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Perturbation theory in geometric theories of gravitation is a gauge
theory of symmetric tensors defined on a Lorentzian manifold
(the background spacetime). The gauge freedom makes uniqueness
problems in perturbation theory particularly hard as one needs to
understand in depth the process of gauge fixing before attempt-
ing any uniqueness proof. This is the first paper of a series of two
aimed at deriving an existence and uniqueness result for rigidly
rotating stars to second order in perturbation theory in General
Relativity. A necessary step is to show the existence of a suitable
choice of gauge and to understand the differentiability and regu-
larity properties of the resulting gauge tensors in some “canonical
form”, particularly at the centre of the star. With a wider range
of applications in mind, in this paper we analyse the gauge fixing
and regularity problem in a more general setting. In particular we
tackle the problem of the Hodge-type decomposition into scalar,
vector and tensor components on spheres of symmetric and axially
symmetric tensors with finite differentiability down to the origin,
exploiting a strategy in which the loss of differentiability is as low as
possible. Our primary interest, and main result, is to show that sta-
tionary and axially symmetric second order perturbations around
static and spherically symmetric background configurations can
indeed be rendered in the usual “canonical form” used in the liter-
ature while losing only one degree of differentiability and keeping
all relevant quantities bounded near the origin.
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1. Introduction

Perturbation theory in metric theories of gravity is one of the fundamental
tools to tackle many realistic problems in relativistic astrophysics, ranging
from slowly rotating stars to the emission of gravitational waves from bi-
nary systems in certain limits. Perturbation theory is, in essence, a theory of
symmetric tensors defined on a Lorentzian manifold (the background space-
time). From a structural point of view its main particularity is that the
theory is not only covariant, but also gauge invariant. If the perturbation
theory is developed to order k, the number of symmetric tensorsKN is also k
and the gauge freedom involves k vector fields (see [5] for the explicit gauge
transformation law at every level k).

The gauge freedom is at the same time a feature and a nuisance of
the theory. Among its positive consequences, the gauge freedom can often
be exploited to simplify the problem under consideration (in much the same
way as in electromagnetism). On the other hand, the gauge freedom is always
there, so any solution of a problem immediately gives rise to the whole class
of gauge related solutions that are, a priori, equally valid. An immediate
consequence is that uniqueness problems in perturbation theory become
much harder, since one needs to understand in depth the process of gauge
fixing before attempting any uniqueness proof.
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We encountered this difficulty in full when we started the project of
proving a rigorous existence and uniqueness result for slowly rotating stars
to second order in perturbation theory. As already mentioned, one of the
necessary steps was to show the existence of a suitable choice of gauge and
to understand the differentiability and regularity properties of the resulting
gauge fixed tensors, particularly at the centre of the star. Despite the vast
literature available on choice of gauges, specifically in our setup of pertur-
bations around spherically symmetric backgrounds, this problem had never
been addressed before rigorously. It turned out that the problem is consider-
able harder than one could have expected a priori. In this paper we report on
our results on this subject. Although our primary motivation for this work
still lies on the existence and uniqueness problem for slowly rotating stars,
the existence of gauges that we analyse in this paper have a much wider
range of applicability and are interesting on their own, independently of the
original application we have in mind. This, combined with the length and
level of complication we have encountered, justifies presenting the results in
a separate paper.

Our specific interest is to understand the problem of gauge fixing and the
properties of the resulting “canonical form” for stationary and axially sym-
metric perturbations around static and spherically symmetric background
configurations with a regular centre. We restrict the perturbations to the
so-called orthogonally transitive case and we go to second order in pertur-
bation theory. It is important to emphasize that, for the sake of generality
and particularly to apply the results in our subsequent work on slowly rotat-
ing stars, we need to work with finite differentiability, and in fact we want to
keep our differentiability requirements as low as possible. This requirement
is one of the main sources of complication in our arguments.

We tackle the problem in two separate steps, each of which requires
fewer assumptions on the background. The first step is concerned with or-
thogonally transitive stationary and axially symmetric perturbations. Here
the background need not admit any extra symmetry, i.e. the results apply
for general backgrounds admitting a stationary and axially symmetric or-
thogonally transitive action. This step is not particularly complicated and
we deal with it in Section 4. We first analise the case of general backgrounds
admitting an orthogonally transitive Abelian group action of any dimen-
sion and perturbations up to second order that “inherit” these background
symmetries (the precise definition of this notion is given in Definition 2.1).
However, it is only in the case of orthogonally transitive stationary and ax-
ially symmetric perturbations that we can ensure the gauge transformation
keeps the differentiability of the perturbation tensors also on the axis. The
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main result for this step is Proposition 4.5 where block-canonical forms for
the first and second order perturbations tensors are given.

The second step is considerable harder. Here the background is as-
sumed to be spherically symmetric (but not necessarily static). Perturba-
tions around spherically symmetric backgrounds have been studied exten-
sively in the literature and in many different areas (see e.g. [3, 4, 9, 12, 17]
and references therein). A very common choice of gauge is to assume that
the angular-angular part of the perturbation tensor is proportional to the
standard metric on the sphere. This is for instance one of the defining prop-
erties of the Regge-Wheeler (RW) gauge [18], but it is shared by many other
gauge fixing procedures. By far the argument most widely used to justify
that such a choice of gauge is possible is to decompose the perturbation ten-
sor into scalar, vector and tensor spherical harmonics. Then, for each mode
it is easy to construct a gauge vector that transforms the perturbation ten-
sor into the desired form. Despite its simplicity, this argument falls short to
provide an existence proof of the gauge vector because that would require
showing that the collection of gauge vectors at each mode corresponds to
the mode decomposition of a gauge vector. In other words, one must show
that the mode series converges. This is not a simple problem.

The second approach is based on using the Hodge-type scalar-vector-
tensor (SVT) decomposition of symmetric tensors on the sphere [24]. The
approach of replacing the spherical harmonic mode decomposition by SVT
decompositions to study perturbations around spherical background has
been used in the literature (see e.g. [8, 10] and [14], where the full set of
perturbations are expressed in terms of functions on the sphere). Its use to
show existence of a suitable gauge vector in four spacetime dimensions and
for first order perturbation tensors can be summarized as follows. For space-
time dimension two, the SVT decomposition is applied on two-dimensional
spheres and it is a well-known fact that in the two-dimensional sphere the
only traceless and transverse symmetric tensor is the zero tensor. Thus, the
SVT decomposition takes a simple form that involves only a scalar and a
vector field (the explicit form appears in (5.28) below). This, combined with
the gauge transformation law, makes it immediate to show that a gauge vec-
tor exists such that the angular-angular part of the first order perturbation
tensor can be made proportional to the standard metric on the sphere. This
approach however does not cover all our needs either, even at the first order
level. The main difficulty lies at the centre, i.e. at the point(s) where the
spheres defined as the surfaces of transitivity of the spherical action on the
spacetime degenerate to points. The SVT decomposition is well-understood
on each sphere, but we need to deal with a two-parameter family of spheres
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that degenerate to a point. This prevents us from using directly the standard
results on SVT decomposition to show existence of the appropriate gauge
vector. It should be emphasized, however, that the SVT decomposition is a
very important guiding principle for our approach to the problem.

Another important source of complication is our need to use finite dif-
ferentiability. As we shall see along the text, it is a fact that rendering the
perturbation tensor into a canonical form typically lowers the differentiabil-
ity. Given that we want to keep the differentiability requirements as low as
we can, it becomes necessary to find a good strategy where the loss of differ-
entiability is as low as possible. This prevents us even from adapting directly
the standard methods on Hodge decomposition on the sphere in the domain
away from the origin. Indeed, these methods (see e.g. [11]) work by obtain-
ing second order elliptic equations for each one of the components arising
in the Hodge decomposition. To derive these equations, one needs to take
two derivatives of the original tensor. These derivatives are then regained by
standard elliptic regularity (working e.g. in Hölder spaces). However, when
dealing with a two parameter family of problems as in our case, the loss of
two derivatives in the coordinates that label the spheres cannot be regained
by elliptic regularity.

The method we follow (see Theorem 5.4) consists in writing directly a
system of coupled first order PDE on each sphere. While we are not aware of
any general theorem that gives existence, we can exploit the axial symmetry
of the perturbations to transform the system of PDE into a decoupled system
of ODE. This strategy allows us to achieve a loss of only one derivative
(away from the origin). Although we have no proof that this loss is optimal,
we do have strong indication that it cannot be improved in general. The
method that we follow introduces an important complication at the axis of
symmetry where the ODEs become singular. In fact, most of the technical
work in this paper is devoted to understanding the existence and regularity
at the axis of the solutions of these ODE as well as to understand the
regularity with respect to transversal directions away from the two-sphere
and, very particularly, the behaviour of the solutions near the origin. We
devote Appendix B to study all these issues.

It turns out that the behaviour near the origin is complicated. Our main
result in this respect is that all the relevant quantities stay bounded near
the origin. However, we do not show that the perturbation tensor is even
continuous at the origin (let alone differentiable). Again we have no proof
that our result is optimal, but we strongly suspect that it is not possible to
write the perturbation tensor in canonical form and not to lose a great deal
of regularity at the origin.
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This is in fact one of the points we want to stress in this paper. In the
physics literature it is a rather common belief that, as long as the number of
restrictions matches the number of free functions in the gauge transforma-
tion, the process of restricting the gauge and writing the resulting tensor in
some predetermined form comes at essentially no cost. The analysis in this
paper shows very clearly that these issues are very delicate and that exploit-
ing the gauge in order to transform the perturbation tensors into some useful
form may easily spoil some other desired properties (such as continuity or
differentiability at certain places). Only by knowing precisely how much de-
terioration is generated, can one decide whether using the canonical form is
convenient (or even possible) for the specific problem under consideration.

1.1. Main result

The main result, Theorem 6.3, can be stated roughly as follows. Consider a
static and spherically symmetric spacetime (M, g) with g of class Cn+1 with
n ≥ 2, with timelike integrable Killing vector field (KVF) ξ, and single out
a generator of an axial symmetry η, so that

g = −eν(r)dt2 + eλ(r)dr2 +R2(r)
(
dθ2 + sin2 θdϕ2

)
, ξ = ∂t, η = ∂ϕ.

Now, given any stationary (ξ) and axially (η) symmetric (and orthogonally
transitive) Cn+1 perturbation to second order around (M, g) there exists a
gauge transformation that yield first and second order perturbation tensors
KΨ

1 and KΨ
2 that are Cn−1 and Cn−2 outside the origin, respectively, and

can be written as

KΨ
1 =− 4eν(r)h(1)(r, θ)dt2 − 2ω(1)(r, θ)R2(r) sin2 θdtdϕ+ 4eλ(r)m(1)(r, θ)dr2

+ 4k(1)(r, θ)R2(r)(dθ2 + sin2 θdϕ2) + 4eλ(r)∂θf
(1)(r, θ)R(r)drdθ,

KΨ
2 =

(
−4eν(r)h(2)(r, θ) + 2ω(1)2(r, θ)R2(r) sin2 θ

)
dt2

− 2ω(2)(r, θ)R2(r) sin2 θdtdϕ+ 4eλ(r)m(2)(r, θ)dr2

+ 4k(2)(r, θ)R2(r)(dθ2 + sin2 θdϕ2) + 4eλ(r)∂θf
(2)(r, θ)R(r)drdθ

outside the axis of symmetry. Moreover, the result provides full control of
the differentiability and boundedness properties of the functions involved.
Let us stress again the fact that this result does not ensure the continuity
of either tensor KΨ

1 or KΨ
2 at the origin. We can prove, however, that the

gauge vectors extend continuously to zero at the origin.
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The gauge freedom involved in the above forms is found and discussed
in Section 6.3.

1.2. Plan of the paper

The structure of the paper is as follows. Section 2 is devoted to produce
the necessary definitions on perturbations that inherit some of the symme-
tries present in the background. It serves us also to fix the differentiability
of the perturbation scheme and the perturbation tensors. In Section 3 we
analyse the structure that symmetric 2-covariant tensors invariant under
the axial symmetry must have in a convenient (partly Cartesian) class of
charts in the presence of the axis. The results are presented in Lemma 3.6,
which generalises the well known results on the form of the metric in axially
symmetric spaces, see e.g. [6]. In parallel, Section 4 deals with orthogonally
transitive perturbation schemes, that is, perturbations that inherit the two-
dimensional group of isometries acting orthogonally transitively admitted
by the background (but arbitrary otherwise), to second order. The result
for sationary and axisymmetric orthogonally transitive spacetimes is given
in Proposition 4.5.

Next we retake the results from Section 3 and particularise to axial
perturbations around spherically symmetric backgrounds. In particular, we
prove in Theorem 5.4 the existence of the decomposition on the sphere of
symmetric axially symmetric tensors (of finite differentiability), down to the
behaviour of the decomposition at the origin. That result is then (partially)
used to prove Proposition 5.6, which states the existence of a gauge vector
that renders the first order perturbation tensor in some convenient form,
while keeping control of the differentiability properties and behaviour at the
origin of the relevant quantities. The analogous, but much more involved
result, for second order is presented in Proposition 5.7.

We finally combine in Section 6 all those results to build the proof of
the main results of this paper, in the form of Proposition 6.2 leading to
Theorem 6.3.

Let us stress that our work here is purely geometric, we do not make use
of any field equations. For the same reason, we do not make any consideration
as to the physical meaning of the perturbation.

We have tried to write down this work as self-contained as possible,
leaving the more technical work for the Appendices. The control of the
differentiability (specially on the axis) and boundedness near the origin of
the relevant components of the perturbation tensors requires several results
on radially symmetric functions which we state and prove in Appendix A.
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Although these results should be essentially known, they are not easily found
in the literature in the form we need. Finally, the building block in showing
existence of gauges is Lemma 5.3. Establishing this result requires some
rather long technical work which is left to Appendix B.

1.3. Notation

Given the various setups considered in this work, we have been compelled to
introduce a substantial amount of notation. We will fix most of the notation
along the way, fundamentally at the start of the sections in which the rele-
vant frameworks are introduced, in particular in Section 5 and Appendix B.
Nevertheless, we fix here some basic notation that will be used from the
start.

A Cn+1 spacetime (M, g) is a k-dimensional (k ≥ 2) orientable Cn+2

manifoldM endowed with a time-oriented Lorentzian metric g of class Cn+1.
We assume n ≥ 2 unless otherwise stated. Scalar products of two vector fields
X, Y with the metric g will be denoted both by g(X,Y ) and ⟨X,Y ⟩. We say
that a geometric object is “smooth” when it has maximum differentiability
allowed by the background. A function f defined on an open dense subset
U ′ of some neighbourhood U ∈M is said to be Cm(U) if it can extended to
all U with this property.

We will use the usual square bracket notation [m] for the integer part of
m ∈ R. We also use Landau’s big-O and little-o notation with its standard
meaning.

2. Definition of perturbation scheme and symmetry

preserving perturbations

The construction of a spacetime perturbation relies on a one-parameter fam-
ily of Cn+1 (n ≥ 2) spacetimes (Mε, ĝε), where ε takes values in an open
interval I0 ⊂ R containing zero, from where we single out the background
(M, g) := (M0, ĝ0), diffeomorphically identified through a gauge ψε so that

(2.1) ψε :M →Mε,

and ψ0 is the identity. The diffeomorphisms ψε are assumed to be Cn+2

for each ε. This allows us to define a family of metrics gε of class Cn+1

on M related to ĝε by gε := ψ∗
ε(ĝε). We further assume that this family of

metrics is at least C2 in ε (to guarantee we can go to second order) and that
ε-derivatives do not affect the differentiability class. Define also the tensor
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g♯εµν by g♯ε := dψ−1
ε (ĝ♯ε) where ĝ

♯
ε is the contravariant metric associated to ĝε.

Note that g♯ε is the contravariant metric associated to gε.
The first and second order perturbation tensors K1 and K2 on (M, g)

are obtained from gε as follows

(2.2) K1 :=
dgε
dε

∣∣∣∣
ε=0

, K2 :=
d2gε
dε2

∣∣∣∣
ε=0

,

while the derivatives of the contravariant metrics are 1

dg♯εαβ

dε

∣∣∣∣∣
ε=0

= −Kαβ
1 ,

d2g♯εαβ

dε2

∣∣∣∣∣
ε=0

= −Kαβ
2 + 2Kαµ

1 K1
β
µ .(2.3)

The identification by ψε is highly non-unique and its freedom can be realized
by taking into consideration an ε-dependent diffeomorphism Ωε :M →M in
M before applying ψε. The new identification is ψgε := ψε ◦ Ωε and introduces
a new family of tensors ggε = ψgε ∗(ĝε) = Ω∗

ε(gε) onM with corresponding first
and second order perturbation tensors Kg

1 and Kg
2 . We again assume that Ωε

are Cn+2 diffeomorphisms with C2 dependence in ε and that ε-derivatives
do not change the differentiability class. In terms of the first and second
order (spacetime) gauge vectors V1 and V2, defined as follows

V1 :=
∂Ωε
∂ε

∣∣∣∣
ε=0

,

V2 :=
∂Vε
∂ε

∣∣∣∣
ε=0

, Vε :=
∂(Ωε+h ◦ Ω−1

ε )

∂h

∣∣∣∣
h=0

,(2.4)

the relation between Kg
1 , K

g
2 and K1, K2 is given by [5, 13]

Kg
1 = K1 + LV1

g,(2.5)

Kg
2 = K2 + LV2

g + 2LV1
K1

g − LV1
LV1

g.(2.6)

Since the background manifold is Cn+2 and the metric is Cn+1, the natural
differentiability class preserved by these gauge transformations is as follows.
At first order the gauge vector V1 is Cn+1 and the perturbation tensor K1 is
Cn. At second order V2 is Cn and K2 is Cn−1. We will therefore incorporate
this assumption into our definitions:

1All Greek indices in this paper are raised and lowered with the background
metric g and its inverse.
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A perturbation is, by definition, the family (Mε, ĝε) with all the possible
identifications {ψε} related to each other by a gauge transformation. The in-
trinsic gauge freedom of a perturbation is a major source of complication, as
a specific problem may have very different forms in different gauges. A selec-
tion of a class of gauges leads to what we call a perturbation scheme, namely
a triple (Mε, ĝε, {ψε}), where {ψε} denotes the selected class of gauges. A
perturbation scheme will be said of class Cn+1 when the family ĝε is C

n+1,
the perturbation tensors K1, K2 are, respectively, Cn and Cn−1 and the
gauge vectors V1, V2 are, respectively, Cn+1 and Cn.

In many specific problems one often needs to preserve some of the sym-
metries of the background along the perturbation. This leads to the notion
of “inheritance of symmetries” which we define next.

Definition 2.1. Let (Mε, ĝε, {ψε}) be a perturbation scheme whose back-
ground spacetime (M, g) admits a Killing vector field ξ. The perturbation
scheme is said to inherit the (local) symmetry generated by ξ when-
ever for all ε ∈ I0 and all ψε ∈ {ψε}, the vector field ξ̂ε := dψε(ξ) is a Killing
vector of (Mε, ĝε).

Remark 2.2. Of course, this definition just recovers the usual idea that
the perturbation admits a symmetry when so does the family gε, since

Lξgε = ψ∗
ε(Lξ̂ε ĝε) = 0.

Note that the notion of “inheriting a (local) isometry” depends not only on
the perturbation itself, but also on the perturbation scheme. Indeed, given
a perturbation scheme (Mε, ĝε, {ψε}) one may construct other perturbation
schemes belonging to the same perturbation where the symmetry is not
inherited. This is because a fixed vector field ξ which is Killing for all gε
will not, in general, be a Killing of Ω∗

ε(gε). Thus, demanding the existence
of a perturbation scheme where a symmetry is inherited is useful both to
restrict geometrically the family of perturbations and also to restrict the
class of allowed gauges.

Remark 2.3. If a perturbation scheme inherits a collection of (local) isome-
tries of the background that form a subalgebraA0, then each (Mε, ĝε) admits
the same algebra, because push-forwards preserve commutation relations
[20]. For the same reason, A0 must leave invariant the family of tensors gε
on M .
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Besides inheriting (local) isometries, in many cases some other geomet-
rical aspects concerning the orbit of the (local) group are also required to
be preserved. In the following two sections we consider axially symmet-
ric perturbations and “orthogonal transitive” perturbations independently.
Our final aim will be the construction of a convenient perturbation scheme
for stationary and axially symmetric perturbations that inherit also the ge-
ometric property of being “orthogonal transitive.”

3. Axially symmetric perturbations

In this section we recall the concept of axial symmetry and introduce the
definition of axially symmetric perturbations as a particular instance of the
general notion of “symmetry inheritance”. Our main result of the section
is Lemma 3.6 where we explore the consequences of axial symmetry on the
structure of symmetric two-covariant tensors. This result will play a relevant
role in subsequent sections, where the background is taken to be spherically
symmetric.

The definition of axial symmetry is standard (see e.g. [2, 7, 16]):

Definition 3.1. A spacetime (M, g) is axially symmetric whenever there
is an effective realization of the one-dimensional torus T into M that is an
isometry and such that the set of fixed points is non-empty.

We denote by η the Killing vector field defined by this realization assum-
ing that the torus T has been parametrized with the standard 2π-periodicity
angle. First consequences from the definition are that the set of fixed points,
where η = 0 and which we call the axis A, is a codimension two Lorentzian
and time-oriented surface [7, 16]. Furthermore, A is autoparallel and for
any point p ∈ A there is a neighbourhood of p such that η2 := ⟨η, η⟩ is non-
negative and zero only at points on the axis (a priori this property may fail
sufficiently far away from the axis). Moreover

(3.1) lim
η2→0

⟨∇η2,∇η2⟩
4η2

= 1.

This is the so-called regular axis property, from where the usual elementary
flatness around the axis can be inferred.

We can particularize Definition 2.1 to the case of axial symmetry and
introduce the notion of axially symmetric perturbation scheme. To be ex-
plicit:
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Definition 3.2. A perturbation scheme (Mε, ĝε, {ψε}) of an axially sym-
metric background spacetime (M, g) with axial vector η is an axially sym-
metric perturbation scheme if it inherits the axial symmetry in the sense
of Definition 2.1.

In this setup η̂ε = dψε(η) is a Killing vector for each (Mε, ĝε, {ψε}), with
axis Âε defined by the points at which η̂ε = 0, i.e. Âε = {pε ∈Mε; η̂ε|pε = 0}.
By the invertibility of η̂ε = dψε(η) the points pε that satisfy η̂ε|pε = 0 are
those pε = ψε(p) such that η|p = 0, and therefore ψε simply maps the axis
at the background A to their corresponding Âε.

Since the Killing equations Lηgε = 0 hold for all ε, we necessarily have,
up to second order,

(3.2) LηK1 = 0, LηK2 = 0.

The regular axis property (3.1) holds at each ε-component, that is, the
function

Λ̂ε :=
ĝαβε ∂α(η̂

2
ε)∂β(η̂

2
ε)

4η̂2ε
,

where η̂2ε := ĝε(η̂ε, η̂ε), must be 1 at Âε. Therefore, by construction, the pull-
back Λε := ψ∗

ε(Λ̂ε) = g♯αβε ∂α(η
2
ε)∂β(η

2
ε)/4η

2
ε , where η

2
ε := ψ∗

ε(η̂
2
ε) = gε(η, η),

must attain 1 at A, i.e.

lim
η2→0

Λε = 1.

Since limη2→0 Λ0 = 1 (regular background configuration), the regular axis
property on the perturbation scheme translates, to second order, onto the
fact that

Λ(1) :=
dΛε
dε

∣∣∣∣
ε=0

, Λ(2) :=
d2Λε
dε2

∣∣∣∣
ε=0

,

satisfy

(3.3) lim
η→0

Λ(1) = 0, lim
η→0

Λ(2) = 0.

Since

dη2ε
dε

∣∣∣∣
ε=0

= K1(η, η),
d2η2ε
dε2

∣∣∣∣
ε=0

= K2(η, η),
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and recalling (2.3) a straightforward calculation shows

Λ(1) =
1

4η2

(
−K1(∇η2,∇η2) + 2⟨∇(K1(η, η)),∇η2⟩(3.4)

− 1

η2
K1(η, η)⟨∇η2,∇η2⟩

)

and

Λ(2) =
1

4η2

{
−K2(∇η2,∇η2) + 2⟨∇(K2(η, η)),∇η2⟩ −

1

η2
K2(η, η)⟨∇η2,∇η2⟩

(3.5)

+ 2(K1 ·K1)(∇η2,∇η2)− 4K1(∇(K1(η, η)),∇η2)

+ 2⟨∇(K1(η, η)),∇(K1(η, η))⟩
}

− 2

η2
Λ(1)K1(η, η).

Summarizing we have shown the following result.

Lemma 3.3. Consider an axially symmetric perturbation scheme
(Mε, ĝε, {ψε}) for an axially symmetric background spacetime (M, g) with
axial Killing vector η. Denote η2 := ⟨η, η⟩. Then, the first and second or-
der perturbation tensors K1 and K2 satisfy (3.2), the axis of symmetry of
the perturbation coincides with the background axis of symmetry A and the
quantities Λ(1) and Λ(2), given by (3.4) and (3.5) respectively, vanish there.

Since in this paper we will be concerned with perturbations up to second
order it makes sense to relax the definition of axially symmetric perturbation
and impose conditions only up to this order. This leads to the following
definition.

Definition 3.4. A perturbation scheme (Mε, ĝε, {ψε}) of an axially sym-
metric background spacetime (M, g) is a second order axially symmetric
perturbation if it satisfies the outcome of Lemma 3.3.

The defining property of an axially symmetric perturbation scheme
is that the axial Killing vector of the background is mapped to an axial
Killing vector of (Mε, ĝε). Except in very special circumstances the space-
time (Mε, ĝε), ε ̸= 0 will admit only one axial Killing vector η̂ε, so dψε(η)
is forced to be this unique axial Killing field. In exceptional circumstances,
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where additional axial symmetries are present, the axially symmetric per-
turbation scheme becomes automatically larger. This additional freedom,
however, is of a trivial nature and can be removed by any a priori identi-
fication of an axial Killing at every ε ̸= 0. In the next lemma we identify
restrictions on the perturbation vectors that arise from either the unique-
ness of the axial symmetry of (Mε, ĝε), ε ̸= 0 or, in the exceptional cases,
of having identified one axial Killing at each ε. This result will be useful in
[15] where uniqueness issues are discussed.

Lemma 3.5. In the setup of Lemma 3.3, if the class {ψε} is such that
the axial Killing vector η̂ε = dψε(η) of (Mε, ĝε) is independent of ψε ∈ {ψε},
then the gauge vectors V1 and V2 defined by a change of gauge within the
class satify

[V1, η] = 0, [V2, η] = 0.

Proof. Let ψε and ψ
g
ε belong to the class {ψε}. Recalling the definition Ωε =

ψ−1
ε ◦ ψgε , the assumption of the lemma implies (in fact, is equivalent to)

both η = Ω−1
ε

∗(η) and η = Ωε
∗(η), for all ε ∈ I0. From the expresion of Vε

in (2.4) and the definition of Lie derivative we get LVε
η = 0. Evaluating at

ε = 0 yields LVε=0
η = LV1

η = 0. Taking the derivative at ε = 0 and using
(see e.g. the proof of Lemma 1 in [13])

d

dε
LVε

η = L dVε
dε

η,

the definition of V2 in (2.4) gives LV2
η = 0. □

In order to explore the consequences of Definition 3.4 we need to study
the restrictions imposed by equation (3.2). The following lemma applies to
arbitrary symmetric tensors invariant under an axial Killing and may have
independent interest. For related results in the particular case when K is
the spacetime (background) metric see [6].

Lemma 3.6. Let (M, g) be a k-dimensional (k ≥ 2) axially symmetric
spacetime with axial Killing η and axis A. Let K be a symmetric 2-covariant
tensor satisfying LηK = 0 and Cm (m ≥ 1) on a neighbourhood UA ⊂M
of a portion of A. By restricting UA if necessary we take UA invariant
under η and admitting global coordinates {x, y, wu}, where u = 3, . . . , k if
k ≥ 3 or wu = ∅ otherwise, such that η = x∂y − y∂x. Let U ⊂ Rk be the set

where {x, y, wu} take values. Then, using the notation ∥x∥ :=
√
x2 + y2 and
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Kxx := K(∂x, ∂x), etc, it follows that, on U \ {∥x∥ = 0}:

2Kxx = A1(∥x∥, wu) + A2(∥x∥, wu)
x2 − y2

∥x∥2 − A3(∥x∥, wu)
2xy

∥x∥2 ,(3.6)

2Kyy = A1(∥x∥, wu)− A2(∥x∥, wu)
x2 − y2

∥x∥2 + A3(∥x∥, wu)
2xy

∥x∥2 ,(3.7)

2Kxy = A2(∥x∥, wu)
2xy

∥x∥2 + A3(∥x∥, wu)
x2 − y2

∥x∥2 ,(3.8)

Kxu =
1

∥x∥2 (Aρu(∥x∥, w
u)x+ Aηu(∥x∥, wu)y) ,(3.9)

Kyu =
1

∥x∥2 (−Aηu(∥x∥, w
u)x+ Aρu(∥x∥, wu)y) ,(3.10)

Kuv = Auv(∥x∥2, wu),(3.11)

where, for each B ∈ {1, 2, 3, ρu, ηu, uv}, the functions AB(ρ, wu) are defined
on the domain Uη := {ρ ∈ R≥0, w

u ∈ Rk−2(ρ, 0, wu) ∈ U} ⊂ R≥0 × Rk−2.
Moreover,

AB(ρ, wu) = PB(ρ2, wu) + Φ
(m)
B (ρ, wu),(3.12)

where each PB(ρ2, wu) is a polynomial of degree [m2 ] in ρ2, Φ
(m)
B is o(ρm)

and PB, Φ
(m)
B are Cm on Uη. Furthermore P2,P3,Pρu,Pηu vanish at ρ = 0

(for all wu).

Remark 3.7. Several expressions above look undetermined at ∥x∥ = 0.
The factors (x2 − y2)/∥x∥2 and xy/∥x∥2 are bounded but have no limit as
∥x∥ → 0. However, this is only apparent because A2, A3, Aρu, Aηu vanish as
∥x∥ → 0. Therefore, the expressions are valid in the whole U .

Proof. The equation LηK = 0 takes the following explicit form in compo-
nents

η(Kxx) = −2Kxy, η(Kyy) = 2Kxy, η(Kxy) = Kxx −Kyy,(3.13)

η(Kxu) +Kyu = 0, η(Kyu)−Kxu = 0,(3.14)

η(Kuv) = 0.(3.15)

K being at least C1 and η vanishing on the axis these equations readily
imply that Kxx −Kyy, Kxy, Kxu, Kyu all vanish at ∥x∥ = 0. Moreover, the
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following consequences are easily obtained

η(Kxx +Kyy) = 0, η(xKxu + yKyu) = 0,

η(yKxu − xKyu) = 0, η(Kuv) = 0,

so Kxx +Kyy, xKxu + yKyu, yKxu − xKyu and Kuv are radially symmetric
in the variables {x, y} and Cm in U . By Lemma A.1 in Appendix A, there
exist A1(ρ, w

u), Aρu(ρ, w
u), Aηu(ρ, w

u) and Auv(ρ, w
u) defined on Uη and

satisfying (3.12) such that

Kxx +Kyy = A1(∥x∥, wu), Kuv = Auv(∥x∥, wu),
yKxu − xKyu = Aηu(∥x∥, wu), xKxu + yKyu = Aρu(∥x∥, wu).

Now, Aρu(ρ, w
u) and Aηu(ρ, w

u) vanish at ρ = 0 (for all wu), so the corre-
sponding polynomials Pρu, Pηu have the same property. From the definitions
it is clear that (3.9), (3.10) and (3.11) hold. Next, define

A2 :=
x2 − y2

∥x∥2 (Kxx −Kyy) +
2xy

∥x∥2 2Kxy,

A3 := − 2xy

∥x∥2 (Kxx −Kyy) +
x2 − y2

∥x∥2 2Kxy

in U \ {∥x∥ = 0}. The vanishing of Kxx −Kyy and Kxy at the axis shows
that these functions extend continuously to zero at ∥x∥ = 0. Moreover, since

η

(
x2 − y2

∥x∥2
)

= −2
2xy

∥x∥2 , η

(
2xy

∥x∥2
)

= 2
x2 − y2

∥x∥2 ,

we have η(A2) = 0 and η(A3) = 0, and therefore A2, A3 are radially
symmetric in {x, y}. Define the corresponding traces A2,A3 : Uη → R by
A2 = A2(∥x∥, wu) and A3 = A3(∥x∥, wu). Obviously these functions sat-
isfy A2(0, w

u) = A3(0, w
u) = 0. Directly from the definitions f := Kxx −Kyy

takes the form f = A2(∥x∥, wu)x
2−y2

∥x∥2 − A3(∥x∥, wu) 2xy
∥x∥2 in U \ {∥x∥ = 0}.

So far we thus have (3.6) and (3.7), and the first equation in (3.13) leads
to (3.8). It only remains to show that A2 and A3 admit the decomposition
(3.12). Define the functions

s2(x,w
u) := f(x, y = 0, wu) = A2(abs(x), w

u),

s3(x,w
u) := − 1√

2
f(x, y = x,wu) = A3(abs(x), w

u).
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First of all, the fact that f is Cm (in U) implies s2(x,w
u) and s3(x,w

u) are
Cm functions of their arguments, particularly in the domain x ≥ 0. Setting
ρ = abs(x) we have that A2(ρ, w

u) = s2(ρ, w
u) and A3(ρ, w

u) = s3(ρ, w
u),

and by Lemma A.1 particularised for p = 1, A2,A3 are Cm functions in Uη
with the structure given in (3.12). □

4. “Orthogonally transitive” perturbations

Recall that an Abelian G2 (local) group of isometries on a spacetime (M, g)
is orthogonally transitive if, except possibly on a subset with empty
interior, the orbits of the local isometry are two-dimensional, non-null and
their orthogonal spaces form an integrable distribution (equivalently, almost
everywhere in M there exists a foliation by immersed non-null surfaces or-
thogonal to the orbits everywhere). By definition we say that this property
is inherited by a perturbation scheme if the background admits an Abelian
orthogonally transitive G2 local action which is inherited on each (Mε, ĝε)
and the corresponding (local) orbits are orthogonally transitive.

4.1. Orthogonally transitive actions

The results of this subsection are essentially known. We include them for
completeness since they will be needed later.

Consider a Cn+1(n ≥ 0) pseudo-Riemannian manifold (M, g) of dimen-
sion k and arbitrary signature. Let {ξi} i, j, l, · · · = 1, · · · , s < k be a collec-
tion of (linearly independent) Killing vector fields that form an algebra, i.e.
such that

[ξi, ξj] = Cl
ijξl.

For all p ∈M define Π|p = span(ξ1|p, · · · ξs|p). This is a vector subspace of
TpM of dimension at most s. Define M ′ := {p ∈M ; dim(Π|p) = s}. Linear
independence of the Killing vectors implies M ′ is dense in M . We make the
following two assumptions:

(i) For all p ∈M ′, the metric g restricted to Π|p is non-degenerate.

(ii) For all p ∈M ′, the g-orthogonal complement Π⊥|p defines an inte-
grable distribution of M ′.
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Note that by (i) we have TpM = Π|p ⊕Π⊥|p for all p ∈M ′. Since the distri-
bution {Π⊥|p} is defined as the set of vectors in the kernel of all2 ξi := g(ξi, ·),
the Fröbenius theorem states that (ii) can be written equivalently in the fol-
lowing two ways

(ii’) dξi1 ∧ ξi2 ∧ · · · ∧ ξis+1
= 0 ∀i1, · · · is+1 = 1, · · · s,

(ii”) dξi =

s∑

j=1

ξj ∧Σij

where Σij are smooth one-forms on M ′.
We note the following facts. If V,W are vector fields everywhere orthog-

onal to {ξi} (or, in other words, taking values in Π⊥|p, for all p ∈M) then
[ξi, V ] and [V,W ] have the same property. The proof is by direct computation
(α, β, · · · are indices of M and ∇ is the Levi-Civita derivative of g):

ξiα[ξj, V ]α = ξiα

(
ξβj ∇βV

α − V β∇βξ
α
j

)
= −Vα

(
ξβj ∇βξi

α − ξβi ∇βξ
α
j

)

= −Vα[ξj, ξi]α = 0

and

ξiα[V,W ]α = ξiα

(
V β∇βW

α −W β∇βV
α
)
= V βWα (−∇βξiα +∇αξiβ)

= dξi(W,V ) =
( s∑

j=1

ξj ∧Σij

)
(W,V ) = 0.

Define γij := g(ξi, ξj). The next lemma introduces a set of closed one-forms
that will then allow us to introduce suitable local coordinates.

Lemma 4.1. In the setup above, assume further that the Lie algebra {ξi}
is Abelian. Then there exists smooth closed one-forms ζi on M ′ such that

(4.1) ξi = γijζ
j.

Proof. By condition (i), γij is invertible on M ′. Let γij be the inverse (i.e.
such that γilγlj = δij) and define ζi := γijξj. These are Cn+1 one-forms on
M ′ obviously satisfying (4.1). It remains to show that dζi = 0. Observe first

2We use boldface to denote the metrically related one-form associated to a vector
field.
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that ζi(ξj) = δij. We use the definition of exterior differential

dζi(X,Y ) = X(ζi(Y ))− Y (ζi(X))− ζi([X,Y ])

where X,Y are arbitrary vector fields in M ′. To prove dζi = 0 is suffices to
show that the right-hand side of this expression vanishes in the following
three cases, (a) X = ξi, Y = ξj, (b) X = ξi, Y =W and (c) X = V, Y =W ,
where V,W are everywhere orthogonal to {ξj}. Now

(a) dζi(ξj, ξl) = ξj(δ
i
l)− ξl(δ

i
j)− ζi([ξj, ξl]) = 0

(b) dζi(ξj, V ) = −V (δij)− ζi([ξj, V ]) = 0

(c) dζi(V,W ) = −ζi([V,W ]) = 0,

where in (a) we used the assumption that algebra is Abelian and in (b),
(c) the fact that [ξj, V ] and [V,W ], along with V , W are all orthogonal to
ξj. □

Corollary 4.2. IfM ′ is simply connected, then there exist smooth functions
zi on M ′ such that

(4.2) ξi(z
j) = δji , ξi = γijdz

j.

Proof. By simply connectedness, closed is equivalent to exact. Define zj by
ζj = dzj and (4.2) are immediate. □

It is also a well-known fact that under assumptions (i) and (ii) there
exist local coordinates near any point in M ′ in which the metric separates
in blocks. The argument is standard, but we include it for completeness.
Fix p ∈M ′ and let Σp be the integrable manifold of the distribution Π⊥

containing p. Select any local coordinate system {xa} on Σp near p and
extend the functions xa as constants along the integral manifolds of the
distribution Π. By construction ξi(xa) = 0. It is immediate that {xa, zi}
defines a local coordinate system in a neighbourhood of p. By the first of
(4.2) we have ξi = ∂zi , so the metric in these coordinates only depends on
{xa}. By the second in (4.2) the cross components gia of the metric vanish
and gij = γij. The block diagonal structure follows

g = γij(x
c)dxidxj + hab(x

c)dxadxb.
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4.2. “Orthogonally transitive” perturbation scheme

Let (Mε, ĝε, {ψε}) be a perturbation scheme that inherits an orthogonally
transitive Abelian Gs (local) group of isometries generated by span{ξi},
i, j = 1, · · · , s, (1 ≤ s < dim(M)) on (M, g). The next proposition shows that
the first and second order metric perturbation tensors can be taken as block
diagonal inM ′. Later we show that in the stationary and axisymmetric case
the transformation does not lower the differentiability of the perturbation
tensors in the whole M , that is, including the axis.

Proposition 4.3. Let (Mε, ĝε, {ψε}) be a perturbation scheme of class
Cn+1 (n ≥ 2) that inherits an Abelian Gs, 1 ≤ s < dim(M) (local) isom-
etry group that acts orthogonally transitively. Let M ′ be the open and dense
subset where the orbits of the Abelian (local) isometry group are non-null
and have dimension s and assume that M ′ is simply connected. Then, for
each gε = ψε(ĝε), ψε ∈ {ψε} there exist first and second order gauge vectors
V1 and V2 such that the corresponding transformed Kg

1 and Kg
2 are of class

Cn(M ′) and Cn−1(M ′) respectively and block diagonal, i.e. take form

K1 = K1ij(x
c)dxidxj +K1ab(x

c)dxadxb,

K2 = K2ij(x
c)dxidxj +K2ab(x

c)dxadxb

in any local coordinate system {xα} = {xi, xa} in M ′ adapted to ξi and to
the orthogonal transitivity of the background, i.e. where

(4.3) g = γij(x
c)dxidxj + hab(x

c)dxadxb, ξi = ∂xi .

Proof. By Lemma 4.1 and Corollary 4.2, there exists smooth scalar func-
tions ziε :M

′ −→ R satisfying ξi(z
j
ε) = δji such that the one-form fields ξεi :=

gε(ξi, ·) take the form

ξεi = γεijdz
j
ε, γεij := gε(ξi, ξj).

Let {xα} be any local coordinate where the background metric takes the
form (4.3). The condition ξi(z

j
ε) = δji implies the existence of scalar functions

ujε(x
a) such that zjε = xj + ujε(x

a). The form of ξεi forces that the metric gε
in these coordinates takes the form

gε = γεij(dx
i + ∂au

i
εdx

a)(dxj + ∂bu
j
εdx

b) + hεabdx
adxb.
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Since ξi = ∂xi are Killing vectors of this metric, γεij(x
a) and hεab(x

c). More-
over, the equality g = gε=0 implies

γεij|ε=0 = γij, hεij|ε=0 = hij, uiε
∣∣
ε=0

= 0.

Computing the first and second order perturbation tensors, one finds after
a simple calculation

K1 = K1ijdx
idxj + 2γij∂aU

jdxidxa +K1abdx
adxb,

K2 = K2ijdx
idxj + 4K1ij∂aU

jdxidxa + 2γij∂aU
i∂bU

jdxadxb

+ 2γij∂aW
idxidxa +K2abdx

adxb,

where

K1ij :=
dγεij
dε

∣∣∣∣
ε=0

, K1ab :=
dhεab
dε

∣∣∣∣
ε=0

, U i :=
duiε
dε

∣∣∣∣
ε=0

,

K2ij :=
d2γεij
dε2

∣∣∣∣
ε=0

, K2ab :=
d2hεab
dε2

∣∣∣∣
ε=0

, W i :=
d2uiε
dε2

∣∣∣∣
ε=0

.

We consider the gauge vectors V1 = −U i(xa)∂i and V2 = −W i(xa)∂i. It is
immediate that

LV1
g = −2γij∂aU

jdxidxa

and hence Kg
1 = K1 + LV1

g = K1ijdx
idxj +K1abdx

adxb is block diagonal,
as claimed. For the second order perturbation we use the form (2.6). A
simple calculation gives

LV1
Kg

1 = −2Kg
1 ij∂aU

jdxidxa, LV1
LV1

g = 2γij∂aU
i∂bU

jdxadxb

and we conclude that K2 = K2ijdx
idxj +K2abdx

adxb, i.e. block diagonal.
We have performed the computation to change the gauge in local coordi-
nates, but it is clear that both V1 and V2 are globally defined on M ′ and
smooth because they are intrinsically defined by

(4.4)

V1 = − dziε
dε

∣∣∣∣
ε=0

ξi = − duiε
dε

∣∣∣∣
ε=0

ξi,

V2 = − d2ziε
dε2

∣∣∣∣
ε=0

ξi = − d2uiε
dε2

∣∣∣∣
ε=0

ξi.

□
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Remark 4.4. This proposition includes as a particular case the situation
when the perturbation scheme inherits a static (local) isometry, i.e. an or-
thogonally transitive one-parameter (local) isometry group with timelike
orbits.

At the level of generality of Proposition 4.3 we can only establish the
differentiablity of V1 and V2 on M ′, i.e. away from points where the distri-
bution {Πp} degenerates. The reason lies in the non-invertibility of γij at
the complement of M ′. Extending the differentiability of the gauge vectors
to the whole of M is a delicate issue which, however, must be addressed in
our problem. Indeed, an important step of our argument will be applying
Lemma 3.6 on pertubation tensors written in block diagonal form, for which
it is crucial that these tensors are differentiable everywhere, including the
axis. To accomplish this we will exploit the fact that the metrics ĝε are sta-
tionary and axisymmetric. Using the results in Lemma 3.6 we will be able
to analyse the behaviour of the one-forms ζi

ε defined in Lemma 4.1 near the
axis. This will be sufficient, via integration of dziε = ζi

ε, to show via (4.4)
that the gauge vectors V1 and V2 are differentiable everywhere.

We need several well-known facts (see e.g. [21]) about stationary and
axisymmetric group actions. Recall that this is a spacetime isometry gen-
erated by an axial Killing vector η, see Section 3, assumed to be spacelike
everywhere outside the axis, and a timelike Killing vector ξ. The group is nec-
essarily Abelian and the points where the group orbits are two-dimensional
and non-null (i.e. M ′) are determined by det γ = ⟨ξ, ξ⟩⟨η, η⟩ − ⟨ξ, η⟩2 < 0.
Given that η2 = ⟨η, η⟩ is non-negative and zero only at points of the axis A,
det γ = 0 also defines A. The construction of a stationary and axially sym-
metric perturbation scheme implies all the above for each ε, in particular
for det γε. Lemma 3.3 ensures that the axis of the perturbation, i.e. the axis
at each ε, coincides with A, and therefore we have that det γε vanishes on
A and only there.

Proposition 4.5. Let (Mε, ĝε, {ψε}) be a perturbation scheme of class
Cn+1 (n ≥ 2) that inherits a stationary and axisymmetric isometry group
that acts orthogonally transitively. Assume that M ′ =M \ A is simply con-
nected. Then, for each gε = ψε(ĝε), ψε ∈ {ψε} there exist first and second
order gauge vectors V1 and V2 such that the corresponding transformed Kg

1

and Kg
2 are of class Cn(M) and Cn−1(M) respectively and block diagonal,

i.e. take form

K1 = K1ij(x
c)dxidxj +K1ab(x

c)dxadxb,

K2 = K2ij(x
c)dxidxj +K2ab(x

c)dxadxb
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in any local coordinate system {xα} = {xi, xa} in M ′ adapted to ξi and to
the orthogonal transitivity of the background, i.e. where

(4.5) g = γij(x
c)dxidxj + hab(x

c)dxadxb, ξi = ∂xi .

Proof. We are in the setting of Proposition 4.3 with s = 2, ξ1 = ξ and ξ2 = η.
We define ξεi as in this proposition and ζi

ε := γεijξεj on M \ A (cf. Lemma
4.1). The core of the proof is understanding in detail the behaviour of the
closed one-forms ζi

ε as we approach A, for which we will use the results in
Lemma 3.6. Introducing coordinates {x, y, z, t} in a neighbourhood UA ⊂M
of the axis such that η = x∂y − y∂x and ξ = ∂t, we may apply Lemma 3.6
with K = gε, m = n+ 1 and wu = {z, t} (u = 3, 4). As in this lemma, we
call U ⊂ R4 the set where {x, y, z, t} take values.

We shall use expressions (3.6)-(3.11) with K → gε and A→ Aε. Since
gε is stationary, A

ε
B do not depend on t, i.e. they are functions AεB(∥x∥, z),

where ∥x∥2 := x2 + y2. Their traces satisfy (3.12) and are defined on the
domain Dη := {ρ ∈ R≥0, z ∈ R; (ρ, 0, z, t) ∈ U} ⊂ R≥0 × R. Lemma A.1 in
Appendix A ensures that AεB(∥x∥, z) are Cn+1(UA). From on on, we write
AεB when we refer to AεB(∥x∥, z), i.e. as functions on UA.

The analysis of ζi
ε relies on the following:

Claim: For C ∈ {2, 3, ρt, ρz, ηt, ηz}, the functions Ã
ε

C(ρ, z) :=
1
ρA

ε
C(ρ, z)

and 1
ρ Ã

ε

CÃ
ε

C′(ρ, z) admit the expansion (we drop a label ε in the right-hand
side for simplicity)

Ã
ε

C(ρ, z) = ρ

[n−1

2
]∑

k=0

ρ2kPC k(z) + Φ̃
(n)
C (ρ, z),(4.6)

1

ρ
Ã
ε

CÃ
ε

C′(ρ, z) = ρ

[n−1

2
]∑

k=0

ρ2kPCC′k(z) + Φ̃
(n)
CC′(ρ, z),(4.7)

where PC k(z), PCC′ k(z) are Cn+1 functions of z and Φ̃
(n)
C (ρ, z), Φ̃

(n)
CC′(ρ, z)

are Cn and o(ρn) with respect to ρ and Cn+1 with respect to z.

Proof of the claim: Lemma 3.6 with m = n+ 1 establishes that AεC(ρ, z)
vanishes at the axis and admits an expansion

AεC(ρ, z) = ρ2
[n−1

2
]∑

k=0

ρ2kPC k(z) + Φ
(n+1)
C (ρ, z),
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where PC k(z) are C
n+1 functions of z and Φ

(n+1)
C are Cn+1(Dη) and o(ρ

n+1).

Setting Φ̃
(n)
C (ρ, z) := 1

ρΦ
(n+1)
C (ρ, z), the expansion (4.6) follows. The function

Φ̃
(n)
C (ρ, z) is o(ρn) and Cn with respect to ρ by item (iii) of Lemma B.7

applied to the one-dimensional case. Moreover, this function is Cn+1 in z,
since, being o(ρn), all partial derivatives with respect to z extend to ρ =
0, where they vanish. For the product function, it is immediate from the
definition that

1

ρ
Ã
ε

CÃ
ε

C′(ρ, z) = ρ

[n−1

2
]∑

k=0

ρ2kPCC′k(z) + ρ

2[n−1

2
]∑

k=[n+1

2
]

ρ2kPCC′k(z)

+

[n−1

2
]∑

k=0

ρ2k
(
PC k(z)Φ̃

(n)
C′ + PC′ k(z)Φ̃

(n)
C

)

+
1

ρ
Φ̃
(n)
C (ρ, z)Φ̃

(n)
C′ (ρ, z).

The last terms define Φ̃
(n)
CC′(ρ, z) and the expansion (4.7) follows. The prop-

erty that Φ̃
(n)
CC′(ρ, z) is Cn+1 in z is clear, as it holds for each term. Concerning

the property of being Cn in ρ and o(ρn), this is immediate for the first two
terms. For the last term, it follows from its product structure, as shown in
Corollary B.4 of Appendix B.

Combining this claim with Lemma A.1, we also conclude that the func-
tions Ã

ε

CÃ
ε

C′(∥x∥, z) are Cn(UA). We are now ready to compute ζi
ε.

Recall that γεij = gε(ξi, ξj). Using the explicit expressions for gε given in
Lemma 3.6, a straightforward calculation gives

det γε =
1

2
∥x∥2

(
(Aε1 − Aε2)Aεtt − 2Ã

ε

ηtÃ
ε

ηt

)
:= ∥x∥2Dγε .

From the above, Dγε is Cn(UA) and its restriction to any value of ∥x∥
is Cn+1 in z. Moreover, the value of Dγε on the axis is Dγε |∥x∥=0(z) =
Aε1(0, z)A

ε
tt(0, z). This is not zero because Aεtt = gε(ξ, ξ) < 0, c.f. (3.11), while

(3.6) restricted to x = y = 0 provides 2gε(∂x, ∂x)|∥x∥=0 = A1(0, z), so that
A1(0, z) > 0. Since det γε vanishes only at the axis, it follows that Dγε is
nowhere zero on UA. Therefore the inverse D−1

γε := 1/Dγε is also Cn(UA),

and by Lemma A.1, the corresponding trace function D−1
γε (ρ, z) must have
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the form

(4.8) D−1
γε (ρ, z) =

[n
2
]∑

k=0

ρ2kPγεk(z) + Φ̃
(n)
γε (ρ, z),

where Pγε0(z) is nowhere zero, Pγεk(z) are Cn+1 in z, and Φ̃
(n)
γε (ρ, z) are

Cn+1 in z, Cn in ρ and o(ρn). From the definition of ζiε (see Lemma 4.1), a
direct computation gives

ζ1ε = dt+
1

∥x∥Z
1
ερ(xdx+ ydy) + Z1εzdz,

ζ2ε = d arctan
y

x
+

1

∥x∥Z
2
ερ(xdx+ ydy) + Z2εzdz,

where

Z1ερ(∥x∥, z) :=
1

2Dγε

(
(Aε1 − Aε2)Ã

ε

ρt + A
ε
3Ã

ε

ηt

)
,

Z1εz(∥x∥, z) :=
1

2Dγε

(
(Aε1 − Aε2)Aεtz − 2Ã

ε

ηtÃ
ε

ηz

)
,

Z2ερ(∥x∥, z) :=
1

2Dγε

(
Ã3

ε
Aεtt + 2

1

∥x∥ Ã
ε

ηtÃ
ε

ρt

)
,

Z2εz(∥x∥, z) :=
1

2Dγε

1

∥x∥
(
AεtzÃ

ε

ηt − AεttÃ
ε

ηz

)
.

We can now integrate dziε = ζi
ε. Using ∥x∥d∥x∥ = xdx+ ydy, the functions

ziε take the form (the integrability conditions are ensured by Corollary 4.2)

z1ε = t+

∫ ∥x∥

0
Z1ερ(s, z)ds+

∫
Z1εz(0, z)dz =: x1 + u1ε,

z2ε = arctan
y

x
+

∫ ∥x∥

0
Z2ερ(s, z)ds+

∫
Z2εz(0, z)dz =: x2 + u2ε,

where we have set x1 = t and x2 = arctan(y/x) = φ. By (4.4), the gauge
vectors are constructed from uiε, so we only need to care about the integral
terms and show that they define Cn+1(UA) functions.

From Lemma 3.6 and the claim above it follows that Ziεz(0, z) are C
n+1

functions of z, so the two integrals over z are Cn+2 functions of z. Concerning
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the ρ-integrals, (3.12), (4.8) and the claim imply that

Ziερ(ρ, z) = ρ

[n−1

2
]∑

k=0

ρ2kP i
εk(z) + Φ̃i

ε
(n)(ρ, z),

where P i
εk(z) and Φ̃i

ε
(n) are Cn+1 with respect to z and Φ̃i

ε
(n) is Cn in ρ and

o(ρn). As a result,

Zi
ε(ρ, z) :=

∫ ρ

0
Ziερ(s, z)ds =

[n−1

2
]∑

k=0

P i
εk(z)

1

2k + 1
ρ2(k+1) +

∫ ρ

0
Φ̃i
ε
(n)(s, z)ds

is Cn+1 in the domain Dη. The first term is a polynomial in ρ2, while the last
integral is o(ρn+1) (e.g. by the mean value theorem). Lemma A.1 ensures
that Zi

ε(∥x∥, z) is Cn+1(UA). Applying the definifion (4.4) we conclude that
the gauge vectors V1 and V2 are Cn+1(UA). □

Given a pertubation scheme that inherits a stationary and axisymmet-
ric orthogonally transitive group action, we shall always consider the related
perturbation scheme whose existence is proved in this proposition. The cor-
responding metric perturbation tensors will be denoted K1 and K2 (without
the g superindex).

Remark 4.6. When the codimension of the Abelian (local) group action
is two, the metric hε(xc)abdx

adxb is two-dimensional. Given any point p ∈
M ′ and a suficiently small neighbourhood Up of p there exist coordinates
{xi, xa} adapted to the Killings where the background metric is not only
block diagonal, but also with hab diagonal. By restricting Up if necessary, it
is also true that there exists a change of coordinates {xi, xaε(xb)} where hεab is
also diagonal for all ε. This map can be considered as a local diffeomorphism
and hence as a local gauge transformation. In the transformed gauge one
has, by construction, that Kg

1ab and Kg
2ab are both diagonal. It should be

emphasized however, that in general this local gauge transformation does
not exist globally, so it is unjustified to assume that K1ab and K2ab are
diagonal in some atlas. Generally speaking, this limitation is present even in
the most favourable situation when a global coordinate system {xα} adapted
to the Killings exists on M ′ in which the background metric is both block
diagonal and with diagonal hab.
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5. Axially symmetric perturbations on spherically

symmetric backgrounds

From now on we restrict ourselves to the case in which the spacetime di-
mension is four and the background spacetime is spherically symmetric.
Before introducing some convenient definitions and notation on spherically
symmetric spacetimes we start by fixing some notation on the unit sphere
(S2, gS2).

5.1. Spherically symmetric backgrounds

Let Y a (a = 1, 2, 3) be the spherical harmonics with ℓ = 1 on the sphere.
More specifically, Y a is defined as the restriction of the Cartesian coordinates
of R3 to the unit sphere, i.e.

Y 1 = sin θ cosϕ, Y 2 = sin θ sinϕ, Y 3 = cos θ.

We will refer to {xA} = {θ, ϕ} as the standard angular spherical coordinates,
in which the spherical unit metric reads gS2 = dθ2 + sin2 θdϕ2. Let us denote
by d the exterior differential on S2, and by DA the covariant derivative on
(S2, gS2). The spherical harmonics Y a satisfy DADBY

a = −Y agS2AB and
the six dimensional algebra of conformal Killing vectors on S2 is spanned
by {DAY

a(= dY a)} (proper conformal Killings) and {ϵABDBY a(= − ⋆S2

dY a)} (Killing vectors) where ϵAB is the volume form of (S2, gS2). In standard
spherical coordinates we choose the orientation so that the Hodge dual ⋆S2

acts as ⋆S2dϕ = −1/ sin θdθ and ⋆S2dθ = sin θdϕ.

Definition 5.1. A (four-dimensional) spacetime (M, g) is spherically
symmetric if it admits an SO(3) group of isometries acting transitively
on spacelike surfaces (which may degenerate to points). Denote by C ⊂M
the set of fixed points of the group action (which may be empty).

As it is known [22], every connected component of C is the image of a
timelike geodesic which is a closed set in M . The set M \ C, the principal
part of M , is dense in M . Standard results [19] show that the surfaces of
transitivity of the group (orbits) SO(3) generating the spherical symmetry
in (M \ C, g) are spheres S2(⊂ R3) → Sr ⊂M , admit a family of orthogonal
(and thus timelike) surfaces S⊥ (the integrable distribution of assumption
(ii) in subsection 4.1), and M \ C is diffeomorphic to a warped product
S⊥ ×R⊥

S2. Therefore, on M \ C there exist coordinates {xI , xA} for which
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g takes the form

(5.1) g = g⊥(x
I)JKdx

JdxK +R⊥
2gS2ABdx

AdxB,

where g⊥ is Lorentzian and R⊥ is a positive function R⊥ : S⊥ → R. The
function R⊥ is the restriction to S⊥ of a function R :M \ C → R invariant
under the SO(3) group and which extends to C as R(C) = 0. The function
R measures the area 4πR2 of the orbits of the SO(3) group, which are thus
spheres (Sr,R2gS2) endowed with the metric R2gS2 .

Any vector field V on M \ C can be decomposed as V = V⊥ + V∥, where
V∥ = V A∂A is tangent to Sr and V⊥ is tangent to its g-orthogonal com-

plement, S⊥. For tangent vectors X = X∥ we will use X := gS2(X∥, ·) to

distinguish X = XAdx
A from X = XAdx

A = g(X, ·), so that X = R2X.
For later use, it is convenient to express the Lie derivative of any 2-

covariant symmetric tensor T along any vector of the form s∥ = sA(xB)∂A.
In coordinates {xI , xA} this is

Ls∥T = sA∂ATIJdx
IdxJ + 2

(
sB∂BTIA + TIB∂As

B
)
dxIdxA(5.2)

+ (Ls∥ T̊ )ABdxAdxB,

where we denote by T̊ the “full tangent part” to Sr of T , i.e. T̊ =
TABdx

AdxB. The application of this expression to T = g, and taking into
account that g̊ = R2gS2 , yields, for any pair of vectors X,Y , the following
equality on M \ C

(5.3) Ls∥g(X,Y ) = R2Ls∥gS2(X∥, Y∥).

Let us now single out one axial Killing vector η of the so(3) algebra,
which after a convenient rotation of the spherical coordinates can be set to be
η = ∂ϕ. We denote the corresponding axis by A. Observe that C ⊂ A. Using
the above, the axial Killing vector η, since η = η∥, defines an axial Killing
vector on the unit sphere, η = ηA∂A, and we take the labels a on Y a so that
the rotation generated by η has axis along x3. By doing that we are saying
that the maps S2(⊂ R3) → Sr ⊂M are such that x3 = ±1 are mapped onto
A ∩ Sr. We thus have, by construction, ηA := gS2ABη

B = ϵABD
BY 3, this is

η = − ⋆S2 dY 3. We denote by ι∥ the conformal Killing vector on the sphere
given by

ι := ⋆S2η = dY 3 = dY 3,

where in the last equality we have used the fact that for any function f(xA)
we have df = df .
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We finally define the vector ι on (M, g) tangent to each sphere and
satisfying ι = ι∥. Clearly ⟨ι, ι⟩ = ⟨η, η⟩ and ⟨ι, η⟩ = 0 by construction. The
vector ι is thus defined on M \ C and has the same differentiability as η
there. However, since η = 0 on A (including C ⊂ A), ι extends continuously
to C by setting ι|C = 0. In spherical coordinates xA = {θ, ϕ} we just have
η = ∂ϕ and ι = − sin θ∂θ. Notice also that ι = R2dY 3.

Consider a spherically symmetric Cn+2 spacetime (M, g) with Cn+1 met-
ric (n ≥ 2). Using the construction above we take a spherically symmetric
neighbourhood U ⊂M that may contain a connected component C0 of C.
We make the following assumption on the existence of Cartesian coordinates
with suitable differentiability.

Assumption S1: We assume the existence of a Cn+2 coordinate chart that
maps U onto U = U3 × I where I is an open interval and U3 ⊂ R3 is a
radially symmetric domain. Moreover, C0 ∩ U (if non empty) is mapped to3

{03} × I ⊂ U and using Cartesian coordinates xi = {x, y, z} for R3 and {t}
along I, the metric g takes the form

(5.4) g = −eνdt2 + 2µdt(xidx
i) + υ(xidx

i)2 + χδijdx
idxj ,

where ν, µ, υ and χ are Cn+1 functions of {x, y, z, t} and radially symmetric
in {x, y, z}.

Without loss of generality, we demand that the corresponding spherical
coordinates {r, θ, ϕ} defined by

(5.5)

x = rY 1 = r sin θ cosϕ,

y = rY 2 = r sin θ sinϕ,

z = rY 3 = r cos θ

are such that {θ, ϕ} correspond to the above S2 → Sr construction.
As usual we identify geometric objects on U with their representation

in this chart. We introduce |x| :=
√
x2 + y2 + z2 (which corresponds to the

spherical coordinate r above) and observe that C0 ∩ U corresponds to the
set of points with vanishing |x|. A consequence of assumption S1 is that χ
does not vanish on U (as g would degenerate where χ = 0), and the func-
tion R takes the form R2 = χ |x|2. Therefore, for any function f : U → R,
R2f ∈ O(|x|l) is equivalent to χf ∈ O(|x|l−2), and hence to f ∈ O(|x|l−2).
Analogously, if R2f ∈ o(|x|l) then f ∈ o(|x|l−2).

3We denote the origin of Rp by 0p, see Appendix B.
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In this chart the axial Killing vector η reads η = x∂y − y∂x and its square
norm η2 := ⟨η, η⟩ is η2 = (R2/ |x|2)(x2 + y2) = χ∥x∥2. The (piece of) axis of
symmetry A ∩ U is thus located at A ∩ U = {p ∈ U ;x(p) = y(p) = 0}.

In the following (see also Appendix B) we extend the little-o notation in
terms of a limit on the axis A: For any positive function g defined on U \ A
we set (observe we are using boldface in o)

f ∈ o(g) ⇐⇒ lim
∥x∥→0

fg−1 = 0.

Note that for any function f ∈ o(∥x∥l) we have that f/(
√
η2)l vanishes on

all a ∈ A.
We define n̂ = 1

|x|x
i∂i as the radial vector (normal to each Sr) outside

the origin, which in spherical coordinates reads n̂ = ∂r. It is convenient to
introduce the following smooth vector field defined on U :

(5.6) ϱ̂ := x∂x + y∂y

and simply use the shorthand ẑ := ∂z. In terms of these objects, the following
expressions hold on U \ C0

ι = − 1

|x|(zϱ̂− ∥x∥2ẑ),(5.7)

n̂ =
1

|x| (ϱ̂+ zẑ) .(5.8)

In addition to being Cn+1 on U \ C0, it is clear that n̂ is bounded near the
origin and ι extends continuously to C0 as ι|C0

= 0. An immediate conse-
quence of (5.7)-(5.8) is

(5.9) |x| ϱ̂ = ∥x∥2n̂− zι on U \ C0.

When convenient we will use {wu} to refer to {z, t}.

5.2. Axially symmetric perturbations on spherically symmetric
backgrounds

In this subsection we prepare the stage that will allow us to prove Proposi-
tions 5.6 and 5.7 below. The aim of the propositions is to look (at first and
second order respectively) for a change of gauge that takes the perturbation
tensors K1 and K2, in the form given in Proposition 4.5, to a form in which
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their angular part is proportional to the metric on the sphere, while keep-
ing the block structure. This is part of the very well known Regge-Wheeler
gauge. As we shall see, the gauge vectors V1 and V2 that take us from K1

and K2 to the gauged Kg
1 and Kg

2 with the desired properties satisfy suitable
differential equations with inhomogeneous terms. Since one of our aims is to
understand whether or not the regularity properties (and differentiability)
of K1 and K2 are kept in Kg

1 and Kg
2 , it becomes necessary to study the

properties of those inhomogeneous terms, as well as the effect they have on
the regularity of the gauge vectors via the differential equations that are
satisfied.

We start by establishing several facts of the original perturbation tensors
that will play a role in determining the properties of the inhomogeneous
terms. These first results that follow are stated for general symmetric tensors
invariant under the axial symmetry, which will be denoted by K and taken
to be of class Cm. Later on, these results will be applied to K1 and K2, of
class Cn and Cn−1 respectively, by letting m take the values n and n− 1
correspondingly.

Lemma 5.2. Let K be a symmetric 2-covariant Cm tensor in U for m ≥ 1
satisfying LηK = 0. Then,

1) the functions K(n̂, ι) and K(n̂, n̂) are Cm(U \ C0) and radially sym-
metric in {x, y}. Moreover, K(n̂, ι) ∈ o(∥x∥) and K(n̂, n̂) is bounded
near C0.

2) the functions K(η, η)/∥x∥2 and K
(m)
ιι := |x|2

∥x∥2K(ι, ι) are Cm(U) and

radially symmetric in {x, y}. Moreover, K
(m)
ιι ∈ O(|x|2).

3) the function K(η, ∂u), as well as q−, q+, q×, q defined by

q− :=
R2

2η2
{K(ι, ι)−K(η, η)} , q+ :=

R2

2η2
{K(ι, ι) +K(η, η)} ,(5.10)

q× := |x| R
2

η2
K(ι, η), q := |x|2K(n̂, ι)(5.11)

are all Cm(U), radially symmetric in {x, y} and have the following
structure

K(η, ∂u) = ∥x∥2
[m/2]−1∑

k=0

∥x∥2kP uk (wu) + Φu(m),(5.12)

q− =

[m/2]+1∑

k=1

∥x∥2kP−
0k + zΦ

−(m)
10 + ∥x∥2Φ−(m)

01 ,(5.13)
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q+ = z2P+
20 +

[m/2]+1∑

k=1

∥x∥2kP+
0k + zΦ

+(m)
10 + ∥x∥2Φ+(m)

01 ,(5.14)

q× = z2∥x∥2P×
21 +

[m/2]+1∑

k=2

∥x∥2kP×
0k + z2Φ

×(m)
20 + ∥x∥2Φ×(m)

01 ,(5.15)

q = z∥x∥2P ∗
11 +

[m/2]+1∑

k=2

∥x∥2kP ∗
0k + z2Φ

∗(m)
20 + ∥x∥2Φ∗(m)

01 ,(5.16)

where all P functions are Cm functions of {z, t} and Φ(m) ∈ Cm(U)
are radially symmetric in {x, y} and o(∥x∥m).

In particular, q and q− are o(∥x∥), q ∈ O(|x|3) and q− ∈ O(|x|2). Moreover,
if m ≥ 2 we also have n̂(q−) ∈ o(∥x∥).

Proof. The neighbourhood U (and its corresponding U) and K fit the as-
sumptions of Lemma 3.6. From the definitions in (5.6) it is straightforward to
obtain (with obvious notation when the subindices u, v refer to wu = {z, t},
and A1 with no arguments stands for A1(∥x∥, wu) on U , etc)

2K(η, η) = ∥x∥2(A1 − A2), 2K(ϱ̂, ϱ̂) = ∥x∥2(A1 + A2),(5.17)

K(ϱ̂, ẑ) = Aρz,

K(ẑ, ẑ) = Kzz = Azz, K(η, ∂u) = −Aηu(5.18)

on U . Combining this with (5.7)-(5.8) lead to

K(n̂, ι) =− z∥x∥
|x|2

1

2
∥x∥(A1 + A2 − 2Azz) +

1

|x|2
(∥x∥2 − z2)Aρz,(5.19)

K(n̂, n̂) =
∥x∥2
|x|2

A1 + A2
2

+ 2
z

|x|
Aρz

|x| +
z2

|x|2
Azz,(5.20)

K(m)
ιι :=

|x|2
∥x∥2K(ι, ι) =

1

2
z2(A1 + A2)− 2zAρz + ∥x∥2Azz.(5.21)

By Lemma 3.6 the functions AB(ρ, wu), B ∈ {1, 2, 3, ρu, ηu, uv} admit an
expansion

AB(ρ, z, t) =

[m/2]∑

k=0

ρ2kPB k(z, t) + Φ
(m)
B (ρ, z, t),(5.22)
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where PB k(z, t) are Cm functions of z, t and Φ
(m)
B (ρ, z, t) are o(ρm) and

Cm functions in the domain Uη := {ρ ∈ R≥0, (z, t) ∈ R2; (ρ, 0, z, t) ∈ U} ⊂
R≥0 × R2. Moreover P2 0, P3 0, Pρu 0, Pηu 0 are identically zero because the
functions A2,A3,Aρu,Aηu vanish at ρ = 0. By Lemma A.1 in Appendix A, all
the functions AB(∥x∥, z, t) are Cm(U) (and are obviously radially symmetric
in {x, y}).

Point 1 of the lemma follows form (5.19) and (5.20). The right-hand sides
are clearly Cm(U \ C0). Since z∥x∥/ |x|2 vanishes on ∥x∥ = 0, the first term
in (5.19) is o(∥x∥). Boundedness of ∥x∥2/ |x|2 and z2/ |x|2 plus the fact that
Aρz ∈ o(∥x∥) (because Pρz 0 = 0) implies that the second term is also o(∥x∥).
Therefore K(n̂, ι) ∈ o(∥x∥). Concerning K(n̂, n̂), the only term that needs
inspection is the second one, since the rest are clearly bounded. Taking into
account that, by Lemma B.5 in Appendix B, Aρz ∈ o(∥x∥) implies Aρz ∈
o(|x|), we conclude that K(n̂, n̂) is bounded near C0.

Point 2 is immediate from the first in (5.17) and (5.21), after using again
that Aρz ∈ o(|x|).

Concerning point 3, we compute q−, q+, q×, q. Directly from the defini-
tions (5.10)-(5.11) one finds, using that R2/η2 = |x|2 /∥x∥2,

2q− = z2A2 − 2zAρz + ∥x∥2Azz −
1

2
∥x∥2(A1 − A2),(5.23)

2q+ = z2A1 − 2zAρz + ∥x∥2Azz +
1

2
∥x∥2(A1 − A2),(5.24)

q× = −1

2
z(∥x∥2 + z2)A3 − (∥x∥2 + z2)Aηz,(5.25)

q = −1

2
z∥x∥2(A1 + A2 − 2Azz) + (∥x∥2 − z2)Aρz.(5.26)

Inserting (5.22) in these expressions as well as in the expression for K(η, ∂u)
given in (5.18) yields (5.12)-(5.16) after a simple rearranging of terms. The
right-hand sides of (5.12)-(5.16) satisfy the requirements of Lemma A.1 so
K(η, ∂u), q−, q+, q×, q are Cm(U) as claimed.

For the remaining properties, the fact that q, q− ∈ o(∥x∥), q ∈ O(|x|3)
and q− ∈ O(|x|2) are immediate from (5.16) and (5.13). It remains to show
that n̂(q−) ∈ o(∥x∥) when m ≥ 2. Observe this is a stronger result than the
one provided by Lemma B.7 for a general C1 and o(∥x∥) function. The
reason behind its validity is the special structure of q−, (5.13), which we
rewrite here as

q− =

[m/2]+1∑

k=1

∥x∥2kP−
0k +Φ

(m)
q− ,
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where Φ
(m)
q− is Cm(U), o(∥x∥m) and radially symmetric in {x, y}. Applying

n̂ yields

n̂(q−) =

[m/2]+1∑

k=1

(
2k

∥x∥
|x| ∥x∥

2k−1P−
0k + ∥x∥2k z|x|∂zP

−
0k

)
+ n̂(Φ

(m)
q− ).

Boundedness of ∥x∥
|x| ,

z
|x| , P

−
0k and ∂zP

−
0k imply that the terms in the summa-

tion are o(∥x∥). Lemma B.7, since m ≥ 2 by assumption, ensures n̂(Φ
(m)
q− ) ∈

o(∥x∥). The result follows. □

Our next lemma is concerned with the solutions of a class of differential
equations that will arise in the process of changing the gauge and on the
differentiability and regularity properties of the corresponding gauge vector.
Most of the technical work is developed in Appendix B, to which we refer.

Lemma 5.3. Consider the vector field in U \ C0

S(a) =
1

R2a
γι

for a ∈ R, where γ : U → R satisfies the equation

(5.27) ι(γ) =
∑

(k,l)∈V

∥x∥2kzlPlk(z, t) +
∑

(k′,l′)∈V ′

∥x∥2k′

zl
′

Φ
(m)
l′k′ (x) =: Q

on U . Here, V,V ′ are finite subsets of N× N satisfying, respectively, V ⊂
{k ≥ 1} × {l ≥ 0} and V ′ ⊂ {2k′ + l′ ≥ 1}, Plk are Cm in their arguments

and Φ
(m)
l′k′ are Cm(U) and o(∥x∥m) for m ≥ 1. Then there exists an axi-

ally symmetric solution γ ∈ Cm(U \ C0) ∩ C0(U), and consequently the vec-
tor S(a) is C

m(U \ C0).
Moreover, if b := min

V
{2k + l} ≤ min

V ′
{2k′ + l′}+m =: c+m then γ ∈

O(|x|b) and n̂(γ) ∈ O(|x|b−1), whereas if b > c+m then γ ∈ o(|x|c+m) and
n̂(γ) ∈ o(|x|c+m−1). On top of that, if c+m ≥ b ≥ 2a or b > c+m ≥ 2a− 1
then S(a) can be extended continuously to C0 by setting S(a)|C0

= 0.

Proof. As shown in Corollary B.10 in Appendix B there exists an axially
symmetric solution γ of (5.27) which is Cm(U \ C0) and extends continu-
ously to C0, where it vanishes. By the same corollary, if b ≤ c+m then
γ ∈ O(|x|b) and n̂(γ) ∈ O(|x|b−1), and if b > c+m then γ ∈ o(|x|c+m) and
n̂(γ) ∈ o(|x|c+m−1). Clearly S(a) = γ/R2aι for any a is a Cm vector field
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in U \ C0. To obtain its behaviour at C0 we simply analyse the application
of S(a) to the Cartesian coordinate functions using (5.7) and (5.6), which
provide

S(a)(x) = −χ−a 1

|x|1+2a γxz,

S(a)(y) = −χ−a 1

|x|1+2a γyz,

S(a)(z) = χ−a 1

|x|1+2a γ∥x∥
2

after using R2 = χ |x|2. Recall that χ ∈ Cn+1(U) and does not vanish any-
where in U . If γ ∈ O(|x|b) (case c+m ≥ b) the three components are
O(|x|b+1−2a) and hence their limits at C0 vanish under the hypothesis b ≥ 2a.
If γ ∈ o(|x|c+m) (case b > c+m) the three components are o(|x|c+m+1−2a),
which thus vanish as |x| → 0 if c+m ≥ 2a− 1. In both cases we conclude
that S(a) can be extended continuously to C0 as S(a)|C0

= 0. □

5.2.1. Decomposition on spheres of symmetric axially symmetric
tensors. Given the above results we are ready to prove an intermediate
but important result that is the core of the existence of the gauge we look for
at first order. We present it as an independent result on the decomposition
on spherically symmetric spaces of symmetric axially symmetric tensors into
scalar, vector and tensor components. The importance of this result lies on
the fact that it determines not only the existence (known) but also the dif-
ferentiability of the decomposition and the behaviour of such decomposition
around the origin. We use the notation and definitions from subsection 5.1
regarding spherically symmetric spaces.

Theorem 5.4. Let m ≥ 1 and (M, g) be a spherically symmetric Cm+2

background with a Cm+1 metric satisfying assumption S1. Let K be a sym-
metric 2-covariant Cm tensor on U ⊂M satisfying LηK = 0. There exists a
vector V tangent to the spheres Sr which is Cm on U \ C0 and extends con-
tinuously to C0, where it vanishes, and a function k ∈ Cm(U \ C0) ∩ C0(U)
and O(|x|2) such that K̊, namely the tangent-tangent part to the spheres of
K, decomposes as

(5.28) K̊AB = DAVB +DBVA + kgS2AB.

The vector V is given explicitly by V = αι+ βη with Cm(U \ C0) functions
α and β, both bounded near C0.
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Remark 5.5. The proof of the theorem also shows that the tensor

N := K − Lαιg

satisfies N(ι, ι) = N(η, η) and N(ι, η) = K(ι, η).

Proof. We start by showing that (5.28) is equivalent to

(5.29) H := K − LV g

satisfying

(5.30) H(ι, ι) = H(η, η), H(ι, η) = 0.

Indeed, the contraction of (5.29) with any pair of vectors X = X∥, Y = Y∥,
i.e. tangent to the spheres,

H(X,Y ) = K(X,Y )− LV g(X,Y ),

is equivalent, term by term and on each sphere, to

H̊(X∥, Y∥) = K̊(X∥, Y∥)−R2LV∥
gS2(X∥, Y∥)

after using (5.3) and the fact that V = V∥. In index notation, this is in turn
equivalent to

H̊AB = K̊AB −R2LV∥
gS2AB

= K̊AB −R2(DAV B +DBV A)

= K̊AB −DAVB −DBVA,

and the equivalence between (5.28) and (5.30) follows.
Consider V = αι+ βη. We start with the following identity for any 2-

covariant tensor T

LV T = αLιT + βLηT + dα⊗ T (ι, ·) + T (·, ι)⊗ dα(5.31)

+ dβ ⊗ T (η, ·) + T (·, η)⊗ dβ,

which applied to g renders

(5.32) LV g = αLιg + dα⊗ ι+ ι⊗ dα+ dβ ⊗ η + η ⊗ dβ
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after using η is Killing. Therefore H takes the form

H = K − αLιg − dα⊗ ι− ι⊗ dα− dβ ⊗ η − η ⊗ dβ.

We use now that ι is the conformal Killing vector on the sphere with ι =
R2dY 3, so that using (5.3),

Lιg(X,Y ) = R2Lι∥gS2(X∥, Y∥)(5.33)

= −2R2Y 3gS2(X∥, Y∥) = −2Y 3⟨X∥, Y∥⟩

(recall g̊ = R2gS2 and g = g⊥ + g̊), and therefore

H(X,Y ) = K(X,Y ) + 2Y 3α⟨X∥, Y∥⟩ −X(α)ι(Y∥)(5.34)

− ι(X∥)Y (α)−X(β)η(Y∥)− η(X∥)Y (β).

Hence, in particular,

H(η, η) = K(η, η) + 2Y 3α⟨η, η⟩ − 2η(β)η(η),(5.35)

H(ι, ι) = K(ι, ι) + 2Y 3α⟨ι, ι⟩ − 2ι(α)ι(ι),(5.36)

H(ι, η) = K(ι, η)− ι(ι)η(α)− ι(β)η(η).(5.37)

The equations in (5.30) are therefore equivalent to

0 = K(η, η)−K(ι, ι) + 2 (ι(α)− η(β)) η2,(5.38)

0 = K(ι, η)− (η(α) + ι(β)) η2,(5.39)

respectively, after using ι(ι) = η(η) = ⟨η, η⟩ =: η2. These equations clearly
imply η(ι(α)) + η(η(β)) = 0 and η(ι(β)) + η(η(α)) = 0. Since [η, ι] = 0 it
suffices to consider α and β such that η(α) = 0 and η(β) = 0, and the equa-
tions become

0 = K(η, η)−K(ι, ι) + 2ι(α)η2,(5.40)

0 = K(ι, η)− ι(β)η2.(5.41)

We thus have two separate ODEs, one for α and one for β. We deal first
with equation (5.40), which can be cast as

(5.42) ι(R2α) = q−

with q− given by (5.10). Lemma 5.2 ensures that q− satisfies the require-
ments of the right-hand side Q of equation (5.27) of Lemma 5.3 with
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b = min
V

{2k + l} = 2 and c = min
V ′

{2k′ + l′} = 1. Note that Lemma 5.2 also

ensures q− ∈ o(∥x∥) and O(|x|2). By setting γ = R2α and Q = q−, Lemma
5.3 thus establishes there exists an axially symmetric solutionR2α ∈ Cm(U \
C0) ∩ C0(U) of (5.42), and consequently the vector Vι := αι = R−2γι is
Cm(U \ C0). Moreover, since we have b(= 2) ≤ c+m given that m ≥ 1,
R2α is also O(|x|2), and since b ≥ 2a for a = 1, the vector Vι = R−2γι ex-
tends continuously to C0, where it vanishes. Note that R2α ∈ O(|x|2) implies
α ∈ Cm(U \ C0) is bounded near C0, as claimed. The use of (5.37) with β = 0
(and η(α) = 0) together with the above proves, in particular, Remark 5.5.

We next analyse in an analogous manner equation (5.41), which we write
as

(5.43) ι(|x|R2β) = q×

with q× given by (5.11). Lemma 5.2 ensures now that q× satisfies the re-
quirements of Q in Lemma 5.3 with b = 4 and c = 2. By setting γ = |x|R2β
and Q = q× Lemma 5.3 thence ensures that |x|R2β ∈ Cm(U \ C0) ∩ C0(U)
and O(|x|4) if m ≥ 2 (because then b ≤ c+m) and o(|x|3) if m = 1 (because
b > c+m). This implies, in any case, that β ∈ Cm(U \ C0) can be continu-
ously extended to C0, where it vanishes. As a result, the vector Vη := βη is
Cm(U \ C0) and can be continuously extended to C0 as zero.

Clearly, the vector V = Vι + Vη satisfies both conditions in (5.30) and
thence the outcome of the theorem.

Finally, a straightforward calculation shows, since η(α) = 0, that
DAVA = DAVιA = R2(ι(α)− 2αY 3), from where it is direct to arrive at

(5.44) k =
1

2
trS2K̊ −DAVιA =

R2

η2
K(η, η) + 2R2αY 3

after using (5.40). Since R2/η2 = |x|2 /∥x∥2, we can use point 2 of Lemma
5.2 to conclude that R2

η2 K(η, η) is Cm(U) and O(|x|2), while we have from the

above that R2α ∈ Cm(U \ C0) ∩ C0(U) and O(|x|2). Therefore k ∈ Cm(U \
C0) ∩ C0(U) and O(|x|2). □

5.2.2. Choice of gauge at first order. We are ready to show that given
any axially symmetric perturbation there exists gauge vectors that render
the full angular part of the perturbations in some convenient manner. At
this point we could use the previous theorem in full in order to achieve a
perturbation tensor that is proportional to the unit sphere metric (at first
order). However, for our purposes we will only need the partial result given
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by its Remark 5.5, leaving aside the {θ, ϕ} crossed term, which makes things
simpler. That is because later we will focus on perturbations that inherit an
orthogonally transitive two-dimensional group of isometries, in which case
the crossed term vanishes from the beginning, and thus it suffices to take
β = 0.

Proposition 5.6. Let n ≥ 1 and (M, g) be a spherically symmetric Cn+2

background with a Cn+1 metric satisfying assumption S1. Let K1 be a Cn(U)
first order perturbation tensor satisfying LηK1 = 0. Then there exists a
Cn(U \ C0) first order gauge vector V1 = −α̃ι, that extends continuously to
zero on C0, such that the corresponding gauge transformed tensor Kg

1 (which
is automatically Cn−1(U \ C0)) satisfies

(5.45) Kg
1 (η, η) = Kg

1 (ι, ι),

where

(5.46) Kg
1 (η, η) = K1(η, η) + 2

z

|x| α̃η
2.

In addition

Kg
1 (ι, η) = K1(ι, η),(5.47)

Kg
1 (ι, ν1) = K1(ι, ν1)− ν1(α̃)η

2,(5.48)

Kg
1 (η, ν1) = K1(η, ν1),(5.49)

Kg
1 (ν1, ν2) = K1(ν1, ν2),(5.50)

for any vectors ν1 and ν2 orthogonal to the spheres Sr. The function α̃ is
axially symmetric, of class Cn(U \ C0) and bounded near C0, and |x| n̂(α̃) ∈
Cn−1(U \ C0) is also bounded near C0.

Moreover, the function Kg
1 (η, η)/η

2 is Cn(U \ C0), axially symmetric and
bounded near C0, and the function

qg1 := |x|2Kg
1 (ι, n̂) outside C0, qg1(C0) = 0

is Cn−1(U \ C0) ∩ C0(U), o(∥x∥) and takes the form

(5.51) qg1 = z∥x∥2P ∗
11 +

[n/2]+1∑

k=2

∥x∥2kP ∗
0k + ∥x∥2Φ∗(n)

01 + z2Φ
∗(n)
20 + ∥x∥2Γ(n−1)

1
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where the P ∗ functions are Cn functions of {z, t}, Φ∗(n) ∈ Cn(U) are radi-

ally symmetric in {x, y} and o(∥x∥n) and Γ
(n−1)
1 ∈ Cn−1(U \ C0) ∩ C0(U) is

radially symmetric in {x, y} and O(|x|).

Proof. Let α̃ be the function α of Theorem 5.4 applied to K = K1 and
n = m, and define the vector V1 = −α̃ι. From that theorem we know that
α̃ is Cn(U \ C0) and bounded near the origin. By Remark 5.5 we have that
Kg

1 = K1 + LV1
g satisfies (5.45) and (5.47).

For later use we note that (5.34) with H = Kg
1 , K = K1, α = α̃ and

β = 0 yields, for any any pair of vectors X,Y ,

Kg
1 (X,Y ) = K1(X,Y ) + 2Y 3α̃⟨X∥, Y∥⟩ −X(α̃)ι(Y∥)− ι(X∥)Y (α̃).(5.52)

The equation satisfied by α̃ is (from (5.42))

ι(R2α̃) = q1−, q1− :=
R2

2η2
{K1(ι, ι)−K1(η, η)} .(5.53)

⇐⇒ 0 = K1(η, η)−K1(ι, ι) + 2ι(α̃)η2.(5.54)

As discussed in the proof of Theorem 5.4 (for K = K1, m = n and q− =
q1−), (5.53) satisfies the requirements of Lemma 5.3 with γ = R2α̃, Q = q1−
and m = n ≥ 1, with b = 2 and c = 1.

Equations (5.46) and (5.48)-(5.50) follow immediately from (5.52) after
using η(α̃) = 0, ι(ι) = ⟨η, η⟩ =: η2. The claim that Kg

1 (η, η)/η
2 is Cn(U \

C0) and bounded near the centre follows from equation (5.46), since α̃ (by
Theorem 5.4) and K1(η, η)/η

2 (by point 2 in Lemma 5.2 applied to K = K1

and m = n) are both Cn(U \ C0) and bounded near the centre.
Concerning the properties of qg1 , we use (5.48) with ν1 = n̂, to get (recall

that η2 = χ∥x∥2)

qg1 := |x|2Kg
1 (ι, n̂) = |x|2K1(ι, n̂) + ∥x∥2Γ(n−1)

1 ,(5.55)

Γ
(n−1)
1 := −χ |x|2 n̂(α̃).

By point 3 in Lemma 5.2 (with K = K1, m = n), the first term extends to a
Cn(U) function admitting an expression of the form (5.16). For the second
term, we compute (using R2 = χ |x|2),

(5.56) |x| n̂(α̃) = |x| n̂(γ/R2) =
1

χ

(
n̂(γ)

|x| − γ

|x|2
(
|x| n̂(χ) 1

χ
+ 2

))
.
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Since γ ∈ O(|x|2) and n̂(γ) ∈ O(|x|1) by virtue of Lemma 5.3 (since c+m ≥
b = 2, see above), and the term |x| n̂(χ)/χ = 1

χx
i∂iχ is Cn(U) (because χ ∈

Cn+1(U) and does not vanish on U), we conclude that |x| n̂(α̃) is bounded

near C0, as claimed. This implies in particular that Γ
(n−1)
1 is O(|x|). Given

that α̃ ∈ Cn(U \ C0) it follows immediately that Γ
(n−1)
1 (extended at the

centre with the value zero) is Cn−1(U \ C0) ∩ C0(U) and O(|x|). We conclude
that the function qg1 in (5.55) is Cn−1(U \ C0) ∩ C0(U), and takes the form
(5.51), from where it is direct to check that, since n ≥ 1, qg1 is also o(∥x∥). □

5.2.3. Choice of gauge at second order. We now perform an analo-
gous, but more involved, procedure for the second order perturbation.

Proposition 5.7. Assume the setting of Proposition 5.6 and restrict n ≥ 2.
Let K2 be a Cn−1(U) second order perturbation tensor satisfying LηK2 =
0. Then, there exists a Cn−1(U \ C0) second order gauge vector V2 = −υ̃ι,
that extends continuously to zero on C0, such that the corresponding gauge
transformed tensor Kg

2 (which is immediately Cn−2(U \ C0)) satisfies

(5.57) Kg
2 (η, η) = Kg

2 (ι, ι).

In addition,

Kg
2 (ι, η) = K2(ι, η)− 2ι (α̃K1(ι, η)) ,(5.58)

Kg
2 (ι, ν1) = K2(ι, ν1)− ν1(υ̃)η

2 − 2ι (α̃K1(ι, ν1)) + α̃η2ι (ν1(α̃))(5.59)

− 2ν1(α̃)K1(ι, ι) + α̃(Kg
1 +K1)(ι, [ι, ν1])

+ 3ι(α̃)ν1(α̃)η
2 − 4α̃

z

|x|η
2ν1(α̃),

Kg
2 (η, ν1) = K2(η, ν1)− 2α̃ι (K1(η, ν1))− 2ν1(α̃)K1(η, ι)(5.60)

+ α̃(Kg
1 +K1)(η, [ι, ν1]),

Kg
2 (ν1, ν2) = K2(ν1, ν2)− 2α̃ι (K1(ν1, ν2)) + 2ν1(α̃)ν2(α̃)η

2(5.61)

+ α̃(Kg
1 +K1)([ι, ν1], ν2) + α̃(Kg

1 +K1)(ν1, [ι, ν2])

− 2ν1(α̃)K1(ι, ν2)− 2ν2(α̃)K1(ι, ν1),

for any vectors ν1 and ν2 orthogonal to the spheres Sr. The function υ̃ is
axially symmetric, Cn−1(U \ C0) and bounded near C0.

Moreover, the function Kg
2 (η, η)/η

2 is Cn−1(U \ C0) and bounded near
C0, and the function

qg2 := |x|2Kg
2 (ι, n̂) outside C0, qg2(C0) = 0
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is Cn−2(U \ C0) ∩ C0(U) and o(∥x∥) and takes the form

qg2 = z∥x∥2P ∗∗
11 +

[(n−1)/2]+1∑

k=2

∥x∥2kP ∗∗
0k(5.62)

+ ∥x∥2Φ∗∗(n−1)
01 + z2Φ

∗∗(n−1)
20 + ∥x∥2Γ(n−2)

2 − ι (2α̃q1)

where q1 := |x|2K1(ι, n̂), all the P
∗∗ functions are Cn−1 functions of {z, t},

Φ∗∗(n−1) ∈ Cn−1(U) are radially symmetric in {x, y} and o(∥x∥n−1) and

Γ
(n−2)
2 ∈ Cn−2(U \ C0) ∩ C0(U) is radially symmetric in {x, y} and O(|x|).

Moreover, the function ι(α̃q1) is C
n−1(U \ C0), o(∥x∥) (in particular, it ad-

mits a continuous extension to C0 with value zero).

Proof. By Proposition 5.6 there exists a first order gauge vector V1 = −α̃ι,
where α̃ ∈ Cn(U \ C0) satisfies (5.54), so that (5.45) holds. The second order
gauge transformation (2.6) can be rewritten (upon combining with (2.5)) as

(5.63) K2
g = K2 + LV2

g + LV1
M, M := K1

g +K1.

Consider the second order gauge vector V2 = −υ̃ι. Immediate consequences
of (5.31) (with β = 0) and (5.33) are

LV2
g(X,Y ) =2Y 3υ̃⟨X∥, Y∥⟩ −X(υ̃)ι(Y∥)− Y (υ̃)ι(X∥),

LV1
M(X,Y ) =− α̃ι (M(X,Y )) + α̃M([ι,X], Y ) + α̃M(X, [ι, Y ])

−X(α)M(ι, Y )−M(X, ι)Y (α̃),

where to get the second we also used te Leibniz rule for the Lie derivative.
Thus, (5.63) is

Kg
2 (X,Y ) = K2(X,Y ) + 2Y 3υ̃⟨X∥, Y∥⟩ −X(υ̃)ι(Y∥)− Y (υ̃)ι(X∥)(5.64)

− α̃ι (M(X,Y )) + α̃M([ι,X], Y ) + α̃M(X, [ι, Y ])

−X(α̃)M(ι, Y )−M(X, ι)Y (α̃).

The explicit form of M follows from Proposition 5.6, which gives

M(η, η) = 2K1(η, η) + 2Y 3α̃η2,(5.65)

M(ι, ι) = 2K1(ι, ι) + 2Y 3α̃η2 − 2η2ι(α̃),(5.66)

M(ι, η) = 2K1(ι, η), M(ι, ν1) = 2K1(ι, ν1)− ν1(α̃)η
2,(5.67)

M(η, ν1) = 2K1(η, ν1), M(ν1, ν2) = 2K1(ν1, ν2),(5.68)
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where, to get the second, we have used (5.54). Inserting these into (5.64)
and using [ι, η] = 0, η(α̃) = 0, a straightforward computation yields (5.58)-
(5.61), as well as

Kg
2 (ι, ι) = K2(ι, ι) + 2Y 3υ̃η2 − 2η2ι(υ̃)− 2α̃ι (K1(ι, ι))(5.69)

+ α̃ι
(
−2Y 3α̃η2 + 2η2ι(α̃)

)
− 4ι(α̃)K1(ι, ι)

− 4Y 3α̃ι(α̃)η2 + 4η2ι(α̃)2,

Kg
2 (η, η) = K2(η, η) + 2Y 3υ̃η2 − 2α̃ι (K1(η, η))− 2α̃ι

(
α̃Y 3η2

)
.(5.70)

We may now find the explicit form of equation (5.57). Subtracting (5.69)
and (5.70) one finds, after trivial rearrangements, that (5.57) becomes

0 = K2(η, η)−K2(ι, ι)− 2α̃ι (K1(η, η)−K1(ι, ι))(5.71)

+ 2η2ι(υ̃)− α̃ι
(
2η2ι(α̃)

)
+ 4ι(α̃)K1(ι, ι)

+ 4Y 3α̃ι(α̃)η2 − 4η2ι(α̃)2.

In order to analyse this equation, it turns out to be convenient to introduce
an the auxiliary ζ̃ := R2υ̃ + α̃q1−, where q1− was introduced in (5.53) and it
is Cn(U) and O(|x|2) by Lemma 5.2 applied to K = K1, m = n, q− = q1−.
Using the first equation in (5.53), a straightforward computation shows that
(5.71) can be rewritten as

(5.72) ι(ζ̃) = q2− +
1

R2
q1−(q1− − 2q1+),

where

q1+ :=
R2

2η2
{K1(ι, ι) +K1(η, η)} , q2− :=

R2

2η2
{K2(ι, ι)−K2(η, η)} .

The right-hand side of (5.72) is invariant under η, so it suffices to look for
ζ̃ satisfying η(ζ̃) = 0. It is convenient to decompose ζ̃ = ζ̃(0) + ζ̃(1) and split
(5.72) into the two equations

ι(ζ̃(0)) = q2−,(5.73)

ι(R2ζ̃(1)) = q1−(q1− − 2q1+).(5.74)

The splitting is such that the right-hand side is Cn−1(U) in the first equation
and Cn(U) in the second. Concerning the first equation Lemma 5.2, applied
to K = K2 and m = n− 1 ≥ 1, tells us that q2− has the form (5.13) and
thus satisfies the requirements of Lemma 5.3 with b = min

V
{2k + l} = 2 and
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c = min
V ′

{2k′ + l′} = 1, and thence b ≤ c+m. Applying the lemma, there

exists a solution ζ̃(0) satisfying

ζ̃(0) ∈ Cn−1(U \ C0) ∩ C0(U), ζ̃(0) ∈ O(|x|2), n̂(ζ̃(0)) ∈ O(|x|).(5.75)

Regarding equation (5.74) we first obtain the structure of its right-hand side.
From Lemma 5.2 applied toK = K1 (specifically from expressions (5.13) and
(5.14) for q1− and q1+) it follows

q1−(q1− − 2q1+) = z2
[n/2]+1∑

k=1

∥x∥2kP̆2k +

2[n/2]+2∑

k=2

∥x∥2kP̆0k

+ ∥x∥4Φ̆(n)
02 + z2Φ̆

(n)
20 + z∥x∥2Φ̆(n)

11 ,

where the functions P̆ are Cn in {z, t} and Φ̆(n) ∈ Cn(U) are radially sym-
metric in {x, y} and o(∥x∥n). Thus, the right-hand side of (5.74) satisfies
the hypotheses of Lemma 5.3 with m = n ≥ 2, b = min

V
{2k + l} = 4 and

c = min
V ′

{2k′ + l′} = 2, so that b ≤ c+m. By this lemma, there exists a so-

lution R2ζ̃(1 of (5.74) satisfying

R2ζ̃(1) ∈ Cn(U \ C0) ∩ C0(U), R2ζ̃(1) ∈ O(|x|4), n̂(R2ζ̃(1)) ∈ O(|x|3)
=⇒ ζ̃(1) ∈ Cn(U \ C0) ∩ C0(U), ζ̃(1) ∈ O(|x|2), n̂(ζ̃(1)) ∈ O(|x|).

Combining this and (5.75), there is a solution ζ̃ of (5.72) satisfying

ζ̃ ∈ Cn−1(U \ C0) ∩ C0(U), ζ̃ ∈ O(|x|2), n̂(ζ̃) ∈ O(|x|).(5.76)

This, together with the fact that α̃ ∈ Cn(U \ C0) is bounded (by Proposi-
tion 5.6), and q1− is Cn(U) and O(|x|2), imply that

(5.77) υ̃ = R−2(ζ̃ − α̃q1−) is Cn−1(U \ C0) and bounded near C0

(note that υ̃ is not necessarily defined at the origin). Since ι extends con-
tinuously to the centre as the zero vector, boundedness of υ̃ implies that
V2 = −υ̃ι extends continuously to the centre with the value zero.



✐

✐

“8-Mars” — 2023/6/30 — 18:42 — page 1917 — #45
✐

✐

✐

✐

✐

✐

Gauge fixing and regularity of axially symmetric 1917

We deal now with the properties of Kg
2 (η, η)/η

2. First, we rewrite equa-
tion (5.70) as

1

∥x∥2K
g
2 (η, η) =

1

∥x∥2K2(η, η) + 2
z

|x|χυ̃(5.78)

− 2α̃
1

∥x∥2 ι (K1(η, η))− 2
1

∥x∥2
1

|x| ι
(
α̃zη2

)
.

We want to check that all terms in the right-hand side are Cn−1(U \ C0) and
bounded near C0. For the first term this is immediate from item 2 of Lemma
5.2 applied to K2 and m = n− 1 ≥ 1. For the second, it follows from (5.77)
and the properties of χ. Concerning the third term, point 2 in Lemma 5.2
implies that K1(η, η) admits a decomposition of the form

2K1(η, η) = ∥x∥2 (P1 0(z, t) + Φη) ,

with P1 0(x, t) is a C
n function of its variables and Φη is Cn(U) and o(∥x∥).

Computing the derivative we get

2ι(K1(η, η)) = ∥x∥2
{
−2

z

|x| (P1 0 +Φη) +
∥x∥2
|x| ∂zP1 0 + ι(Φη)

}

after taking into account that ι(∥x∥) = − z
|x|∥x∥, ι(z) = ∥x∥2/ |x| and ι(t) =

0. By Lemma B.8 the function Φη satisfies ι(Φη) ∈ o(∥x∥). It is clear that
all terms in brackets are Cn−1(U \ C0) and bounded near C0, so the same
holds for ∥x∥−2ι(K1(η, η)) and we conclude that the third term in (5.78) is
Cn−1(U \ C0) and bounded. Finally, the last term reads

1

∥x∥2 |x| ι(α̃zη
2) =

q1−

|x|2
z

|x| + α̃
η2

|x|2
− 2χα̃

z2

|x|2
,

after using (5.53). All three terms are Cn(U \ C0), and since q1− ∈ O(|x|2)
the first term is, like the rest, bounded near C0. Summarizing, (5.78) implies
that Kg

2 (η, η)/∥x∥2 is Cn−1(U \ C0) and bounded near the origin. The same
holds for Kg

2 (η, η)/η
2 given the properties of χ.

We consider now |x|2Kg
2 (n̂, ι), for which we need to analyse (5.59) for

ν1 = n̂. Using [ι, n̂] = 0 we obtain, after simple rearranging,

|x|2Kg
2 (ι, n̂) = |x|2K2(ι, n̂) + ∥x∥2 (ΓA + ΓB)− 2ι

(
α̃ |x|2K1(ι, n̂)

)
,(5.79)
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where we have defined

ΓA := χ |x|
{
− |x| n̂(υ̃) + |x| α̃ι(n̂(α̃)) + |x| n̂(α̃)(3ι(α̃)− 4α̃Y 3)

}
,(5.80)

ΓB := −2
|x|2
∥x∥2 n̂(α̃)K1(ι, ι).(5.81)

The first term in (5.79) is a Cn−1(U) function by virtue of Lemma 5.2 with
K = K2, m = n− 1. In fact, it corresponds to the function q in that lemma,
so it admits an expansion of the form

|x|2K2(ι, n̂) = z∥x∥2P ∗∗
11 +

[(n−1)/2]+1∑

k=2

∥x∥2kP ∗∗
0k + ∥x∥2Φ∗∗(n−1)

01 + z2Φ
∗∗(n−1)
20

(5.82)

with all properties stated in the Proposition. For the second term we use an
analogous procedure as in Proposition 5.6. We may use (5.56) replacing α̃
by υ̃ and using the corresponding γ = R2υ̃ = ζ̃ − α̃q1−, so that

|x| n̂(υ̃) = 1

χ

(
n̂(ζ̃ − α̃q1−)

|x| − ζ̃ − α̃q1−

|x|2
(
|x| n̂(χ) 1

χ
+ 2

))(5.83)

=
1

χ

(
n̂(ζ̃)

|x| − |x| n̂(α̃) q1−
|x|2

− α̃n̂(q1−)

|x| − ζ̃ − α̃q1−

|x|2
(
|x| n̂(χ) 1

χ
+ 2

))
.

On the other hand, we compute

|x| ι(n̂(α̃)) = |x| n̂(ι(α̃)) = |x| n̂
(q1−
R2

)
(5.84)

=
1

χ

(
n̂(q1−)

|x| − q1−

|x|2
(
|x| n̂(χ) 1

χ
+ 2

))
.

All terms in (5.83) and (5.84) are bounded near the origin as a consequence
of (5.76), together with the facts (we also use that o(∥x∥) =⇒ o(|x|), see
Lemma B.5)

q1− ∈ O(|x|2), n̂(q1−) ∈ o(∥x∥)
(Lemma 5.2 for K = K1,m = n ≥ 2, q− = q1−),

α̃ and |x| n̂(α̃) bounded (Proposition 5.6).

Boundedness of the last term in brackets in (5.80) is immediate. The prop-
erty that all terms in ΓA are Cn−2(U \ C0) is obvious. Thus, we conclude
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that

ΓA ∈ Cn−2(U \ C0), ΓA ∈ O(|x|)

so that, in particular this function extends continuously to the centre with
the value zero. Concerning ΓB, point 2 of Lemma 5.2 applied to K = K1

and m = n ≥ 2, together with the above properties of |x| n̂(α̃), ensure

ΓB is Cn−1(U \ C0) and O(|x|). The function Γ
(n−2)
2 in the statement of

the Proposition is simply Γ
(n−2)
2 := ΓA + ΓB and obviously also satisfies

Γ
(n−2)
2 ∈ Cn−2(U \ C0) ∩ C0(U) and O(|x|).

It only remains to show that the last term in (5.79), which is clearly
Cn−1(U \ C0), can also be extended continuously to C0. Recall first that the
function q1 := |x|2K1(ι, n̂) is (by Lemma 5.2 applied to K = K1, m = n)
Cn(U) and o(∥x∥). Computing the derivative, and using ι(α̃) = q1−/R2,
one finds

(5.85) ι
(
α̃ |x|2K1(ι, n̂)

)
= χ−1 q1−

|x|2
q1 + α̃ι(q1),

Since q1− ∈ O(|x|2) the first term extends continuously to C0 where it van-
ishes. For the second, we apply Lemma B.8 to q1 for l = 1 (recall that n ≥ 2)
to conclude that ι(q1) ∈ o(∥x∥). Since α̃ is bounded near the origin, it fol-
lows that α̃ι(q1) is o(∥x∥) and hence extends continuously to C0 with the
value zero. Note that the form (5.62), given that n ≥ 2, implies that qg2 is
o(∥x∥). This completes the proof. □

6. General stationary and axisymmetric perturbation

scheme on spherically symmetric backgrounds

In this section we combine the results in Section 4.1 for orthogonally tran-
sitive actions and those in Section 5 involving spherically symmetric back-
grounds to construct a stationary and axisymmetric perturbation scheme
on spherically symmetric backgrounds. We first show the existence of gauge
vectors that render the first and second order perturbation tensors in the
standard forms assumed in the literature. Subsection 6.2 is devoted to dis-
cussing uniqueness properties of these gauge vectors and the last subsection
to studying the gauge freedom left in those forms.

While in the previous section the spherical background was arbitrary,
here we restrict ourselves to the static case, since this is what we shall need
in [15]. We start by making explicit the definition of static and spherically
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symmetric spacetime that we use and then impose the global assumptions
on the background that will be needed.

Definition 6.1. A (four-dimensional) spacetime (M, g) is static and spher-
ically symmetric if it admits an SO(3) group of isometries acting transitively
on spacelike surfaces (which may degenerate to points), and a Killing vector
ξ which is timelike everywhere, commutes with the generators of SO(3) and
is orthogonal to the SO(3) orbits.

It is easy to check that such ξ is necessarily hypersurface orthogonal,
which justifies the name “static” in the definition.

Our global assumption is the following.

Assumption H1: M is diffeomorphic to U3 × I where I ⊂ R is an open
interval and U3 is a radially symmetric domain of R3, which may or may
not contain the origin, with the orbits of the Killing ξ along the I factor
and SO(3) acting in the standard way on U3. In addition, in the cartesian
coordinates {x, y, z, t} of U3 × I, the metric g takes the form

g = −eνdt2 + υ(xidx
i)2 + χδijdx

idxj

with ν, υ, χ are Cn+1 functions of the coordinates x, y, z and radially sym-
metric.

Note that assumption H1 implies assumption S1, so all the results in the
previous section hold. Observe also that the set of fixed points of the SO(3)
action (the centre of symmetry) is either empty or C0 := {03} × I.

The Lorentzian signature of g implies that both χ and χ+ υ|x|2 are pos-
itive everywhere, so we may define a Cn+1 function onM by eλ = χ+ υ|x|2.
We also introduce the non-negative function R ∈ Cn+1(M \ C0) defined by
R2 = χ|x|2. It is clear that this function can be extended continuously to
C0, where it vanishes.

From {x, y, z, t} we may define standard spherical coordinates {r, θ, ϕ},
see (5.5), so that r = |x|. The set {r, θ, ϕ, t} is a coordinate system in M \ A
with r taking values in (a, b) with 0 ≤ a < b ≤ +∞. Note that U3 is a ball
if and only if C0 ̸= ∅, and if and only if a = 0.

The functions ν, λ,R are radially symmetric so, when expressed in the
spherical coordinates depend only on r. We write ν(r), λ(r),R(r) (i.e. mak-
ing explicit the argument r) when we refer to this representation of the
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functions. We finally note that the metric g on M \ A in spherical coordi-
nates takes the form

(6.1) g = −eν(r)dt2 + eλ(r)dr2 +R2(r)
(
dθ2 + sin2 θdϕ2

)
, ξ = ∂t.

Consider the smooth vector fields {∂x, ∂y, ∂z, ∂t} and the vector field
n̂ = 1

|x|(x∂x + y∂y + z∂z) = ∂r, which is smooth outside C0. The functions
ν, λ satisfy

eν = g(∂t, ∂t) in M, eλ = g(n̂, n̂) in M \ C0,

and in fact can also be defined by these expressions in the respective do-
mains.

Any of the Killing vectors ηa, a = 1, 2, 3, of the so(3) algebra together
with the static Killing ξ generate an Abelian G2 group of isometries which
acts orthogonally transitively on timelike surfaces outside the axis of rotation
A. Following Section 5 we choose η = ∂ϕ, without loss of generality. Observe
that, under our assumptions, M \ A is a simply connected manifold.

Consider a perturbation scheme (Mε, ĝε, {ψε}) of class Cn+1 around this
background that inherits the orthogonally transitive stationary and axisym-
metric action generated by {ξ, η}. By Proposition 4.5 there is a choice of
gauge that preserves the differentiability (i.e. Cn for K1 and Cn−1 for K2)
such that

K1 = K1ij(x
c)dxidxj +K1ab(x

c)dxadxb,(6.2)

K2 = K2ij(x
c)dxidxj +K2ab(x

c)dxadxb,(6.3)

in the coordinates {t, r, θ, ϕ} where the metric is given by (6.1) and ξ = ∂t,
η = ∂ϕ. The metric has the form (4.5) with {xi} = {t, ϕ}, {xa} = {r, θ}.
Observe that the coordinates used in Section 5.1 correspond now to {xI} =
{t, r} and {xA} = {θ, ϕ}. We define for convenience the unit vector n :=
−e−λ/2n̂ outside the origin, where it is of class Cn+1 by construction. In
spherical coordinates we have n = −e−λ/2∂r.

From now one we let (Mε, ĝε, {ψε}) to denote themaximal perturbation
scheme (of the given perturbation) where this holds. Our aim is to show that
the perturbation tensors K1 and K2, assumed to be Cn and Cn−1 tensors
respectively, can be rendered in the forms found in the literature, at the cost
of (i) losing their differentiability by one outside the origin (we refer to the
discussion of this point in the Introduction) but keeping a crucial property of
boundedness at the origin, and (ii) restricting the gauge freedom, of course.
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Proposition 6.2. Let (M, g) be a static and spherically symmetric back-
ground, with g of class Cn+1, with n ≥ 2, satisfying assumption H1. Let K1

and K2 be first and second order perturbation tensors of class Cn and Cn+1

respectively, satisfying (6.2) and (6.3). Then, there exists gauge vectors V1
and V2, that extend continuously to zero at C0, such that the gauge trans-
formed tensors KΨ

1 and KΨ
2 are respectively Cn−1 and Cn−2 outside the

origin and satisfy

KΨ
1 = KΨ

1 ij(x
c)dxidxj +KΨ

1 ab(x
c)dxadxb,(6.4)

KΨ
2 = KΨ

2 ij(x
c)dxidxj +KΨ

2 ab(x
c)dxadxb,(6.5)

on M \ A together with

KΨ
1 ABdx

AdxB = 4k(1)R2gS2 , KΨ
2 ABdx

AdxB = 4k(2)R2gS2 ,(6.6)

where the functions k(1) and k(2), invariant under η and ξ, are definedM \ C0
by

(6.7) 4k(1) =
1

η2
KΨ

1 (η, η), 4k(2) =
1

η2
KΨ

2 (η, η)

and satisfy k(1) ∈ Cn(M \ C0) and k(2) ∈ Cn−1(M \ C0), and are bounded
near C0. Moreover,

1) the 1-form KΨ
1 (ξ, ·) equals K1(ξ, ·) on M \ C0 and thus extends to a

1-form of class Cn(M).

2) KΨ
1 (n, n) is Cn(M \ C0) and bounded near C0.

3) the 1-form KΨ
2 (ξ, ·) is of class Cn−1(M \ C0) and bounded near C0. It

is given by

KΨ
2 (ξ, ·) = K2(ξ, ·)− 2α̃LιK1(ξ, ·).(6.8)

In particular

KΨ
2 (ξ, η) = K2(ξ, η)− 2α̃ι (K1(ξ, η))(6.9)

= K2(ξ, η)− 2α̃
{
∥x∥2Pn + ι(Φ(n))

}
,

where Pn ∈ Cn−1(M \ C0) and bounded near C0 and Φ(n) is Cn(M)
and Φ(n) ∈ o(∥x∥n).

4) KΨ
2 (n, n) is Cn−1(M \ C0) and bounded near C0.



✐

✐

“8-Mars” — 2023/6/30 — 18:42 — page 1923 — #51
✐

✐

✐

✐

✐

✐

Gauge fixing and regularity of axially symmetric 1923

5) the functions

qΨ1 = |x|2KΨ
1 (ι, n̂) outside C0, qΨ1 = 0 on C0(6.10)

qΨ2 = |x|2KΨ
2 (ι, n̂) outside C0, qΨ2 = 0 on C0(6.11)

are Cn−1(M \ C0) and Cn−2(M \ C0) respectively, and both C0(M) and
o(∥x∥), and take the forms given by (5.51) and (5.62) respectively.

Proof. The proof is based on Propositions 5.6 and 5.7. The vectors ξ, η, ι
are smooth on M \ C0 (the first two actually everywhere). From the co-
ordinate expressions ξ = ∂t, η = ∂ϕ, ι = − sin θ∂θ, valid on a dense set of
M \ C0, it follows immediately that {ξ, η, ι} commute with each other on
M \ C0. It is also clear that ξ(η2) = 0. Since, by assumption, K1, K2 sat-
isfy LξK1 = LξK2 = 0, the Lie derivative along ξ of equation (5.54) yields
η2ξ(ι(α̃)) = 0 and therefore ξ(ι(α̃)) = 0 outside the axis A. Using [ξ, ι] = 0,
this is equivalent to ι(ξ(α̃)) = 0 on M \ A. This ensures that the solution α̃
of (5.54) can be constructed such that it satisfies ξ(α̃) = 0 outside the axis.
Since α̃ ∈ Cn(M \ C0), we actually have ξ(α̃) = 0 everywhere on M \ C0.
Similarly, the Lie derivative along ξ of (5.71) shows that υ̃ can be con-
structed so that it satisfies ξ(υ̃) = 0 on M \ C0. We assume these choices
from now on.

The block diagonal form of (6.2)-(6.3) is equivalent to

K1(ι, η) = 0, K1(ι, ξ) = 0, K1(η, n) = 0, K1(n, ξ) = 0,(6.12)

K2(ι, η) = 0, K2(ι, ξ) = 0, K2(η, n) = 0, K2(n, ξ) = 0,(6.13)

outside the axis. However, since K1 and K2 are Cn(M) and Cn−1(M) re-
spectively, (6.12) and (6.13) also hold on M \ C0. Applying the gauge trans-
formation discussed in Propositions 5.6, 5.7 and denoting the corresponding
gauge transformed tensors as KΨ

1 = Kg
1 , K

Ψ
2 = Kg

2 , it follows directly from
(5.47)-(5.50) (applied to ν1 = ξ, ν2 = n) that

KΨ
1 (ι, η) = 0, KΨ

1 (ι, ξ) = 0, KΨ
1 (η, n) = 0, Kψ

1 (n, ξ) = 0.(6.14)

Similarly, (5.58)-(5.61) yield, after using [ι, n] = 0,

KΨ
2 (ι, η) = 0, KΨ

2 (ι, ξ) = 0, KΨ
2 (η, n) = 0, KΨ

2 (n, ξ) = 0.(6.15)

This proves in particular that the block diagonal form claimed in (6.4)-(6.5)
holds.



✐

✐

“8-Mars” — 2023/6/30 — 18:42 — page 1924 — #52
✐

✐

✐

✐

✐

✐

1924 M. Mars, B. Reina, and R. Vera

Define k(1), k(2) as in (6.7). By virtue of Propositions 5.6 and 5.7 these
functions are bounded near the centre and, respectively, Cn(M \ C0) and
Cn−1(M \ C0). Using spherical coordinates xA = {θ, ϕ} and noting that ι =

− sin θ∂θ = −∥x∥
|x| ∂θ, on M \ A we have

KΨ
1 ABdx

AdxB = KΨ
1 (∂θ, ∂θ)dθ

2 +KΨ
1 (∂ϕ, ∂ϕ)dϕ

2

=
|x|2
∥x∥2K

Ψ
1 (ι, ι)dθ2 +KΨ

1 (η, η)dϕ2

=
|x|2
∥x∥2K

Ψ
1 (η, η)

(
dθ2 + sin2 θdϕ2

)
=

R2

η2
KΨ

1 (η, η)gS2 ,

where the first equality is a consequence of KΨ
1 (ι, η) = 0, and the third

follows from (5.45) (and that |x|2 /∥x∥2 = R2/η2). A similar calculation is
valid for KΨ

2 . This establishes (6.6).
We focus now on KΨ

1 (ξ, ·) and KΨ
2 (ξ, ·). For the first we apply (5.52) to

ξ = ∂t and any Y to get

KΨ
1 (ξ, Y ) = K1(ξ, Y )− ξ(α̃)ι(Y∥) = K1(ξ, Y ),(6.16)

after using ξ∥ = 0 and ξ(α̃) = 0. Thus,KΨ
1 (ξ, ·) = K1(ξ, ·), and the first claim

follows. At second order, (5.64) applied to ξ and ∂xµ gives, after taking into
account [ξ, ι] = 0, ξ(υ̃) = 0, ξ(α̃) = 0, K1(ι, ξ) = 0 and M(ξ, ·) = 2K1(ξ, ·)
(by (6.16)),

KΨ
2 (ξ, ∂xµ) =K2(ξ, ∂xµ)− 2α̃(LιK1)(ξ, ∂xµ).(6.17)

The first term at the right is clearly Cn−1(M). By Proposition 5.6, α̃ is
Cn−1(M \ C0) and bounded near C0, and thence also is the second term.
In particular we have KΨ

2 (ξ, η) = K2(ξ, η)− 2α̃ι (K1(ξ, η)). By expression
(5.12) in Lemma 5.2 for K = K1, m = n and u = t one has (we drop a
superindex t to simplify the notation)

K1(ξ, η) = ∥x∥2
[n/2]−1∑

k=0

∥x∥2kPk(t, z) + Φ(n) := ∥x∥2P̃ +Φ(n)

and hence

KΨ
2 (ξ, η) =K2(ξ, η)− 2α̃

{
−2Y 3∥x∥2P̃ + ∥x∥2ι(P̃) + ι(Φ(n))

}
,
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where

ι(P̃) =

[n/2]−1∑

k=0

{
−2kY 3∥x∥2kP

}
+

∥x∥2
|x| ∂zP̃

is clearly Cn−1(M \ C0) and bounded near C0. With the appropriate defini-
tion of Pn, expression (6.9) and all the properties listed in item 3 follow. For
KΨ

1 (n, n) and KΨ
2 (n, n), equations (5.50) and (5.61) with ν1 = ν2 = n lead

to

KΨ
1 (n, n) = K1(n, n),

KΨ
2 (n, n) = K2(n, n)− 2α̃(LιK1)(n, n)(6.18)

+ 2(|x|n(α̃))2 η
2

|x|2
− 4 |x|n(α̃) 1

|x|K1(ι, n)

where for the second we used [n, ι] = 0. Lemma 5.2 ensures that K1(n, n) is
Cn(M \ C0) and bounded near C0, so point 2 holds. Concerning the second
order, all terms in (6.18) are clearly Cn−1(M \ C0). Lemma 5.2 applied to
K1, LιK1, and K2, and recalling e−λ is bounded near C0, ensures K2(n, n),
LιK1(n, n) are bounded near C0, and that K1(ι, n) is o(∥x∥). Therefore
|x|−1K1(ι, n) is bounded by Lemma B.5. Since |x|n(α̃) (by Proposition 5.6)
and η2/ |x|2 are also bounded, point 4 is proved.

Finally, the functions |x|2KΨ
1 (n̂, ι) and |x|2KΨ

2 (n̂, ι) are Cn−1(M \ C0)
and Cn−2(M \ C0) by virtue of Propositions 5.6 and 5.7 respectively. Those
propositions also provide the explicit forms of qΨ1 = qg1 and qΨ2 = qg2 , and
their behaviour near the axis and the origin as indicated. □

6.1. Canonical form of the perturbations

By (6.4)-(6.5) and (6.6), the perturbation tensors KΨ
1 , KΨ

2 are determined
by five functions each. Two of them, k(1) and k(2) have already been de-
fined in the Proposition. Before entering into the main result of the paper
we introduce the functions that will determine the remaining parts (four
components respectively) of KΨ

1 and KΨ
2 .

Let us stress first the fact that given any 1-form X satisfying X(n̂) =
X(ι) = 0 we have X(ϱ̂) = 0 (see (5.9)) and, as a consequence, the set of
equations {−xF = X(∂y), yF = X(∂x)} is compatible and defines a unique
function F outside the axis x = y = 0. The 1-forms of the form X = K(ξ, ·)
with K any of the tensors K1, K2, K

Ψ
1 , KΨ

2 satisfy that property. In the
following we use ξ = ∂t.
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Regarding KΨ
1 , and recalling point 1 of Proposition 6.2, the expressions

h(1) := −1

4
e−νKΨ

1 (∂t, ∂t),(6.19)

−xχω(1) = KΨ
1 (∂t, ∂y), yχω(1) = KΨ

1 (∂t, ∂x),(6.20)

define, respectively, h(1) ∈ Cn(M) and ω(1) :M \ A −→ R. Combining
(6.20) with η = x∂y − y∂x yields

−η2ω(1) = KΨ
1 (∂t, η)

so that, in particular, ω(1) is axially symmetric. Since the right-hand sides
of (6.20) are Cn(M) we may apply Lemma A.3 in Appendix A to conclude
that ω extends to a Cn−1(M) function.

The third function is m(1) ∈ Cn(M \ C0) defined by

m(1) :=
1

4

{
KΨ

1
α
α + e−νKΨ

1 (∂t, ∂t)− 8k(1)
}

(6.21)

=
1

4

{
KΨ

1
α
α − 4h(1) − 8k(1)

}
.

Finally, we define f (1) :M \ C0 −→ R as

(6.22) f (1) := e−λ
1

2
√
χ

1

|x|3
Υ1 + β1,

where β1 is any radially symmetric Cn−1(M \ C0) function bounded near C0
and Υ1 any axially symmetric solution to the equation

(6.23) ι(Υ1) = qΨ1

satisfying the outcome of Corollary B.11 form = n. We will show below that
this Corollary does in fact apply.

As regards to KΨ
2 we analogously define {h(2),m(2)} on M \ C0 and ω(2)

on M \ A by

h(2) := −1

4
e−ν

(
KΨ

2 (∂t, ∂t)− 2η2ω(1)2
)
,(6.24)

−xχω(2) = KΨ
2 (∂t, ∂y), yχω(2) = KΨ

2 (∂t, ∂x),(6.25)

m(2) :=
1

4

{
KΨ

2
α
α + e−νKΨ

2 (∂t, ∂t)− 8k(2)
}
,(6.26)
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while we define f (2) on M \ C0 as

(6.27) f (2) := e−λ
1

2
√
χ

1

|x|3
Υ2 + β2,

where β2 is any radially symmetric Cn−2(M \ C0) function bounded near C0
and Υ2 is any axially symmetric solution to the equation

(6.28) ι(Υ2) = qΨ2

satisfying the outcome of Corollary B.11 with m = n− 1. As before, we
will show below that this Corollary may be applied. We emphasize that,
unlike h(1) and ω(1), we cannot guarantee that h(2) and ω(2) can be extended
differentiably to M . This is because KΨ

2 (ξ, ·) is not known to be Cn−1(M)
due to the presence of the last term in (6.8).

For later use we observe that (6.25) implies

(6.29) −η2ω(2) = KΨ
2 (∂t, η),

and that the functions m(1) and m(2) satisfy (on M \ C0)

m(1) =
1

4
KΨ

1 (n, n) =
1

4
e−λKΨ

1 (n̂, n̂),(6.30)

m(2) =
1

4
KΨ

2 (n, n) =
1

4
e−λKΨ

2 (n̂, n̂).(6.31)

Proposition 6.2 already determines the regularity restrictions on the
functions k(1) and k(2) implied by the differentiability of K1 and K2. The
next theorem, which is the main result in this work, combines Propositions
4.5 and 6.2 in order to, firstly, establish rigorously that first and second or-
der perturbation tensors of finite differentiability and preserving the axial
symmetry admit a gauge transformation that puts them in a canonical form
and, secondly, to provide detailed information on the differentiability and
regularity properties of suitably defined function components.

Theorem 6.3 (Main Theorem). Let (M, g) be a static and spherically
symmetric background satisfying assumption H1, with g of class Cn+1 with
n ≥ 2, given in spherical coordinates by (6.1). Let us be given first and sec-
ond order perturbation tensors K1 and K2 of class Cn(M) and Cn−1(M)
respectively satisfying (6.2) and (6.3), where {xi} = {t, ϕ} and {xa} = {r, θ}
and ξ = ∂t, η = ∂ϕ.
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Then, there exists gauge vectors V1 and V2, that extend continuously
to zero at C0, such that the gauge transformed tensors KΨ

1 and KΨ
2 are of

class Cn−1(M \ C0) and Cn−2(M \ C0) respectively, and define the functions
{h(1),m(1), k(1), ω(1), f (1), h(2),m(2), k(2), ω(2), f (2)} as above that satisfy the
following properties:

(a.1) h(1) is Cn(M),

(a.2) ω(1) is Cn−1(M),

(a.3) the vector field ω(1)η is Cn(M \ C0),
(a.4) m(1) and k(1) are Cn(M \ C0) and bounded near C0,
(a.5) f (1) is Cn−1(M \ C0), bounded near C0, Cn(Sr) on all spheres Sr, and

moreover ∂θf
(1) is Cn−1 outside the axis and extends continuously to

A \ C0, where it vanishes, and n̂(f (1)) and ∂tf
(1) are Cn−1(Sr) on all

spheres Sr,

(b.1) h(2) is Cn−1(M \ C0) and bounded near C0,
(b.2) ω(2) is Cn−2(M \ C0) and bounded near C0,
(b.3) the vector field ω(2)η is Cn−1(M \ C0),
(b.4) m(2) and k(2) are Cn−1(M \ C0) and bounded near C0,
(b.5) f (2) is Cn−2(M \ C0), bounded near C0, Cn−1(Sr) on all spheres Sr and

moreover ∂θf
(2) is Cn−2 outside the axis and extends continuously to

A \ C0, where it vanishes, and n̂(f (2)) and ∂tf
(2) are Cn−2(Sr) on all

spheres Sr.

In terms of these functions KΨ
1 and KΨ

2 take the following form on M \ A

KΨ
1 = −4eν(r)h(1)(r, θ)dt2 − 2ω(1)(r, θ)R2(r) sin2 θdtdϕ(6.32)

+ 4eλ(r)m(1)(r, θ)dr2 + 4k(1)(r, θ)R2(r)(dθ2 + sin2 θdϕ2)

+ 4eλ(r)∂θf
(1)(r, θ)R(r)drdθ,

KΨ
2 =

(
−4eν(r)h(2)(r, θ) + 2ω(1)2(r, θ)R2(r) sin2 θ

)
dt2(6.33)

− 2ω(2)(r, θ)R2(r) sin2 θdtdϕ+ 4eλ(r)m(2)(r, θ)dr2

+ 4k(2)(r, θ)R2(r)(dθ2 + sin2 θdϕ2)

+ 4eλ(r)∂θf
(2)(r, θ)R(r)drdθ.

Proof. Expressions (6.32) and (6.33) follow directly from Proposition 6.2
and the definitions (6.19)-(6.25) after taking into account that ∥x∥2dϕ =
|x|2 sin2 θdϕ = xdy − ydx and R2 = χ |x|2 and η2 = χ∥x∥2.
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It remains to analyse the differentiability and boundedness near C0 of
the various functions. Points (a.1) and (a.2) have already been proved when
h(1) and ω(1) were introduced in (6.19) and (6.20). Point (a.3) follows im-
mediately from

ωη = −
(
KΨ

1 (∂t, ·) + 4eνh(1)dt
)

since the right-hand side is a Cn(M) 1-form (by point 1 in Proposition 6.2).
For point (a.4), the statement on k(1) has been established in Proposition 6.2.
By point 2 of that proposition the right-hand side of (6.30), and thus m(1),
also is.

Establishing (a.5) needs some additional work. f (1) being defined
by (6.22), we directly have from (6.23) that

∂θf
(1) = − 1

∥x∥e
−λ 1

2
√
χ

1

|x|2
qΨ1

outside the axis. Given that qΨ1 is Cn−1(U \ C0) ∩ C0(U) and o(∥x∥) (see
Proposition 6.2), ∂θf

(1) ∈ Cn−1(U \ A) and can be extended continuously to
A \ C0, where it vanishes. Regarding f (1) itself, we must analyse the solutions
Υ1 of equation (6.23). By Proposition 6.2, qΨ1 is given by (5.51), so the
right-hand side of (6.23) matches the right-hand side of (B.28) with b =
min
V

{2k + l} = 3, c = min
V ′

{2k′ + l′} = 2, and m = n ≥ 2, so that

3 ≤ b ≤ c+ n,

and Corollary B.11 ensures there exists a solution γ0 = Υ1 which is
Cn−1(M \ C0) ∩ C0(M), Cn(Sr) on all Sr, and O(|x|3), and moreover n̂(Υ1)
and ∂tΥ1 are Cn−1(Sr) on all Sr. Since χ ∈ Cn+1(M) and nowhere zero, it
follows that f (1) defined by (6.22) has the properties listed in item (a.5).

Next, we consider the second order quantities. The definitions of h(2)

and ω(2) imply

KΨ
2 (∂t, ·) = (−4eνh(2) + 2η2ω(1))dt− ω(2)η2dϕ.(6.34)

Point 3 in Proposition 6.2 ensures that the left-hand side of (6.34) is
Cn−1(M \ C0) and bounded near C0. Using that ω(1) is Cn−1(M), (b.1) fol-
lows after contraction with ∂t.

Expressions (6.25) define an axially symmetric function ω(2) :M \ A −→
R. Since the right-hand sides of (6.25) are Cn−1(M \ C0), Lemma A.3 (with
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n replaced by n− 1) implies that ω(2) ∈ Cn−2(M \ C0). This proves the dif-
ferentiability claim in (b.2). To show boundedness near the origin we use an
auxiliary function W0 defined in terms of the original second order pertur-
bation K2 (before it has been gauge transformed into KΨ

2 ). Specifically, W0

is defined by

(6.35) −xχW0 = K2(∂t, ∂y), yχW0 = K2(∂t, ∂x).

Since K2 is of class Cn−1(M), it follows from Lemma A.3 that W0 is
Cn−2(M). It is also clear that (6.35) imply

−η2W0 = K2(∂t, η).(6.36)

The function ω(2) can be written in terms of W0. Inserting (6.36) and (6.9)
into (6.29) yields

−η2ω(2) = −η2W0 − 2α̃
{
∥x∥2Pn + ι(Φ(n))

}

with Pn ∈ Cn−1(M \ C0) and bounded near C0, and Φ(n) ∈ Cn(M) and
o(∥x∥n). Therefore, outside the axis we have

ω(2) = W0 + 2α̃

{∥x∥2
η2

Pn +
1

η2
ι(Φ(n))

}
.

This proves that ω(2) is bounded near the origin because W0 ∈ Cn−2(M),
the functions α̃ and ∥x∥2Pn/η2 = Pn/χ are both bounded near C0 and, fi-
nally, ι(Φ(n))/η2 vanishes at ∥x∥ = 0 by virtue of Lemma B.8, which ensures
ι(Φ(n)) ∈ o(∥x∥2) given that n ≥ 2. With this we have established point
(b.2).

For (b.3) we simply note that (6.34) can be rewritten as

ω(2)η = −
(
KΨ

2 (∂t, ·) + (4eνh(2) − 2η2ω(1))dt
)

and we have already seen that the right-hand side is a Cn−1 one-form outside
C0.

As for (b.4), Proposition 6.2 already ensures k(2) is Cn−1(M \ C0) and
bounded near C0, and point 4 of the same proposition states that the right-
hand side of (6.31), and thus m(2), also is.
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We finally focus on f (2), defined by (6.27). Directly from (6.28) we can
write, outside the axis,

∂θf
(2) = − 1

∥x∥e
−λ 1

2
√
χ

1

|x|2
qΨ2 .

Given that qΨ2 is Cn−2(U \ C0) ∩ C0(U) and o(∥x∥), as stated by Proposi-
tion 6.2, then ∂θf

(2) ∈ Cn−2(U \ A) and can be extended continuously to
A \ C0, where it vanishes. Regarding f (2), analogously as for f (1), we must
analyse the solutions Υ2 of equation (6.28). This time the form of the inho-
mogeneous term of the equation qΨ2 , given by (5.62), renders (6.28) explicitly
as

ι (Υ2 + 2α̃q1) = q2 + ∥x∥2Γ(n−2)
2 .

Given the form of q2 (c.f. the right hand side of (5.82)) and the properties

of Γ
(n−2)
2 in Proposition 5.7, the right-hand side of the equation matches the

right-hand side of (B.28) with b = min
V

{2k + l} = 3, c = min
V ′

{2k′ + l′} = 2,

and m = n− 1 ≥ 1, so that

3 ≤ b ≤ c+ n− 1

and Corollary B.11 shows that there exists a solution γ0 = Υ2 + 2α̃q1 which
is Cn−2(M \ C0) ∩ C0(M), Cn−1(Sr) on all Sr, and O(|x|3), and more-
over n̂(Υ2 + 2α̃q1) and ∂t(Υ2 + 2α̃q1) are Cn−2(Sr) on all Sr. Since α̃q1 is
Cn−1(M \ C0) ∩ C0(M) and q1 ∈ O(|x|3) (the latter because of Lemma 5.2
with K = K1 and q = q1), we obtain Υ2 ∈ Cn−2(M \ C0) ∩ C0(M) and
O(|x|3), and n̂(Υ2) and ∂tΥ2 are Cn−2(Sr) on all Sr. Therefore f

(2) sat-
isfies the properties listed in point (b.5). □

The previous theorem makes the hypotheses that K1 and K2 are of the
form (6.2) and (6.3). This assumption is well-justified in the present setup
because it holds automatically for any perturbation scheme that inherits an
orthogonally transitive, stationary and axially symmetric action, as proved
in Proposition 4.5. We state the corresponding result as a corollary, where
we also add the property that the gauge vectors V1 and V2 whose existence
has been proved are axially symmetric, tangent to Sr and orthogonal to η,
and extend continuously to zero at the centre (see Propositions 5.6 and 5.7).

Corollary 6.4. Let (M, g) be a static and spherically symmetric back-
ground satisfying assumption H1, with g of class Cn+1, with n ≥ 2, given
in spherical coordinates by (6.1). Let us be given a Cn+1 maximal perturba-
tion scheme (Mε, ĝε, {ψε}) inheriting the orthogonally transitive stationary
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and axisymmetric action generated by {ξ = ∂t, η = ∂ϕ}. Then, the outcome
of Theorem 6.3 holds.

Moreover, the gauge vectors V1 and V2 whose existence has been granted
and that transform any perturbation tensors K1, K2 in this perturbation
scheme into the form given by Theorem 6.3, commute with η, are tangent
to Sr and orthogonal to η, and extend to zero at C0.

This corollary ensures that there is a change of gauge that takes any
(orthogonally transitive) stationary and asymmetric perturbation (to second
oder) of a static and spherically symmetric configuration to the usual forms
(6.32)-(6.33), at the expense of losing one derivative and deteriorating the
regularity at the origin. In the following we discuss the gauge properties
compatible with (6.32)-(6.33).

6.2. On uniqueness of gauges

So far all the results have focused on the existence of the gauge vectors V1 and
V2 that take from (6.2) and (6.3) to the canonical form of Theorem 6.3. In
this subsection we discuss their uniqueness properties for fixed transformed
tensors KΨ

1 and KΨ
2 . We start with a general result based on the symmetries

of the background and of the perturbation tensors.

Lemma 6.5. Consider a static and spherically symmetric background ad-
mitting no further local isometries and denote by ξ its static and η one of its
axial Killing vectors. Let K1 and K2 be C2 perturbation tensors invariant
under ξ and η on this background. If K ′

1 and K ′
2 are obtained from K1 and

K2 by a gauge transformation defined by axially symmetric gauge vectors V1
and V2 (i.e. that commute with η), then the most general such gauge vectors
are given by

Ṽ1 = V1 +A1ξ +B2η, Ṽ2 = V2 +A2ξ +B2η, A1, A2, B1, B2 ∈ R.

Proof. We start with the first order. From (2.5) and, by assumption,

K ′
1 = K1 + LV1

g, K ′
1 = K1 + LṼ1

g.

This leads to LV1−Ṽ1
g = 0 and therefore Ṽ1 − V1 is any Killing ζ1 of the

background. By assumption ζ1 commutes with η and given that the Killing
algebra of the backgroud is R⊕ so(3) it must be ζ1 = A1ξ +B1η with



✐

✐

“8-Mars” — 2023/6/30 — 18:42 — page 1933 — #61
✐

✐

✐

✐

✐

✐

Gauge fixing and regularity of axially symmetric 1933

A1, B1 ∈ R. At second order we have, from (2.6) using (2.5), and by as-
sumption

K ′
2 = K2 + LV2

g + LV1
(Kg

1 +K1), K ′
2 = K2 + LṼ2

g + LṼ1
(Kg

1 +K1).

Therefore 0 = LV2−Ṽ2
g − Lζ1(K ′

1 +K1) = LV2−Ṽ2
g, where in the second

equality we use that K ′
1 and K1 are invariant under ξ and η. The claim

follows. □

This result combined with Lemma 3.5 allows us to complement Corol-
lary 6.4 with the following uniqueness result.

Remark 6.6. In the setup of Corollary 6.4, if the background admits no
further local isometries and the perturbation scheme (Mε, ĝε, {ψε}) is re-
stricted so that the inherited axial Killing vector η̂ε = dψε(η) is independent
of the choice ψε ∈ {ψε}, then the gauge vectors V1 and V2 are both unique
up to the addition of a Killing vector of the background that commutes
with η. We emphasize that this condition on the perturbation scheme is no
restriction at all if ĝε, ε ̸= 0, admits only one axial symmetry.

6.3. Gauge freedom

In this subsection we investigate the gauge freedom to second order that re-
spects the form of the first and second order perturbation tensors, as given
in the main theorem. Our aim is to find the most general gauge transforma-
tion respecting this form under the additional condition that the first order
perturbation tensor takes a very special simple form (corresponding to a
pure rotation). This is interesting for two reasons. Firstly, because in the
setup of [15], this form of the first order perturbation tensor will in fact be
a consequence of the gravitational field equations for a rotating fluid ball.
And secondly because, as we will discuss later in more detail, our result
will include as a particular case the most general gauge transformation that
respects the structure of the canonical form of a general perturbation tensor
at first order.

We start with a general lemma concerning gauge vectors and symmetries.

Lemma 6.7. Let (M, g) be a spacetime with Killing algebra A. Let K be a
symmetric two-covariant tensor invariant under a subalgebra A0 ⊂ A. Then
the tensor K ′ := K + Lsg, with s ∈ X(M) is also invariant under A0 if and
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only if

[ζ, s] ∈ A ∀ζ ∈ A0.(6.37)

Assume now A = span{ξ} ⊕ span{ηa} with {ηa} a basis of an so(3) Killing
algebra and [ξ, ηa] = 0, a = 1, 2, 3. Let A0 = span{ξ, η} with η := η1. Then
there exists η̂ ∈ so(3) such that s = ŝ+ η̂ with ŝ satisfying

[ξ, ŝ ] = Cη +Dξ, C,D ∈ R,(6.38)

[η, ŝ ] = Aη +Bξ, A,B ∈ R.(6.39)

If, in addition, the orbits of η are closed, then A = B = 0.

Proof. Taking the Lie derivative of K ′ along ζ ∈ A0 and imposing invariance

0 = LζK ′ = LζK + LζLsg = L[ζ,s]g + LsLζg = L[ζ,s]g

so [ζ, s] is a Killing vector field and (6.37) is established. For the second
statement recall that the structure constants of so(3) are

[ηa, ηb] = ϵab
cηc a, b, c = 1, 2, 3

where ϵab
c is the antisymmetric symbol. From (6.37) we have [η, s] = Aaηa +

Bξ and [ξ, s] = Caηa +Dξ, Aa, B, Ca, D ∈ R. Commuting ξ with [η, s] and
using the Jacobi identity

0 = [ξ, Aaηa +Bξ] = [ξ, [η, s]]

= [[ξ, η], s] + [η, [ξ, s]] = [η, Caηa +Dξ] = Caϵ1a
bηb,

which is equivalent to C2 = C3 = 0. Define η̂ = ϵ c1 dA
dηc and

ŝ := s− η̂.

Setting C := C1, (6.38) follows. Moreover,

[η, ŝ ] = [η, s− ϵ c1 dA
dηc]

= Bξ +Aaηa − ϵ c1 dA
dϵ1c

aηa = Bξ +Aaηa − (δad − δa1δd1)A
dηa

= Bξ +Aaηa −Aaηa + η1A
1 = Bξ +A1η1,

which is (6.39) after setting A := A1.
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Assume now that the orbits of η are closed4 (we stay away from the
axis). Since η, ξ and ŝ form a 3-dimensional algebra A3 determined by
(6.38)-(6.39) plus an Abelian subalgebra for {η, ξ}, the argument in Section
3 in [2]5 shows that ŝ must also commute with the cyclic η. Therefore (6.39)
must hold with A = B = 0. □

Remark 6.8. The results (6.37), (6.38) and (6.39) are purely local, so
that they apply also to spacetimes admitting no isometry group action (e.g.
because only a portions of the spacetimes is considered).

Lemma 6.7 and the last argument of its proof also implies the following
Corollary.

Corollary 6.9. Let (M, g) be a spacetime admitting a two-dimensional
Abelian Killing algebra A. Write A = span{ξ, η} and assume that η has
closed orbits. Then Lsg is invariant under A if and only if

[η, s] = 0,(6.40)

[ξ, s ] = Cη +Dξ, C,D ∈ R.(6.41)

This result may have implications for studying gauge invariance proper-
ties of perturbations in general stationary and axially symmetric spacetimes.

From now on, however, we restrict ourselves to static and spherically
symmetric spacetimes as defined in Definition 6.1 and Assumption H1 with
n ≥ 0, and assume we have selected a Killing vector η in the so(3) Killing
algebra and have chosen spherical coordinates adapted to η, so that, away
from the axis of η, the metric takes the form (6.1). In particular, for the rest
of the section the functions ν, λ,R will be functions of only one variable r.
For simplicity we relax our convention of writing the argument explicitly,
i.e. ν(r), etc. since no confusion will arise.

Define s̃ by

(6.42) ŝ = Ctη +Dtξ + s̃,

and note that, from (6.38)-(6.39) with A = B = 0,

(6.43) [η, s̃] = [ξ, s̃] = 0.

4Note that this condition is automatic when suitable global conditions, such as
e.g. assumption H1, are imposed.

5As noted in the reference, although the text refers to Killing vectors, the fact
that the corresponding local group of transformations are isometries is not used in
the proof.
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The difference tensor K ′ −K = Lsg has the form

K ′ −K = Lsg = Lŝg = LCtη+Dtξ+s̃g(6.44)

= C (dt⊗ η + η ⊗ dt) +D (dt⊗ ξ + ξ ⊗ dt) + Ls̃g
= −2Deνdt2 + 2CR2 sin2 θdtdϕ+ Ls̃g.

The form of s̃ can be restricted further under additional assumptions on the
form of K −K ′, i.e. Lsg.

Proposition 6.10. Let (M, g) be a static and spherically symmetric space-
time satisfying assumption H1 for n ≥ 0, with a selection of axial Killing
vector field η and s a vector field on M . Assume

(i) Lsg is invariant under span{ξ, η}.
(ii) Lsg satisfies, in the coordinates {t, ϕ, r, θ},

(Lsg)ia = 0

where {xi} = {t, ϕ} and {xa} = {r, θ}.

(A) Then

s = Ctη +Dtξ + s+ ζ C,D ∈ R(6.45)

where s = sa(xb)∂xa and ζ is any Killing vector field of g.
(B) If, in addition to (i) and (ii), Lsg has xA = {θ, ϕ} components of the
form

(Lsg)ABdxAdxB =W (xa)
(
dθ2 + sin2 θdϕ2

)
(6.46)

for some function W (xa), then there exists Y(r, θ) and α(r) such that

s = 2Y(r, θ)∂r + 2α(r) sin θ∂θ, and(6.47)

Lsg = −2eν (Yν,r +D) dt2 + 2CR2 sin2 θdtdϕ(6.48)

+ 4eλ
(
Y,r +

1

2
Yλ,r

)
dr2

+ 4R2

(
YR,r

R + α(r) cos θ

)(
dθ2 + sin2 θdϕ2

)

+ 4Reλ
(Y,θ

R +Re−λα,r sin θ
)
drdθ.
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(C) If, in addition to (i) and (ii), R,r and ν,r are not zero on dense subsets
and Lsg has only component in {t, ϕ}, i.e. exists Z(xa) such that

Lsg = 2Z(xa)R2 sin2 θdtdϕ,

then

s = Ctη + ζ, and Lsg = 2CR2 sin2 θdtdϕ, i.e. Z(xa) = C.(6.49)

Proof. We have already shown, from Lemma 6.7 and (6.42), that s =
η̂ + Ctη +Dtξ + s̃ for some s̃ satisfying (6.43). This imposes that the compo-
nents s̃α of s̃ only depend on xb. Moreover, (6.44) implies Ls̃g(∂xi , ∂xa) = 0
due to assumption (ii). Explicitly

0 = s̃µ∂µgia + gij∂as̃
j + gab∂is̃

b = gij∂as̃
j =⇒ ∂as̃

j = 0,

and therefore s̃ j are in fact constants. Thus, there exist constants a, b such
that s̃ = aη + bξ + s with s = sa(xb)∂xa . Defining ζ = η̂ + aη + bξ, expres-
sion (6.45) follows.

In case (B), i.e. under the assumption (6.46), we need to impose that
(Lsg)ϕϕ − sin2 θ(Lsg)θθ = 0. Explicitly

0 = sa∂agϕϕ − sin2 θ
(
sa∂agθθ + 2gθθ∂θs

θ
)
= 2R2 sin2 θ

(
cos θ

sin θ
sθ − ∂θs

θ

)
.

Integrating, there exists α(r) such that sθ = 2α(r) sin θ. Letting 2Y(r, θ) :=
sr we obtain (6.47). Moreover, a direct computation gives

Lsg = −2Yeνν,rdt2 + 4eλ
(
Y,r +

1

2
Yλ,r

)
dr2

+ 4R2

(
YR,r

R + α(r) cos θ

)(
dθ2 + sin2 θdϕ2

)

+ 4Reλ
(Y,θ

R +Re−λα,r(r) sin θ
)
drdθ,

which inserted into (6.44) yields (6.48).
Case (C) is obviously a particular case of (B), so (6.47) and (6.48) hold.

This already implies that Z = C. To show the rest of (6.49) we use the
fact that the coefficients in (6.48) all vanish, except the {t, ϕ}. The dr2
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component restricts Y(r, θ) to be

Y = e−λ/2Θ(θ)

for some function Θ(θ). The dθ2 component forces, after using that R,r is
non-zero on a dense set, that

α(r) =
α0R,re

−λ/2

R , Y = −α0e
−λ/2 cos θ, α0 ∈ R.

The dt2 then gives, using that ν,r is non-zero almost everywhere, α0 = 0 and
D = 0, and (6.49) follows. □

We have now the ingredients to analyse in detail the complete gauge
freedom that respects the form of the perturbation tensors achieved in our
main Theorem 6.3 assuming that the first order perturbation tensor has the
specific form given by (6.50) below. As already said, this assumption turns
out not to be restrictive at all in the setting of [15] where slowly rotating
fluid balls with fixed central pressure are considered.

Even more, the next proposition determines the most general gauge
transformation that leaves invariant the form of a general first order per-
turbation tensor in canonical form. Indeed, the gauge transformation law
of second order perturbation tensors reduces to the first order one when
K1 is identically zero (see (2.5)-(2.6)). Since the case K1 ≡ 0 is covered by
the proposition (by simply setting ω(1) = 0) it follows that the most general
gauge transformation that leaves invariant the form of a first order pertur-
bation K1 defined by the right-hand side of (6.51) (with ω(1) = 0) is given
by (6.54)-(6.58) with corresponding gauge vector (6.53).

Proposition 6.11 (Gauge freedom). In the setup of Theorem 6.3 we
assume further that R,r(r) and ν,r(r) do not vanish identically on open sets
and that the first and second order perturbation tensors take the form

K1 = −2ω(r, θ)R2(r) sin2 θdtdϕ.(6.50)

K2 =
(
−4eν(r)h(r, θ) + 2ω2(r, θ)R2(r) sin2 θ

)
dt2 + 4eλ(r)m(r, θ)dr2(6.51)

+ 4k(r, θ)R2(r)
(
dθ2 + sin2 θdϕ2

)
+ 4eλ(r)∂θf(r, θ)R(r)drdθ

− 2W(r, θ)R2(r) sin2 θdtdϕ.

Then a first order gauge vector V1 preserves the form of K1 (i.e. there is ωg

such that Kg
1 := K1 + LV1

g is given by (6.50) with ω −→ ωg) if and only if,
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up to the addition of a Killing vector of the background,

V1 = Ct∂ϕ, C ∈ R, and then ωg = ω − C.(6.52)

For V1 as in (6.52), the second order gauge vector V2 preserves the form of
(6.51) if and only if

V2 = At∂t +Bt∂ϕ + 2Y(r, θ)∂r + 2α(r) sin θ∂θ + ζ,(6.53)

A,B ∈ R, ζ Killing vector of g,

and Kg
2 takes the form (6.51) with the coefficients h,m, k, f transformed to

hg = h+
1

2
A+

1

2
Yν,r,(6.54)

mg = m+ Y,r +
1

2
Yλ,r,(6.55)

kg = k + YR,r

R + α(r) cos θ,(6.56)

fg = f +
Y
R −Re−λα,r cos θ + β(r),(6.57)

Wg = W −B,(6.58)

where the arbitrary function β(r) arises because Kg
2 only involves ∂θf

g.

Remark 6.12. This proposition determines the most general gauge trans-
formation that leaves the form of the perturbation tensors (6.50) and (6.51).
One could analyse also which restrictions on the gauge vectors are required
to ensure that the gauge transformed tensors also satisfy the regularity and
boundedness properties of Theorem 6.3. This is however not needed for the
applications we have in mind.

Proof. The first order gauge transformation (2.5) imposes LV1
g = Kg

1 −K1,
so we may apply part (C) of Proposition 6.10 to s = V1 and (6.52) follows
immediately. For the second part, we let V1 := Ct∂ϕ. The second order gauge
transformation (2.6) takes the form

Kg
2 = K2 + LV2

g + LV1
(2Kg

1 − LV1
g) .

The tensor in parenthesis is 2Kg
1 − LV1

g = −2R2 (2ω − C) sin2 θdtdϕ and its
Lie derivative along Ct∂ϕ is immediately computed to be

LCt∂φ (2Kg
1 − LV1

g) = −2R2C (2ω − C) sin2 θdt2.
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Thus the equation that V2 must satisfy is

LV2
g = Kg

2 −K2 + 2R2C (2ω − C) sin2 θdt2(6.59)

=
(
−4eν(r)(hg − h) + 2R2 sin2 θ

(
ωg2 − ω2 + C(2ω − C)

))
dt2

+ 4eλ(r)(mg −m)dr2 + 4R2(r)(kg − k)
(
dθ2 + sin2 θdϕ2

)

+ 4R(r)eλ(r)∂θ(f
g − f)drdθ − 2R2(r)(Wg −W) sin2 θdtdϕ

= −4eν(r)(hg − h)dt2 + 4eλ(r)(mg −m)dr2

+ 4R2(r)(kg − k)
(
dθ2 + sin2 θdϕ2

)

+ 4R(r)eλ(r)∂θ(f
g − f)drdθ − 2R2(r)(Wg −W) sin2 θdtdϕ,

where in the third equality we inserted (6.51) and the corresponding expres-
sion forKg

2 and the cancellations in the last equality follow from ωg = ω − C.
Thus, we may apply part (B) of Proposition (6.10) with s = V2. Expression
(6.53) follows directly from (6.45) and (6.47), after renaming C → A and
D → B while (6.54)-(6.58) are obtained by comparing (6.48) with (6.59)
after the same redefinition for C and D. □
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Appendix A. Differentiability of radially symmetric

functions

In this Appendix we analyse the relationship between the differentiability
properties of a radially symmetric function and of its trace (see below). We
expect several of these results to be known, but they do not seem to be easily
accessible in the literature, at least in the specific form that we need. The
starting point is, however, well-known (see Lemma 3.1 in [1]). We include a
proof for completeness.
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We set Bp ⊂ Rp to be the open ball of radius a0 > 0 centered at the
origin.

Lemma A.1. Let q : Bp → R be radially symmetric, i.e. such that there
exists q : [0, a0) → R (the trace of q) with q(x) = q(|x|). Then q is a Cn(Bp)
(n ≥ 0) function if and only if q is Cn([0, a0)) (i.e. up to the inner boundary)
and all its odd derivatives up to order n vanish at zero. Equivalently, if and
only if

q(r) = Pn(r2) + Φ(n)(r),(A.1)

where Pn is a polynomial of degree [n2 ] and Φ(n) is Cn([0, a0)) and satisfies

Φ(n)(r) = o(rn).

Proof. Evaluating on the line x = (x1, 0, · · · ) we have q(x1, 0, · · · ) =
q(abs(x1)). The left-hand side is a Cn even function on (−a0, a0), so all
its odd derivatives (up to order n) vanish at zero. It follows from the equal-
ity that q is Cn([0, a0)) up to boundary and that all odd derivatives (up to
order n) vanish at zero. A Taylor expansion then gives (A.1). The converse
follows by a simple computation. □

Remark A.2. This result can be applied to functions q(xi) which are Cm

in all variables and radially symmetric only in a subset of the coordinates.
A similar remark will apply for the remaining results in this Appendix.

Lemma A.1 will be used in several ways. Our first application is the
following statement.

Lemma A.3. Consider the space R2 × Rq (q ≥ 0) coordinated by
{x1, x2, w} and let W be an open and connected neighbourhood of the axis
A := {x1 = x2 = 0}, radially symmetric in {x1, x2}. Let q :W \ A → R be
radially symmetric in {x1, x2} and assume that x1q and x2q extend to
Cn(W ) functions, n ≥ 1. Then q extends to a Cn−1(W ) function.

Remark A.4. The result on the differentiability of q is sharp. Consider
the function |x|α with 1 < α < 2. If is easy to check that x1|x|α and x2|x|α
are C2(R2) while |x|α (which is C1(R2) in agreement with the lemma) is not
C2(R2).

Proof. Set x = (x1, x2) and define q(r, w) by q(x,w) = q(|x|, w). Let q1 :=
x1q, q2 := x2q. By assumption q1 is Cn(W ), in particular when restricted to
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the line {x1 ≥ 0, x2 = 0}. Moreover,

q1(x1, x2 = 0, w) = x1q(x1, w).

Since the left-hand side is Cn up to and including the boundary x1 = 0 the
same holds for rq(r, w).

On the other hand, the function Q := x1q1 + x2q2 = |x|2q is radially
symmetric (in {x1, x2}) and Cn(W ). Moreover Q(x,w) = r2q(r, w)|r=|x|.
Given that r2q(r, w) is Cn up to boundary, Lemma A.1 implies that (we
also use the fact that, by construction, Q vanishes at the origin)

r2q(r, w) = r2Pn(r2) + Φ(n)(r, w)(A.2)

where Pn(u) is identically zero for n = 1 and a polynomial in u of degree [n2 −
1] when n ≥ 2 (with coefficients that are Cn functions of w) and Φ(n)(r, w)
is Cn up to boundary and o(rn). Now, Φ(n)

r = rq(r, w)− rPn. Since rq(r, w)
is Cn it follows that Φ(n)

r is Cn and o(rn−1) and therefore admits a Taylor
expansion of the form

Φ(n)(r, w)

r
= α(w)rn + Φ̂(n)(r, w),

where the remainder Φ̂(n)(r, w) is Cn and o(rn). Inserting this back into
(A.2) yields q(r, w) = Pn(r2) + α(w)rn−1 + Φ̂(n)/r. The last term is Cn−1

and o(rn−1) by item (iii) of Lemma B.7 applied to the one-dimensional case,
6 and we have found, after renaming Φ̂(n−1)(r, w) := Φ̂(n)/r,

q(r, w) = Pn(r2) + α(w)rn−1 + Φ̂(n−1)(r, w).

If n is odd, we can apply Lemma A.1 to conclude that q(x,w) = q(|x|, w) is
Cn−1(W ). If n is even, we still need to show that α(w) = 0 before we can
apply that lemma. Let k be defined by n = 2k (note that k ≥ 1). The poly-
nomial Pn(r2) plays no role in the argument, so it can be set to zero without

6We stress that all the results in Appendix B up to and including Lemma B.7
are independent of Appendix A. Proving the one-dimensional result here to avoid
quoting a result from Appendix B would be redundant.
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loss of generality (we redefine q(x)− Pn(|x|2) as q(x)). Let us compute

(∂x1
)2k−1 (q2) = (∂x1

)2k−1 (x2q)(A.3)

= x2α(w) (∂x1
)2k−1 |x|2k−1

+ x2(∂x1
)2k−1(Φ̂(2k−1)(|x|, w)).

The term (∂x1
)2k−1(Φ̂(2k−1)) is convergent as |x| → 0 (this claim is a partic-

ular case of Lemma B.3 in Appendix B). However, the first term does not
converge at zero unless α(w) = 0. This can be shown explicitly as follows.
A simple induction argument based on ∂x1

|x| = x1/|x| shows that, for all
l ≤ 2k − 1, k ≥ 1,

(∂x1
)l |x|2k−1 =

l∑

i=0

|x|2k−1−l−ix1
iai, ai ∈ R, al ̸= 0.

In particular, (∂x1
)2k−1|x|2k−1 evaluated on the path x(r) = βr with

β = (β1, · · · , βp) a constant unit vector yields limr→0 (∂x1
)2k−1 |x|2k−1 =∑2k−1

i=0 βi1ai, and the limit depends on the path. Since, by assumption, q2
is C2k(W ) (in particular C2k−1(W ) as well) the only possibility that the
right hand side in (A.3) has a limit as |x| → 0 is α(w) = 0 and we may
apply Lemma A.1 to q(x,w) to conclude the proof. □

Lemma A.5. Let f : Bp → R be radially symmetric. Assume that f is
Cn(Bp) and o(|x|n) with n ≥ 0, then the function xi

|x|f(x) (i = 1, · · · , p) is

also Cn(Bp) and o(|x|n).

Proof. That xi

|x|f is o(|x|n) follows immediately from the boundedness of

xi/|x| near the origin. Let f : [0, a0) → R be the trace of f . By construction
f(r) is Cn([0, a0)) and o(r

n).
Let α = (α1, α2, · · · , αp) , αj ∈ N and use the natural notion of (par-

tial) order β ≤ α iff all αi ≤ βi. We use the multiindex notation ∂α :=
∂α1

∂(x1)α1
· · · ∂αp

∂(xp)αp , and x
α := xα1

1 · · ·xαp

p . We write, as usual, |α| =
∑p

j=1 αj .

Define the i-th 1-addition over α by α+ 1i := (α1, · · · , αi + 1, · · · , αm).
A simple induction argument (with induction parameter |α|, note that
|α+ 1i| = |α|+ 1 for all i) and the fact that, when acting on any radially
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symmetric functions, ∂jf = xj

r
df(r)
dr

∣∣∣
r=|x|

implies that, as long as |α| ≤ n,

∂α
(
xi

|x|f(x)
)

=

|α|∑

a=0

f(a)(|x|)
|x||α|−a


 ∑

β≤α+1i

bαaβ
xβ

|x||β|


 ,(A.4)

where bαaβ are constants (which may vanish) and f(a) denotes the a-th deriva-

tive of f. The properties of f imply that f(a) is Cn−a([0, a0)) and o(r
n−a). Thus

f(a)
(|x|)

|x||α|−a is o(|x|n−|α|), hence o(1) since |α| ≤ n. Moreover xβ/|x||β| is bounded
in a neighbourhood of the origin. We conclude from (A.4) that ∂α

(
xi

|x|f(x)
)

converges to zero at the origin, which proves the lemma. □

Appendix B. Existence and regularity of a singular

differential equation on spheres

The fundamental aim of this Appendix is to establish Lemma B.9 below.
In arbitrary dimension p ≥ 1 let Bp ⊂ Rp be an open ball centered at the
origin {0p}. Consider a natural number (possibly zero) q and let V q ⊂ Rq be
an open connected neighbourhood in Rq. Define also V := Bp × V q ⊂ Rp+q,
where we make the usual identification of Rp × Rq and Rp+q. Letting π :=
Rp+q −→ Rp be the projection into the first factor, we set ∥x∥ := |π(x)|Rp ,
where | · |Rp is the standard euclidean norm in Rp. We introduce the axis
A := {0p} × V q and note that, also, A = {x ∈ V ; ∥x∥ = 0}.

The full set of coordinates in V will be denoted by xµ, µ = 1, · · · , p+ q,
while a = 1, · · · , p coordinate the first Rp factor. We will use a special name
u to refer to points in the first factor Rp and w to refer to points in the
second factor Rq, so that a point in V reads x = (u,w). In particular (0p, w)
corresponds to a point in A. Multiindices (see proof of Lemma A.5) will
include the following special notation to refer to the part related to Rp:
any multiindex α = (α1, · · · , αp+q) will be separated as α = αu ⊕ αw where
αu = (α1, · · · , αp) is a multiindex in Rp and αw in Rq. Observe that |α| =
|αu|+ |αw|.

Following the splitting of V we extend the usual little-o notation in terms
of a limit on the axis A: For any positive function g defined on V \ A we set
(observe that the notation for o is in boldface)

f ∈ o(g) ⇐⇒ lim
∥x∥→0

fg−1 = 0.
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We need a simple result concerning Taylor expansions of C l functions
with o(∥x∥l) behaviour. Let us first recall that given a C l (l ≥ 1) function
f : V → R the expansion in u in the Rp factor around 0p provides7

(B.1) f(x) =
∑

|αu|≤l

1

αu!
∂αuf(0p, w)x

αu +
∑

|αu|=l

Qαu
(x)xαu ,

where the remainder

Qαu
(x) =

|αu|
αu!

∫ 1

0
(1− t)|αu|−1∂αuf(tu, w)dt− 1

αu!
∂αuf(0p, w)

is C0(V ) and satisfies Qαu
(0p, w) = 0.

Lemma B.1 (Taylor). Let f : V → R be C l and o(∥x∥l) with l ≥ 1. Then
∂αf(a) = 0 for all a ∈ A and |α| ≤ l. Consequently, in particular,

f(x) =
∑

|αu|=l

Rαu
(x)xαu ,

where

Rαu
(x) =

|αu|
αu!

∫ 1

0
(1− t)|αu|−1∂αuf(tu, w)dt

is C0(V ) and Rαu
(a) = 0 for all a ∈ A.

Proof. We start by proving that ∂αuf(a) = 0 for all a ∈ A and |αu| ≤ l.
Assume this conclusion is not true and let s ≤ l be the smallest number
for which there exists a0 ∈ A and a multiindex αu0 with |αu0| = s satisfying
∂αu0f(a0) ̸= 0. Define the (not all zero) constants Cαu

:= 1
αu!
∂αuf(a0) for all

|αu| = s. Then, writing a0 = (0p, w0), we have from (B.1) that at all points
x = (u,w0)

f(x)

∥x∥s =
∑

|αu|=s

Cαu

xαu

∥x∥s +
∑

s<|αu|≤l

1

αu!
∂αuf(0p, w0)

xαu

∥x∥s +
∑

|αu|=l

Qαu
(x)

xαu

∥x∥s .

The left-hand side tends to zero when ∥x∥ → 0 by assumption. The same is
clearly true for the second and third terms of the right-hand side. Taking

7As usual we set αu! = α1! · · ·αp!.
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the limit along a path x = (βr, w0), r → 0 with any β ∈ Rp of unit norm, it
must be that

∑

|αu|=s

Cαu
βαu = 0, ∀β ∈ R

p.

This polynomial in β can vanish identically only if all Cαu
vanish, which is a

contradiction. Therefore, we have that ∂αuf(0p, w) = 0 for 0 ≤ |αu| ≤ l, and
for all w. This implies that ∂αw∂αuf(0p, w) ≡ ∂αf(0p, w) = 0 for 0 ≤ |α| ≤ l
with α = αu ⊕ αw, as claimed. □

Remark B.2. Any f as in Lemma B.1 is, in particular, Ck and o(∥x∥k)
for 0 ≤ k ≤ l, so the following is also true

(B.2) f(x) =
∑

|αu|=k

Rαu
(x)xαu for any 0 ≤ k ≤ l.

Note also that Rαu
with |αu| ≤ l − 1 can be differentiated. In particular

∂µRαu
(x) =

|αu|
αu!

∫ 1

0
(1− t)|αu|−1tϵµ∂µ∂

αuf(tu, w)dt,(B.3)

with ϵµ = 1 if µ ≤ p and 0 otherwise,

so that ∂µRαu
(a) = 0 for all a ∈ A. Observe that since f ∈ o(∥x∥l), (B.2)

implies

lim
∥x∥→0

∑

|αu|=k

Rαu
(x)

∥x∥l−|αu|

xαu

∥x∥|αu|
= 0 for any 0 ≤ k ≤ l.

The application of the β-path method as in the previous proof implies that
for any β ∈ Rp

lim
∥x∥→0

∑

|αu|=k

Rαu
(x)

∥x∥l−|αu|
βαu = 0 for any 0 ≤ k ≤ l,

and therefore Rαu
(x) ∈ o(∥x∥l−|αu|). In summary,

∂µRαu
(a) = 0, Rαu

(x) ∈ o(∥x∥l−|αu|) ∀αu with |αu| ≤ l − 1.

Lemma B.3. Let f : V → R be C l with l ≥ 1 and let α = αu ⊕ αw be any
multiindex satisfying 0 ≤ |α| ≤ l.



✐

✐

“8-Mars” — 2023/6/30 — 18:42 — page 1947 — #75
✐

✐

✐

✐

✐

✐

Gauge fixing and regularity of axially symmetric 1947

• f ∈ o(∥x∥l) =⇒ ∂αf ∈ o(∥x∥l−|αu|) ( =⇒ ∂αf ∈ o(∥x∥l−|α|))

Proof. The proof is based on the following two facts, which we establish first.
The first one is that for any f (n) ∈ Cn(V ) and o(∥x∥n) with n ≥ 1 it is true
that ∂µf

(n) ∈ o(∥x∥n−1) and the second is that when µ > p the decay gets
improved to ∂µf

(n) ∈ o(∥x∥n). We show the first claim by applying (B.2) in
Remark B.2 to f (n) and k = n− 1 to write

f (n)(x) =
∑

|αu|=n−1

Rαu
(x)xαu .

Differentiating and dividing by ∥x∥n−1 yields

(B.4)
∂µf

(n)(x)

∥x∥n−1
=

∑

|αu|=n−1

(
∂µRαu

(x)
xαu

∥x∥n−1
+Rαu

(x)∂µx
αu

1

∥x∥n−1

)
.

We consider now the limit of this equation to any a ∈ A. The limit of the
first term in the right hand side vanishes as a consequence of ∂µRαu

(a) = 0
(Remark B.2) given that xαu

∥x∥n−1 are bounded (because |αu| = n− 1 ≥ 0).

The limit of the second term vanishes because Rαu
(x) ∈ o(∥x∥) (again by

Remark B.2), and ∂µx
αu/∥x∥n−2 are bounded, so that Rαu

(x) ∂ix
αu

∥x∥n−2
1

∥x∥ ∈
o(∥x∥0). Hence

lim
∥x∥→0

∂µf
(n)

∥x∥n−1
= 0,

i.e. ∂µf
(n) ∈ o(∥x∥n−1), as claimed. Obviously this function is also Cn−1(V ),

which allows us to repeat the process as long as n− 1 ≥ 1. We continue with
the second claim, i.e. that lim∥x∥→0(∂νf

(n))/∥x∥n = 0 for any ν > p. Let such
ν be fixed and introduce the notation h(ν) for (. . . , 0ν−1, h, 0ν+1, . . .). The
fundamental theorem of calculus gives, at any point w0 ∈ V q,

(B.5) f (n)(u,w0 + h(ν)) = f (n)(u,w0) +

∫ h

0
∂νf

(n)(u,w0 + s(ν))ds.

If we define

Fν(h, u) :=
1

h∥x∥n
∫ h

0
∂νf

(n)(u,w0 + s(ν))ds,

equation (B.5) divided by h∥x∥n taken to the limit ∥x∥ → 0 leads to

0 = lim
∥x∥→0

Fν(h, u), for each ν > p and all h ̸= 0.(B.6)
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Since ∂νf
(n) is continuous the limit lim∥x∥→0Fν(h, u) (at fixed h ̸= 0) con-

verges uniformly to zero on compact subsets of V q. Therefore we can take
the limit h→ 0 of (B.6) and interchange the limits by the Moore-Osgood
theorem [23] to get

0 = lim
h→0

lim
∥x∥→0

Fν(h, u) = lim
∥x∥→0

lim
h→0

Fν(h, u)(B.7)

= lim
∥x∥→0

1

∥x∥p∂νf
(n)(u,w0), ν > p,

where in the last equality we simply used the definition of Fν . Since the
point w0 in V q is arbitrary our second claim is established.

We may now return to the proof of the lemma, which follows by simply
applying the derivative ∂αf with α = (α1, · · · , αp+q) and |α| ≤ l in the re-
verse order ∂

αp+q

xp+q
· · · ∂α1

x1
f . The derivatives in the first p directions decrease

the order to o(∥x∥l−|αu|), while the remaining derivatives do not change this
order at all. This proves the first implication of the lemma. The second
implication is trivial because |α| ≥ |αu|. □

This lemma has an immediate application for products of functions. We
restrict to the one-dimensional case, since this is all we need in the main
text.

Corollary B.4. Let l ≥ 1 and f, g ∈ C l([0, a)), a > 0. Assume that f(x)
and g(x) are o(xl). Then the funcion h(x) = f(x)g(x)/x extends as a
C l([0, a)) function to x = 0.

Proof. It suffices to check that the limits limx→0(∂x)
kh(x) for k = 0, . . . , l

exist. We have

(∂x)
kh(x) =

k∑

p=0

k−p∑

r=0

1

xp+1
akp(∂x)

k−p−rf(x)(∂x)
rg(x)

where akp are constants. Lemma B.3 applied to the one-dimensional inter-
val [0, a) ensures that (∂x)

kf(x) is C l−k and o(xl−k), and the same for g.
Therefore, each term in the sum is o(xl−k+p+r+l−r−p−1) = o(x2l−k−1) and,
in particular, o(xl−1) for k = 0, · · · , l. □

We now introduce an additional structure in the V q ⊂ Rq factor. We split
Rq = Rdz × Rdt (in particular q = dz + dt) and assume that V q is of the form
V q = Zdz × T dt where Zdz ⊂ Rdz and T dt ⊂ Rdt are open and connected.
Furthermore, we require that Zdz contains the origin of Rdz . Thus, we have
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now the splitting Rp+q = Rp × Rdz × Rdt and we want to concentrate on the
first two factors, so we define Rd = Rp × Rdz (again with the usual identifica-
tion). Cartesian coordinates in Rd are denoted by xi, i = 1, · · · , d. As before
we introduce the projection π2 of Rp+q = Rd × Rdt into the first Rd factor
and define the seminorm |x| = |π2(x)|Rd . The set C0 := {x ∈ V ; |x| = 0} is
precisely {0d} × T dt , where {0d} stands for the origin of Rd. It is immediate
to check that C0 ⊂ A.

We also introduce the usual little-o notation associated to |x| by defining
(observe that o is not in boldface now)

f ∈ o(|x|l) ⇐⇒ lim
|x|→0

f

|x|l = 0.

When dz = 0 we recover the previous setup. Therefore, Lemma B.3 im-
plies in particular that for l ≥ 1 (irrespectively of the value of dz)

f ∈ C l(V ) and o(|x|l) =⇒ ∂αf ∈ o(|x|l−|α|).

Let us continue by providing two easy but convenient auxiliary results.

Lemma B.5. Let f : V → R. If f ∈ o(∥x∥l) then f ∈ o(|x|l).

Proof. Since |x|l ≥ ∥x∥l for l ≥ 0 then |f | |x|−l ≤ |f |∥x∥−l, so
lim|x|→0 |f | |x|−l ≤ lim|x|→0 |f |∥x∥−l. But |x| → 0 implies ∥x∥ → 0, so

the limit is zero by the assumption f ∈ o(∥x∥l). □

Lemma B.6. Let f : V → R and k ≥ 0. Then f ∈ o(∥x∥l) =⇒ f/ |x|k ∈
o(∥x∥l−k).

Proof. The result follow directly from 1
∥x∥l−k

|f |

|x|k
= |f |

∥x∥l

∥x∥k

|x|k
≤ |f |

∥x∥l , taking

the limit ∥x∥ → 0. □

Let us introduce now the vector n̂ := 1
|x|

(
xi∂i

)
, which is clearly smooth

in V \ C0 and bounded near C0. Define also

n̂i := n̂(xi) =
xi

|x| = ∂i |x| .

We note the well-known fact that |x||α| ∂αn̂i for |α| ≥ 0, as well as

|x||α|+1 ∂α( 1
|x|), are bounded. We will use v(m)(f) for the derivation of

f m times along a vector field v. Since n̂ does not exist at C0 we de-
fine n̂(f) : V → R by setting n̂(f)(C0) = 0, and similarly for higher powers
n̂(m)(f).
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Lemma B.7. Let f : V → R be C l, l ≥ 1, and assume f ∈ o(∥x∥l). Then,
for any 1 ≤ k ≤ l

(i) n̂(k)(f) ∈ o(∥x∥l−k) and C l−k(V ).

(ii) |x| n̂(f) ∈ o(∥x∥l).
(iii) 1

|x|k
f ∈ o(∥x∥l−k) and C l−k(V ).

Proof. We start by establishing the following fact: For n ≥ 1 and f (n) ∈
Cn(V ) satisfying f (n) ∈ o(∥x∥n), it holds

f (n−1) := n̂(f (n)) is Cn−1(V ) and o(∥x∥n−1).(B.8)

By the comment before the lemma, this claim actually involves the func-
tion g : V → R defined by g(C0) = 0 and g := n̂(f (n)) = n̂i∂if

(n) outside
C0. Clearly g ∈ Cn−1(V \ C0). Moreover, given that ∂if

(n) ∈ o(∥x∥n−1) (by
Lemma B.3), and n̂i are bounded everywhere, we have n̂i∂if

(n) ∈ o(∥x∥n−1),
which in particular means that g ∈ C0(V ) and g ∈ o(∥x∥n−1). Further-
more, the boundedness near the axis of xa/∥x∥ for 1 ≤ a ≤ p and xj

for p < j ≤ d combined with Lemma B.3 imply xa∂af
(n) ∈ o(∥x∥n) and

xj∂jf
(n) ∈ o(∥x∥n), and therefore

|x| n̂(f (n)) = |x| n̂a∂af (n) + |x| n̂j∂jf (n) = xa∂af
(n) + xj∂jf

(n) ∈ o(∥x∥n).

This already proves point (ii) in the lemma.
It only remains to check that g is Cn−1(V ). Take α such that 0 ≤ |α| ≤

n− 1 and compute

∂α
(
n̂(f (n))

)
=
∑

β≤α

bβ∂
βn̂i∂α−β∂if

(n),

where bβ ∈ R. The terms in the sum can be written as

|x||β| ∂βn̂i 1
|x||β|∂

α−β∂if
(n), and given that |x||β| ∂βn̂i are bounded and that

∂α−β∂if
(n) ∈ o(∥x∥n−1−|α|+|β|) by Lemma B.3 (note that |α| − |β| = |α− β|

because β ≤ α), each term belongs to o(∥x∥n−1−|α|+|β|−|β|) = o(∥x∥n−1−|α|).
Therefore ∂α

(
n̂(f (n))

)
∈ o(∥x∥n−1−|α|) and thus ∂α

(
n̂(f (n))

)
∈

o(|x|n−1−|α|) by Lemma B.5. Since |α| ≤ n− 1 the limits of ∂α
(
n̂(f (n))

)

vanish at ∥x∥ = 0, and thus at |x| = 0 in particular. Define the functions

gα :=

{
∂α
(
n̂(f (n))

)
x ̸= C0

0 x = C0
,
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with g0 = g, which are C0(V ) by construction, and o(∥x∥n−1−|α|) (and thus

o(|x|n−1−|α|)).
It remains to verify that the differentials (to order n− 1) of g on C0 exist

and vanish for all c ∈ C0. We do that at once by showing that Dgβc (namely,
the differential of gβ at c) vanishes for any 0 ≤ |β| ≤ n− 2. We compute

lim
x→c

|gβ(x)− gβ(c)|
|x|Rp+q

= lim
x→c

|gβ(x)|
|x|Rp+q

≤ lim
x→c

|gβ(x)|
|x| = 0, for 0 ≤ |β| ≤ n− 2

where in the first equality we insert gβ(c) = 0 (since c ∈ C0), the inequality
follows from |x|Rp+q ≥ |x|, and in the final equality we use that the limit

x→ c is equivalent to |x| → 0, and that gβ ∈ o(|x|n−1−|β|), so that gβ/ |x| ∈
o(|x|n−2−|β|). By definition of differential, this limit shows that Dgβc exists
and vanishes for 0 ≤ |β| ≤ n− 2 and all c ∈ C0. For |β| = 0 this means that
g is differentiable at C0 with vanishing differential, which establishes that
g ∈ C1(V ). Iterating, and noting that |β| ≤ n− 2 means that we may take
up to n− 1 derivatives of g, it follows that g ∈ Cn−1(V ), and the claim (B.8)
is verified.

We now apply this result iteratively to the functions f (l) := f and
f (l−s) := n̂(s)(f (l)) for s = 0, · · · , l. By hypothesis, f (l) is C l(V ) and o(∥x∥l),
so

f (n−1) = n̂(f (n)) is Cn−1(V ) and o(∥x∥n−1)

for 1 ≤ n ≤ l. Given that 1 ≤ l and 1 ≤ k ≤ l by assumption, we have 1 ≤
l − k + 1 ≤ l, and we can take n = l − k + 1 in the preceding statement to
conclude n̂(k)(f (l)) = f (l−k) = n̂(f (l−k+1)) is C l−k(V ) and o(∥x∥l−k). This is
item (i) of the Lemma.

The proof of the third point (iii) follows an analogous procedure. First,
for f (n) ∈ Cn(V ) and o(∥x∥n) we have 1

|x|f
(n) ∈ o(∥x∥n−1) by virtue of

Lemma B.6. We define a new g, now setting g(C0) = 0 and g := 1
|x|f

(n) out-

side C0 and show that g ∈ Cn−1(V ). Indeed, for 0 ≤ |α| ≤ n− 1,

∂α
(

1

|x|f
(n)

)
=
∑

β≤α

bβ∂
β 1

|x|∂
α−βf (n).

The terms in the sum can be written as |x||β|+1 ∂β 1
|x|

1
|x||β|+1∂

α−βf (n), and

given that |x||β|+1 ∂β 1
|x| are bounded and that ∂α−βf (n) ∈ o(∥x∥n−|α|+|β|)

by Lemma B.3, we get that each term belongs to o(∥x∥n−1−|α|). There-

fore ∂α
(

1
|x|f

(n)
)
∈ o(∥x∥n−1−|α|) and thus ∂α

(
1
|x|f

(n)
)
∈ o(|x|n−1−|α|) by



✐

✐

“8-Mars” — 2023/6/30 — 18:42 — page 1952 — #80
✐

✐

✐

✐

✐

✐

1952 M. Mars, B. Reina, and R. Vera

Lemma B.5. Since |α| ≤ n− 1 the limits of ∂α
(

1
|x|f

(n)
)
vanish at ∥x∥ = 0,

and thus |x| = 0 in particular. The rest of the proof follow the same steps
as for the previous g and the same iteration process as for item (i). □

From here onwards we particularise to d = 3, dz = 1 (=⇒ p = 2) and
dt = 1. Given Cartesian coordinates in B2 × Z ⊂ R3, {xi} = {x1, x2, z}, i =
1, 2, 3 (indices raised and lowered with δij), the seminorms read explicitly

|x| :=
√
xixi, ∥x∥ =

√
xaxa =

√
(x1)2 + (x2)2. Moreover we consider a ball

B3 ⊂ R3 centered at the origin {03} small enough so that B3 ⊂ B2 × Z, and
denote by U the corresponding set in V , that is, U = B3 × T ⊂ V .

Introduce the additional vectors tangent to the B3 factor of U

ϱ̂ := xa∂a = x1∂x1
+ x2∂x2

, ẑ := ∂z, η := x1∂x2
− x2∂x1

,(B.9)

smooth in U

ι := − 1

|x|
(
zϱ̂− ∥x∥2ẑ

)
,

smooth in U \ C0 and extends continuously (ι = 0) to C0.

It is straightforward to check that n̂, ι and η are mutually orthogonal and
commute. Their explicit expressions in spherical coordinates in the B3 \ {03}
factor of U \ C0 are given by n̂ = ∂r, η = ∂ϕ and ι = − sin θ∂θ. Regarding the
T factor of U , it is now an interval in the real line, and we will denote by
t both the points and coordinate within T . Clearly ∂t commutes with n̂, ι
and η.

Let us continue with a result we will also need in the main text.

Lemma B.8. Let f : V → R be C l, l ≥ 1, and assume f ∈ o(∥x∥l). Then
ι(f) ∈ o(∥x∥l). Also, |x| ι(f) ∈ C l−1(V ).

Proof. By virtue of (B.9) we have

ι(f) = − 1

|x|
(
zxa∂af − ∥x∥2∂zf

)
= − z

|x|x
a∂af +

∥x∥
|x| ∥x∥∂zf.

As in the proof above, boundedness near the axis of xa/∥x∥ combined with
Lemma B.3 imply xa∂af ∈ o(∥x∥l). Boundedness of z/ |x| near the axis thus
establishes the first term is o(∥x∥l). For the second term, Lemma B.3 also
ensures that ∂zf ∈ o(∥x∥l), and hence boundedness of ∥x∥/ |x| leads to the
first result. The final statement follows from the C∞ smoothness of both
factors zxa and ∥x∥2. □
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The main result of this Appendix is the following lemma, which concerns
radially symmetric functions in {x1, x2} (see Appendix A), that is, functions
invariant under η. We refer to these functions also as “axially symmetric”.
The corresponding trace functions are defined in the domain Uη := {ρ ∈
R≥0; (ρ, 0, z, t) ∈ U} ⊂ R≥0 × R2. We will also use the notation introduced
in Section 5.1 regarding the spheres Sr := {x ∈ U ; t = const., |x| = r > 0}.
Observe that we suppress the label t in Sr. As in the main text, given any
vector field V in R3, we write V∥ for its tangential projection to the spheres

Sr. The operator d acting on a scalar β gives the differential of its pull-back
on each of the spheres. We also let ⟨, ⟩ denote the euclidean metric on R3

and observe that ⟨V, ·⟩ = |x|2 gS2(V∥, ·), where gS2 is the standard round unit
metric. Note also that η and ι coincide with η∥ and ι∥ respectively, and
⟨η, η⟩ = ⟨ι, ι⟩ = ∥x∥2.

We have the ingredients to state the key result of the Appendix. In the
first item of the lemma we use the big-O notation with its usual meaning.

Lemma B.9. Let k, l be non-negative integers.

1) Let P (z, t) be Cm(U) with m ≥ 0. Then the equation on U

(B.10) |x| ι(ZP ) = ∥x∥2kzlP (z, t)

with k ≥ 1 admits an axially symmetric solution ZP ∈ Cm(U) and
O(|x|2k+l−1). Moreover, if m ≥ 1, n̂(ZP ) ∈ O(|x|2k+l−2).

2) Let Φ(m) be radially symmetric in {x1, x2}, Cm(U) and o(∥x∥m) with
m ≥ 1. Then the equation on U

(B.11) |x| ι(ZΦ) = ∥x∥2kzlΦ(m)

with 2k + l ≥ 1 admits an axially symmetric solution ZΦ ∈ Cm(U \
C0) ∩ C0(U) and o(|x|2k+l+m−1). Moreover, n̂(ZΦ) ∈ o(|x|2k+l+m−2).

3) Let Γ(m) be radially symmetric in {x1, x2}, Cm(U \ C0) ∩ C0(U) and
O(|x|) with m ≥ 0. Then the equation on U

(B.12) |x| ι(ZΓ) = ∥x∥2Γ(m)

admits an axially symmetric solution ZΓ ∈ Cm(U \ C0) ∩ C0(U) and
O(|x|2) which is also Cm+1 on each sphere Sr. Moreover, n̂(ZΓ) and
∂t(ZΓ) are C

m on each sphere Sr.
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Proof. Since the inhomogeneous (source) terms of all the equations are in-
variant under η, and we only care about existence, it will suffice to con-
sider solutions which are radially symmetric in {x1, x2}. We concentrate
first on the problem for ZP . Clearly ϱ̂ (see (B.9)) acts on radial functions in
{x1, x2} as ϱ̂(g(∥x∥)) = ρ∂ρg(ρ)|ρ=∥x∥. Note that the trace of the function

|x| is
√
ρ2 + z2. Equation (B.10) for ZP is cast in terms of the traces in Uη

as

(B.13) −ρ(z∂ρ − ρ∂z)ZP (ρ, z, t) = ρ2kzlP (z, t).

It is direct to check that

ZP (ρ, z, t) =

∫ z

0
(ρ2 + z2 − s2)k−1slP (s, t)ds

satisfies the equation. The assumption k ≥ 1 ensures that the integrand is a
polynomial in even powers of ρ, which by Lemma A.1 ensures, in turn, that
ZP is Cm(U) (i.e. the differentiability of P ). In terms of functions on U

ZP =

∫ z

0
(|x|2 − s2)k−1slP (s, t)ds

satisfies (B.10). In spherical coordinates, and using the change of variable
s = λr in the integral, we can reexpress ZP as

(B.14) ZP (r, θ, ϕ) = r2k+l−1

∫ cos θ

0
(1− λ2)k−1λlP (λr, t)dλ.

Boundedness of the integral for k ≥ 1 establishes that ZP ∈ O(|x|2k+l−1)
as claimed. We compute now a radial derivative using (B.14), taking into
account that in spherical coordinates n̂ = ∂r, to obtain

n̂(ZP )(r, θ, ϕ) = (2k + l − 1)
ZP
r

+ r2k+l−1

∫ cos θ

0
(1− λ2)k−1λl+1∂zP (λr, t)dλ.

This time boundedness of the integral for k ≥ 1 implies n̂(ZP ) ∈
O(|x|2k+l−2).

We proceed with the second point. The proof rests on an iteration based
on the following claim.

Claim. Fix integers m ≥ 1 and 0 ≤ s ≤ m and let f (s) ∈ Cs(U) be a
radially symmetric function (in {x1, x2}) satisfying |x| f (s) ∈ o(∥x∥s+1) for
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0 ≤ s ≤ m− 1 and f (m) ∈ o(∥x∥m). Let l, k be non-negative integers satis-
fying 2k + l ≥ 1 and define g(s) = ∥x∥2kzlf (s). Then the equation

(B.15) |x| ι(β) = g(s)

admits a unique axially symmetric solution β = β̂s such that its restric-
tion to Sr is Cs and satisfies the boundary condition β̂s|θ=0 = 0. More-
over, this function is also C0 with respect to r and t for r > 0 and satisfies
β̂s ∈ o(|x|2k+l+s−1), so that in particular it extends continuously to C0 as
β̂s|C0

= 0.

Proof of the claim. We observe that the assumptions imply (since ∥x∥/ |x|
is bounded)

f (s) ∈ o(∥x∥s), |x| f (s) ∈ o(∥x∥min{s+1,m}), 0 ≤ s ≤ m,

f (m)/∥x∥ ∈ o(|x|m−1), |x| f (s)/∥x∥ ∈ o(|x|s), 0 ≤ s ≤ m− 1,(B.16)

the second line following form the first combined with Lemma B.5 (and
m ≥ 1). Clearly g(s) ∈ Cs(U) and, since ∥x∥2kzl/ |x| is also bounded, g(s) ∈
o(∥x∥min{s+1,m}). We start by writing (B.15) in spherical coordinates in
U \ C0 recalling that ι = − sin θ∂θ and g(s) is invariant under η = ∂ϕ, as

(B.17) ∂θβ = − 1

r sin θ
g(s)(θ, r, t) for r > 0.

We may write the solution β̂s that satisfies β̂s|θ=0 = 0 as

(B.18) β̂s(θ; r, t) = −
∫ θ

0

g(s)(λ, r, t)

r sinλ
dλ.

Since in particular g(s) ∈ o(∥x∥1) the integrand is bounded in all the domain
of integration and thus the integral exists and β̂s(θ; r, t) is continuous in θ up
to the boundary. Clearly, β̂s thus constructed is C0 on each Sr. On the other
hand, since g(s) ∈ Cs(U) then g(s) is Cs in r and t for r > 0, and therefore
β̂s(θ; r, t) is also C

0 in r and t for r > 0. Moreover, at each fixed t we have

∣∣∣β̂s
∣∣∣ (θ; r, t)

r2k+l+s−1
≤ 1

r2k+l+s−1

∫ θ

0

∣∣∣∣
g(s)

r sinλ

∣∣∣∣ dλ ≤ θ

r2k+l+s−1
sup
|x|=r

∣∣∣∣
g(s)

∥x∥

∣∣∣∣(B.19)

≤ θ

rs−1
sup
|x|=r

∣∣∣∣
f (s)

∥x∥

∣∣∣∣ =
θ

rs
sup
|x|=r

∣∣∣∣
|x| f (s)
∥x∥

∣∣∣∣ ,
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where we have used the explicit form of g(s) = ∥x∥2kzlf (s) and
sup|x|=r(∥x∥2k|zl|) ≤ r2k+l in the last inequality. Properties (B.16) imply

in particular that |x| f (s)/∥x∥ ∈ o(|x|s) for all s ∈ {0, · · · ,m}, so, the last
term is o(1) and we conclude

lim
|x|→0

∣∣∣β̂s
∣∣∣

|x|2k+l+s−1
= 0, 0 ≤ s ≤ m.(B.20)

The claim for s = 0 has been shown. In the following we deal with s ≥ 1.
In order to obtain the differentiability of the solutions β̂s along the spheres Sr
one could differentiate (B.18) repeatedly and take control over the behaviour
of the terms around the axis. That is trivial for the first derivative, but for
s ≥ 2 we follow a more straightforward strategy. Note also that with the
integral expression only we cannot extract any sort of differentiability (nor
continuity) of ∂rβ̂s(θ; r, t) on Sr because the fact that g(s) is o(∥x∥s) does
not translate to ∂rg

(s) in any way in general.
A convenient form of expressing equation (B.15) is

|x| dβ(ι) = 1

⟨η, η⟩g
(s)⟨ι, ι⟩,(B.21)

where at the right hand side we are just using ⟨ι, ι⟩ = ⟨η, η⟩. Clearly
dβ(ι) = dβ(ι∥) outside the origin. On the other hand, since we are con-
structing solutions invariant under η, it is enough to restrict β so that
dβ(η) = dβ(η∥) = η(β) = 0. Therefore, since ⟨ι, η⟩ = 0, equation (B.21) is
equivalent to

(B.22) dβ(·) = 1

|x|
1

η2
g(s)⟨ι, ·⟩ = |x|

∥x∥2 g
(s)gS2(ι∥, ·) =: gS2(V, ·)

on each sphere Sr, where we have defined the vector

V :=
|x|
∥x∥2 g

(s)ι∥ = −∥x∥−2g(s)(zx1∂x1
+ zx2∂x2

− ∥x∥2∂z),

and (B.9) has been used in the second equality. We deal first with the reg-
ularity and behaviour around the axis of the vector V . The applications of
V to the Cartesian coordinate functions (observe V (t) = 0) provide

V (x1) = −z x1∥x∥g
(s) 1

∥x∥ , V (x2) = −z x2∥x∥g
(s) 1

∥x∥ , V (z) = g(s).
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Since g(s) is o(∥x∥s) in particular, Lemma A.5 ensures that x1

∥x∥g
(s) and

x2

∥x∥g
(s) are Cs and o(∥x∥s). We apply next Lemma A.3 to these two functions

to find that 1
∥x∥g

(s) is Cs−1. Given that, also, 1
∥x∥g

(s) ∈ o(∥x∥s−1) we finally

apply Lemma A.5 to 1
∥x∥g

(s) to conclude that x2

∥x∥
1

∥x∥g
(s) and x1

∥x∥
1

∥x∥g
(s) are

Cs−1 and o(∥x∥s−1). Therefore V (x1) and V (x2) are C
s−1 and o(∥x∥s−1) in

U , while V (z) is clearly Cs. As a result, V is a Cs−1 vector field on U , thus
on each Sr.

For s = 1 it suffices now to trivially use the equation (B.22), which ap-
plied to ∂xi = {∂x1

, ∂x2
, ∂z} gives

dβ(∂xi) = V (xi), dβ(∂t) = 0.

Given the above, any solution β of (B.22) invariant under η satisfies dβ ∈
C0(Sr). Therefore we have that β̂1 ∈ C1(Sr) in particular.

We deal now with the case s ≥ 2. The application of the divergence
(⋆S2d⋆S2) at both sides of (B.22) yields

∆S2β = divS2V(B.23)

on each Sr. Since we are dealing with a one-dimensional problem (because
η(β) = 0) and V is a Cs−1 vector field on each Sr, the solutions β of the
equation (B.23) for s ≥ 2 must be Cs on each Sr.

8 Observe that a solution
β of (B.23) is unique up to an additive constant at each Sr, hence up to
a radially symmetric (and t-dependent) function. Therefore, the solution
β̂s(r, t) (for r > 0) for each s constructed above is the unique solution at
each Sr and t, fixed by the condition β̂s|θ=0(r, t) = 0, i.e. vanishing at the
north poles of each Sr, and satisfies β̂s ∈ Cs(Sr). This finishes the proof of
the claim. □

We deal now with the original equation (B.11). Applying the claim to
s = m ≥ 1 in (B.15) and g(m) = ∥x∥2kzlΦ(m) and setting ZΦ(r, t) = β̂m(r, t),
we conclude that this function is Cm on each Sr and o(|x|2k+l+m−1). It
remains to show that ZΦ is also differentiable in r and t, which will then
imply ZΦ ∈ Cm(U \ C0).

8Without axial symmetry we would need that the inhomogeneous term is Hölder
Cs,α.
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We first consider the radial derivatives. Let us set f (m) := Φ(m) and
define f (s) by the iteration

(B.24) f (s−1) := (2k + l − 1)
1

|x|f
(s) + n̂(f (s)) for 1 ≤ s ≤ m.

Points (i) and (iii) in Lemma B.7 show, after a trivial iteration starting at
f (m) ∈ Cm(U) and o(∥x∥m), that f (s) is Cs(U) and o(∥x∥s) for 0 ≤ s ≤ m.
In addition, since |x| n̂(f (s)) ∈ o(∥x∥(s)) (by point (ii) in Lemma B.7), (B.24)
implies |x| f (s) ∈ o(∥x∥s+1}) for all 0 ≤ s ≤ m− 1. The point of introducing
these functions is that n̂(m−s)(ZΦ) with s ∈ {0, . . . ,m} satisfies the equation

|x| ι(n̂(m−s)(ZΦ)) = ∥x∥2kzlf (s).(B.25)

We show this by iteration. The statement is clearly true for s = m (the
original equation). Assume it is true for a given s ∈ {1, · · · ,m} and apply n̂
to (B.25). Using n̂(|x|) = 1, n̂(∥x∥) = |x|−1 ∥x∥ and n̂(z) = |x|−1 z, together
with the fact that n̂ and ι commute yields

ι(n̂(m−s)(ZΦ)) + |x| ι(n̂(m−s+1)(ZΦ)) = ∥x∥2kzl
(
(2k + l)

f (s)

|x| + n̂(f (s))

)

=⇒ |x| ι(n̂(m−(s−1))(ZΦ)) = ∥x∥2kzl
(
(2k + l − 1)

f (s)

|x| + n̂(f (s))

)

= ∥x∥2kzlf (s−1),

where in the second line we inserted the equation for ι(n̂(m−s)(ZΦ)) and the
definition of f (s−1). Thus, equation (B.25) is also true for s− 1, and hence
for all s ∈ {0, · · · ,m}.

Moreover, the function n̂(m−s)(ZΦ) vanishes on the line θ = 0. Thus, all
the conditions of the claim are satisfied for equation (B.25) and we conclude
that n̂(m−s)(ZΦ) is C

s on each sphere and o(|x|2k+l+s−1). This proves that all

radial derivatives ∂
(m−s)
r ZΦ for s ∈ {0, . . . ,m} are Cs(U \ C0) and, moreover,

extend continuously to r = 0 with the value zero.
Regarding the derivatives with respect to t, a similar (in fact much easier)

argument applies. Indeed, ∂
(m−s)
t ZΦ, s ∈ {0, · · · ,m} satisfies the equation

|x| ι
(
∂
(m−s)
t ZΦ

)
= ∥x∥2kzl∂(m−s)

t Φ(m).

Lemma B.3 ensures that f (s) := ∂
(m−s)
t Φ(m) is Cs(U) and o(∥x∥m), and this

also implies in particular |x| f (s) ∈ o(∥x∥s+1), s ∈ {0, · · · ,m− 1}. We may
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apply our main claim to g(s) = ∥x∥2kzlf (s) to conclude that ∂
(m−s)
t ZΦ is Cs

on each Sr and o(|x|2k+l+s−1) for s ∈ {0, . . . ,m}.
To sum up, ZΦ(r, t) is Cm on each Sr and it is also Cm with respect

to the parameters {r, t} for r > 0 and t ∈ T . We may coordinate the sphere
with two charts so that, together with r and t, we also cover U \ C0 with two
coordinate charts. The coordinate change to cartesian coordinates is smooth
on U \ C0, so we have proved that (B.15) on U admits an axially symmetric
solution ZΦ ∈ Cm(U \ C0) (as function of {x1, x2, z, t}), and o(|x|2k+l+m−1).

The proof of point 3 is more direct than the previous one because the
right-hand side of the equation has better behaviour near the axis. We first
consider m ≥ 1, for which equation (B.12) has the form of (B.15) with a
C1(U) right-hand side. We therefore recover (B.23) in the form

∆S2ZΓ = divS2V,

where the vector V is defined as in (B.22) with g(s) replaced by ∥x∥2Γ(m),
i.e. V = |x|Γ(m)ι∥ = −Γ(m)(zx1∂x1

+ zx2∂x2
− ∥x∥2∂z). Clearly, V has the

same differentiability of Γ(m), that is, Cm(U \ C0), and therefore V is Cm

on each Sr. As a result (see above), the solution ZΓ is a Cm+1 function on

each Sr. We denote by ẐΓ(r, t) the solution for r > 0 that vanishes at the
north poles of each Sr. Using spherical coordinates, as done previously, we
can express that solution by

(B.26) ẐΓ(θ; r, t) = −
∫ θ

0
r sinλΓ(m)(λ, r, t)dλ.

This integral expression directly shows that ẐΓ(θ; r, t) is Cm with respect

to {r, t} by construction, which together with ẐΓ ∈ Cm+1(Sr), implies ẐΓ ∈
Cm(U \ C0). To obtain the differentiability on each Sr of both n̂(ZΓ) and
∂t(ZΓ) we differentiate (B.12) accordingly, to get

|x| ι(n̂(ZΓ)) = ∥x∥2
(
Γ(m)

|x| + n̂(Γ(m))

)
, |x| ι(∂tZΓ) = ∥x∥2

(
∂tΓ

(m)
)
.

The terms within brackets at the right hand sides in both equations are
Cm−1(U \ C0), and the same argument as above involving the Laplace equa-
tion shows that n̂(ZΓ) and ∂t(ZΓ) are C

(m−1)(Sr).
It only remains to consider the case m = 0. It suffices to use the inte-

gral expression (B.26) which is obviously still valid. It is immediate that
the integral is continuous in {θ, r, t} for r > 0, from where it follows eas-

ily that ẐΓ ∈ C0(U \ C0). Clearly this function can be differentiated once
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with respect to θ on θ ∈ [0, π], with continuous derivative. Again, we easily

conclude that ẐΓ ∈ C1(Sr) on each Sr.

It only remains to show that, irrespectively of the value of m ≥ 0, ẐΓ ∈
(|x|2), as this already implies that this function extends continuously to C0.
We compute

∣∣∣ẐΓ

∣∣∣ (θ; r, t)
r2

≤
∫ θ

0

∣∣∣∣sinλ
Γ(m)

r

∣∣∣∣ dλ ≤ θ sup
|x|=r

∣∣∣∣
Γ(m)

|x|

∣∣∣∣ .

By the assumption Γ(m) ∈ O(|x|), the last term is bounded and the property
follows. □

Corollary B.10. Let V, V ′ be finite subsets of N× N with the
restrictions V ⊂ {k ≥ 1} × {l ≥ 0} and V ′ ⊂ {2k′ + l′ ≥ 1} and define
b := min

V
{2k + l}, c := min

V ′
{2k′ + l′}. Consider the equation on U

(B.27) ι(γ) =
∑

(k,l)∈V

∥x∥2kzlPlk(z, t) +
∑

(k′,l′)∈V ′

∥x∥2k′

zl
′

Φ
(m)
l′k′ (x),

where Plk are Cm in their arguments and Φ
(m)
l′k′ are Cm(U) and o(∥x∥m). If

m ≥ 1 the equation admits an axially symmetric solution

γ = |x| (ZP + ZΦ)

where ZP + ZΦ ∈ Cm(U \ C0) with ZP ∈ O(|x|b−1) and ZΦ ∈ o(|x|c+m−1).
Moreover, n̂(ZP ) ∈ O(|x|b−2) and n̂(ZΦ) ∈ o(|x|c+m−2). In particular,

γ ∈ O(|x|b), n̂(γ) ∈ O(|x|b−1) provided b ≤ c+m,

γ ∈ o(|x|c+m), n̂(γ) ∈ o(|x|c+m−1) for b > c+m.

Proof. Write γ = |x| Ẑ so that Ẑ solves

|x| ι(Ẑ) =
∑

(k,l)∈V

∥x∥2kzlPlk(z, t) +
∑

(k′,l′)∈V ′

∥x∥2k′

zl
′

Φ
(m)
l′k′ (x),

Since the equation is linear the solution decomposes into a sum and we may
apply Lemma B.9 to each term. The rest is immediate. □
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Corollary B.11. With the above definitions (in particular Γ(m−1) is axially
symmetric, Cm−1(U \ C0) ∩ C0(U) and O(|x|), cf. point 3 in Lemma B.9)
the equation on U

ι(γ0) =
∑

(k,l)∈V

∥x∥2kzlPlk(z, t)(B.28)

+
∑

(k′,l′)∈V ′

∥x∥2k′

zl
′

Φ
(m)
l′k′ (x) + ∥x∥2Γ(m−1),

with m ≥ 1 admits an axially symmetric solution γ0 ∈ Cm−1(U \ C0) ∩
C0(U), which is also Cm on each sphere Sr, and moreover n̂(γ0) and ∂tγ0 are
Cm−1 on each sphere Sr. In addition, γ0 ∈ O(|x|3) provided 3 ≤ b ≤ c+m.

Proof. We use the previous corollary, which ensures the existence of the solu-
tion γ, followed by the addition γ0 = γ + |x|ZΓ of the solution ZΓ for (B.12)
given by the third point of the lemma. □

References
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