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Deformations of holomorphic pairs and
2d-4d wall-crossing

VERONICA FANTINI

We show how wall-crossing formulas in coupled 2d-4d systems,
introduced by Gaiotto, Moore and Neitzke, can be interpreted
geometrically in terms of the deformation theory of holomorphic
pairs, given by a complex manifold together with a holomorphic
vector bundle. The main part of the paper studies the relation
between scattering diagrams and deformations of holomorphic pairs,
building on recent work by Chan, Conan Leung and Ma.
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1. Introduction

In the mathematical physics literature, wall-crossing formulas (WCFs for
short) express the dependence of physically admissible ground states (“BPS
states”) in a class of theories on certain crucial parameters (“central charge”).
For instance the WCF in coupled 2d-4d systems introduced by Gaiotto,
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Moore and Neitzke in [8] governs wall-crossing of BPS states in N = 2 super-
symmetric 4d gauge theory coupled with a surface defect. This generalizes
both the formulas of Cecotti-Vafa [I] in the pure 2d case and those of
Kontsevich—-Soibelman in the pure 4d case [7, [12].

From a mathematical viewpoint, in the pure 2d case the WCFs look like
braiding identities for matrices representing certain monodromy data (Stokes
matrices, see e.g. [6]). On the other hand Kontsevich-Soibelman [12] start
from the datum of the (“charge”) lattice I', endowed with an antisymmetric
(“Dirac”) pairing (-,-)p: I' x I' = Z, and define a Lie algebra closely related
to the Poisson algebra of functions on the algebraic torus (C*)™T. Then
their WCFs are expressed in terms of formal Poisson automorphisms of this
algebraic torus.

In the coupled 2d-4d case studied in [§] the setting becomes rather more
complicated. In particular the lattice I' is upgraded to a pointed groupoid
G, whose objects are indices {i, j, k- - - } and whose morphisms include the
charge lattice I' as well as arrows parametrised by LI;;I";;, where I';; is
a I’-torsor. Then the relevant wall-crossing formulas involve two types of
formal automorphisms of the groupoid algebra C[G]: type S, corresponding
to Cecotti—Vafa monodromy matrices, and type K, which generalize the
formal torus automorphisms of Kontsevich—Soibelman. The main new feature
is the nontrivial interaction of automorphisms of type S and K.

These 2d-4d formulas have been first studied with a categorical approach
by Kerr and Soibelman in [I0]. In this paper we take a very different point
of view. We show how a large class of 2d-4d formulas can be constructed
geometrically by using the deformation theory of holomorphic pairs, given
by a complex manifold X together with a holomorphic bundle E.

Our construction is a variant of the remarkable recent results of Chan,
Conan Leung and Ma [2]. That work shows how consistent scattering dia-
grams, in the sense of Kontsevich-Soibelman and Gross—Siebert (see e.g. [9])
can be constructed via the asymptotic analysis of deformations of a complex
manifold X := TM /A, given by a torus fibration over a smooth tropical
affine manifold M. The complex structure depends on a parameter h, and
the asymptotic analysis is performed in the semiclassical limit i — 0. The
gauge group acting on the set of solutions of the Maurer-Cartan equation
(which governs deformations of X) contains the tropical vertez group V of
Kontsevich—Soibelman and Gross—Siebert. Elements of the tropical vertex
group are formal automorphisms of an algebraic torus and are analogous to
the type K automorphisms described above, and consistent scattering dia-
grams with values the tropical vertex group reproduce wall-crossing formulas
in the pure 4d case.
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In the present paper we introduce an extension V of the tropical vertex
group whose definition is modelled on the deformation theory of holomorphic
pairs (X, E). In our applications, X is defined as above and E is a holo-
morphically trivial vector bundle on X. In order to simplify the exposition
we always assume X has complex dimension 2, but we believe that this
restriction can be removed along the lines of [2]. Our first two main results
give the required generalization of the construction of Chan, Conan Leung
and Ma.

Theorem 1.1 (Theorem . Let © be an initial scattering diagram,
with values in the extended tropical vertex group v, consisting of two non-
parallel walls. Then there exists an associated solution ® of the Maurer-Cartan
equation, which governs deformations of the holomorphic pair (X, E), such
that the asymptotic behaviour of ® as h — 0 defines uniquely a scattering
diagram D (see Definition , with values in V.

Theorem 1.2 (Theorem [4.21)). The scattering diagram D is consistent.

We briefly highlight the main steps of the construction, which follows
closely that of [2], adapting it to pairs (X, E).

Step 1 We first introduce a symplectic dgLa as the Fourier-type transform
of the Kodaira-Spencer dgLa KS(X, E) which governs deformation of the
pair (X, E). Although the two dgLas are isomorphic, we find that working
on the symplectic side makes the results more transparent. In particular
we define the Lie algebra 6 as a subalgebra, modulo terms which vanish
as h — 0, of the Lie algebra of infinitesimal gauge transformations on the
symplectic side. The extension of the tropical vertex group is then defined
as V := exp(h).

Step 2.a Starting from the data of a wall in a scattering diagram, namely
from the automorphism 6 attached to a line P, we construct a solution II
supported along the wall, i.e. such that there exists a unique normalised
infinitesimal gauge transformation ¢ which takes the trivial solution to II
and has asymptotic behaviour with leading order term given by log(f) (see
Proposition . The gauge-fixing condition ¢ is given by choosing a suitable
homotopy operator H.

Step 2.b Let ® = {w;,wy} be an initial scattering diagram with two
non-parallel walls. By Step 2.a., there are Maurer-Cartan solutions I1y, Ilo,
which are respectively supported along the walls wy, wo. Using Kuranishi’s
method we construct a solution ® taking as input IIy + Ils, of the form
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® =1II; 4+ II; + =, where = is a correction term. In particular = is computed
using a different homotopy operator H.

Step 2.c By using labeled ribbon trees we write ® as a sum of contri-
butions ®, over a € (Z2>0)prim’ each of which turns out to be independently
a Maurer-Cartan equation (Lemma. Moreover we show that each @,
is supported on a ray of rational slope, meaning that for every a, there is
a unique normalised infinitesimal gauge transformation ¢, whose asymp-
totic behaviour is an element of our Lie algebra b (Theorem . The
transformations ¢, allow us to define the saturated scattering diagram 2.,
(Definition from the solution ®.

Note that in fact the results of [2] have already been extended to a
large class of dgLas (see [5]). For our purposes however we need a more ad
hoc study of a specific differential-geometric realization of KS(X, E): for
example, there is a background Hermitian metric on E which needs to be
chosen carefully.

We can now discuss the application to 2d-4d wall-crossing. As we men-
tioned WCFs for coupled 2d-4d systems involve automorphisms of type S
and K. In Section [5| we consider their infinitesimal generators (i.e. elements
of the Lie algebra of derivations of Aut(C[G][t])), and we introduce the
Lie ring Ly which they generate as a C[I']l-module. On the other hand we
construct a Lie ring L generated as C[I'-module by certain special elements
of the extended tropical vertex Lie algebra for holomorphic pairs, 6 Our
main result compares these two Lie rings.

Theorem 1.3 (Theorem [5.6|). Let (Lp,[-,']Der(@[@,D) and (i, ["']5) be
the C[I']-modules discussed above (see Section @ Under an assumption on
the BPS spectrum, there exists a homomorphism of C[I'|-modules and of Lie
rings Y : Lp — L.

This result shows that a saturated scattering diagram with values in
(the formal group of) L is the same as a 2d-4d wall-crossing formula. Thus,
applying our main construction with suitable input data, we can recover a
large class of WCF's for coupled 2d-4d systems from the deformation theory
of holomorphic pairs (X, E). At the end of Section [5| we show how this works
explicitly in two examples.
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1.1. Plan of the paper

The paper is organized as follows: in Section [2] we provide some background
on deformations of holomorphic pairs in terms of differential graded Lie
algebras, and on scattering diagrams, according to the definition given by
Gross—Pandharipande-Siebert [9]. In Section [3| we construct a deformation
II, supported on a wall w of a scattering diagram. In Section [4] given an
initial scattering diagram © = {wy,wy} with two non-parallel walls, we first
construct a solution ® from the input of the solutions II; and IIs supported
respectively on w; and ws. Then from the asymptotic analysis of ® we
compute the consistent scattering diagram 2 .. Finally in Section [5| we recall
the setting of wall-crossing formulas in coupled 2d-4d systems and prove
our correspondence result, Theorem between 2d-4d wall-crossing and
deformations of holomorphic pairs.

1.2. Acknowledgements

I would like to thank my advisor Jacopo Stoppa for proposing this problem
and for continuous support, helpful discussions, suggestions and corrections.

2. Background
2.1. Setting

Let M be an affine tropical two dimensional manifold. Let A be a lattice
subbundle of T'M locally generated by %, %, for a choice of affine co-
ordinates x = (x1,x2) on a contractible open subset U C M. We denote
by A* = Homy(A,Z) the dual lattice and by (-,-): A x A* — C the natural
pairing.

Define X := T M/ A to be the total space of the torus fibration p: X > M
and similarly define X := T*M/A*. Then, let {71,972} be the coordinates
on the fibres of X (U) with respect to the basis %, %, and define a one-

. . 0 hl .
parameter family of complex structures on X: Jp = ( -7 0 ), with
respect to the basis {a%l, 8%2, 8%1, 8%2}’ parametrized by h € Rsg. Notice

that a set of holomorphic coordinates with respect to Jp, is defined by z; :=
y; +thxj, j = 1,2; in particular we will denote by w; := e?™%  On the other
hand X is endowed with a natural symplectic structure wy := ffldyj Ndzxj,
where {y;} are coordinates on the fibres of X (U).
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In the next section we are going to consider the limit as A — 0, which
corresponds to the large volume limit of the dual torus fibration (X, wp).
This is motived by mirror symmetry which predicts that quantum corrections
to the complex side should arise in the large volume limit.

2.2. Deformations of holomorphic pairs

Let E be a rank r holomorphic vector bundle on X with fixed hermitian
metric hg. We are going to set up the deformation problem of the pair
(X, E), with the approach of differential graded Lie algebras (dgLa) following
[4] and [13].

Definition 2.1. The Kodaira-Spencer dgl.a which governs deformations of
a holomorphic pair (X, F) is defined as follows

(2.1)  KS(X,E):= (0" (X,EndE® T'°X),0 = <50E (i) 1),

where B: Q%(X, T10X) — Q%4(X End E) acts on ¢ € Q%4(X, T0X) as
By = p.Fg

where FF is the Chern curvature of E (defined with respect to the hermitan
metric hg and the complex structure 5E). The symbol J is the contraction
of forms with vector fields; in particular since Fg is of type (1,1) and ¢
is valued in T"°X, o Fg is the contraction of the type (1,0) of Fg with
respect to the 710 part of ¢ and the wedge product of the (0, ¢) form of ¢
with the type (0, 1) of Fg. The Lie bracket is

(22)  [(4,9),(N,9)] = (paVEN — (=1)PT9 .V EA + [A, Ngna 5, [, ¥])

where V¥ is the Chern connection of (E, g, hg), (4, ¢) € QP (X,End E @
TYOX), ie. (A, ) = (AK,pK)dzg with AKX € End E, ¢ € T'0X and the
multi-index |K| = p, and (N,v) € Q%4(X,End E & TH0X).

The definition does not depend on the choice of a hermitian metric
on E but only on the cohomology class of Fg: if hy is another metric
such that its Chern curvature F}, € [Fg], then the corresponding dgLas are
quasi-isomorphic (see appendix of [4]).

An infinitesimal deformation of (X, E) is a pair (4, ¢) € Q"Y(X,End E @
T'9X)®cC[t] such that it is a solution of the so called Maurer-Cartan
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equation:

= 1

(2'3) 6(Aa 90) + 5 [(Aa ‘10)’ (A’ 90)] = 0.

In addition, there exists an infinitesimal gauge group action on the set of
solutions of (2.3), defined by h € Q°(X,End E ® T*°X)[t] which acts on
fe QY X,End E @ THOX)[t] as

adf
(2.4) e f=] - Z Gy D= LA,

where ady(-) = [h, ]. In order to fix the notation, let us recall the definition of
the Kodaira-Spencer dgla KS(X) which governs infinitesimal deformations
of the complex manifold X:

(2.5) KS(X) = (Q"*(X,T""X), 0%, [-.])

where 55( is the Dolbeault operator of the complex manifold X associated to
Jp, and [, -] is the standard Lie bracket on vector fields and the wedge on the
form part.

2.3. Scattering diagrams

Let e; and ez be a basis for A, then the group ring C[A] is the ring of Laurent
polynomial in the variable 2™, where 2°* = x and z° = y. Let m; be the
maximal ideal of ring of formal power series C[t] and define the Lie algebra g

(2.6) g=m (C[A]@CC[[t]]) ®z A*

where every n € A* is associated to a derivation 9, such that 9,(z™) =
(m,n)z™ and the natural Lie bracket on g is

(2.7) (270, 2™ O] = 2™ D iy —(amyn
In particular there is a Lie sub-algebra h C g:

(2.8) b= @ 2" (my @ mJ‘),

meA~{0}

where m* € A* is identified with the derivation 9, and n the unique primitive
vector such that (m,n) = 0 and it is positive oriented according with the
orientation induced by Ag := A ® R.
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Definition 2.2 ([9]). The tropical vertex group V is the sub-group of
Autepy (C[A]@cClt]), such that V := exp(h). The product on V is defined
by the Baker-Campbell-Hausdorff (BCH) formula, namely

1
(2.9) gog' = exp(h) o exp(h’) == exp(h o I) = exp(h + 1" + S [h, W] + - )
where g = exp(h), ¢’ = exp(h’) € V.

The tropical vertex group was introduced by Gross, Pandharipande
and Siebert in [9] and in the simplest case its elements are formal one pa-
rameter families of symplectomorphisms of the algebraic torus C* x C* =

Spec Clz,z1,y,y~!] with respect to the holomorphic symplectic form
dx dy
= N\ ==
z "y

Definition 2.3 (Scattering diagram). A scattering diagram D is a
collection of walls w; = (m;, P;, 0;), where
e my; €A,

e P; can be either a line through my, i.e. P, = mg — m;R or a ray (half
line) B = mgy — miRZO,

e 0; € V is such that log(6;) = >, apti ¥,

i

Moreover for any k > 0 there are finitely many 6; such that 6; # 1 mod t*.
As an example, the scattering diagram
D= {Wl = (m1 = (1,0),P1 = mﬂR, 91),W2 = (m2 = (0,1),P2 = THQR, 02)}

can be represented as if figure
Denote by Sing(®) the singular set of D:

Sing(®) = | J 0PuU |J Pu, N Pu,

weD Wi1,W2

where OP,, = my if P, is a ray and zero otherwise. There is a notion of order
product for the automorphisms associated to each lines of a given scattering
diagram, and it defined as follows:

Definition 2.4 (Path order product). Let v:[0,1] - A®r R\ Sing(D)
be a smooth immersion with starting point that does not lie on a ray of the
scattering diagram ® and such that it intersects transversally the rays of ©
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02

01

Figure 1: A scattering diagram with only two walls © = {w,ws}

(as in figure . For each power k£ > 0, there are times 0 < 77 < --- <7, < 1
and rays P; € © such that y(7;) N P; # 0. Then, define 65,9 = szl 6;. The
path order product is given by:

(2.10) ;0 = lim Sl

02 H'rn,

o / 01
o _/'
6;*

Figure 2: O, 5. =01 00, 00200, 00;*
Definition 2.5 (Consistent scattering diagram). A scattering diagram
D is consistent if for any closed path 7 intersecting © generically, ©, p = Idy.

The following theorem by Kontsevich and Soibelman is an existence (ad
uniqueness) result of complete scattering diagram:
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Theorem 2.6 ([11]). Let © be a scattering diagram with two non parallel
walls. There exists a unique minimal scattering diagram Do 2 D such that
Do \ D consists only of rays, and it is consistent.

The diagram is minimal meaning that we do not consider rays with trivial
automorphisms.

2.3.1. Extension of the tropical vertex group. In [2] the authors
prove that some elements of the gauge group acting on Q%! (X, T10X) can
be represented as elements of the tropical vertex group V. Here we are going
to define an extension of the Lie algebra b, which will be related with the
infinitesimal generators of the gauge group acting on Q%' (X, End E @ T10X).
Let gl(r,C) be the Lie algebra of the Lie group GL(r,C), then we define

(2.11) b= @ P <mtg[(r, C)e (mt ® mL)) .

meA~{0}

Lemma 2.7. (6, [, }~> is a Lie algebra, where the bracket |-, |~ is defined
by:

/

(212)  [(A,00)2™, (A, 00)2™ |~ = ([A, A)giz™ ™ + A'(m/ n)zm+™

— A(m, n’>zm+m,, (2O, 2 On'lp)-

The definition of the Lie bracket [-, -]~ is closely related with the Lie
bracket of KS(X, E) and we will explain it below, in (2.5.1]). A proof of this
lemma can be found in the appendix (see |A.1]).

2.4. Fourier transform

In order to construct scattering diagrams from deformations of holomorphic
pairs, it is more convenient to work with a suitable Fourier transform % of the
dglLa KS(X, E). Following [3] we start with the definition of .7 (KS(X, E)).
Let £ be the space of fibre-wise homotopy classes of loops with respect to
the fibration p: X — M and the zero section s: M — X,

£=|] mop @) s@)).

zeM

Define a map ev: £ — X, which maps a homotopy class [y] € £ to y(0) € X
and define pr: £ — M the projection, such that the following diagram
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comiutes:

c o X
A
M

In particular pr is a local diffeomorphism and on a contractible open sub-
set U C M it induces an isomorphism Q*(U,TM) = Q*(Um,TL), where
Um = {m} x U € pr~}(U), m € A. In addition, there is a one-to-one corre-
spondence between Q°(U, T°X) and Q°(U, TM),

0 h 0

95 7 ino,
which leads us to the following definition:

Definition 2.8. The Fourier transform is a map .#: QOF( X, T10X) —
QF(L,TL), such that

Ar [I]—1 ' § 8
2.13) (F(g)), () = () [ dwpeme g e L
( ) h i@ O

where m € A represents an affine loop in the fibre p~! () with tangent vector
Z?:l mJB%J and ¢ is locally given by ¢ = wj[(x,yj)dzj ® B%j’ || = k.

The inverse Fourier transform is then defined by the following formula,
providing the coefficients have enough regularity:

A —|I]+1 ) 3 9
(214) T (a)(@g) = ( 0 ) 2 Tz @
meA J

where ozim(x)dxl ® azj € 0% (U, TL) is the m-th Fourier coefficient of
a € QF(L,TL) and |I| = k.
The Fourier transform can be extended to KS(X, E) as a map

F: QO X End E @ TYX) — QF(L,End E © TL)
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F <<A1dzj, pldz ® a))
sz m
] T
(2.15) = <4;Lr> (/ Al(l‘a g)e—2m(m,y)dgdxb
pH(z)

Am - 1 “\ —27i(m,y) 7 0
(ﬁ) /pl(:p) pj(z,9)e dydr; @ %>

J

where the first integral is meant on each matrix element of A’.

2.5. Symplectic dgLa

In order to define a dgLa isomorphic to KS(X, E), we introduce the so called
Witten differential dy and the Lie bracket {-,-}~, acting on Q°*(L,End E &
TL). It is enough for us to consider the case in which E is holomorphically
trivial E = O ® O @ --- @ Ox and the hermitian metric hg is diagonal,
hp = diag(e=?,--- ,e~?) and ¢j € Q%(X),j=1,---,r. The differential dy,
is defined as follows:

dy: Q¥(L,End E @ TL) — QML End E ¢ TL)

d = dW7E B
w 0 dwe)’

In particular, dyy, g is defined as:

(dw,p (AMdzy)), = F(Op(F " (AMdr)))n

_ (aE ((f)m > crm 4] dZJ>>n

47 —\J| 2 A,
= _— 7T’L 7y) 2 AJ
(h) Eme <mmk +Zh8xk>dzk/\dz‘]

J . .
n Zﬁaajik >€_2m(n,y)> dydzy N dzy

J
n

4 A
_ % <2mnkA;{ +in?

d dxyj.
axk) T N\ ATy
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The operator B is then defined by

(B(wfdxf ® 8‘3)) =F(F ' (Ylda; ® %)JFE)
J n

A\ M m 0
= (ﬁ) (Z Ui 27”( Ddz; ® g—'qu(@de A dzq))
j

SORON

/ ( )Zqbr]n,je%i(min’g)qu(d’)d@dﬂfl A dxg
1 z) m

(2.17)

where Fj,(¢) is the curvature matrix. Then the dyyz is defined by:
(218) dWE(wldx'[ ® i) = 6_2ﬂ—h w de; @ — 9 27rh*1(n,x)
Y Ox;" ), 8:173 ’

where d is the differential on the base M. Notice that by definition dy =
Z(0).Z 1. Analogously we define the Lie bracket {-, -} = .Z([-,"]<)Z L.
If we compute it explicitly in local coordinates we find:
{ I PLEndEDTL) x QIL,End E B TL)
— PT(L End E @ TL)
{(Aa (70)7 (N7 w)}’\’ = ({A7 N} =+ ad((p’ N) - (_1)pqad(w7 A)7 {(107 ?l)})

In particular locally on Uy, we consider

d
(A, ¢) = (AL dzxy, ol ndrr @ 5,-) € ¥ (Um End E® TL)
J

and on Uy, we consider

) € Q4(Upy,End E & TL)

0
(N, ) = (N dz g, %) medry @ o

then

(2.19) {A N = > [AL, Nblder Aday

m+m’=n

where the sum over m + m’ = n makes sense under the assumption of enough
regularity of the coefficients. The operator ad: QP(L,TL) x Q4(L,End E) —
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QPI(L, End E) is explicitly

, J
(ad (9, N)), = 4;;(/ ) )( 3 SO%m(aé\fr;,+2m'm/j+Aj(¢>)J\f,{l,)
=z

z
m+m’=n

) 62m’(m+m’*nv@)) dg) dxr Ndxy

where A;(¢)dz; is the connection V¥ one-form matrix. Finally the Lie bracket

{ih, 9}~ is

(2.20)
o ’ 0
__ —2nh~ ' (n,x I 27w (m,x 2r(m’,x),;,J
{o.¢¥}tn = <m/+zmn € (n,2) (‘Pj,me ( )V% (e ( )%,m/ Txk)
1y -1 0
— (_1)pq¢’im/62m (m ,z)vaa (627rh (m’x)‘Pimagj))>dm Ndxy

where V is the flat connection on M.

Definition 2.9. The symplectic dgla is defined as follows:
G=(QL,EndE®TL),dw,{ }~)

and it is isomorphic to KS(X, F) via .Z.

As we mention above, the gauge group on the symplectic side
Q(L,End E @ TL) is related with the extended Lie algebra h. However
to figure it out, some more work has to be done, as we prove in the following
subsection.

2.5.1. Relation with the Lie algebra 6 Let Aff]%‘, be the sheaf of
affine linear transformations over M defined for any open affine subset
UCMby fu(zx)=(m,z)+be Af fZ(U) where x € U, m € A and b € R.
Since there is an embedding of AffZ (U) into O (p~*(U)) which maps
fn(z) = (m,2) + b € Aff5(U) to e2mm2)+2mib ¢ g (571(U)), we define
O.s¢ the image sub-sheaf of Aff% in 0. Then consider the embedding of
the dual lattice A* < T10X which maps

n — nji =: Op.
0z;

It follows that the Fourier transform .# maps

(Ne27ri((m,z)+b)7 e2m((m,z)+b)3n> XA (ﬁfl(U)’ gl(r,C) @ Tl,OX—)
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to

4 h ; ;
<N€27”bmm, 471'627”brt)mn](;;Z'> €™ C(Un,gl(r,C) @ TL)
J

where 0™ := .7 (e2™(m:2)) ‘ie. on U},

m e2mh™H (m) if | — m
0] —
0 if k#£m

and we define

h .0
i 9
On Ar oxj

Let G be the sheaf over M defined as follows: for any open subset U C M

GU) = @ w™-C(U,gl(r,C) ® TM).
meA\0

In particular b is a subspace of G (U) once we identify 2™ with w™ and m™*
with 9,,.. In order to show how the Lie bracket on f~) is defined, we need
to make another assumption on the metric: assume that the metric hg is
constant along the fibres of X, i.e. in an open subset U C M ¢j = ¢j(x1, x2),
j=1,---,r. Hence, the Chern connection becomes V¥ = d + hA;(¢)dz;
while the curvature becomes Fg = h?Fj(¢)dzj A dzy. We now show G(U)
is a Lie sub-algebra of (Q°(pr—'(U)),End E® TL),{-,"}~) C G(U) and we
compute the Lie bracket {-, -}~ explicitly on functions of G(U).

{(An™, w™3,), <Nmm', mm’a,,) |
— ([A, N]w™ ™ + ad(r0™d,, Nw™) — ad (0™ d,,, An™),

(0™, mm’an,})

ad(rw™d,, Nrw™ ),

4 h . [(ONw™
= % mmﬂm < e + 2mim’; + ﬁAj(d))N>
(2.21) kh/=s ) ’
= "t pd 2m’m’A+z’h—¢N
J 8.1‘j

= (2mi(m/, n) + ihnjAj(qS)N)
where in the second step we use the fact that ™ is not zero only on U,,, and
in the last step we use the pairing of A and A* given by (m,n') = > . m;n".
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Thus
{(An™, w™a,,), (Nmm', mmlan/>}N
= ([A, NJo™ ™™ 4+ N (2mim|)n/no™ ™ +

+ AN A (o) ™™ — A(2mim;)n" o™+ 4

— hAA; ()™ {0, 0™ O, })
Taking the limit as i — 0, the Lie bracket

{(An™, w™d,), (Nmm', mm'(?nf) bo
converges to

([A, Nw™ ™ 4 omi(m/, n) Nwo™ ™ — 2mi(m,n') An™ ™
{™d,, mm/c’)n/}>

and we finally recover the definition of the Lie bracket of [-,-]p (2.12),

up to a factor of 2mi. Hence (b,[,]~) is the asymptotic subalgebra of
(Qo(pr_l(U))vEndE S T‘C)7 {'a }N)

3. Deformations associated to a single wall diagram

In this section we are going to construct a solution of the Maurer-Cartan
equation from the data of a single wall. We work locally on a contractible,
open affine subset U C M.

Let (m, Py, 0,,) be a wall and assume

log(0m) = > (Ajrt/ ™™, ajt/w?™,),
7.k

where Aj;, € gl(r,C) and aj, € C, for every j, k.

NOTATION 3.1. We need to introduce a suitable set of local coordinates
on U, namely (U, Up, | ), where u,, is the coordinate in the direction of
P,,, while u,,. is normal to P,,, according with the orientation of U. We
further define H,, . and H,, _ to be the half planes in which P,, divides U,
according with the orientation.

NoTATION 3.2. We will denote by the superscript CLM the elements already
introduced in [2].
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3.1. Ansatz for a wall

2
Yol

Let 9, := 67:? du,y, be a normalized Gaussian one-form, which is supported
on P,,.Then, let us define

II:= (HEa HCLM)

where Il = — Zj,k Ajktjémmkm and II¢LM — _ Zj,kzl akjémtjmkm(?n.
From section 4 of [2] we are going to recall the definition of generalized
Sobolev space suitably defined to compute the asymptotic behaviour of
Gaussian k-forms like §,, which depend on h. Let Q¥ (U) denote the set of
k-forms on U whose coefficients depend on the real positive parameter h.

Definition 3.3 (Definition 4.15 [2]).

WoU) = {ae QU)Vge UV CU,qeV

s.t. sup ‘Vja(m)‘ < C(y, V)e_%, C(3, V), cy > 0}
zeV

is the set of exponential k-forms.
Definition 3.4 (Definition 4.16 [2]).

WR(U) = {a e Q(U) |Vqe UV CU,qeV
s.t. sup |Vja(x)| < C(y, V)h_NJ*‘/, C(j,V),N;v € Z>0}
zeV

is the set of polynomially growing k-forms.

Definition 3.5 (Definition 4.19 [2]). Let P, be a ray in U. The set
Wp (U) of 1-forms o which have asymptotic support of order s € Z on Py,
is defined by the following conditions:

1) for every gs € U \ Py, there is a neighbourhood V' C U \ P,, such that
aly € Wr=(V);

2) for every g. € P,, there exists a neighbourhood ¢, € W C U where in
local coordinates g = (Ug,m,Uqgm:) centred at g, o decomposes as

a = f(ug, h)dugmr +n
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n € Wy (W) and for all j > 0 and for all 8 € Z>

(3.1) / (ums)?( sup | VI(f(ug, B))| ) dume
(07uq mL)EW (uqmnumL)EW
its—p-1

< C(5, W, B)h™" =
for some positive constant C'(3, W, 7).

Remark 3.6. A simpler way to figure out what is the space Wp, (U), is to
understand first the case of a 1-form « € Q}(U) which depends only on the
coordinate u,,:. Indeed o = (1, h)du,,+ has asymptotic support of order
s on a ray P, if for every ¢ € P,,, there exists a neighbourhood g € W C U
such that

B+

/ Wl V(g B)| dugme < C(W, B, 1) 7
O, )ew &

for every 8 € Z>g and j > 0.
In particular for 8 = 0 the estimate above reminds to the definition of
the usual Sobolev spaces L] (U).

Lemma 3.7. The one-form d,, defined above, has asymptotic support of
order 1 along P, i.e. 6, € W};m(U).

Proof. We claim that

2
b _ unLJ-

(3.2) / (2 )PV [ €

i—=8
du,. < C(B.W. )5
e N (6, W.)

for every j > 0, 8 € Z>, for some a,b > 0. This claim holds for 8 =0 = j,

indeed f_ba 87\/% du,,+ is bounded by a constant C' = C(a, b) > 0.

Then we prove the claim by induction on £, at 8 = 0 it holds true by the
previous computation. Assume that

w2

b —
3.3 )P, < C(8,a, bR
(33 [ ) e < €80
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holds for (3, then

u2

b 7rnj~
— =5 [ ey 2t
2

S| dupe
—a h Vhr
(3.4) 2 b
h e~ T hof?
_ B -1
—— | (Ut + b= UL
5 ()| 85 [ )
< C(B,a,b)hz + C(B,a,b)AM 5
< C(a,b, )R

2
_tmL
e h

Vhr

1723

Um L

Analogously let us prove the estimate by induction on j. At j = 0 it holds

true, and assume that

w2

/ )i [
Um L
—a vV hr

(3.5)

holds for j. Then at j7 4+ 1 we have the following

/ RO
Uy L —_—
_a vV hr

dumL

e

vie )| TP

—a

= ufu % (UmL)ﬁilvj

j=B+1

< C(B,a,b, j 7% + Cla,b, B, j i~
_j+1-p8

< C(a,b,B,j)h~ =

This ends the proof.

dupe < Cla,b,B,5)h "%

d’U,mL

g

NoOTATION 3.8. We say that a function f(x, k) on an open subset U x R>¢ C
M x Rsq belongs to Oy,.(h!) if it is bounded by Cxh! on every compact
subset K C U, for some constant Cx (independent on %), [ € R.

In order to deal with 0-forms “asymptotically supported on U”, we define

the following space W:
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Definition 3.9. A function f(ug, k) € Q2(U) belongs to Wi(U) if and only
if for every g, € U there is a neighbourhood ¢, € W C U such that

sup |V f(ug, )| < C(W, )%
qeW

for every j > 0.

NOTATION 3.10. Let us denote by QF(U,TM) the set of k-forms val-
ued in T'M, which depends on the real parameter A and analogously
we denote by QF(U,End E) the set of k-forms valued in End E which
also depend on h. We say that o= ak(r,h)dz ®0, € QF(U, TM)
belongs to Wi(U,TM)/WE(U, TM)/W,*(U,TM) if ak(z,h)dz €
Wi(U)) We(U)/ Wy, °(U). Analogously we say that A = Ak (z, h)dz® €
QF (U, End E) belongs to W5 (U, End E)/ Wi°(U,End E)/ W, *°(U, End E)
if for every p,q =1, ,r (Ag)pg(z, R)dz™ € Wi (U) /W (U) /W, *(U).

Proposition 3.11. 1II is a solution of the Maurer-Cartan equation dyI1 +
%{H,H}N =0, up to higher order term in h, i.e. there exists Ilg g €
QY U,End E® TL) such that T = (g + g g, UM is a solution of
Maurer-Cartan and g g € WISI(U)

Proof. First of all let us compute dy/11:

dwll = (dw,gllp + BUYM  dy, (J1CFM)
= (= Ajpt!wh™mds,, + BUYMM | —atiwb™d(6,,) © )

and notice that d(8,,) = 0. Then, let us compute BII¢FM:

BICMM — z(Z - (M), Fy)
4\ j < 5 i A 5
4\ 1 ; %
- <h) F (ajt W™ n B Fg(6)bpn A dz7)
A\ =1 747N 2 4
=2 (7)) () et E(8)6 A dat

h h
= —drh(ajpt! ™0l Fiy ()6, A da?)

where we denote by 8, the Fourier transform of 8,,. Notice that BIICLM is
an exact two form, thus since Fj,(¢)dx? = dA;(¢) (recall that the hermitian
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metric on E is diagonal)we define
HEJDL = 47Th(ajktjmkmnl14[(¢))5m)

i.e. as a solution of dwllg r = — BIIOLM,

In particular, since &, € W}, (U) then hé,, € WJS:I(U). Therefore Iy
has the expected asymptotic behaviour and dyII = 0. Let us now compute
the commutator:

(IO} = 27 (F M VEFZ (g + g R))
+ {HE g g + HE,R}, {HCLMJ—[CLM})
= (27 (F ' VEZ (lg + g R))
+2(Ilg + g R) A (g + g g),0)

Notice that, since both Il and IIg r are matrix valued one forms where the
form part is given by d,,, the wedge product (Ilg + g r) A (IIg + g R)
vanishes as we explicitly compute below

(Ilg +Tgg) A (g + g g)
= Ajp Apst TG A Gy,
+ 8mha it TRl A () Ay sGim A O
+ drh(ajit! ™Rl Aj(¢))26m A O
=0.

Hence we are left to compute & (9‘1HCLMJVE9_1 (g + HE,R))):

F(FOM VP 7 (1l + g )
=7 () antwtmida((F)
- (Atw™,, + 4wharst”wsmnlz4l(¢)5m))
n (‘%”) T W B (ihAq(gb)dzq
() (s st a3, )
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4 —1 . .. - -
- (%) F (ajktjwkméman_n (Ata,(wm)dzl A b+ Atw™d(5,m)

+ drharst" 0y (n? Ay () W™ )0 + 47Tharstrnqu(qb)wsmd(5m))>

A7y —1 : y .
= (%) f(ajkAt]Hwkmémnl@l(wm) A O,

+ ajkAthwkm"'mnl’yl(ih_lfypzp)gm A dm

+ drhajparst W0, n 0 (n1 Ay ()W ™)y,
+ 47rhajkarstj+rwkm+smnqz4q(qﬁ)nl'n(ih_lvpzp)gm A 5m>

=0
where 6, = %’ypd?’ for some constant 7, such that u,,. = y1z! + 7222,
and 0 is the partial derivative with respect to the coordinate z!. In the last
step we use that d,, A d,, = 0. O

Remark 3.12. In the following it will be useful to consider II in order to
compute the solution of Maurer-Cartan from the data of two non-parallel
walls (see section (4))). However, in order to compute the asymptotic behaviour
of the gauge it is enough to consider II.

Since X (U) 2 U x C/A has no non trivial deformations and E is holomor-

phically trivial, then also the pair (X (U), E) has no non trivial deformations.
Therefore there is a gauge ¢ € Q°(U,End E @ TM)[t] such that

(3.6) e? 0 =11

namely ¢ is a solution of the following equation

_ 1
(3.7) dweo=-T-Y_ mad’;dmp.
k>0 )

In particular the gauge ¢ is not unique, unless we choose a gauge fixing
condition (see Lemma [3.14)). In order to define the gauge fixing condition we
introduce the so called homotopy operator.

3.1.1. Gauge fixing condition and homotopy operator. Since
L(U) = Unep Um, it is enough to define the homotopy operator H,, for
every frequency m. Let us first define morphisms p = @, A\{0} Pm and
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L= Dyen (o) tm- We define pp, : 0™ - Q*(U) — w™ - H*(U) which acts as
Pm(a0™) = a(go)w™ if a € Q°(U) and it is zero otherwise.

Then ¢y, : 0™ - H*(U) — w™Q*(U) is the embedding of constant func-
tions on Q°*(U) at degree zero, and it is zero otherwise. Then let gy € H_ be a
fixed base point, then since U is contractible, there is a homotopy p: [0, 1] X
U — U which maps (7, wm, U, 1) t0 (01(T, Um, Um, 1), 02(T, Um, Up, 1)) and
such that 0(0,-) = qo = (ug,ud) and o(1,-) = Id. We define H,, as follows:

Hyp: 0™ - Q2(U) = v0™ - Q*(U)[~1]

(3:8) Hy,(w™a) =™ /dT/\_IQ a)

Lemma 3.13. The morphism H is a homotopy equivalence of idge and
Lop, t.e. the identity

(3.9) id—1op=dwH + Hdy
holds true.

Proof. At degree zero, let f € Q%(U): then iy, o pp(fo™) = f(qo)0™. By
degree reason H,,(fro™) =0 and

9f(e)

Hodyy (1o /dTAJ w(f(e) +dr=2)

0
= [ ar 00— w5 - flan)
At degree k =1, let a = fidz’ € QY(U) then: ¢y, 0 pp(ar0™) = 0,

1
Hpdw(an™) = 1w /0 dr A %J(d(g*(a))

1
:mm/o 7 A (0 () + dr A ~-(filo) 9 da')

— —wdy </1dm§7J< “(a ))> o / dr (i) 92 daf
= —1w"dy </01 dr A ;_J(g*(a))> + "o

and
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Finally let a € Q%(U), then p,, (at™) = 0 and dy (arw™) = 0. Then it is easy
to check that dy Hy,(0™a) = a. O

Lemma 3.14 (Lemma 4.7 in [2]). Among all solution of e¥ 0 = 1I,
there exists a unique one such that p(yp) = 0.

Proof. First of all, let o € Q°(U) such that do = 0. Then €¥*” % 0 = II, in-
k

deed e” 0 =0—3", {U,’C’!} (do) = 0. Thus #*? %0 = e¥ * (7 x0) = e¥ x 0 =

II. Thanks to the BCH formula

1
peo=gp+ot{pofat--

we can uniquely determine o such that p(¢ @ o) = 0. Indeed working order
by order in the formal parameter ¢, we get:

1) p(o1 + ¢1) = 0, hence by definition of p, o1(q0) = —¢1(q0);
2) P(02+@2+%{@1701}~)=07 hence 02((10):—(902(610)+%{<P1701}~(QO));
and any further order is determined by the previous one. O

Now that we have defined the homotopy operator and the gauge fixing
condition (as in Lemma|3.14)), we are going to study the asymptotic behaviour
of the gauge ¢ such that it is a solution of (3.7) and p(¢) = 0. Equations

(13.7), (3.9) and p(¢) = 0 together say that the unique gauge ¢ is indeed a
solution of the following equation:

_ ad”
3.10 = —Hd =-H(II —F —dwp).
( ) % w () ( +; i+ 1) WSO)

Up to now we have used a generic homotopy g, but from now on we
are going to choose it in order to get the expected asymptotic behaviour of
the gauge . In particular we choose the homotopy o as follows: for every
q = (ugm,Ugm+) €U

(3.11) o(T,uq) = {((1 —27)ud + 2TUg,m, ug) ifr € [0, %]

where (u$,u3) are the coordinates for the fixed point gy on U. Then we

have the following result:

Lemma 3.15. Let P, be a ray in U and let o« € W, (U). Then H(aw™)
belongs to Wi~ H(U).
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Proof. Let us first consider g, € U \ P,,. By assumption there is a neighbour-
hood of g, V' C U such that « € Wy (V). Then by definition

m ! 0 ! dor | Doy

hence, since ¢ does not depend on A

e do1 = 0o
J d ver | ve2
sup V /0 TO[(Q)<87_ + 37’)‘
1
< / dr sup 9a1 | a”))‘ < C(V,j)e %,
0 qev

qeVv
Vitalo) (52 + 5

Let us now consider ¢, € P,,. By assumption there is a neighbourhood
of ¢, W C U such that for all ¢ = (ugm,ugm+) € W a = h(ug, h)duy,: +1n
°°(W). By definition

and n € Wy
do1

H(an™) =1 /dT/\_lQ a)

1
=9 dTh(uqm, (27 — Dugmer + (2 — 2T)u%)(uq7mL — u%) —|—/ drn(o) 5,
0

/2
Uy

and since n € Wy (W) the second term fol dm(o )ag1 belongs to Wg°

‘H\

SN

v dut h(tg m, Ut ) + 1 drn( de1
m q,my Umt n Q) )
0 T

The first term is computed below:

sup ‘Vﬂ' </ " du#bh(uq’m,umL))‘

qeEW 2
Ug,mL .
= SuI/II)/ / duis N (R (g U )
q€
ot
[a j—1 (h(uq,mvumL)) ‘
(3.12) Ui U =ty L
Uyl )
< sup / duﬂ,:b sup‘V](h(uq,m,umi))‘
uqnni- ’U,g Ug,m
i1
+ |sup T(h(uqm,umﬂ)
qEW | OU; | T

s+j—1

<C(j, W)h™ =
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Qi1

where in the last step we use that W(h(uq,mumﬂ) is outside

_,2
Uy L =Ug

the support of P,,.
O

Corollary 3.16. Let Py, be a ray in U, then H(5,0™) € WI(U)no™.

3.2. Asymptotic behaviour of the gauge ¢

We are going to compute the asymptotic behaviour of ¢ = Z]- =
Q%U,End E @ TM)[t] order by order in the formal parameter t. In ad-
dition since Ilg g gives a higher h-order contribution in the definition of II
we get rid of it by replacing IT with II in equation .

Proposition 3.17. Let (m,Pp,0n) be a wall with logh,, =
2j7k>1 (Ajktjmkm,ajkmkmtjan). Then, the unique gauge ¢ = (pg, e¢TM)
such that e® x 0 =11 and P(p) =0, has the following asymptotic jumping
behaviour along the wall, namely

Zkzl (A5+17kt5+1mkm, as—i—l,kmkmtSJrlan)
(3.13) D ¢ + @y Wy (U, End E & TM)rokmest - H,, |
B>t Wy = (U, End E & T M )roFmest H,, _.

Before giving the proof of Proposition let us introduce the following
Lemma which are useful to compute the asymptotic behaviour of one-forms
asymptotically supported on a ray F,,.

Lemma 3.18. Let Py, be a ray in U. Then W§, (U) A\WE(U) C WiH(U).

Proof. Let o € Wp (U) and let f € Wi(U). Pick a point g, € Py, and let
W C U be a neighbourhood of ¢, where oo = h(ug, h)du,,. + 1, we claim

m-+
—a

b R
(3.14) / W, sup [V (h(ug, B) f(ugh))| dums < C(a,b, j, B~ =5
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for every 8 € Z>¢ and for every j > 0.

b
/ u’ - sup ‘Vj (uq, B) f(ugh))| duym,-

Z / (. SUP ’Vﬁ (uq, h))ij(f(uqh))‘ Ay,

Jitj2=5"
iy [0 ;
Z C(a, b,j2)7i_+T / ufnL sup | V7' (h(ug, 1)) | duy,-
Jit+d2=j e o
. . _rtis , _ stj1—B-1
< Z C(aaba.YQaJl)h > h 2
Jitj2=] .
< Cla,b j)h™ "5
Finally, since n € Wy *°(W) also f(z, h)n belongs to Wy >(W). O

Lemma 3.19. Let Py, be a ray in U. If (Aw™, pw™0,) € Wi, (U,End E ©
TM)w™ for some r >0 and (Tw™,yr™0,) € W§(U,End E & TM)w™ for
some s >, then

(3.15) {(Aw™, aw™d,), (Tw™, frn™d,)}~ € Wit (U, End E & TM)w>

Proof. We are going to prove the following:
(1) {Amm,Tmm}EndE C W};:S(U, End E)m2
(2) ad (w0, Tr™) C Wi (U, End E)r?
(3) ad (Y™, Aw™) C W;*~H(U, End E)n*™
(4) {ew™d,, pw™d,} € Wi (U, TM)ro
The first one is a consequence of Lemma [3.18] indeed by definition

{A(x)dz"®, T(2)}ena & = [Ar(x), T(z)|dz*

which is an element in End E with coefficients in W};:S(U ).
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The second one is less straightforward and need some explicit computa-
tions to be done.

ad (g (z)w™dz*d,, T (z)n™)
= 9(971(g0k(x)mmdwk ® ({)n)JVEﬂfl(T(:E)mm))

4 —1 «
) o (z)wmdz @ anNE(T(x)wm)>

719’ (gpk(x)wmdzkén_n <8j(T(£L‘>Wm)de>>
155 (pk(x)wmdfkén_n(Aj(QS)T(x)wmdzj))

0z
ey <Aj(q§)T(x)wmdzj)>

2l

(
(%)
+in
= (i;)19’<gpk(x)wmd2knl84(8]-(T(x))wmdzj + mjA(:):)wmdzj>>
can(m)
(%)
+in

10T (2)

axl )QOdxk

Notice that as a consequence of Lemma hipy (x)dxk Ay ()T (x) €
Witr=2(U) while iy (z) 25 dak € Wit
The third one is

ad(¢(z)w™0,, Ap(z)w™dz")

-1

Ak(x)wmdzk)>

8j(Ak(x)wm))dzj A dzk)
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<¢ 2)w?nlmy A(x)dz k)

- zh<f) <¢($)W2mn1Ak(«T)Al(¢) + 1 (x)nt 8/({1);;(195) w2mdzk)

. 0Ak(x)
_ l l kX 2m k
= it (@) (n' Ax(2) A (9) + 0! EE Y da
Notice that h)(x)Ay(x)A(p)dz* € WiH~2(W) and hw(x)%x(,x)dxk €
Wr+s I(W) "
Tn the end {ew™0,, Y1™0d,} is equal to zero, indeed by definition

{pn(@)da* 0, v(@)0,} = (prda® Av) [0, 0™,

and [0, w™0,] = 0. O
Proof. (Proposition |3.17))
It is enough to show that for every s > 0

ad”, (s+1)
© 0
(3.16) ( E (k 1),(111’80 ) e Wp (U, End E®TM),

where ©® = Z;Zl ©Wtl. Indeed from equation ([3.10)), at the order s + 1 in
the formal parameter ¢, the solution cp(SH) is:

(s+1)
dk
(s+1) — _ pr(mp(s+1)y _ A
(3.17) 0 HI@CHY)y - H k§>1:(k+1)!dwgp

In particular, if we assume equation (3.16) then by Lemma

dk (s+1)

a s

> —Edwe’ € Wy H(U,End E & TM).
= (k+1)!

By definition of H,

HMEH) =3 (A pt T H(0"0,), ag g 4™ H (10576,,)0,)
k

and by Corollary H(8mok™) € WY(U,End E @ TM)rno*™ for every k >
1. Hence H(IT**1) is the leading order term and ¢(**1) has the expected
asymptotic behaviour.
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Let us now prove the claim (3.16) by induction on s. At s = 0,
(3.18) oM = —g @)

and there is nothing to prove. Assume that (3.16|) holds true for s, then
at order s + 1 we get contributions for every k = 1,--- | s. Thus let start at
k =1 with adsdw¢®:

adg=dw¢® = {¢°, dw¢’
€ {HI®*) + Wy {(U), TI* + Wi (U)}~
(3.19) = {H(II*),II*} + {H(II*), Wp, (U)}~
+ W H(U), TP} + Vg H(U), W, (U)}~
€ {H(I*),II*} . + Wp, (U)

where in the first step we use the inductive assumption on ¢* and dy ¢®
and the identity (3.9). In the last step since H(II¥) € W{(U) then by
Lemma {H(I1*), W} (U)}~ € W} (U). Then, since IT* € Wp, (U), still

by Lemma Wy H(U), II* e e WY (U) and {Wy (U)W} (U)}. €
WH(U) € WY (U). In addition {H(IT*),TI*} . € W9, (U), indeed

m

[H(), 1} = ({H (113, I }ena  + ad (H(IICF9), 115)
_ ad(HCLM’S, H(HSE)), {H(HCLM’S), HCLM,S})

Notice that since [A, A] = 0 then {H (I13};), 113} gnd £ = 0 and because of the
grading

{H(HCLM’S), HCLM,S} = 0.

Then by the proof of Lemma identities (2) and (3) we get
ad(H (IT°F*), IT,), ad (4=, H(I)) € W (U)
therefore
(3.20) {H(11%),1I°}. e Wy, (U).
Now at k > 1 we have to prove that:

(3.21) ady: -+ - adydw® € Wi (U)
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By the fact that H(IT*) € WJ(U), applying Lemma k times we finally
get:

adys - --adysdw® € {H(IT1%),- -  {HIT%), {HT%),II°} o} -+ J o

(322) + WP (U) e Wi (U).

4. Scattering diagrams from solutions of Maurer-Cartan

In this section we are going to construct consistent scattering diagrams from
solutions of the Maurer-Cartan equation. In particular we will first show how
to construct a solution ® of the Maurer-Cartan equation from the data of an
initial scattering diagram © with two non parallel walls. Then we will define
its completion ®,, by the solution ® and we will prove it is consistent.

4.1. From scattering diagram to solution of Maurer-Cartan

Let the initial scattering diagram ® = {wy, wy} be such that wy = (my, P;,6;)
and wg = (mag, Ps, 62) are two non-parallel walls and

log(Qz) = Z <A]”kbmk‘zmztﬂ’ a]L7k1mkbm’Ltjlanl>
Jirki

for i = 1,2. As we have already done in Section [3, we can define II; and Il
to be solutions of Maurer-Cartan equation, respectively supported on w; and
W9.

Although II := II; + II5 is not a solution of Maurer-Cartan, by Kuran-
ishi’s method we can construct = = Z = Z0)# such that the one form
®c QY U,EndE® TM)[t] is ® =T+ = and it is a solution of Maurer-
Cartan up to higher order in A. Indeed let us we write ® as a formal power
series in the parameter ¢, & = > i>1 ®U)¢7 | then it is a solution of Maurer-
Cartan if and only if:

d®M =0
1
dy®® + 5{@(1)’ M =0

dy @) + (Z{@ s) @lh—s) ) =0
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Moreover, recall from that II,; := (HE,i + g R, HZ»CLM), 1=1,2 are
solutions of the Maurer-Cartan equation and they are dy/-closed. Therefore
at any order in the formal parameter ¢, the solution ® = II + Z is computed
as follows:

@ —

) =1 + 2@ where dyyE2® = —=({oM,eM} )

1
2
®G®) =11 + =26) where dyE®

({q,u), 0® + =@y 1 (1?4 =), q)u)}N)

1
2

_ 1
o) =1 + 20, where dw=" = —2 ({9, o} ")

In order to explicitly compute = we want to “invert” the differential dy
and this can be done by choosing a homotopy operator. Let us recall that
a homotopy operator is a homotopy H of morphisms p and ¢, namely
H:Q*(U) — Q*[-1](U), p: Q*(U) — H*(U) and ¢: H*(U) — Q*(U) such
that idgs — top = dwH + Hdy . Let us now explicitly define the homotopy
operator H. Let U be an open affine neighbourhood of mg = P, N P, and
fix go € (H- ym, N H_ 4,,) NU. Then choose a set of coordinates centred in go
and denote by (up,, um,2) a choice of such coordinates such that with respect
to a ray P, = mo + R>om, u,,. is the coordinate orthogonal to P, and uy,
is tangential to P,,. Moreover recall the definition of morphisms p and ¢,
namely p = D, pm and p,, maps functions anw™ € Q°(U)w™ to a(gy)w™,
while ¢ := @, tm and ¢y, is the embedding of constant function at degree
zero, and it is zero otherwise.

Definition 4.1. The homotopy operator H =, H,,,: ,,, 2*(U)w™ —
@D,, 2 (U)[-1]w™ is defined as follows. For any O-form « € Q°(U),
H(anw™) = 0, since there are no degree —1-forms. For any 1-form a € Q' (U),
in local coordinates we have a = fo (U, Up ) At + f1 (U, Up 1 )dity, 1 and

H(aw™) =™ </0“m fo(s,um)ds + /OumL fl(O,T)dr>
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Finally since any 2-forms o € Q%(U) in local coordinates can be written
a = f(Um, Upr)dum A dug,., then

H(aw™) =™ </um f(S,UmL)dS) Aty - .
0

The homotopy H seems defined ad hoc for each degree of forms, however
it can be written in an intrinsic way for every degree, as in Definition 5.12
[2]. We have defined H in this way because it is clearer how to compute it in
practice.

Lemma 4.2. The following identity
(4.2) idge — b © pm = Hpdw + dywwH,

holds true for all m € A.

Proof. We are going to prove the identity separately for 0,1 and 2 forms.
Let a = ag be of degree zero, then by definition H,,(at0™) = 0 and ¢, 0
Pm(a0™) = ap(qo). Then dy (aw™) = mm( Qag “dum + 5 ao‘” dUmL) Hence

U Qo (S, Ut ) /“mL Ooy
H,,d my — g [ LA Umt) g gm 0,7)d
w(apn™) = to /0 95 s+t ; 8UmL( r)dr

= 10" [0 (U, U ) — (0, Uy ) + (0, upmr ) — (0, 0)].
Then consider a € Q'(U)w™. By definition ¢, o py,(aw™) = 0 and

H,.dw amm) (deum + fldumi))

Hdy,
H,, (™ 0o dupms A it + Oh I Gty A di
Oyt foLT.

m afO 8f1
(] (a5 o) o

o
( / aafo (8, U )ds + f1 (U, Uppr ) — f1(0,um¢)> " du,,.
0
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dem(amm) = de(t’Dm (f(]dum + fldUmL))

=dw (mm (/Ou fo(s, upr)ds + /OumL fl(O,r)dr>>

=1n""d </0 fo(s, upr)ds +/0 f1(0,r)dr>

= to™ (fo(um,umL)dum 49 ( / fg(s,umL)ds> du,
aumL 0

We are left to prove the identity when « is of degree two: by degree
reasons dyy (anw™) = 0 and ¢, © pp,(arv”™) = 0. Then

dy H,p (a™) = no'™d (( /0 s, umL)ds> dumL>

= 10" f (U, Uy 2 ) AUy A AUyt

+ fl (0, umL)dumL> .

O

Proposition 4.3 (see prop 5.1 in [2]). Assume that ® is a solution of
_ 1

(4.3) ¢ =1I- §H {®,®}.)

Then ® is a solution of the Maurer-Cartan equation.

Proof. First notice that by definition p({®,®}.) =0 and by degree rea-
sons dy ({®, ®}.) = 0 too. Hence by identity we get that {®, P, }.. =
dwH({®,®P}.), and if ® is a solution of equation then dy® =
dwll — 2dwH({®, ®}.) = —3dwH({®, ®}.). a

From now on we will look for solutions ® of equation rather than to the
Maurer-Cartan equation. The advantage is that we have an integral equation
instead of a differential equation, and ¢ can be computed by its expansion
in the formal parameter ¢, namely ® = Zj>1 Pl

NoTATION 4.4. Let P,, =m¢—mR and P, =mp—maR and let
(U, , Uy ) and (Upy, up,r) be respectively two basis of coordinates in
U, centred in g9 as above. Let mg, := aimy + asmeo, consider the ray
Py, = my — myR>0 and choose coordinates u,,, = (—agum% + alum;) and
Upl = (alumf + agum;).
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Remark 4.5. If o = d,,, A dp,, then by the previous choice of coordinates

S g
5o ns = g d e et d
my N\ Omy, = T Upp b VAN Uyt = T Uyt N AUy, -

In particular we explicitly compute H (8, A 6,10/

2+um
! ! Um g e (ﬂ2+a2)h
H(oro!™) = rplme / €0 s | duw
0 hﬂ' @
(4.4) |
2 Uik
U T (@2+a2)h T (@ZFad)h
m a e 13 e 1taez
= tp'"Me ds du,, .
/o vV hr vV hr M
Hence
H (6, A Smyt0'™) = f(hy i, )Om.,
2
Um, e (a +a2)h
where f(h,um,) = [;™ ?ds € Ooc(1).

In order to construct a consistent scattering diagram from the solution
® we introduce labeled ribbon trees. Indeed via the combinatorial of such
trees we can rewrite ® as a sum over primitive Fourier mode, coming from
the contribution of the out-going edge of the trees.

4.1.1. Labeled ribbon trees. Let us briefly recall the definition of labeled
ribbon trees, which was introduced in [2].

Definition 4.6 (Definition 5.2 in [2]). A k-tree T is the datum of a finite
set of vertices V, together with a decomposition V = V;,, UV U {vr}, and
a finite set of edges F, such that, given the two boundary maps Ojn, Oyt :
E — V (which respectively assign to each edge its incoming and outgoing
vertices), satisfies the following assumption:

1) #Vin = k and for any vertex v € Vi, #0; ! (v) = 0 and #0,,(v) = 1;
2) for any vertex v € Vo, #0;, (v) = 1 and #0,5(v) = 2;
3) wvr is such that #81._ (vr) =0 and #aout( ) =1

We also define er = 9; ! (vr).
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v

Figure 3: This is an example of a 3-tree, where the set of vertices is decom-
posed by Vin = {v1,v2,v4}, Vo = {vs,v5}.

Two k-trees T and T" are isomorphic if there are bijections V =V’ and
E = E' preserving the decomposition Vy = V{j, Vi, = V) and {vr} = {vr}
and the boundary maps 9, Oout.

It will be useful in the following to introduce the definition of topological
realization 7 (T') of a k-tree T, namely T(T) := ([[.cx[0,1])/ ~, where ~ is
the equivalence relation that identifies boundary points of edges with the
same image in V' \ {vr}.

Since we need to keep track of all the possible combinations while we
compute commutators (for instance for ®®) there is the contribution of
{1 @)} and {®®), M1 ), we introduce the notion of ribbon trees:

Definition 4.7 (Definition 5.3 in [2]). A ribbon structure on a k-tree is a
cyclic ordering of the vertices. It can be viewed as an embedding 7 (T) — D,
where D is the disk in R?, and the cyclic ordering is given according to the
anticlockwise orientation of .

Two ribbon k-trees T and T" are isomorphic if they are isomorphic
as k-trees and the isomorphism preserves the cyclic order. The set of all
isomorphism classes of ribbon k-trees will be denoted by RT}. As an example,
the following two 2-trees are not isomorphic:
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In order to keep track of the A behaviour while we compute the contribu-
tion from the commutators, let us decompose the bracket on the dgla as
follows:

Definition 4.8. Let
(A, ) = (Aydz’w™ o ydz’w™d,,) € QP(U,End E & TM)n™
and
(B, B) = (Bgdz®w™, Brdz¥w™0,,) € Q(U,End E @& TM)n™
Then we decompose {-,-}~ as the sum of:

g {(4,2),(B,B)}
= (a A B(nl,m2> — B A A<n27m1> + {A,B}EndEa {Oé,ﬁ})
b {(4, )}

<ZhBKn2d:c A dzfomitms 5(V3ﬂ2a)mml+m23nl>

{(A,a), (B

:<zhaJn1 o K g™ A da’ o tme, (vanlﬂ)mmﬁmzam)

{(4, 04), N, B)}x
= ih (an{BrAg(¢)dz’ A dz™ —ndBr Ag(¢)Asda™ Adz”,0).

The previous definition is motivated by the following observation: the
label §j contains terms of the Lie bracket {-,-}. which leave unchanged the
behaviour in A. Then both the labels b and f contain terms which contribute
with an extra h factor and at the same time contain derivatives. The last
label * contains terms which contribute with an extra & but do not contain
derivatives.

Definition 4.9. A labeled ribbon k-tree is a ribbon k-tree 7" together with:
(i) alabel f, §, b, x -as defined in Definition for each vertex in Vj;

(ii) a label (me,je) for each incoming edge e, where m, is the Fourier
mode of the incoming vertex and j. € Z~¢ gives the order in the formal
parameter ¢.
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There is an induced labeling of all the edges of the trees defined as follows:
at any trivalent vertex with incoming edges e, es and outgoing edge es we
define (mey, je,) = (Me, + Mey, Je, + Je, ). We will denote by (mrp, jr) the
label corresponding to the unique incoming edge of v. Two labeled ribbon
k-trees T and T are isomorphic if they are isomorphic as ribbon k-trees
and the isomorphism preserves the labeling. The set of equivalence classes
of labeled ribbon k-trees will be denoted by LRTj. We also introduce the
following notation for equivalence classes of labeled ribbon trees:

NotaTION 4.10. We denote by LRT} o the set of equivalence classes of &k
labeled ribbon trees such that they have only the label . We denote by
LRT} ; the complement set, namely LRT}, ; = LRT) — LRTy .

Let us now define the operator t;, 7 which allows to write the solution ®
in terms of labeled ribbon trees.

Definition 4.11. Let T be a labeled ribbon k-tree, then the operator
(4.5) . : Q' (U, End E @ TM)®* — QY(U,End E @ TM)

is defined as follows: it aligns the input with the incoming vertices according
with the cyclic ordering and it labels the incoming edges (as in part (ii)
of Definition . Then it assigns at each vertex in Vj the commutator
according with the part (i) of Definition Finally it assigns the homotopy
operator —H to each outgoing edge.

In particular the solution ® of equation (4.3|) can be written as a sum on
labeled ribbon k-trees as follows:

(4.6) =) ) kltkT 1)

k>1TELRTy

Recall that by definition

{(A> aanl) mk1m17 (Ba Banz) mkzmz}"f
= (Ca 78(k2m2,n1)n2—(k1m1,ng)nl) o

kimi+kams

for some (A,a)e€ Q5(U,EndE®TM),(B,B)Y(U,End E®TM) and
(C,~) € Q""5(U,End E & T M), hence the Fourier mode of any labeled brack-
ets has the same frequency m. = k1mi + kome independently of the label
g,b, 4, x. In particular each m, can be written as me = l(aymi + aamg) for
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some primitive elements (a1, az) € (Zzzo) . Let us introduce the following

notation:

prim

NOTATION 4.12. Let a = (aj,a2) € (2220) - and define mg == aymy +

pri
asmsy. Then we define ®, to be the sum over all trees of the contribu-
tion to t, (1L, - - - , II) with Fourier mode o™« for every [ > 1. In particular

we define (I)(l,O) = 1:[1 and (I)(O,l) = HQ.

It follows that the solution ® can be written as a sum on primitive Fourier
mode as follows:

(4.7) o= > D,

As an example, let us consider ). From equation (4.3) we get

_ 1 I
@ _f@ _ L M {O
o =1 2H<{H I

and the possible 2-trees T' € LRT5, up to choice of the initial Fourier modes,
are represented in Figure 4| Hence

a® ) a® o (L o

{ﬁ(l)‘ﬁ(l)}n {ﬁ(l)’ﬁ(l)}u (W, amy,

—H —H —H

v, Ty uT,

) )

Figure 4: 2-trees labeled ribbon trees, which contribute to the solution .
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@ =11 4
- %H ({ﬁm,ﬁ(l)}u 4 {AW 0Oy, 4 (a®, qW}, + (IO, ﬁ(l)}*>

N
=@

- ((al,klAl,kz (n1, kama) — ay g, A1 g, (N2, kima) + [A1 g, A k,))

@)
)y 20

k +k
alJﬁal,k‘z8(1927R2,ﬂ1>712—(k1m1,n2>n1)H(5m1 /\5m2m 1M 2m2)
A A 857’11 kimi+kamso
+ (a1 kAt gy s =01k, 01k, On, | H ztha A O, 10
Lq
O,
Oz,

+ ih(al,klALan?H (Aq(¢)mklml+m25ml A 57"2)

) k +k
+ (al’klALkz,a17k1a17k28n2>H <Zhn1 A 6m1m 1my 2m2>

= a1, AnH (4 (@), A6, ) ,0)

By Remark
H (0, A S, 01k = £(R , Yrob™es,,,
and f(h, um,) € Oe(1), for kymy + koms = Im,. Analogously
H (A () 828, 78, ) = (1, A(@), i, o™ 0,

and f(h, A(¢), um,) € Ojoe(1). Then

B (W8 0t R0 ) i ()0,

Lq

and f(h, um,) € Ojoc(h/?). This shows that every term in the sum above, is
a function of some order in & times a delta supported along a ray of slope
M(a,,a;) = 1M1 + agma. For any given a € (Zzzo) " these contributions

pri
are by definition @Ez)l @

2 _ 52 (2) 2)
O =2+ Y Py T 20
ae(ZZZO)prim

) hence

In general, the expression of ®, will be much more complicated, but as a
consequence of the definition of H it always contains a delta supported on a
ray of slope mg.
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2. From solution of Maurer-Cartan to the saturated scattering
diagram

Let us first introduce the following notation:

NOTATION 4.13. Let A := U \ {mo} be an annulus and let A be the universal
cover of A with projection @: A — A. Then let us denote by @ the pullback
of ® by @, in particular by the decomposition in its primitive Fourier mode

¢ = Z ( ) ((I)a) = Z (2220) (I)a-

NoTATION 4.14. We introduce polar coordinates in myg, centred in mg =
P, UP,,,, denoted by (r,?) and we fix a reference angle ¥y such that the
ray with slope 9y trough mg contains the base point ¢ (see Figure [5).

Figure 5: The reference angle 9.

Then for every a € (ZQZO)prim we associate to the ray P, = mo+ R>om,
an angle 9, € (Yo, Yo + 2m). We identify P,,, N A with its lifting in le and
by abuse of notation we will denote it by P, ,. We finally define Ay :=
{(r,9)]90 — €0 < ¥ < ¥ + 27}, for some small positive €.

Lemma 4.15 (see Lemma 5.40 [2]). Let ® be a solution of equation (4.3))
which has been decomposed as a sum over primitive Fourier mode, as in (4.7)).
Then for any a € (Z%O)pmm, ®, is a solution of the Maurer-Cartan equation

in Ay, up to higher order in h, namely {<I>a,<I> e €Wy (Ao,EndE@
TM)kmetkma and  dy®, € Wy *°(Ag, End E ® TM)w ™ for some
k. k' > 1.
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Proof. Recall that ® is a solution of Maurer-Cartan dy® + {®,P}. =0
hence its pullback w*(®) is such that

S dwdet Y {Budute =0

ac (2220>prim a7a,€(2220)prinl

Looking at the bracket there are two p0551b111t1es first of all, if a # a’ then
{®y, Do} is proportional to 0, A O, 0F™HE ™ Since Py, N Py N A=o
then 8, A &y, € Wy ®(Ap), indeed ertlng Omy A O, in polar coordinates
it is a 2-form with coefficient a Gauss1an function in two variables centred in
mg & /10 Hence it is bounded by e~ % in the open subset V C Aj. Secondly,
if a = a’ then by definition {®y, Do} = 0. Finally, by the fact that dy P, =
> a,,{q)a , @y}~ it follows that dy®, € Wy >®(Ag)w* ™ for some
k>1. O

Now recall that the homotopy operator we have defined in Section [3| gives
a gauge fixing condition, hence for every a € (ZQZO)prim there exists a unique

gauge @, such that e¥+ « (0 = &, and p(vq) = 0. To be more precise we should
consider p := w*(p) as gauge fixing condition and similarly 7 := w*(¢) and
H := w*(H) as homotopy operator, however if we consider affine coordinates
on fl, these operators are equal to p, ¢ and H respectively. In addition in
affine coordinates on A the solution @, is also equal to ®,. Therefore in the
following computations we will always use the original operators and the
affine coordinates on A. We compute the asymptotic behaviour of the gauge
e in the following theorem:

Theorem 4.16. Let ¢, € QO(AO,EndE @ TM) be the unique gauge such
that p(pe) = 0 and e¥* x 0 = ®,. Then the asymptotic behaviour of v, is

Zl (Bl, blana) tsmlm“
o) e + @m WO(Ag, End E & TM)w!'™  on H,,
D=1 Wy (Ao, End E ® T M )ro'm- on Hy,,

for every s > 0, where (Bl, b,ana)mlma € 6

Remark 4.17. Notice that, from Theorem the gauge ¢, is asymptoti-
cally an element of the dgla h. Hence the saturated scattering diagram (see
Definition [4.20)) is strictly contained in the mirror dgla G (see Definition .
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We first need the following lemma (for a proof see Lemma 5.27 [2]) which
gives the explicit asymptotic behaviour of each component of the Lie bracket

{.7 .}N;
Lemma 4.18. Let P, and Py, be two rays on U such that P, NPy, , =
{mo}. , ,
If (Aw™, aw™8,) € Wi(U,EndE & TM)w™ and (Br™, fro™ ,) €
W{(U,End E @ TM)w™ , then
H ({ (Adp10™, b, 0™ 3,), (B 0™, ﬁém,mm’ﬁn/)}u)
Wan:fn}(U, End E & TM)w™™
H ({(8n0", 0810 0,), (Bomwo™ , Bmo™ D)}, )
eWE™  (U,End E @ TM)n™
H ( {(AGm10™, a8, 10™),), (B 0™ | 55m,mm’an,)}u>
e WP (U.End E @ TM)w™ ™
H ({(A810™, 00,070,), (Bopto™ , 5,™ 0)} )
€ W (U, End E & TM )™ ™,

Remark 4.19. The homotopy operators H and H are different. However it
is not a problem because the operator H produce a solution of Maurer-Cartan

and not of equation 1)
Proof. [Theorem [4.16| First of all recall that for every s > 0

(s+1)
k
4 D — g | & §:ad“"3d s
(4.8) o = at o dwea

where H is the homotopy operator defined in (3.8) with the same choice of
the path p as in (3.11)). In addition as in the proof of Proposition

(s+1)
ad®, -
(49 —H[> kfadwcpg e Wi (Ao, End E & TM)ro'™-
k>1 >1

'Recall that we were looking for a solution ® of Maurer-Cartan of the form
® =TI+ = and since dW(_) =0, the correction term Z is a solution of dyZ= =

—5{®,®}.. At this point we have introduced the homotopy operator H in order to
compute = and we got = = —1H({®, ®}..).
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hence we are left to study the asymptotic of H (<I>¢(15+1)). By definition Cin(fﬂ)

is the sum over all k < s-trees such that they have outgoing vertex with label
mr = lm, for some [ > 1.
We claim the following:

(410)  H(®™) € H(vg,) + @ Wi (Ao, End E @ TM)ro'™
>1

for every T € LRT}, ¢ such that t; 7(II, - - -, II) has Fourier mode mp = Im,,
for every k < s and for some r < 0. Indeed if kK = 1 the tree has only one

root and there is nothing to prove because there is no label. In particular

(s = (s = (s+1
H(vr) = HIICH) = H(@H) + 1))

and we will explicitly compute it below. Then at k > 2, every tree can be
considered as a 2-tree where the incoming edges are the roots of two sub-trees
T1 and T, not necessary in LRT(, such that their outgoing vertices look like

vy, = (Akdma,mkm“’ , akéma,mkm“/ana,)
e Pwrp, (Ao, EndE & TM)n*m
k>1 ‘
vr, = (BirOm,, 08 ™ By, 0* M0, )

e @ Wr, | (Ao, End E & TM)n* ™o
k">1

where kK'mg + k"mgr = lm,. Thus it is enough to prove the claim for a
2-tree with ingoing vertex vy, and vr, as above. If T' € LRTy, then vy =
vr, + v, + v, + v, and we explicitly compute H(vr, ), H(vr,) and H(vr,).

H(vm) = — 5 H (H (v, v, )

1
(b 5 ),

(Bk’" 6')’)’1,0’// mk‘//ma// , Bk;”(sma,, mk;”ma/l 8710’” )}b))

1 a 1"
= — SRH (L B O (Axb,,) A b b K
2 81,(] a a

8 1
,Bk//ngéma,, A % (Oék;(sma,) mkm“'+k m“"anl))
q
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Uy A %
7zhH (/ ﬂk,,n28a k (i/;d ) (Smamlma

0 f "
(/ Bk,, aknge > 6mamkma/+k ma”ana/))_{_

1 tma e W 274(s) I
+ —ihH / — mdA s unq(‘?n , g ds (5mam Ma
5 (( ; \/ﬁ(ﬁk 24k, Brnzn,) — )

@ r +r”72 lma + WT +7""71(A0)mlm

>1

where we assume k'mg + k"mg =1Im, and in the last step we use
Lemma to compute the asymptotic behaviour of H(d,,,).We de-
note by 7%(s) the coordinates u,1 written as functions of x9(s). In

particular, since (i)g?o) € Dy, 51 W}:m] (Ao, End E & TM)n*™: and q)E(l))l)

®;,>1 Wk, (Ao, End E ® TM)w"™2, we have H(égz)lm)) € @ Wyl
The same holds true for H(v7,) by permuting A, a and B, 3.
Then we compute the behaviour of H(vr,):

1
H(vr,) = —§H (H{vr,, v 14))
- H <H ({(Akdma, UL, S LI M

(B Opm,, 0 ™" B8y, ok Mg, )}*))
ihH (H ((n{ Brr Ag(#)0m, N O, — 1381 Ag(0) Ak, A O, 0)))

= ihH o agni B A eiids
(((/0 B Ay6) =

I T Ae_hds)ém w0
/0 nQBk q(¢) k\/ﬁ a

e @wrp T (Aol

>1

where we denote by m, the primitive vector such that for some [ > 1 Im, =
K'ma + k" mgr. Finally let us compute H(v7,): at k = 1 there is only a 1-tree,
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hence H(vy,) = H(@ET—E;) + éggt;)) and for all k1,ke > 1

H@Eifei)) € (Asr1 it g1 e 57 O, ) H (O, 0517
+ W3, (Ao, End E & TM)n™™
e (As+1,k1ts+1a a5+1,k1t5+18n1)mk1m1
+Wp! (AgEnd E © TM)roh™

= (541
H(D{) € (Asyr gt s i, t0n,) H (S 10"
+Wp! (A, End E & TM)*™
S (A8+1,k2t8+17 a8+1,k2t5+16n2)mk2m2

+Wp! (A, End E @ TM)ro*>™
Then every other k-tree (k < s) can be decomposed in two sub-trees T} and
Ty as above, and we can further assume 77,75 € LRTy, because if either T}
or Ty contains at least a label different from f then by Lemma their

asymptotic behaviour is of higher order in . We explicitly compute H (v, )
at s =1:

H(vr,) = H(—%H ({ﬁ(l),ﬁ(l)}h))
A (B () 1Yy, + (g, i) )

= _H<H<(a1,k1A1,k2 (n1, kama) — a1 g, Aq g, (N2, kima) + [A gy, A1k,

N =

2 k +k
al,klal,l@a(nl,k2m2>n2+<n2,k1m1>n1)t 6””1 A 5m2m lml 2m2)>>

= _H((al,klAl,kg (n1, kama) — a1 g, A1k, (n2, kima) + [A1 g, A1k,

52

u — 5=
2 ree Im,
al,klal,k’Q8(711,]€27ﬂ2>7l2+<n27,€1m1>77/1)t (/0 \/ﬂds> 5mam " )

= _(al,klAl,k:z (n1, koma) — a1 i, A1 i, (N2, kima) + [A1 ks A1 k)

S
al,klal,kQa(nl,k2m2>n2+<n2,k1m1>n1)tQH ((/O \/ﬂds) 5mamlma)

= _<al,k1A1,k2 (n1, kama) — a1 kg, A1 i, (N2, kima) + [A1 ks A1 k)

2
a a 0 t mlm H, e | ds | d
1,k 41,k k +{nq,k1m > “Hym, Mg
1 2U(n1,kama)ns+(ns,kimi)ng /fh
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Now

2

Im tma e G Im 0/ A Im
' Hy,p, ds | 6m, | € 0" + W5 (Ap)o e
e ( (/0 v hr ) ) 0(4o)

Therefore the leading order term of H(vr,) with labels mp = Im, = kym1 +
komo at s = 1 is

(1,5, A1k, (N1, kama) — ay g, A1k, (2, kyma)
+ (AL ALka)s 01 @k Oty syt (s e mmn )y ) £ 100
At s > 2, every other k-tree T (k < s) can be decomposed in two sub-trees,
say T1 and T3 such that vy, = ~H({vr, ., v, }y) + D>y W};m’a (Ag)rolma.
Notice that the leading order term of H (H({ﬁgl), I_Igl)}h)) is the Lie
bracket of

{(Al,klmklml ) al,klmklmlanl )7 (Alkamk2m27 al,kzmkzmQ 8712)}6
hence the leading order term of H (v7,) belongs to .
O

Notice that at any order in the formal parameter ¢, there are only a finite
number of terms which contribute to the solution ® in the sum (4.6, hence
we define the set W(IV) as

W(N) :={a € (ZQZO)prim | lmg = mp for some [ > 0

(4.11)
and T € LRT,with 1 < j;r < N}.

Definition 4.20 (Scattering diagram ©.). The order N scattering
diagram © y associated to the solution @ is

D = w12} U oo = (0 P}
where
® My = aymy + aamo;

o Py, =mo+mR>g

e log(f,) is the leading order term of the unique gauge ¢4, as computed

in Theorem (|4.16]).
The scattering diagram ., := hg N OnN.
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4.3. Consistency of

We are left to prove consistency of the scattering diagram ®., associated
to the solution ®. In order to do that we are going to use a monodromy
argument (the same approach was used in [2]).

Let us define the following regions

(4.12)
(4.13)

A= {(r,9)]9 — €0 + 27 < ¥ < ¥y + 27}
A— 21 = {(7“,19)’190 —e << 190}

for small enough €y > 0, such that A—2rmis away from all possible walls in
Doo-

Theorem 4.21. Let D be the scattering diagram defined in (4.20). Then
it is consistent, i.e. Op__ 4 = Id for any closed path v embedded in U \ {mo},
which intersects D, generically.

Proof. 1t is enough to prove that ® y is consistent for any fixed N > 0. First
of all recall that ©, p, = HZEW( N) 0q. Then let us prove that the following
identity

v

(4.14) [[ ¢ +0= Z D,

a€EW(N) a€EW(N

holds true. Indeed

ey 0= s () =y - 30 2

k

(dWSDa + {CPa, (i)a’}AJ) .
For degree reason {@,, ®o }~ = 0 and by definition

7€<p %0 = P,.

P

Iterating the same procedure for more than two rays, we get the result.
Recall that if ¢ is the unique gauge such that p(¢) =0 and
e¥ %0 =®, then e ) x0=w*(®) on A. Hence ¢ ) 0 =w*(®) =
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ZaGW(N) w*(P,) = ZaEW(N) ®, and by equation ([4.14)

.
e ) 50 = H e¥* % 0.
a€EW(N)
In particular, by uniqueness of the gauge, e® (¥) = ZGW(N) e¥+. Since w*(p)
is defined on all U, e® () is monodromy free, i.e.
v v
H e’y = H €% |i_on-
a€EW(N) a€EW(N)

Notice that A — 27 does not contain the support of ¢, Va € (ZQZO)

prim’
therefore

1 Y

H e i _op = H e =1Id.

a€W(N) aEW(N)
O

5. Relation with the wall-crossing formulas in coupled 2d-4d
systems

We are going to show how wall-crossing formulas in coupled 2d-4d systems,
introduced by Gaiotto, Moore and Nietzke in [§], can be interpreted in the
framework we were discussing before. Let us first recall the setting for the
2d-4d WCFs:

e let ' be a lattice, whose elements are denoted by ~;

e define an antisymmetric bilinear form (-,-)p: I' x I' = Z, called the
Dirac pairing;

e let Q: I' = Z be a homomorphism;

e denote by V a finite set of indices, V = {i, j, k, - };

e define a I'-torsor I';, for every i € V. Elements of I'; are denoted by ~;
and the action of Ton I'; is y+ v = v + 3

e define another I'-torsor I';; == I'; — I'; whose elements are formal differ-
ences 7;; = ; —y; up to equivalence, i.e. v;; = (vi +v) — (v; + ) for
every v € I'. If 4 = j, then I';; is identify with I'. The action of I on
['i; is 755 + v = v + 7i;. Usually it is not possible to sum elements of
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I';; and I'y;, for instance v;; + v is well defined only if j = £k and in
this case it is an element of I';;

let Z: ' — C be a homomorphism and define its extension as an
additive map Z: Iljcy I'; = C, such that Z(y+ ;) = Z(v) + Z(v).
In particular, by additivity Z is a map from II; jepI';; to C, namely
Z(vij) = Z(vi) — Z(v;). The map Z is usually called the central charge;

let o(a,b) be a twisting function defined whenever a + b is defined for
a,b e I'UILT; UL, and valued in {41}. Moreover it satisfies the
following conditions:

(i) o(a,b+c)o(b,c) =0o(a,b)o(a+b,c)
(ii) o(a,b) = o(b,a) if both a + b and b+ a are defined
(iii) o(v,79) = (=172 ¥y,9 € T

let X, denote formal variables, for every a € I' U II;I"; U I1; ;1. There
is a notion of associative product:

X X e o(a,b)Xqyp if the sum a + b is defined
“* o otherwise

The previous data fit well in the definition of a pointed groupoid G, as it
is defined in [§]. In particular Ob(G) =V U {0} and Mor(G) = 11, jcon(c)L'ij,
where the torsor I'; is identify with [';, and elements of I' are identify with
II;I';;. The composition of morphism is written as a sum, and the formal
variables X, are elements of the groupoid ring C[G]. In this setting, BPS
rays are defined as

lij == Z(vij)R>0
L= Z(7)R>0

and they are decorated with automorphisms of C[G][t] respectively of type
S and of type K, defined as follows: let X, € C[G], then

(5.2)

S (Xa) = (1= p(yi)tX5,;) Xa (1 + p(vi)t X))

where p: II; jey I'y; — Z is a homomorphism;

(5.3)

K2(X,) = (1 - X,0) ",



Deformations of holomorphic pairs and 2d-4d wall-crossing 1755

where w: I' x I[;epl’; = Z is a homomorphism such that w(y,7) =
Q) (v, p and w(v,a + b) = w(v,a) + w(v,b) for a,b € G.

In particular under the previous assumption, the action of S% and K7
can be explicitly computed on variables X, and X, as follows:

S,l;” : X'Y’ — X'Y’
X if k # j
S X, = Rz
(5.4) Xy, — p(yijt Xy, Xy, ifk=j

KY: Xy — (1—tX,)™ "’“’)X/
K9: X, — (1 —tX,)~<0)

In order to interpret the automorphisms S and K as elements of exp(h)
we are going to introduce their infinitesimal generators. Let Der (C[G]) be
the Lie algebra of the derivations of C[G] and define:

(5.5) 0y, = adXW
where 3., (X,) = (X, X0 — X0 X,,,), for every X, € C[G];
(5.6) 0y = w(7, )Xy

where 9, (X,) = (w(v,a) Xy X,), for every X, € C[G].

Definition 5.1. Let Lr be the C[I']- module generated by 9., and 2, for
every it £AjeV, yel.

For instance a generic element of Lr is given by

SN X0, 33 AV X0,

i,jeV I>1 veT 1>1

where cl(°)Xal e C[I7.
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Lemma 5.2. Let Lp be the C[I'|-module defined above. Then, it is a Lie
m’ngﬂ with the the Lie bracket [, |per(cic)) nduced by Der(C[G])ﬂ.

A proof of this Lemma is in appendix

We can now define the infinitesimal generators of S, and K% as elements
of Lr: we first define

(57) S,y T _:u(’yij)ta%j

then exp(s,,,) = S%,,, indeed

where ad,,, (X,) = X,,, X — XoX,,,. Hence

ad%n (Xa) = _2X')/in&X’Yv:j o th’YinaX’Yij

and since 7;; can not be composed with v;; + a + 7;;, then adf’yij (Xq) =0.
Moreover if a € I" then ad.,, X, = 0, while if a = ~,;, then ad’X, = 0 and we

recover the formulas (5.4)).
Then we define

(5.8) =) %t Xy
1>1

and we claim exp(t,) = K, indeed

2A Lie ring Lr is an abelian group (L, +) with a bilinear form [,]: : L x L — L
such that
1) [, -] is antisymmetric, i.e. [a,b] = —[b, al;

2) [, ] satisfy the Jacobi identity.

3Lr is not a Lie algebra over C[I'] because the bracket induced from Der(C[G]) is
not C[I']—linear.
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1
exp(ty)(X,) = —'Ek(Xa)
1 I vl I Loy, 1
= i t*X Fw (7, ) th X7 Z rt 'w(v,a) X4 Xa
k>0 k! L>1 L>1 1
1
=>4 (Z RSO ( (Z 3t el b + @)l ) XXX, ) ))
k>0 >1 o1l >1 1l
1
= Z k:'( tuxlw ") ( (Z Z t’1+12w (7, @)w(y ’a)X’lszrllXa) ))
k’ZO l,c>1 lz>1l1>1
k
= wiy+a)f (D lt X X,
k >1

20
— exp (—w(y, @) log(1 — £X,)) Xa.

From now on we are going to assume that I' 2 Z? = A. We distinguish
between polynomial in C[I'] and C[A] by writing X, for a variable in C[I']
and 7 as a variable in C[A].

Remark 5.3. The group ring C[I'] is isomorphic to C[A] even if there
two different products: on C[I'] the product is X, X, = o(v,7") Xy =
(=12 X | while the product in C[A] is defined by w7 = ™. In
particular the isomorphism depends on the choice of o.

Let us choose an element e;; € I';; for every i # j € V and set ¢;; =0 € T’
for every ¢ € V. Under this assumption Lt turns out to be generated by
0., for all i # j € V and by 0, for every v € I'. Indeed every ;; € I';; can
be written as e;; + v for some v € I' and 0,,, = 0¢,, 1, = X,0¢,,. Then, we
define an additive map

m: Hiﬂ'ey Fz‘j — T
m(vij) = Yij — €ij

In particular, notice that m(vi) = vii — €;i = vii, hence, since I' = II;I';;,
m(I') =T. )
We now define a C[I']-module in the Lie algebra b:

Definition 5.4. Define L as the C[A]-module generated by L, =
(Eijmm('yij), 0) for every i # j € V and L, := (0,Q(7)w7, ) for every v € T,
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where E;; € gl(r) is an elementary matrix with all zeros and a 1 in position

Lemma 5.5. The C[A]-module L is a Lie ring with respect to the Lie bracket
induced by by (see Definition 1}

The proof of this Lemma is postponed in the appendix (see proof [A.3])
as well as the proof of the following theorem (see proof [A.4]).

Theorem 5.6. Let (Lr, [, percie))) and (f,, [, ]5> be the C[I'|-modules

defined before. Assume w(v,a) = Q(v){a,n,), then there exists a homomor-
phism of C[I']-modules and of Lie rings Y: Lpr — L, which is defined as
follows:

T(X,0,,) = w7 (= Eyyw™0),0) Vi £ j € V, ¥y € T

(5.9) ,
T(Xy0,) =107 (0,200, ) V7,7 €T

Remark 5.7. The assumption on w is compatible with its Definition (5.3)),
indeed by linearity of the pairing (-, ),

w(v,a+0b) =Q(vy)(a+b,ny)
= Q(7)(a; ny) + () (b, ny) = w(7,a) +w(7,b).

Moreover notice that by the assumption on w, Ly turns out to be the C[I']-
module generated by 0., for every i # j € V and by 0, for every primitive
v € T'. Indeed if 4/ is not primitive, then there exists a 7 € I'pyim such that
v = k7. Hence 04y = w(ky, -)ng_l)X,y = CX(-1)y0, where C = kggf/;) In
particular, if 7,7’ are primitive vectors in I', then w(~,7') = Q(v)(7/,n,) =

Q) {v7)p-

Let us now show which is the correspondence between WCFs in coupled
2d-4d systems and scattering diagrams which come from solutions of the
Maurer-Cartan equation for deformations of holomorphic pairs:

1) to every BPS ray I, = Z(a)R>o we associate a ray P, = m(a)Rs if
either p(a) # u(a) or w(a,-) # w(a,-)’. Conversely we associate a line
P, =m(a)R,

4L is not a Lie sub-algebra of
tildeh because the Lie bracket is not C[A]—linear.
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2) to the automorphism S¥%,, we associate an automorphism g € exp(f])
such that log(0s) = Y(sy,,) = (—p(yij)tE;r™4),0);

3) to the automorphism K% we associate an automorphism 0k € exp(f))
such that log(0x) = Y (&) = (0,Q(y) X, $t'w19,.).

Remark 5.8. If m(v;;) = m(yi + ;) then
log(QS) = T(E’Yij) = T(s’)’u)’r(s“ﬂj)'
Analogously if m(v;;) = m(vij) + kv then log(s) = Y(s,, ) = t*Y (s, ).

In the following examples we will show this correspondence in practice:
we consider two examples of WCFs computed in [8] and we construct the
corresponding consistent scattering diagram.

5.0.1. Example 1. Let V= {i,j,k =1} and set v = € I'. Assume
w(7v,7j) = —1 and p(7ys5) = 1, then the wall-crossing formula (equation 2.39
in [§]) is

(5‘10) K:)S#w‘ - S"Y{j Sf;i/j'i"YK;U,
with ¢/ (vi5) = 1, ¢/ (v + i) = —1 and W’ = w.

Since 1/ (7ij) = p(7ij) and w’ = w the initial scattering diagram has two
lines. In addition, since —1 = w(7,vi;) = Q(v)(m(7i5), ny), we can assume
Q(y) =1, m(v;) = (1,0) and v = (0,1). Therefore the initial scattering
diagram is

D = {wg = (mg = m(vyij), Ps,0s5) ,wxg = (mg =7, Pr,0k)}

where logfg = (—tEijmm(%),O) and logfx = (0, Zl>1 %tlm”&%). Then
the wall crossing formula says that the complete Scatter_ing diagram 2., has
one more S-ray, Ps; g = (7 + m(7i;))R>0 and wall-crossing factor log 05 x =
(t2 Eiijer(W), 0) .

We can check that D is consistent (see Definition [2.4]). In particular
we need to prove the following identity:

(5.11) O ofsoblk—1 =0g500s K
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2% Os4 K

-1
%

Figure 6: The complete scattering diagram with K and S rays.

RHS = 5 0 054 x
= exp(log fg) o exp(log s+ k)
= exp(log fsepcn log s+ k)

= exp <log 0s + log 95+K>

LHS =60k 00g 00k

= exp(log 0 epcn log s ecn log O 1)

1
= exp <log s + E ﬁadfoggK log 95>
>1

1
= exp <log 05 + [log O, log 6] + > ﬁadfog 0, log 93>

1>2
= exp (]Og Os — (Ez'j Z %m (vis)+ 7<m('y¢j), n7>, 0)
k>1
L
=+ Z ﬁadlog 05 lOg 95
>2

1
= exp <1Og Os + (tQEijmm(%j)J”, 0) + (Eij 3 %tkﬂmm(mﬂm’ 0)

k>2

L

+) sradiog g, og 95> .
1>2
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We claim that

1
(5.12) < i Z tk+1 m(yii)+ky 0) = Z ﬁadfoggK log 0g
k>2 >2
and we compute it explicitly:
L
(513) Z ﬁadlog Ok log 95

1>2

Z ]‘ktk1+"'+k’lm(k1+“'+kl)7+m(’yij)’0)
k

(=)' m(vi;) LY U Sy A
:—Z I tE;jro™ kl---ktl ‘ot V71,0
’ Ky,

tE o™ () %t’“m’”, 0) :

k>2

5.0.2. Example 2. Finally let us give a example with only S-rays: assume
V =i=1,j =k, then the wall-crossing formula (equation (2.35) in [§]) is

(5.14) i St St = Sk St sk

with v := vi; + vj1 and @/ (vir) = p(vir) — p(vij) (1) Let us further assume
that p(il) = 0, then the associated initial scattering has two lines:

D = {wy = (m1 = m(vi;), Pr = m1 + R, 0g,),
wo = {mg = m(v;r), P» = m2R, 0g,}}
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with
logbls, = — (M(%j)tEijmm(%j), 0)

log 05, = — (M(%’l)tEjzmmm)v 0> :

S1

Sa

Figure 7: The complete scattering diagram with only S rays.

Its completion has one more ray P; = (m; + mg)R>( decorated with the

automorphism 6% such that

log 6 = (M(%’j)M(’)’jl)tQEilmm(W)7O) '

Since the path order product involves matrix commutators, the consis-

tency of ®, can be easily verified.

Remark 5.9. In the latter example we assume pu(7;) =0 in order to
have an initial scattering diagram with only two rays, as in our construc-
tion of solution of Maurer-Cartan equation in Section [l However the
general formula can be computed with the same rules, by adding a wall
w = (—(m1 + ma),logfs = (—[L(’}/Z‘l)tQEilm(’}/il)) ,0) to the initial scattering

diagram.



Deformations of holomorphic pairs and 2d-4d wall-crossing 1763

Appendix A. Computations

We collect some proofs.

Lemma A.1 (Lemma - (6, [, ]~> 1s a Lie algebra, where the bracket
[, ]~ is defined by:

[(A, D)™, (A, 0n) 2™ |~
= ([A, Az 4 AY(m! n) 2™ — A(m, )2 (270, 27 O]y

Proof. First of all the the bracket is antisymmetric:

[(A,80)2™, (A, 0)2™ ]

= ([A, A)gez™™ + A'(m! n) 2™ — A(m, )2 20,0, 2™ Only)
(—[A, Algz™™ 4+ A (m/ ) 2™ ™ — Alm,n/) 2™ 2™ O, 2™ On])

AL Alg2™ ™ 4 Alm, /)2 — A ) 2™ 2™ B, 2™ O ]).-

Moreover the Jacobi identity is satisfied:

[[(Aham)zmla (A2,0n,)2"]~, (A3, Opy) ]
= [([ALAQ]Q[ + Ax(mg,n1) — Ar(my, n2> 9,
(A3, 0n,)2™ ]
<[ [A1, Ao]gr + Aa(ma, ny) — A1<m1,n2>),A3]g[
+ Az(ma,n1)(ms, n2) — Az{mi,n2)(ms, n1)+
— ([A1, A2] + Ax(ma,n1) — A1 (ma, na))(my + ma, ng),

(m1 4+ mao + mg)ﬂ)zmﬁ'mﬁm?’

mi+ma
Mi2,N1)N2— <m17n2>n1)z ’

= ([1A1, Aslqr, Aslgt + [Az, Aslgi(ma, 1) = (ma, na)[As, Aglgr+
— [A1, Ao gi{mi + ma, n3) + Ag(ma, n1)(ms, na)+
— Az(mi,no)(ms,n1) — Aa(ma, n1)(my + meg,n3)+

+ Ay {my,ng)(my + ma,ng), (my +mq + Tn?,)l)?«‘7nl+sz”n3
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Then by cyclic permutation we have
H(AQ’ 8n2)zm27 (A3’ 8n3)zm3]~7 (A17 am)zml] ~
= ([[AQ,A:z]g[,AlH + [A3, A1]gi(ms3, n2) — (ma,n3)[A2, A1]gi+

— [AQ,A3]9[<m3 + mz,m) + Al(mg,n2><m1, n3>+
— Ay (ma,n3)(m1, na) — Az(ms, no)(ma +ms,ny)+
+ A2<m2, n3><m2 + ms, n1>, (m1 + mo + mg)J‘>Zm1+m2+m3

and also

[[(Ala aﬂg)zm3a (Ala aﬂl)zml}'\w (AQ, anz)ZmQ] =

~

= ([[ASaAl]ghAZH + [A1, Ag(my,ng) — (m3,n1)[Asz, Ag]gi+
— [As, A1]gi(m1 4+ ms, n2) + Aa(my, ng)(me, ni)+

— Ag(ma, n1)(ma, n3) — A1(ma,n3)(ms +mi, ng)+

+ Az{ms,n1)(ms + my,na), (my +mso + mg)l>zm1+m2+m3

Since Jacobi identity holds for [-,-]gr and [-,-]y, we are left to check
that the remaining terms sum to zero. Indeed the coefficient of
[Ag, Azgr is (n1,ma) — (n1,ma + m3) — (n1,m3), and it is zero. By per-
muting the indexes, the same hold true for the coefficients in front
of the other bracket [Ay, A3l and [Ag, Aj]g. In addition the coef-
ficient of As is (mg,ni)(ms,ne) — (myi,n2)(ms,n1) — (ms, na)(me,ny) —
(m3,n2)(ms,n1) + (m3, n1)(my,n2) + (ms,n1)(ms, n2) and it is zero. By per-
muting the indexes the same holds true for the coefficient in front of A,
and AQ. O

Lemma A.2 (Lemma [5.2)). Let Lr be the C[I'|—module defined above.
Then, it is a Lie ring with the the Lie bracket |-, |pe(cig)) nduced by
Der(C[G)).

Proof. 1t is enough to prove that Lr is a Lie sub-algebra of Der(C[G]), i.e. it
is closed under |-, ']Der((C[G])' By C-linearity it is enough to prove the following
claims:

(1) [X,0,,,,X50,,,] € Lr: indeed
I:X,YD/Yij ’ XV'DWM] = Xﬁ/ad%‘j (X’/yad’Ykz) - X’Y'ad’YM (Xﬁ/ad%‘j)
= X, Xyad,, (ad,,,) — X\ X,ad,,, (ad,,)
= 0 (Yijs V1) Xy Xyyady, 1y — (Yt Yig) Xy Xradey 45
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(2) [X,04,,,X,0y/] € Lr:indeed for every X, € C[G]

[Xva%j ) Xv’av”]Xa
= X0, (X aw”X ) — Xy 0y (Xva%jX )
=X a%( yw(y @) Xy Xq) = X0 (X3 Xy, Xa — Xy X0 X))
w(y",a) Xy (X, Xy Xy Xo — Xy Xy Xo X, )
-X /w( Y+ i+ a) X X X, Xa
+ Xpw(y' v+ a4 i) Xy Xy Xo X,
= (w(v" @) —w(y", v +7i5) —w(v",0)) X5 Xy X X, X
— (W, @) —w(",a) = w7 +7if)) Xy Xy Xy X X,
= _w(’Y”7 v+ ’Yz‘j)Xva’XW”O%j (Xa);

(3) [X404, Xyv0yw] € Liindeed for every X, € C[G]

(X505, Xyr0ym] Xa
= X0, (Xypw(v", )X mXa) = Xy vy (W', a) Xy Xa)
=w(", a)w(y,Y" + 7"+ a) Xy Xy X Xy X+
—w(,a)w" v+ + a) Xy Xy X, X Xy
= (WO a) (W, a) + (' A" +1"))) Xy Xy Xy Xy X+
— (W, @) (W™ @) + w7+ ")) Xy Xoy X Xy X
= w(y 7" ") Xy X X0 (Xa) = w(3" 5 4 9) X X X0 (Xa)-

g

Lemma A.3 (Lemma [5.5). _The C[I']—module L is a Lie ring with respect
to the Lie bracket induced by b.

Proof. As we have already comment in the proof of Lemma since the

bracket is induced by the Lie bracket [-, ] we are left to prove that L is
closed under [, ] In particular by C- hnearlty it is enough to show the
following;:

(1) [ (Eijmm('”f),0> w7 (Eklmm(%l)ﬁ)] eL
(2) [r0? (Eijmmm),o) Y (0, Q7)1 ,)] el
(3) [ (O,Q(v)mw'tanw) 107" (o Q" aw,)] cL
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and they are explicitly computed below:

(1) 17 (Eyitro™0),0) 7" ((Eptro™ 04, 0))]

= (w0 By, Bulguo™ om0, 0)
(2) [r0? (E,-jmm(’“j), 0) 0" (0, Q(fy)m“anw,)]

— <_EijQ(fy’)<fy + m(i), ny ™) 107107 0 0)
(3) 7 (0,27 0y, ) 107" (0,27 )07 s )]

= (0, Q)Y ) " v "

' ((7// + 7/”7 TLy)@nv,,, - <7 + f)/a n’y’”>8n7/) )

Theorem A.4 (Theorem [5.6). Let (Lr, [, |per(cig))) and (]:, [-,-]6) be

the C[I'|-modules defined before. Assume w(y,a) = Q(vy){a,n,), then there
exists a homomorphism of C[I'|-modules and of Lie rings T : Ly — L, which
is defined as follows:

TR = (Bigro™0,0) i # j € V. vy € T
T(X’YID’Y) = my (07 Q(’Y)mfyana,) ,V’)/,’Y € I

Proof. We have to prove that T preserves the Lie-bracket, i.e. that for every
li,l € L, then Y ([ly, ZQ]LF) = [Y(l1), Y(l2)]j - In particular, by C-linearity it
is enough to prove the following identities:

(DT ([XVD%_jvx’Y’DWkZ]LF) = [T(X’Yo'm)a T(XW/D%)]f‘
(Q)T ([X’YD’YU’X’Y’D’Y”]LF> = [T(X’YD’Y’)v T(X’Y”D’Ykz)]i
(3)Y (1305, Xy, ) = [0(X0), T (X0
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The identity (1) is proved below:

LHS =17 (X”/XW/U(%]’; ’Ykl)adwj—i—wz - XWX“//U(’YM,’Yij)ad%z-&-w)
— 'Y (EijEklmm(’Yij)mm(’Ykz) _ EklEijmm(’Ykl)mm(’m)’ ())
- (m”t’o”/ [Eijmm(%), Epro™)], 0)

RHS = | (17 Byjo™0),0) , (w7 Egro™ (), oﬂ6

[
= (mvmv’ [Eijmm(%j),Emmm(”")]g[(n),0>
(

7Y [El-jmm(%‘j), Epro™s)], 0) .
Then the second identity can be proved as follows:

LHS =7 (Ld(’}’//,"}/ + ’Yij)Xfy-i-'y/—‘,-q/”a'yU)

= —w(y", 7 + i) w07 (B 0%), 0)
RHS = [ (w7 Bywo™),0) , (0,107 2+ )"0, )|

= — (W B Q) (m(g) +7,m w05 0)
Finally the third identity is proved below:

LHS = T (w(v, 7" + ") Xy Xy Xy v — w(y" v + ") Xy Xy X01)
_ <07W(’Y/7’Y” +7”’)m7m7lm””Q(y"’)mwﬁnw,,,
— w7y A 1 w0y 7 D, )

RHS = [(O, m”Q(v’)mV'&H,) , (O, m”"Q(y”’)m”'“&nw,,)]

(0’ Q(”)/)Q(’Y”/) [m”m”'&nw, 7 o 1" 8,%,,,} 6)
= <0, QY)Y Y 107w

. (<")/” + ")/”/, n,y/>8n7,,, — <"}/ =+ ’)’/7 n’Y”/>a77w’)) .



1768 Veronica Fantini

References

[1] S. Cecotti and C. Vafa, On classification of N =2 supersymmetric
theories, Comm. Math. Phys. 158 (1993), no. 3, 569-644.

[2] K. Chan, N. Conan Leung, and Z. N. Ma, Scattering diagrams from
asymptotic analysis on Maurer-Cartan equations, arXiv:1807.08145,
(2017).

[3] ———, Scattering diagrams from asymptotic analysis on Maurer-Cartan
equations, arXiv:1807.08145v1, (2017).

[4] K. Chan and Y.-H. Suen, A differential-geometric approach to deforma-
tions of pairs (X, E), Complex Manifolds 3 (2016), no. 1, 16-40.

[5] N. Conan Leung, Z. N. Ma, and M. B. Young, Refined Scattering dia-
grams and theta functioms from asymptotic analysis of Maurer-Cartan
equations, arXiv:1807.08145, (2019).

[6] B. Dubrovin, Geometry of 2D topological field theories, in M. Francaviglia
and S.Greco, editors, Integrable Systems and Quantum Groups, Vol. 1620
of Lecture Notes in Mathematics, 128-348, Springer, Berlin, Montecatini
Terme (1993).

[7] D. Gaiotto, G. W. Moore, and A. Neitzke, Four dimensional Wall-
Crrossing via three dimensional field theory, Commun. Math. Phys. (2010),
no. 299, 163-224.

8]

, Wall-Crossing in coupled 2d-4d systems, J. High Energy Phys.
(2012), no. 12, 082, front matter + 166.

[9] M. Gross, R. Pandharipande, and B. Siebert, The tropical vertex, Duke
Math. J. 153 (2010), no. 2, 297-362.

[10] G. Kerr and Y. Soibelman, On 2d-4d motivic Wall-Crossing Formulas,
arXiv:1807.08145, (2017).

[11] M. Kontsevich and Y. Soibelman, Affine structures and non-Archimedean
analytic spaces, in The unity of mathematics, Vol. 244 of Progr. Math.,
321-385, Birkhduser Boston, Boston, MA (2006).

[12] , Stability structures, motivic Donaldson-Thomas invariants and

cluster transformations, arXiv:0811.2435, (2008).

[13] M. Manetti, Differential graded Lie algebras and formal deformation
theory, in Algebraic geometry-Seattle 2005. Part 2, Vol. 80 of Proc.
Sympos. Pure Math., 785-810, Amer. Math. Soc., Providence, RI (2009).



Deformations of holomorphic pairs and 2d-4d wall-crossing 1769

SISSA TRIESTE, VIA BONOMEA 265, 34136 TRIESTE, ITALY
E-mail address: vfantini@sissa.it



	Introduction
	Background
	Deformations associated to a single wall diagram
	Scattering diagrams from solutions of Maurer-Cartan
	Relation with the wall-crossing formulas in coupled 2d-4d systems
	Appendix Computations
	References

