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Shifted symplectic reduction

of derived critical loci

Mathieu Anel and Damien Calaque

We prove that the derived critical locus of a G-invariant function
S : X → A1 carries a shifted moment map, and that its derived
symplectic reduction is the derived critical locus of the induced
function Sred : X/G→ A1 on the orbit stack. We also provide a
relative version of this result, and show that derived symplectic
reduction commutes with derived lagrangian intersections.
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Introduction

This paper is concerned with the derived symplectic geometry (in the sense
of [24]) of critical loci in the presence of symmetries. Derived symplectic
geometry can be seen as a model independent, homotopy invariant, and
global way of dealing with the QP -manifolds of [1].
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Motivation: the BV formalism

The seminal work [1] takes its roots in the so-called Batalin–Vilkovisky (BV)
formalism [4]. In gauge theories, path integrals are ill-defined because of the
presence of infinite dimensional symmetries. A way to make sense of them
is to remove the redundant variables/fields by fixing the gauge, which of
course destroys gauge invariance. A first attempt to face this problem is to
introduce new fields, called ghosts, which mathematicians know very well
as Chevalley generators (for infinitesimal symmetries of the lagrangian). A
systematic treatment has been initiated in [4] and is referred to as the BV
formalism. Mathematicians have shown a great interest in understanding the
deep nature of the BV formalism and its precursor, the BRST formalism.
They have in particular given attention to two easier variants:

• Finite dimensional (as opposed to the infinite dimensional situation
physicists are interested in1).

• Classical (as opposed to quantum).

The BRST formalism has quickly been interpreted in terms of Hamiltonian
reduction by Kostant–Sternberg [21], of which we know from [10] that it can
be understood as a derived lagrangian intersection. This interpretation has
been extended to the realm of derived Poisson geometry by Safronov [28]:
Poisson reduction is indeed a derived coisotropic intersection. A systematic
mathematical treatment of the classical finite dimensional BV construction
has been initiated by Felder–Kazhdan in [17], using pre-derived geometric
tools. Apart from ghosts (and, possibly, ghosts for ghosts), the BV formalism
also introduces other fields called anti-fields. Very roughly, they are here to
cure the possible presence of degenerate or non-isolated critical points of the
action functional S. Let us give a quick description of the BV procedure,
whose goal is to construct a certain differential graded algebraic object:

• For any field variable xi, add a dual anti-field variable ξi = ∂i of coho-
mological degree −1. The differential of ξi is the xi-derivative ∂iS of
the action functional.

• Add degree −2 variables for every generator of the infinitesimal sym-
metries of S. They are usually called anti-ghost variables and are sent,

1Many infinite dimensional complications in physics come from the fact that the
stacks involved naturally appear as quotients of infinite dimensional groupoids, but
they can often be presented also by means of finite dimensional groupoids.
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by the differential, to the corresponding vector field (a linear combina-
tion of the ξi’s which coefficients are functions of the xi’s) killing the
action functional S.

• To every anti-ghost variable, add a dual ghost variable of degree 1 (a
Chevalley generator).

Usually, the process goes on because there might be higher symmetries,
but we will stop here to simplify the exposition. There is a perfect duality
(between field and anti-field variables, and between ghost and anti-ghost
variables) that has a cohomological shift. This is the manifestation of the
presence of a (−1)-shifted symplectic structure (in the sense of [24]).

The appearance of anti-fields is well-understood. The space of critical
points of the action functional is the intersection of the graph of ddRS with
the zero section in a cotangent space. Classically, one may need to perform a
small geometric perturbation in case the intersection is not transversal. Anti-
field variables ξi’s are here to perform a homological perturbation instead,
computing the derived intersection of the zero section with the graph of
ddRS. Both are lagrangian, so that their derived intersection, which is known
as the derived critical locus of S, is (−1)-shifted symplectic (see [24, 34]).

The main goal of this paper is to suggest an accurate interpre-
tation of the classical BV formalism in the setting of derived
symplectic geometry.

Main results

At the heart of the BV–BRST formalism is the wish to compute (possibly
ill-defined) path integrals by taking gauge symmetries out (e.g. in order
to get rid of infinite dimensional issues). Perturbatively, such an integral
localizes at the critical points of the action functional S : X → A1, and the
BV formalism takes care of the possible degenerate nature of the critical
locus by considering the derived critical locus instead. The derived critical
locus is defined as the lagrangian intersection of the zero section with the
graph of ddRS in T ∗X, it is therefore (−1)-shifted symplectic [24, 34].

The symmetries of the action functional S are in general a groupoid and
not a group, but we will restrict ourselves to the latter situation for the
clarity of exposition. Notice, though, that what many people call the BV
formalism is the case when one considers the maximal homotopy (formal)
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groupoid of (higher) symmetries of S. This will be the matter of further
investigations in subsequent work.

We shall here focus on the following situation: X will be an algebraic
variety (or stack), G an algebraic group acting on X, and S : X → A1 will be
an invariant function, for which we denote by Sred : X/G→ A1 the induced
function on the quotient stackX/G. From there, the BV procedure is usually
done in different order by mathematicians or physicists:

In math references (e.g. [17, 25]) In the original physics litterature

field variables field variables
anti-field variables (Koszul) ghost variables (symmetries)
anti-ghost variables (Tate) anti-field variables
ghost variables (Chevalley) anti-ghost variables

In the left column, anti-field and anti-ghost variables appear while taking a
Koszul–Tate resolution (see [25, Proposition 3.1.1] and [17, §4.1]): more pre-
cisely, according to [30] anti-field variables are identified as Koszul generators
and anti-ghost variables (i.e. infinitesimal symmetries) as Tate generators.
It is only at the last step that one introduces ghost variables (or Chevalley
generators), which means that we are considering a stacky quotient by the
gauge symmetries.

The (shifted) symplectic geometric interpretation of this procedure is
easier for the right column: the appearance of ghost variables first means
that we are first taking the stacky quotient by infinitesimal symmetries, and
then computing the derived critical locus of the function Sred on the quotient
by adding anti-fields and anti-ghosts variables. The interpretation of the left
column is less obvious but revealed by the following fact, which is one of our
main results (see also [8]):

Theorem A (see Theorem 3.10). The derived stack Crit(S) comes
equipped with a (−1)-shifted moment map Crit(S)→ g∗[−1] such that its
derived symplectic reduction Crit(S)red is equivalent, as a (−1)-shifted sym-
plectic stack, to the derived critical locus Crit(Sred) of Sred.

This gives the following interpretation of the left column in our table:
anti-ghost variables appear when one takes the (derived) zeroes of the mo-
ment map (first step of symplectic reduction) and ghost variables appear as
usual when one takes the quotient by G (second step of symplectic reduc-
tion). In other words, the difference between the two columns is the permu-
tation of the two steps of reduction and extremalization! Strictly speaking,
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it is when one takes the quotient by the Lie algebra symmetries that we get
ghost variables. The generalization of the classical BV formalism in finite
dimensions from Lie algebra to group actions has been achieved in the recent
work [8]: the authors identify Crit(Sred) with a shifted symplectic reduction
of Crit(S), they compute explicitely its function algebra, and they compare
this algebra with the algebra produced by the classical BV formalism (also
identifying (−1)-shifted symplectic structures on both sides).

Our second main result is a useful variation of Theorem A where we
consider constrained derived critical loci (see [26]). If Y is another stack with
a G-action and if p : X → Y is a G-equivariant map, we write pred : X/G→
Y/G for the induced map on quotient stacks. The constrained derived critical
locus Critp(S) is defined as the derived intersection of the graph of ddRS
with the conormal stack to the graph of p. This intersection comes with a
natural map Critp(S)→ T ∗Y and we can prove that it carries a canonical
lagrangian structure.

Theorem B (see Theorem 3.13). The lagrangian morphism

Critpred
(Sred) −→ T ∗

(

Y/G
)

is a derived symplectic reduction of the lagrangian morphism

Critp(S) −→ T ∗Y

along the natural moment map T ∗Y → g∗.

This result provides a nice derived geometric interpretation (still in
the case of group of symmetries) of the so-called (classical) BV-BFV (for
Batalin–Fradkin–Vilkovisky) formalism [3, 5, 14–16].

The last of our main results is a conceptual explanation for Theorem A
which can be summarized by saying that lagrangian intersection commutes
with derived symplectic reduction. LetX be a symplectic stack equipped with
a hamiltonian G-action, let µ(0) : X → g∗, be the moment map and Xred be
the derived symplectic reduction. Let also L and L′ be two lagrangians of
X, and let Lred and L′

red be their derived symplectic reductions. Then, the
following holds:
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Theorem C (see Theorem 4.1). The moment map of X induces a
canonical (−1)-shifted moment map

µ(−1) : L×
X
L′ → g∗[−1]

and a natural equivalence

(

L×
X
L′
)

red
≃ Lred ×

Xred

L′
red

of (−1)-shifted derived stacks.

Description of the paper

Section 1 recalls basic facts of derived symplectic geometry (forms and closed
forms on derived stacks, shifted symplectic structures, lagrangian structures
and lagrangian correspondences, zeroes of closed 1-forms, etc...). We empha-
size the role of push and pull operations for lagrangians in shifted cotangent
stacks, denoted f† and f †, that are associated with a morphism f : X → Y
of derived stacks.

Section 2 proves a general statement (Theorem 2.1) about certain iter-
ated intersections of lagrangian correspondences. It is inspired by an earlier
result of Ben-Bassat [6], and provides a convenient general framework that
synthetizes the lagrangian intersection interpretation of the hamiltonian and
quasi-hamiltonian formalisms [10, 27].

Section 3 states and proves Theorems A and B in the more general set-
ting of (relative) zeroes of 1-forms rather than just for (relative) derived
critical loci. These results are direct consequences of the results in the pre-
vious section together with a Beck–Chevalley type property for the push and
pull operations along a cartesian square of derived stacks (Proposition 3.5).

Section 4 proves Theorem C, and explains how Theorem A can be de-
duced from it.

Section 5 is devoted to examples: twisted cotangent bundles of global
quotient stacks, Hilbert schemes of points in C3, Chern–Simons theory (mod-
uli of flat connections on 3-folds), and Souriau’s approach to Einstein’s co-
variance principle.
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1. Derived symplectic geometry

1.1. The de Rham complex, forms, and closed forms

This paper is written using the language of (∞, 1)-category theory [22] and
derived algebraic geometry [23, 33]. This means that, unless otherwise spec-
ified, all functors are implicitly assumed to be derived (limits and colimits
are always homotopical, global sections are always derived...) and all objects
are implicitely assumed to be derived stacks. In particular, for a group G
acting on a stack X, X/G refers always to the quotient stack.

We shall use the cohomological convention for the degree of (cochain)
complexes. In particular, if M is a complex M [−1] denote the looping of
M and M [1] its suspension. For a graded complex, we shall use the term
degree to refer to the cohomological degree, and the term weight for the
auxiliary grading. We shall identify the latter with a • symbol. A graded
mixed complex is the data of a graded complex together with a mixed dif-
ferential, which is a degree 1 and weight 1 endomorphism that squares to
zero. For a graded mixed complex C, we denote by C♯ its underlying graded
complex. We refer to [13] for details about the homotopy theory of graded
mixed complexes.

Recall from [24] that any derived stack X has a graded mixed de Rham
complex DR•(X) (beware that we shall rather follow the weight convention
of [13]). Whenever X = Spec(A) is a derived affine scheme, with A a cofi-
brant connective commutative differential graded algebra (cdga, for short),
then

DR•(X)♯ := Sym•
A

(

Ω1
A[−1]

)

and the mixed differential is given by the universal derivation A→ Ω1
A, that

we extend via the Leibniz rule. More generally, if X is an arbitrary stack,
we define

DR•(X) := lim
Spec(A)→X

DR
(

Spec(A)
)

.
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If X is Artin (which, in this paper, means geometric and locally of finite
presentation) and if LX is its cotangent complex, we have

DR•(X)♯ ≃ Γ
(

Sym•
OX

(LX [−1])
)

.

Definition 1.1. (a) A p-form of degree n on X is an n-cocycle in
DRp(X) [−p]. The space Ap(X,n) of p-form of degree n onX is defined
as (the realization of the connective complex) τ≤0(DRp(X) [n− p]).

(b) A closed p-form of degree n on X is an n-cocycle in
∏

i≥pDRi(X) [−p]
for the total differential (i.e. the sum of the differential and the mixed
differential). The space Ap,cl(X,n) of closed p-forms of degree n on X

is defined as (the realization of) τ≤0

(

∏

i≥pDRi(X) [n− p]
)

.

The functor X 7→ DR•(X) is a stack for the étale topology on con-
nective cdga (see [24]). It follows that the functors X 7→ Ap(X,n) and
X 7→ Ap,cl(X,n) are also étale stacks, which we denote by Ap(n) and
Ap,cl(n).

Example 1.2 (0-forms). The stack A0(0) of 0-forms of degree 0 is
simply A1. More generally, we have A0(n) ≃ A1[n], that is A0(X,n) =
τ≤0 (Γ(OX)[n]).

Example 1.3 (Smooth schemes). Let X be a smooth scheme of finite
presentation. Then

DR•(X)♯ ≃ Γ
(

Sym•
OX

(

Ω1
X [−1]

) )

.

The mixed differential preserves the graded subcomplex

Ω•(X) := Γ0

(

Sym•
OX

(

Ω1
X [−1]

) )

of underived global sections of Sym•
OX

(

Ω1
X [−1]

)

and acts as the ordinary
de Rham differential ddR on it.

Example 1.4 (Classifying stacks). Let G be an affine algebraic group,
g its Lie algebra and BG its classifying stack. Then,

DR•(BG)♯ ≃ C
(

G, Sym• (g∗[−2])
)

,

and the mixed differential vanishes on Sym• (g∗[−2])G (for degree rea-
sons). Observe that we have implicitly used the identification QCoh(BG) ≃
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G−mod between the stable (∞, 1)-category of quasi-coherent sheaves on
BG with the (∞, 1)-category of complexes of G-modules. Through this
identification, the (derived) global section functor corresponds to the group
cochains functor C(G,−).

In particular, the space of closed 1-forms of degree 1 on BG is equivalent
to the set (g∗)G of infinitesimal characters. If G = Gm there is (up to scaling)
a canonical infinitesimal character. This character BGm → A

1,cl(1) actually
comes from the group morphism

ddRlog : Gm −→ A
1,cl(0) = ΩA1,cl(1)

classifying the (degree 0) multiplicative closed 1-form ddRlog(z) = (ddRz)/z.
Recall that an infinitesimal character ϕ : BG→ A1,cl(1) is integrable if its
looping Ωϕ : G→ A1,cl(0) factors through ddRlog.

Example 1.5 (Global quotients). Let X be a smooth scheme of finite
presentation with an action of an affine algebraic group G. If g is the Lie
algebra of G, we have

DR•(X/G)♯ ≃ C
(

G,Γ
(

Sym•
OX

(

Ω1
X [−1]→ OX ⊗ g∗[−2]

) )

,

where the complex Ω1
X [−1]→ OX ⊗ g∗[−2] is in degree 1 and 2 and its

differential is the transpose of the infinitesimal action g→ Γ(TX), denoted
x 7→ x⃗. The mixed differential preserves the graded subcomplex

(

Ω•(X)⊗ Sym• (g∗[−2])
)G

of underived global section, on which it acts as ddR ⊗ id. Recall that elements
in the above complex can be viewed as G-equivariant Ω(X)-valued polyno-
mial functions on g, and that the differential is given by (dα)(x) = ιx⃗(α(x)),
where x ∈ g and ι denotes the contraction of a form by a vector field.

1.2. Shifted symplectic and lagrangian structures

Following [20], we consider the (∞, 1)-category Span(dSt/A2,cl(n)) of corre-

spondences of derived stacks over A2,cl(n). Its objects are called n-shifted
presymplectic stacks, and its 1-morphisms are called n-shifted isotropic cor-
respondences. We may sometimes omit to specify “n-shifted” when it is ob-
vious from the context. This (∞, 1)-category carries a symmetric monoidal
structure, induced by the cartesian product × of derived stacks and the ad-
dition map + : A2,cl(n)×A2,cl(n)→ A2,cl(n). Every object is dualizable for
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this symmetric monoidal structure: the dual X of an object X is given by
composing with the opposite morphism A2,cl(n)→ A2,cl(n); in other word,
X is the same derived stack with the opposite closed 2-form.

An isotropic morphism X → Y is an isotropic correspondence pt(n) ←
X → Y , where pt(n) denotes the terminal stack equipped with its only n-
shifted closed 2-form (which is zero).

The notions of n-shifted presymplectic stacks and isotropic correspon-
dences have a condition of non-degeneracy that we do not recall (see [10, 24]).
Non-degenerate objects are called n-shifted symplectic stacks and non-
degenerate 1-morphisms are called n-shifted lagrangian correspondences. Re-
call from [10] that the non-degeneracy condition is preserved by the com-
position and the monoidal product. Hence n-shifted symplectic stacks and
n-shifted lagrangian correspondences define a symmetric monoidal (∞, 1)-
subcategory Lagn of dSt/A2,cl(n). We refer to [20] for details.

We define an (n-shifted) lagrangian morphism L→ X to be a la-
grangian correspondence pt(n) ← L→ X and we denote by Lagn(X) :=
MapLagn

(

pt(n), X
)

the space of lagrangian morphisms with codomain X.
When n is understood from the context, we shall simply write Lag (X) or
MapLag (Y,X) for the mapping spaces in Lagn.

The construction of correspondences can be iterated into correspon-
dences of correspondences. This provides the symmetric monoidal (∞, 2)-
category Span2(dSt/A2,cl(n)) of 2-iterated correspondences of derived stacks

over A2,cl(n) (see [20]), as well as its symmetric monoidal (∞, 2)-subcategory

Lag
(2)
n of 2-iterated lagrangian ones (see [12], as well as the heuristic con-

struction in [10]). We will actually only need the truncated version from [2],
where the authors construct a symmetric monoidal bicategory of 2-iterated
lagrangian correspondences (which is sufficient for our purposes, and coin-

cides with the homotopy bicategory of Lag
(2)
n ). We briefly recall how to de-

scribe the 2-morphisms. Given two objects (i.e. n-shifted symplectic derived
stacks) X,Y , and two 1-morphisms L,M from X to Y , we can view these 1-
morphisms (i.e. lagrangian correspondences) as lagrangian morphisms with
codomain X × Y . Now, we can use that derived lagrangian intersections
are symplectic (see [24]) to get an (n− 1)-shifted symplectic structure on
L ×

X×Y
M . It turns out that 2-morphisms L⇒M are exactly lagrangian

morphisms with codomain L ×
X×Y

M .
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1.3. Important examples

1.3.1. Shifted cotangent and conormal stacks. Let X be a derived
Artin stack. Then the shifted cotangent stack T ∗[n]X comes equipped with
a tautological 1-form λX of degree n, which corresponds to the classifying
map id : T ∗[n]X → T ∗[n]X. Then the degree n closed 2-form ωX := ddRλX

is non-degenerate (and thus is an n-shifted symplectic structure). Moreover,
the zero sectionX → T ∗X is naturally equipped with a lagrangian structure.
We refer to [11] for more details.

Example 1.6. Recall that, for an algebraic group G,

T ∗[n]BG ≃ g∗[n− 1]/G

(see Section 2.2 for an explicit description of the shifted symplectic struc-
ture).

For every morphism f : X → Y of derived Artin stacks we have a com-
muting diagram

f∗T ∗[n]Y

T ∗[n]X T ∗[n]Y .

A1(n)
λX λY

Example 1.7. If Y = pt, then f∗T ∗[n]Y ≃ X → T ∗[n]X is the zero section.
If X = pt, then f = y is a point in Y , and f∗T ∗[n]Y ≃ T ∗

y Y [n]→ T ∗[n]Y is
the fiber at y of the shifted cotangent.

Composing with ddR : A1(n)→ A2,cl(n) thus produces an isotropic cor-
respondence, which can be shown to be a lagrangian one (along the same
lines as in [11]). This leads to two maps

f † : Lag (T ∗[n]Y ) −→ Lag (T ∗[n]X)

and f† : Lag (T ∗[n]X) −→ Lag (T ∗[n]Y ) .

Associativity of the composition of lagrangian correspondences tells us that
for two lagrangian morphisms LX → T ∗[n]X and LY → T ∗[n]Y , we have an
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equivalence of (n− 1)-shifted symplectic derived stacks

(1) f†(LX) ×
T ∗[n]Y

LY ≃ LX ×
T ∗[n]X

f †(LY ) .

Remark 1.8. Actually, f † more generally defines a functor

LagT ∗[n]Y/ −→ LagT ∗[n]X/ ,

and f† defines a functor

Lag/T ∗[n]X −→ Lag/T ∗[n]Y .

Moreover, if we are given two lagrangian correspondences

LX

W T ∗[n]X

and
LY

T ∗[n]Y Z .

then the equivalence (1) still holds (but in MapLag (W,Z) now).

Example 1.9. Observe that the underlying morphism of f†(X
0
→ T ∗[n]X)

is the shifted conormal

N∗[n]f : T ∗
X [n]Y −→ T ∗[n]Y ,

where T ∗
X [n]Y is the stack of sections of the relative tangent complex

Lf [n− 1], and N∗[n]f is induced by the morphism Lf [n− 1]→ f∗LY .
Therefore, N∗[n]f is equipped with a lagrangian structure (as shown in

[11]). In particular, if we are given a sequence X
f
→ Y

g
→ Z of derived Artin

stacks, we get the following composition of lagrangian correspondences:

T ∗
X [n]Z

T ∗
X [n]Y f∗g∗T ∗[n]Z

X f∗T ∗[n]Y g∗T ∗[n]Z

pt(n) T ∗[n]X T ∗[n]Y T ∗[n]Z .

0

Remark 1.10. A more conceptual way of reformulating the above is to
say that T ∗[n] defines an (∞, 1)-functor dStArt −→ Lagn, where dStArt is
the full sub(∞, 1)-category of dSt spanned by derived Artin stacks.
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Remark 1.11. We let the reader check that the following n-shifted sym-
plectic derived stacks are all equivalent:

T ∗[n]X , X ×
T ∗[n+1]X

X , and T ∗
X [n+ 1]X .

Here we implicitly make use of the identification between n-shifted sym-
plectic derived stacks and lagrangian morphisms with codomain pt(n+1) (see
[10]).

1.3.2. Derived critical locus. Let X be a derived Artin stack, and let
α be a closed 1-form of degree n on X. Then recall from [11] that the section
X → T ∗[n]X of the shifted cotangent stack given by its underlying 1-form
α0 of degree n comes equipped with a lagrangian structure. We actually
have a map

Graph : A1,cl(X,n) −→ Lag (T ∗[n]X) .

Definition 1.12. We define the (n− 1)-shifted symplectic derived stack
Z(α) as the derived lagrangian intersection

Z(α) := Graph(α) ×
T ∗[n]X

Graph(0) = Graph(α) ×
T ∗[n]X

X

ofGraph(α) with the zero sectionGraph(0). If α = ddRf , where f is a degree
n function on X, then we write

Crit(f) := Z(ddRf)

and call it the derived critical locus of f .

Remark 1.13. Observe that the zero section is nothing else than N∗[n]q
(see Example 1.9), where q : X → pt is the terminal morphism. Hence Z(α)
is by definition q†Graph(α).

Example 1.14 (Twisted cotangent bundles). Let X be a smooth
scheme, and consider its shifted cotangent stack T ∗[1]X. Recall from [24]
that:

• π0
(

A1(X, 1)
)

≃ H1(X,Ω1
X).

• π0
(

A1,cl(X, 1)
)

≃ H1(X,Ω1,cl
X ).
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Hence any element α ∈ H1(X,Ω1,cl
X ) provides us with a lagrangian morphism

X → T ∗[1]X. Its derived intersection Z(α) with the zero section thus inher-
its a 0-shifted symplectic structure. It can be identified with the twisted
cotangent bundle T ∗

αX (see [19]).

Let f : X → Y be a morphism of derived Artin stacks, and let α be a
closed 1-form of degree n on Y . We have the following commuting diagram,
where the square is cartesian:

X

f∗T ∗[n]Y Y

T ∗[n]X T ∗[n]Y pt .

f∗α0

α0

Lemma 1.15. The above diagram still holds over A2,cl(n). Therefore there
is an equivalence f †

(

Graph(α)
)

≃ graph
(

f∗α
)

, in Lag (T ∗[n]X).

Proof. By definition of the tautological 1-form on shifted cotangent stacks,
and from the fact that α0 lifts to a closed form, we have the following
commuting diagram

X

f∗T ∗[n]Y Y

T ∗[n]X T ∗[n]Y A1,cl(n) .

A1(n)

f∗α0 f∗α

α0 α

Then the result follows by composing the morphism A1,cl(n)→ A1(n) with

A1,cl(n) pt

A1(n) A2,cl(n) .
ddR

□
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2. The “magic cube” of derived symplectic reduction

2.1. The “magic cube”

We introduce a useful construction producing a lagrangian correspondence
from three lagrangian correspondences sharing the same domain. We con-
sider X0, X1, X2, and X3, four n-shifted symplectic derived stacks, and
three lagrangian correspondences L0i ∈ MapLag (X0, Xi). By convention,
Li0 ∈ MapLag (Xi, X0) is the opposite lagrangian correspondence. We con-
sider the composed correspondences Lij := Li0 ×X0

L0j ∈ MapLag (Xi, Xj)
and we define the cyclic derived lagrangian intersection

X123 := (L10 ×
X0

L02 ×
X2

L20 ×
X0

L03 ×
X3

L30 ×
X0

L01) ×
X1×X1

X1

= (L12 ×
X2

L23 ×
X3

L31) ×
X1×X1

X1 .

In other words, the derived stack X123 is defined as the limit of the hexagon
of (lagrangian) correspondences

X1

L01 L10

X0 X0

L20 L03

X2 X3

L02 L30

X0

.

We define also L123 := L01 ×
X0

L02 ×
X0

L03. This stack fits in a cube
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X1

L123

L12 L13

L01

L23

L02 L03

X2 X0 X3

(where we have draw extra legs to help see the three original correspon-
dences). Every face of the cube is cartesian and the object L123 is the limit
of the front three edges of the cube. This is the magic cube giving its name
to the construction. We shall see many examples.

Theorem 2.1. The stack X123 is (n− 1)-shifted symplectic, and there ex-
ists a canonical morphism

L123 −→ X123

which is lagrangian.

Remark 2.2. This theorem has two natural generalizations (which can be
proven similarly). The first one is that the result holds for n-presymplectic
stacks and isotropic correspondences. The second one is that it holds more
generally starting with an arbitrary number of correspondences sharing the
same domain X0 ← L0i → Xk. Then, the cyclic derived lagrangian intersec-
tion

X12...k := (L12 ×
X2

· · · ×
Xk

Lk1) ×
X1×X1

X1

is (n− 1)-shifted symplectic, and the isotropic morphism

L12...k := L01 ×
X0

· · · ×
X0

L0k −→ X12...k

is lagrangian.
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The first part of the statement is a particular instance of [6, Theorem
3.1] (with S = pt(n)). The proof is simple and boils down to the fact that a
cyclic composition of lagrangian correspondences is shifted symplectic: the
shifted closed 2-form is given by a loop in the space of closed 2-forms, and
checking non-degeneracy is standard. The second part of the statement can
be proved using a similar reasoning as in loc. cit., but we shall provide a
more conceptual proof.

First, we need some recollection about traces in 2-categories with duals.

Recall from [2, 12] the symmetric monoidal (∞, 2)-category Lag
(2)
n of 2-

iterated lagrangian correspondences between n-shifted symplectic derived
stacks (see [20] for the isotropic version). This category has the following
features:

• The monoidal structure is ×, and its unit is pt(n).

• All objects are dualizable, and the dual of an n-shifted symplectic
derived stack X is X. Evaluation and coevaluation are both, as the
identity 1-morphism, given by the diagonal correspondence:

X ×X ← X → pt(n) and pt(n) ← X → X ×X .

• All 1-morphisms have adjoints, and the left and right adjoints of a la-
grangian correspondence X ← L→ Y are both the original lagrangian
correspondence that we read the other way: Y ← L→ X. The unit of
the adjunction is the lagrangian correspondence X ← L→ L×

Y
L.

We see in particular that, for a 1-endomorphism X ← L→ X, its trace is

Tr (L) = L ×
X×X

X .

Proof of Theorem 2.1. The previous formula applies in particular to get

X123 ≃ Tr (L10 ◦ L02 ◦ L20 ◦ L03 ◦ L30 ◦ L01)

≃ Tr (L01 ◦ L10 ◦ L02 ◦ L20 ◦ L03 ◦ L30)

where the second equivalence comes from the cyclicity of the trace.
For every i = 1, 2, 3, we have a unit 2-morphism

X0 ←− L0i −→ L0i ×
Xi

Li0 .
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Composing these (horizontally) we get a 2-morphism

X0 ←− L123 −→ L01 ×
X1

L10 ×
X0

L02 ×
X2

L20 ×
X0

L03 ×
X3

L30 .

Now, recall that, in a symmetric monoidal bicategory with duals and ad-
joints, if f : x→ x is a 1-endomorphism and α : Idx ⇒ f is a 2-morphism,
we have a 1-morphism 1→ Tr (f) (where 1 is the monoidal unit). Let us ex-
plicit the construction in terms of correspondences. We fix a 1-endomorphism
1← L→ X ×X and a 2-morphism L←M → X. The trace of L fits into
the diagram

M

Tr (L)

L X

1 X ×X 1 .

where the middle square is cartesian. The 1-morphism 1→ Tr (L) is the
lagrangian morphism M → Tr (L). We use this to get a 1-morphism

pt(n) ←− L123 −→ X123 .

This is the lagrangian morphism we were looking for. □

2.2. Shifted moment maps and derived symplectic reduction

Let G be an algebraic group, and let BG be its classifying stack. Then
the shifted cotangent stack T ∗[n]BG can be identified with the (shifted)
coadjoint quotient stack g∗[n− 1]/G, where g is the Lie algebra of the group
G. Through this identification, the tautological 1-form of degree n is

λ =
∑

i

xi ⊗ ξi ,

where the xi are a basis of g (and thus a choice of linear coordinates on g∗),
and ξi are the dual basis. Hence

ω =
∑

i

(ddRxi)⊗ ξi .
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Recall the two lagrangian morphisms BG→ T ∗[n]BG = g∗[n− 1]/G and
g∗[n− 1]→ g∗[n− 1]/G. The first one is the zero section, and the second
one is the conormal morphism N∗[n](pt→ BG).

Definition 2.3. Let X be an n-shifted symplectic derived stack together
with a G-action and a G-equivariant morphism µ : X → g∗[n]. An n-shifted
moment map structure on µ is a lagrangian structure on µred : X/G→
g∗[n]/G together with an equivalence

(2) X/G ×
g∗[n]/G

g∗[n] ≃ X

of n-shifted symplectic derived stacks. We define the derived symplectic re-
duction of X as the lagrangian intersection

(3) Xred := X/G ×
g∗[n]/G

BG .

We refer to [10, 27] for why ordinary symplectic reduction fits into this
framework.

Remark 2.4. This is a particular instance of the magic cube (notice the
faces corresponding to equations (2) and (3), and that the vertical maps are
all quotients by some action of G):

Z(µ) pt

pt X

g∗[n]

Xred

BG X/G

pt
g∗[n]/G

q

T ∗[n+ 1]BG
pt .

µ
0

(2)

(3)

µred
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In particular, L123 can be seen to be the derived zero locus of the moment
map Z(µ) := X ×

g∗[n−1]
pt, and that X123 ≃ Xred ×X. Hence Theorem 2.1

ensures that Z(µ) is a lagrangian correspondence between X and Xred.

Example 2.5. If X = pt(n), then the zero map pt→ g∗[n] is an n-shifted
moment map and

(pt(n))red = BG ×
g∗[n]/G

BG ≃ g∗[n− 1]/G .

Example 2.6. Let M be a derived Artin stack acted on by G: M is the
pullback of the point of BG along p : M/G→ BG. Then its shifted cotan-
gent stack X = T ∗[n]M inherits a G-action: the stack

(T ∗[n]M)/G ≃ T ∗
M/G[n+ 1]BG

is the stack of sections of the relative cotangent complex Lp[n]. The mor-
phism Lp → p∗LBG[1] thus induces a morphism (T ∗[n]M)/G→ T ∗[n+
1]BG ≃ g∗[n]/G. This morphism is N∗[n+ 1]p (see Example 1.9), and as
such it carries a lagrangian structure. It defines an n-shifted moment map
for T ∗[n]M with derived symplectic reduction being T ∗[n](M/G). Indeed,
according to [11, Remark 2.20] we have the following equivalences of n-
shifted symplectic derived stacks:

T ∗
M/G[n+ 1]BG ×

T ∗[n+1]BG
T ∗
pt[n+ 1]BG ≃ T ∗[n]M

and

T ∗
M/G[n+ 1]BG ×

T ∗[n+1]BG
T ∗
BG[n+ 1]BG ≃ T ∗[n](M/G) .

Remark 2.7. In the situation of Example 2.6, the lagrangian correspon-
dence

T ∗[n]M ← Z(µ)→ T ∗[n](M/G)

from Remark 2.4 is equivalent to the lagrangian correspondence

T ∗[n]
(

f : M →M/G
)

,

that is

T ∗[n]M ← f
∗
T ∗[n](M/G)→ T ∗[n](M/G) .
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Indeed, Example 2.6 is actually a special case of a more general situation.
Consider a cartesian square

M X

P B

f

p p

f

of derived Artin stacks (in the example P = pt and B = BG). In this situ-
ation, we have the following magic cube:

p∗T ∗[n]P
×

f
∗
T ∗[n]X

pt

T ∗[n]P T ∗[n]M

T ∗
P [n+ 1]B

T ∗[n]X

B T ∗
X [n+ 1]B

pt T ∗[n+ 1]B pt .

In the example (P = pt, B = BG, and X = M/G), the top corner of the
cube (which is defined to be Z(µ) in Remark 2.4) becomes f

∗
T ∗[n](M/G).

2.3. Derived symplectic reduction of lagrangian morphisms

Definition 2.8. Let X → g∗[n] be an n-shifted moment map as in Def-
inition 2.3, and L→ X be a lagrangian morphism. Recall the lagrangian
correspondence Xred ← Z(µ)→ X from Remark 2.4. A derived symplectic
reduction of L along µ is a lagrangian morphism Lred → Xred together with
an equivalence

Lred ×
Xred

Z(µ) ≃ L

of lagrangian morphisms with codomain X.
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Remark 2.9. Equivalently, we have a composition of lagrangian correspon-
dences

L

Lred Z(µ)

1 Xred X

(where the square is cartesian). Recall that Z(µ)→ Xred is the quotient
of the G-action on Z(µ). This implies that the map L→ Lred is also the
quotient map of a G-action on L. In particular, we see that if L admits a
derived symplectic reduction, it inherits a G-action such that Lred ≃ L/G.
Moreover the map L→ X is G-equivariant and factors through Z(µ).

Example 2.10. Keeping the notation from the previous subsection, let α
be a degree n closed 1-form on X = M/G, and consider β = g∗α (where
g is the quotient morphism M →M/G). Then Lemma 1.15 tells us that
Graph(α) ≃ Graph(β)/G is a derived symplectic reduction of Graph(β).

Example 2.11. Recall from Example 2.5 that (pt(n))red ≃ g∗[n− 1]/G.
Hence a derived symplectic reduction of a lagrangian L→ pt(n) (that is, an
(n− 1)-shifted symplectic L) corresponds to the data of an (n− 1)-shifted
moment map L→ g∗[n− 1], with Lred ≃ L/G→ g∗[n− 1]/G.

3. Relative derived critical loci

3.1. Relative zeroes of closed 1-forms

Definition 3.1 (Relative derived critical locus). Let p : X → B be a
morphism of derived Artin stacks and α be a closed 1-form of degree n on
X. The lagrangian morphism of zeroes of α relative to p is defined as

Zp(α) := p†
(

Graph(α)
)

.

When α = ddRf , we name it the relative (or, constrained) derived critical
locus of f along p, and write

Critp(f) := Zp(ddRf) .
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Remark 3.2. The above definition is inspired by [26], where the authors
work in the differentiable context and assume that p is a surjective submer-
sion between manifolds. Of course, in derived geometry, such an assumption
is not necessary anymore.

Let now X
p
−→ Y

q
−→ B be a sequence of derived Artin stacks.

Lemma 3.3. There is an equivalence q†
(

Zp(α)
)

≃ Zq◦p(α), in
Lag (T ∗[n]B).

Proof. This is a direct consequence of associativity of the composition of
lagrangian correspondences:

q†
(

Zp(α)
)

= q†p†Graph(α) ≃ (q ◦ p)†Graph(α) = Zq◦p(α) .

□

In diagrammatic terms, the above proof reads as

Zq◦p(α)

Zp(α) p∗q∗T ∗[n]B

X p∗T ∗[n]Y q∗T ∗[n]B

pt T ∗[n]X T ∗[n]Y T ∗[n]B .

α

Example 3.4. In particular, if we apply the above Lemma to the sequence
X

p
→ B

q
→ pt, then we get that the (n− 1)-shifted symplectic stack Z(α) is

equivalent to q†Zp(α), which is the derived lagrangian intersection of Zp(α)
with the zero section in T ∗[n]B. Moreover, if B = BG is the classifying stack
of an algebraic group G we get: a lagrangian morphism Zp(α)→ T ∗[n]BG ≃
g∗[n− 1]/G, such that Z(α) is the lagrangian intersection of Zp(α) with
BG→ g∗[n− 1]/G. In other words, Z(α) can be obtained as an (n− 1)-
shifted symplectic reduction.

In this situation, we can also define a cartesian square

M X

pt BG .

f

p p

f
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Let β be the pullback of α along f : M → X. We will see in Corollary 3.6
that Z(β) = Zp(β) is closely related to Zp(α); this will allow us to prove
(Theorem 3.10) that Z(α) is a derived symplectic reduction of Z(β).

3.2. Pullbacks

We abstract the situation of Example 3.4 by considering a cartesian square
of derived Artin stacks

M X

P B .

f

p h p

f

Recall from Section 1.3.1, the associated square

Lag (T ∗[n]M) Lag (T ∗[n]X)

Lag (T ∗[n]P ) Lag (T ∗[n]B) .

f
†

p†
p†

f†

The following proposition says that this new square commutes.

Proposition 3.5 (Beck–Chevalley condition). There is an equivalence
f †p† ∼= p†(f)

† in the space of maps from Lag (T ∗[n]X) to Lag (T ∗[n]P ).

Proof. We have the following commuting diagram of derived stacks

T ∗[n]M

f
∗
(T ∗[n]X) p∗(T ∗[n]P )

T ∗[n]X h∗(T ∗[n]B) T ∗[n]P

p∗(T ∗[n]B) f∗(T ∗[n]B)

T ∗[n]B

(a)

(b) (c)

(d)

which actually holds over A1(n). The squares (a) and (d) are cartesian be-
cause the original square is. As a consequence we get the equivalences

p†f∗(T ∗[n]B) ≃ h∗(T ∗[n]B) ≃ f †p
∗(T ∗[n]P )
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in MapLag (T
∗[n]X,T ∗[n]P ). Therefore, for every L ∈ Lag (T ∗[n]X) we have

canonical equivalences in Lag (T ∗[n]P ):

f †p†L =
(

L ×
T ∗[n]X

p∗(T ∗[n]B)
)

×
T ∗[n]B

f∗(T ∗[n]B)

≃ L ×
T ∗[n]X

h∗(T ∗[n]B)

(

using that (d) is cartesian
)

≃
(

L ×
T ∗[n]X

f
∗
(T ∗[n]X)

)

×
T ∗[n]M

p∗(T ∗[n]P )

(

using the commutativity of (b) and (c)
and that (a) is cartesian

)

= p†f
†
L .

□

Let α be a 1-form of degree n on X, and write β := f
∗
α.

Corollary 3.6. There is an equivalence Zp(β) ≃ f †Zp(α), in Lag (T ∗[n]P ).

Proof. We apply Proposition 3.5 to Graph(α) to get

f †p†Graph(α) ≃ p†f
†
Graph(α) .

The result follows using that f
†
Graph(α) ≃ Graph(β). □

Remark 3.7. This is again an instance of the magic cube:

(4)

T ∗[n]P

Zp(β) ×
T ∗[n]B

B

P f †Zp(α) ≃ Zp(β)

f∗T ∗[n]B

B ×
T ∗[n]B

Zp(α) ≃ Z(α)

B Zp(α)

pt T ∗[n]B pt .
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Using that Z(β) ≃ Zp(β) ×
T ∗[n]P

P , we get a lagrangian morphism

Zp(β) ×
T ∗[n]B

B = L123 −→ X123 = Z(α)× Z(β) ,

that is a lagrangian correspondence between Z(α) and Z(β).

Example 3.8 (Lagrange multipliers). Assume B = An and P = pt.
Hence the map f : pt→ B is equivalent to a point a = (a1, . . . , an) in the
affine n-space. If we further assume that X is a smooth algebraic variety and
the point f is a regular value of p : X → An, then M is the smooth subva-
riety defined by p(x) = f . In this situation, Corollary 3.6 allows to describe
the derived zero locus Z(α|M ) of the restriction to M of a closed 1-form α
on X as the derived lagrangian intersection

Zp(α) ×
T ∗An

T ∗
aA

n ,

where T ∗
aA

n is the fiber of T ∗An at a. Vectors λ = (λ1, . . . , λn) ∈ T ∗
aA

n ≃ An

are called Lagrange multipliers, and Zp(α) is the derived scheme of pairs
(x, λ) in X × T ∗

aA
n such that αx = p∗(λ)x.

Remark 3.9. In the above example, we can replace B = An with an arbi-
trary Artin stack. For B = BG, we get X = M/G and the space of Lagrange
multipliers becomes g∗[−1]. This suggests there is some shifted moment map
in play, and it is what the next subsection will show.

3.3. Derived symplectic reduction of critical loci

This section proves Theorems A and B, but stated under a more general
form. We first consider the situation of Section 3.2, specialized to the squares

M X

pt BG

f

p p

f

Lag (T ∗[n]M) Lag (T ∗[n]X)

Lag
(

pt(n)
)

Lag (T ∗[n]BG) .

f
†

p† p†

f†

The stack M carries a G-action and X ≃M/G. Let α be a closed 1-form of
degree n on X, and β := f

∗
(α), its pullback on M . Recall from Section 3.1,

the lagrangian morphism of relative zeroes Zp(α)→ T ∗[n]BG. We get the
following general form for Theorem A:



✐

✐

“1-Calaque” — 2023/5/18 — 22:00 — page 1569 — #27
✐

✐

✐

✐

✐

✐

Shifted symplectic reduction of derived critical loci 1569

Theorem 3.10. There are equivalences of (n− 1)-shifted symplectic de-
rived stacks

Zp(α) ×
T ∗[n]BG

g∗[n− 1] ≃ Z(β)

and

Zp(α) ×
T ∗[n]BG

BG ≃ Z(α) .

In other words, according to Definition 2.3, the (n− 1)-shifted symplectic
derived stack Z(β) is equipped with a G-action admitting a shifted moment
map

Z(β) −→ g∗[n− 1] ,

and its derived symplectic reduction is equivalent to Z(α).

Proof. We have Zp(α) = p†Graph(α) and Z(β) = p†Graph(β). The fiber

product with the map T ∗[n](f) = g∗[n− 1]→ T ∗[n]BG is the functor f †.
Then, the first equivalence is an application of Corollary 3.6. The second
equivalence has already appeared in Example 3.4. It is a consequence of
Lemma 3.3: the fiber product with the zero section BG→ T ∗[n]BG is the
functor g† for g : BG→ pt. □

Remark 3.11. Theorem A is the particular case where n = 0, α =
ddR(Sred) and β = ddRS for some a G-invariant function S : X → A1. In
this case, Zp(α) = Critp(Sred), Z(α) = Crit(Sred) and Z(β) = Crit(S).

Remark 3.12. According to Remark 3.7, the lagrangian correspondence
between Z(α) and Z(β) is indeed given by

Z(β) ×
T ∗[n]BG

BG ≃ Z(β) ×
g∗[n−1]

pt ,
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that is to say the derived zero fiber of the shifted moment map. Indeed,
whenever P = pt and B = BG, Diagram (4) becomes

pt

BG ×
T ∗[n]BG

Z(β)

pt Z(β)

g∗[n− 1]

BG ×
T ∗[n]BG

Zp(α) ≃ Z(α)

BG Zp(α)

pt T ∗[n]BG pt .

We now consider the situation of Section 3.2, for M → P an equivariant
morphism of G-stacks, that is for a square

M M/G

P P/G .

f

p p

f

We get the following general form for Theorem B:

Theorem 3.13. Let α be a closed 1-form of degree n on M/G, and let β :=
f
∗
α. Then the relative derived criticial locus Zp(α) is a derived symplectic

reduction of Zp(β) along the moment map µ : T ∗[n]P → g∗[n].

Proof. This is a direct consequence of Corollary 3.6, together with Exam-
ple 2.6 and Remark 2.7. □

Remark 3.14. Theorem B is the particular case where n = 0, α =
ddR(Sred) and β = ddRS for some a G-invariant function S : X → A1. In
this case, Zp(α) = Critp(Sred), Zp(β) = Crit(S).
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4. Symplectic reduction commutes with lagrangian

intersections

4.1. Proof of Theorem C

The goal of this section is to prove the following general form of Theorem C
(which will correspond to the case n = 0). We need some notation first. Let
µ : X → g∗[n] be an n-shifted moment map as in Definition 2.3. We consider
two lagrangian morphisms L→ X and L′ → X together with a choice of
two derived symplectic reductions Lred → Xred and L′

red → Xred of L and
L′ along µ (Definition 2.8). Recall from Remark 2.9 that L and L′ inherit
actions of G, and that the two morphisms L→ X ← L′ are G-equivariant.
In particular the (n− 1)-shifted symplectic derived stack L×

X
L′ admits an

action of G. The following result will prove in particular that this action is
hamiltonian.

Theorem 4.1. There exists an (n− 1)-shifted moment L×
X
L′ → g∗[n− 1]

for the (n− 1)-shifted symplectic derived G-stack L×
X
L′, and an equivalence

(

L×
X
L′
)

red
≃ Lred ×

Xred

L′
red

of (n− 1)-shifted symplectic derived stacks.

Proof. We first construct the moment map. Recall from Definition 2.8 and
Remark 2.9 that the maps L→ X and L′ → X factor through Z(µ). Hence,
we get a commutative diagram:

(5)

L X L′

pt g∗[n] pt .

µ

0 0

Computing the limit of the two rows, we get a map

ν : L×
X
L′ −→ g∗[n− 1].

This is our candidate for the (n− 1)-shifted moment map. According to
Definition 2.3 we need to provide a lagrangian structure on

(

L×
X
L′
)

/G→
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g∗[n− 1]/G, together with an equivalence

(

L×
X
L′
)

/G ×
g∗[n−1]/G

g∗[n− 1] ≃ L×
X
L′

of (n− 1)-shifted symplectic stacks.
Notice that Diagram (5) is entirely made of G-equivariant maps, so

the two limits inherits a G-action and the map ν is G-equivariant. Recall
also from Remark 2.9 that L/G = Lred and that L′/G = L′

red. Hence, Dia-
gram (5) induces a diagram:

(6)

L/G X/G L′/G

BG g∗[n]/G BG

µ

0 0

Let us denote by ⊞ the following finite category:

nw n ne

w o e

sw s se .

If D : ⊞→ C is a ⊞-shaped diagram in an (∞, 1)-category C with finite
limits, the limit of D can be computed in two different ways:

• First computing three vertical pullbacks, and then the remaining hor-
izontal one;

• First computing three horizontal pullbacks, and then the remaining
vertical one.

We consider the following morphism u in dSt⊞:

L/G X/G L′/G pt pt pt

BG g∗[n]/G BG pt A2,cl(n+ 1) pt

pt g∗[n] pt pt pt pt .

µ/G 0

u 0 0

0 0

0
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where the top of left diagram is Diagram (6). The natural transformation
u is essentially induced by the symplectic structure g∗[n]/G→ A2,cl(n+ 1),
and the naturality comes form the lagrangian structures of the four maps
into g∗[n]/G of the left diagram.

The vertical limit gives a diagram

L X L′

pt A2,cl(n) pt ,0 0

where the vertical maps are induced by the natural transformation u. Be-
cause the lagrangian mapX/G→ g∗[n]/G is part of a moment map structure
for X, the middle vertical map gives back the n-shifted symplectic structure
of X. Taking the horizontal limit the map L×

X
L′ −→ A2,cl(n− 1) is the

(n− 1)-shifted symplectic structure of L×
X
L′ as a lagrangian intersection.

Computing first the horizontal limit of u we get a diagram

L/G ×
X/G

L′/G pt

g∗[n− 1]/G A2,cl(n)

g∗[n− 1] pt ,

0

0

where the horizontal maps are induced by u. Using that L/G ×
X/G

L/G ≃
(

L×
X
L
)

/G, the top square gives a lagrangian structure on the map ν/G :
(

L×
X
L
)

/G→ g∗[n− 1]/G. The vertical limit of the first column is then a

lagrangian intersection whose (n− 1)-shifted symplectic structure is given
by the map resulting from the vertical limit:

(

L×
X
L′
)

/G ×
g∗[n−1]/G

g∗[n− 1] −→ A2,cl(n− 1) .

Using that the two ways to compute the limit of u coincide, we get the
expected equivalence of (n− 1)-shifted symplectic stacks:

(

L×
X
L′
)

/G ×
g∗[n−1]/G

g∗[n− 1] ≃ L×
X
L′ .
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This finishes to prove that ν : L×
X
L→ g∗[n− 1] is an (n− 1)-shifted mo-

ment map.

We now prove the equivalence
(

L×
X
L′
)

red
≃ Lred ×

Xred

L′
red. We consider

the following morphism v in dSt⊞:

L/G X/G L′/G pt pt pt

BG g∗[n]/G BG pt A2,cl(n+ 1) pt

BG BG BG pt pt pt ,

0

0 0

0

where the natural transformation v is essentially the symplectic structure
g∗[n]/G→ A2,cl(n+ 1), and where the naturality comes form the lagrangian
structures of the four maps into g∗[n]/G of the left diagram.

Recall that Lred = L/G and L′
red = L′/G. Computing the limit first ver-

tically, we get

Lred Xred L′
red

pt A2,cl(n) pt ,0 0

where the vertical maps are induced by v. The middle vertical map is the n-
shifted symplectic structure of Xred and the two squares are the lagrangian
structures of Lred → Xred and L′

red → Xred. The horizontal limit then gives
the (n− 1)-shifted symplectic structure of

Lred ×
Xred

L′
red

coming from the lagrangian intersection.
Computing now the limit first horizontally, we get

L/G ×
X/G

L/G pt

g∗[n− 1]/G A2,cl(n)

BG pt ,

ν/G
0

0
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where the top square is the lagrangian structure of the map ν/G. Using
again L/G ×

X/G
L/G ≃

(

L×
X
L
)

/G, the vertical limit is the (n− 1)-shifted

symplectic structure

(

L×
X
L
)

red
−→ A2,cl(n− 1) .

Using that the two ways to compute the limit of v coincide, we get the
expected equivalence of (n− 1)-shifted symplectic stacks:

(

L×
X
L′
)

red
≃ Lred ×

Xred

L′
red.

□

4.2. Theorem A as a special case of Theorem C

Let M be a derived G-stack, and assume we are given a closed 1-form
α of degree n on the quotient M/G. We denote by β the pullback of α
along the quotient map M →M/G. and consider L to be the lagrangian
morphism M ≃ Graph(β)→ T ∗[n]M . Recall that there is an n-shifted mo-
ment map µ : T ∗[n]M → g∗[n], that (T ∗[n]M)red ≃ T ∗[n](M/G), and that
Lred := Graph(α) defines a derived symplectic reduction of L = Graph(β).
When α = 0, we get that the zero section L′

red of T ∗[n](M/G) is a derived
symplectic reduction of the zero section L′ of T ∗[n]M . Theorem 4.1 tells us
that L ×

T ∗[n]M
L′ ≃ Z(β) carries an (n− 1)-shifted moment map, and that

its derived symplectic reduction is Lred ×
T ∗[n](M/G)

L′
red ≃ Z(α).

5. Examples

5.1. Twisted cotangent bundles of global quotient stacks

Let X be a smooth scheme, let G be an affine group scheme acting on X, and
let β ∈ H1(X,Ω1,cl

X ) be a degree 1 closed 1-form on X (see Example 1.14):
Z(β) is equivalent to the twisted cotangent bundle T ∗

βX. Let us further
assume that β lifts to a degree 1 closed 1-form α on the quotient stack
X/G. Theorem 3.10 says that the G-action on T ∗

βX is hamiltonian and that
(T ∗

βX)red ≃ T ∗
α(X/G) := Z(α).

Remark 5.1. According to the description of the underlying graded com-
plexes from Examples 1.3 and 1.5, the morphism DR•(X/G)♯ → DR•(X)♯
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consists in projecting onto C0(G,−) and sending g∗ to 0. Hence a 1-form
β0 ∈ H1(X,Ω1

X) of degree 1 on X lifts to a 1-form α0 on X/G if and only
if it is G-invariant and basic (i.e. if ιx⃗β0 = 0 for every x ∈ g). Moreover, as
the closedness of β0 turns out to be a property, we can see that, for degree
reason, a degre 1 closed 1-form β ∈ H1(X,Ω1,cl

X ) lifts to a degree 1 closed
1-form α on X/G if and only if the underlying 1-form is G-invariant and
basic.

Lifts are not unique: we can for instance modify any given lift α by
adding an infinitesimal character (see Example 1.4). Indeed, for every λ :
BG→ A1,cl(1), we have a new lift

αλ = α+ p∗λ ,

of β, where p : X/G→ BG. Even when β = 0 we recover something inter-
esting (and known). The twisted cotangent stack T ∗

χ(X/G), for χ = p∗λ, can
be identified with the symplectic reduction of T ∗X along the moment map

T ∗X −→ g∗

sending a covector (x, ξ) to the linear map g→ k defined by

v 7−→ ξ(v⃗x)− χ(v) .

We refer to [18] for more details about this example.

5.2. Hilbert scheme of C3

We fix a positive integer n, and we letM be the space of 4-tuples (x, y, z, v) ∈
gln(C)

×3 × Cn such that v is a cyclic vector for (x, y, z); this means that
C⟨x, y, z⟩ · v = Cn. We finally consider the function S = Tr ([x, y]z), which
is invariant under the action of GLn(C) on M (by conjugation on x, y, z, and
via the regular representation on v). This action does not have non-trivial
stabilizers, so that M/GLn(C) is a smooth quasi-projective variety, known
as the noncommutative Hilbert scheme NCHilbn(C3).

The truncation of the derived critical locus Crit(Sred) is the sub-scheme
of NCHilbn(C3) cut-out by [x, y] = [y, z] = [z, x] = 0. This is isomorphic to
the (commutative) Hilbert scheme Hilbn(C3). The fact that Hilbn(C3) is the
truncation of a (−1)-shifted symplectic derived scheme implies in particular
that it carries a symmetric obstruction theory in the sense of [7] (see [24]),
which is at the heart of the theory of Donaldson–Thomas (DT) invariants.
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It would be interesting to know if the fact that Crit(Sred) is a derived
symplectic reduction of Crit(S) (this is Theorem A) provides any useful
information on this symmetric obstruction theory (and on subsequent DT
invariants). This is a general question that is not specific to this example,
or even to critical loci: what are the consequences for the corresponding
symmetric obstruction theory (and associated DT invariants) when a (−1)-
shifted derived stack is obtained as a derived symplectic reduction along a
(−1)-shifted moment map?

Remark 5.2. The above example is a special case of stacks of represen-
tations of quivers with potential. Indeed, many examples of quiver moduli
shall fit into our framework: we refer to [9] for a more general perspective,
as well as for examples related to Theorem B (see in particular [9, Section
4.2.2]).

5.3. Classical Chern–Simons theory

Strictly speaking, the following example does not exactly fit into our frame-
work, as it falls into the realm of derived differential geometry (rather than
derived algebraic geometry). We refer to [31] for the foundations of shifted
symplectic structures in the differentiable context. There are other technical-
ities occurring, because there are non Artin stacks appearing in the middle
of the process. This is not so much of a problem as

• all our results still work if we replace shifted symplectic (resp. la-
grangian) structures with shifted pre-symplectic (resp. isotropic) struc-
tures;

• at the end, the non-degeneracy property can be checked in an ad hoc
manner.

Let M be a closed oriented 3-dimensional manifold, and consider the
space X of connections on the trivial G-bundle on M : X = Ω1(M, g). The
gauge group G = C∞(M,G), with Lie algebra C∞(M, g), acts on X by g ·
A = gAg−1 − dgg−1. The cotangent to X is Ω1(M, g)⊕ Ω2(M, g), and the
derived critical locus of the Chern–Simons functional

S(A) =

∫

M
Tr

(

dA ∧A+
2

3
A∧3

)
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is thus the fiber of the curvature map Ω1(M, g)→ Ω2(M, g). The shifted
moment map is given by the map

Ω1(M, g)⊕ Ω2(M, g)[−1] −→ Ω3(M, g)[−1]

that sends a connection ∇ with a 2-form R to the covariant derivative ∇R.
Note that, even though the Chern–Simons functional is not necessarily

gauge invariant, its derivative is, so that ddRS induces a closed 1-form αCS

on X/G. Hence (a variant of) Theorem 3.10 ensures that the derived (differ-
entiable) moduli stack Z(αCS) of flat connections (on the trivial G-bundle
on M) is a derived symplectic reduction of the (infinite dimensional) derived
(differentiable) space Crit(S) of flat connections.

Remark 5.3. In the above, we have simplified the picture, especially for
what concerns duality issues in the infinite-dimensional setting. Note nev-
ertheless that this does not change the output of the derived symplectic
reduction (we refer to [31] for more details about this).

5.4. Einstein’s covariance principle after Souriau

This example also belongs to derived differential geometry [31]. Let M be
a 4-manifold and Met(M) the space of lorentzian metrics g on M . We con-
sider Diff(M) the (diffeological) group of diffeomorphisms of M , the (dif-
ferentiable) stack BDiff(M) classifies M -bundles (bundles whose fibers are
isomorphic to M). The group G = Diff(M) acts on X = Met(M) and the
quotient stackX/G classifiesM -bundles whose fibers are each equipped with
a lorentzian metric. The Einstein–Hilbert action S(g) =

∫

M Rvol (where R
is the scalar curvature of the metric g and vol the riemanniann density of
g) is a map S : Met(M)→ R which is equivariant for the action of Diff(M)
on Met(M). The critical locus Critp(S) classifies Einstein metrics (solutions
to Einstein equation in vacuum). More generally, if a differential form ℓ on
Met(M) is given (whose physical interpretation is the distribution of mat-
ter on M [29, 32]) the intersection of ddRS and ℓ are the metrics satisfying
Einstein equation in the presence of matter.

{ddRS = ℓ}

Graph(ddRS) Graph(ℓ)

pt T ∗Met(M) pt
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Souriau formulates Einstein’s covariance principle as the condition of
equivariance for the distribution of matter ℓ. If ℓ is produced by a distri-
bution of symmetric tensors on a worldline of M , this condition implies
that the worldline is geodesic, see [29, 32]. In our setting, this means that
the distribution of matter is a 1-form on Met(M)/Diff(M) and we are in a
situation where we can apply Theorem C.

{ddR(Sred) = ℓred}

Graph(ddRS)red Graph(ℓ)red

pt T ∗
(

Met(M)/Diff(M)
)

pt .

We are going to compute the shifted moment map on {dS = ℓ} explic-
itly but only at the infinitesimal level. Let Θ(M) be the space of vector
fields on M and Sym2(Θ)(M) the space of symmetric covariant tensors of
order 2 on M . The tangent space at a point g of Met(M) is the space
Sym2(Ω1)(M) of symmetric contravariant tensors of order 2. The space
Sym2(Θ)(M) is a dense open subspace in the dual space of Sym2(Ω1)(M)
and to avoid dualizability issues, we are going to consider the open sub-
space of T ∗

c Met(M) ⊂ T ∗Met(M) whose fiber over a metric g is the space
Sym2(Θ)(M). We implicitely restrict Graph(ddRS) and Graph(ℓ) to this
subspace, in what follows. The subspace T ∗

c Met(M) inherits the canonical
2-form of T ∗Met(M). The tangent space at a point g of T ∗

c Met(M) is then
the space Sym2(Θ)(M)⊕ Sym2(Ω1)(M) on which the canonical 2-form in-
duces the obvious pairing. We deduce that the tangent complex at a point
g of the stack {dS = ℓ} is

Sym2(Θ)(M) −→ Sym2(Ω1)(M) ,

concentrated in degrees 0 and 1, and where the differential is given by the
linearization of Einstein’s equations at g. The action of Diff(M) on Met(M)
is given infinitesimally by the map L(−)g : T (M)→ Sym2(Θ)(M) sending
a vector field ξ to the Lie derivative Lξg. The corresponding (infinitesimal)
moment map is given by the map Sym2(Ω1)(M)→ Ω1(M) dual to L(−)g.

Then the induced infinitesimal action of Diff(M) on {dS = ℓ} is es-
sentially given by the map L(−)g in degree 0 and the derivative ν ′ of the
(−1)-shifted moment map ν : {dS = ℓ} → Ω1(X)[−1] is essentially given by
the map µ in degree 1. This is best pictured as the following morphisms of
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complexes in amplitude [0, 1]:

Θ(M) Θ(M) 0

Tg{dS = ℓ} Sym2(Θ)(M) Sym2(Ω1)(M)

Ω1(M)[−1] 0 Ω1(M) .

L(−)g

ν′ µ

The tangent complex at g in {dS = ℓ}red is then the total complex of this
double complex (in amplitude [−1, 2])

Θ(M)
L(−)g
−−−→ Sym2(Θ)(M)

lin. E. eqt
−−−−−−→ Sym2(Ω1)(M)

µ
−−→ Ω1(M) .
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[33] B. Toën & G. Vezzosi, Homotopical Algebraic Geometry II: geometric
stacks and applications, Memoirs of the AMS 902 (2008), 224pp.

[34] G. Vezzosi, Basic structures on derived critical loci, Differential Geom-
etry and its Applications 71 (2020), 101635.

https://www.math.ias.edu/~lurie/papers/SAG-rootfile.pdf


✐

✐

“1-Calaque” — 2023/5/18 — 22:00 — page 1583 — #41
✐

✐

✐

✐

✐

✐

Shifted symplectic reduction of derived critical loci 1583

Department of Philosophy, Carnegie Mellon University

Pittsburgh, PA 15213, USA

E-mail address: mathieu.anel@protonmail.com

IMAG, Université de Montpellier, CNRS

34090 Montpellier, France

E-mail address: damien.calaque@umontpellier.fr


	Introduction
	Derived symplectic geometry
	The ``magic cube'' of derived symplectic reduction
	Relative derived critical loci
	Symplectic reduction commutes with lagrangian intersections
	Examples
	References

