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Motivated by the connection to 4d N = 2 theories, we study the
global behavior of families of tamely-ramified SLN Hitchin inte-
grable systems as the underlying curve varies over the Deligne-
Mumford moduli space of stable pointed curves. In particular, we
describe a flat degeneration of the Hitchin system to a nodal base
curve and show that the behaviour of the integrable system at the
node is partially encoded in a pair (O,H) where O is a nilpotent
orbit and H is a simple Lie subgroup of FO, the flavour sym-
metry group associated to O. The family of Hitchin systems is
nontrivially-fibered over the Deligne-Mumford moduli space. We
prove a non-obvious result that the Hitchin bases fit together to
form a vector bundle over the compactified moduli space. For the
particular case of M0,4, we compute this vector bundle explicitly.
Finally, we give a classification of the allowed pairs (O,H) that
can arise for any given N .
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1. Introduction

1.1. The setup

Four dimensional superconformal theories have been a subject of study for
many years. Since the work of Seiberg-Witten [1, 2], it has been understood
that the low energy physics at a generic point of the Coulomb branch of 4d
N = 2 theories is succinctly encoded in the geometry of a complex integrable
system [3–5]. Integrable systems that arise in this fashion are sometimes
called Seiberg-Witten integrable systems.

Recently, a class of N = 2 theories that admit a uniform geometric con-
struction from six dimensions have received greater attention [6–8]. One
of the important features shared by all such theories is the fact that their
associated Seiberg-Witten integrable systems are isomorphic to particular
instances of Hitchin’s integrable system[9]. This includes several familiar
theories with UV Lagrangians and more mysterious theories for which there
is no known UV Lagrangian.

In this realization from six dimensions, the Hitchin system plays an
important role. Specifically, the Coulomb branch associated to the four di-
mensional theory can be described as the base B of Hitchin’s integrable
system associated to a simply laced Lie algebra j and the UV curve Cg,n.
The choice of the Lie algebra j parameterizes the available 6d (2, 0) theories
and the choice of Cg,n determines the 2d surface on which we compactify the
6d theory (together with a partial twist). At the locations of the n punctures,
we insert four dimensional defects of the 6d (2, 0) theory. The insertions of
these defects affects the behaviour of the Hitchin system at these punctures.
For the present discussion, we are interested in “tame defects”. These are
the defects that induce a simple pole for the Higgs field in the Hitchin system
at the location of the punctures,

(1) Φ =
a

z
+ (regular terms).
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In order to obtain superconformal field theories (SCFT) using tame defects,
we additionally require that Res(Φ) = a be a nilpotent element in the Lie
algebra j. What really matters is the j-conjugacy class to which the element
a belongs. So, it is helpful label the Hitchin boundary condition by the
nilpotent orbit Oa to which the element a belongs. We will sometimes call
this nilpotent orbit the Hitchin orbit OH associated to the defect.

When j is not of type A, one needs to further enhance this using some
discrete data associated to the defect. The absence of such discrete data for
defects in type A is related to the fact that component groups of centralizers
of nilpotent orbits are always trivial in type A. Let us define

(2) A(Oa) = CJad
(a)/C0

Jad
(a)

to be the group of components of the centralizer of nilpotent orbit Oa. Here,
CJad

(a) is the centralizer of exp(a), the unipotent element associated to a,
in the adjoint group Jad and C0

Jad
(a) is its connected component. The above

statement is equivalent to saying that

A(Oa) = 1

for every nilpotent orbit in type A (see [10, 11] for more details). In the
discussion below, we confine ourselves to examples from type A Hitchin
systems.

1.2. Weakly coupled gauge groups

An important feature of this geometric realization from six dimensions is
that the space of marginal parameters associated to the SCFT is identified
with the Deligne-Mumford moduli spaceMg,n of complex structures on Cg,n.
Moving/restricting to a (complex) codimension-one irreducible component
of the boundary of Mg,n in Mg,n corresponds to the appearance of a weakly
coupled gauge group with an associated gauge coupling that is related to
plumbing fixture parameter q by

q ∼ e2πiτ

Further l-fold intersections of the boundary correspond to loci where l simple
factors in the gauge group become weak. The (3g − 3 + n)-fold intersection
of the boundary is zero-dimensional. Each point corresponds to a choice
of pants-decomposition of Cg,n. Each such pants decomposition furnishes
a presentation of the class-S theory as a “gauge theory” with semi-simple
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gauge group with 3g − 3 + n simple factors, coupled to 2g − 2 + n (free or
interacting) isolated SCFTs corresponding to 3-punctured spheres. Different
pants decompositions furnish different (“S-dual”) presentations of the same
family of SCFTs as such a gauge theory.

“Generically,” each factor in the gauge group is just J , the compact
group1 associated to the complex ADE Lie algebra j. Interestingly, there are
cases where the weakly coupled gauge group that arises on an irreducible
component of the boundary is a proper subgroup H of J . This striking
feature was first noticed in [12] where S-duality of the SU(3), Nf = 6 theory
was studied. More general examples were studied using the six dimensional
framework in [7, 13].

The emergence of a proper subgroup H as the weakly coupled gauge
group has manifestations for all aspects of the theory. Take, for instance, the
Higgs branch of a Class S[j, Cg,n] theory. It can be described as a hyperKähler
quotient of the product of Higgs branches of the 2g − 2 + n SCFTs by the
action of the 3g − 3 + n simple factors in the gauge group. The reduction of
the gauge group from J3g−3+n to a subgroup has an obvious manifestation
here. We will not be studying the Higgs branch in this paper, though we
will return to this subject briefly in §6.

We will instead study the appearance of the proper subgroups H from
the point of view of the Coulomb branch. The Coulomb branch of a Class
S[j, Cg,n] theory is the base of a Hitchin integrable system of type j on the
punctured curved Cg,n. We would like to understand the implication of the
reduction from J to H for the corresponding Hitchin systems. To do this,
we will need to elaborate a theory of Hitchin systems on nodal curves which
behaves well in families. In this paper, we will study only the j = sl(N) case.
There are additional complications that arise beyond type-A, which we will
leave for a future work.

1.3. From Hitchin systems to Good, Ugly and Bad theories

In studying connections between tame Hitchin systems and 4d N = 2 the-
ories, it is useful to understand which Hitchin systems correspond to good,
ugly or bad[14] 4d N = 2 theories. This trichotomy of 4d N = 2 theories
was suggested by [15] and it can be thought of as a 4d analog of a similar
trichotomy arising in 3d N = 4 theories [16]. In [15], this trichotomy was
proposed using the properties of the Higgs branch. However, for 4d N = 2

1At the moment, we do not fix the global form of the group J . Much of the
discussion below will not be sensitive to the exact global form of J .
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theories with Coulomb branches described by the tame Hitchin system, this
trichotomy can also be understood purely in terms of a Hitchin system with
base B =

⊕
k H

0(C,Lk) for some line bundles, Lk, to be defined below.
With this goal in mind, we introduce the following definitions for any tame
Hitchin system on a smooth Riemann surface Cg,n:

• Bad : These are Hitchin systems with h1(C,Lk) > 0, for some k, on
the smooth curve C. These are precisely the Hitchin systems where the
graded Coulomb branch dimension h0(C,Lk) is not given by deg(Lk) +
1− g for some values of k. When we have h1(C,Lk) = 0 for all values
of k, we say that the corresponding Hitchin system is OK [17].

• Ugly : Consider the space of all local mass deformations of the Hitchin
system along the lines of [18]. From this space of the deformations, one
can define a map κ to the space of mass deformations of the global
Hitchin system:

(3) κ : {mi}local → {mi}global,

where {mi}global is the space of mass deformations of the spectral
curve.

Ugly Hitchin systems are those which are OK but have a non-trivial
kernel for the map κ. Correspondingly, we will call a Hitchin system
with dim(ker(κ)) > 0 “ugly.” An extreme case of an ugly theory is one
consisting of free hypermultiplets. The corresponding Hitchin moduli
space is a point and hence there are no global mass deformations of
the Hitchin system in this case, whereas the SCFT has relevant defor-
mations corresponding to turning on hypermultiplet masses.

• Good : These are Hitchin systems which are OK and not ugly.

For the purposes of this paper, we will mostly consider Hitchin systems
that are OK on Cg,n. For all such theories, the Deligne-Mumford moduli
space Mg,n can be identified with the space of marginal parameters of the
corresponding SCFT and we will rely on this identification to study the
weakly coupled gauge groups in §7. Much of our paper treats the good and
ugly cases on an equal footing, so we do not dwell on the differences between
the two cases.

However, to understand certain aspects of the story, we will need to
include some bad Hitchin systems on C0,n in the discussion. We discuss
this briefly in §7.5 and Appendix B and leave a more detailed analysis to a
future work. These theories also happen to be the ones for which the relation
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between our terminology and its physics interpretation is subtle. For certain
bad Hitchin systems, it will turn out that the corresponding 4d theory is
a theory of free hyper-multiplets or a perfectly good 4d SCFT. There is,
however, a point of view proposed in [19] according to which one should
think of the corresponding compactified 6d theory (with finite area for the
Riemann surface C) as being a bad theory in these cases. Our OK/Bad
dichotomy for Hitchin systems is more directly related to this point of view.

1.4. Outline of the paper

The paper is structured in the following way. We review properties of the
tame Hitchin system on a smooth underlying curve in §2. We then build a
global model for the Hitchin system over M0,4 in §3. In particular, in §3.2 we
note that the Hitchin bases fit together to form a nontrivial vector bundle
over M0,4 . We compute that bundle explicitly in §3.3. We then use this
model to take a first look at the Hitchin system on nodal curves in §4. In
this section, we also define what it means for a node to be standard (§4.1) or
restricted (§4.2). The restricted nodes are labeled by a pair, (O,H), where O
is a nilpotent orbit in sl(N) and H is an SU(l) or Sp(l) subgroup of SU(N).
We should emphasize that the pair (O,H) is not a complete invariant of the
singular spectral curve which covers the node. Examples 3 and 4 of §4.3 have
the same (O,H) = ([4], SU(2)), but the singularity structure of the spectral
curve is different.

In §5, we take the results of §4 as motivation to build a general framework
for the Hitchin system on a nodal curve such that the family of Hitchin
systems on a family of smooth curves is flat in the limit as the smooth curve
degenerates to the nodal one. Over the interior of the moduli space, the
Lk fit together to form line bundles over the universal curve C → Mg,n. In
extending them to the boundary, we encounter an interesting phenomenon.
For a restricted node, in which “O” is not the regular nilpotent, the Lk extend
to line bundles L′

k which are the “naive” Lk twisted by a (negative) power
of a line bundle whose divisor is a component of the boundary in π : C →
Mg,n. For any given C, the Hitchin base is B =

⊕
k H

0(C,L′
k). These vector

spaces fit together (see Theorem 5.1) to form a nontrivial vector bundle
B =

⊕
k π∗L

′
k over Mg,n.

The possible restricted nodes are strongly constrained by physics con-
siderations arising from the role of the flavour symmetry, as we show in §6.
In §7, we provide a classification of the allowed nodal degenerations using
the methods of §5. This classification is summarized in Theorem 7.1. We
also show that the results of §7 are compatible with those in §6.
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In Appendix A, we provide a proof of Theorem 5.1. In Appendix B,
we discuss the close relationship between our OK condition and the semi-
stability condition for Higgs bundles. We also state a conjecture relating the
OK condition to a corresponding Deligne-Simpson problem.

1.5. Further directions

As motivation for future work, we mention here some further directions in
which our work could be extended or applied.

1) Other approaches to Higgs bundles on nodal curves
There has been considerable prior work on studying the moduli of

bundles and parabolic bundles on nodal curves (see, for example, [20–
23]). There has been some recent progress on extending some of these
results to Higgs bundles on nodal curves [24–26]. See also [27, 28] for
some earlier work in this direction. For our purposes, it is important
to understand how the family of integrable systems behaves in the
nodal limit. This appears to not have been addressed previously in the
mathematical literature. So, we develop this from the basics. Relating
our work to the framework of [24–26] is an interesting direction for
future work.

2) Solutions to Hitchin’s equations in the nodal limit
Solutions to Hitchin’s equations in the nodal limit of the base curve

have also been studied recently in [29] for the sl(2) case with no punc-
tures. Our classification of restricted nodes should also have interesting
consequences for a higher-rank tame analog of [29].

3) Global topology of the character variety
Another direction in which our framework could be used is in the

study of the character variety. The character variety is defined to be
the space of maps π1(Cg,n) → SL(N,C) and it is related to the moduli
space of Higgs bundles through the non-abelian Hodge correspondence
[30, 31]. Unlike the geometry of Higgs bundles, the geometry of the
character variety is independent of the choice of a complex structure on
C. In particular, this means we could choose to work with any complex
structure on C and then use the non-abelian Hodge correspondence to
obtain the character variety.

A specific application in this direction would be to study the global
topology of the character variety [32] from the point of view of Higgs
bundles on a nodal curve. This is similar in spirit to the work in [33]
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where the Verlinde formula (in the sl(2) case) was proven by studying
the factorization properties of the generalized theta divisor in the nodal
limit [34].

4) Higher Fenchel-Nielsen coordinates
Our results could also be of use in the study of natural Darboux co-

ordinates on the moduli space of flat connections and/or the character
variety and the behaviour of these coordinates under different choices
of pants decompositions of the underlying Riemann surface. In the
sl(2) case, for every choice of a pants decomposition of the Riemann
surface, there is a natural set of Darboux coordinates on the character
variety called the Fenchel-Nielsen length and twist coordinates (see
[35] for a review). In the sl(2) case, we get (3g − 3 + n) pairs of length
and twist coordinates - one pair each for every closed curve in Cg,n.
In the higher rank cases, it is again possible to define analogous co-
ordinates for every choice of a pants decomposition. It turns out that
complex higher Fenchel-Nielsen coordinates arise from N = 2 theories
as a natural system of Darboux coordinates on the Hitchin moduli
space [36, 37]. In this context, they have recently been studied in spe-
cific higher rank examples employing different points of view [38–42].
Closely related real Fenchel-Nielsen coordinates for higher Teichmuller
spaces2 go back to the work of [43] for the sl(3) case and have recently
been studied in [44] for the sl(N) case.

Independent of the methods used, a new feature that one notices in
the higher rank cases is that there are non-trivial coordinates associ-
ated to a thrice punctured sphere. These coordinates are sometimes
denoted as internal Fenchel-Nielsen coordinates [44, 45]. And as in
the sl(2) case, we continue to have coordinates attached to the nodes
themselves. In the case of a standard node, the number of coordinates
attached to the node is 2rank(G). But, in the case of a restricted
node, there is a reduction in this number to 2rank(H). The existence
of restricted nodes (see examples in §4.3) also makes it clear that
the number of internal and nodal (or center) parameters need not be
separately invariant under changes of pants decompositions. It is an
interesting problem to study the precise relationship between the coor-
dinates arising from different choices of pants decompositions. For the
classical Fenchel-Nielsen coordinates, this has been done in [46, 47].

2These correspond to subspaces in the character variety where we only consider
representations of the form π1(Cg,n) → SL(n,R)
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We believe our results on the allowed restricted nodes (in §6.2 and §7)
will be helpful in finding such relationships in the higher rank cases.

5) The Deligne-Simpson problem
Finally, we would like to mention a conjectural application of our

results to the existence problem for tame, irreducible SLN charac-
ter varieties. When the underlying Riemann surface is a n-punctured
sphere C0,n, this problem has been studied by Deligne and Simpson
[48]. To solve this problem, one needs to provide conditions under
which tame, irreducible SLN character varieties are guaranteed to ex-
ist. For a particular class of examples, Simpson [48] obtained a pair of
geometric conditions that achieve this goal.

Interestingly, we find that our OK condition on tame Higgs bundles
(with nilpotent Higgs fields) has a close connection to the existence
problem for the corresponding character variety. Specifically, we prove
in Appendix B that the OK condition is necessary and sufficient for
Simpson’s conditions (from [48]) to hold for the corresponding charac-
ter variety. This result is, however, limited to the case where at least
one of the punctures has a regular residue for the Higgs field. In Ap-
pendix B, we outline a conjecture for the more general cases.

2. Tame Hitchin systems on smooth curves

In this and subsequent sections, we will be relying on many standard results
about the moduli space of curves and linear systems on families of curves.
We refer the reader to [49, 50] for an exposition of these results.

Recall that the total space of the Hitchin system is the moduli space
Higgs of JC-Higgs bundles which are defined to be moduli space of pairs
(V,Φ) where V is a principal JC bundle and Φ ∈ H0(C, ad(V )⊗K) in the
case without ramification. In this paper, we will mostly take Higgs to also
obey an appropriate stability condition with the exception being the discus-
sion in §7.5. Hitchin observed [9] that there is a natural map which is now
called the Hitchin map:

(4) µ : Higgs →
⊕

k

H0(C,K⊗k)

where k runs over the degrees of J-invariant polynomials on j (k = 2, 3, . . . , N
for j = AN−1). We denote the image

⊕
k H

0(C,K⊗k) as the base B of the
Hitchin system. The fibers µ−1(b) over some generic point b ∈ B are complex
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Lagrangian tori. In other words, (Higgs, µ) defines a complex integrable sys-
tem. The fibers of µ admit succinct descriptions in terms of Jacobians/Prym
varieties associated to the spectral/cameral curves built out of Φ [51, 52].

There is a further generalization where we replace K by a more general
line bundle. We are, in particular, interested in the case where K is replaced
by K(D) where D is a divisor of marked points on C. Such a replacement
leads us to the meromorphic Hitchin system. In this setting, we have Higgs
field Φ ∈ H0(C, ad(V )⊗K(D)). The resulting moduli spaceHiggsD of pairs
(V,Φ) is a Poisson manifold. If we restrict the residues of Φ at the marked
points to be fixed conjugacy classes of j, then we restrict to a particular
symplectic leaf in the Poisson manifold. The Hitchin map µ, when restricted
to this symplectic leaf, again describes a complex integrable system[53, 54].

When the Hitchin system is associated to a 4d N = 2 theory, one can
deduce the geometry of the integrable system by formulating the 4d N = 2
theory on R1,2 × S1

R and studying how the resulting moduli space is fibered
over the 4d Coulomb branch[55, 56]. This argument is based on constraints
from supersymmetry and the nature of the R → 0 limit which corresponds
to a dimensional reduction of the 4d N = 2 theory to a 3d N = 4 theory.
These arguments also carry over to the case where the base curve C devel-
ops a nodal singularity. In particular, we expect the Hitchin map µ to be
Lagrangian. There is, however, one important new feature and this has to
do with the fact that the Hitchin map µ could fail to be proper when C is
singular. This means that some of the fiber directions of µ may no longer
be compact. Physically, this is to be expected since the spectral curve Σb

is singular in the limit where we take Im(τUV ) → ∞ and the fibers of the
Hitchin map are the generalized Jacobians associated to singular curve. The
base directions which are symplectic dual to the noncompact fiber direc-
tions become additional Casimir parameters in the sense of [53]. For reasons
that will be explained in §4 and §5, we will denote these additional Casimir
parameters as center parameters. These center parameters will turn out to
play an important role in our discussions.

2.1. Nilpotent orbits and spectral curves: local story on a
smooth curve.

We work with the Hitchin system for JC = SLN on a smooth curve C with
marked points in a reduced divisor D =

∑
i pi.

At each point pi, we insert a regular four dimensional defect of the 6d
(2, 0) theory X [AN−1]. The effect of this defect is to produce a simple pole
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in the Higgs field

(5) Φ =
a

z
+ . . .

where Res(Φ) = a is an element of the complex Lie algebra j associated to
J . Since we want to study tame Hitchin systems corresponding to conformal
theories, we additionally assume that a is a nilpotent element in j. There is a
natural j action on the adjoint valued Higgs field Φ. Inequivalent boundary
conditions are labeled by the conjugacy class Oa to which the residue a
belongs. In type A, nilpotent orbits can be classified by using the Jordan
normal form and counting the sizes of the Jordan blocks. We label an orbit
by a partition of N , which we can equally-well think of as the heights of the
columns of a Young diagram. The partition (or Young diagram) is called the
Hitchin label for the defect in the physics literature. There is a related, dual
label called the Nahm label which is more directly associated to the Higgs
branch. For type A Hitchin systems, the Nahm label is just given by the
transpose partition. Since our study here will be confined to the Coulomb
branch, we will privilege the Hitchin label over the Nahm label for most
of the paper. However, in §6, we will discuss the flavour symmetry and the
Higgs branch and for those discussions, the Nahm label is more natural.

The spectral curve is now given by wN =
∑N

k=2 akw
N−k. Here ak is a

pluridifferential on C i.e. a section of (KC)
⊗k with allowed pole of order up

to πk. Alternatively, it is a section on C of (KC(D))⊗k with a zero of order
≥ χk, where πk + χk = k.

For a given nilpotent orbit Oi inserted at pi, the order of the zero χ
(i)
k

of ak at pi is the column-number of the column containing kth box in the
Young diagram corresponding to Oi (where the boxes of the Young diagram
are labeled consecutively, starting with the first box of the first column

and proceeding vertically and then to the right). This determines π
(i)
k =

k − χ
(i)
k . For example, the regular nilpotent orbit (partition [N ]) gives orders

of vanishing χ
(i)
k = 1 for all k, the subregular orbit (partition [N − 1, 1])

gives χ
(i)
k = 1 for k < N and χi

N = 2. At the opposite extreme, the minimal

nilpotent orbit (partition [2, 1N−1]) gives χ
(i)
k = k − 1.

Note that the orbit O determines a generic form of the spectral cover
ΣO. The actual cover could be any specialization of the generic form, i.e. the
orders of vanishing of the coefficients are allowed to go up but not down.

More precisely, the orbit determines not the type of singularity of the
spectral curve but the local structure of the spectral sheaf on it. For example,
a matrix is regular if and only if it has a one dimensional eigenspace per
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eigenvalue. In the Hitchin moduli space, this implies that an orbit at p is
regular if and only if the spectral sheaf has rank 1 everywhere above p, i.e.
it is a line bundle on the spectral curve Σ near the inverse image of p [51].
If Σ is non-singular then all spectral sheaves on it are line bundles, so the
Hitchin fiber (= the Jacobian J(Σ) ) consists only of line bundles. On a
singular spectral curve Σ , most spectral sheaves are still line bundles, but
some are not. For example, when Σ is an irreducible nodal curve, the fiber
is the compactified Jacobian J(Σ). This has the Jacobian J(Σ) as a dense
open subset, but the other (closed, lower dimensional) stratum consists of
sheaves that are not line bundles - they have rank 2 at the node, arising
instead as direct images of line bundles on the normalization of Σ. So the
regular orbit can correspond to (line bundles on) either smooth or arbitrarily
singular spectral curves, the subregular orbit corresponds to a spectral curve
with at least a node (and a sheaf that has rank exactly 2 at one point above
the singularity) and so on.

Conversely, a given spectral cover Σ determines a smallest orbit OΣ. The
actual orbit obtained from some sheaf on Σ may be any orbit containing
OΣ in its closure. If ν : N → Σ is the normalization of spectral curve, then
the smallest orbit OΣ corresponds to the sheaf ν∗(O), while the largest (=
regular) orbit corresponds to the structure sheaf OΣ. If the spectral curve
were to have a nodal singularity, then OΣ is the subregular orbit and so on.

2.2. Nilpotent orbits and spectral curves: global story on a
smooth curve

Now consider the global situation, taking C := P1. The coefficient ak is a
section of a line bundle, Lk, of degree:

(6) deg(Lk) = k(−2 + deg(D))−
∑

pi∈D

χ
(i)
k = −2k +

∑

pi∈D

πi
k.

The space of all such sections is a vector space of dimension:

(7) bk := max(1 + deg(Lk), 0).

As an example, consider the case when χ
(i)
k = 1 for all i, k. We then have

deg(Lk) = −2k + deg(D)(k − 1), k = 2, 3, . . . N . If we have deg(D) ≥ 3 then
deg(Lk) ≥ −1. So, the dimension bk of the Hitchin base B in degree k is just
given by

(8) bk = k(deg(D)− 2) + 1− deg(D)
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Summing over degrees, we get

dim(B) =

N∑

k=2

k(deg(D)− 2) + 1− deg(D)

= (−1)(N2 − 1) +
deg(D)(N2 −N)

2

(9)

The dimension of the total space HiggsD in this case can be easily
computed using Riemann-Roch, cf. [53, 54]. Alternatively, this can be evalu-
ated using the non-abelian Hodge correspondence and the realization of the
Hitchin moduli space as the character variety π1(C0,k) → SLN with fixed
regular holonomy around each puncture ([57]):

dim(HiggsD) = (−2)(N2 − 1) +

deg(D)∑

i=1

dim(Oreg)

= (−2)(N2 − 1) + deg(D)(N2 −N)

(10)

where we have used the fact that the dimension of a regular orbit in SLN

is dim(Oreg) = (N2 −N).
Comparing (9) and (10), we see that

(11) dim(HiggsD) = 2dim(B).

This is in keeping with our expectations since (HiggsD, µ), where µ is the
Hitchin map restricted to a symplectic leaf of HiggsD, defines a complex
symplectic integrable system.

3. Global interlude I: Hitchin system over M0,4

In this section, we will study global aspects of the Hitchin system on family
of curves by specializing to the case of a four punctured sphere. We will then
use this global model in §4.1 to take a first look at the Hitchin system on a
nodal curve.

3.1. A global model for the universal curve C0,4

Let the locations of four punctures be z1, z2, z3, z4 and let λ be their cross
ratio

λ =
(z1 − z3)(z2 − z4)

(z1 − z4)(z2 − z3)
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We use the following global model for the universal curve π : C → M0,4.
Consider CP

2 blown up at four points: E1 → (1, 0, 0), E2 →
(0, 1, 0), E3 → (0, 0, 1), E4 → (1, 1, 1). Let us denote the blown up surface

as C̃P
2
. Let λ1, λ2 be homogeneous coordinates on M0,4 = CP

1. The cross
ratio λ = λ1/λ2.

We identify the universal curve, C ≃ C̃P
2
and the projection π : C̃P

2
→

M0,4 is defined as the solution to

(12) λ1x(y − z) + λ2y(z − x) = 0

which determines λ1,2 up to a common scaling. Here x, y, z are (the pullbacks

to C̃P
2
of) the standard projective coordinates on CP

2. As a function on CP
2,

the ratio λ = λ1/λ2 is well defined except at the four points Ei. It extends

to give a well defined morphism π : C̃P
2
→ CP

1 on the blowup C = C̃P
2
.

For generic, λ = λ1/λ2 the fiber, Cλ = π−1(λ), is smooth. But at the
three boundary points ofM0,4, corresponding to λ = 0, 1,∞, Cλ degenerates
into a pair of lines

C0 = {y(z − x) = 0}, (with the node atn0 = (1, 0, 1) )

1

3

2

4

C1 = {z(x− y) = 0}, (with the node atn1 = (1, 1, 0) )

1

2

3

4
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C∞ = {x(y − z) = 0}, (with the node atn∞ = (0, 1, 1) )

1

4

2

3

3.2. The bundle of Hitchin bases

Pick a collection of 4 nilpotent orbits, Oi in sl(N). We will interchangeably
consider two models for the spectral curve Σλ → Cλ. In both cases, it is the
vanishing locus of a homogeneous polynomial

0 = det(w1 − Φ) = wN −
N∑

k=2

ϕkw
N−k

in the total space of a line bundle L → C. One model is to take L = KC and

allow the ϕk to have poles of order π
(i)
k = (k − χ

(i)
k ) (dictated by the choice

of Oi) at the punctures. In the second model, we take L = KC

(∑
Ei

)
and

demand that the ϕk have zeroes of order χ
(i)
k at the punctures. The latter

model is more convenient for our global discussion, as it naturally produces
Σ as a compact curve.

Let

Lk = O(k)
(
−
∑

i

χ
(i)
k Ei

)

On each curve, Cλ, the ϕk are holomorphic sections of Lk|Cλ
. These fit

together to form

ϕk ∈ H0(C,Lk) = H0(M0,4, π∗Lk)

We now proceed to compute the direct image sheaves, π∗Lk on M0,4.

3.3. Computing the direct image bundles

We are interested in various line bundles, L = O(k) (−
∑

i niEi) on C̃P
2
and

their direct-image sheaves π∗L onM0,4. A-priori, the direct image is torsion-
free and hence (since we are in complex dimension-1) a vector bundle, V .
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The fiber of V over λ ∈ M0,4 is H0 (Cλ,L). Over the boundary points, the
dimension of H0 (Cλ=0,1,∞,L) can sometimes jump. If it does then the fiber
is H0 (Cλ=0,1,∞,L′) ⊂ H0 (Cλ=0,1,∞,L) for L′ defined in (22).

Any vector bundle on CP
1 splits as a direct sum of line bundles. So we

have

(13) π∗O(k)
(
−
∑

i

niEi

)
=
∑

i∈Z

miOP1(i)

for some collection of mi ≥ 0. We thus get one relation,

∑

i

mi = h0 (Cλ,L)

among this infinite number of unknowns. To find more relations (and, ulti-
mately, to solve for the mi), the trick is to tensor (13) with OP1(−l).

(14) π∗

(
O(k)(−

∑

i

niEi)⊗ π∗(OP1(−l))
)
=
∑

i∈Z

miOP1(i− l)

and use

(15) π∗ (OP1(1)) = O(2)
(
−
∑

i

Ei

)

Putting (14) and (15) together, we have

(16) π∗

(
O(k − 2l)(−

∑

i

(ni − l)Ei)
)
=
∑

i∈Z

miOP1(i− l)

for each l ∈ Z. Taking H0 of both sides and using that, for any f : X → Y
and F a sheaf on X, H0(Y, f∗F) = H0(X,F), we get for each l a relation
on the mi.

For l ≥ ni we have, by Hartog’s Theorem,

(17) h0
(
C̃P

2
,O(k − 2l)

(∑

i

(l − ni)Ei

))
=

{(
k−2l+2

2

)
k ≥ 2l

0 otherwise
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When the ni = 1, the conditions imposed by demanding that the sections
vanish to some order at the Ei are independent. In that case, we can gener-
alize (17) to

(18) h0
(
C̃P

2
,O(k − 2l)

(∑

i

(l − 1)Ei

))

= max
((

k−2l+2
2

)
, 0
)
− 4max

(
1
2(1− l)(2− l), 0

)

More generally, if the ni are “small enough” so that the vanishing constraints
at the Ei are independent, we have

(19) h0
(
C̃P

2
,O(k − 2l)

(∑

i

(l − ni)Ei

))

= max
((

k−2l+2
2

)
, 0
)
− 1

2

∑

i

(ni − l + 1)max (ni − l, 0)

The requisite condition3 is

(20)

∑

i

ni ≤ 2k + 1

ni + nj ≤ k + 1, ∀ pairs i, j

When this holds, (16) yields

(21)
∑

i

mimax(0, i− l + 1)

= max
((

k−2l+2
2

)
, 0
)
− 1

2

∑

i

(ni − l + 1)max (ni − l, 0)

for all l ∈ Z.
When there’s a pair ni, nj which violates (20) — say ni + nj = k + 1 + p,

for some p > 0 — then we replace

(22) L → L′ = L ⊗
(
O(−1)(Ei + Ej)

)⊗p

This preserves h0(C̃P
2
,L′) = h0(C̃P

2
,L) (and it preserves the inequality for

the other pairs) while making ni + nj “small enough.” Computing π∗L
′ pro-

duces a vector bundle on M0,4 of the same rank and the same first Chern

3The actual condition is (ni − l) + (nj − l) ≤ (k − 2l) + 1, but the l‘s cancel,
yielding (20).
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class as π∗L. Moreover, since L′ is a subsheaf of L, π∗L
′ is a subsheaf of

π∗L. Since they are vector bundles of the same rank and first Chern class
on M0,4 = CP

1, and the former is a subbundle of the latter, they are iso-
morphic.

To see how this works, let’s specialize to setting all the ni = 1. Then (21)
becomes
(23)

ml + 2ml+1 + 3ml+1 + · · · =





1
2

(
k2 + (3− 4l)k + 6(l − 1)

)
l ≤ 0

1
2(k − 2l + 2)(k − 2l + 1) 0 < l ≤ k

2

0 l > k
2

To solve this system of equations, there are two cases

• k = 2p = even
– We have ml = 0 for l ≥ p+ 1. Then clearly, mp = 1 and hence 4 =

mp−1 = mp−2 = · · · = m1. Then m0 = 0 and ml = 0, for l < 0.

• k = 2p+ 1 = odd
– We have ml = 0 for l ≥ p+ 1. Then clearly, mp = 3 and hence 4 =

mp−1 = mp−2 = · · · = m1. Then m0 = 0 and ml = 0, for l < 0.

To summarize:

(24) π∗O(k)
(
−
∑

i

Ei

)

=




4O(1)⊕ 4O(2)⊕ · · · ⊕ 4O(p− 1)⊕O(p) for k = 2p

4O(1)⊕ 4O(2)⊕ · · · ⊕ 4O(p− 1)⊕ 3O(p) for k = 2p+ 1

Extending this to 1 ≤ ni ≤ k − 1 (subject to
∑

i ni ≤ 2k + 1) will be useful
in the following, so let us tabulate the results. We mark in red the cases
where we had to apply (22).

For k = 2, there’s only one case, (n1, n2, n3, n4) = (1, 1, 1, 1) ⇒ m1 = 1.
For k = 3, 4, 5, the results are summarized in Table 1.

4. Global interlude II: Standard and restricted nodes

In this section, we will use the global model developed in §3 to study the
kinds of nodes that can arise for a tame Hitchin system on a four punctured
sphere. To illustrate the main points, we will pick the Hitchin system for
j = sl(4).
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(n1, n2, n3, n4) m1

(1, 1, 1, 1) 3
(2, 1, 1, 1) 2
(2, 2, 1, 1) 1
(2, 2, 2, 1) 0

k = 3

(n1, n2, n3, n4) m2 m1

(1, 1, 1, 1) 1 4
(2, 1, 1, 1) 1 3
(2, 2, 1, 1) 1 2
(2, 2, 2, 1) 1 1
(2, 2, 2, 2) 1 0
(3, 1, 1, 1) 0 3
(3, 2, 1, 1) 0 2
(3, 2, 2, 1) 0 1
(3, 2, 2, 2) 0 0
(3, 3, 1, 1) 0 1
(3, 3, 2, 1) 0 0

k = 4

(n1, n2, n3, n4) m2 m1

(1, 1, 1, 1) 3 4
(2, 1, 1, 1) 3 3
(2, 2, 1, 1) 3 2
(2, 2, 2, 1) 3 1
(2, 2, 2, 2) 3 0
(3, 1, 1, 1) 2 3
(3, 2, 1, 1) 2 2
(3, 2, 2, 1) 2 1
(3, 2, 2, 2) 2 0
(3, 3, 1, 1) 1 2
(3, 3, 2, 1) 1 1
(3, 3, 2, 2) 1 0
(3, 3, 3, 1) 0 1
(3, 3, 3, 2) 0 0
(4, 1, 1, 1) 0 4
(4, 2, 1, 1) 0 3
(4, 2, 2, 1) 0 2
(4, 2, 2, 2) 0 1
(4, 3, 1, 1) 0 2
(4, 3, 2, 1) 0 1
(4, 3, 2, 2) 0 0
(4, 3, 3, 1) 0 0
(4, 4, 1, 1) 0 1
(4, 4, 2, 1) 0 0

k = 5

Table 1. The values of mi for k = 3, k = 4, k = 5

4.1. The standard node

We are interested in the behaviour of the spectral curve when the base curve,
C develops a node. There is a “generic” behaviour that we will call “the stan-
dard node.” This is when the number of Casimirs (or “center parameters”,
in the nomenclature to be introduced below) on the Hitchin base is equal to
the rank of j (N − 1 for sl(N)).

When the Hitchin orbits at the punctures are sufficiently big, when the
number of punctures is sufficiently large or if the genus of each component
of the nodal curve is ≥ 1, then every node is a standard node. Similarly, in
the A1 theory, all nodes are standard.
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On the 4-punctured sphere, we can ensure that we get a standard node
by taking the residue of the Higgs field to lie in the regular nilpotent orbit,
Res(Φ) = a ∈ [N ] at each of the punctures. This corresponds to requiring
that each ϕk has a simple zero at each of the four punctures Ei, i = 1, 2, 3, 4.

We will be particularly interested in the behaviour of the family of spec-
tral curves (or equivalently, of Hitchin bases B) as we approach a boundary
of Mg,n. In M0,4, the three boundary points look similar, so let us focus on
one of them: the λ = 1 boundary. For simplicity, we will specialize to sl(4).
The generalization to arbitrary sl(N) is straightforward.

We list the contributions to dim(B) from each degree. Each of the ϕk

have the form of certain homogeneous polynomials of degree k in x, y, z.
That is, ϕk is a holomorphic section of the line bundle Lk = O(k)(−

∑
iEi)

on C̃P
2
. We computed the direct images π∗Lk in §3.3. For each k, the results

are summarized in the first line of the corresponding sub-table of table 1 or
equivalently in (24).

[4](z1)

[4](z3)

[4](z2)

[4](z4)

π∗L2 = OP1(1). So the space of ϕ2s is 2-dimensional. We can think of it as
being spanned by

C0 = y(z − x), C1 = z(x− y), C∞ = x(y − z)

subject to the relation

(25) C0 + C1 + C∞ = 0

Restricted to any given Cλ, there’s an additional relation (12),

(26) C∞λ1 + C0λ2 = 0

which means that, restricted to Cλ, the space of ϕ2s is 1-dimensional. But
notice that OP1(1) is nontrivial. Any global holomorphic section has a zero
for some λ ∈ P1.
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We will choose a trivialization which is good everywhere except at λ = ∞
and write

ϕ2 = u2;Cx(y − z)

Near λ = 1, this ϕ2 does not vanish either on the right component (the line
x− y = 0) nor on the left component (the line z = 0) and thus belongs to
the center (equivalently the node itself). Hence the “C” subscript.

π∗L3 = 3OP1(1). So the space of ϕ3s is 6-dimensional. We can view this as
being spanned by

C0x, C0y, C0z, C1x, C1y, C1z, C∞x, C∞y, C∞z,

subject to the relation (25). Restricting to any given Cλ, we get the addi-
tional relation (26), which cuts the dimension of the space of ϕ3s down to
3. Again, we’ll choose a trivialization of π∗L3 which is good everywhere but
at λ = ∞ and write

ϕ3 = x(y − z)(u3;1x+ u3;2y + u3;3z)

At λ = 1, u3;L = u3;1 is supported only on the left component of the curve
(the line z = 0), u3;R = u3;3 is supported only on the right component of the
curve (the line x− y = 0), and u3;C = u3;1 + u3;2 is supported on both.

π∗L4 = 4OP1(1)⊕OP1(2). So the space of ϕ4s is 4× 2 + 3 = 11-dimensional.
Restricting to any given Cλ reduces the dimension to 5. For any λ ̸= ∞, we
can take this 5-dimensional space to be spanned by

ϕ4 = x(y − z)[u4;L,L(x− y)(z − x) + u4;L,R(x− y)y

+ u4;R,Lz(z − x) + u4;R,Rzy + u4;Cx(y − z)]

up to terms which vanish by (12). Here, the first L(R) subscript pertains
to sections supported on the left(right) component of the nodal curve at
λ = 1 and the second L(R) subscript pertains to sections supported on
the left(right) component of the nodal curve at λ = 0. Moreover, in this
parametrization, u4;C is the parameter which transforms as a section of
OP1(2) (with a double pole at λ = ∞), whereas the other four parameters
transform as sections of OP1(1).
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Taken together, we have the following family of spectral curves

Det(Φ− w1) = w4 − x(y − z)
[
u2;Cw

2 + (u3;1x+ u3;2y + u3;3z)w

+ (u4;L,L(x− y)(z − x) + u4;L,R(x− y)y

+ u4;R,Lz(z − x) + u4;R,Rzy + u4;Cx(y − z))
]

= 0

(27)

And we have following graded base dimensions bL,C,R
k , k = 2, 3, 4:

bLk = {0, 1, 2}

bCk = {1, 1, 1}

bRk = {0, 1, 2}

(28)

We have trivialized the bundle of Hitchin bases on the complement of λ = ∞.
If we want a description that extends to λ = ∞, we could choose (say) a
trivialization which was good everywhere except at λ = 0 and set u′2;C = C0

(and similarly for the rest of the u’s). Clearly, these are related by

u′2;C = − 1
λu2;C

That is, the bundle of Hitchin bases is nontrivial over M0,4. It splits as a
direct sum of line bundles, as we computed in §3.3. Reading off the results
from table 1 or (24),

(29) B =

k=2︷ ︸︸ ︷
O(1)⊕

k=3︷ ︸︸ ︷
3O(1)⊕

k=4︷ ︸︸ ︷
4O(1) +O(2) = 8O(1)⊕O(2) .

Remark 1. More generally, for j = sl(N), and 4 regular nilpotents on C0,4,

(30) Bk =





O(l)⊕
l−1⊕

m=1

O(m)⊕4 for k = 2l

O(l)⊕3 ⊕
l−1⊕

m=1

O(m)⊕4 for k = 2l + 1

This gives a new stratification of the Hitchin base, finer than the decompo-
sition into Bk, even for smooth C. We do not understand its mathematical
significance. From a physical perspective, this stratification gives the transi-
tion functions needed to relate the Coulomb branch parameters in different
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S-duality frames. The precise physical significance of the transition functions
implied by (30) remains to be explored.

When C approaches the nodal limit, the Lagrangian fibers of the Hitchin
map µ acquire certain non-compact directions. The non-compact directions
in the fiber are symplectic dual 4 to the center parameters. If we quotient
out the non-compact directions, we are then left with a Poisson integrable
system in which the center parameters act as Casimir parameters. So, the
label “C” in uk;C could equally-well stand for Casimir.

For generic values of the center parameters, Φ has a simple pole with
semisimple residue at the node (for λ = 1, this is the point x = y = 1, z = 0).
The fiber over the node on C, consists ofN nodes of the spectral curve, which
is otherwise smooth.

If we focus our attention on just the right component of C (the line
x− y = 0), we get the following spectral curve

w4 − x(x− z)[u2;Cw
2 + (u3;Cx+ u3;Rz)w

+ (u4;Cx(x− z) + u4;R,Rxz + u4;R,Lz(z − x))] = 0

where, as above, u3;C = u3;1 + u3;2, u3;R = u3;3 and u3;L = u3;1. On the left
component (the line z = 0)

w4 − xy
[
u2;Cw

2 + (u3;L(x− y) + u3;Cy)w

+ (u4;Cxy − u4;L,Lx(x− y) + u4;L,R(x− y)y)
]
= 0

Setting the center parameters to zero (and freezing the corresponding
non-compact fiber directions), we obtain a symplectic integrable subsystem.
Since the normalization of the nodal curve is disconnected, the integrable
system is the product of an integrable system associated to the 3-punctured
sphere on the left with an integrable system associated to the 3-punctured
sphere on the right. On CL the spectral curve for the symplectic integrable
subsystem is

(31) w4 − xy(x− y)
[
u3;Lw + (−u4;L,Lx+ u4;L,Ry)

]
= 0

4Let ui, θi be a system of coordinates on the base and fibers of the Hitchin
integrable system such that ΩI =

∑
i dui ∧ dθi. In the nodal limit, some of the ui

correspond to the center parameters ui;C . Their (symplectically) dual directions
parameterized by θi;C are the non-compact directions.
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and on CR we obtain

(32) w4 − xz(x− z)[u3;Rw + (u4;R,Rx− u4;R,L(x− z))] = 0 .

Each of these is the spectral curve for the Hitchin integrable system associ-
ated to C0,3 with 3 regular Hitchin punctures.

The physics of this degeneration is well-understood: the theory contains
an SU(4) N = 2 vector multiplet which becomes weakly coupled as we ap-
proach the nodal limit. The center parameters are the VEVs of (gauge-
invariant polynomials in) the scalar fields in the vector multiplet. These are
in 1-1 correspondence with the independent Casimirs of SU(4). This vec-
tor multiplet gauges a diagonal SU(4) subgroup of the product of the two
SCFTs (associated to the 3-punctured spheres) which are called TN (for
N = 4) in [7].

4.2. Restricted nodes

Hitchin orbit Zero orders χ⃗

[4] (1, 1, 1)

[3, 1] (1, 1, 2)

[2, 2] (1, 2, 2)

[2, 12] (1, 2, 3)

Table 2. The zero orders χ⃗ for the non-zero nilpotent orbits in sl(4)

So far, we have assumed four punctures with residues in the regular
Hitchin nilpotent orbit. If we were to choose the residues to be in some
smaller nilpotent orbit, then the zero orders would go up. For example, if
we choose the residue at the puncture E1 to be in the Hitchin orbit [22], this
forces ϕ3 and ϕ4 to have double zeroes (instead of simple zeroes) at E1. That
is, it changes the vector χ⃗1 from (1, 1, 1) to (1, 2, 2) where the entries of χ⃗
correspond to k = 2, 3, 4. This, in turn, imposes linear relations among the
coefficients. These relations can be deduced by looking at the (27). We see
that the only terms in ϕ3 and ϕ4 that don’t have a double zero at E1 (which
is the locus y = 0, z = 0) are the terms with coefficients u3;1 and u4;L,L.
If we set these coefficients to zero, we force the residue at E1 to live in the
nilpotent orbit [22]. One can deduce similar constraints for all other nilpotent
orbits and the locations Ei. For the reader’s convenience, we tabulate the
zero orders χ⃗ for the various nilpotent orbits in sl(4) in table 2. When we
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have three regular nilpotents and one non-regular nilpotent inserted at Ei,
the constraints obtained in this way are summarized in table 3.

OH E1 E2 E3 E4

[3, 1] u4;L,L = 0 u4;L,R = 0 u4;R,L = 0 u4;R,R = 0

[22]
u3;1 = 0

u4;L,L = 0

u3;2 = 0

u4;L,R = 0

u3;3 = 0

u4;R,L = 0

u3;1 + u3;2 + u3;3 = 0

u4;R,R = 0

[2, 12]

u3;1 = 0

u4;L,L = 0

(u4;R,L + u4;C)

+λ(u4;L,R − u4;R,L)

= 0

u3;2 = 0

u4;L,R = 0

(u4;R,R + u4;C)

+λ(u4;L,L − u4;R,R)

= 0

u3;3 = 0

u4;R,L = 0

(u4;L,L − u4;C)

+λ(u4;R,R − u4;L,L)

= 0

u3;1 + u3;2 + u3;3 = 0

u4;R,R = 0

(u4;L,R − u4;C)

+λ(u4;R,L − u4;L,R)

= 0

Table 3. Conditions imposed on Coulomb branch parameters in the sl(4)
Hitchin system on C0,4 with three regular nilpotent and one non-regular
nilpotent residue

Replacing one of the residues with a non-regular nilpotent changes the
bundle of Hitchin bases (29). For example, if one of the residues is in the
orbit [2, 12] and the other three remain regular, the space of ϕ4s is the kernel
of a map

4OP1(1)⊕OP1(2) → OP1(1)⊕OP1(2)

where the image of u4;C is nonzero. Hence the kernel is isomorphic
to 3OP1(1), as follows from the analysis of §3.3 (see the entry for
(n1, n2, n3, n4) = (3, 1, 1, 1) in the k = 4 subtable of table 1). Similarly, the
space of ϕ3s is 2OP1(1). Assembling all the pieces together, we get

(33) B =

k=2︷ ︸︸ ︷
O(1)⊕

k=3︷ ︸︸ ︷
2O(1)⊕

k=4︷ ︸︸ ︷
3O(1) = 6O(1) .

In replacing one of the regular nilpotents by [2, 12], we had to impose three
linear constraints from table 3. This reduced the dimension of the Hitchin
base, B, from 9 to 6. And indeed (33) is a rank-6 sub-bundle of (29).

Proceeding as we did in the case with four regular nilpotents, we would
now like to study the behaviour of the spectral curves when the base curve
C develops a node while allowing for some of the residues to be non-regular.
We will see that the specialization of the spectral curve, implied by imposing
the constraints of table 3, changes its behaviour when the base curve, C,
degenerates.

The first type of change is a reduction in the number of center parameters
(that is, the residue of Φ at the node is no longer a generic semisimple)
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- rather than forming the Casimirs of SU(N), it will turn out that they
form the Casimirs of some simple subgroup H ⊂ SU(N). We will give a
mathematical proof of this claim in §7. This is also guaranteed by certain
physics considerations which we recall in §6.

A second type of change that could occur is that when the center pa-
rameters are set to zero, the Res(Φ) at the node need not be in the regular
nilpotent orbit. When we set the center parameters to zero in the standard
node (27), the coefficients of wN−k for k = 3, . . . , N vanish linearly at the
node (x− y = z = 0). So, we conclude that the orbit O at the node is [N ],
the regular nilpotent. For O ̸= [N ], some of these coefficients vanish to higher
order. When the orbit at the node is non-regular, the center parameters then
live in the closure of the sheet5 that contains the orbit O at its boundary.

In §7, we prove that the vanishing orders uniquely determine such a O
and also characterize the nilpotent orbits that could occur in this way. To
capture these two phenomena, we will label a restricted node by the pair
(O,H). Even though our proofs appear in §7, to simplify the presentation,
we have adopted the notation (O,H) to label restricted nodes through out
the paper. In this notation, the standard node would be ([N ], SU(N)).

4.3. Examples

Let us illustrate the above considerations with some examples. For brevity,
we’ll focus on the behaviour near the λ = 1 degeneration of C.

Example 1.

[3, 1](z1)

[2, 12](z2)

[4](z3)

[4](z4)

The orders of the zeroes of the ϕk for this example are:

5We refer the reader to [18] for an introduction to sheets in complex Lie algebras
and further background references.
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Ei OH ϕ2 ϕ3 ϕ4

E1 [3, 1] 1 1 2
E2 [2, 12] 1 2 3
E3 [4] 1 1 1
E4 [4] 1 1 1

Using the results from table 3, for placing [3, 1] at E1 and [2, 12] at E2, we
get the constraints

u3;2 = 0, u4;L,L = 0, u4;L,R = 0, u4;C = (λ− 1)u4;R,R

Plugging these into (27), we get the following family of spectral curves in
this example (dropping a term proportional to u4;R,RCλ):

w4 − x(y − z)[u2;Cw
2 + (u3;Cx+ u3;Rz)w(34)

+ (u4;R,Lz(z − x) + u4;R,Rxz)] = 0

From this, we deduce the graded base dimensions bL,C,R
k for k = 2, 3, 4:

bLk = {0, 0, 0}

bCk = {1, 1, 0}

bRk = {0, 1, 2}

(35)

With the center parameters turned on, the spectral curve still has 4 nodes
covering the node on C. But, rather than being free parameters (controlled
by the uk;C), the location of one of the nodes is fixed to w = 0. Setting the
center parameters to zero, the Hitchin integrable system on the 3-punctured
sphere on the right is unchanged; it governs the Coulomb branch of the T4

theory, as above. But, on the left, the symplectic integrable system is just a
point. The physical theory on CL is “ugly”: consisting of 6 free hypermulti-
plets, transforming as 2 copies of the defining representation of SU(3).

The gauge group has been reduced from G = SU(4) to H = SU(3) and
the center parameters are the Casimirs of H. The restricted node is thus
([4], SU(3)).
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Example 2.

[22](z1)

[22](z2)

[4](z3)

[4](z4)

The orders of the zeroes of the ϕk are:

Ei OH ϕ2 ϕ3 ϕ4

E1 [22] 1 2 2
E2 [22] 1 2 2
E3 [4] 1 1 1
E4 [4] 1 1 1

Using the results from table 3, for placing [22] at E1 and at E2, we get the
constraints

u3;1 = u3;2 = 0, u4;L,L = u4;L,R = 0

Plugging these into (27), we get the spectral curve:

w4 − x(y − z)[u2;Cw
2 + u3;Rzw + (u4;Cx(y − z)(36)

+ u4;R,Lz(z − x) + u4;R,Rzy)] = 0

So the graded base dimensions bL,C,R
k for k = 2, 3, 4 are:

bLk = {0, 0, 0}

bCk = {1, 0, 1}

bRk = {0, 1, 2}

(37)

Again with the center parameters turned on, there are 4 nodes on the
spectral curve covering the node on C. This time, they are symmetrically-
distributed about w = 0.

The Hitchin system on the right remains that of the T4 theory, while on
the left, it is a point. The theory on the left is “ugly”: 8 free hypermulti-
plets, transforming as 2 copies of the 4-dimensional defining representation
of Sp(2).
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The center parameters are the Casimirs of the gauge group, H = Sp(2)
and we label the restricted node as ([4], Sp(2)).

Example 3.

[3, 1](z1)

[2, 12](z2)

[22](z3)

[22](z4)

This example is, in a sense, a combination of Examples 1 and 2.
The orders of the zeroes of the ϕk are:

Ei OH ϕ2 ϕ3 ϕ4

E1 [3, 1] 1 1 2
E2 [2, 12] 1 2 3
E3 [22] 1 2 2
E4 [22] 1 2 2

The punctures on the left component of C impose the constraints

u3;2 = 0, u4;L,L = 0, u4;L,R = 0, u4;C = (λ− 1)u4;R,R

while the punctures on the right component of C impose the constraints

u3;3 = u3;1 + u3;2 = 0, u4;R,L = u4;R,R = 0

Putting these together, we get the spectral curve

(38) w2[w2 − u2;Cx(y − z)] = 0

There’s just one center parameter, corresponding to H = SU(2) = SU(3) ∩
Sp(2). Turning it off, the Hitchin integrable systems on both the left and
the right are trivial. The restricted node is thus ([4], SU(2)).

Note that this theory is globally an ugly one: the 14 hypermultiplets (6
from the left and 8 from the right) transform as 4 copies of the defining
representation of SU(2) and 6 copies of the trivial representation. That
is, 6 hypermultiplets remain free, everywhere on M0,4. In addition to the
free hypermultiplets, we have the Hitchin integrable system for SU(2) with
Nf = 4, whose spectral curve is the component of (38) in square brackets.
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Example 4.

[22](z1)

[2, 12](z2)

[4](z3)

[4](z4)

The orders of the zeroes of the ϕk are:

Ei OH ϕ2 ϕ3 ϕ4

E1 [22] 1 2 2
E2 [2, 12] 1 2 3
E3 [4] 1 1 1
E4 [4] 1 1 1

Using the constraints from table 3, the spectral curve (again dropping a
term proportional to u4;R,RCλ) is

0 = w4 − x(y − z)[u2;Cw
2 + u3;Rzw + (u4;R,Lz(z − x) + u4;R,Rzx)]

and graded base dimensions bL,C,R
k for k = 2, 3, 4:

bLk = {0, 0, 0}

bCk = {1, 0, 0}

bRk = {0, 1, 2}

(39)

The singularity of the spectral curve, covering the node on C is different
from that in Example 3, but the restricted node is again ([4], SU(2)). The
constraint on H is coming entirely from the left.

Turning off the center parameter, the integrable system on the right
component is the same 3-dimensional Hitchin integrable system as in Ex-
amples 1 and 2. On the left, we have the trivial theory, with no degrees of
freedom.
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Example 5.

[2, 12](z1)

[2, 12](z2)

[4](z3)

[4](z4)

The orders of the zeroes of the ϕk are:

Ei OH ϕ2 ϕ3 ϕ4

E1 [2, 12] 1 2 3
E2 [2, 12] 1 2 3
E3 [4] 1 1 1
E4 [4] 1 1 1

Using the constraints from table 3, the spectral curve (dropping a term
proportional to u4;R,RCλ, and defining u4;R,L = u4;R,R ≡ u4;R) is

0 = w4 − x(y − z)[u2;Cw
2 + u3;Rzw + u4;Rz

2]

The graded base dimensions bL,C,R
k for k = 2, 3, 4:

bLk = {0, 0, 0}

bCk = {1, 0, 0}

bRk = {0, 1, 1}

(40)

Now the constraints imposed by the punctures on the left have forced
a change in the sub-integrable system on the right. It is no longer the 3-
dimensional Hitchin system associated to the sphere with 3 regular Hitchin
punctures.

Res(Φ)z3,z4 ∈ [4] as before but now Res(Φ)z′ ∈ [3, 1], where z′ is the third
puncture on CR

0,3 (the right component in the normalization of the nodal
curve). We can see this directly by looking at the spectral curve on the right
component. With the center parameter turned off,

0 = w4 − x(x− z)[u3;Rzw + u4;Rz
2]
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At two of the punctures (x = 0 and x = z), the coefficients of u3;R and u4;R
vanish to linear order, as expected for the Hitchin nilpotent, [4]. At the node
(z = 0), the coefficient of u3;R vanishes to linear order, but the coefficient
of u4;R vanishes to quadratic order. This is the behaviour at the Hitchin
nilpotent [3, 1]. On the left, we have the ugly theory, consisting of two free
hypermultiplets. The Hitchin sub-integrable system on the right is the one
associated to the 3-punctured sphere with Hitchin nilpotents [3, 1], [4] and
[4]. It governs the Coulomb branch geometry of the SCFT named R0,4 in
[13].

The restricted node is thus ([3, 1], SU(2)).

Example 6.

[3, 12](z1)

[3, 12](z2)

[5](z3)

[5](z4)

So far, all of our examples of restricted nodes have been accompanied
by a trivial sub-integrable system on one (or both) of the components of
the nodal curve. This need not be the case, but the first nontrivial example
occur in sl(5).

Here is the table of zero orders of ϕk for this example

Ei OH ϕ2 ϕ3 ϕ4 ϕ5

E1 [3, 12] 1 1 2 3
E2 [3, 12] 1 1 2 3
E3 [5] 1 1 1 1
E4 [5] 1 1 1 1

The spectral curve is

0 = w5−x(y − z)[u2;Cw
3 + (u3;1x+ u3;2y + u3;3z)w

2

+ (u4;Cx(y − z) + u4;R,Lz(z − x) + u4;R,Rzy)w

+ u5;R,Ryz
2 + u5;R,L(z − x)z2 + u5;R,Cx(y − z)z]

(41)
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The graded dimensions bL,C,R
k for k = 2, 3, 4, 5 for the base are

bLk = {0, 1, 0, 0}

bCk = {1, 1, 1, 0}

bRk = {0, 1, 2, 3}

(42)

Turning off the center parameters, the sub-integrable system on the right
is the 6-dimensional Hitchin system corresponding to the three-punctured
sphere with three regular punctures, [5]. On the left, the spectral curve is

0 = w ·
[
w4 − xy

(
u2;Cw

2 + (u3;L(x− y) + u3;Cy)w + u4;Cxy
)]

which, upon turning off the center parameters, becomes

(43) 0 = w2 ·
[
w3 − u3;Lxy(x− y)

]

The restricted node is ([5], SU(4)). Physically, the neighbourhood of
λ = 1 is described as a weakly-coupled N = 2 SU(4) gauge theory, gaug-
ing a diagonal SU(4) subgroup of the E6 global symmetry of the Minahan-
Nemeschansky theory and one of the SU(5)s in the SU(5)3 global symmetry
of the T5 theory.

The factor in square brackets of (43) is the spectral curve of the one-
dimensional integrable system governing the Coulomb branch of the E6

Minahan-Nemeschansky theory [58]. This integrable system does have (more
than one) realization as a Hitchin integrable system. For instance, it can be
realized as the 3-punctured sphere with 3 regular nilpotents, [3] of sl(3). In
the present case, we are seeing it appear as a (limit of the) SL5 Hitchin
system. There is, however, a crucial difference. Unlike in its SL3 real-
ization, there is no semistable SL5 Higgs bundle moduli space on the 3-
punctured sphere with (43) as its spectral curve. Any SL5 Higgs bundle on
C0,3 with residues in ([3, 12], [3, 12], [5]) is necessarily unstable (see §7.5 and
Appendix B).

Example 7. Finally, let us close this section with an example that com-
bines the features of examples 5 and 6: the sub-integrable systems on the
left and right are both nontrivial and the restricted node is not the regular
nilpotent.

Consider the 4-punctured sphere
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[3, 13](z1)

[3, 13](z2)

[6](z3)

[6](z4)

for sl(6).
The zero orders of ϕk are

Ei OH ϕ2 ϕ3 ϕ4 ϕ5 ϕ6

E1 [3, 13] 1 1 2 3 4
E2 [3, 13] 1 1 2 3 4
E3 [6] 1 1 1 1 1
E4 [6] 1 1 1 1 1

The spectral curve is

0 = w6−x(y − z)[u2;Cw
4 + (u3;1x+ u3;2y + u3;3z)w

3

+ (u4;Cx(y − z) + u4;R,Lz(z − x) + u4;R,Rzy)w
2

+ (u5;R,Ryz + u5;R,L(z − x)z + u5;R,Cx(y − z))zw

+ (u6;R,Ryz + u6;R,L(z − x)z + u6;R,Cx(y − z))z2]

(44)

which yields the graded dimensions bL,C,R
k for k = 2, 3, 4, 5, 6 for the Hitchin

base:

bLk = {0, 1, 0, 0, 0}

bCk = {1, 1, 1, 0, 0}

bRk = {0, 1, 2, 3, 3}

(45)

On the left (z = 0), we get

0 = w2 ·
[
w4 − xy

(
u2;Cw

2 + (u3;Cy + u3;L(x− y))w + u4;Cxy
)]

which, upon turning off the center parameters becomes

0 = w3 ·
[
w3 − u3;Lxy(x− y)

]

We recognize, again, the irreducible component in square brackets as the
spectral curve of the E6 Minahan-Nemeschansky SCFT. Again, this SCFT is
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not obtained as the Hitchin system on a 3-punctured sphere, with punctures
([3, 13], [3, 13], X) for any choice of nilpotent X.

On the right (x− y = 0), the spectral curve is

0 = w6−x(x− z)[u2;Cw
4 + (u3;Cy + u3;Rz)w

3

+ (u4;Cx(x− z) + u4;R,Lz(z − x) + u4;R,Rzy)w
2

+ (u5;R,Rxz + u5;R,L(z − x)z + u5;R,Cx(x− z))zw

+ (u6;R,Rxz + u6;R,L(z − x)z + u6;R,Cx(x− z))z2]

Setting the center parameters to zero, this becomes

0 = w6−x(x− z)[u3;Rzw
3

+ (u4;R,Lz(z − x) + u4;R,Rxz)w
2

+ (u5;R,Rxz + u5;R,L(z − x)z + u5;R,Cx(x− z))zw

+ (u6;R,Rxz + u6;R,L(z − x)z + u6;R,Cx(x− z))z2]

Here, we see that ϕ6 has a double zero at the node, rather than a simple
zero, implying that O = [5, 1]. The center parameters are the Casimirs of
H = SU(4). So the restricted node is ([5, 1], SU(4)).

We saw that the tame Hitchin system on C0,4 may have a standard node
or a restricted node depending on the residues of the Higgs field at each of
those punctures. So, it is natural ask what are the general conditions under
which restricted nodes could occur and how does one characterize or classify
restricted nodes. We now take up these questions in a systematic way in §5,
§6 and §7.

5. Tame Hitchin systems on nodal curves

In §4, we found a family of Hitchin integrable systems, with base B → M0,4,
which extended as a flat family to the boundary of the moduli space where
C develops a node. Over the boundary, we found symplectic sub-integrable
systems, with bases BL ⊕BR →֒ B.

We would like to extend this story to Mg,n. Let C̃ be the normalization
of the nodal curve C. The complex structure moduli space of C̃ is a compo-
nent of the boundary of Mg,n. More specifically, there are two qualitatively
different cases,
(46)

MC̃ =




MgL,nL+1 ×MgR,nR+1 where gL + gR = g and nL + nR = n

Mg−1,n+2
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In each case, this a codimension-1 divisor in Mg,n. The former is called a
“separating node”; the latter is called a “non-separating node.”6

Our aim, in this section is to sketch the construction of a family of
Hitchin integrable systems with base B → Mg,n and a symplectic sub-
integrable system with base B̃ →֒ B|MC̃

. We further want to exhibit, in
the case of a separating node, a decomposition B̃ = BL ⊕ BR where BL →
MgL,nL+1 and BR → MgR,nR+1

In most cases, the resulting sub-integrable system will, again, be a
semistable J-Hitchin system on C̃. The exception will echo what we saw
in §4 in the case of M0,4: when the node is restricted — something we
will see happens only in the case of a separating node when one or both of
the components has genus-zero — that genus-zero component will yield a
complex integrable system which is not a semistable J-Hitchin system.

5.1. Hitchin system on a nodal curve

Replace the smooth base curve C by a Gorenstein curve: roughly, it can be
singular, as long as there is still a good canonical line bundle (also called the
dualizing sheaf) KC . Any curve that is a divisor in a smooth surface will do.
The canonical line bundle is given by the adjunction formula. This includes
any curve whose only singularities are nodes. On a nodal curve, the sections
of the canonical bundle are 1-forms on the normalization with first order
poles allowed at the (inverse images of) the nodes, with opposite residues at
the two inverse images of each node.

As in the smooth case, the Hitchin system for C and a reductive group G
is the space Higgs of (isomorphism classes of) KC-valued G-Higgs bundles
on C. AG-Higgs bundle is a pair (V,Φ) where V is a principal G-bundle on C
and Φ ∈ H0(C, ad(V )⊗KC). For now we will focus on the case G = GL(N),
so V is a vector bundle and Φ : V → V ⊗KC ; or G = SL(N), where det(V )
is required to be OC and the trace of Φ is required to vanish . As in the
smooth case, one can consider a GIT version where the Higgs bundles are
subject to a stability condition; or one can allow all Higgs bundles and work
with the resulting stack.

6In §5.5, we will be interested in higher-codimension components of the bound-
ary of Mg,n, where C has multiple nodes. It will still make sense to ask whether
normalizing a given node splits the curve into disconnected pieces. This will always
be the case when g = 0. That is, all of the irreducible components of the boundary
divisor of M0,n are of the form M0,n1+1 ×M0,n2+1, with n1 + n2 = n.
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Also as in the smooth case, the spectral curve of (V,Φ) is the curve in the
total space of KC defined by the vanishing of the characteristic polynomial
of the endomorphism Φ. The Hitchin base B is defined to be the space of
all spectral curves. This can be identified with the vector space:

(47) B :=
⊕

k

H0(C,K⊗k
C )

where k runs over the degrees of the G-invariants. For G = SL(N), these
degrees are k = 2, . . . , N . The Hitchin map h : Higgs → B sends (V,Φ) to
(the coefficients of) the characteristic polynomial of Φ.

When the Higgs field has poles along a divisor D consisting of distinct
smooth points of C, one can again define a Hitchin map whose image is now
given by

(48) B :=
⊕

k

H0(C, (KC(D))⊗k)

In the conformal case, the residue of Φ at each of the marked points, pi,
must lie in some specified nilpotent orbit, Oi. Correspondingly,

(49) B :=
⊕

k

H0(C,Lk)

where

(50) Lk =
(
KC(D)

)⊗k
⊗O

(
−
∑

pi∈D

χ
(i)
k pi

)

The line bundles Lk over each fiber fit together to form a line bundle Lk

over the universal curve π : C → Mg,n. The Hitchin bases (49) fit together
to form a torsion-free sheaf

(51) B =

N⊕

k=2

π∗Lk

For M0,4, we computed these direct images rather explicitly in §3.3.
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By Riemann-Roch7, the graded dimensions of B, when C is smooth, are

(52) bk = (g − 1)(2k − 1) +
∑

pi∈D

(k − χ
(i)
k )

These are necessarily non-negative for g > 0. For g = 0, we assume that the
{Oi} are such that the bk are non-negative for each k (i.e. that the SCFT
is “OK”). For a stable nodal curve, the same holds true except when C is
reducible and one (or more) of the components is genus-0. In that case,
H0(C,Lk) and H1(C,Lk) can jump in dimension (though the difference
remains constant). In that case, as we shall see in §5.2, the definition of
the Hitchin base (49) will need to be modified to (61), so that its graded
dimensions are still given by (52). Globally, this will mean modifying (51)
to

(53) B =

N⊕

k=2

π∗L
′
k

so that B is actually a vector bundle over Mg,n. The global definition of the
L′
k, as line bundles over the universal curve will be given in §5.6. We will

first work out what they have to be, fiber-by-fiber, starting with curves with
a single node, and progressing to more singular nodal curves in §5.5.

We now proceed to study the behaviour at the codimension-1 boundaries
of Mg,n, i.e. where C is smooth apart from a single node. We will see that
the behaviour of the Hitchin system in the nodal limit is that dictated by
the “standard node” described in §4, except when C has two components,
one (or both) of which is genus-0. When this is the case, and when a certain
condition on the collection of marked points on that component is satisfied,
we obtain a restricted node, (O,H). As will be clear from the analysis,
the same conclusion applies if we further degenerate surface. We obtain a
restricted node only in the case where one (or both) side(s) of the node
consists of a tree of P1s (with the same condition on the marked points on
that side).

7For g > 1 and no marked points, Lk = K⊗k
C , which has vanishing H1. Adding

marked points increases deg(Lk) and again H1 = 0. For g = 1, stability requires at
least one marked point. This ensures deg(Lk) > 0 and hence H1 = 0. It is only for
g = 0 that a nonzero H1 is possible and we just impose by hand that deg(Lk) ≥ −1.



✐

✐

“2-Balasubramanian” — 2023/5/17 — 14:57 — page 1623 — #39
✐

✐

✐

✐

✐

✐

Families of Hitchin systems and N = 2 theories 1623

Figure 1. A Riemann surface C of genus g develops a separating node. The
nodal curve has two components whose genera gL, gR obey g = gL + gR.

5.2. Hitchin system on a reducible nodal curve

Let us first consider the case of a separating node. The base curve Cg,n

of the Hitchin system has a single node at the point p and is reducible.
The normalization v : CL ⨿ CR → Cg,n, where CL and CR have genus gL,R
respectively, satisfying

gL + gR = g

In this subsection, we will only consider degenerations where CL and CR are
themselves smooth stable curves.

Let CL and CR be the corresponding divisors in C. Then O(−CL) and
O(−CR) are line bundles on C. Restricted to each component of the fiber,

deg(OCL
(−CL)) = 1(54a)

deg(OCR
(−CR)) = 1(54b)

OCL
(−CR)) = OCL

(−p)(54c)

OCR
(−CL)) = OCR

(−p)(54d)

Using the restriction maps to CL and CR, we define the sheaves on C

Lk,L = ker(rR : Lk → Lk|CR
) = Lk ⊗OCL

(−p)

Lk,R = ker(rL : Lk → Lk|CL
) = Lk ⊗OCR

(−p)
(55)

These fit into a short exact sequence

(56) 0 → Lk,L ⊕ Lk,R → Lk → Sp → 0

where Sp is a skyscraper sheaf supported at p.
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First, let us assume that H1(C,Lk) = 0. Then, since H0(C, Sp) = C, the
long exact sequence associated to (56)

0 → H0(C,Lk,L)⊕H0(C,Lk,R) → H0(C,Lk)(57)
α
−→ H0(Sp) → H1(C,Lk,L)⊕H1(C,Lk,R) → 0

splits, either as

(58a)
0 → H0(C,Lk,L)⊕H0(C,Lk,R) → H0(C,Lk)

α
−→ C → 0

H1(C,Lk,L)⊕H1(C,Lk,R) = 0

or as

(58b)
H0(C,Lk) = H0(C,Lk,L)⊕H0(C,Lk,R)

H1(C,Lk,L)⊕H1(C,Lk,R) = C

depending on whether the residue map α is nonzero.
If H1(C,Lk ⊗OCL

) ̸= 0, then it follows from the long exact sequence
associated to

(59) 0 → Lk,R → Lk → Lk ⊗OCL
→ 0

that H1(C,Lk) ̸= 0. Since this vanished on the smooth curve, we are in the
situation where the cohomology groups of Lk jump in the nodal limit.

To fix this, we tensor with an appropriate power of the line bundles
defined in (54). Let nL

k be the smallest non-negative integer such that
H1
(
CL,Lk ⊗OCL

(nL
k p)
)
= 0 and let nR

k be the smallest non-negative in-
teger such that H1

(
CR,Lk ⊗OCR

(nR
k p)
)
= 0.

As we shall see in §5.3 below,

nL
k = max(0,−dLk − 1)(60a)

nR
k = max(0,−dRk − 1)(60b)

where dLk and dRk are defined in (68). Our ”OK” assumption is that
H1(C,Lk) = 0 on the smooth curve. If that is the case, then at most one of
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nL
k and nR

k can be nonzero8. Set

(60c) L′
k := Lk ⊗O(−nL

k CL − nR
k CR)

Then, as before, we define

L′
k,L := L′

k ⊗OCL
(−p) = Lk,L ⊗O((nL

k − nR
k )p)

L′
k,R := L′

k ⊗OCR
(−p) = Lk,R ⊗O(−(nL

k − nR
k )p)

(60d)

It is important to note that, for nL
k > 0, the twisting (60d) does not

introduce9 a nonzeroH1(C,L′
k,R). To see this, note that, from the definitions

of Lk,R and nL
k , we can write L′

k,R in terms of the canonical bundle of the
normalization

L′
k,R = K⊗k

CR
⊗O

(
(k − nL

k − 1)p+
∑

pi∈DR

(k − χ
(i)
k )pi

)

= K⊗k
CR

⊗O
(
min

(
k − 1,−1 + gL(2k − 1)

+
∑

pj∈DL

(k − χ
(j)
k )
)
p+

∑

pi∈DR

(k − χ
(i)
k )pi

)

To show that H1(CR,L
′
k,R) = 0, we need to consider a few different cases.

• For gR > 1, K⊗k
CR

has vanishing H1 and the line bundle we twist it by
has positive degree.

• For gR = 1, K⊗k
CR

is trivial but, again, we are twisting by a positive line
bundle. In both cases, this leads to vanishing H1.

• For gR = 0, DR must consist of at least 2 marked points and the nilpo-
tents located there must be such that H1(C,Lk) = 0. This, again, is
sufficient to ensure that deg(L′

k,R) ≥ −1 and hence H1 = 0.

As we shall see shortly, the twist (60a) is only nontrivial when gL = 0, in
which case, deg

(
Lk ⊗OCL

(nL
k p)
)
= −1 and hence H0

(
C,Lk ⊗OCL

(nL
k p)
)
=

0 as well.

8The argument is used repeatedly in this section, so let us spell it out here. nk can
be nonzero only if the component has genus-0. If both components have genus-0,
then the OK condition is that the total degree of Lk is ≥ −1. If the degree of Lk is
≤ −2 on one component (the condition for nk to be nonzero on that component),
then it must be positive on the other component.

9Similarly, for nR
k > 0, we do not induce a nonzero H1(C,L′

k,L).



✐

✐

“2-Balasubramanian” — 2023/5/17 — 14:57 — page 1626 — #42
✐

✐

✐

✐

✐

✐

1626 A. Balasubramanian, J. Distler, and R. Donagi

Finally, we can give our definition for the Hitchin base on the reducible
nodal curve. The Hitchin base is

(61) B :=

N⊕

k=2

H0(C,L′
k)

Or, globally, the family of Hitchin bases is

(62) B :=

N⊕

k=2

π∗L
′
k

On each component of the nodal curve, we define the Hitchin bases

BL :=

N⊕

k=2

H0(C,L′
k,L)

BR :=

N⊕

k=2

H0(C,L′
k,R)

(63)

By construction, we have the inclusion

(64) H0(C,L′
k,L)⊕H0(C,L′

k,R) →֒ H0(C,L′
k)

which is characterized by the following properties

• H0(C,L′
k,L) and H0(C,L′

k,R) are disjoint subspaces of H0(C,L′
k) and

hence the map in (64) is injective.

• For each k, the quotient in (64) is either 0 or 1 dimensional.
– When the twist, nL

k is nonzero then we have

H0(C,L′
k,L) = 0 and H0(C,L′

k) = H0(C,L′
k,R) .

Conversely, when nR
k is nonzero, we have

H0(C,L′
k,R) = 0 and H0(C,L′

k) = H0(C,L′
k,L) .

In either case, the quotient vanishes, as it also does when the map
α in (58a) is zero.
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The space of center parameters,

(65) BC = B/(BL ⊕BR)

is the direct sum of these 1 dimensional spaces. The Hitchin fibers which are
symplectic-dual to BC are the ones which become noncompact in the nodal
limit.

Denoting the graded dimensions of these spaces as bLk , b
R
k bCk and bk, we

obviously have

(66) bk = bLk + bRk + bCk

The case where bCk = 1 for all k corresponds to what we called a standard
node in §4. Conversely, when some of the bCk = 0, the node is restricted.

The dimensions in (66) are given by

(67)
bLk = max

(
dLk −max(−dRk − 1, 0), 0

)
,

bRk = max
(
dRk −max(−dLk − 1, 0), 0

)

where the index of Lk,L and Lk,R are

dLk = (gL − 1)(2k − 1) + (k − 1) +
∑

pi∈DL

(k − χ
(i)
k )

dRk = (gR − 1)(2k − 1) + (k − 1) +
∑

pi∈DR

(k − χ
(i)
k )

(68)

If gL and gR are both positive, then dLk and dRk are both ≥ k − 1 and hence,
combining (68) with (52), bCk = 1 for each k. So we get the standard node.

Only if one or both of CL,R are genus-0, will a separating node be re-
stricted. Without loss of generality, let CL have genus-0. In this case (68)
simplifies to

dLk = −k +
∑

pi∈DL

(k − χ
(i)
k )

where, for stability, we must have deg(DL) ≥ 2. So if

(69)
∑

pi∈DL

(k − χ
(i)
k ) < k

for some k, then we have the corresponding bCk = 0, and hence a restricted
node, as discussed in §4.2.
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Our definition of restricted node amounted to asserting that bCk = 0 for
some k. It will prove useful in §7 to have some alternative formulations of
this condition. To this end, we prove the following Proposition.

Proposition 1. The following conditions are equivalent.

i. bCk = 0 .

ii. Either

H1(C,L′
k,L) = C, H0(C,L′

k,R) = 0

or

H0(C,L′
k,L) = 0, H1(C,L′

k,R) = C

(but not both).

iii. H0(C,L′
k ⊗OCL

) = 0 or H0(C,L′
k ⊗OCR

) = 0 (or both).

iv. H0(C,Lk ⊗OCL
) = 0 or H0(C,Lk ⊗OCR

) = 0 (or both).

Proof. To prove the equivalence of (i) and (ii), consider the short exact
sequence (equation (56), but for L′

k instead of Lk):

(70) 0 → L′
k,L ⊕ L′

k,R → L′
k → S′

p → 0

and the corresponding long exact sequence

0 → H0(C,L′
k,L)⊕H0(C,L′

k,R) → H0(C,L′
k)(71)

α′

−→ H0(S′
p) → H1(C,L′

k,L)⊕H1(C,L′
k,R) → 0

The latter splits, either as

(72a)
0 → H0(C,L′

k,L)⊕H0(C,L′
k,R) → H0(C,L′

k)
α′

−→ C → 0

H1(C,L′
k,L)⊕H1(C,L′

k,R) = 0

or as

(72b)
H0(C,L′

k) = H0(C,L′
k,L)⊕H0(C,L′

k,R)

H1(C,L′
k,L)⊕H1(C,L′

k,R) = C

depending on whether the residue map α′ is nonzero. The former corresponds
to bCk = 1; the latter to bCk = 0. But the latter holds if and only if (ii).

To prove the equivalence of (ii) and (iii), we note that deg(L′
k ⊗

OCL
) ≥ k(2gL − 1). So if gL ≥ 1 then H1(L′

k,L) = H1(L′
k ⊗OCL

(−p)) = 0
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and H0(L′
k ⊗OCL

) ̸= 0. To get H1(L′
k,L) ̸= 0 or H0(L′

k ⊗OCL
) = 0, we

must have gL = 0. But if gL = 0 then H1(L′
k ⊗OCL

(−p)) ̸= 0 ⇔ H0(L′
k ⊗

OCL
) = 0. The same applies to L′

k,R.

Finally, let us consider (iv). If nL
k = nR

k = 0, then L′
k = Lk and (iii) is

equivalent to (iv). So, without loss of generality, consider the case gL = 0
and nL

k > 0. Then

deg(Lk ⊗OCL
) = deg(L′

k ⊗OCL
)− nL

k = −1− nL
k ≤ −2,

in which case H0(Lk ⊗OCL
) = 0 = H0(L′

k ⊗OCL
). □

5.3. The nilpotent at the node

Proposition 1 gives us the conditions under which we have a reduction in the
number of center parameters. One observes that these condition obtain only
if at least one of the components is a genus zero curve. For this section, let us
imagine we are in one of these situations and without loss of generality, let
us take CL to be the genus zero component. We prove in §7 that the non-zero
center parameters can always be identified with the invariant polynomials
for some simple Lie subgroup H ⊂ J . This determines the H in the pair
(O,H) with which we label restricted nodes.

We now turn to the other entry in the pair. To understand its role, we
will need to look in more detail at the behaviour of sections of L′

k at a node.
If dLk and dRk in (68) are both ≥ −1, for each k, then O = [N ]. If, for

some values of k, dLk ≤ −2, then the corresponding Lk ⊗OCL
has higher

cohomology.

(73) h1(C,Lk ⊗OCL
) = max(−1− dLk , 0) = nL

k

That component of the Hitchin base, BR, is given not by H0(C,Lk,R), but
rather by

(74) H0(C,L′
k,R) = H0

(
C,Lk,R ⊗O(−nL

k p)
)

That is, ϕk has a zero of order nL
k + 1, rather than a simple zero, at the

node. This is the Hitchin base associated to CR, where the nilpotent, O, at
the node has vanishing orders of the ϕk given by

(75) χk = 1 + nL
k
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We show in §7 that χk as defined above is the set of vanishing orders
for some nilpotent orbit O. Since the vanishing orders uniquely identify
nilpotent orbits in sl(N), this gives us the other entry in the pair (O,H).
We also give a different prescription for determining O in §6.2 based on
properties of the Higgs branch.

Let us, however, pause to follow the intuition we developed using global
methods in examples 5, 7 of §4.3 to see if it matches the prescription in (75).
In each of those examples, when we turn off the center parameters, some
of the ϕk on CR have higher-order zeroes (instead of simple zeroes) at the
node. We claim that these higher order zeros are precisely accounted for by
the twist in (74).

Let’s check these assertions. Specializing to gL = 0 and deg(DL) = 2,
(68) simplifies to

dLk = k −
∑

pi∈DL

χ
(i)
k

For both examples, dRk = k − 2.

• For example 5, χ
[2,12]
k = k − 1, so dLk = 2− k. Hence bLk = (0, 0, 0), bRk =

(0, 1, 1), bCk = (1, 0, 0) and h1(C,Lk ⊗OCL
) = (0, 0, 1). This agrees

with our previous analysis, where we found that (after turning off
the center parameters) ϕ4 had a double zero at the node.

• For example 7, χ
[3,13]
k = max(k − 2, 1), so dLk = (0, 1, 0,−1,−2). Hence

bLk = (0, 1, 0, 0, 0), bRk = (0, 1, 2, 3, 3), bCk = (1, 1, 1, 0, 0) and h1(C,Lk ⊗
OCL

) = (0, 0, 0, 0, 1), which agrees with our previous analysis, where we
found that (after turning off the center parameters) ϕ6 had a double
zero at the node.

5.4. Hitchin system on an irreducible nodal curve

Finally, let us consider the case where C has a non-separating node. Here, the
normalization of the nodal curve, v : C̃ → C, is a curve of genus gC̃ = g − 1
with two points, (q1, q2) covering the node p.

As before, define

(76) L̃k = Lk ⊗O(−q1 − q2)

The degree

deg L̃k = 2kgC̃ +
∑

pi∈D

(k − χ
(i)
k )
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Figure 2. A Riemann surface C of genus g develops a non-separating node.
The normalization C̃ is a Riemann surface of genus g − 1

is in the stable range so that H1(C̃, L̃k) = 0. (This also means that
H1(C,Lk) = 0.) The Hitchin base for the normalization is

(77) B̃ =
⊕

k

H0(C̃, L̃k)

which has graded dimensions

(78) b̃k = (g − 2)(2k − 1) + 2(k − 1) +
∑

pi∈D

(k − χ
(i)
k )

We have the natural inclusion, B̃ →֒ B, and (with a slight abuse of notation),
we will call the quotient

BC = B/B̃

the space of center parameters, as before.
Combining (52) and (78), we have

(79) bCk = bk − b̃k = 1

for each k. So a non-separating node is always the standard node and χk = 1
for each k.

5.5. Further degeneration

So far, we have assumed that the curve C is smooth, except for a single node.
We have seen that only when the nodal curve has two components and when
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3 1

2

(O,H)

∼

3 1

2

(O,H)

∼

3 1

2

(O,H)

Figure 3. The basic “tree move”. Fixing the locations of the three points,
1, 2, 3, on P1 and letting the attachment point • roam over the P1, we inter-
polate between the three trees.

at least one of those components (say, CL) is genus-zero is it possible for the
node to be restricted: (O,H) ̸= ([N ], SU(N)).

Without loss of generality we can take CL to be the genus-zero compo-
nent, and the twists nR

k = 0, so that the vanishing order, χk, at the node is
determined by the twists nL

k . As we shall see, in §7, the collection of χk de-
termine the nilpotent O at the node and moreover that if, for any k, nL

k ̸= 0
the all of the nR

k = 0 (and vice versa). So O is (in fact) entirely determined
by the data on CL. With one exception noted in §6.2, H is also entirely
determined by the data on CL. Here, we will not assume this. We will study
what happens for a fixed value of k. Hence we will use the pair (χk, b

C
k ) as

our stand-in for (O,H).
In this subsection, we would like to inquire what happens upon further

degeneration of CL and CR. Let us first consider degenerating CL. Since
it has genus-zero, the degeneration has the form of a tree of P1s, with the
root node being the one we started with. For the present discussion, we only
need to focus on the vanishing orders χk at the root of the tree and graded
dimension bCk of the space of center parameters at the root node.

First, we wish to show that all such trees give the same χk at the root
node. To see this, it suffices to note that we can pass from one tree to any
other tree, via an elementary move on 4-punctured spheres. This is depicted
in figure 3.

Let’s compute the vanishing order χk at the root of the tree on the left.
Here, “1” and “2” fuse first, yielding the vanishing order

χ̃k = 1 +max(0, χ
(1)
k + χ

(2)
k − k − 1)
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at the node labeled in blue. This then combines with “3” to yield the van-
ishing order

χk = 1 +max(0, χ̃k + χ
(3)
k − k − 1)

= 1 +max
(
0,max(0, χ

(1)
k + χ

(2)
k − k − 1) + χ

(3)
k − k

)(80)

at the root of the tree. There are two cases to consider

a) If χ
(1)
k + χ

(2)
k ≤ k, then we have

χk = 1 +max(0, χ
(3)
k − k)

= 1

b) If χ
(1)
k + χ

(2)
k ≥ k + 1, then we have

χk = 1 +max(0, χ
(1)
k + χ

(2)
k + χ

(3)
k − 2k − 1)

In the latter case, if χ
(1)
k + χ

(3)
k ≤ k or χ

(2)
k + χ

(3)
k ≤ k then we again have

χk = 1. Of course, it also gives χk = 1 for χ
(1)
k + χ

(2)
k ≤ k. Hence this formula

subsumes case (a) and we can write

(81) χk = 1 +max(0, χ
(1)
k + χ

(2)
k + χ

(3)
k − 2k − 1)

This result is clearly invariant under permutations of 1,2,3 and hence applies
to all three trees. Thus, we get the same χk at the root of the tree, regardless
of which tree we choose. Performing this move locally, we can transform an
arbitrary tree of P1s into any other tree. Thus χk at the root of the tree

depends only on the χ
(i)
k on CL, and not on how CL degenerates.

We can perform the same analysis for bCk . With the exception noted in
§6.2, the number of center parameters bCk is determined by the data on CL.
We have

(82) bCk = min
(
1,max(0, dLk + 1)

)

where, in the case at hand,

dLk = −k +
∑

pi∈DL

(k − χ
(i)
k )
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Applying this to the tree on the left,

1 + dLk = 1 + k − χ̃k − χ
(3)
k

= k − χ
(3)
k −max(0, χ

(1)
k + χ

(2)
k − k − 1)

Again, we have two cases

a) If χ
(1)
k + χ

(2)
k ≤ k, then 1 + dLk = k − χ

(3)
k and hence bCk = 1.

b) If χ
(1)
k + χ

(2)
k ≥ k + 1, then 1 + dLk = 2k + 1− χ

(1)
k − χ

(2)
k − χ

(3)
k and

hence

bCk = min
(
1,max(0, 2k + 1− χ

(1)
k − χ

(2)
k − χ

(3)
k )
)
.

In the latter case, if either χ
(1)
k + χ

(3)
k ≤ k or χ

(2)
k + χ

(3)
k ≤ k, then 2k + 1−

χ
(1)
k − χ

(2)
k − χ

(3)
k ≥ 2 and hence bCk = 1. As before, this formula subsumes

case (a) and we can write

(83) bCk = min
(
1,max(0, 2k + 1− χ

(1)
k − χ

(2)
k − χ

(3)
k )
)

As with (81), this is manifestly symmetric under permutations of 1,2,3 and
hence invariant under the “tree move”. Thus the pair (χk, b

C
k ) at the root of

the tree depends only on the Oi on CL, and not on how CL degenerates.
Equations (81),(83) ensure that (χk, b

C
k ) at the node is independent of

how CL further degenerates. The upshot is that (χk, b
C
k ) depends only on

the puncture data and is completely independent of the complex structure
of CL. In fact, we can read off the general answer for an arbitrary number
of marked points on a genus-zero CL from (68), (75), (60), (66) and (67):

(84a) χk = 1 +max
(
0, k − 1−

∑

pi∈DL

(k − χ
(i)
k )
)

(84b) bCk = min
(
1,max

(
0, 1− k +

∑

pi∈DL

(k − χ
(i)
k )
))

independent of the complex structure of CL and, in particular, of whether
CL is smooth or degenerate. While we arrived at (84) through manipula-
tions which preserved the number of components of CL, the final result is
independent of the complex structure of CL and holds for both CL smooth
or nodal, with an arbitrary number of irreducible components.
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As alluded to above, there is one case where a contribution to bCk comes
from both CL and CR. This occurs (see §6.2) only when both CL and CR

are genus-zero. In that case, we can replace (84b) by

(84c)

bCk = min
(
1,max

(
0, 1− k +

∑

pi∈DL

(k − χ
(i)
k )
)
,

max
(
0, 1− k +

∑

pi∈DR

(k − χ
(i)
k )
))

Similar considerations apply to degenerations of CR. If gR ≥ 1, then
there are no constraints coming from CR, whether smooth or degenerate.
If gR = 0, then our assumption that H1(C,Lk) = 0 implies that the only
possible constraint coming from CR is embodied in (84c), and (repeating
the arguments of this subsection) this persists under further degenerations
of CR.

5.6. The global story

In §5.2, we sketched the construction of a family of Hitchin bases that ex-
tended to the boundary of the moduli space, where the curve C develops a
node. Here we will sketch the general story, leaving most of the details to a
followup [59].

For simplicity, let us first consider the genus-0 case, where all nodes
are separating nodes. The components of the boundary of M0,n are labeled
by subsets S ⊂ {p1, p2, . . . , pn} such that both S and its complement, S∨

contain at least two points10. The corresponding nodal curve C has two
irreducible components CS and CS∨ (previously, we called these CL and
CR), such that the marked points in S lie on CS and the marked points in
S∨ lie on CS∨ .

For each S and k = 2, . . . , N we assign a non-negative integer, nS
k as

follows. Let Lk → C be the Hitchin line bundle over the universal curve,
obtained by fitting together the line bundles (50) over each fiber. As in (73),

(85) nS
k := max

(
0, k − 1−

∑

pi∈S

(k − χ
(i)
k )
)

.

When CS is a smooth genus-0 curve, h1(CS ,Lk) = nS
k .

10Since there is no invariant distinction between left and right, exchanging S ↔
S∨ yields the same component of the boundary.
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Let CS be the Cartier divisor in C corresponding to CS . We define the
line bundle L′

k → C to be

(86) L′
k := Lk ⊗O

(
−
∑

S

nS
kCS

)

The family of Hitchin bases

(87) B =
⊕

k

π∗L
′
k

is a vector bundle11 over M0,n.
The generalization to higher genus is straightforward. The Deligne-

Mumford compactification, Mg,n, now contains boundary components cor-
responding to both separating and non-separating nodes. At the former, C
is a reducible curve C = CS ∪ CS∨ , where CS has genus gCS

and contains
a subset S ⊂ {p1, p2, . . . , pn} of the marked points12 and CS∨ has genus
g − gCS

and contains the complementary set of marked points. We define

(88) nS
k := max

(
0, k − 1− gCS

(2k − 1)−
∑

pi∈S

(k − χ
(i)
k )
)

such that, when CS is smooth, h1(CS ,Lk) = nS
k . For gCS

> 0 and CS smooth,
we are in the stable range, where h1(CS ,Lk) = nS

k = 0. Similarly as we saw
in §5.4, when C is smooth except for a non-separating node, we also have
h1(Lk) = 0. So we might as well restrict ourselves to the case where CS has
genus-0. For each such S, let CS be the Cartier divisor in C corresponding
to CS . As in the genus-0 case, L′

k is defined by (88), (86). In Appendix A,
we prove (see also [59]):

Theorem 5.1. The family of Hitchin bases

(89) B :=

N⊕

k=2

π∗L
′
k

is a vector bundle over Mg,n.

11The astute reader will note that this is a generalization of the procedure devel-
oped in §3.3 for the case of M0,4. The twist (86) is a direct generalization of (22).

12For stability, S must contain at least two points when gCS
= 0. When gCS

> 0,
there’s no condition on the number of points in S. Similarly, for g − gCS

> 0, there’s
no condition on the number of points in S∨.
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6. Flavour considerations and the Higgs branch

We have argued for the labeling of restricted nodes by a pair of the form
(O,H), where O is a (Hitchin) nilpotent orbit in j = sl(N) and the center
parameters associated to the node are the Casimirs of the compact simple
Lie group H ⊂ SU(N). From a purely Hitchin system/Higgs bundles stand-
point, it is not obvious why the center parameters should be the Casimirs
of a subgroup (in particular a simple subgroup) H ⊂ J . It is equally unclear
which simple subgroups can arise in this way.

The purpose of this section is to use Higgs branch considerations to
answer the question “What are the possible pairs (O,H) that could con-
ceivably arise in the nodal limit?” In §7, we will use the results on Higgs
bundles on nodal curves that we obtained in §5 to study the same question
from a purely Coulomb branch point of view.

In the physics, the meaning of H is clear. In the nodal limit, the SCFT
becomes a weakly coupled gauge theory, with gauge group H, where the
symmetry that is gauged is an H subgroup of the flavour symmetry group
of the SCFT associated to the normalization of the nodal curve C. This
flavour symmetry group is the group of hyperKähler isometries of the Higgs
branch of that SCFT.

6.1. Flavour symmetry

To see the flavour symmetry, it is more natural to consider the “Nahm”
nilpotent orbit ON , rather than the “Hitchin” nilpotent orbit OH which is
the residue of Φ(z).

In type-A, the Nahm partition is just the transpose of the Hitchin par-
tition. For types D and E, the map between ON and OH is more nontrivial
[10, 11]. In type-A, all nilpotent orbits are special (the map between Nahm
and Hitchin orbits, given by the transpose, is an involution), beyond type-
A there are non-special orbits. When ON is non-special, the image on the
Hitchin side is a pair (OH ,Γ) where OH is special and the finite group Γ
is a subgroup, Γ ⊂ A(OH), of Lusztig’s canonical quotient [60] of the group
A(OH) defined in (2). That is, the Hitchin system data is enriched by a finite
group associated to each non-special Nahm orbit at a puncture.

For this reason, the physicists prefer to label punctures by their Nahm
nilpotent orbit. Since, in this paper, we have restricted ourselves to type-A,
where all nilpotent orbits are special, we have labeled punctures by their
Hitchin nilpotent orbit.
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By Jacobson-Morozov, each choice of nilpotent, X, corresponds to a dis-
tinguished triple — an embedding ρ : sl(2) →֒ j. A nilpotent orbit O ∋ X
thus corresponds to an sl(2) embedding up to conjugacy. For AN−1, such
an embedding up-to-conjugacy defines a partition of N which we denote by
[qn1

1 , qn2

2 , . . . ] where q1 ≥ q2 ≥ . . . and
∑

i niqi = N . Associated to this par-
tition is an N -box Young diagram with n1 columns of height q1, n2 columns
of height q2, etc.

Let f ⊂ j be the subalgebra that centralizes the embedding ρ (i.e. fixes
every element of im(ρ) ⊂ j) corresponding to a given Nahm nilpotent, X ∈
ON . We denote the flavour symmetry F to be the corresponding compact
Lie group (which depends only on the orbit, ON ). For j = AN−1,

F = S

(
∏

i

U(ni)

)

For each simple subgroup, Fi = SU(ni) ⊂ F , we assign a level ki ∈ N,
as follows. Decompose j under sl(2)× fi as j = ⊕nVn ⊗Ri,n where Vn is the
n-dimensional irrep of sl(2) and Ri,n is a (possibly reducible) representation
of fi. Let li,n be the index13 of Ri,n. Then

ki =
∑

n

li,n

For AN−1, the level ki of SU(ni) is just twice the total number of boxes in the
first qi rows of the Young diagram. For example consider ON = [32, 22]. This
has F = S(U(2)2) ∼ SU(2)2 × U(1) (where we ignore a discrete quotient),
and the two SU(2)s have levels k = 20 and k = 16.

For later reference, we define the complementary level, for any simple
H ⊂ Fi

(90) k′i(H) = 4h∨(H)− ki

where h∨ is the dual Coxeter number.

6.2. Restricted nodes

A restricted node is a pair, (O,H), consisting of a Hitchin nilpotent orbit and
a simple (SU(l) or Sp(l)) subgroup, H ⊂ Fi ⊂ FO, of its flavour symmetry

13For a highest-weight representation R with highest weight λ, l(R) =
dim(R)
dim(adj) (λ, λ+ 2δ), where δ is the Weyl vector. The normalization is such that

the defining representation of SU(N) has l = 1.
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group. We could denote the standard node as ([N ], SU(N)) but will refrain,
so as not to unduly clutter the notation.

With the preliminaries of §6.1, we can state the algorithm (which was
first used in [13], though the differences of notation would make that hard
to discern) for determining the restricted nodes that can appear.

For any given O, the allowed Hs are those simple subgroups H ⊂ Fi for
which the complementary level is non-negative14, k′(H) ≥ 0.

For example, given O = [N ], the allowed Hs are

H =




SU(l), 2N ≥ 2l ≥ N

Sp(l), N ≥ 2l ≥ N − 2

More generally, H can arise either as

• an SU(l) or Sp(l) subgroup of the SU(n) associated to a Nahm par-
tition of the form [..., 1n], with l large enough so that k′(H) ≥ 0 or

• the SU(n) associated to the Nahm partition [2n].

By Theorem 7.1(C), the latter case does not occur in the untwisted A2n−1

theory. It does, however arise in the collision of punctures from the twisted
sector [61]15.

14k(H) and k′(H) are the levels of the current algebras for the H-flavour sym-
metry of the SCFTs associated to CR and CL, respectively. The vanishing of the
β-function for H requires k(H) + k′(H)− 4h∨(H) = 0, where k(H) and k′(H) are
the contributions to the β-function from the “matter” sectors while −4h∨ is the
contribution from the vector multiplet for gauge group H. Unitarity of the SCFTs
requires k(H), k′(H) ≥ 0.

15The astute reader might object that there appear to be two more possibilities
for (O,Hk′) that are not on this list. You might think that ([2n], SO(2n− 1)0) (for
J = SU(2n)) or ([2n− 1], SO(2n− 1)2) (for J = SU(2n− 1)) are allowed by the
k′(H) ≥ 0 condition. As we shall prove in Prop 2 of §7, there’s a unique case where
the Casimirs b⃗C = (1, 0, 1, 0, . . . , 1) arise at the node: namely, when CL contains
two marked points with Hitchin partitions [2n], [2n]. But that uniformly leads to
the theory on CL being two hypermultiplets in the defining representation of Sp(n)
— yielding (O,Hk′) = ([2n], Sp(n)4). There’s no collision of punctures that yields
b⃗C = (1, 0, 1, 0, . . . , 1) and an empty theory on CL. For ([2n− 1], SO(2n− 1)2), the
story is even simpler. For n > 3, there’s a lower bound on the level of an SO(2n− 1)
current algebra in a unitary N = 2 SCFT. This lower bound is k′ ≥ 4 and is satu-
rated by a free hypermultiplet in the vector representation. So there’s no candidate
for the theory on CL.
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In the former case, let the Hitchin partition be O = [p1, p2, . . . ], with
p1 − p2 = m. Then

(91) H =

{
SU(l), 2m ≥ 2l ≥ p1

Sp(l), m ≥ 2l ≥ p1 − 2

In particular, for (91) to have solutions, we must have p1 ≥ 2max(p2, 1).
The next concept we need to introduced is the partial-ordering on the

set of nilpotent orbits, induced by orbit-closure. This ordering is typically
captured by the Hasse diagram. Here is the Hasse diagram for A5:

[6]

[5, 1]

[4, 2]

[4, 12] [32]⋆

[3, 2, 1]

[3, 13] [23]

[22, 12]

[2, 14]

[16]

where we have denoted in green the possible Os, whose flavour symmetry
group admits a subgroup H satisfying k′(H) ≥ 0.

This leads to 13 possible16 restricted nodes for A5:

16In the table, (πO)k = k − (χO)k as usual. π′

k = 2k − 1− πk − bCk and the twist-
ing nk = max(π′

k − k, 0). (nh, nv) are the contributions from the branch of the node
to the effective number of hypermultiplets and the effective number of vector mul-
tiplets for the SCFT associated to CL. Note, for instance, that nh depends only on
O and not on H.
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(O,Hk′) π⃗O π⃗′
O (nh, nv)

([6], SU(5)8) (1, 2, 3, 4, 5) (1, 2, 3, 4, 6) (140, 136)
([6], Sp(3)4) (1, 2, 3, 4, 5) (1, 3, 3, 5, 5) (140, 139)
([6], SU(4)4) (1, 2, 3, 4, 5) (1, 2, 3, 5, 6) (140, 145)
([6], Sp(2)0) (1, 2, 3, 4, 5) (1, 3, 3, 5, 6) (140, 150)
([6], SU(3)0) (1, 2, 3, 4, 5) (1, 2, 4, 5, 6) (140, 152)
([5, 1], SU(4)6) (1, 2, 3, 4, 4) (1, 2, 3, 5, 7) (156, 156)
([5, 1], Sp(2)2) (1, 2, 3, 4, 4) (1, 3, 3, 5, 7) (156, 161)
([5, 1], SU(3)2) (1, 2, 3, 4, 4) (1, 2, 4, 5, 7) (156, 163)
([4, 2], SU(2)0) (1, 2, 3, 3, 4) (1, 3, 4, 6, 7) (168, 177)
⋆([32], SU(3)0) (1, 2, 2, 3, 4) (1, 2, 5, 6, 7) (176, 179)
([4, 12], SU(3)4) (1, 2, 3, 3, 3) (1, 2, 4, 6, 8) (180, 183)
([4, 12], SU(2)0) (1, 2, 3, 3, 3) (1, 3, 4, 6, 8) (180, 188)
([3, 13], SU(2)2) (1, 2, 2, 2, 2) (1, 3, 5, 7, 9) (210, 215)

Which restricted node occurs at a given degeneration of C can now be
summarized by the following algorithm.

1) Let π⃗O be the vector of pole orders, corresponding to the Hitchin
nilpotent orbit O (recall that these are related to the χ⃗O by (πO)k =
k − (χO)k). For the regular Hitchin nilpotent, π⃗[N ] = (1, 2, 3, . . . , N −
1) for k = 2, 3, . . . , N .

2) Consider a separating node, where punctures O1, . . . On appear on the
(genus-0) curve on the left. Form the vector π⃗ =

∑n
i=1 π⃗Oi

.

3) Among the allowed (O,H), find the largest O (the one lowest on the
Hasse diagram) such that
a) π⃗ − π⃗O has only non-negative entries.
b) H ⊂ FO is the highest-rank simple subgroup of the flavour sym-

metry of O whose independent Casimirs correspond to a subset of
the positive entries of π⃗ − π⃗O. For a generic curve (and collection
of punctures) on the right, these are the center parameters.

c) If π⃗ − π⃗[N ] has all positive entries, then the node is the standard
node.

With one exception, this pair (O,H) is the restricted node. The exception
occurs when both the left and right components of the nodal curve impose
such a restriction. In type-A, this occurs when C has genus-0 in the A2n−1

theory. If the Hitchin nilpotents at the punctures consist of two copies of
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[2n] and some number of “hook partitions” of the form [li + 1, 12n−li−1] with

(92) li ≥ 1,
∑

i

li = n− 1

then, when C degenerates in such a way that the two [2n] punctures end up
on one component (w.l.o.g, CR) and the hook partitions end up on the other
component (CL), then CL picks out the restricted node ([2n], SU(2n− 1))
and CR picks out the restricted node ([2n], Sp(n)). The actual restricted
node is ([2n], Sp(n− 1)). I.e., H = HL ∩HR. We saw an example of this in
example 3 of §4.3.

For the purposes of this paper, we will refer to the above algorithm to find
(O,H) as the Higgs-Coulomb algorithm due to the fact that the algorithm
actually involves properties of both the Higgs and Coulomb branches. We
choose this terminology primarily to distinguish it from the discussion in
§7 where the Higgs branch does not play any role. There is an alternative
proposal to find H purely from the Higgs branch geometry due to [19]. We
comment on the relationship between our work and this proposal in §7.6.

Note that, since the Hasse ordering is only a partial-ordering, one might
worry that the procedure for selecting O is ambiguous. For instance, in the
A5 theory, might we be unable to choose between [4, 12] and [32]? Fortu-
nately, this ambiguity never arises. In the case at hand, if π⃗ − π⃗[4,12] and
π⃗ − π⃗[32] are both non-negative, then so is π⃗ − π⃗[4,2]. More generally, if both
π⃗ − π⃗Oa

and π⃗ − π⃗Ob
are non-negative, then either one orbit lies in the clo-

sure of the other, or both orbits lie in the closure of Oc, which also satisfies
π⃗ − π⃗Oc

non-negative.
Carrying out this procedure for j = A5, we find that every pair (O,H)

except ([32], SU(3)0) is indeed realized at the restricted node for some set
of defects Oi on the left. We will see in §7 that one can actually give an a
priori explanation for why this pair does not occur from a Coulomb branch
perspective.

Fairly obviously, this procedure yields the same result for O as the twist-
ing procedure described in §5.3 (replacing Lk,R by L′

k,R = Lk,R ⊗O(−nkp),
where nk = max(k − 1− πk, 0)). The procedure for arriving at H seems
rather divorced from the cohomological computation of the center param-
eters in §5.2. We shall see in §7.6 that these two rather different looking
approaches also yield the same answer for H.
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7. Classifying restricted nodes

In this section, we would like to classify the possible restricted nodes from a
purely Hitchin system perspective. Our starting point will be the conditions
derived in §5 (equivalently, any of the conditions in Proposition 1) for a
reduction in center parameters (69) and the condition (73) for the occurrence
of non-zero h1(Lk ⊗OCL

).
We now state our main results as a theorem and then prove them below.

Theorem 7.1. In any tame SLN Hitchin system that is OK in the sense
of §1.3, the following statements are true for every restricted node:

(A) The integers χk = 1 + nk are the vanishing orders corresponding to a
nilpotent orbit O in sl(N). We call this the Hitchin orbit at the node.

(B) The graded dimension of the center BC is of the form bCk =
(1, 1, 1, . . . , 1, 0, 0..., 0) (or) bCk = (1, 0, 1, 0, 1, 0 . . . , 0, 1, 0, 0, . . . , 0),
where k = 2, 3, 4, . . . N .

(C) Recall that bC =
∑

k b
C
k and [pi] are the parts of the Hitchin orbit O.

The allowed orbits obey p1 > 2p2 and furthermore, we always have
p1 − 2 ≤ 2bC ≤ 2(p1 − p2 − 1).

In the process of proving Th 7.1, we will show that the following useful
proposition also holds.

Proposition 2. There is a unique choice of marked points on CL

for which the graded dimension of the center BC is of the form bCk =
(1, 0, 1, 0, . . . , 0, 1), k = 2, 3, . . . N and N is even. The corresponding CL is
a P1 with deg(DL) = 2 and the residues of the Higgs field at the two marked
points live in the nilpotent conjugacy class [2N/2].

7.1. Proof Strategy

First, recall from §5.4 that every non-separating node is standard. So, we
only need to consider separating nodes to prove Th 7.1. Let us denote a
separating node to be one sided if either h0(Lk ⊗OCL

) = 0 for some values
of k or h0(Lk′ ⊗OCR

) = 0 for some values of k′ but not both. We will denote
a separating node to be two sided if both h0(Lk ⊗OCL

) = 0 and h0(Lk′ ⊗
OCR

) = 0 for some values of (k, k′) with k ̸= k′.17 It will turn out that a

17Such a possibility for some k = k′ is ruled out by the fact that we are only
considering nodal degenerations of OK Hitchin systems.
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vast majority of restricted nodes arise from one sided separating nodes. For
one sided separating nodes, the problem of classifying the allowed nodal
degenerations is symmetric between the left and right. So, without loss of
generality, we will assume that a one sided separating node has h0(Lk ⊗
OCL

) = 0 and h0(Lk ⊗OCR
) > 0.

We can now outline our proof strategy.

1) First, we prove Th 7.1 for one sided separating nodes with deg(DL) =
2.

2) As a second step, we extend the proof to the deg(DL) > 2 cases by
appealing to §5.5 and reducing the the problem to the deg(DL) = 2
case.

3) In the third and final step, we treat the two sided separating nodes.

7.2. One sided nodes with deg(DL) = 2

7.2.1. Proof of 7.1(A). Let us begin by recalling (from §2.1) how to
obtain the vanishing orders χk associated to a Hitchin orbit whose partition
label is [pi]. We represent the Hitchin partition as a Young diagram by using
its parts as column sizes. We fill the first column with ‘1’s, the second column
with ‘2’s and so on. We then write down the numbers in the diagram column
by column, dropping the leading ‘1’. The string of numbers so obtained are
the vanishing orders. For the purposes of this section, we will include the
leading ‘1’ (corresponding to k = 1) and form a vector χ⃗ whose entries are
(χ1, χ2, . . . χN ). We choose this convention, which is at variance with the
choice in §6 since it simplifies some of the combinatorial formulae. With this
choice, the multiplicity of any integer i in χ⃗ is given by the part pi.

It also follows that any non-decreasing sequence of integers χ⃗ with mul-
tiplicities pi obeying the conditions

(a) p1 ≥ p2 ≥ p3 ≥ p4, . . .

(b)
∑

pi = N − 1

will correspond to the vanishing orders of some nilpotent orbit.
In what follows, we will need the following combinatorial fact. If there

is some entry i in χ⃗ occurring with multiplicity pi, then conditions (a), (b)
imply that the minimum value of k for which χk = i is given by

(93) kmin = pi(i− 1) + 1.
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And the minimal k is achieved when p1 = p2 = p3 = · · · = pi−1 = pi.
In order to prove a statement like Th 7.1(A), we need to show that

the vanishing orders χ⃗nodal of L
′
k,R at the node p (obtained from Eq (75))

correspond to the vanishing orders arising from some nilpotent orbit. Let us
take multiplicity of an integer i in χ⃗nodal to be some αi. We need to show
that the sequence χ⃗nodal from Eq (75) is non-decreasing and the multiplicities
αi obey the conditions (a), (b) above. Henceforth, we will drop the ‘nodal ’
subscript and refer to the sequence of nodal vanishing orders as just χ⃗.

In this section, we want to restrict to the cases with deg(DL) = 2. Let
the residues of the Higgs field ϕ at the smooth points of DL live in conjugacy
classes corresponding to partitions [pi]

(1) and [pi]
(2). Let the corresponding

vanishing orders be χ
(1)
k , χ

(2)
k respectively. The component CR is taken to be

sufficiently generic that we have h0(Lk ⊗OCR
) > 0 for all k.

[pi]
(1)

[pi]
(2)

Let us now assume that this degeneration leads to a restricted node with
nL
k > 0. This implies that h1(Lk ⊗OCL

) > 0 for some values of k. From (73),
we know that this happens iff dLk ≤ −2. This reduces to (upon using (68))

(94) χ
(1)
k + χ

(2)
k > k + 1.

The modified vanishing orders χk = 1 + nk from Eq (75) reduce to

(95) χk = max(1, χ
(1)
k + χ

(2)
k − k).

We immediately see that χ2 = χ3 = 1. So, χ⃗ is a sequence of the form

(96) χ⃗ = (1, 1, 1, . . .).

Proof that χ⃗ is non-decreasing . Let us assume that there exists some
k for which

(97) χk > χk+1 > 1.
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This is possible iff

χ
(1)
k+1 = χ

(1)
k

χ
(2)
k+1 = χ

(2)
k

(98)

Using (93), this implies that

k ≥ 2(χ
(1)
k − 1) + 1

k ≥ 2(χ
(2)
k − 1) + 1

(99)

Adding the two inequalities, we get χ
(1)
k + χ

(2)
k − k ≤ 1 which contradicts our

original assumption in (97) that χk > 1. It follows that χ⃗ is a non-decreasing
sequence.

Proof of conditions (a), (b). We still need to understand the multiplic-
ities αi of the integers occurring in χ⃗. What are the allowed values of αi?
We will study the possibilities case by case.

The cases α1 = N and α1 = N − 1 can clearly occur and they correspond
to the regular orbit [N ] and the sub-regular orbit [N − 1, 1] respectively.
The case α1 = 3, α2 = 1 can also occur. This occurs for the extreme case

where χ⃗
(1),(2)
k = (1, 2, 3, 4, . . . , N − 1). This corresponds to the case where

the two Hitchin orbits at E1,2 are both the minimal nilpotent orbits and the
corresponding χ⃗ = (1, 1, 2, 3, 4, . . . N − 2). This is nothing but the vanishing
orders for the Hitchin nilpotent [3, 1N−3]. This is the smallest nilpotent
orbit that can occur at the node. The generalization to α1 > 2, α2 = 1 is
straightforward and leads to the vanishing orders for a hook type Hitchin
orbit [α1 + 1, 1N−α1−1]. This covers all instances with α2 = 0, 1. We clearly
get vanishing orders χk corresponding to a nilpotent orbit in each of these
cases.

Let us now turn to cases with α2 > 1. If ‘2’ occurs exactly at the lo-
cations k = l, l + 1, l + 2, l + α2 in χ⃗, then it follows that there is a re-
peated entry in either χ⃗ (1) or χ⃗ (2) (but not both) at the locations k =
l, l + 1, l + 2, . . . , l + α2. Let this repeated entry be the integer i and let

χ⃗ (1) contain these repeated entries. Now, max(χ
(2)
l ) = l − 1. So, if χl = 2,

then ≥ 3. From Eq (93), we have lmin = α2(i− 1). This implies that α1 ≥
lmin − 2 = α2(i− 1)− 2. When i ≥ 3, α2 > 1, we see that α1 > α2. So, we
have shown that χ⃗ always satisfies condition (b).

We are finally left with checking condition (a) for χ⃗ in cases with α2 > 1.
Let us say that (a) is violated. In other words, we have αj > αi for some
j > i ≥ 2. Now, examining the possibilities (we omit the details), one can
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see that this is possible only if χ⃗ (1) or χ⃗ (2) itself were to violate condition
(a). So, we arrive at a contradiction. Hence (a) always holds for χk. This
completes the proof of 7.1(A).

7.2.2. Proof of 7.1(B). Having deduced the Hitchin nilpotent O at the
node, we now turn to constraining the possible non-zero center parameters.
We have already seen that bCk = 0, 1 in §5. Can any string of ‘0’s and ‘1’s
occur as values of bCk ? It turns out that the answer is no. The allowed set of
values are quite tightly constrained. Let us recall from Eq (69) the condition
for a reduction in the number of center parameters at a reducible node:

∑

DL

χk > k(deg(DL)− 1) =⇒ bCk = 0

∑

DR

χk > k(deg(DR)− 1) =⇒ bCk = 0
(100)

Specializing to the case of a one sided node with deg(DL) = 2, we get

(101) χ
(1)
k + χ

(2)
k > k ⇐⇒ bCk = 0.

First, note that χ
(1),(2)
2 = 1 and hence bC2 = 1 always. Next, we consider

the two possibilities: (1) bC3 = 1 or (2) bC3 = 0.
Case 1: bC3 = 1
Let the first occurrence of a reduction in center parameters be for k =

l > 3. This implies that we have bCl−2 = bCl−1 = 1 and bCl = 0,

(102) b⃗C = (0, 1, . . . , 1, 1, 0, . . .),

where we have defined bC1 = 0.

This translates to the following conditions on χ
(1),(2)
k :

χ
(1)
l−1 > χ

(1)
l−2 (or) χ

(2)
l−1 > χ

(2)
l−2

χ
(1)
l > χ

(1)
l−1 (and) χ

(2)
l > χ

(2)
l−1

(103)

In other words, if a repeated part were to occur in this piece of χ
(1)
k , χ

(2)
k ,

then it can only occur for one among them and only for the entries at

k = l − 2, l − 1. Let the vanishing orders without a repeated part be χ
(1)
k =

(. . . , i, i+ 1, i+ 2, . . .) where we have set χ
(1)
l−2 = i. This clearly shows that

the multiplicity pi+1 = 1 and it follows (from condition (a) in §7.2.1) that
pj = 1 for every j ≥ i+ 1.
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Now, let us further assume that bCk = 1 for some k > l. Let the smallest
such k be m. This implies that bCm−1 = 0, bCm = 1:

(104) b⃗C = (0, 1, . . . , 1, 1, 0, . . . , 0, 1, . . .).

From (101), it follows that both χ
(1)
k , χ

(2)
k have repeated parts at k =

m− 1, k = m. This, however, contradicts the statement that pj = 1 in χ
(1)
k

for all j ≥ i+ 1. So, our assumption that bCk = 1 for some k > l is wrong.
So, the only possible set of bCk with bC3 = 1 are given by

(105) b⃗C = (0, 1, 1, . . . , 1, 0, 0, . . . , 0)

Case 2: bC3 = 0
Let us turn to the case where bC3 = 0. From (101), this implies that

χ
(1)
3 = χ

(2)
3 = 2. This forces p

(1)
1 = p

(2)
1 = 2. From condition (b) in §7.2.1, we

then have p
(1),(2)
2 = 1 (or) 2. Even if one among p

(1)
2 , p

(2)
2 equals 1, then a

simple calculation shows that bCk = 0 for all k > 3. It remains to consider

the case where both p
(1)
2 = p

(2)
2 = 2. In this case, both χ

(1)
k and χ

(2)
k have the

following form

χ⃗ (1) = (1, 1, 2, 2, 3, . . .),

χ⃗ (2) = (1, 1, 2, 2, 3, . . .).
(106)

and we have

(107) b⃗C = (0, 1, 0, 1, 0, . . .)

Let us now assume that bC6 = 0, then at least one among p
(1)
3 or p

(2)
3 is

equal to 1. Let us take p
(1)
3 = 1. This forces p

(1)
j = 1 for all j ≥ 3. From this,

it follows that bCk = 0 for all k ≥ 6.

On the other hand, if dC6 = 1, then p
(1)
3 = p

(1)
3 = 2. The multiplicities

can’t be bigger since pj ≤ α2 for j > 2 and we are in the case where p
(1)
2 =

p
(2)
2 = 2. So, we have

χ⃗ (1) = (1, 1, 2, 2, 3, 3, 4 . . .),

χ⃗ (2) = (1, 1, 2, 2, 3, 3, 4 . . .),

b⃗C = (0, 1, 0, 1, 0, 1, 0, . . .).

(108)
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We then repeat the same procedure for the two cases b8,C = 0, 1 and find
that bCk is always of the form

(109) b⃗C = (0, 1, 0, 1, 0, 1, 0, . . . , 0, 1, 0, 0, . . . , 0)

This proves 7.1(B).
Furthermore, we see that in each of these cases, dLk is always of the form

dLk = k − χ
(2)
k − χ

(1)
k

= −1
2

(
1− (−1)k

)
.

(110)

Consequently, we have that

(111) deg(Lk,L) = −1− 1
2

(
1− (−1)k

)
.

We also see that we have b⃗C = (0, 1, 0, 1, . . . , 0, 1) for some N = 2n iff

χ⃗(1) = (1, 1, 2, 2, 3, 3, . . . n, n),(112)

χ⃗(2) = (1, 1, 2, 2, 3, 3, . . . n, n).(113)

This corresponds to the case where the two residues at the marked points
on CL live in the nilpotent conjugacy class [2n]. This proves Prop 2.

7.2.3. Proof of 7.1(C). Given a non-regular nilpotent O at the node,
we would now like to understand the constraints on the allowed non-zero
values of bCk . Let the vanishing orders at the node be of the form

(114) χ⃗ = (1, 1, 1, . . . , 2, 2, . . . , 2, 3, . . .).

Let the (Hitchin) partition label of O be [pi]. Having proven Th 7.1(A),
we know that αi = pi.

We would like to arrive at a constraint on the total number of center
parameters bC given a partition nilpotent O at the node. Now, bCk = 0 for
every k such that χk > 1 since the condition for h1(Lk ⊗OCL

) > 0 (94) is
stronger than the condition for the vanishing of bCk (101). So, it is straight-
forward that bC ≤ p1 − 1. But, we will see that there is actually a stronger
upper bound and that there is also a lower bound on bC .
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In the proof of Th 7.1(B), we saw that p1 − p2 > 1 for every allowed
nilpotent at the node. Assume p2 > 1. We then have

(115) χ
(1)
k + χ

(2)
k = k + 2 ∀ k ∈ (p1, p1 + p2 − 1).

This is possible iff one among χ
(1)
k , χ

(2)
k were to also have repeated parts

for this range of values of k. We take χ
(1)
k to have the repeated part j. Since

max(χ
(2)
k ) = k − 1, we see that j ≥ 3. It follows that

(116) p
(1)
j−1 ≥ p

(1)
j = p2.

This imposes a strong constraint on the allowed O at the node. To
understand this constraint, let us ask what are the allowed values of p1
given that (116) is always true. The smallest possible value of p1 will occur

when we have j = 3 and p
(1)
1 = p2 and p

(1)
2 = p2 − 1. In this case, we have

p1 = 2p2 − 1. More generally, we always have

(117) p1 > 2p2.

This condition rules out nilpotent orbits with Hitchin partition of type
[n2] as possible nodal nilpotents. Recall that these nilpotents occurred in
the list of allowed nodal nilpotents in analysis using constraints on flavor
central charges in §6.2. If one had carried out an exhaustive enumeration of
nodal nilpotents by brute force calculation for any fixed N , one would have
seen that orbits of type [(N/2)2] do not occur. But, as we just showed, it is
possible to give a general proof for all N using the nodal Hitchin system.

Let us now try to understand the range of values of k for which we could
have bCk = 0 but h1(Lk ⊗OCL

) = 0. This would be the range of values of k
for which the following relation holds:

(118) χ
(1)
k + χ

(2)
k = k + 1.

The smallest value of bC is reached when this range is the largest. And

this range would be the largest when p
(1)
1 is minimal and χ

(2)
k = k − 1. In

this case, every instance where χk = 1 and bCk = 0 arises from χ
(1)
k = 2 and

the only non-zero center parameters exist for those k where χ
(1)
k = 1. In this

scenario, we have

(119) p
(1)
1 + p

(1)
2 = p1 − 1.
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We have already argued that min(p
(1)
1 ) = p

(1)
2 . When this minimal value

of α
(1)
1 is reached, we have p

(1)
1 = ⌊(p1 − 1)/2⌋. It follows that bC ≥ ⌊(p1/2−

1)⌋.
At the other end, the maximum allowed value of bC is reached when

the range of k for which (118) holds is the smallest. Note that we have

already assumed that χ
(1)
k + χ

(2)
k = k + 2 for p2 values of k and that the

corresponding repeated entry in χ
(1)
k is j with p

(1)
j = p2. This implies that

αj−1 ≥ α2 = p2. And in the range of k for which χ
(1)
k = j − 1, if χ

(2)
k were to

also have repeated parts, then it is easy to see that the resulting χ⃗ would have

a decreasing sub-sequence. This violates Th 7.1(A). So, χ
(2)
k does not have

repeated parts for these values of k. If take pj−1 = p2, then this implies that
(118) holds exactly for k ∈ (p1 − p2, p1 − 1) and we have bC = p1 − p2 − 1.
To summarize, we have

(120) ⌊(p1)/2⌋ − 1 ≤ bC ≤ p1 − p2 − 1.

which is equivalent to

(121) p1 − 2 ≤ 2bC ≤ 2(p1 − p2 − 1).

This proves Th 7.1 for one sided nodes with deg(DL) = 2.

7.3. One sided nodes with deg(DL) > 2

When we have a one sided node with deg(DL) > 2, we first pick a stable
degeneration of CL which will be a tree of P1s with the end points of the
tree being P1s with two punctures. We now normalize each node in CL

starting from the the ends of tree. At every step, we use Th 7.1(A) for the
deg(DL) = 2 case and insert the nodal nilpotent on the right component of
the normalized curve.

The final result of this procedure will be a one sided node with
deg(DL) > 2 with some partitions [pi]

(1), [pi]
(2). The arguments in §5.5 en-

sure that the resulting [pi]
(1), [pi]

(2) do not depend on the choice of the stable
degeneration or the subsequent choice of the order in which we choose to
do the normalizations. As a final step, we can now use Th 7.1(A)-(C) for
deg(DL) = 2. This extends Th 7.1 to all one sided nodes with deg(DL) > 2.
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7.4. Two sided nodes

We now take up the case of two sided nodes. These are nodes in which
the constraints on the space of center parameters arise from both the
left and right components of a separating node. In other words, we have
h0(Lk ⊗OCL

) = 0 and h0(Lk′ ⊗OCR
) = 0 for some values of (k, k′) with

k ̸= k′. This can occur only in cases where both CL and CR are P1s. Let the
first constraint on the left component occur at k = l and the first constraint
on the right occur at k′ = l′. Let us take l′ > l. This implies that on CL, we
have

h0(Ll ⊗OCL
) = 0

h0(Ll′ ⊗OCL
) > 0

(122)

By our proof of Th 7.1(B) for one sided nodes (110), this is possible iff
dLk = (0,−1, 0,−1, . . .). And since we are only considering nodal degenera-
tions arising from OK theories, this implies that dRk ≤ −1 in any two sided

node. So, we have nL,R
k = 0 for all values of k. So, it follows that any two

sided node necessarily has O = [2n].
The allowed set of center parameters arise from a combining the con-

straints from the left and the right components. On the left component,
we have a pattern of constraints that is of the type that leads to a
bCk = (1, 0, 1, 0, . . . , 1). On the right, we have a pattern of constraints that
leads to a bCk = (1, 1, 1, . . . , 1, 0). It is clear that the combined application
of both sets of constraints also leads to a set of non-zero center parameters
that obeys the conditions in Th 7.1(B)-(C).

This completes the proof of Th 7.1.

Corollary 1. The center parameters can be interpreted as the H-invariant
polynomials for H = SU(n) (or) H = Sp(n) for some n ≤ N such that
rank(H) = bC . Combined with the Hitchin nilpotent O, this completes the
association of a pair (O,H) for every restricted node where H is always a
simple Lie group.

Proof From the allowed possibilities for bCk in Th 7.1(B) and an in-
spection of the degrees of invariant polynomials in simple Lie algebras (see
Appendix C), it is clear that the center parameters can always be interpreted
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as being the invariant polynomials for either a SU(n) subgroup or a Sp(n)
subgroup18 of SU(N).

Remark 2. It is interesting to ask if the converse of Th 7.1(C) holds. In
other words, for a given Lie algebra j = sl(N), does every pair of (O,H)
obeying Th 7.1(C) actually occur at a restricted node? The physics compu-
tations indicate that this is true, but we have not been able to provide a
proof for arbitrary N .

7.5. Restricted Nodes vs Semistable Higgs bundles

As we have seen, the nodal limit of a symplectic Hitchin integrable system
on C gives rise, in a canonical way, to a symplectic integrable system on the
normalization C̃. Our main interest, in this paper, has been the appearance
of restricted nodes. In that case, the symplectic integrable system that arises
on one of the components (CL) of the normalization is not a semistable j-
Hitchin system.

But the “generic” behaviour is that the degeneration leads to a standard
node. In that case, the integrable system is a semistable Hitchin system on
CL with n+ 1 marked points (where n = deg(DL)), where the (n+ 1)st

point is the pre-image of the node, and the conjugacy class of the residue
there is the regular nilpotent. A necessary and sufficient condition for this is
that h1(Lk,L) = 0, ∀k. As we explain in Appendix B, this is also a necessary
and sufficient condition for the corresponding irreducible character variety to
exist. When h1(Lk,L) ̸= 0 for some k, the irreducible character variety does
not exist and hence there is no moduli space of semistable Higgs bundles on
CL.

7.6. Compatibility of Coulomb and Higgs branch considerations

As we already discussed in §6.2, the existence of a superconformal N = 2
theory associated to a tame Hitchin system allows us to constrain the data
(O,H) from either the Coulomb branch or Higgs branch perspectives. While
we used the Higgs-Coulomb algorithm in §6.2, we used purely Coulomb

18There is also the possibility that bCk could be the invariant polynomials for an
H = SO(2n+ 1). This can be ruled out using the flavour considerations discussed in
footnote 15. In light of this, it is interesting to wonder if one could obtain a stronger
version of Theorem 7.1(B) which directly constrains the group H from a Hitchin
system point of view. The present version can be thought of as constraining the
Weyl group W (H), which is not sufficient to distinguish Sp(n) from SO(2n+ 1).
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branch considerations to constrain (O,H) in the present section. By this
seemingly different route, we have arrived at the same set of allowed pairs
(O,H).

While the procedure for determining O was essentially the same, the
procedure for determining H looks quite different. To see that they are the
same, note that the vector π⃗ − π⃗O of the algorithm is just equal to the sum of
the left and center Hitchin base dimensions, b⃗L + b⃗C . Proposition 1 relates
bCk = 0 to h1(CL,L

′
k,L) > 0. Since CL has genus-0, bLk := h0(CL,L

′
k,L) > 0

and h1(CL,L
′
k,L) > 0 are mutually-exclusive. Hence if bLk + bCk > 0, we must

have bCk = 1. So H, as determined by Theorem 7.1(B) really is the highest-
rank subgroup of F whose Casimirs are a subset of the positive entries
of π⃗ − π⃗O. Of the allowed pairs obtained in §6.2, only ([n2], SU(2n)0) was
excluded (in the untwisted A2n−1 theory) by Theorem 7.1(C). As already
noted it does appear in the twisted version of the theory [61]. We also note
that the constraints on rank(H) obtained from Th 7.1(C) is exactly the
same as the one obtained in (91) by flavor considerations.

In instances where the Higgs branch geometry, including the hy-
perKähler metric, is known, one expects to see the smaller groups H as
the subgroups of J that continue to act as isometries of the 4d Higgs branch
[19] appearing on the CL component of a restricted node. In the partic-
ular case of the restricted node arising in the SU(3), Nf = 6 theory, the
investigation of this question goes back to the work of [62].

More generally, for every pants-decomposition of C, there is a differ-
ent realization of the Higgs branch as a hyperKähler quotient. When the
corresponding boundary point of Mg,n involves only (3g − 3 + n) standard
nodes, the quotient is by J3g−3+n. When some of the nodes are restricted
nodes (O,H), the quotient is by H rather than J and one of the 3-punctured
spheres which meet at the node has an insertion of O, rather than the reg-
ular nilpotent. Hiraku Nakajima has informed us that he has been able to
provide a mathematical proof of the existence of these different realizations
of the Higgs branch in certain cases [63].

Appendices

Appendix A. Proof of Theorem 5.1

As in the text, Lk = K⊗k
C ⊗O(−

∑
pi
π
(i)
k ), where π

(i)
k := k − χ

(i)
k satisfies

1 ≤ π
(i)
k ≤ k − 1. Our OK condition is that H1(C,Lk) = 0 for C smooth.

But we need to consider arbitrary nodal degenerations of C.
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So let C be a nodal curve with irreducible components Ca. Each Ca has
geometric genus ga, ta ≥ 1 branches of nodes and a set of marked points
Sa ⊂ {p1, p2, . . . pn}.

We easily compute

(A.1) deg(KC ⊗ L−1
k ⊗OCa

) = −
[
(k − 1)(2ga − 2 + ta) +

∑

pi∈Sa

π
(i)
k

]

Definition 1. We will call a component Ca blighted if

• ga = 0

• ta = 1

•
∑

pi∈Sa
π
(i)
k < k − 1

For a blighted component Ca define the positive integer

(A.2) na
k := k − 1−

∑

pi∈Sa

π
(i)
k

From (A.1), deg(KC ⊗ L−1
k ⊗OCa

) > 0 if and only if Ca is blighted.

Lemma 1. Restricted to a blighted component,

(A.3) L′
k ⊗OCa

= Lk ⊗OCa
(na

kp)

where p is the node.

Proof. This follows from the fact that deg(OCa
(−Ca)) = 1 and our defini-

tion (86) of L′
k. □

Lemma 2. If C has no blighted components, then

a) L′
k = Lk

b) H1(C,Lk) = 0.

Proof. For (a) , we note that if k − 1−
∑

pi∈S
π
(i)
k > 0, then k − 1−

∑
pi∈Sa

π
(i)
k > 0 for any subset Sa ⊂ S. So if there’s a (possibly reducible)

genus-0 component of C contributing to the twist (86), then it has an irre-
ducible subcomponent Ca on which na

k > 0.
For (b), we note that, by Serre duality, h1(Lk) = h0(KC ⊗ L−1

k ). In the
absence of blighted components, the degree of KC ⊗ L−1

k is non-positive
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when restricted to every component Ca of C. The OK condition implies that
the total degree is strictly negative; hence it must be negative on at least one
component. Therefore any global section of KC ⊗ L−1

k on C vanishes. □

Our goal is now to reduce the problem of computing H∗(C,L′
k) on a

curve with blighted components to the same computation on a simpler curve
with no blighted components.

Definition 2. Consider a blighted component Ca. By definition, it inter-
sects the rest of C (which we will denote by Č) at the node p. Our pruning
operation consists of removing the component Ca and replacing the branch
of the node on Č by a marked point with χk = 1 + na

k (or πk = k − 1− na
k).

The degree of the twist, na
k, was chosen precisely so that H0(Ca,L

′
k) =

H1(Ca,L
′
k) = 0. The long exact sequence associated to

(A.4) 0 → L′
k ⊗OČ(−p) → L′

k → L′
k ⊗OCa

→ 0

splits and we find

H0(C,L′
k) = H0(Č,L′

k(−p))

H1(C,L′
k) = H1(Č,L′

k(−p))
(A.5)

Let us denote the irreducible component of Č which contains p as Cb. Note
the following:

• Let Cc be any other component of Č, except Cb. We have L′
k(−p)⊗

OCc
= L′

k ⊗OCc
.

• Since OČ(−na
kCa) = OČ(−na

kp), the pole order of L′
k(−p)⊗OCb

at p
is πk = k − 1− na

k.

• Let S ⊃ Sa ∪ Sb be a subset of the marked points on C. Let Š = {p} ∪
(S\Sa). Set π

p
k = k − 1− na

k. Since

πp
k +

∑

pi∈Sb

π
(i)
k =

∑

pi∈Sa∪Sb

π
(i)
k

the coefficient, −nŠ
k , of CŠ in Ľ′

k := L′
k ⊗OČ(−p) is the same as the

coefficient, −nS
k , of CS in L′

k.

The upshot is that the line bundle L′
k(−p) on Č is exactly the line bundle

Ľ′
k that we would construct by the recipe (86) for the curve Č with marked

points Š and an additional marked point at p with χk = 1 + na
k.
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By the pruning procedure, we have constructed a new curve Č and a line
bundle Ľ′

k with exactly the same cohomology groups (A.5) as (C,L′
k). Now

we drop the š and repeat the pruning operation. Eventually, we arrive at
a curve with no blighted components. We then apply Lemma 2 to conclude
that H1(C,L′

k) = 0.
Thus we have shown that H1(C,L′

k) = 0 for every fiber of C → Mg,n.
Hence

(A.6) Bk = π∗L
′
k

is locally-free.

Appendix B. OK theories and semistable Higgs bundles

We begin by recalling the nonabelian Hodge theorem for tame Hitchin sys-
tems due to Simpson [30]. The NAH theorem sets up a correspondence
between the moduli space of semistable parabolic Higgs bundles and the
character variety of irreducible representations ρ : π1(Cg,n) → SLN with
parabolic structure.

Let us recall the local dictionary from Simpson [30]. As in [30], let (E,Φ)
be a filtered Higgs bundle, (V,∇) be the flat connection with V a filtered
vector bundle, (L, µ) a filtered local system with µ being an endomorphism
of L. For any Lie algebra element a, we can write its Jordan decomposition as
a = aN + as where aN is nilpotent, as is semisimple and [aN , as] = 0. Since
our residues are elements of the Lie algebra j, a similar Jordan decomposition
exists for Res(· · · ). We use (Res(· · · ))N to denote “nilpotent part of the
residue”. Then the local dictionary can be described in the following way:

1) The weights and eigenvalues of the semi-simple parts of the residue
are permuted according the following table (from p. 720 of [30])

(E,Φ) (V,∇) (L, µ)

weights α α− 2β −2β

eigenvalue(s) β + iγ α+ 2iγ exp(−2πiα+ 4πγ)

2) The fibers at each puncture of E, V and L have a refined decomposition
given by the triple (α, β, γ) at that puncture. These decompositions are
invariant under the respective operators Φ,∇, µ. On matching pieces of
this decomposition, the nilpotent parts of the endomorphisms coincide:
(Res(Φ))N = (Res(∇))N = (Res(µ))N .



✐

✐

“2-Balasubramanian” — 2023/5/17 — 14:57 — page 1658 — #74
✐

✐

✐

✐

✐

✐

1658 A. Balasubramanian, J. Distler, and R. Donagi

Our arguments apply most directly to instances of NAH where Res(Φ)
at each of the n punctures is strictly nilpotent, i.e. β = γ = 0. From the
above table, it follows that the eigenvalues of the holonomy are exp (−2πiα).
The boundary conditions for the gauge field encode the parabolic weights α
at each puncture. The parabolic weights must be chosen in a way that is
compatible with the nilpotent residues of the Higgs fields. The idea (see [64]
for an exposition) is that the fiber of E at each puncture admits a filtration

(B.7) E|p = Fl ⊃ Fl−1 ⊃ Fl−2 ⊃ · · · ⊃ F1 ⊃ 0

where Fj = ker(Res(Φ)j). To this filtration, we assign a set of parabolic
weights, αj(p) ∈ [0, 1) with αj(p) < αj−1(p). To each αj(p) we assign a mul-
tiplicity19 qj = dim(Fj/Fj−1). The partition [q1, q2, . . . , ql] of N is the Nahm
partition which is the transpose of the Hitchin partition for the nilpotent
orbit OH ∋ Res(Φ). The datum (E,Φ, α) defines a strongly parabolic Higgs
bundle. By NAH, the multiplicities of the eigenvalues of the holonomy µ are
given by the same Nahm partition, [q1, q2, . . . , ql].

Let us further specialize to the case of a Higgs bundle on a genus zero
curve C0,n+1 with n+ 1 punctures such that Res(Φ) is regular nilpotent
at (at least) one of the punctures (say the (n+ 1)st puncture). We will
refer to these as the regular cases. In these regular cases, Simpson has de-
rived necessary and sufficient conditions for the irreducible character va-
riety to be non-empty [48]. Let us define D :=

∑n+1
a=1 dim(Ca)− 2(N2 − 1)

and ra := N −ma where Ca are the SLN conjugacy classes in which the
local holonomies live, a labels the punctures and ma denotes the largest
multiplicity for the eigenvalues of the holonomy matrix at the puncture a.

In terms of these quantities, Simpson’s conditions are:

(α) D ≥ 0,

(β)
∑n

a=1 ra ≥ N .

When the irreducible character variety is not empty, the quantity D is
equal to its complex dimension and it matches the dimension of the Higgs
moduli space computed using Riemann-Roch (as in §2).

Proposition 3. In the regular case, Simpson’s two conditions (α),(β) above
are equivalent to the “OK” condition which we introduced for the line bundles
in Lk in §1.3.

19Since we are in SLN , we further require
∑

j qjαj = 0 mod 1.
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Proof. As explained earlier in this section, ma can be identified with the
first part of the Nahm partition q1 at the puncture a. From the algorithm
(in §2.1) for the zero orders χk, we see that the value of χN = q1. With this
translation, we see that condition (β) is the same as

(B.8)

n∑

a=1

(N − χ
(a)
N ) ≥ N.

By a simple rearrangement, this is equivalent to demanding

(B.9) (n− 1)N −
n+1∑

a=1

χ
(a)
N ≥ −1,

where we have used the fact that χn+1
N = 1 since we have a regular nilpotent

residue for the Higgs field at the (n+ 1)st puncture. From (6), we recognize
this to be exactly the condition that deg(LN ) ≥ −1! It follows that demand-
ing (β) holds is the same as demanding that h1(LN ) = 0 which is one of our
conditions for the tame Hitchin system to be OK.

What about condition (α)? To study this, we first note that the quantity
D has a simple relationship to the indices of the line bundles Lk,

(B.10) D = 2
∑

k

ind(Lk).

If h1(Lk) = 0 for all k, it is straightforward that (α) holds. It is also clear
that if h1(Lk) > 0 for all k, then both (α), (β) fail to hold. The interesting
situations are the ones where (α) might be violated but (β) holds. Such
cases could occur if h1(Lk) > 0 for some k < N but h1(LN ) = 0. What can
we say about D in such cases?

To approach these cases, imagine we have a one sided separating node
(see §7.1 for the definition) with O = [N ] and deg(DL) = n. Now, the con-
ditions h1(LN ) = 0 and h1(Lk) > 0 (for some k < N) are equivalent to de-
manding that bCN = 1 while bCk = 0 for some k < N . From our proof of Th

7.1(B), the only such possibilities occur when b⃗Ck = 1
2

(
1 + (−1)k

)
. In these

cases, we showed that deg(Lk) is necessarily of the form (111)

(B.11) deg(Lk) = −1− 1
2

(
1− (−1)k

)
.

By Prop 2, such a scenario can occur when N is even, n = 2 and the
residues of the Higgs field at the two marked points live in the nilpotent
conjugacy class [2N/2]. In these cases, an explicit calculation shows that
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D < 0. And Th 7.1(C) implies that [2N/2] is not an allowed nodal nilpotent.
This guarantees that there is no other scenario with n > 2 for which (B.11)
could hold. This guarantees that (α) is violated whenever h1(LN ) = 0 and
h1(Lk) > 0 for some k < N . □

In the regular case, demanding that the strongly parabolic Higgs bundle
be OK is necessary and sufficient for the corresponding irreducible character
variety to be non-empty. By the NAH theorem, this is the same as demand-
ing the existence (i.e. non-emptiness) of the corresponding moduli space of
semistable Higgs bundles. The novel feature here is that semi-stability (in
the Higgs sense) admits a translation to a condition on the line bundles Lk

appearing in the description of the Hitchin base.
If we relax the assumption that one of the residues of the Higgs field is

regular, then Simpson’s two conditions are known to be necessary, but not
sufficient for the non-emptiness of the character variety (see, for instance,
the discussion in Kostov’s survey [65]). A natural guess is that the OK
condition on the line bundles Lk, which is stronger than Simpson’s condi-
tions in this case, might be sufficient. To this end, we would like to propose
two conjectures. The first is that the OK condition on strongly parabolic
Higgs bundles is sufficient to ensure the non-emptiness of the corresponding
character variety. The second, more optimistic, conjecture is that the OK
condition is both necessary and sufficient.

We hope to study these conjectures further in a later work. We note here
that some of the best known results towards the general problem of providing
necessary and sufficient conditions are in Crawley-Boevey [66] which follows
the earlier work of [67]. A beautiful survey emphasizing the connection to
Higgs bundles is in [68]. Additional recent results are in [69].
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Appendix C. Degrees of invariant polynomials

We tabulate here the degrees of invariant polynomials of finite irreducible
Coxeter systems.

Coxeter type Degrees of invariant polynomials

An 2, 3, 4, . . . , n+ 1
Bn, Cn 2, 4, 6, . . . , 2n
Dn 2, 4, 6, . . . , 2n− 2, n
E6 2, 5, 6, 8, 9, 12
E7 2, 6, 8, 10, 12, 14, 18
E8 2, 8, 12, 14, 18, 20, 24, 30
F4 2, 6, 8, 12
G2 2, 6
H3 2, 6, 10
H4 2, 12, 20, 30

I2(m),m ≥ 4 2,m

Note that I2(6) ≃ G2 and I2(5) is sometimes denoted as H2.
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