of Σ∆, the associated toric variety
X(Σ) is a Q-factorial small resolution of X∆.

Proof. In fact, every refinement Σ ∈ SF(V ) of Σ∆ is obtained by a simplicial
subdivision of cones in Σ∆. In particular, the induced birational resolution
X(Σ) −→ X∆ is small, as Σ(1) = Σ∆(1) = {⟨v1⟩, . . . , ⟨vm⟩} . □

1.5. Cones of divisors

Let X(Σ) be a complete toric variety. Then there is a short exact sequence

(9) 0 //M
div

V T
//
⊕

ρ∈Σ(1)

Z ·Dρ
d

Q
//Cl(X) //0

(see e.g. [26, §3.4], [20, Prop. 4.2.5]). The representative matrices, V and
Q, of the Z-linear morphisms div and d, respectively, gives a fan matrix
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and weight matrix, respectively, of X. Since X is complete, V is a reduced
F -matrix and Q is a Gale dual matrix of V , which can be assumed to be
positive [50, Thm. 3.18]. This means that:

(*) the image Im(d) = d(WT (X)) of the degree morphism in (9), can be
assumed contained in the positive orthant Rr+ of Rr ∼= Cl(X)⊗ R, be-
ing r the Picard number of X.

Recall that every divisor of X is linearly equivalent to a torus invariant
divisor. This means that, in the isomorphism Cl(X)⊗ R ∼= Rr the cone
Eff(X) ⊆ Cl(X)⊗ R, which is the closure of the cone generated by classes
of effective divisors, is identified with cone ⟨Q⟩ generated by the columns of
Q, that is

(10) Eff(X) ∼= ⟨Q⟩

Let us now introduce the following:

1.5.1. Notation. Let A be a d×mmatrix. For any subset I ⊆ {1, . . . ,m}
we will denote by AI the sub-matrix of A obtained by considering the
columns indexed by I, only, and by AI the complementary sub-matrix of AI
in A, that is, the one obtained by considering only the columns not indexed
by I.

Coming back to the situation of a complete toric variety X(Σ), of di-
mension n and Picard number r, to every cone σ ∈ Σ one can associate a
subset I ⊆ {1, . . . ,m = n+ r} such that

σ = ⟨VI⟩ ⊆ NR

Define IΣ := {I ∈ P({1, . . . ,m}) | ⟨VI⟩ ∈ Σ} , that is, Σ = {⟨VI⟩ | I ∈ IΣ} .
Then set

Mov(Q) :=

m⋂

i=1

⟨Q{i}⟩ , Nef(I) :=
⋂

I∈I

⟨QI⟩ (for any I ⊆ P({1, . . . ,m}) )

Recall that the cone Mov(X), which is the closure of the one generated
by classes of movable divisors, and the cone Nef(X), generated by classes
of nef divisors, are both sub-cones of the effective cone Eff(X). Then, the
isomorphism (10) descends to give isomorphisms

Mov(X) ∼= Mov(Q) , Nef(X) ∼= Nef(IΣ)

More precisely, recalling notation 1.3.1, we get the following
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Proposition 1.7. [20, Thm. 15.1.10(c)] If V =
(
v1 . . . vn+r

)
is an

F–matrix then, for every fan Σ ∈ PSF(V ) there is a natural isomorphism

Pic(X(Σ))⊗ R ∼= Cl(X)⊗ R ∼= Rr

taking the cones

Nef(X(Σ)) ⊆ Mov(X(Σ)) ⊆ Eff(X(Σ)) ⊆ Rr

to the sub-cones of the positive orthant

Nef(IΣ) ⊆ Mov(Q) ⊆ ⟨Q⟩ ⊆ Rr+

In particular, if d : WT (X(Σ)) → Cl(X(Σ)) is the degree morphism, then a
Weil divisor D on X(Σ) admits a nef (ample) positive multiple if and only
if its class [D] = d(D) ∈ Nef(IΣ) ( d(D) ∈ RelintNef(IΣ), resp.).

The following is a useful application to Q-factorial small resolutions of
a complete toric variety X(Σ).

Proposition 1.8. Let X(Σ) be a complete toric variety and V be a fan
matrix of X. Then, for any Ξ ∈ SF(V ) giving a refinement of Σ, the identity
morphism of the common lattice N , namely idN : N −→ N , induces a fans’
morphism from Ξ to Σ. The induced morphism of toric varieties

φ : Y (Ξ) −→ X(Σ)

is a Q-factorial small resolution. Then, there is the following isomorphism
of divisorial exact sequences

0 //M

idMIn

��

div

V T
// WT (X)

ϕ∗Im
��

d

Q
// Cl(X)

ϕ∗Ir
��

// 0

0 //M
div

V T
// WT (Y )

d

Q
// Cl(Y ) // 0

where φ∗ is the pull-back of Weil divisors and φ∗ is the induced morphism
on divisor classes. By composing φ∗ with isomorphisms Pic(X)R ∼= Rr and
Pic(Y )R ∼= Rr, defined in the previous Proposition 1.7, there follows the fol-
lowing identification of nested divisorial sub-cones of the positive orthant
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Rr+

Nef(IΣ) ∼= Nef(X)
� _

��

� y

,,Ç
Mov(Q) ∼= Mov(X)

ϕ∗

R∼= Mov(Y )

å
⊆

Ç
⟨Q⟩ ∼= Eff(X)

ϕ∗

R∼= Eff(Y )

å

Nef(IΞ) ∼= Nef(Y )
%
�

22

Moreover, for every Weil divisor D =
∑

ρ∈Σ(1) aρDρ ∈ WT (X), there follows
the identification of associated polytopes

{m ∈MR |V T ·m ≥ −a} = ∆D = idM (∆D) = ∆ϕ∗(D)

where a = (aρ)ρ∈Σ(1) . In particular D is semi-ample if and only if its class
[D] belongs to Nef(X). Then there exists a positive integer k ∈ N such that

Conv({mσ ∈M |σ ∈ Σ(n)}) = k∆D
idM= k∆ϕ∗(D)

= Conv({mI ∈M | I ∈ IΞ(n)})

where

(11) mI := −k(V T
I )−1 · aI

and aI is the sub-vector of a whose entries are indexed by I. In particular,
this means that, for every σ ∈ Σ(n), mσ = mI for any I ∈ IΞ(n) such that
⟨VI⟩ ⊆ σ .

Proof. Results on divisorial cones are direct consequences of the previous
Proposition 1.7. In particular1

Nef(IΣ) =
⋂

I∈IΣ

⟨QI⟩ ⊆
⋂

J∈IΞ

⟨QJ⟩ = Nef(IΞ)

because Ξ is a refinement of Σ, so implying that

∀ I ∈ IΣ ∃ J ∈ IΞ : ⟨VJ⟩ ⊆ ⟨VI⟩ ⇐⇒ ⟨QI⟩ ⊆ ⟨QJ⟩

1Moreover, after [36, Prop. 1.11], Nef(X) ∼= φ∗(Nef(X)) lives on the boundary of
Nef(Y ): actually Hu-Keel proved this fact when X is projective, but this hypothesis
is unnecessary (see e.g. [48, Thm. 3.7] and references therein).
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Results on divisorial polytopes come, on the one hand, directly from the
definition given in (7) and, on the other hand, from Proposition 1.3, giv-
ing that [D] ∈ Nef(X), and Proposition 1.2. In fact, a positive multiple
kD is base-point free, that is, k∆D = Conv({mσ ∈M |σ ∈ Σ(n)}). Since
Nef(X) ⊆ Nef(Y ), [φ∗(D)] = φ∗([D]) ∈ Nef(Y ) so giving that φ∗(D) is semi-
ample, too, still by Proposition 1.7. Therefore

k∆D = k∆ϕ∗(D) = Conv({mτ ∈M | τ ∈ Ξ(n)})

= Conv({mI ∈M | I ∈ IΞ(n)})

where mτ = mI whenever τ = ⟨VI⟩ and mI is defined as in (11). □

Remark 1.9. Part of the statement in Proposition 1.8 admits a streamlined
interpretation by using the secondary fan (see [20, § 14.4]). In fact, one can
say that if X is not Q-factorial then Nef(X) is a boundary cell of a full
dimensional chamber Nef(Y ) of the secondary fan supported by the pseudo-
effective cone Eff(Y ) ∼= Eff(X).

1.6. Non-degenerate hypersurfaces and their stratification

Given a toric variety X = X(Σ), let T ⊆ X be the maximal acting torus on
X. Consider a Laurent polynomial

f =
∑

m∈M
finite

cmχ
m , cm ∈ C∗

Denote by Zf ⊆ T the zero-locus of f in T and let Yf be its closure in X.

Definition 1.10 (see Def. 3.1.4 in [4] and Def. 4.13 in [7]). A Laurent
polynomial f , and the associated hypersurfaces Zf ⊆ T and Yf ⊆ X(Σ),
are called non-degenerate with respect to Σ (or, equivalently, Σ-regular) if,
for every σ ∈ Σ, the associated σ-stratum Yf,σ := Yf ∩ T · xσ is empty or a
smooth subvariety of codimension 1 in the torus orbit T · xσ . In other words,
non-degenerate means that Yf admits only transversal intersections with all
the torus orbits T · xσ, σ ∈ Σ .

2. A duality between framed toric varieties

Let us start the present section by introducing the main character of this
paper.
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Definition 2.1 (Framed toric variety (ftv)). A framed toric variety is
a couple (X,D) where:

• X is a complete toric variety, with dim(X) = n and rk(Pic(X)) = r,

• D =
∑

ρ∈Σ(1) aρDρ =
∑m

i=1 aiDi ∈ WT (X), withm = n+ r, is a strictly
effective (that is ai > 0, for every i), torus invariant Weil divisor, called
a framing of X.

A morphism of framed toric varieties f : (X,D) −→ (X ′, D′) is a morphism
of underlying toric varieties f : X −→ X ′ inducing a well defined pull-back
morphism on torus invariant Weil divisors f∗ : WT (X

′) −→ WT (X) such
that f∗D′ = D. If f is an isomorphism of toric varieties, then it gives an
isomorphism of framed toric varieties f : (X,D) ∼= (X ′, D′) . This construc-
tion defines a category ftv of framed toric varieties.

2.1. Framed duality

Given a ftv Ñ
X(Σ), Da =

∑

ρ∈Σ(1)

aρDρ

é
=: (X,a)

consider the polytope associated with Da

(12) ∆a := ∆Da
= {m ∈MR |V T ·m ≥ −a}

being V a fan matrix of X . Since Da is strictly effective, that is −a < 0 ,
certainly 0 ∈ Int∆a, meaning that 0 ∈ Int(k∆a), for any positive integer
k ∈ N.

On the other hand, define the integer part of a polytope ∆ ⊆MR as

[∆] := Conv({m ∈M ∩∆})

Clearly, if ∆ is a lattice polytope then [∆] = ∆ .

Definition 2.2 (f-polytope). The framing polytope (f -polytope) of a ftv
(X,a) is the lattice polytope ∆(X,a) ⊆MR so defined:

(13) ∆(X,a) := [k0∆a] , k0 := min{k ∈ N |0 ∈ Int[k∆a]}

Remark 2.3. For what observed above, k0 is well defined. Notice that
k0 may be bigger than 1 : in fact it may happen that 0 is not an interior
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point of the integer part [∆a] , as the following Example 2.4 shows. On the
other hand k0 = 1 when ∆a is a lattice polytope: in this case ∆(X,a) = ∆a .
The geometric importance of having 0 as an interior point of the framing
polytope Int∆(X,a) is explained in the next Remark 2.11.

Example 2.4. Consider the ftv given by (X,a) = (P(1, 2, 5), (2, 1, 1)). Then

∆a = Conv

Å
−2 −2 7
3/2 3/5 −3

ã
=⇒ [∆a] = Conv

Å
−1 −2 2 7
1 1 −1 −3

ã

Then 0 ̸∈ Int[∆a]. But 0 ∈ Int[2∆a], so giving k0 = 2 in the previous Defi-
nition 2.2.

Remark 2.5. Notice that, given a complete toric variety X there can be
different choices of the framing a giving the same framing polytope ∆(X,a),
as shown by the following Example 2.6. Anyway, only one of these choices
can give rise to an involutive duality, that is, a calibrated f -process, as shown
by Example 2.19.

Example 2.6. Consider the fan matrix V =

Å
5 −2 −1
−2 5 −1

ã
. There is

a unique simplicial and complete fan in SF(V ) giving rise to the Q-factorial
complete toric varietyX described by the quotient of the weighted projective
space P(1, 1, 3) by the following action of Z/7Z

(14) Z/7Z× P(1, 1, 3) ∋ (ε, [x1 : x2 : x3]) 7→ [µx1 : x2 : µ
−1x3] ∈ P(1, 1, 3)

where µ = exp(2επi/7) (see also the next Lemma 5.2). Then consider the two
framing given by a = (3, 3, 1) and a′ = (4, 4, 1). The associated polytopes are
given by

∆a = Conv

Å
8/7 −1 −1/7
−1/7 −1 8/7

ã
,

∆a′ = Conv

Å
9/7 −4/3 −2/7
−2/7 −4/3 9/7

ã

Then

∆(X,a) = [∆a] = Conv

Å
1 0 −1
0 1 −1

ã
= [∆a′ ] = ∆(X,a′)
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Remark 2.7. Assume a = 1, that is Da = −KX is the anti-canonical divi-
sor of the complete toric variety X. Then, if ∆1 is a reflexive polytope, the
above construction gives

∆(X,a) = ∆a = ∆1 = ∆−KX

2.1.1. The f-dual ftv and its small Q-factorial resolutions. Asso-
ciated with the construction of the lattice polytope ∆(X,a) there is the
complete toric variety

Xa := X∆(X,a)

given by the fan Σa := Σ∆(X,a) over the lattice polytope ∆(X,a) . Let Λa be
the fan matrix of Xa constructed in Proposition 1.4: it is a n×m′ integer
matrix. Given a fan matrix V of X, which is a n×m integer matrix, define

Ma := V T · Λa ∈ M(m×m′;Z)

Let b = (bj)
m′

j=1 be the minimum strictly positive column vector such that

(15) MT
a +B ≥ 0 where B := (b · · · b )︸ ︷︷ ︸

m times

∈ M(m′ ×m;N)

Definition 2.8. CallingD′
b :=

∑m′

j=1 bjD
′
j , whereD

′
1, . . . , D

′
m′ are the torus

invariant prime divisors generating WT (Xa) , then (Xa,b) := (Xa, D
′
b) is a

ftv, called the framed dual (f -dual) of (X,a).

Remark 2.9. Recalling previous Remarks 1.5 and 2.20, if a = 1 and ∆1 is
a reflexive polytope, then f -duality is Batyrev’s duality between Fano toric
varieties, as defined in [4].

Example 2.10 (Example 2.6 continued). Consider the two ftv (X,a)
and (X,a′) given in Example 2.6. They admit the same framing polytope
∆(X,a) = ∆(X,a′), that is, the same f -dual ftv (Xa,b) = (Xa′ ,b) with
Xa = Xa′ = P2 and b = (2, 2, 3) determined by condition (15), as

MT
a = ΛTa · V =

Ñ
1 0
0 1
−1 −1

é
·

Å
5 −2 −1
−2 5 −1

ã
=

Ñ
5 −2 −1
−2 5 −1
−3 −3 2

é

Anyway, next Example 2.19 will show that only one of the two choices a and
a′ gives actually rise to an involutive duality between framed toric varieties.
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Remark 2.11. Hypothesis of strict effectiveness, given in Definition 2.1 for
a framing a, is needed to get 0 as an interior point of ∆(X,a) and, conse-
quently, completeness of the f -dual toric variety Xa (recall Proposition 1.4).
Dropping that hypothesis leads to an asymmetric duality, as Xa can no more
be complete: this fact is quite reminiscent of the Givental’s LG mirror model
construction [29]. We will discuss this aspect in §7.1, introducing the con-
cept of a weak framing. In a sense, dropping strict effectiveness is the key to
understand when to look for a LG mirror model rather than for a complete
mirror partner.

The following statement is a direct application of the Propostion 1.8.

Corollary 2.12. For every fan Ξ ∈ SF(Λa) such that Ξ refines Σa there is
a well defined birational morphism φ : Y (Ξ) −→ Xa which is a Q-factorial
small resolution. In particular, for any such Ξ, (Y (Ξ), φ∗D′

b) is a Q-factorial
ftv.

2.1.2. f-process as double f-duality. By definition, we call f -process
the double application of f -duality. This gives rise to a ftv (Xb, c) := (Xb, D

′′
c)

where:

• calling

∆b = {n ∈ NR |ΛTa · n ≥ −b}(16)

= {n ∈ NR | ∀ 1 ≤ j ≤ m′ ⟨n,λj⟩ ≥ −bj}

Xb is the complete toric variety associated with the fan Σb := Σ∆(Xa,b)

over the lattice polytope

(17) ∆(Xa,b) := [k1∆b] ⊆ NR , k1 := min{k ∈ N |0 ∈ Int[k∆b]}

• D′′
c =

∑m′′

l=1 clD
′′
l , where D′′

1 , . . . , D
′′
m′′ are the torus invariant prime

divisors generating WT (Xb) and c = (cl)
m′′

l=1 is the minimum strictly
positive column vector such that

MT
a,b + C ≥ 0 , where Ma,b := ΛTa · Λb ,(18)

C := ( c · · · c )︸ ︷︷ ︸
m′ times

∈ M(m′′ ×m′;N)

being Λb the fan matrix of Xb, defined by the primitive generators
associated with the vertices of ∆b, as in Proposition 1.4.
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Remark 2.13. Let ∇ := Conv(V ) = Conv({v1, . . . ,vm}) be the lattice
polytope associated with the fan matrix V = (v1 · · · vm) of X. Then

(19) ∇ ⊆ [∆b] ⊆ ∆(Xa,b)

as, for any column vi of V , relation (15) gives that

ΛTa · vi ≥ −b
(16)
=⇒ vi ∈ ∆b ∩N ⊆ [∆b]

Definition 2.14 (Calibrated f-process). A f -process

(20) (X,a)
f−dual
⇝ (Xa,b)

f−dual
⇝ (Xb, c)

is called calibrated if there exist Ξ ∈ SF(V ) and Ξ′ ∈ SF(Λb), refining Σ

and Σb, respectively, and an isomorphism of toric varieties f : Y (Ξ)
∼=

−→
Y ′(Ξ′) such that, calling φ : Y (Ξ) −→ X(Σ) and φ′ : Y ′(Ξ′) −→ Xb(Σb) the
Q-factorial resolutions associated with the choice of Ξ and Ξ′, respectively,
one has

φ∗Da = (φ′ ◦ f)∗D′′
c

In particular, there is an induced birational isomorphism in codimension 1,
say f̌ : X 99K Xb , fitting in the following commutative diagram

Y

ϕ

��

f

∼=
// Y ′

ϕ′

��
X

f̌ // Xb

Remark 2.15. Notice that, in the notation of the previous Definition 2.14,
both (Y, φ∗Da) and (Y ′, (φ′)∗D′′

c) are still framed toric varieties. In fact, the
birational transform φ∗Da =

∑
i aiφ

∗Di is still a strictly effective divisor, as

WT (Y ) =

n+r⊕

i=1

Z · φ∗(Di)

being φ a small birational contraction. Analogously for (Y ′, (φ′)∗D′′
c).

Consequently, the condition of being calibrated can be restated by asking

that f : (Y, φ∗Da)
∼=

−→ (Y ′, (φ′)∗D′′
c) is a ftv isomorphism.

Example 2.16. To fix ideas, consider the following example, that will be
a running example throughout the present paper. Actually, it is the easiest
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case of the big class of framing given by projective hypersurfaces of general
type, extensively studied in the next §5.

Consider the ftv (X,a) = (P2, (1, 1, 2)). A fan matrix of X is given by

V =

Å
1 0 −1
0 1 −1

ã

Consequently, the polytope ∆a = ∆Da
is given by

∆a = Conv(Λa) , with Λa =

Å
3 −1 −1
−1 3 −1

ã

(see Fig. 1). Xa is the unique complete and Q-factorial toric variety whose
fan matrix is given by Λa. It is a quotient of the weighted projective space
P(a) = P(1, 1, 2) by the action of Z/4Z given by sending

(21) Z/4Z× P(1, 1, 2) ∋ (ε, [x1 : x2 : x3]) 7→ [µx1 : x2 : µ
−1x3] ∈ P(1, 1, 2)

being µ = exp(επi/2) (see also the next Lemma 5.2). Dually, observing that

ΛTa · V =

Ñ
3 −1 −2
−1 3 −2
−1 −1 2

é

the framing of Xa is given by the minimum positive vector b such that

ΛTa · V +
(
b b b

)
≥ 0 =⇒ b =

Ñ
2
2
1

é

Then

∆b = Conv

Å
5/4 −1/4 −1
−1/4 5/4 −1

ã
=⇒ [∆b] = Conv(V )

so giving that the f -process (X,a)↭ (Xa,b) is calibrated.

The following result gives an algebraic criterion to having a calibrated
f -process. Theorem 3.15 will give a more geometric version of this criterion,
in terms of Krawitz duality of the associated Landau-Ginzburg models.

Theorem 2.17. Let V = (v1 · · · vm) , Λa = (λ1 · · · λm′) and Λb be the
fan matrices of X , Xa and Xb , respectively, constructed above. Then, up
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Figure 1: Example 2.16: polytopes ∆a ⊂MR and [∆b] ⊆ ∆b ⊂ NR.

to identifying lattices M (hence N) of X and Xb, the f -process (20) is
calibrated if and only if

V = Λb (up to a permutation of columns)(22)

min
1≤j≤m′

⟨vi,λj⟩ = −ai (for all i with 1 ≤ i ≤ m )

In particular, recalling (13) and (17), k0 = 1 = k1, that is,

∆(X,a) = [∆a] and ∆(Xa,b) = [∆b]

Proof. If (20) is a calibrated f -process then there exist Ξ ∈ SF(V ) and
Ξ′ ∈ SF(Λb), refining Σ and Σb, respectively, and a ftv isomorphism

f : (Y (Ξ), φ∗Da)
∼=

−→ (Y ′(Ξ′), (φ′)∗D′′
c)

as described in Definition 2.14. In particular, this means that Y and Y ′

admit equivalent fan matrices, as defined in relation (2), that is

(23) ∃A ∈ GL(n,Z) , ∃B ∈ Sm ≤ GL(m,Z) Λb = A · V ·B

Thereforem′′ = m and inclusion (19) implies that 0 ∈ Int[∆b]. Hence, k1 = 1
in (17) and ∆(Xa,b) = [∆b]. Calling M and M ′ the characters’ lattices of
acting tori on Y and Y ′, respectively, and recalling Proposition 1.8, condi-
tion (23) comes from the following commutative diagram between associated



✐

✐

“9-Rossi” — 2023/3/24 — 1:54 — page 1473 — #25
✐

✐

✐

✐

✐

✐

Extended duality of toric varieties and Mirror Symmetry 1473

divisorial short exact sequences

(24) 0 //M
div

V T
// WT (Y )

(f∗)−1BT

��

// Cl(Y )

(f
∗

)−1

��

// 0

0 //M ′

AT

OO

div

ΛT
b

// WT (Y
′) // Cl(Y ′) // 0

This actually means that, up to a change of bases in M and M ′, matrices
A,B in (23) and (24) can be chosen as A = In and B = Im, so that Λb = V .
Therefore, via f, φ, φ′ lattices N andM of X,Y, Y ′ and Xb can be identified
as above, so giving an identification

(25) WT (X) ∼= WT (Y ) ∼= WT (Y
′) ∼= WT (Xb)

under which, generators Di are identified with generators D′′
i , and the ftv

isomorphism f gives a = c. Definition (18) of c with V = Λb imply that

(26) ∀ 1 ≤ i ≤ m ai = ci = max
(
{1} ∪ {−⟨vi,λj⟩ | 1 ≤ j ≤ m′}

)

Since Λa is a reduced F -matrix, Proposition 1.4 gives that

0 ∈ Conv(Λa) =⇒ 0 =

m′∑

j=1

xjλj with xj ≥ 0 and
∑

j

xj = 1

=⇒ ∀ i 0 =
∑

j

xj⟨vi,λj⟩

=⇒ ∀ i ∃ j : ⟨vi,λj⟩ < 0

=⇒ ∀ i max
(
{−⟨vi,λj⟩ | 1 ≤ j ≤ m′}

)
≥ 1

=⇒ ∀ i − ai = min
(
{⟨vi,λj⟩ | 1 ≤ j ≤ m′}

)

For the converse, assume Λb = V , up to a permutation of columns. Then
SF(V ) = SF(Λb) and, for any choice Ξ ∈ SF(V ) there exists Ξ′ ∈ SF(Λb)
and an isomorphism of toric varieties f : Y (Ξ) ∼= Y ′(Ξ′) . We can then iden-
tify lattices N and M of Y and Y ′ . Moreover, via the Q-factorial small
resolutions φ : Y −→ X , φ′ : Y ′ −→ Xb, we can also identify lattices N and
M of X,Y, Y ′ and Xb, as above, so getting identifications (25) for torus
invariant Weil divisors. Then, the f -process (20) is calibrated if a = c . The
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latter is guaranteed by the second condition in (22), as

(27) ∀ 1 ≤ i ≤ m − ci := min
j

⟨vi,λj⟩ = −ai =⇒ c = a

Reasoning as above, one then has k1 = 1.
Moreover, still recalling Proposition 1.4, relations (26),(27) give

0 ∈ Int(Conv(Λa)) ⊆ {m ∈MR |V T ·m ≥ −a} = ∆a =⇒ k0 = 1

□

Corollary 2.18. Assume ∆a be a lattice polytope with primitive vertices,
that is

∆a = Conv(Λa)

Then the f -process (20) is calibrated if and only if V = Λb, up to an identi-
fication of lattices M (hence N) of X and Xb and a permutation of columns.

Proof. In fact, the second condition in (22), in Theorem 2.17, is immediately
attained, as columns Λa are given by vertices of ∆a . □

Example 2.19 (Examples 2.6 and 2.10 continued). Consider the two
ftv (X,a) and (X,a′) admitting the same f -dual ftv (P2, (2, 2, 3)). Notice
that the polytope associated with b = (2, 2, 3) on P2 is given by

∆b = Conv

Å
5 −2 −2
−2 5 −2

ã
=⇒ Λb =

Å
5 −2 −1
−2 5 −1

ã
= V

Then

MT
a′,b =MT

a,b = V T · Λa =MT
a =⇒ c = (3, 3, 1)

ß
= a
̸= a′

This means that the f -process (X, (3, 3, 1))
f−dual
↭

(
P3, (2, 2, 3)

)
is calibrated,

on the contrary of the f -process (X, (4, 4, 1))
f−dual
⇝

(
P3, (2, 2, 3)

) f−dual
⇝

(X, (3, 3, 1)) .

By the previous results, a calibrated f -process is the key ingredient to
introduce an involutive duality between framed toric varieties, largely ex-
tending the classical Batyrev duality between Fano toric varieties: in fact
the latter can be thought of the particular case of an f -duality associated
with an ample anti-canonical framing (see the following 3.1).
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Remark 2.20. Although the expectation would be that, in general, a com-
plete toric variety should admit a sufficiently positive line bundle with a
strictly effective section giving rise to a calibrated f -duality, it is not true
that every sufficiently positive line bundle on a complete toric variety ad-
mits a section whose associated f -process is calibrated, neither for the anti-
canonical one, as the following example shows.

Example 2.21. Let X be the Q-factorial complete toric surface of Picard
number 2 given by the unique fan in SF(V ) with

V :=

Å
1 2 0 −1
0 3 1 −2

ã

X is a Q-Fano projective surface. The reader can check that the anti-
canonical line bundle ω−1

X does not admit any section giving rise to a cali-
brated f -process. This fact still holds for the ample multiple ω−3

X . Neverthe-
less, the framing a := (3, 3, 3, 2) gives rise to a calibrated f -process

(X,a)↭ (Xa,b)

where Xa is the Q-factorial complete toric variety given by the unique fan
in SF(Λa) and

Λa :=

Å
−1 −3 −3 8 1
1 2 1 −3 −1

ã
, b := (1, 3, 3, 3, 1)

3. A duality between hypersurfaces in toric varieties

Consider the general setting presented in § 2 and an hypersurface Y in a
complete toric variety X. Assume that:

1) there exists a divisor Da ∈ WT (X) such that Y is a generic element in
the linear system |Da| := d−1 ([Da]) , where d is the class morphism in
(9),

2) (X,Da) is a ftv satisfying conditions (22) in Theorem 2.17 , that is the
f -process

(X,a)
f−dual
⇝ (Xa,b)

f−dual
⇝ (Xb, c)

is calibrated.

Definition 3.1. A generic element Y ∨ ∈ |D′
b| := d−1 ([D′

b]) is called a f -
mirror partner of Y ∈ |Da|.
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Remark 3.2. One can explicitly describe the defining polynomials of both
Y and Y ∨ in the Cox rings of X and Xa, respectively. Namely:

(a) the polytope ∆(X,a) is the Newton polytope of Y ∈ |Da|; call Λa a
matrix whose columns are given by all the lattice points in ∆(X,a): it
is well defined up to a permutation of columns; setting l := |∆(X,a) ∩
M |, then Λa is a n× l integer matrix; define

Ma := V T · Λa and A := (a · · · a )︸ ︷︷ ︸
l times

∈ M(m× l;N) ;

then the polynomial of Y is given by

(28) f =

l∑

j=1

cjx
mj ∈ Cox(X) ∼= C[x1, . . . , xm]

wheremj = (mi,j) is the j-th column ofMa+A and xmj :=
∏m
i=1 x

mi,j

i ;

(b) the polytope ∆(Xa,b) is the Newton polytope of Y ∨ ∈ |D′
b|; call Λb a

matrix whose columns are given by all the lattice points in ∆(Xa,b);
setting l′ := |∆(Xa,b) ∩N |, then Λb is a n× l′ integer matrix; define

Ma,b := ΛTa · Λb and B := (b · · · b )︸ ︷︷ ︸
l′ times

∈ M(m′ × l′;N) ;

then the polynomial of Y ∨ is given by

(29) f∨ =

l∑

j=1

cjx
nj ∈ Cox(Xa) ∼= C[x1, . . . , xm′ ]

where nj = (ni,j) is the j-th column ofMa,b+B and xnj :=
∏m′

i=1 x
ni,j
i .

Notice that both f and f∨ are homogeneous polynomials, with respect to
degrees induced by class groups. In fact, columns of both Ma and Ma,b

determine trivial divisors, up to linear equivalence. Then

deg(f) = [Da] ∈ Cl(X) and deg(f∨) = [D′
b] ∈ Cl(Xa)

Remark 3.3. Given a ftv (X,Da), the divisor Da is not necessarily semi-
ample. Anyway, if (X,Da) admits a calibrated f -process then it can be

shown that there exists a small partial resolution ϕ : “X −→ X such that the
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pulled back framing ϕ∗(Da) is semi-ample and, moreover, it admits a positive

multiple hϕ∗(Da) which is an ample divisor, showing that “X is projective.
A detailed proof of this fact will be given in the forthcoming paper [46] in
the more general context of toric complete intersections.

Example 3.4 (Example 2.16 continued). Let us consider the calibrated
f -process described in Example 2.16. As explained in Remark 3.2

V T · Λa +A =

Ñ
0 1 0 2 1 0 3 2 1 0 4 3 2 1 0
4 3 3 2 2 2 1 1 1 1 0 0 0 0 0
0 0 1 0 1 2 0 1 2 3 0 1 2 3 4

é

and the family Ya of plane quartics has general element given by the zero-
locus of the polynomial

fa = c1x
4
2 + c2x1x3 + c3x

3
2x3 + c4x

2
1x

2
2 + c5x1x

2
2x3

c6x
2
2x

2
3 + c7x

3
1x2 + c8x

2
1x2x3 + c9x1x2x

2
3 + c10x2x

3
3

+c11x
4
1 + c12x

3
1x3 + c13x

2
1x

2
3 + c14x1x

3
3 + c15x

4
3

Dually

ΛTa · V +B =

Ñ
1 5 2 0
5 1 2 0
0 0 1 3

é

meaning that the general element of the dual family Yb of Ya is a quotient,
by the Z/4Z-action described in (21), of the zero-locus in P(1, 1, 2) of the
weighted homogeneous polynomial

fb = c1x1x
5
2 + c2x

5
1x2 + c3x

2
1x

2
2x3 + c4x

3
3

3.1. Generalizing Batyrev’s duality

Definition 3.1 is clearly motivated by the case when X is a Fano toric variety
and a = 1, that is Da = −KX . In fact, recalling Remark 2.9, in this case f -
duality gives precisely the Batyrev’s polar duality, inducing the well known
mirror symmetry Y ↭ Y ∨, being Y and Y ∨ both Calabi-Yau varieties, up
to suitable crepant resolutions of singularities.

3.2. Topological mirror test and Hodge diamond symmetry

Let Y be a generic hypersurface in a toric variety X of degree [Da] ∈ Cl(X).
If Y is quasi-smooth and X is Q-factorial and complete, then there is a well



✐

✐

“9-Rossi” — 2023/3/24 — 1:54 — page 1478 — #30
✐

✐

✐

✐

✐

✐

1478 Michele Rossi

defined concept of (coarse) moduli space MY (see e.g. [7, §13] and the recent
[14]). In this case, define mY to be the dimension of the tangent space to
MY at [Y ]. By [7, Prop. 13.7] one has

mY = dimP
(
H0(X,OX(Da)

)
− dim (Aut(X))

For a Q-factorial and complete toric variety X, Aut(X) is an affine algebraic
group of dimension

(30) dim(Aut(X)) = dim(X) +
∑

Θ

l∗(Θ)

where Θ ranges on the facets of the anti-canonical polytope ∆−KX = ∆1

[19, Prop. 3.6.1 and 3.6.2]2, [18, §4] and l∗(Θ) denotes the number of lattice
points in the relative interior of the polytope Θ. Moreover,

(31) h0(X,OX(Da)) = l(∆a)

so giving

(32) mY = l(∆a)− 1− n−
∑

Θ<1∆−KX

l∗(Θ)

Unfortunately, conditions (1) and (2) opening the present §3 are not suffi-
cient to guaranteeing quasi-smoothness neither of Y nor of a f -mirror Y ∨

of Y . Therefore, in the following, numbers mY and mY ∨ of complex moduli
of Y and Y ∨, respectively, will be combinatorially defined as the right term
in (32). Namely

mY := l(∆a)− 1− n−
∑

Θ<1∆−KX

l∗(Θ)

mY ∨ := l(∆b)− 1− n−
∑

Θ<1∆−K
Xa

l∗(Θ)(33)

On the other hand, given a suitable resolution “Y −→ Y , it is well defined
the Kähler moduli space of “Y as the quotient of the complexified Kähler cone

2Actually in [19, Prop. 3.6.2] authors assume X to be Gorenstein. Under this
assumption ∆−KX

is a lattice polytope, making easier to understand relation (30).
Anyway, by the previous result stated in [19, Prop. 3.6.1], the Gorenstein assump-
tion may be dropped in getting (30).
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under the action of the automorphism group Aut(“Y ) [19, §6.2]. Define

k“Y be the dimension of the Kähler moduli space of “Y

also called the number of Kähler moduli of “Y . If “Y is a smooth hypersurface
in a complete toric variety then, by the weak Lefschetz Theorem, its Kähler
cone, that is Nef(“Y ), has dimension given by h1,1(“Y ), and Aut(“Y ) turns
out to acting as a finite group (apply an argument similar to that given
in [19, §6.2.3], there proposed for a Calabi-Yau toric hypersurface), so that

k“Y = h1,1(“Y ).

Definition 3.5. Assume n = dimX ≥ 4. Then we will say that:

(i) the ordered couple (Y, Y ∨) satisfies the A-side topological mirror test

if there exists a (partial) resolution of singularities “Y −→ Y such that
“Y is (quasi-)smooth and

k“Y = mY ∨

In this case, we will also say that Y ∨ is an A-mirror of Y ;

(ii) the ordered couple (Y, Y ∨) satisfies the B-side topological mirror test

if there exists a (partial) resolutions of singularities “Y ∨ −→ Y ∨ such

that “Y ∨ is (quasi-)smooth and

k“Y ∨
= mY

Then, we will also say that Y ∨ is a B-mirror of Y ;

(iii) the ordered couple (Y, Y ∨) satisfies the Hodge diamond A-symmetry
if

h1(Ω̂“Y ) =: h1,1(“Y ) = hn−2,1(“Y ∨) := hn−2(Ω̂“Y )

where Ω̂ := i∗(Ω) is the sheaf of Zariski differentials and i is the inclu-
sion of the smooth locus;

(iv) the ordered couple (Y, Y ∨) satisfies the Hodge diamond B-symmetry
if

hn−2,1(“Y ) = h1,1(“Y ∨)

Moreover, if both (i) and (ii) are satisfied we will say that the f -mirror
partner Y ∨ of Y is actually a topological mirror partner of Y (and viceversa),
and if both (iii) and (iv) are satisfied we will say that the f -mirror partner
Y ∨ of Y is an Hodge mirror partner of Y (and viceversa).
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Remark 3.6. Again, the above nomenclature is clearly inspired by the
Calabi-Yau/Fano toric case for the toric hypersurface Y ⊂ X. The interested
reader is referred to [19, §6.1.2] and therein references, for a definition ofmY :
see in particular [19, Prop. 6.1.3]. Due to the well known Bogomolov-Tian-
Todorov-Ran Theorem and the Calabi-Yau condition, if Y is a Calabi-Yau
hypersurface in a Fano toric variety X, then

mY = h1(“Y , T“Y ) = h2,1(“Y )

meaning that, in the Calabi-Yau case, (i) ⇔ (iii) and (ii) ⇔ (iv) and being
a topological mirror partner is equivalent to being a Hodge mirror partner.

3.3. Mirror Web vs Mirror Symmetry

Let Y be a hypersurface in a toric varietyX, both satisfying above conditions
(1) and (2) opening the present §3. Notice that the divisor Da ∈ WT (X)
satisfying condition (1), may not be unique. Assume there exist two distinct
divisors Da1

∼ Da2
such that Y ∈ |Da1

| = |Da2
| and (X,Dai) is a ftv, for

both i = 1, 2. Then, f -duality may assign two distinct mirror partners Y ∨
i ∈

|D′
bi
|, i = 1, 2, which, a priori, may be even non-isomorphic: observe that, in

general, D′
b1
, D′

b2
are divisors living in distinct toric varieties Xa1

and Xa2
,

respectively.
Such a phenomenon does not occur in the Calabi-Yau/Fano toric case,

as there is a unique strictly effective divisor in the anti-canonical class of X,
given by D1 ∈ [−KX ]. In general, it makes then more sense to speak about a
concept of mirror web MW of toric hypersurfaces rather then about mirror
symmetry. More precisely:

• hypersurfaces connected by means of a calibrated f -process give rise
to what will be called the f -mirror web fMW,

• hypersurfaces of dimension ≥ 3 and connected by means of a calibrated
f -process originating a topological mirror pair, give rise to the sub-web
TMW ⊂ fMW,

• hypersurfaces of dimension ≥ 3 and connected by means of a calibrated
f -process originating a Hodge mirror pair, give rise to the sub-web
HMW ⊂ fMW.

For Calabi-Yau hypersurfaces HMW = TMW = fMW.
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Remark 3.7. A similar phenomenon of multiple mirror partners is not a
new one. As observed by Chiodo and Ruan [16, Rem. 1], examples of multiple
mirrors can be easily obtained in the context of Berglund-Hübsch-Kravitz
(BHK) duality between Calabi-Yau hypersurfaces of (suitable quotients of)
weighted projective spaces. But probably, the deepest known example of
multiple mirrors is the Rødland one [45], then further studied and gen-
eralized by Borisov, Caldărăru and Libgober [12],[13] and Kuznetsov [41].
Moreover, this fact is well known from the point of view of Homological
Mirror Symmetry, where the construction of Landau-Ginzburg (LG) mirror
models is not in general expected to producing unique mirror partners (see
e.g. considerations following Def. 2.2 in [37] and the next Example 8.4).

3.4. Generalizing Artebani-Comparin-Guilbot (ACG) duality

In [2] M. Artebani, P. Comparin and R. Guilbot presented a way of ex-
tending Batyrev’s duality of families of anti-canonical hypersurfaces in Fano
toric varieties, to suitable sub-families whose associated Newton polytope
is canonical, that is, a lattice sub-polytope of the anti-canonical polytope
admitting the origin as a unique interior point [2, §2]. As observed in §3.1,
f -duality is an extension of Batyrev’s duality. Then f -duality applies to give
an extension of ACG-duality beyond the realm of Calabi-Yau hypersurfaces.

Namely, set the following assumptions:

1) let (X,Da) be a ftv admitting a calibrated f -process,

2) let ∆ be a lattice sub-polytope of ∆(X,a) containing the origin as
an interior point: thinking of ∆ as a Newton polytope, it describes
a sub-family Y∆ ⊆ Ya of the family of hypersurfaces in X of degree
[Da] ∈ Cl(X);

3) consider the toric variety X∆, which is complete by Proposition 1.4,
and the framing Dv, assigned by the minimum strictly positive column
vector v such that

V T
∆ · V + (v · · · v )︸ ︷︷ ︸

m∆ times

≥ 0

where V and V∆ are fan matrices of X and X∆, respectively, and
m∆ = rkWT (X∆); assume the ftv (X∆, Dv) admitting a calibrated f -
process;



✐

✐

“9-Rossi” — 2023/3/24 — 1:54 — page 1482 — #34
✐

✐

✐

✐

✐

✐

1482 Michele Rossi

4) finally assume that ∆(Xa,b) = [∆b] (recall the last assertion in The-
orem 2.17) is a lattice sub-polytope of ∆(X∆,v) = [∆v], where

∆v := {n ∈ NR |V T
∆ · n ≥ −v}

Then, thinking of [∆b] as a Newton polytope, it describes a sub-family
Yb ⊆ Yv of the family of hypersurfaces in X∆ of degree [Dv] ∈ Cl(X∆) .

Definition 3.8. The family Yb is called a f -ACG dual family of the fam-
ily Y∆ .

Remarks 3.9. 1) By construction, Y∆ is a f -ACG dual family of Yb .

2) If ∆ = ∆a, then f -ACG duality reduces to f -duality exhibiting Yb as
a f -dual family of Ya.

3) If a = 1, that is Da = −KX , than b = 1, too, and (∆,∆a) turns out to
be a good pair in the sense of [2, Def.1.4]. In particular, assumptions
(1), (3) and (4) follow immediately, and f -ACG duality reduces to
giving just ACG duality between families Y∆ and Yb of Calabi-Yau
varieties [2, Thm. 1].

Example 3.10. To better understand the level of generalization introduced
by f -duality, the present example should be compared with [2, Ex. 3.3].

Consider the ftv (X,a) = (P2, (1, 1, 2)) given in Example 2.16 and no-
tation there introduced. We are then looking for a suitable sub-family of
plane quartics admitting a f -ACG dual family. Consider the sub-polytope
∆ ⊆ ∆a given by

∆ = Conv(V∆) , with V∆ =

Å
1 −1 1 −1
−1 1 1 −1

ã

One can then easily check that (see Fig. 2):

• as observed in Example 2.16, a f -dual ftv (Xa,b) of (X,a) is given by
choosing b := (2, 2, 1), where Xa is a quotient of the weighted projec-
tive space P(a) = P(1, 1, 2) by the action of Z/4Z described in (21);
in particular, the f -process (X,a)↭ (Xa,b) is calibrated, satisfying
assumption (1) above;

• clearly the origin of M is an interior point of ∆, so giving assumption
(2);
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Figure 2: Example 3.10: Newton polytopes ∆ ⊆ ∆a ⊂MR and [∆b] ⊆
[∆v] ⊂ NR. Notice that ∆b ⊈ ∆v.

• recalling Remark 3.2 and Example 3.4, and observing that

V T · V ∆ +A =

Ñ
2 1 0 2 1 0 2 1 0
2 2 2 1 1 1 0 0 0
0 1 2 1 2 3 2 3 4

é

the sub-family Y∆ ⊆ Ya of plane quartics has general element given
by the zero-locus of the polynomial

f∆ = c4x
2
1x

2
2 + c5x1x

2
2x3 + c6x

2
2x

2
3 + c8x

2
1x2x3

+c9x1x2x
2
3 + c10x2x

3
3 + c13x

2
1x

2
3 + c14x1x

3
3 + c15x

4
3

• the toric variety X∆, which is the unique complete and Q-factorial one,
whose fan matrix is given by V∆, is a quotient of P1 × P1 by the action
of Z/2Z defined by sending

(η, ([x1 : x2], [y1 : y2]) 7→ ([νx1 : ν
−1x2], [y1 : y2]) , where ν = exp(ηπi)

• observing that

V T
∆ · V =

Ü
1 −1 0
−1 1 0
1 1 −2
−1 −1 2

ê
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the framing v of X∆ is given by the minimum positive vector such that

V T
∆ · V +

(
v v v

)
≥ 0 =⇒ v =

Ü
1
1
2
1

ê

• lattice polytopes [∆b] and [∆v] are given by

[∆b] = Conv(V ) ⊆ [∆v] = Conv(Λv) , with Λv =

Å
1 −1 0 0 −1
0 0 1 −1 −1

ã

so guaranteeing assumption (4);

• assumption (3), that is, (X∆,v) is admitting a calibrated f -process, is
checked by observing that

ΛTv · V∆ =

à
1 −1 1 −1
−1 1 −1 1
−1 1 1 −1
1 −1 −1 1
0 0 −2 2

í

=⇒ w =

à
1
1
1
1
2

í

and noticing that

[∆w] = [{n ∈ NR |ΛTv · n ≥ −w}] = ∆

Therefore, there is a well defined f -ACG dual family Y∨
∆ = Y[∆b] of the

family Y∆, described by [∆b] as a Newton polytope of hypersurfaces inside
the family Yv of hypersurfaces of degree [Dv] ∈ Cl(X∆). Namely,

V T
∆ · V +

(
v v v v

)
=

Ü
0 2 1 1
2 0 1 1
3 3 2 0
0 0 1 3

ê

so giving that the general element of Y[∆b] is a quotient, by the Z/2Z-action
described above, of the zero-locus of the polynomial

f[∆b] = c1x
2
2y

3
1 + c2x

2
1y

3
1 + c3x1x2y

2
1y2 + c4x1x2y

3
2

Remark 3.11. Notice that, given assumptions from (1) to (4) above, it is
not true, in general, that ∆b is a sub-polytope of ∆v. In fact, in the previous
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Example 3.10

∆b = Conv

Å
5/4 −1/4 −1
−1/4 5/4 −1

ã
⊈ ∆v =

Å
1 0 −1/2 −3/2
0 1 −3/2 −1/2

ã

(see the right part of Fig. 2).

3.5. Generalizing Berglund-Hübsch-Krawitz (BHK) duality

In 1993, physicist Berglund and Hübsch [9] presented a first generalization of
the mirror symmetric Greene-Plesser construction [30]. Their construction
appeared just before the Batyrev’s one [4] and it is, in a sense, “orthogonal”
to the latter. The intersection between the two is just the Greene-Plesser ex-
ample of the quintic threefold. The Berglund-Hübsch construction was later
refined by Krawitz [40]. For this reason, it is often quoted as the Berglund-
Hübsch-Krawitz (BHK) duality. In [2, §4] Artebani, Comparin and Guilbot
showed how their new ACG-duality generalizes BHK-duality from Calabi-
Yau hypersurfaces of (a quotient of) a weighted projective space, whose
polynomial is of Delsarte type, that is, same number of monomials and vari-
ables, to Calabi-Yau hypersurfaces of (a quotient of) a Q-Fano toric variety
[2, §4.2] 3.

In the previous §3.4, we introduced the f -ACG duality, which is a gen-
eralization of ACG-duality to suitable subfamilies of hypersurfaces in toric
varieties. Clearly the same approach gives a generalization of BHK-duality,
which will be called f -BHK duality. Namely,

• if a lattice sub-polytope ∆ ⊆ [∆a] satisfies assumption from (1) to
(4) in §3.4, then sub-families Y∆(0) and Y∨

∆(0) = Y[∆b](0), generated by

vertices of the lattice polytopes ∆ and [∆b], respectively, will be called
f -BHK dual families.

Example 3.12. Consider the previous Example 3.10 and the sub-family
Y∆(0) ⊂ Y∆, whose general element is the zero-locus of the polynomial

f∆(0) = c4x
2
1x

2
2 + c6x

2
2x

2
3 + c13x

2
1x

2
3 + c15x

4
3

Then its f -BHK dual family is given by the sub-family Y[∆b](0) ⊂ Y[∆b],
whose general element is a quotient, by the Z/2Z-action described above, of

3Artebani, Comparin and Guilbot asked for Q-Fano toric varieties with torsion
free class group, when presenting their generalization. Actually this hypothesis is
unnecessary, as it was confirmed to me by Artebani (private communication).
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the zero-locus of the polynomial

f[∆b(0)] = c1x
2
2y

3
1 + c2x

2
1y

3
1 + c4x1x2y

3
2

Remark 3.13. In the previous Example 3.12, both f[∆b](0) and f∆(0) are
no more polynomials of Delsarte type. Notice that this fact may also occur
in the ACG generalization of BHK-duality (see [2, Ex. 4.12]).

3.6. Framed duality versus Krawitz duality

Given a pair of framed toric varieties linked by a calibrated f -process

(X,a)
f -process
↭ (Xa,b)

generic hypersurfaces Y ∈ |Da| and Y
∨ ∈ |Db| may be very singular, mak-

ing quite difficult finding suitable resolutions “Y and “Y ∨ and compute all the
needed Hodge numbers to check the various instances of mirror symmetry
as explained in §3.2. According with Chiodo and Ruan [16], it is generally
believed that considering suitably associated Landau-Ginzburg (LG) mod-
els may sensibly simplify singularities and giving rise to alternative way of
checking mirror symmetry.

In the present section, a sort of a LG/Hypersurface correspondence is
presented, as an extension of the LG/CY correspondence, studied by Chiodo
and Ruan [16], in the case of Delsarte Calabi-Yau hypersurfaces, and also
by Chiodo, Kalashnikov and Veniani in the recent [15], beyond the Calabi-
Yau setting. As it will be observed in the next §5, in the case of projective
hypersurfaces, the associated LG models turn out to be even smooth. A
similar LG/Hypersurface correspondence, translates the mirror duality at
a level of LG models. The latter has been described, for hypersurfaces of
Delsarte type in weighted projective spaces, by Krawitz [40] by means of an
extension of Berglund-Hübsch duality without any Calabi-Yau condition.
ACG extension of BHK-duality and, furthermore, considerations given in
the previous §3.4 and §3.5, allows us to think of f-duality in terms of a gen-
eralized Krawitz duality, as stated in the following Theorem 3.15, so getting
a geometric equivalent condition to the existence of a calibrated f -process.
Compare also with the more recent [34], where He, Si, Shen and Webb give
an interesting improvement of Krawitz duality.

3.6.1. A LG/Hypersurface correspondence. Given a ftv (X,a) and
a generic hypersurface Y ∈ |Da|, let T ∼= (C∗)n be the acting torus on X.
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Consider the torus hypersurface Z := T ∩ Y . Recalling Remark 3.2(a), Y is
the zero locus of the polynomial f in (28), generated by the columns of the
matrix Ma +A. Consider the Laurent polynomial

fa :=
f

xa
∈ C[x,x−1]

generated by the columns of the matrix Ma. Notice that, in T both f and
fa admit the same zero-locus Z, that is,

Z = T ∩ f−1(0) = T ∩ f−1
a (0)

In particular, fa defines a function fa : T −→ C, so giving a LG model (T, fa)
admitting a Laurent superpotential.

On the other hand, following Remark 3.2(b), let Ta
∼= (C∗)n be the act-

ing torus on Xa and Z∨ := Ta ∩ Y
∨. Consider the Laurent polynomial

f∨b :=
f∨

xb
∈ C[x,x−1]

where f∨ is the polynomial given in (29), generated by the columns of the
matrix Ma,b +B . In particular, f∨b defines a function f∨b : Ta −→ C, so
giving a LG model (Ta, f

∨
b ) with a Laurent superpotential.

Definition 3.14 (K-duality of Laurent LG models). Let (T, f) and
(T′, f ′) be two Laurent LG models, that is, T and T′ are algebraic tori and
f, f ′ Laurent superpotentials. Then they are said Krawitz dual (K-dual) if

MT =M ′ (up to a permutation of columns)

being M,M ′ vertex matrices of the Newton polytopes of f and f ′, respec-
tively, defined up to a permutation on vertices.

Theorem 3.15. If a ftv (X,a) admits a calibrated f -process

(X,a)↭ (Xa,b)

then the associated Landau-Ginzburg models (T, fa) and (Ta, f
∨
b ) are K-dual,

that is,

(34) Ma,b =MT
a
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This gives rise to the following commutative diagram of LG/Hypersurfaces
correspondences and mirror dualities

YOO

LG/Hyp

��

oo f-MS // Y ∨
OO

LG/Hyp

��
(T, fa) oo

K-duality // (Ta, f
∨
b )

Viceversa, if condition (34) and the second condition displayed in (22) are
satisfied then one gets a calibrated f -process.

Proof. Assume, at first, that (X,a) admits a calibrated f -process. Then,
Theorem 2.17 implies that one can assume Λb = V , up to a change of gene-
rators in lattices M and a permutation of columns. Then

Ma,b = ΛTa · Λb = ΛTa · V =MT
a

On the other hand, assume Ma,b =MT
a , with

Ma = V T · Λa , Ma,b = ΛTa · Λb

being V,Λa,Λb be fan matrices of X,Xa,Xb, respectively. Then

(35) ΛTa · V = ΛTa · Λb

Being Λa a fan matrix, there exist two invertible matrices A and U such
that

ΛTa = Λ̂Ta ·A , Λ̂Ta = U ·

Å
In
0

ã

[50, Prop. 3.1(3), Prop. 2.6(2)]. Then, multiplying on the left equation (35)
by U−1, one gets

Å
In
0

ã
·A · V =

Å
In
0

ã
·A · Λb ⇐⇒ A · V = A · Λb

Multiplying the latter on the left by A−1, one finally gets V = Λb. Then
Xb = X and, calling c the f-dual framing of (Xa,b) on the f-dual toric variety
Xb, one gets c = a by the same argument given in (27). Then (Xb, c) =
(X,a), so proving that (X,a) admits a calibrated f -process. □

Remark 3.16. Example 2.19 shows that the second condition displayed in
(22) is needed to get the necessary condition in Theorem 3.15.
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Remark 3.17. The previous Theorem 3.15 leads to an alternative conjec-
tural approach, of checking mirror symmetry for an f -mirror pair (Y, Y ∨),
following the lines described in [16]. Namely, Krawitz established a Mir-
ror Theorem for LG models corresponding to quasi-homogeneous and non-
degenerate weighted hypersurfaces defined by Delsarte polynomials and
linked by Berglund-Hübsch duality [40, Thm. 1.1]: the Krawitz mirror map
is constructed by means of a bi-graded isomorphism between suitable graded
vector spaces associated with the involved superpotentials. See also [34] for
an interesting improvement of this Mirror Theorem for LG models. Then,
Chiodo and Ruan proved, under the further Calabi-Yau condition, that those
graded vector spaces are related with the cohomology of suitable resolutions
“Y and “Y ∨ of Y and Y ∨, respectively [16, Thm. 16, Cor. 17]. Superpoten-
tials involved in the statement of Theorem 3.15, can be assumed quasi-
homogeneous, by considering f and f∨ rather than fa and f∨b , respectively.
But in general they cannot be assumed neither non-degenerate nor Delsarte,
so imposing a deep revision of the Krawitz construction. Moreover, the lack
of any CY condition imposes a deeper understanding of relations between
Chen-Ruan cohomology and the usual cohomology of Y and Y ∨ (in this
sense, consider also [15], for a slight relaxation of the CY condition).

3.7. KKP-compactification of associated LG models and log
geometry

Landau-Ginzburg models associated with an f -mirror pair (Y, Y ∨) as in
§3.6.1, admit a compactification in the sense of Katzarkov-Kontsevich-Pantev
[38, Def. 2.4], exhibiting a log geometry which is that of a log Calabi-Yau de-
fined by Gross and Siebert [33, Def. 1.10], where the simple normal crossings
divisor D is replaced by the framing of the considered ftv.

Namely, under notation introduced in the previous §3.6.1, K-dual su-
perpotential functions fa : T −→ C and f∨b : Ta −→ C admit the following
properifications

T

fa
��

� � // X

f
a
:=[f :xa]

��
C � � // P1

oo K-duality //

Ta

f∨

b

��

� � // Xa

f
∨

b
:=[f∨:xb]

��
C � � // P1

Notice that:

1) f
−1
a ([0 : 1]) = Y ⊂ X and f

−1
a ([1 : 0]) = Da ⊂ X



✐

✐

“9-Rossi” — 2023/3/24 — 1:54 — page 1490 — #42
✐

✐

✐

✐

✐

✐

1490 Michele Rossi

2) (f
∨
b)

−1([0 : 1]) = Y ∨ ⊂ Xa and (f
∨
b)

−1([1 : 0]) = D′
b ⊂ Xa

3) families Ya = {Y ∈ |Da|} and Y∨
b = {Y ∨ ∈ |D′

b|} give rise to corre-
sponding families of LG models {(T, fa)} and {(Ta, f

∨
b )}, respectively,

whose variation turns out to be “anchored at infinity” by their fram-
ing; when (suitable resolutions of) Y and Y ∨ are Calabi-Yau varieties,
then these families of LG models are precisely those considered in [38],
meaning that, in this case, their spaces of “anchored” versal deforma-
tions are smooth [38, Thm. A];

4) recalling the Gross-Siebert definition of a log Calabi-Yau pair [33,
Def. 1.10], one has

KX +Da ∼ Da−1 and KXa
+D′

b ∼ Db−1

so giving effective divisors supported on
⋃
iDi and

⋃
j D

′
j , respectively;

by this point of view, framed toric varieties (X,a) and (Xa,b) may be
understood as log pairs, no more Calabi-Yau as Da and D′

b have only
normal crossings; this gives an hint about how thinking of the f -duality
in the context of Intrinsic Mirror Symmetry [33].

4. Framing Pn and associated dual partners

A projective space Pn is a smooth and complete toric variety associated with
the fan matrix

(36) V =
(
In | −1

)
=
(
e1 · · · en −1

)
∈ M(n, n+ 1;Z)

and the unique fan Σ ∈ SF(V ), given by all the faces of the n+ 1, maximal,
n-dimensional cones, generated by every choice of n columns of V . For this
complete toric variety, it turns out that condition (22) in Theorem 2.17
is satisfied for a sufficiently large number of framings: this is the content
of the following result. Notice that the following construction depends on
the divisor chosen as a framing, that is, a selected section of a line bundle,
and not on the line bundle itself, just as the Greene-Plesser and, more in
general, the Berglund-Hübsch duality. In fact, the reader can check that
different choices of sections in the same line bundle can give rise to opposite
phenomena: e.g. for projective plane sixtics, the ftv (P2, (1, 1, 4)) admits a
calibrated process, as explained in the next theorem, but the ftv (P2, (2, 2, 2))
does not.
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Theorem 4.1. Let Da =
∑n+1

i=0 aiDi be a strictly effective divisor of Pn.
Then (Pn, Da) is a ftv.
For every i = 1, . . . , n+ 1 , define di := gcd({aj | j ̸= i}) and assume that

(37) a1 ≤ a2 ≤ · · · ≤ an+1 and gcd(a1, . . . , an+1) = 1

Let ∇′ ⊂ NR
∼= Rn be the polytope given by the convex hull of suitable mul-

tiples of the standard basis, as follows

∇′ = Conv

Å
0, e1,

an
an−1

e2, . . . ,
an
a1

en

ã
(notation as in (36) )

Then, the f -process associated with the ftv (Pn, Da) is calibrated if and only
if the following conditions hold:

(a) Conv(∇′ ∩N) = Conv
Ä
{0} ∪

¶î
an

an−i+1

ó
ei | ∀ 1 ≤ i ≤ n

©ä
,

(b) ∃ i, j ∈ {1, . . . , n+ 1} : i ̸= j , di = dj = 1 .

In this case, the associated f -dual ftv is given by (Xa, D
′
b) with

Xa
∼= P(q)/Ga where q is the reduced weight vector of a

D′
b =

n+1∑

i=1

biD
′
i where bi =

ß
an+1/di for i ≤ n
an/dn+1 for i = n+ 1

being D′
1, . . . , D

′
n+1 the torus invariant prime divisors generating WT (Xa)

and Ga a finite abelian group of order

(38) |Ga| =

(
n+1∑

i=1

ai

)n−1

whose action on the weighted projective space P(q) is represented by a torsion
matrix Γ as follows: by setting

Ga
∼= Z/τ1Z⊕ · · · ⊕ Z/τsZ

with τ1|τ2| · · · |τs, the action is given by

(
⊕s

k=1 Z/τkZ)× P(q)
Γ=([γk,j ]τk ) // P(q)

(([ε1]τ1 , . . . , [εs]τs), [x1 : . . . : xn+1])
✤ //

îÄ∏s
k=1 exp

Ä
2πiγk,jεk

τk

ää
xj
ón+1

j=1
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where

Γ =

Ö
[γ1,1]τ1 · · · [γ1,n+1]τ1

...
...

[γs,1]τs · · · [γs,n+1]τs

è

is represented by (γk,j) ∈ M(s, n+ 1;Z) constructed by means of the next
Algorithm 4.2.
In particular, if a is a reduced weight vector then Xa

∼= P(a)/Ga and

b =
(
an+1 · · · an+1 an

)

Algorithm 4.2. The torsion matrix Γ, representing the Ga-action giving
Xa = P(q)/Ga in the previous Theorem 4.1, is defined in display (3) of [53,
Thm. 3.2]. Namely:

1) consider a fan matrix Λ̃ of P(q) such that A · Λa = β · Λ̃, with

A ∈ GLn(Z) and β = diag

Ñ
1, . . . , 1︸ ︷︷ ︸
n−s

, τ1, . . . τs

é

2) consider the following matrix Uq ∈ GLn+1(Z) sending the transposed
weight vector qT in Hermite normal form (HNF):

Uq =

Ç
u

Λ̃

å
=⇒ Uq · qT =

á
1
0
...
0

ë

3) let n+1−sUq be the submatrix of Uq given by the upper n+ 1− s rows
and consider the matrixW ∈ GLn+1(Z) sending the transposed matrix
n+1−sUTq in HNF, that is

W · n+1−sUTq = HNF
Ä
n+1−sUTq

ä

4) consider the submatrices sΛ̃ and sW of Λ̃ andW , respectively, assigned
by the lower s rows and define the following s× s integer matrix

G :=s Λ̃ · sW
T ∈ M(s, s;Z)
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5) finally, consider UG ∈ GLs(Z) sending the transposed matrix GT in
HNF, that is UG ·GT = HNF(GT ), and define

(γk,i) := UG · sW ∈ M(s, n+ 1;Z) =⇒ Γ := (γk,i) mod τ

Proof of Theorem 4.1. The first part of this proof will describe the f -dual
ftv (Xa,b) under condition (37). Then the f -process (Pn,a)↭ (Xa,b) will
be shown to be calibrated if and only if conditions (a) and (b) are satisfied:
that is, assuming (37), conditions (a) and (b) are equivalent to conditions
(22) in Theorem 2.17.

Pn is a smooth and complete toric variety whose Picard group

Pic(Pn) ∼= Cl(Pn) ∼= Z · h

is generated by the hyperplane class h = [D1] = · · · = [Dn+1], associated
with the torus invariant prime divisors generating WT (Pn) ∼=

⊕n+1
i=1 Z ·Di.

In particular h is a very ample class, so giving that every strictly effective
divisor is necessarily very ample, that is, for every ftv (Pn, Da), Da ia very
ample divisor. Recalling Proposition 1.2 (2) and relation (11) in Proposi-
tion 1.8, the associated lattice polytope ∆a = ∆Da

is given by

∆a = Conv
Ä¶

−((V {i})T )−1 · a{i} | i = 1, . . . , n+ 1
©ä

= Conv

â
|a| − a1
−a2
−a3
...

−an

−a1
|a| − a2
−a3
...

−an

· · ·

−a1
−a2
...

−an−1

|a| − an

−a1
−a2
...

−an−1

−an

ì

(39)

where we set |a| :=
∑n+1

i=1 ai . Then the associated reduced F -matrix Λa is

(40) Λa =

á
(|a| − a1)/d1

−a2/d1
...

−an/d1

· · ·
· · ·

−a1/dn
...

−an−1/dn
(|a| − an)/dn

−a1/dn+1

−a2/dn+1
...

−an/dn+1

ë
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so giving
(41)

ΛTa · V =

â
(|a| − a1)/d1

−a1/d2
...

−a1/dn
−a1/dn+1

−a2/d1
(|a| − a2)/d2

−a2/d3
...

−a2/dn+1

· · ·
· · ·
· · ·
· · ·
· · ·

−an/d1
...

−an/dn−1

(|a| − an)/dn
−an/dn+1

−an+1/d1
−an+1/d2

...
−an+1/dn

(|a| − an+1)/dn+1

ì

Recalling that a1 ≤ · · · ≤ an+1, there follows

b =

á
an+1/d1

...
an+1/dn
an/dn+1

ë

Moreover
(
d1a1 · · · dn+1an+1

)
· ΛTa = 0

meaning that the reduced weight vector q of (d1a1, · · · , dn+1an+1) is a weight
vector of Xa, in the sense explained in §1.5, that is, a representative matrix of
the class morphism d in the short exact sequence (9). Hence Xa is a suitable
quotient of the weighted projective space (WPS) P(q) by the action of a
finite abelian group Ga . The action of Ga on P(q) is described by item 6
in [53, Thm. 3.2], so giving items from (2) to (5) in Algorithm 4.2. The
isomorphism type of Ga can be determined by in item (1) of Algorithm 4.2,
that is, by looking for a fan matrix Λ̃ of P(q) and a switching matrix β =
diag (1n−s, τ1, . . . τs), such that A · Λa = β · Λ̃, for some A ∈ GLn(Z). Then

Ga
∼=

s⊕

i=1

Z/τiZ

with τ1|τ2| · · · |τs. In particular |Ga| =
∏s
i=1 τi = detβ. Then, to prove (38),

notice that, on the one hand Binnet theorem gives

∀ i = 1, . . . , n+ 1
∣∣∣det
Ä
Λ
{i}
a

ä∣∣∣ =
∣∣∣det Λ̃{i}

∣∣∣ · detβ = qi detβ

On the other hand, we claim that, under condition (37),

(42) ∀ i = 1, . . . , n+ 1
∣∣∣det
Ä
Λ
{i}
a

ä∣∣∣ = qi |a|
n−1
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so giving detβ = |a|n−1 and then (38). In fact, the reduction q = (q1 · · · qn+1)
is obtained by setting

qi :=
diai

lcm({δj | j ̸= i})
where δj := gcd({dkak | k ̸= j})

Moreover, condition (37) implies that

(43) ∀ i = 1, . . . , n+ 1 lcm({δj | j ̸= i}) =
n+1∏

j=1

dj

Notice that (43) implies (42), as

∣∣∣det
Ä
Λ
{i}
a

ä∣∣∣ = ai|a|
n−1

∏
j ̸=i dj

=
diai|a|

n−1

∏n+1
j=1 dj

= qi |a|
n−1

To show (43), notice that, for any i = 1, . . . , n+ 1,

di = gcd({ak | k ̸= i}) =⇒ ∀ k ̸= i di|dkak =⇒ di|δi

∀ j, k ̸= i dj |dkak as

ß
dj |dj for k = j
dj |ak for k ̸= j

=⇒ dj |δi

=⇒ lcm(d1, . . . , dn+1)|δi

Recall that gcd(a1, . . . , an+1) = 1 implies that gcd(dj , dk) = 1, for any j ̸= k
[49, Prop. 3]. Therefore lcm(d1, . . . , dn+1) =

∏n+1
j=1 dj , so giving that

∀ i = 1, . . . , n+ 1

n+1∏

j=1

dj | δi

On the other hand, δi = gcd({dkak | k ̸= i}). Then δi|dkak, for any k ̸= i .
Recall that gcd(dk, ak) = 1 [49, Prop. 3]. Hence, for any i = 1, . . . , n+ 1,

∀ k ̸= i δi|dkak =⇒





∃ k : δi|dk =⇒ δi|
∏n+1
j=1 dj

∀ k ̸= i δi|ak =⇒ δi| gcd({ak | k ̸= i}) = di
=⇒ δi|

∏n+1
j=1 dj

=⇒ δi|
n+1∏

j=1

dj

In conclusion, δi =
∏n+1
j=1 dj for any i = 1, . . . , n+ 1. Then (43) immediately

follows.
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Moreover, notice that q is also the reduced vector of a. In fact

∀ i qi =
diai

lcm({δj | j ̸= i})
=

diai∏n+1
j=1 dj

=
ai∏
j ̸=i dj

=
ai

lcm({dj | j ̸= i})

Notice that if a is already a reduced weight vector, then

d1 = · · · = dn+1 = 1 =⇒ q = a , b =

á
an+1
...

an+1

an

ë

Therefore: (Xa := P(q)/Ga, D
′
b) is the f -dual ftv of (Pn, Da).

We are now going to considering the f -process associated with (Pn, Da) .
By the definition of ∆b given in (16), and noticing that Xa is the toric
variety associated with the fan Σ∆a

, which turns out to be the unique one
in SF(Λa), we get

(44) ∆b = {n ∈ NR |ΛTa · n ≥ −b} = Conv({ni ∈ NR | 1 ≤ i ≤ n+ 1}

where ni = −

ÅÄ
Λ
{i}
a

äTã−1

· b{i}, so giving

∀ i = 1, . . . , n ni = −
an+1 − an

|a|
1+

an+1

ai

Å
1−

an+1 − an
|a|

ã
ei

nn+1 = −1

Notice that, in this expression of ∆b

• the dependence on d1, . . . , dn+1 completely disappeared,

• since an ≤ an+1 , it follows that

(45) 0 ≤
an+1 − an

|a|
< 1 and 0 <

an+1

ai

Å
1−

an+1 − an
|a|

ã
≤
an+1

ai

Inequalities in (45) imply that, for every i = 1, . . . , n, the j-th entry of ni
has to satisfy the relations

(46) ∀ j ̸= i − 1 < nj,i ≤ 0 and

ß
ni,i = 1 if ai = an+1

ni,i > 1 if ai < an+1
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where the inequality ni,i > 1 is obtained as follows:

ni,i =
an+1

ai
−

Å
1 +

an+1

ai

ã
an+1 − an

|a|
=
an+1|a| − (ai + an+1)(an+1 − an)

ai|a|

Therefore,

ni,i > 1 ⇐⇒ (an+1 − ai)|a| > (ai + an+1)(an+1 − an)

and the latter follows immediately by hypothesis on a and the first condition
in (37).
Calling ∇′ := ∆b ∩N≥

R
, where N≥

R
represents the positive orthant in the

chosen identification NR
∼= Rn , (46) give that

∇′ = Conv

Å
0, e1,

an
an−1

e2, . . . ,
an
a1

en

ã

as one can check by intersecting the hyperplane passing through n1, . . . ,nn
with coordinate axes. Moreover,

∆b ∩N = {−1} ∪ (∇′ ∩N)

and

∆(Xa,b) = [∆b] = Conv

Åß
e1,

ï
an
an−1

ò
e2, . . . ,

ï
an
a1

ò
en,−1

™ã
(47)

⇐⇒ Λb = V

where the last equality has to be understood up to a possible permutation
of columns. This means that the first condition (22) in Theorem 2.17 is
equivalent to condition (a) in the statement. Moreover, recalling expression
(41) of the transposed matrix of ΛTb · Λa = V T · Λa, the second condition
in (22) can be attained if and only if condition (b) in the statement is
assumed, that is, if and only if at least two of di’s equal 1. Then Theorem 2.17
ensures that the f -process associated with (Pn, Da) is calibrated if and only
if conditions (a) and (b) hold. □

Corollary 4.3. Let Yd ⊆ Pn be a projective hypersurface of degree d ≥ n+
1. Then there always exists a framing Da0

of Pn such that Yd ∼ Da0
and the

f -process associated with (Pn, Da0
) is calibrated.



✐

✐

“9-Rossi” — 2023/3/24 — 1:54 — page 1498 — #50
✐

✐

✐

✐

✐

✐

1498 Michele Rossi

Proof. It suffices choosing a0 = (1, . . . , 1︸ ︷︷ ︸
n times

, δ := d− n) = (1, δ). It clearly sat-

isfies conditions (37) and (b) of Theorem 4.1. Moreover

∇′ = Conv (0, e1, . . . , en) = Conv(∇′ ∩N)

so giving condition (a), too. Then, thesis follows by theorems 2.17 and 4.1.
□

Remark 4.4. Recalling Remark 3.3, consider the framing a0 = (1n, δ) of
Pn introduced in the previous Corollary 4.3. The dual ftv is then given by

(Xa0
,b0) =

Ñ
P(1n, δ)/ (Z/dZ)

n−1 , (δ, . . . , δ︸ ︷︷ ︸
n times

, 1)

é

(notice that G(1,δ)
∼= (Z/dZ)n−1, by the following Lemma 5.2). By (44), the

polytope d∆b0
is a lattice polytope, convex hull of n+ 1 lattice points asso-

ciated to the maximal cones of the fan Σa0
of Xa0

, that is, OXa0
(dD′

b0
) is a

globally generated line bundle and D′
b0

is semi-ample, by Proposition 1.2.
Since Xa0

has Picard number 1, this is enough to ensure that dD′
b0

is an
ample divisor of Xa0

.
Moreover, calling π : P(1n, δ)↠ Xa0

the canonical quotient associated with
the (Z/dZ)n−1-action, the pull-back π∗(D′

b0
) =

∑
j bjπ

∗(D′
j) turns out to be

the generator of Pic(P(1n, δ)) ∼= Z and a very ample divisor of the universal
1-covering P(1n, δ) of Xa0

, as guaranteed by [49, Prop. 8].

5. Mirror partners of hypersurfaces of degree d ≥ n + 1 in

Pn

Degree d hypersurfaces in Pn are parameterized by the projective space

P
(
H0(Pn,OPn(d)

)

The action of PGL(n+ 1) on Pn extends naturally to an action on the pa-
rameter space P

(
H0(OPn(d)

)
. Recalling (33), define the number of complex

moduli of a generic (smooth) hypersurface Y = Yd ⊂ Pn, of degree d, to be
the following one

(48) mn
d := dimP

(
H0(OPn(d)

)
− dimPGL(n+ 1) =

Ç
n+ d

d

å
− (n+ 1)2
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which is actually the dimension of the moduli space Mn
d of degree d hyper-

surfaces in Pn, well defined after Mumford’s GIT [43], as PGL(n+ 1) is a
reductive group.
On the other hand, if n ≥ 4, Weak Lefschetz Theorem implies that the Pi-
card number of Y is given by

knd := h1,1(Y ) = b2(Y ) = b2(P
n) = 1

which is also called the number of Kähler moduli of Y , being knd the dimen-
sion of the complexified Kähler cone of Y [19, §6.2].

Remark 5.1. From the combinatorial point of view, consider the framing
of Pn given in Corollary 4.3, that is Da0

∼ Yd with

a0 = (1, . . . , 1︸ ︷︷ ︸
n times

, d− n)

Then

(49) ∆a0
= Conv(Λa0

) with Λa0
=

á
d− 1
−1
...

−1

· · ·
· · ·

−1
...
−1
d− 1

−1
−1
...

−1

ë

is the Newton polytope associated with the generic polynomial in
H0(Pn,OPn(d)). Recalling (30) and (55), one has

mn
d = l(∆a0

)− 1− n−
∑

Θ<1∆1

l∗(Θ)

as the anti-canonical polytope ∆−KPn
is given by the following sub-polytope

of ∆a0

∆−KPn
= ∆1 = Conv

á
d− 2
−1
...

−1

· · ·
· · ·

−1
...

−1
d− 2

−1
−1
...
−1

ë

On the other hand, by Remark 1.5, Pn = P∆1

∼= X∇ with∇ = ∆∗
1 = Conv(V )

and V is the fan matrix given in (36). Then [4, Prop. 4.4.1] gives

(50) knd = h1,1(Pn) = l(∇)− l∗(∇)− n = l(Conv(V ))− 1− n = 1
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5.1. A-side mirroring

The f -dual ftv of (Pn, Da0
), as given by Theorem 4.1, is (Xa0

, D′
b0
) with

Xa0

∼= P(1, . . . , 1, d− n)/Ga0

D′
b0

=

n+1∑

i=1

biD
′
i where bi =

ß
d− n for i ≤ n
1 for i = n+ 1

Lemma 5.2. Ga0

∼= (Z/dZ)n−1 and its action on P(a0) can be written as
follows

(Z/dZ)n−1 × P(1, . . . , 1, d− n)
Γ // P(1, . . . , 1, d− n)

((ε1, . . . , εn−1), [x1 : . . . : xn+1])
✤ //

[
µ1x1 : · · · : µn−1xn−1 : xn :

Ä∏n−1
j=1 µj

ä−1
xn+1

]

where µj := exp
(
2πi
d εj

)
. It can then be represented by the following torsion

matrix

(51) Γ =
(
In−1 0n−1 (d− 1) · 1n−1

)
∈ M(n− 1, n+ 1;Z/dZ)

Proof. First of all, we need to compute the torsion coefficients τ1| · · · |τs . At
this purpose we determine a fan matrix Λ̃a0

of the covering wps P(a0).
Since a0 = (1, . . . , 1, d− n), we can choose

(52) Λ̃a0
=

Å
In−1 −1n−1 0n−1

0Tn−1 d− n −1

ã
∈ M(n, n+ 1,Z)

as a0 · Λ̃
T
a0

= 0Tn . As a second step we have to determine a matrix

B ∈ GL(n,Q) ∩M(n,Z) : B · Λ̃a0
= Λa0

where Λa0
is the fan matrix of Xa0

presented in (49). Such an integer matrix
B exists by [50, Prop. 3.1 (3)] (see also [51, Rem. 2.4]) and is given by

(53) B =

â
d− 1 −1 · · · −1 1
−1 d− 1 · · · −1 1
...

. . .
...

...
−1 . . . −1 d− 1 1
−1 . . . −1 −1 1

ì
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Then, torsion coefficients are given by entries different than 1 in the diagonal
Smith Form β of B, namely given by

(54) β = A ·B · C = diag(1, d, . . . , d︸ ︷︷ ︸
n− 1 times

)

for suitable matrices A,C ∈ GLn(Z). That is, s = n− 1 and τ1 = · · · =
τn−1 = d . In particular, Ga0

∼= (Z/dZ)n−1.
A torsion matrix Γ is a representative matrix of the torsion part of the class
morphism from WT (Xa0

) to Cl(Xa0
) and it is characterized by properties

from (i) to (iv) in the proof of item (6) in [53, Thm. 3.2], that is:

(i) Γ = (γkj) with γkj ∈ Z/dZ ,

(ii) Γ · ( 1Ua0
)T ≡ 0n−1 mod d , being Ua0

∈ GLn+1(Z) a matrix switching
the transposed weight vector aT0 in Hermite normal form,

(iii) Γ · ΛTa0
≡ 0n−1,n mod d ,

(iv) Γ · ( n−1(C
−1 · Λ̃a0

))T ≡ In−1 mod d, where C is given in (54), since
the bottom n− 1 rows of C−1 · Λ̃a0

are sent by Γ to a set of generators
of

Tors(Cl(Xa0
)) ∼= (Z/dZ)n−1

Assume Γ is given as in (51). Then (i) and (iii) are clear and (ii) follows by
choosing

1Ua0
=
(
0 · · · 0 1 0

)

Finally, condition (iv) is verified up to a basis change in WT (P(a0)). In fact,
suppressing the n-th column from Λ̃a0

, by [50, Cor. 3.3] it follows that

1 = det
Ä
Λ
{n}
a0

ä
=⇒ Λ

{n}
a0

∈ GLn(Z)

being 1 the n-th entry in a0. Then (iv) is satisfied by setting

C = Λ
{n}
a0

·

Å
0n−1 1
In−1 0

ã−1

□

Let ∆b0
:= ∆D′

b0
be the polytope associated with D′

b0
. Then ∆(Xa0

,b0)

= [∆b0
] is the Newton polytope of the generic section inH0(Xa0

,OXa0
(D′

b0
)),
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meaning that

h0(Xa0
,OXa0

(D′
b0
)) = l(∆b0

) = l(∆(Xa0
,b0))

Moreover, D′
b0

turns out to be a semi-ample divisor of Xa0
, as observed in

Remark 4.4.

Theorem 5.3. The family of hypersurfaces Y ∨ ⊆ Xa0
, obtained as zero-

locus of sections in H0(Xa0
,OXa0

(D′
b0
)), depends on a unique complex mod-

ulus, that is, mY ∨ = 1. If n ≥ 4 then mY ∨ equals the number knd of Kähler
moduli of projective hypersurfaces Yd ⊆ Pn of degree d, that is

mY ∨ = knd = 1

By Definition 3.5, this means that Y ∨ is an A-mirror of Y .

Proof. Since b0 = (d− n, . . . , d− n, 1), relation (44) gives that

∆b0
= Conv

á
nd+1−n2

d

−d−n−1
d
...

−d−n−1
d

· · ·
· · ·

−d−n−1
d
...

−d−n−1
d

nd+1−n2

d

−1
−1
...

−1

ë

One can then directly check that

∆(Xa0
,b0) = [∆b0

] = Conv(V ) =: ∇

as already shown by relation (47). Therefore 0 ∈ Int([∆b0
]), meaning that

k1 = 1 in the first item of §2.1.2. In particular, one gets

(55) h0(Xa0
,OXa0

(D′
b0
)) = l(∆b0

) = l(∇) = n+ 2

and a generic section f ∈ H0(Xa0
,OXa0

(D′
b0
)) can be written as follows

(56)

f =

Ñ
n∑

i=1

ci x
d
i ·

n∏

j=1

xd−n−1
j

é
+ cn+1 x

n+1
n+1 + cn+2

Ñ
n∏

j=1

xd−nj

é
· xn+1

in the Cox ring C[x1, . . . , xn+1] of Xa0
. Recall now that Xa0

∼= P(a0)/Ga0
,

with a0 = (1, . . . , 1, d− n), and consider the automorphism of P(a0) repre-
sented by the diagonal matrix δ = diag(γ1, . . . , γn, γn+1), where γ1, . . . , γn+1
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are solutions of the following equations

γk = 1 if ck = 0, for 1 ≤ k ≤ n+ 1

γdi

Ñ
n∏

j=1

γj

éd−n−1

= ci for 1 ≤ i ≤ n with ci ̸= 0(57)

γn+1
n+1 = cn+1 if cn+1 ̸= 0

By the previous Lemma 5.2, the action of Ga0
can be assumed diagonal,

meaning that δ commutes with such an action, giving rise to an automor-
phism of Xa0

making f equivalent to the section

(58) f ′ =

Ñ
n∑

i=1

ϵi x
d
i ·

n∏

j=1

xd−n−1
j

é
+ ϵn+1 x

n+1
n+1 + ψ

Ñ
n∏

j=1

xd−nj

é
· xn+1

where ϵk =

ß
0 if ck = 0
1 otherwise

.

Then ψ ∈ C turns out to be the unique complex modulus of the family of
hypersurfaces Y ∨ ⊆ Xa0

of degree [D′
b0
] ∈ Cl(Xa0

) . □

Remark 5.4. Notice that the general hypersurface Y ∨ ∈ |D′
b0
| is not quasi-

smooth. Then results by Batyrev and Cox [7] and Bunnet [14] cannot be
applied to guarantee a good definition of a moduli space MY ∨ . By the way,
observe that the computation performed in Theorem 5.3 is consistent with
the definition of mY ∨ given in (33). In fact

dimP
(
H0(Xa0

,OXa0
(D′

b0
))
)
− dimAut(Xa0

) = l(∆b0
)− 1− n

= l(∇)− 1− n = 1

The last equality is obtained by recalling (55). The former follows by (30),
just observing that the anti-canonical polytope ∆−KXa0

is given by the fol-
lowing sub-polytope of ∆b0

∆−KXa0
= Conv

(
e1 · · · en −1/(d− n)1

)

whose facets do not contain any lattice point in their relative interior.



✐

✐

“9-Rossi” — 2023/3/24 — 1:54 — page 1504 — #56
✐

✐

✐

✐

✐

✐

1504 Michele Rossi

5.2. According with the Hori-Vafa LG mirror model

In their pivotal, and unpublished, paper [35], Hori and Vafa proposed, from
a physical point of view, Landau-Ginzburg (LG) mirror models of hypersur-
faces and complete intersections in a complete toric variety. Their construc-
tion is consistent with the interpretation of Mirror Symmetry as T-duality.
In particular, for the projective hypersurface of degree d = n+ 1 in Pn+1,
a suitable quotient of their LG mirror model still proposes the mirror con-
struction previously given by Greene and Plesser [30], for n = 3, and Batyrev
[4], in the general case.

Namely, for the projective, degree d, hypersurface Y = Yd ⊂ Pn, the
Hori-Vafa recipe proposes the LG mirror model (Λd,ψ, w), where (see [35,
5.4] and notation introduced in [37]):

• Λd,ψ ∼= (C∗)n+1 is the choice of an irreducible component of the re-
ducible torus hypersurface

Λd :=

{
n+1∏

i=1

xdi = τyd

}
⊂ (C∗)n+1 × C∗ = (C∗)n+2

being ψ−d = τ = e−t ∈ C∗, with t the Kähler volume of Yd,

• wd,ψ : Λd,ψ −→ C is the holomorphic function defined by setting

wd,ψ = wd|Λd,ψ

being wd : Cn+2 −→ C defined by

wd(x1, . . . , xn+1, y) =

n+1∑

i=1

xdi + y =⇒ wd,ψ(x) =

n+1∑

i=1

xdi + ψ

n+1∏

i=1

xi

and called the superpotential of the LG model.

When d = n+ 1, the superpotential wn+1,ψ turns out to be equivariant with
respect to the C∗-action defining Pn and invariant with respect to the action
of G1

∼= (Z/(n+ 1)Z)n−1 described in Lemma 5.2 and defining X1 = Pn/G1,
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so getting the following picture
(59)

{0} �
� // C Λn+1,ψ

∼= (C∗)n+1 � � //wn+1,ψoo

/(C∗×G1)
����

Cn+1 \ {0}

/(C∗×G1)
����

w−1
n+1,ψ(0)/(C

∗ ×G1)

OO

� � // T � � // X1

where T is the acting torus on X1. Then the Batyrev’s mirror Y ∨ of Yn+1 is
precisely the closure

Y ∨ = w−1
n+1,ψ(0)/(C

∗ ×G1) ⊂ T = X1

induced by the open embedding T →֒ X1.

Remark 5.5. Unfortunately, for d ≥ n+ 2 the Hori-Vafa LG mirror model
does no more admit a similar compactification process, as the superpoten-
tial wd,ψ is no more quasi-homogeneous, although we know that a compact
mirror model Y ∨

d of Yd should exist, as defined in Definition 3.1.

5.2.1. LG mirror model of the projective hypersurface of degree
d. To bypass troubles observed in Remark 5.5, replace the Hori-Vafa LG
mirror model with the LG model (Λ̃d,ψ, w̃d,ψ) where

• Λ̃d,ψ ∼= (C∗)n+1 is the choice of an irreducible component of the re-
ducible torus hypersurface

Λ̃d :=

{
xn+1
n+1 ·

n∏

i=1

x
(n+1)(d−n)
i = τyn+1

}
⊂ (C∗)n+1 × C∗ = (C∗)n+2

being ψ−(n+1) = τ = e−t ∈ C∗, with t the Kähler volume of Yd,

• w̃d,ψ : Λ̃d,ψ −→ C is the holomorphic function defined by setting

w̃d,ψ = w̃d|Λψ

being w̃d : Cn+2 −→ C defined by

w̃d(x1, . . . , xn+1, y) =

Ñ
n∑

i=1

xdi ·
n∏

j=1

xd−n−1
j

é
+ xn+1

n+1 + y

=⇒ w̃d,ψ(x) =

Ñ
n∑

i=1

xdi ·
n∏

j=1

xd−n−1
j

é
+ xn+1

n+1 + ψ xn+1

n∏

j=1

xd−nj
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In addition to what observed in Remark 5.5, there is a further fact lead-
ing to consider the previous modification of the original Hori-Vafa proposal,
that is, its consistency with the re-parameterization of the Givental LG mir-
ror model presented in the next Theorem 7.4, for projective hypersurfaces
of degree d ≤ n. This will be treated more in detail in the next Remark 5.8,
to which the reader is referred. Here we want just underline that it seems
comparable with an analogous modification proposed by Clarke, making the
modified Hori-Vafa LG mirror model consistent with the Givental’s one [17,
§7.2, Rem. 7.4].

Conjecture 5.6. For d ≥ n+ 1, a LG mirror model of the projective
hypersurface Yd ⊂ Pn, of Kähler modulus t = −(n+ 1) ln(ψ), is given by
((C∗)n+1, w̃d,ψ) .

Following Kontsevich [39], proving this Conjecture means showing that
the derived categories of coherent sheaves, from the complex point of view,
and the Fukaya category of lagrangian structures, from the symplectic point
of view, are each other equivalent on the two mirror partners involved (Ho-
mological Mirror Symmetry, HMS). This is a quite difficult topic. Here, just
some evidences will be provided.

First of all, notice that, when d = n+ 1, the LG model ((C∗)n+1, w̃n+1,ψ)
is precisely the Hori-Vafa LG model ((C∗)n+1, wn+1,ψ).

As a second evidence, consider the fact that, under the weighted C∗-
action on (C∗)n+1, given by

(60) (λ,x) ✤ // (λx1, . . . , λxn, λ
d−nxn+1)

the superpotential w̃d,ψ is equivariant. In Hori-Vafa notation, this means
that there is a gauged linear sigma model associated with the LG model
((C∗)n+1, w̃d,ψ), whose gauge action is the weighted one presented in (60).
Moreover, w̃d,ψ is also equivariant with respect to the action of Ga0

∼=
(Z/dZ)n−1 described in Lemma 5.2 and defining Xa0

= P(a0)/Ga0
, recall-

ing that a0 = (1, . . . , 1, d− n). There is then an analogous picture general-
izing (59) as follows

(61) {0} �
� // C Λ̃d,ψ ∼= (C∗)n+1 � � //‹wd,ψoo

/(C∗×Ga0
)
����

Cn+1 \ {0}

/(C∗×Ga0
)
����

w̃−1
d,ψ(0)/(C

∗ ×Ga0
)

OO

� � // T � � // Xa0
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where T is the acting torus on Xa0
. Then the f -mirror Y ∨ of Yd, as proposed

in Definition 3.1, is precisely the closure

Y ∨ = w̃−1
d,ψ(0)/(C

∗ ×Ga0
) ⊂ T = Xa0

induced by the open embedding T →֒ Xa0
.

As a final evidence, notice that the picture described by diagram (61)
is strongly related with general LG/Hypersurface correspondence described
in §3.6.1 and its compactification given in §3.7. In a sense, the latter turns
out to be the quotient of ((C∗)n+1, w̃d,ψ) by the action of C∗ ×Ga0

defining
Xa0

as a Cox quotient.

Remark 5.7. Taking into account what just observed, relating the LG
model here presented with those described in §3.6.1 and §3.7, one could
argue that the LG model (Ta0

, f∨b0
) would be a more appropriated LG mirror

model for Yd ⊂ Pn than the one proposed in Conjecture 5.6. On the other
hand, one may expect that these two LG mirror models turn out to be
equivalent by the HMS point of view. These are all completely open tasks,
at least as far as the author’s knowledge allows!

Remark 5.8. The modification of the Hori-Vafa LG mirror model here
proposed, and in particular the associated LG model (Ta0

, f∨b0
), is consistent

with LG mirror models proposed by Givental in [28, Thm. 5] for complete
intersections in toric varieties. In fact, one can consider the following re-
parameterization

ui :=





∑n
i=1 x

d
i ·
∏n
j=1 x

d−n−1
j

ψ xb0
for 1 ≤ i ≤ n

xn+1
n+1

ψ xb0
for i = n+ 1

(62)

q := ψ−n−1

so that the LG model (Ta0
, f∨b0

) can be rewritten, up to a rescaling and a
translation by 1, as the Givental LG model defined by the superpotential

F : Cn+1 −→ C , F (u) :=

n+1∑

i=1

ui = (1/ψ)f∨b0
− 1
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restricted to the torus fibration

π : Cn+1 −→ C , π(u) :=

n+1∏

i=1

ui = q

In Theorem 7.4 the same approach will be extended to the case of Ko-
daira negative projective hypersurfaces. Then f -mirror symmetry and the
LG/Hypersurface correspondence defined in §3.6.1 turn out to give a unified
procedure for constructing mirror partners of toric hypersurfaces. The same
approach seems to be completely extendable to toric complete intersections:
for the details, the interested reader is referred to the forthcoming paper
[46].

5.3. A-side of the topological mirror web

The following result characterizes which framing Da of Pn, among those
satisfying conditions (37), (a), (b) in Theorem 4.1, give rise to f -mirror
partners, of the generic Yd ⊂ Pn, sharing an A-side mirror behaviour.

Proposition 5.9. Let Da be a framing of Pn satisfying conditions (37),
(a) and (b) in Theorem 4.1 and assume n ≥ 4. Then, the following facts are
equivalent:

1) Theorem 5.3 holds for the ftv (Pn, Da), that is,

mY ∨ = knd = 1

and Y ∨ is an A-mirror of Y ,

2) the number of lattice points in ∆b equals the number of lattice points
in ∇ = Conv(V ) , i.e.

l(∆b) = l(∇) = n+ 2

3) ∆(Xa,b) := [∆b] = ∇ =: Conv(V ) ,

4) [an/a1] = 1 .
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Proof. Recall that a fan matrix Λa of Xa is given by (40). Then the anti-
canonical polytope ∆−KXa

is given by

∆−KXa
= Conv

Ç®
−

ÅÄ
Λ
{i}
a

äTã−1

· 1 | 1 ≤ i ≤ n+ 1

´å

=

à
1/a1 0 . . . 0 −1/an+1

0 1/a2
...

...
...

. . . 0
...

0 · · · 0 1/an −1/an+1

í

(63)

In particular, every facet of ∆−KXa
does not contain any interior point. Then,

recalling (33), one find that

mY ∨ = dimP
(
H0(Xa,OXa

(D′
b))
)
− dimAut(Xa) = l(∆b)− 1− n

Then clearly mY ∨ = 1 if and only if l(∆b) = n+ 2 = l(∇) , so giving the
equivalence between items (1) and (2) in the statement. Moreover, notice
that relation (47) gives

[∆b] = Conv

Åß
e1,

ï
an
an−1

ò
e2, . . . ,

ï
an
a1

ò
en,−1

™ã
⊇ ∇

Therefore

l(∆b) = l(∇) ⇐⇒ [∆b] = ∇

so proving the equivalence between items (2) and (3). Finally, notice that,
relation (47), again, recalling convention (37), ensures the equivalence be-
tween items (3) and (4). □

Remark 5.10. Condition (4) in the statement of Proposition 5.9, together
with convention (37), implies that a framing a of Pn, satisfying one of the
equivalent conditions in Proposition 5.9, presents necessarily in the following
shape

a = (a, . . . , a︸ ︷︷ ︸
n times

, δ := d− na) = (a1n, δ) with 1 ≤ a ≤ δ

Notice that condition (b) in Theorem 4.1 gives (a, δ) = 1, then a is reduced
if and only if a = a0 = (1n, δ) and a = 1. Assume a ≥ 2: then the reduced
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weight vector q of a is just given by q = (1n, δ). Therefore

(Xa,b) =

Ñ
P(1n, δ)/Ga , (δ, . . . , δ︸ ︷︷ ︸

n times

, 1)

é

with |Ga| = dn−1. Then, the same argument used in Remark 4.4 shows that
dD′

b is base point free, D′
b is semi-ample and π∗(D′

b) is a very ample divisor
generating Pic(P(1n, δ)) ∼= Z.

Remark 5.11. The last condition (4) in Proposition 5.9 implies that a
framing Da ̸= Da0

can give rise to an A-mirror partner of Yd ⊂ Pn only
if d ≥ 2n+ 3. In particular, recalling considerations given in §3.3, for n =
4, the minimum value of the degree d realizing an effective A-mirror web,
that is, giving rise to multiple A-mirrors, is d = 11, with the two framing
a0 = (1, 1, 1, 1, 7) and a1 = (2, 2, 2, 2, 3) . Here, the two mirror partners of the
generic Y 4

11 ⊂ P4 are given by (a suitable desingularization of) the generic
hypersurfaces

Y ∨
35 =





Ñ
4∑

i=1

x11i ·
4∏

j=1

x6j

é
+ x55 + ψ

Ñ
4∏

j=1

x7j

é
· x5 = 0





⊂ P(14, 7)/(Z/11Z)
3

Y ∨
15 =





Ñ
4∑

i=1

x11i ·
4∏

j=1

xj

é
+ x55 + ψ

Ñ
4∏

j=1

x3j

é
· x5 = 0





⊂ P(14, 3)/(Z/11Z)
3

These two mirror models are not isomorphic as they have singular loci of
different dimension:

Sing
(
Y ∨
35

)
=

4⋃

i=1

{xi = x5 = 0} =⇒ dim
(
Sing

(
Y ∨
35

))
= 2

Sing
(
Y ∨
15

)
=

Ñ
⋃

1≤i<j≤4

{xi = xj = x5 = 0}

é

∪

Ü
4⋃

i=1




xi = x5 =

∑

1≤j≤4
j ̸=i

x11j = 0





ê

=⇒ dim
(
Sing

(
Y ∨
15

))
= 1
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Remark 5.12 (About Hodge diamond A-symmetry). By means of
methods like those employed by Batyrev and Borisov [6], one can check
that, calling Y ∨ the f -mirror partner assigned to Yd ⊂ Pn by the choice of
the framing a0 = (1n, δ), and assuming n ≥ 4 and d = n+ δ ≥ n+ 2, then

(64) hn−2,1(“Y ∨) = l∗(2∆b0
)− n− 2 + r

where b0 = (δ · 1n, 1) and “Y ∨ is a resolution of singularities of Y ∨ with

r := rk(Cl(“Y ∨)). If δ ≥ 2 then l∗(2∆b0
) ≥ n+ 2 and r > 1, so giving

hn−2,1(“Y ∨) > 1 = mY ∨

Consequently, with that framing, there is no hope of getting any Hodge
diamond A-symmetry, beyond the Calabi-Yau setup.

Relation (64) is a consequence of a more general computation we devel-
oped in the broader context of toric complete intersections [46].

5.4. B-side mirroring

Assuming n ≥ 4, the other side of the mirroring process, so called B-side,
is that of comparing the Kähler moduli k“Y ∨

with either the complex mod-
uli mn

d , as computed in (48) (see also Remark 5.1) or the Hodge number
hn−2,1(Yd), for a generic hypersurface Yd ⊂ Pn and a generic hypersurface
“Y ∨ ∈ |“D′

b| in X̂a, where

(Pn, Da)↭ (Xa, D
′
b)

is a calibrated f -process, with Yd ∼ Da, and (X̂a, “D′
b) −→ (Xa, D

′
b) is a suf-

ficiently good resolution. The Hodge number hn−2,1(Yd) can be computed,
e.g., by means of the Griffiths’ theory on Poincaré residues [31]. A compar-
ison with (48) immediately shows that, for d ≥ n+ 2,

mn
d =

Ç
n+ d

d

å
− (n+ 1)2 ̸=

Ç
2d− 1

n

å
− (n+ 1)

Ç
d

n

å
= hn−2,1(Yd)

meaning that, also in this case, we cannot hope in a symmetry into the
Hodge diamond, as in the A-side for the framing a0 = (1, d− n) (recall Re-
mark 5.12).
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To perform the topological B-side check, recall that

mYd = dimP
(
H0(OPn(d)

)
− dimPGL(n+ 1) =

Ç
n+ d

d

å
− (n+ 1)2

Then, one has to exhibit a suitable (partial) resolution ϕ : “Y ∨ −→ Y ∨ to
compute k“Y ∨

and make the required comparison with mYd . Both the con-
struction of ϕ and the computation of Hodge numbers, in particular of
h1(Ω̂“Y ∨

) = k“Y ∨
, are quite tricky. For d = n+ 1 this is a particular case of

Batyrev’s results on toric Calabi-Yau hypersurfaces [4]. But this is not the
case for d = n+ δ with δ ≥ 2. For this reason, we just anticipate here a
statement resuming results whose proof will be deferred to the forthcoming
paper [46], where this kind of construction and calculation will be performed
in the more general context of complete intersections in toric varieties.

Theorem 5.13. Let Y ∨ be the generic hypersurface of Xa0
in the linear

system |D′
b0
| whose defining polynomial is f∨ ∈ Cox(Xa0

). There exists a

possibly partial (depending on δ ≥ 1) resolution ϕ : X̂a0
−→ Xa0

such that
the transformed hypersurface

(65) “Y ∨ := ϕ−1(Y ∨)

defined as the zero-locus of ϕ∗(f∨) ∈ Cox(X̂a0
), is either quasi-smooth or

smooth (depending on δ ≥ 1) and

h1,1
Ä“Y ∨
ä
= k“Y ∨

= mn
d

That is, recalling Definition 3.5, the generic Y ∨ ⊂ Xa0
is a B-mirror partner

of the generic hypersurface Yd ⊂ Pn. Recalling Theorem 5.3, this means that
(Yd, Y

∨) is a pair of topologically mirror partners.

6. Extending the duality to complete intersections

in toric varieties

The present section is devoted to extending f -duality to families of complete
intersection varieties in a fixed toric variety X, keeping in mind §3 and how
Borisov generalized the Batyrev duality [11], [6].

Definition 6.1. Let (X,Da =
∑m

j=1 ajDj) be a ftv and V = (v1 · · · vm)
be a fan matrix of X, wherem = n+ r, recalling notation §1.5.1. A partition
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of the framing Da is the datum of a partition

∃ l ∈ N : I1 ∪ · · · ∪ Il = {1, . . . ,m} , ∀ i Ii ̸= ∅ , ∀ i ̸= j Ii ∩ Ij = ∅

and divisors Da1
, . . . , Dal such that

∀ k = 1, . . . , l Dak :=
∑

i∈Ik

aiDi

Clearly Da =
∑l

k=1Dak , that is, a =
∑l

k=1 ak .

The ftv (X,Da) with a framing partition a =
∑l

k=1 ak is called a partitioned

ftv and denoted by (X,a =
∑l

k=1 ak) .

6.1. f-process for complete intersections

Given a partitioned ftv

(X,Da =

l∑

k=1

Dak)

consider the following algorithm (proofs of details are deferred to the forth-
coming paper [46]).

6.1.1. The partitioned f-process algorithm.

1) Let ∆a and ∆a1
, . . . ,∆al be the polytopes associated with divisors Da

and Da1
, . . . , Dal , respectively, that is

∆a = {m ∈MR |V T ·m ≥ −a}

∀ k = 1, . . . , l ∆ak = {m ∈MR |V T ·m ≥ −ak}

In particular, it turns out that

(66)

l⋂

k=1

∆ak = {0} and ∆a =

l∑

k=1

∆ak

where the sum denotes the Minkowski sum of polytopes.
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2) Define

Ù∆a := Conv(∆a1
, . . . ,∆al) ⊂MR

Clearly Ù∆a ⊆ ∆a and relations (66) suffices to show that 0 ∈ Int(Ù∆a),
[46]. Recalling Definition 2.2, relations (66) still hold for multiple poly-
topes k0∆a and k0∆a1

, . . . , k0∆al , so giving that

l⋂

k=1

[k0∆ak ] = {0} and 0 ∈ Int(∆(X,a))

since ∆(X,a)=[
∑l

k=1 k0∆ak ]. Then 0∈ Int(Ù∆(X,a)), being Ù∆(X,a) :=

[k0Ù∆a] , [46].

3) Set

ÛXa := XÙΣa

where ÛΣa := ΣÙ∆(X,a)

and let ÛΛa ∈ M(n× Ùm;Z) be a fan matrix of ÛXa , where Ùm = |ÛΣ(1)|.
Notice that ÛXa is a complete toric variety, by Proposition 1.4.

4) For every k = 1, . . . , l, set mk := |Ik| and consider the matrix

ıMak := (VIk)
T · ÛΛa ∈ M(mk × Ùm;Z)

and let bk = (bjk)
Ùm
j=1 be the minimum non-negative column vector

such that

ıMT
ak

+Bk ≥ 0 where Bk := (bk · · · bk )︸ ︷︷ ︸
mk times

∈ M(Ùm×mk,N)

Then, define Ûb :=
∑l

k=1 bk . Calling
ÙD1, . . . , ÙDÙm the torus invariant

generators of WT (ÛXa), there is a unique induced partition

J1 ∪ · · · ∪ Jl = {1, . . . ,Ùm}

such that
ÄÛXa, ÙDÛb =

∑l
k=1
ÙDbk

ä
, with ÙDbk :=

∑
j∈Jk

bjkÙDj , is a par-

titioned ftv, [46].



✐

✐

“9-Rossi” — 2023/3/24 — 1:54 — page 1515 — #67
✐

✐

✐

✐

✐

✐

Extended duality of toric varieties and Mirror Symmetry 1515

5) Analogously to step (1), let ∆Ûb and Ù∆b1
, . . . ,Ù∆bl be the polytopes

associated with divisors ÙDÛb and ÙDb1
, . . . , ÙDbl , respectively, that is

∆Ûb = {n ∈ NR | ÛΛTa · n ≥ −Ûb}
∀ k = 1, . . . , l Ù∆bk = {n ∈ NR | ÛΛTa · n ≥ −bk}

Then

(67)

l⋂

k=1

Ù∆bk = {0} and ∆Ûb =

l∑

k=1

Ù∆bk

6) Analogously to step (2), define

Ù∆Ûb := Conv(Ù∆b1
, . . . ,Ù∆bl) ⊂ NR

Clearly Ù∆b ⊆ ∆Ûb and relations (67) ensure that 0 ∈ Int(Ù∆Ûb). Then,
(67) still holds for multiple polytopes h1∆Ûb and h1Ù∆b1

, . . . , h1Ù∆bl , so
giving that

l⋂

k=1

[h1Ù∆bk ] = {0} and 0 ∈ Int(∆(ÛXa, Ûb))

since ∆(ÛXa, Ûb) = [
∑l

k=1 h1
Ù∆bk ], where h1 is defined as the minimum

positive integer such that 0 ∈ Int([h1∆Ûb]). Then 0 ∈ Int(Ù∆(ÛXa, Ûb)),
being

Ù∆(ÛXa, Ûb) := [h1Ù∆Ûb]
7) Analogously to step (3), set

ÛXÛb := XÙΣÛb where ÛΣÛb := ΣÙ∆(ÛXa,Ûb)

and let ÛΛÛb ∈ M(n× ‹m;Z) be a fan matrix of ÛXÛb , for some ‹m ∈ N . As

above, ÛXÛb is a complete toric variety, by Proposition 1.4.

8) Analogously to step (4), for every k = 1, . . . , l, set Ùmk := |Jk| and con-
sider the matrix

ıM
ak,Ûb :=

Ä
(ÛΛa)Jk

äT
· ÛΛÛb ∈ M(Ùmk × ‹m;Z)
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and let ck = (cj,k)
‹m
j=1 be the minimum non-negative column vector

such that

ıMT
ak,Ûb + Ck ≥ 0 where Ck := ( ck · · · ck )︸ ︷︷ ︸

Ùmk times

∈ M(‹m× Ùmk,N)

Then, (ÛXÛb,Ûc :=
∑l

k=1 ck) is a partitioned ftv, whose partitioned fram-

ing is given by ‹DÛc =
∑‹m

j=1 cjk
‹Dj , calling ‹D1, . . . , ‹D‹m the torus invari-

ant generators of WT (ÛXÛb).

Definition 6.2 (partitioned f-process). Following the previous algo-

rithm 6.1.1, the partitioned ftv (ÛXa, Ûb =
∑l

k=1 bk), is called a partitioned

f -dual of (X,a =
∑l

k=1 ak).
A double application of partitioned f -duality defines a partitioned f -process

(68)

(
X,a =

l∑

k=1

ak

)
⇝

(
ÛXa, Ûb =

l∑

k=1

bk

)
⇝

(
ÛXÛb,Ûc =

l∑

k=1

ck

)

which is called calibrated if there exist Ξ ∈ SF(V ) and Ξ′ ∈ SF(ÛΛÛb), refining
Σ and ÛΣÛb, respectively, such that

Ä“X,φ∗Da

ä
∼=
Ä“X ′, (φ′)∗‹DÛc

ä

are isomorphic framed toric varieties, where

φ : “X(Ξ) −→ X(Σ) and φ′ : “X ′(Ξ′) −→ ÛXÛb(ÛΣÛb)

are the small resolutions associated with the choice of Ξ and Ξ′, respectively.

The following characterization of a calibrated partitioned f -process is a
direct consequence of Theorem 2.17.

Proposition 6.3. In the above notation, up to identifying latticesM (hence

N) of X and ÛXÛb, the partitioned f -process (68) is calibrated if and only if

ÛΛÛb = V up to a permutation of columns

∀ k = 1, . . . , l ck = ak(69)
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Definition 6.4 (f-mirror of a complete intersection). Given the par-
titioned ftv (X,a =

∑l
k=1 ak), assume that the associated partitioned f -

process (68) is calibrated. Consider the complete intersection subvariety

Y :=

l⋂

k=1

Yk ⊂ X with Yk ∈ |Dak |

The generic complete intersection subvariety

Y ∨ :=

l⋂

k=1

Y ∨
k ⊂ ÛXa with Yk ∈ |ÙDbk |

is called a f -mirror partner of Y .

Remark 6.5. If l = 1, that is, the partition is trivial, the f -mirror duality
defined by the previous Definition 6.4 reduces to give the f -mirror duality
between hypersurfaces in toric varieties defined in Definition 3.1.

Remark 6.6. This is the analogue of what described by Remark 3.2 when
l = 1.
One can explicitly describe the defining polynomials of both Y and Y ∨ in
the Cox rings of X and ÛXa, respectively. Namely:

(a) for every k = 1, . . . , l, the lattice polytope [∆ak ] is the Newton polytope
of Yk ∈ |Dak |; call Λak a matrix whose columns are given by all the
lattice points in [∆ak ]: it is well defined up to a permutation of columns;
setting lk := |∆ak ∩M |, then Λak is a n× lk integer matrix; define

Mak := V T · Λak and Ak := (ak · · · ak )︸ ︷︷ ︸
lk times

∈ M(m× lk;N) ;

then the polynomial of Yk is given by

fk =

lk∑

j=1

cjx
mj ∈ Cox(X) ∼= C[x1, . . . , xm]

where mj = (mi,j) is the j-th column of Mak +Ak and xmj :=∏m
i=1 x

mi,j

i ;

(b) recalling step (5) in the algorithm 6.1.1, the lattice polytope [Ù∆bk ] is

the Newton polytope of Y ∨
k ∈ |ÙDbk |; call Λbk a matrix whose columns
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are given by all the lattice points in [Ù∆bk ]; setting l′k := |Ù∆bk ∩N |,
then Λbk is a n× l′k integer matrix; define

Ma,bk :=
ÛΛTa · Λbk and Bk := (bk · · · bk )︸ ︷︷ ︸

l′k times

∈ M(Ùm× l′k;N) ;

then the polynomial of Y ∨
k is given by

f∨k =

l∑

j=1

cjx
nj ∈ Cox(ÛXa) ∼= C[x1, . . . , xÙm]

where nj = (ni,j) is the j-th column of Ma,bk +Bk and xnj :=∏Ùm
i=1 x

ni,j
i .

Notice that, for every k, both fk and f
∨
k are homogeneous polynomials, with

respect to degrees induced by class groups. In fact, columns of both Mak

and Ma,bk determine trivial divisors, up to linear equivalence. Then

deg(fk) = [Dak ] ∈ Cl(X) and deg(f∨k ) = [ÙDbk ] ∈ Cl(ÛXa)

6.2. Generalizing Batyrev-Borisov duality

Definition 6.4 is clearly motivated by the case when X is a Fano toric variety
and a = 1, that is Da = −KX . In fact, in this case a framing partition
a =

∑l
k=1 ak such that Dak is a nef divisor, for every k = 1, . . . , l, is precisely

a Borisov nef partition of the anti-canonical divisor [11, Def. 2.5, Rem. 2.6],
[6, Def. 4.6]. In this case, f -duality reduces to give the well known Batyrev-
Borisov mirror symmetry between Calabi-Yau complete intersections in Fano
toric varieties.

Example 6.7. To fix ideas, an easy example is presented here. Consider
the partitioned ftv

(
X,a =

l∑

k=1

ak

)
=
(
P2, (1, 1, 2) = (1, 0, 0) + (0, 1, 2)

)

where weights of the partition are referred to primitive generators of the
1-skeleton of the fan defining P2 and given by columns of the fan matrix

V =

Å
1 0 −1
0 1 −1

ã
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Figure 3: The calibrated partitioned f -process of Example 6.7.

Notice that the framing partition (1, 1, 2) = (1, 0, 0) + (0, 1, 2) is actually a
nef partition, as both of the summands give back nef divisors. We are then
considering a generic complete intersection Y ⊂ P2 of a line and a cubic
(hence 3 points) whose equations are given by Newton polytopes (step (1)
in algorithm 6.1.1)

∆a1
:= Conv(Λa1

) , Λa1
:=

Å
0 −1 −1
0 1 0

ã

∆a2
:= Conv(Λa2

) , Λa2
:=

Å
3 0 0
−1 2 −1

ã

Notice that ∆a = ∆a1
+∆a2

(see Fig. 3).
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By part (a) in Remark 6.6, polynomials defining Y are then given by

Ma1
+A1 = V T · Λa1

+
(
a1 a1 a1

)
=

Ñ
1 0 0
0 1 0
0 0 1

é

=⇒ f1 = a1x1 + a2x2 + a3x3

Ma2
+A2 = V T · Λa2

+
(
a2 · · · a2

)
︸ ︷︷ ︸

10 times

=

Ñ
0 1 0 2 1 0 3 2 1 0
3 2 2 1 1 1 0 0 0 0
0 0 1 0 1 2 0 1 2 3

é

=⇒ f2 = b1x
3
2 + b2x1x

2
2 + b3x

2
2x3 + b4x

2
1x2 + b5x1x2x3

+b6x2x
2
3 + b7x

3
1 + b8x

2
1x3 + b9x1x

2
3 + b10x

3
3

Then, generically, Y is given by 3 distinct aligned points.
A mirror partner Y ∨ of Y is determined by part (b) in Remark 6.6. Namely,
by step (2) in algorithm 6.1.1, one has

Ù∆a := Conv (∆a1
,∆a2

) = Conv

Å
−1 −1 3 0 0
1 0 −1 2 −1

ã

Then, passing to step (3), one has

ÛΛa =

Å
−1 −1 3 0 0
1 0 −1 1 −1

ã

and this is enough to determine the fan ÛΣa of ÛXa. In particular, an easy
check gives that ÛXa is the blow up of P(1, 2, 1) in two distinct points.
Step (4) in algorithm 6.1.1 allows us to compute the partitioned framing
Ûb = b1 + b2 over ÛXa. Namely

ıMT
a1

= ÛΛTa ·

Å
1
0

ã
=

à
−1
−1
3
0
0

í

=⇒ b1 = (1, 1, 0, 0, 0)

ıMT
a2

= ÛΛTa ·

Å
0 −1
1 −1

ã
=

à
1 0
0 1
−1 −2
1 −1
−1 1

í

=⇒ b2 = (0, 0, 2, 1, 1)
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Then, step (5) gives polytopes associated with divisors ÙDÛb, ÙDb1
, ÙDb2

, namely

Ù∆b1
= Conv

Å
1 0
0 0

ã

Ù∆b2
= Conv

Å
0 0 −1 −1/3
0 1 −1 1

ã

∆Ûb = Conv

Å
1 1 0 −1/3 −1
0 1 −1 1 −1

ã

Notice that ∆Ûb = Ù∆b1
+ Ù∆b2

. By a direct check (use e.g. [52, Thm. 3]), divi-

sors ÙDÛb, ÙDb1
and ÙDb2

turn out to be semi-ample and line bundles OÛXa

(3ÙDÛb),
OÛXa

(ÙDb1
) and OÛXa

(3ÙDb2
) be globally generated.

Passing to step (6) one gets

Ù∆Ûb := Conv(Ù∆b1
,Ù∆b2

) = Conv

Å
1 0 −1 −1/3
0 1 −1 1

ã

Therefore [Ù∆Ûb] = Conv(V ), so giving ÛΛÛb = V , up to a permutation on
columns, which is the first condition in (69). To check the second one, by
step (8) one gets

ıMT
a1,Ûb = V T · Λa1

=

Ñ
0 −1 −1
0 1 0
0 0 1

é
=⇒ c1 = (1, 0, 0) = a1

ıMT
a2,Ûb = V T · Λa2

=

Ñ
3 0 0
−1 2 −1
−2 −2 1

é
=⇒ c2 = (0, 1, 2) = a2

and the partitioned f -process associated with (P3, (1, 0, 0) + (0, 1, 2)) turns
out to be calibrated. Then, recalling part (b) of Remark 6.6, polynomi-

als defining the mirror partner Y ∨ are given, in the Cox ring Cox(ÛXa) ∼=
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C[x1, . . . , x5], by

Ma,b1
+B1 = ÛΛTa ·

Å
1 0
0 0

ã
+
(
b1 b1

)
=

à
0 1
0 1
3 0
0 0
0 0

í

=⇒ f∨1 = a1x
3
3 + a2x1x2

Ma,b2
+B2 = ÛΛTa ·

Å
0 −1 0
1 −1 0

ã
+
(
b2 b2 b2

)
=

=

à
1 0 0
0 1 0
1 0 2
2 0 1
0 2 1

í

=⇒ f∨2 = b1x1x3x
2
4 + b2x2x

2
5 + b3x

2
3x4x5

Therefore Y ∨ = Y ∨
1 ∩ Y ∨

2 ⊂ ÛXa, where Y ∨
1 is an hypersurface of degree

(3, 3, 0) ∈ Cl(ÛXa) and Y
∨
2 is an hypersurface of degree (2, 3, 2) ∈ Cl(ÛXa).

6.3. Mirroring projective complete intersections

After Theorem 4.1 and Corollary 4.3, one may expect that analogous state-
ments could still hold for suitable partitioned framed projective spaces and
projective complete intersections. This is actually the case, holding the fol-
lowing

Theorem 6.8. Let Yd =
⋂
k Ydk ⊆ Pn be a complete intersection of l generic

projective hypersurface, of degree (d1, . . . , dl) such that
∑

k dk ≥ n+ 1. Then
there always exists a partitioned framing a =

∑
k ak of Pn such that Ydk ∼

Dak , for every k, and the associated partitioned f -process is calibrated.

For the proof and any further detail, the interested reader is referred to
[46].

7. Weakly framed toric varieties and the work of Givental

In Definition 2.1 we asked for a framing to be a strictly effective divisor. This
is motivated by the will to get an involutive duality between pairs of framed
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toric varieties (recall Remark 2.11). On the other hand, Givental’s approach
[28] produces mirror partners of complete varieties admitting non-negative
first Chern class, by means of LG models, so introducing a strong asymmetry
in the mirror correspondence, with respect to the Calabi-Yau case. Actually
he proved a Mirror Theorem in the case of toric complete intersections [29].
Consequently, we are led to relax the definition of a framing, just requiring
it is nothing more than an effective divisor. In this way, one gets a bridge
between Givental’s LG mirror models and those proposed by Hori-Vafa [35]
for varieties admitting negative first Chern class, represented by the Krawitz
duality of Laurent LG models described § 3.6. To get a complete vision of
this unifying construction the reader should compare what follows with § 3.6
and § 5.2.

Definition 7.1 (Weakly framed toric variety (wftv)). A weakly framed
toric variety is a couple (X,Da) (also denoted (X,a)) where:

• X is a complete toric variety, with dim(X) = n and rk(Pic(X)) = r,

• D =
∑

ρ∈Σ(1) aρDρ =
∑m

i=1 aiDi ∈ WT (X), with m = n+ r, is an ef-
fective torus invariant Weil divisor, called a weak framing of X.

By Proposition 1.2, the associated polyhedron ∆a is still a polytope, but
in general 0 ∈M is no more a relative interior point of ∆a, but just a lattice
point of ∆a. Recalling Definition 2.2, define the f -polytope associated with
a wftv (X,a) to be the following

∆(X,a) := [∆a] =⇒ Xa := X∆(X,a) = X[∆a]

If a is a weak framing and not a framing, that is ai = 0 for some i, then
0 ∈ ∂[∆a] and the toric variety Xa over the polytope ∆(X,a) is no more
complete. We cannot hope to reconstructing a mirror wftv of (X,a). By the
way, we can adopt the Givental’s asymmetry and thinking of Xa, endowed
with a sort of framing we are going to define in a moment, in terms of LG
mirror model. More precisely, calling Λa the fan matrix of Xa, obtained by
the f -polytope ∆(X,a) as in Proposition 1.4, and recalling (15), let us define
the mirror framing as the minimum non-negative column vector b = (bj)

m′

j=1

(i.e. effective divisor D′
b ∈ WT (Xa)) such that

(70) MT
a +B ≥ 0 where B := (b · · · b )︸ ︷︷ ︸

m times

∈ M(m′ ×m;N)



✐

✐

“9-Rossi” — 2023/3/24 — 1:54 — page 1524 — #76
✐

✐

✐

✐

✐

✐

1524 Michele Rossi

being V a fan matrix of X and Ma := V T · Λa ∈ M(m×m′;Z), as usual.
One can now go on as in §3.6.1, by setting:

• Ta
∼= (C∗)n be the maximal acting torus on Xa,

• f∨b := f∨/xb ∈ C[x,x−1], where f∨ is the generic polynomial given in
(29), generated by the columns of the matrix Ma,b +B, with

(71) Ma,b := ΛTa · V

Then f∨b is the generic polynomial generated by the columns of the
matrix Ma,b.

Remark 7.2. Notice that definition (71) of Ma,b differs from that given
in display (18) in §2.1.2, namely Ma,b := ΛTa · Λb. In fact, if a is not strictly
effective then Xa is not complete and ∆b is a polyhedron and not a polytope.
Then Xb and Λb are not well defined. Nevertheless, if (X,a) is a ftv admit-
ting a calibrated f -process then Λb = V , up to a permutation of columns,
and the two definitions coincide.

Definition 7.3. Given a wftv (X,a), let f be the generic polynomial
constructed as in (28) and generated by the columns of Ma +A, and let
Y ∈ |Da| be the hypersurface defined by f . Then:

1) the hypersurface Y ∨ ⊂ Xa defined by the generic polynomial f∨ is
called an f -mirror partner of Y ,

2) the LG model given by (Ta, f
∨
b ) is called a f -mirror LG model of Y .

7.1. Mirror partners of hypersurfaces of degree d ≤ n in Pn

Passing from a framing to a weak framing, that is, dropping the word
“strictly”, explains why one cannot expect a complete mirror model for toric
hypersurfaces (and complete intersections, adapting to a weak framing what
described in §6) associated with a weak framing. The LG mirror model given
in Definition 7.3 shares interesting similarities to the LG mirror model pro-
posed by Givental. Here we consider, e.g., the case of hypersurfaces Yd ⊂ Pn

of degree d ≤ n, for sake of completeness with respect to what analyzed in
§5. The same result can be extended to projective complete intersections:
for further details, the interested reader is referred to the forthcoming paper
[46].
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Theorem 7.4. For every d = 1, . . . , n, set ad := (1d,0n+1−d) and consider
the wftv (Pn,ad). Then

(72) ∆(Pn,ad) = [∆ad ] = ∆ad

is the Newton polytope of the generic degree d homogeneous polynomial in
C[x], whose zero-locus defines the generic hypersurface Yd ⊂ Pn. Moreover,
Xad is a non-complete toric variety and

1) an f -mirror partner of Yd is given by the hypersurface Y ∨
d of Xad

defined, up to a variables rescaling, as the zero-locus of

f∨1 =

n∏

i=1

xi ·

(
ψ +

n∑

i=1

xi

)
+ 1 ∈ Cox(Xa1

) ∼= C[x1, . . . , xn]

if d = 1, being Xa1

∼= Cn

f∨d =

n+1∏

k=1

xk ·

Ñ
ψ +

n+1∑

j=d+1

xdj

é
+

d∑

i=1

xdi ∈ Cox(Xad)
∼= C[x1, . . . , xn+1]

if 2 ≤ d ≤ n

where ψ ∈ C is the unique complex modulus of the mirror family, so
giving an A-side mirror check, as h1,1(Yd) = 1,

2) an f -mirror LG model of Yd is given by (Tad , f
∨
bd
), where Tad

∼= (C∗)n

is the maximal acting torus on Xad and

f∨bd =

®
ψ +

∑n
i=1 xi + 1/

∏n
i=1 xi if d = 1

ψ +
∑n+1

j=d+1 x
d
j +
Ä∑d

i=1 x
d
i

ä
/
∏n+1
k=1 xk if 2 ≤ d ≤ n

In particular, the LG mirror model proposed in (2) is a re-parameterization
of the Givental’s one, so giving a complete set of solutions of the Picard-
Fuchs differential system controlling the quantum variation of Hodge struc-
ture on Yd .

Proof. Equalities (72) are immediately obtained by definitions.



✐

✐

“9-Rossi” — 2023/3/24 — 1:54 — page 1526 — #78
✐

✐

✐

✐

✐

✐

1526 Michele Rossi

Assume now d = 1. Then

Λa1
=

â
−1 −1 · · · −1 −1
1 0 · · · 0 0
0 1 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 1 0

ì

=

Å
−1n

In−1 0Tn−1

ã
∈ M(n, n;Z)

Then Xa1

∼= Cn is affine and Cox(Xa1
) ∼= C[x1, . . . , xn]. Moreover, (70) gives

MT
a1

= ΛTa1
· V =

(
−1Tn In

)
=⇒ b1 = 1n =⇒ xb1 =

n∏

i=1

xi

Ma1,b1
+B = ΛTa1

· V +B

=

à
1 0 2 1 · · · 1
...

... 1 2 · · · 1
...

...
...

. . .
. . .

...
1 0 1 · · · 1 2

í

∈ M(n, n+ 2;Z)

=⇒ f∨1 =

n∏

i=1

xi ·

(
ψ +

n∑

i=1

xi

)
+ 1 (up to a variables rescaling)

=⇒ f∨b1
= ψ +

n∑

i=1

xi +
1∏n
i=1 xi

Assume now 2 ≤ d ≤ n. Then

Λad =

Å
−1d,n+1 + (dId 0d,n+1−d)

0n−d,d dIn−d 0Tn−d

ã
∈ M(n, n+ 1;Z)

and Cox(Xad)
∼= C[x1, . . . , xn+1]. Moreover, (70) gives

MT
ad

= ΛTad · V =

Å
−1d,d + dId 0d,n+1−d

−1n+1−d,d dIn+1−d

ã

=⇒ bd = 1n+1 =⇒ xbd =

n+1∏

k=1

xk
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Mad,bd +B = ΛTad · V +B =

Å
1Td dId 1d,n+1−d

1Tn+1−d 0n+1−d,d (d+ 1)In+1−d

ã

=⇒ f∨d =

n+1∏

k=1

xk ·

Ñ
ψ +

n+1∑

j=d+1

xdj

é
+

d∑

i=1

xdi

(up to a variables rescaling)

=⇒ f∨bd = ψ +

n+1∑

j=d+1

xdj +

∑d
i=1 x

d
i∏n+1

k=1 xk

To prove the last sentence of the statement, recall Givental’s notation in [28,
Thm. 5] and consider the following re-parameterization of Givental variables
u1, . . . , uN , q, by setting N = n+ 1 and

for d = 1, ui =

{
xi/ψ for 1 ≤ i ≤ N − 1

1/
Ä
ψ
∏n
j=1 xj

ä
for i = N

(73)

for 2 ≤ d ≤ n, ui :=

{
xdi /
Ä
ψ
∏n+1
j=1 xj

ä
for 1 ≤ i ≤ d

xdi /ψ for d+ 1 ≤ i ≤ N

q := ψ−N

The Givental LG model is given by the superpotential

F : CN −→ C , F (u) :=

N∑

i=1

ui = (1/ψ)f∨bd − 1

restricted to the torus fibration

π : CN −→ C , π(u) :=

N∏

i=1

ui = q

Setting, in Givental’s notation,

ωq :=
du1 ∧ · · · ∧ duN

dq

a complete set of solutions of the Picard-Fuchs differential system controlling
the quantum VHS on Yd is described by the oscillating integrals

I(log q) =

∫

Γ⊂π−1(q)
ωqe

F (u)/ℏ
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Γ being cycles related to critical points of either F |π−1(q). Then, we get the
following re-parameterized solutions

I = e−1/ℏ

∫

Γ⊂Tad

ωψe
f∨

bd
/ℏψ

where ωψ is the re-parameterization of ωq by means of relations (73), and Γ
are now cycles related with critical points of f∨bd . □

Remark 7.5. Notice that for d ≥ 2, Xad is covered by at least two open
affine subsets. In particular, f∨d restricted to one such open affine subset
becomes of the same shape as f∨1 , that is, setting e.g. x1 = 1, one gets

f∨d |{x1=1} =

n+1∏

k=2

xk ·

Ñ
1 +

n+1∑

j=d+1

xdj

é
+ 1 +

d∑

i=2

xdi

=

n∏

i=1

yi ·

(
1 +

n∑

i=1

ydi

)
+ 1 +

d−1∑

i=1

ydi

by setting yi = xi+1. In particular, imposing d = 1, the right hand side gives
f∨1 (y).

Moreover, for d ≥ n+ 1, the construction above is precisely the one al-
ready analyzed in §5.

Remark 7.6. If d = 1 then Yd ∼= Pn−1 embedded in Pn by setting x1 = 0.
One can then check the relation between the LG mirror model ((C∗)n, f∨b1

)
given in Theorem 7.4 and the Givental’s LG mirror model as given, e.g.,
in the Introduction of [32] and in Ex. 2.2 of [38]. In particular, the LG
model here presented turns out to be the section xn+1 = 1 of the LG model
presented in [32], after the dimensional correction needed to comparing the
two constructions. Moreover, the LG model presented in [38] is, up to a
translation by 1 + ψ, the section xn = 1 of the one here presented.

8. Further examples, remarks and open problems

This final section is devoted to collect a series of suggestions and perspectives
coming from the previous treatment of f -duality and the induced mirror
web, which will be the main object of forthcoming works. Let us first of all
recall, in order of appearance, main problems that arose earlier.
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1) Understanding the generalized Krawitz duality and LG/Hypersurfaces
correspondence as sketched in §3.6.1 and in particular Remark 3.17.

2) By §3.7, understanding relations between f -duality, log geometry and
Intrinsic Mirror Symmetry in the sense of the Gross-Siebert program.

3) Conjecture 5.6 and, more in general, the HMS implications of f -duality,
taking into account the previous items, as observed in Remark 5.7. As
a starting point in proving equivalence of multiple mirror models here
and elsewhere proposed, one could consider the work by Doran, Favero
and Kelly [22], [24].

4) Check several MS instances, among those listed in §3.2, for some fur-
ther examples of hypersurfaces and complete intersections in toric va-
rieties.

In the following, we present some further interesting remark and related
problems.

8.1. What happens when the f-process is not calibrated?

Recalling Definition 2.14, assume that the f -process

(X,a)
f−dual
⇝ (Xa,b)

f−dual
⇝ (Xb, c)

is not calibrated. This fact means that f -duality cannot be involutive or, in
other words, that it is asymmetric: this is not a new situation, as for instance
the case of the Givental’s Fano/LG model correspondence and, more in
general, as for f -duality on a weakly framed toric variety just considered in
the previous §7.1.

Le us then assume, by definition as done in Definition 2.8, that:

• (Xa,b) is the f -dual ftv of (X,a) and (Xb, c) is the f -dual ftv of
(Xa,b).

Calling Y, Y ′, Y ′′ the generic hypersurfaces in |Da|, |D
′
b|, |D

′′
c |, respectively,

many questions are naturally arising.

1) Is there a relation between (X,a) and (Xb, c) ? For instance, is there
a birational map f : Xb 99K X such that D′′

c = f−1(Da) ? If not, may
a similar birational transformation relate (X,a) with the final ftv ob-
tained after a finite and even number of f -dual passages?
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2) Recalling §3.2, which mirror symmetric aspects relate hypersurfaces in
the ordered pairs (Y, Y ′) and (Y ′, Y ′′) ?

3) Is there a relation linking Y and Y ′′? For instance, is it true that

hp,q(“Y ) = hp,q(“Y ′′) for suitable resolutions “Y −→ Y and “Y ′′ −→ Y ′′ ?
Are they equivalent from the HMS point of view?

The present paper is already too long to start analyzing these and related
problems, but they are interesting questions to be settled in future works.

8.2. Generalized complete intersections, BH-transpolarity and
f-duality

Recently, physicists Anderson et al. [1] described a method to produce ex-
amples of new Calabi-Yau varieties which are not compete intersections. The
basic idea is taking an hypersurface (or complete intersection) Y in an ambi-
ent variety P and then considering hypersurfaces (or complete intersections)
X in Y for which there need not exist sections of two (or r + s, resp.) line
bundles on P whose common zero locus is X. The Calabi-Yau condition is
resumed by a constraint on involved degrees of Y and X: hence it is not an
essential tool of the geometric construction of these varieties, called gener-
alized complete intersections (gCI). This method has been further studied
by Berglund and Hübsch [10] and rigorously (and nicely) explained in coho-
mological terms, in the basic case r = s = 1, by mathematicians Garbagnati
and Van Geemen [27], who presented X as the zero locus of a global section
ξ of a suitable negatively twisted line bundle on P , restricted to Y .
In their preprint [8], Berglund and Hübsch conjecturally describe a method
to extending Batyrev-Borisov mirror duality on Calabi-Yau complete inter-
sections to that kind of generalized Calabi-Yau complete intersections, by
means of a, so called, trans-polarity between VEX polytopes, that is, a sort
of a finite patching of Batyrev-Borisov dualities on convex pieces composing
a not necessarily convex polytope, arising as the Newton polytope associ-
ated with the global section ξ ([8, §3]). Very recently, T. Hübsch pointed
me out (private communication) that, dropping Calabi-Yau condition in the
above mentioned transpolarity may correspond to replacing BB-duality on
the convex pieces by f -duality. This observation opens interesting, although
possibly intricate, perspectives to extending f -duality to generalized com-
plete intersections in a toric ambient variety P .
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8.3. Toric degeneration: extending f-duality via geometric
transitions

Following Batyrev’s ideas given in [5] (see also [47, §6.3]), since f -mirror
partners come in families, one can easily extend the f -mirror definition to
complete algebraic varieties admitting a toric degeneration.

Definition 8.1. Let Y be a smooth and complete algebraic variety isomor-
phic to the generic fiber of a flat family y : Y −→ B, endowed with a special
point 0 ∈ B such that Y0 := y−1(0) is isomorphic to a complete intersection
subvariety of a complete toric variety X(Σ), determined by a nef-partitioned
framing Da =

∑
kDak of X: Y0 is called a toric degeneration of Y . Assume

that the nef-partitioned process associated to (X,a) is calibrated. Then the
generic complete intersection Y ∨

0 , giving a f -mirror partner of Y0, is also an
f -mirror partner of Y .

Conjecture 8.2. In the same notation of the previous Definition 8.1, there
exists a partitioned ftv (X,a =

∑
k ak) and a suitable resolution “Y ∨

0 −→ Y ∨
0

such that the f -mirror partner Y ∨
0 of Y is a topological mirror partner of

Y , that is,

k“Y ∨

0

= mY and kY = mY ∨

0

Notice that, calling “Y0 −→ Y0 a resolution of singularities, the process

(74) “Y0 // Y0 oo // Y

is a geometric transition (see [47, Def. 1.4] for a definition, here considered
in a broader sense, beyond the Calabi-Yau setup). Recalling Morrison’s ar-
gumentation given in [42] (see also [47, §6.2]), the extension of Batyrev’s
mirror duality, given by f -mirror duality, allows one to formulate, beyond
the Calabi-Yau setup, the following

Conjecture 8.3 (of reverse transition). Under notation given in Defi-
nition 8.1 and Conjecture 8.2, and given the geometric transition (74), there
should exist a reverse geometric transition

“Y ∨
0

// Y ∨
0

oo // Y ∨

such that Y0 is a topological mirror partner of Y ∨, that is,

k“Y0
= mY ∨ and kY ∨ = mY0
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In particular, Y ∨
0 is a toric degeneration of Y ∨, meaning Y ∨ is isomorphic

to the generic fiber of a flat family y∨ : Y∨ −→ B∨, endowed with a special
point 0∨ ∈ B∨ such that (y∨)−1(0∨) ∼= Y ∨

0 .

Remark 8.4. Following the lines given in [5], in the Calabi-Yau setup, ex-
amples satisfying Conjecture 8.3 are constructed by means of the monomial-
divisor correspondence [3]. More or less, the same argumentation may be ex-
tended beyond the Calabi-Yau setup. In fact, the meaning of the monomial-
divisor correspondence is that of the differential of the mirror map. Assume
that there exist well defined isomorphisms (actually differentials of mirror
maps)

µA : KY
∼= //MY ∨

0
, µ′B : K“Y0

∼= //MY ∨

where KY ,K“Y0
are the tangent spaces to the Kähler moduli spaces of Y

and “Y0, respectively, and analogously MY ∨

0
,MY ∨ are the tangent spaces to

the complex moduli speces of Y ∨
0 and Y ∨, respectively: assume all of them

are well defined! The isomorphism µA comes from the A-side topological
mirror symmetry of (Y, Y ∨

0 ) and the isomorphism µ′B comes from the B-
side topological mirror symmetry of (Y ∨, Y0) (recall Definition 3.5). The
geometric transition (74) induces an inclusion KY →֒ K“Y0

, via the inclusion
of the associated Picard groups. Therefore, the subspace µ′B(KY ) ⊂MY ∨

defines a first-order deformation of Y ∨ which should give rise to the toric
degeneration to Y ∨

0 .

8.4. General hyperelliptic curve

The only examples of toric subvarieties considered throughout the present
paper are hypersurfaces and complete intersections in some projective space.
The present subsection is devoted to consider a general hyperelliptic curve of
genus g ≥ 2 as presented in [37, §4.1], that is, a divisor Y , of bi-degree (2, g +
1), in the Hirzebruch surface F0 = P(OP1 ⊕OP1). The latter is a toric variety
of Picard number r = 2, hence a substantially different example from the
case of Pn. The reader is warmly invited to compare the f -mirror (complete)
model here proposed with Landau-Ginzburg mirror models proposed in [37]
and, for g = 2, in [54], and, moreover, for the case of a general curve of genus
g ≥ 2 in [23], generalizing Seidel’s approach.

A fan matrix of F0 is given by

V =

Å
1 −1 0 0
0 0 1 −1

ã
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and a framing Da of bi-degree (2, g + 1) is given, e.g., by a = (1, 1, 1, g).
Then

Λa =

Å
1 1 −1 −1
g −1 g −1

ã
=⇒ ∆a = Conv(Λa)

In particular Da is an ample divisor of F0. Recalling (15),

MT
a = ΛTa · V =

Ü
1 −1 g −g
1 −1 −1 1
−1 1 g −g
−1 1 −1 1

ê

=⇒ b = (g, 1, g, 1)

Then

∆b = Conv

Ç
2g
g+1 0 0 − 2g

g+1

−g−1
g+1 1 −1 g−1

g+1

å
=⇒ [∆b] = ∇ = Conv(V )

so giving Λb = V , up to a permutation of columns. Moreover, (18) gives

MT
a,b = V T · Λa =Ma =⇒ c = (1, 1, 1, g) = a

implying that the f -process is calibrated, by Theorem 2.17.
Part (b) of Remark 3.2 gives the polynomial f∨ ∈ Cox(Xa) ∼= C[x1, . . . , x4],
defining the generic element Y ∨ of the mirror family,

f∨ = c1x
2g
1 x

2g
3 + c2x

g+1
1 x22x

g−1
3 + c3x

g
1x2x

g
3x4 + c4x

g−1
1 xg+1

3 x24 + c5x
2
2x

2
4

Up to a variables rescaling, the generic f∨ can be reduced to the following
shape

(75) f∨ = x2g1 x
2g
3 + xg+1

1 x22x
g−1
3 + xg1x2x

g
3x4 + ψ xg−1

1 xg+1
3 x24 + φx22x

2
4

As a Cox quotient, Xa
∼=
(
C4 \ Z

)
/Ha, where the irrelevant locus Z is the

union of two plains meeting in the origin of C4, namely Z = {x1 = x2 =
0} ∪ {x3 = x4 = 0}, and

Ha
∼=

ß
(C∗)2 if g = 2h is even

(C∗)2 × µ2 if g = 2h+ 1 is odd
h ∈ N \ {0}
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In particular the weight matrix defining the action of Ha over C4 \ Z is given
by

Qg = Q2h =

Å
1 g 1 g
0 g + 1 2 g − 1

ã

=

Å
1 2h 1 2h
0 2h+ 1 2 2h− 1

ã
if g = 2h

Qg = Q2h+1 × τ

=

Å
1 h 0 h+ 1
0 h+ 1 1 h

ã
×
(
1 1 1 1

)
if g = 2h+ 1

meaning that the action is given by

(76) ((λ, µ),x) ✤ // (λx1, λ
gµg+1x2, λµ

2x3, λ
gµg−1x4) if g = 2h

((λ, µ,±1),x) ✤ // (±λx1,±λ
hµh+1x2,±µx3,±λ

h+1µhx4) if g = 2h+ 1

Notice that f∨ is equivariant with respect to to both these actions. In par-
ticular, as an element of Cox(Xa), which is graded on

Cl(Xa) ∼=

ß
Z2 if g = 2h is even

Z2 ⊕ Z/2Z if g = 2h+ 1 is odd
h ∈ N \ {0}

f∨ turns out to be homogeneous of degree either (4g, 4g) or (2g, 2g, 0), re-
spectively. In particular, it turns out that, if g is even then (g + 1)Db is
ample and, analogously, if g = 2h+ 1 is odd then (h+ 1)Db is ample (apply
e.g. [52, Thm. 3]).

8.4.1. Hori-Vafa type LG mirror models. In [37, §4.2] a LG mirror
model of the general hyperelliptic curve of genus g is proposed, by adopting
the Hori-Vafa recipe [35] for an hypersurface of bi-degree (2, g + 1) in F0. By
a different approach, Seidel proposed a further LG mirror model for the case
g = 2 [54], obtained as an unramified quotient of the Hori-Vafa LG mirror
model of a plane quintic curve. Seidel’s methods have been generalized by
Efimov [23] for every g ≥ 2. In particular we get a double proposals of LG
mirror models for the generic hyperelliptic curve of genus g ≥ 2. In all these
cases, authors checked one direction of HMS.

Recalling what observed in §5.2, and in particular in §5.2.1, we can obtain
a further proposal of LG mirror model for the general hyperelliptic curve of
genus g ≥ 2, by considering the LG model (Λg,ϕ,ψ, wg,ϕ,ψ) so defined:
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• Λg,ϕ,ψ ∼= (C∗)4 is an irreducible component of the reducible torus com-
plete intersection

Λg,ϕ,ψ :=
¶
τ1 y

2
1 = x2g1 x

2
2x

2g
3 x

2
4 = τ2 y

2
2

©
⊂ (C∗)4 × (C∗)2

where 4φ2 = τ1 = et1 and 4ψ2 = τ2 = et2 , being t1, t2 ∈ C∗ Kähler pa-
rameters related with volumes of the two rulings on F0;

• wg,ϕ,ψ is the restriction to Λg,ϕ,ψ of the regular function w̃g,ϕ,ψ : C6 −→
C defined by

w̃g,ϕ,ψ(x,y) := x2g1 x
2g
3 + xg+1

1 x22x
g−1
3 + ψ(xg−1

1 xg+1
3 x24 + y2) + φ(x22x

2
4 + y1)

When restricted to Λg,ϕ,ψ, the superpotential w̃g,ϕ,ψ can then be rewritten
as f∨ in (75), that is,

wg,ϕ,ψ(x) = x2g1 x
2g
3 + xg+1

1 x22x
g−1
3 + xg1x2x

g
3x4 + ψ xg−1

1 xg+1
3 x24 + φx22x

2
4 = f∨

This gives the following global picture, analogous to (61),

{0} �
� // C Λg,ϕ,ψ ∼= (C∗)4 �

� //wg,ϕ,ψoo

/Ha

����

C4 \ Z

/Ha

����
w−1
g,ϕ,ψ(0)/Ha

OO

� � // Ta
� � // Xa

where Ta is the acting torus on Xa. Then the f -mirror Y ∨ of Y , as proposed
in Definition 3.1 and defined by f∨ ∈ Cox(Xa), is precisely the closure

Y ∨ = w−1
g,ϕ,ψ(0)/Ha ⊂ T = Xa

induced by the open embedding Ta →֒ Xa. Evidences seem enough to moti-
vating the following

Conjecture 8.5. A LG mirror model of the general hyperelliptic curve of
genus g ≥ 2 of Kähler parameters t1, t2, is given by ((C∗)4, wg,ϕ,ψ), with
2(ln 2 + lnφ) = t1 and 2(ln 2 + lnψ) = t2.

Accordingly with Hori-Vafa terminology [35], a similar LG model ad-
mits an associated gauged linear sigma model whose gauge action is given
by the (C∗)2-action described in (76). Quotienting by such a gauge action
gives back, up to a possibly further quotient by Z/2Z depending on the
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parity of the genus g, the LG model (Ta, f
∨
b ) described in §3.6.1, and ad-

mitting the (generalized) KKP-compactification (Xa, f
∨
b), described in §3.7.

In particular:

(f
∨
b)

−1(0) = Y ∨ , (f
∨
b)

−1(∞) = gD′
1 +D′

2 + gD′
3 +D′

4 = D′
b

Also in the present case, the ftv (Xa, D
′
b) can be thought of a log (no Calabi-

Yau) pair, opening the door to an intrinsic mirror symmetric interpretation,
in the sense of Gross-Siebert [33].

Moreover, the Laurent superpotential f∨b of the LG model (Ta, f
∨
b ) ad-

mits the following explicit expression

f∨b =
f∨

xb
= 1 +

xg1x
g
3

x2x4
+ φ

x2x4
xg1x

g
3

+
x1x2
x3x4

+ ψ
x3x4
x1x1

meaning that (Ta, f
∨
b ) is a re-parameterization of a Givental type LG model,

the latter defined as follows

u1 :=
xg1x

g
3

x2x4
(77)

u2 := φ
x2x4
xg1x

g
3

u3 :=
x1x2
x3x4

u4 := ψ
x3x4
x1x1

q1 := φ

q2 := ψ

The associated Givental LG model is then given by the superpotential

F : C4 // C : F (u) :=

4∑

i=1

ui = f∨b − 1

restricted to the torus fibration

π : C4 // C2 : π(u) := (u1u2, u3u4) = q := (q1, q2)

This is analogous to what done in (62) and (73) for projective hypersurfaces.
Checking if the LG mirror model here presented and those proposed in

[37], [54] and [23] are actually each other equivalent from the HMS point of
view, is a completely open task! Anyway, let us observe that the Givental
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type LG mirror model defined in (77) turns out to be the section x3 = 1 of
the LG mirror model proposed in [37, §4.2], analogously to what observed
in Remark 7.6 for the LG mirror models of the hyperplane in Pn.
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