
✐

✐

“5-Huang” — 2023/6/30 — 18:33 — page 1771 — #1
✐

✐

✐

✐

✐

✐

ADV. THEOR. MATH. PHYS.
Volume 26, Number 6, 1771–1785, 2022

Convergence of eigenstate expectation

values with system size

Yichen Huang

Understanding the asymptotic behavior of physical quantities in
the thermodynamic limit is a fundamental problem in statistical
mechanics. In this paper, we study how fast the eigenstate expec-
tation values of a local operator converge to a smooth function of
energy density as the system size diverges. In translation-invariant
quantum lattice systems in any spatial dimension, we prove that
for all but a measure zero set of local operators, the deviations of
finite-size eigenstate expectation values from the aforementioned
smooth function are lower bounded by 1/O(N), where N is the
system size. The lower bound holds regardless of the integrability
or chaoticity of the model, and is saturated in systems satisfying
the eigenstate thermalization hypothesis.

1. Introduction

Many predictions of statistical mechanics require taking the thermodynamic
limit, and such results are usually exact or universal only in this limit. There-
fore, it is important and fundamental to understand how physical quantities
approach their values in the thermodynamic limit as the system size diverges.

In this paper, we study the eigenstate expectation values (EEV) of local
operators in translation-invariant (TI) quantum lattice systems. TI allows
us to define an infinite sequence of Hamiltonians, one for each system size,
from a fixed local term (in the Hamiltonian). However, the thermodynamic
limit of EEV is not yet well defined. Since the number of eigenstates grows
exponentially with the system size, it is not immediately clear how to nat-
urally define a sequence of eigenstates (one for each system size) in which
the convergence of local expectation values is to be studied.

The eigenstate thermalization hypothesis (ETH) [1–5] postulates that in
the thermodynamic limit, the EEV of a local operator converges to a smooth
function of energy density. If this is true and such a function is known, we
can compute the deviations of finite-size EEV from the values of the function
at the same energy density, and analyze how the deviations vanish as the
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system size diverges. If such a function is unknown (or even the ETH is
false), we need to search the space of smooth functions and find the optimal
“target function” such that the deviations of finite-size EEV from the target
function decay as fast as possible in the thermodynamic limit.

In TI systems in any spatial dimension, we prove that for all but a mea-
sure zero set of local operators, the deviations of finite-size EEV from the
best target function (which depends on the local operator under considera-
tion) are lower bounded by 1/O(N), where N is the system size. Note that
this result does not assume the ETH. If in the thermodynamic limit the
EEV of a local operator does not converge to a smooth function of energy
density, then the deviations from any target function do not vanish and the
lower bound is trivially valid. In systems satisfying the ETH, we prove that
the bound is saturated.

The rest of this paper is organized as follows. Section 2 sets the stage. In
Section 3, we rigorously define the convergence rate of EEV in the thermo-
dynamic limit. Section 4 presents the main results, whose relationship with
the ETH is discussed in Section 5. In particular, we explain why our results
do not contradict the conventional wisdom that the fluctuations of EEV in
chaotic systems are exponentially small in the system size [6, 7]. Section 6
concludes the paper. The main text of this paper should be easy to read, for
most of the technical details are deferred to Appendices A, B.

2. Preliminaries

Throughout this paper, standard asymptotic notation is used extensively.
Let f, g : R+ → R+ be two functions. One writes f(x) = O(g(x)) if and only
if there exist constants M,x0 > 0 such that f(x) ≤Mg(x) for all x > x0;
f(x) = Ω(g(x)) if and only if there exist constants M,x0 > 0 such that
f(x) ≥Mg(x) for all x > x0; f(x) = Θ(g(x)) if and only if there exist con-
stants M1,M2, x0 > 0 such that M1g(x) ≤ f(x) ≤M2g(x) for all x > x0;
f(x) = o(g(x)) if and only if for any constant M > 0 there exists a con-
stant x0 > 0 such that f(x) < Mg(x) for all x > x0; f(x) = ω(g(x)) if and
only if for any constant M > 0 there exists a constant x0 > 0 such that
f(x) > Mg(x) for all x > x0.

For notational simplicity and without loss of generality, we present our
results in one dimension. (It is easy to see that the same results hold in higher
spatial dimensions.) Consider a chain of N spins so that the dimension of the
Hilbert space is d = dNloc, where dloc = Θ(1) is the local dimension of each
spin. The system is governed by a TI k-local Hamiltonian H. TI implies
periodic boundary conditions, and “k-local” means that the support of each
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term inH is contained in a consecutive region of size k = Θ(1). (For example,
a term acting nontrivially only on the first and third spins is 3- rather than
2-local.) We say that a term is exactly k-local if and only if it is k-local but
not (k − 1)-local. Let T be the (unitary) lattice translation operator, which
acts on the computational basis states as

(2.1) T(|x1⟩ ⊗ |x2⟩ ⊗ · · · ⊗ |xN ⟩) = |x2⟩ ⊗ |x3⟩ ⊗ · · · ⊗ |xN ⟩ ⊗ |x1⟩

with xl ∈ {0, 1, . . . , dloc − 1} for l = 1, 2, . . . , N . We write the Hamiltonian
as

(2.2) H =

N−1
∑

l=0

Hl, Hl = T
−lhTl,

where h is a Hermitian operator acting on the first k spins. Assume without
loss of generality that trh = 0 (traceless) and ∥h∥ = 1 (unit operator norm).

Lemma 2.1. For any traceless k′-local operator A, both tr(HA)/d and
tr(H2A)/d are N -independent constants for N ≥ k + k′ − 1 and N ≥ 2k +
k′ − 2, respectively. Furthermore, tr(Hh)/d is an N -independent positive
constant for N ≥ 2k − 1.

Proof. Let supp · · · be the support of a local operator. Since trHl = 0 for
all l and trA = 0,

1

d
tr(HA) =

1

d

∑

suppHl∩suppA ̸=∅
tr(HlA),(2.3)

1

d
tr(H2A) =

1

d

∑

((suppHl1
∩suppA ̸=∅)

∧(suppHl2
∩(suppHl1

∪suppA) ̸=∅))
∨((suppHl2

∩suppA ̸=∅)
∧(suppHl1

∩(suppHl2
∪suppA) ̸=∅))

tr(Hl1Hl2A).(2.4)

It is easy to see that the right-hand sides of Eqs. (2.3), (2.4) do not de-
pend on N for N ≥ k + k′ − 1 and N ≥ 2k + k′ − 2, respectively. Due to
TI, tr(Hh)/d = tr(H2)/(Nd) > 0. □

Since we are interested in the thermodynamic limit, hereafter we only
consider sufficiently large N such that conditions like N ≥ 2k + k′ − 2 are
satisfied.
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3. Definitions

Let {|j⟩}dj=1 be a complete set of TI eigenstates of H with corresponding
energies {Ej}. Note that both |j⟩ and Ej depend on the system size and
should carry N as a subscript, which is omitted for notational simplicity.

Definition 1 (Convergence rate of eigenstate expectation values).
For a traceless local operator A with ∥A∥ = 1, let f : [−1, 1] → {z ∈ C : |z| ≤
1} be an N -independent function and define

rf (N) =

√

1

d

∑

j

∣

∣⟨j|A|j⟩ − f(Ej/N)
∣

∣

2
,(3.1)

Rf (N) = sup
n≥N

rf (n) ≥ rf (N),(3.2)

where f is smooth in the sense of having a Taylor expansion to second order
around x = 0:

(3.3) f(x) = f(0) + f ′(0)x+ f ′′(0)x2/2 +O(x3).

If there exists an optimal f̂ such that Rf̂ (N) = O(Rf (N)) for any (other)
smooth function f , then the decay of Rf̂ (N) gives the (average) convergence
rate of the EEV of A in the thermodynamic limit N → +∞.

Note that rf (N), Rf (N), and f̂ (if exists) all depend on the local opera-
tor under consideration and should carry A as a subscript, which is omitted
for notational simplicity.

Example 1. In the special case where A = h is a term in the Hamiltonian,
we trivially have f̂(x) = x and Rf̂ (N) = 0 for any N .

For any traceless local operator A in any TI system, the weak ETH
[8–10] (Lemma 3.1) implies that Rf(x)=0(N) = O(1/

√
N). If an optimal f̂

exists, then we obtain an upper bound Rf̂ (N) = O(1/
√
N).

Lemma 3.1 ([11, 12]). For any traceless local operator A with bounded
norm ∥A∥ = O(1),

(3.4)
1

d

∑

j

∣

∣⟨j|A|j⟩
∣

∣

2
= O(1/N).
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Proof. We include a proof for completeness. Let

(3.5) A :=
1

N

N−1
∑

l=0

T
−lATl

so that ⟨j|A|j⟩ = ⟨j|A|j⟩ due to TI. Hence,

∑

j

∣

∣⟨j|A|j⟩
∣

∣

2
=

∑

j

⟨j|A†|j⟩⟨j|A|j⟩ ≤
∑

j,k

⟨j|A†|k⟩⟨k|A|j⟩(3.6)

=
∑

j

⟨j|A†
A|j⟩ = tr(A†

A).

Expanding A in the generalized Pauli basis, we count the number of terms
that do not vanish upon taking the trace in the expansion of A†A. There
are O(N) such terms, the trace of each of which is O(d/N2). Therefore,
tr(A†A)/d = O(1/N). □

4. Results

We prove the following lemma in Appendix A.

Lemma 4.1. For a traceless local operator A with ∥A∥ = 1, if there exist a
smooth function f and a strictly increasing infinite sequence {Ni} of positive
integers such that rf (N) = o(1/N) for N ∈ {Ni}, then

(4.1) tr(Hh) tr(H2A)/d2 = tr(H2h) tr(HA)/d2.

Note that both sides of this equation are N -independent constants (Lemma
2.1).

We need to define a measure on the set of local operators or parameter-
ize a local operator by real numbers. TI allows us to define canonical local
operators, which not only are representatives of all local operators but also
form a vector space. Expanding a traceless local operator A in the gener-
alized Pauli basis, we say that A is canonical if and only if all Pauli string
operators (with non-zero coefficients) in the expansion start from the first
site. For any A, there is a unique canonical traceless local operator B, called
the canonical form of A, such that ⟨ψ|A|ψ⟩ = ⟨ψ|B|ψ⟩ for any TI state |ψ⟩.
For example, in a spin-1/2 chain σz2σ

z
3 + σx2 + σx3 is not canonical, and its

canonical form is σz1σ
z
2 + 2σx1 , where σ

x
l , σ

z
l are the Pauli matrices at site



✐

✐

“5-Huang” — 2023/6/30 — 18:33 — page 1776 — #6
✐

✐

✐

✐

✐

✐

1776 Yichen Huang

l. With TI, we may without loss of generality only consider the EEV of
canonical traceless local operators.

The expansion of a general canonical traceless k′-local operator in the
generalized Pauli basis has (d2loc − 1) exactly 1-local terms and (d2loc −
1)2d2κ−4

loc exactly κ-local terms for κ = 2, 3, . . . , k′. The coefficients of the
expansion parameterize a canonical traceless k′-local operator. Thus, we
have defined a parameter space S of dimension

(4.2) d2loc − 1 +

k′

∑

κ=2

(d2loc − 1)2d2κ−4
loc = (d2loc − 1)d2k

′−2
loc

such that points in S are in one-to-one correspondence with canonical trace-
less k′-local operators.

Theorem 4.2. We say that a canonical traceless local operator A is
“rapidly converging” if there exists a smooth function f (which depends on
A) such that

(4.3) rf (N) = 1/O(N)

does not hold. The set of rapidly converging canonical traceless local opera-
tors has measure zero.

Proof. It suffices to prove that the set of canonical traceless local operators
that satisfy Eq. (4.1) has measure zero. Since both sides of Eq. (4.1) are
linear functions of A, it further suffices to find a particular A such that Eq.
(4.1) does not hold.

Assume without loss of generality that h is canonical and exactly k-local.
We write H2 = G1 +G2 +G3, where

G1 := 2

N−1
∑

l=0

HlHl+2k−1,(4.4)

G2 :=

N−1
∑

l=0

2k−2
∑

∆=2−2k

HlHl+∆,(4.5)

G3 :=

N−1
∑

l=0

N−2k
∑

∆=2k

HlHl+∆.(4.6)
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Expanding G1 in the generalized Pauli basis, there is an exactly (3k − 1)-
local term (coming from H0H2k−1) whose support contains spins at posi-
tions 1, k, 2k, 3k − 1. Define A as this term so that tr(G1A) ̸= 0. Moreover,
tr(G2A) = 0 because all terms in G2 are (3k − 2)-local. The support of each
term in G3 has a gap of ≥ k spins. The support of A does not have such a
gap. Hence, tr(G3A) = 0, and

(4.7) tr(H2A) = tr(G1A) + tr(G2A) + tr(G3A) ̸= 0.

Since tr(Hh) > 0 (Lemma 2.1), the left-hand side of Eq. (4.1) is non-zero.
We complete the proof by noting that tr(HA) = 0 because all terms in H
are k-local. □

Remark. If, instead of Eq. (3.1), rf (N) is defined as

(4.8) rf (N) =
1

d

∑

j

∣

∣⟨j|A|j⟩ − f(Ej/N)
∣

∣,

then the statement of Theorem 4.2 remains valid upon changing Eq. (4.3) to
rf (N) = 1/O(N logN). This can be proved in almost the same way. The dif-
ference comes from the observation that “O(Nrf (N))” in Eq. (A.11) should
be modified to Λ2rf (N).

5. Eigenstate thermalization

The (strong) ETH postulates that the diagonal matrix elements of a local
operator A in the energy eigenbasis take the form [6]

(5.1) ⟨j|A|j⟩ = g(Ej/N) + e−S(Ej)/2δj ,

where g(· · · ) is a smooth function of its argument, S(E) is the thermo-
dynamic entropy (logarithm of the density of states) at energy E, and
δj = O(1) varies erratically with j.

Since the thermodynamic entropy is extensive, by comparing Eqs. (3.1),
(5.1) one might argue that Rg(N) = e−Θ(N), which contradicts Theorem 4.2.
However, this argument is problematic because g may depend on N . Indeed,
g should carry N as a subscript, and Theorem 4.2 states that for generic
local operators, gN cannot converge too fast in the thermodynamic limit
N → +∞.

Interestingly, the ETH for eigenstates in the middle of the energy spec-
trum implies that the bound (4.3) is tight.
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Assumption 1 (eigenstate thermalization hypothesis in the middle
of the spectrum). Let ϵ be an arbitrarily small positive constant. For
any traceless local operator A with ∥A∥ = 1, there is a sequence of functions
{gN : [−ϵ, ϵ] → {z ∈ C : |z| ≤ 1}} (one for each system size N) such that

(5.2)
∣

∣⟨j|A|j⟩ − gN (Ej/N)
∣

∣ ≤ 1/poly(N)

for all j with |Ej | ≤ Nϵ, where poly(N) denotes a polynomial of sufficiently
high degree in N . We assume that each gN (x) is smooth in the sense of
having a Taylor expansion to second order around x = 0:

(5.3) gN (x) = gN (0) + g′N (0)x+ g′′N (0)x2/2 +O(x3), ∀x ∈ [−ϵ, ϵ].

While the ETH ansatz (5.1) implies that the right-hand side of inequality
(5.2) can be improved to e−Ω(N), a (much weaker) inverse polynomial upper
bound suffices for our purposes.

Theorem 5.1. For a traceless local operator A with ∥A∥ = 1, let

(5.4) f(x) := tr(HA)x/ tr(Hh).

Assumption 1 implies that

(5.5) Rf (N) = O(1/N).

6. Conclusion

In summary, we have proposed a definition of the convergence rate of EEV
in the thermodynamic limit (Definition 1). The weak ETH (Lemma 3.1)
implies that Rf(x)=0(N) = O(1/

√
N). If an optimal f̂ exists, then we obtain

an upper bound Rf̂ (N) = O(1/
√
N). Although Rf̂ (N) can be identically

zero for certain local operators (Example 1), we have proved that for almost
every local operator, the lower bound Rf (N) ≥ rf (N) = Ω(1/N) holds for

any smooth function f including the optimal f̂ (Theorem 4.2). These results
apply to all TI systems in any spatial dimension, regardless of the integra-
bility or chaoticity of the model. In systems satisfying the (strong) ETH
(Assumption 1), we have proved that the aforementioned lower bound is
tight (Theorem 5.1).

An open question is whether the gap between our lower and upper
bounds on Rf̂ (N) can be reduced or even closed without assuming the
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ETH (5.2). To this end, it would be instructive to study Rf̂ (N) in (inte-
grable) free-fermion systems, which can be diagonalized analytically and
efficiently simulated numerically. We conjecture that in any TI system,
Rf̂ (N) = Θ(1/N) for almost every local operator.
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Appendix A. Proof of Lemma 4.1

Lemma A.1 (moments [13]). For any integer m ≥ 0,

(A.1)
1

d

∑

j

E2m
j =

1

d
tr(H2m) = Θ(Nm).

Proof. Expanding H in the generalized Pauli basis, we count the number of
terms that do not vanish upon taking the trace in the expansion of H2m.
There are Θ(Nm) such terms, the trace of each of which is Θ(d). Therefore,
we obtain Eq. (A.1). □

This lemma implies that

(A.2)
1

d

∑

j

|Ej |m
∣

∣⟨j|A|j⟩ − f(Ej/N)
∣

∣

≤
√

1

d

∑

j

E2m
j × 1

d

∑

j

∣

∣⟨j|A|j⟩ − f(Ej/N)
∣

∣

2
= O

(

Nm/2rf (N)
)

.

Almost all eigenstates have vanishing energy density:

Lemma A.2 (concentration of eigenvalues [14]). For any ϵ > 0,

(A.3)
∣

∣{j : |Ej | ≥ Nϵ}
∣

∣/d = e−Ω(Nϵ2).

This lemma allows us to upper bound the total contribution of all eigen-
states away from the middle of the spectrum. Let C = O(1) be a sufficiently
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large constant such that

(A.4)
1

d

∑

j:|Ej |≥Λ

|Ej |m ≤ q, Λ := C
√

N logN, q := 1/poly(N)

for m = 0, 1, 2, where poly(N) denotes a polynomial of sufficiently high de-
gree in N .

Lemmas A.1, A.2, and inequality (A.4) are related to the fact that Ej ’s
approach a normal distribution in the thermodynamic limit N → +∞ [11,
15]. Indeed, |Ej | = Θ(

√
N) for almost all j.

For notational simplicity, let x
δ
= y denote |x− y| ≤ δ.

Lemma A.3. For a smooth function f , if there exists a strictly increasing
infinite sequence {Ni} of positive integers such that rf (N) = o(1) for N ∈
{Ni}, then

(A.5) f(0) = 0.

Proof.

0 =
1

d
trA =

1

d

∑

j

⟨j|A|j⟩ O(q)
=

1

d

∑

j:|Ej |<Λ

⟨j|A|j⟩(A.6)

rf (N)
=

1

d

∑

j:|Ej |<Λ

f(Ej/N)

O(Λ3/N3)
=

1

d

∑

j:|Ej |<Λ

f(0) +
f ′(0)Ej

N
+
f ′′(0)E2

j

2N2

O(q)
=

1

d

∑

j

f(0) +
f ′(0)Ej

N
+
f ′′(0)E2

j

2N2
= f(0) +

f ′′(0) tr(H2)

2N2d

= f(0) + f ′′(0) tr(Hh)/(2Nd),

where we used inequalities (A.4), (A.2), and the Taylor expansion

(A.7) f(Ej/N) = f(0) + f ′(0)Ej/N + f ′′(0)E2
j /(2N

2) +O(E3
j /N

3)

in the steps marked with “O(q),” “rf (N),” and “O(Λ3/N3),” respectively.
Since rf (N) = o(1) for N ∈ {Ni}, Eq. (A.5) follows by letting N = Ni with
i→ +∞. □
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Lemma A.4. For a smooth function f , if there exists a strictly increasing
infinite sequence {Ni} of positive integers such that rf (N) = o(1/

√
N) for

N ∈ {Ni}, then

(A.8) f ′(0) = tr(HA)/ tr(Hh).

Note that the right-hand side of this equation is an N -independent constant
(Lemma 2.1).

Proof.

1

d
tr(HA) =

1

d

∑

j

Ej⟨j|A|j⟩
O(q)
=

1

d

∑

j:|Ej |<Λ

Ej⟨j|A|j⟩(A.9)

O(
√
Nrf (N))
=

1

d

∑

j:|Ej |<Λ

Ejf(Ej/N)
O(Λ3/N2)

=
1

d

∑

j:|Ej |<Λ

f ′(0)E2
j

N

O(q)
=

1

d

∑

j

f ′(0)E2
j

N
=
f ′(0) tr(H2)

Nd
=
f ′(0) tr(Hh)

d
,

where we used inequalities (A.4), (A.2), and the Taylor expansion (A.7) in
the steps marked with “O(q),” “O(

√
Nrf (N)),” and “O(Λ3/N2),” respec-

tively. Since
√
Nrf (N) = o(1) for N ∈ {Ni}, Eq. (A.8) follows by letting

N = Ni with i→ +∞. □

We are ready to prove Lemma 4.1. Recalling Eq. (A.6) and using
Lemma 2.1,

(A.10) rf (N) +O(q) +O(Λ3/N3) ≥ |f ′′(0)| tr(Hh)
2Nd

=⇒ f ′′(0) = 0

if rf (N) = o(1/N) for N ∈ {Ni}. Then,

1

d
tr(H2A) =

1

d

∑

j

E2
j ⟨j|A|j⟩

O(q)
=

1

d

∑

j:|Ej |<Λ

E2
j ⟨j|A|j⟩(A.11)

O(Nrf (N))
=

1

d

∑

j:|Ej |<Λ

E2
j f(Ej/N)

O(Λ5/N3)
=

1

d

∑

j:|Ej |<Λ

f ′(0)E3
j

N

O(q)
=

1

d

∑

j

f ′(0)E3
j

N
=
f ′(0) tr(H3)

Nd
=

tr(HA) tr(H2h)

d tr(Hh)
,
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where we used inequalities (A.4), (A.2), and Eq. (A.7) in the steps marked
with “O(q)”, “O(Nrf (N))”, and “O(Λ5/N3),” respectively. SinceNrf (N) =
o(1) for N ∈ {Ni}, Eq. (4.1) follows by letting N = Ni with i→ +∞.

Appendix B. Proof of Theorem 5.1

Lemma B.1. For a traceless local operator A with ∥A∥ = 1, Assumption 1
implies that

gN (0) = O(1/N),(B.1)

g′N (0) = tr(HA)/ tr(Hh) +O(1/N).(B.2)

Note that the first term on the right-hand side of Eq. (B.2) is an N -
independent constant (Lemma 2.1).

Proof of Eq. (B.1). We perform a calculation similar to Eq. (A.6):

0 =
1

d
trA =

1

d

∑

j

⟨j|A|j⟩ O(q)
=

1

d

∑

j:|Ej |<Λ

⟨j|A|j⟩(B.3)

1/poly(N)
=

1

d

∑

j:|Ej |<Λ

gN (Ej/N) ≈ 1

d

∑

j:|Ej |<Λ

gN (0) +
g′N (0)Ej

N

O(q)
=

1

d

∑

j

gN (0) +
g′N (0)Ej

N
= gN (0),

where we used inequality (A.4), the ETH (5.2), and the Taylor expansion

(B.4) gN (Ej/N) = gN (0) + g′N (0)Ej/N + g′′N (0)E2
j /(2N

2) +O(E3
j /N

3)

in the steps marked with “O(q),” “1/poly(N),” and “≈,” respectively. The
approximation error in the “≈” step is

1

d

∑

j:|Ej |<Λ

O(E2
j /N

2) ≤ 1

d

∑

j

O(E2
j /N

2)(B.5)

=
O(tr(H2))

N2d
=
O(tr(Hh))

Nd
= O(1/N).

We obtain Eq. (B.1) by combining Eq. (B.3) and inequality (B.5). □
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Proof of Eq. (B.2). We perform a calculation similar to Eq. (A.9):

1

d
tr(HA) =

1

d

∑

j

Ej⟨j|A|j⟩
O(q)
=

1

d

∑

j:|Ej |<Λ

Ej⟨j|A|j⟩(B.6)

1/poly(N)
=

1

d

∑

j:|Ej |<Λ

EjgN (Ej/N)

≈ 1

d

∑

j:|Ej |<Λ

EjgN (0) +
g′N (0)E2

j

N
+
g′′N (0)E3

j

2N2

O(q)
=

1

d

∑

j

EjgN (0) +
g′N (0)E2

j

N
+
g′′N (0)E3

j

2N2

=
g′N (0) tr(H2)

Nd
+
g′′N (0) tr(H3)

2N2d
=
g′N (0) tr(Hh)

d
+
g′′N (0) tr(H2h)

2Nd
= g′N (0) tr(Hh)/d+O(1/N),

where we used inequalities (A.4), (5.2), and the Taylor expansion (B.4) in
the steps marked with “O(q),” “1/poly(N),” and “≈,” respectively. The
approximation error in the “≈” step is

(B.7)
1

d

∑

j:|Ej |<Λ

O(E4
j /N

3) ≤ 1

d

∑

j

O(E4
j /N

3) = O(1/N),

where we used Eq. (A.1) with m = 2. We obtain Eq. (B.2) by combining
Eq. (B.6) and inequality (B.7). □

We are ready to prove Theorem 5.1:

r2f (N) =
1

d

∑

j

∣

∣⟨j|A|j⟩ − f(Ej/N)
∣

∣

2
(B.8)

O(q)
=

1

d

∑

j:|Ej |<Λ

∣

∣⟨j|A|j⟩ − f(Ej/N)
∣

∣

2

1/poly(N)
=

1

d

∑

j:|Ej |<Λ

|gN (Ej/N)− f(Ej/N)|2

≈ 1

d

∑

j:|Ej |<Λ

|gN (0) + (g′N (0)− f ′(0))Ej/N |2

≤ 1

d

∑

j

(

|gN (0)|+ |g′N (0)− f ′(0)| · |Ej |/N
)2

= O(1/N2),
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where we used inequalities (A.4), (5.2), Eq. (B.4), and Lemma B.1 in the
steps marked with “O(q),” “1/poly(N),” “≈,” and the last step, respectively.
The approximation error in the “≈” step is upper bounded by

(B.9) O(1/d)
∑

j:|Ej |<Λ

|gN (0)|E2
j

N2
+

|g′N (0)− f ′(0)| · |Ej |3
N3

+
E4

j

N4

= O(1/N2 + Λ3/N4 + 1/N2) = O(1/N2),

where we used Lemmas A.1, B.1.
Finally, it is easy to see that rf (N) = O(1/N) implies that Rf (N) =

O(1/N).

Remark. In a similar way, Rf(x)=0(N) can be calculated using Lemma
B.1; see Lemma 2 in Ref. [16].
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