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Operator forms of the nonhomogeneous
associative classical Yang-Baxter equation

CHENGMING Bar1, XiNnG GAo, L1 GUuo, AND Y1 ZHANG

This paper studies operator forms of the nonhomogeneous asso-
ciative classical Yang-Baxter equation (nhacYBe), extending and
generalizing such studies for the classical Yang-Baxter equation
and the associative Yang-Baxter equation that can be traced back
to the works of Semenov-Tian-Shansky and Kupershmidt on Rota-
Baxter Lie algebras and O-operators. Solutions of the nhacYBe are
characterized in terms of generalized O-operators, and in terms of
the classical O-operators precisely when the solutions satisfy an
invariant condition. When the invariant condition is compatible
with a Frobenius algebra, such solutions have a close relationship
with Rota-Baxter operators on the Frobenius algebra. In general,
solutions of the nhacYBe can be produced from Rota-Baxter oper-
ators, and then from O-operators when the solutions are taken in
semi-direct product algebras. In the other direction, Rota-Baxter
operators can be obtained from solutions of the nhacYBe in uniti-
zations of algebras. Finally a classification is obtained for solutions
of the nhacYBe satisfying the mentioned invariant condition in all
unital complex algebras of dimensions two and three. All these
solutions are shown to come from Rota-Baxter operators.
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1. Introduction

The aim of this paper is to give operator forms of the nonhomogeneous
associative classical Yang-Baxter equation in terms of Rota-Baxter operators
and the more general O-operators.

1.1. CYBE, AYBE and their operator forms

The classical Yang-Baxter equation (CYBE) was first given in the tensor
form

(112, 7T13] + [r12, 23] + [r13, 23] = 0,

where r € g ® g and g is a Lie algebra (see [16] for details). The CYBE arose
from the study of inverse scattering theory in 1980s. Later it was recognized
as the “semi-classical limit” of the quantum Yang-Baxter equation which was
encountered by C. N. Yang in the computation of the eigenfunctions of a one-
dimensional fermion gas with delta function interactions [45] and by R. J.
Baxter in the solution of the eight vertex model in statistical mechanics [13].
The study of the CYBE is also related to classical integrable systems and
quantum groups (see [16] and the references therein).

An important approach in the study of the CYBE was through the
interpretation of its tensor form in various operator forms which proved to
be effective in providing solutions of the CYBE, in addition to the well-
known work of Belavin and Drinfeld [14]. First Semonov-Tian-Shansky [42]
showed that if there exists a nondegenerate symmetric invariant bilinear
form on a Lie algebra g and if a solution r of the CYBE is antisymmetric,
then r can be equivalently expressed as a linear operator R : g — g satisfying
the operator identity

(1) [R(x), R(y)] = R([R(z),y]) + R([z, R(y)]), Vz,ye€g,

which is then regarded as an operator form of the CYBE. Note that Eq.
is exactly the Rota-Baxter relation (of weight zero) in Eq. for Lie alge-
bras.

In order for the approach to work more generally, Kupershmidt revisited
operator forms of the CYBE in [28] and noted that, when r is antisymmet-
ric, the tensor form of the CYBE is equivalent to a linear map r: g* — g
satisfying

[r(z),7(y)] = r(ad*r(z)(y) — ad*r(y)(v)), Vz,y € g7,
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where g* is the dual space of g and ad* is the dual representation of the
adjoint representation (coadjoint representation) of the Lie algebra g. He
further generalized the above ad® to an arbitrary representation p: g —
gl(V) of g, that is, a linear map T : V' — g, satisfying

[T'(u), T(v)] = T(p(T(u))v = p(T(v))u), Vu,veV,

which was regarded as a natural generalization of the CYBE. Such an oper-
ator is called an O-operator associated to p. Note that the operator form
of the CYBE given by Semenov-Tian-Shansky is just an O-operator as-
sociated to the adjoint representation of g.

Going in the other direction, any O-operator gives an antisymmetric
solution of the CYBE in a semi-direct product Lie algebra, completing the
cycle from the tensor form to the operator form and back to the tensor form
of the CYBE. Moreover, there is a closely related algebraic structure called
the pre-Lie algebra. Any O-operator gives a pre-Lie algebra and conversely,
any pre-Lie algebra naturally gives an O-operator of the commutator Lie
algebra, and hence naturally gives rise to a solution of the CYBE [5].

An analogue of the CYBE for associative algebras is the associative
Yang-Baxter equation (AYBE) [2]:

r12713 + 113723 — 123712 = 0,

for r € A® A, where A is an associative algebra (see Definition for de-
tails). Its form with spectral parameters was given in [38] in connection with
the CYBE and the quantum Yang-Baxter equation. The AYBE arose from
the study of the (antisymmetric) infinitesimal bialgebras, a notion traced
back to Joni and Rota in order to provide an algebraic framework for the
calculus of divided differences [24] [25] and, in the antisymmetric case, carry-
ing the same structures under the names of “associative D-bialgebra” in [49]
and “balanced infinitesimal bialgebra” in the sense of the opposite algebra
in [2]. The AYBE has found applications in various fields in mathemat-
ics and mathematical physics such as Poisson geometry, integrable systems,
quantum groups and mirror symmetry [4 27, 29, 33-35, [40] 41, [44].
Motivated by the operator approach to the CYBE and the Rota-Baxter
operators with weights, O-operators with weights were introduced to give
an operator approach to the AYBE [10], while a method of obtaining Rota-~
Baxter operators from solutions of the (opposite) AYBE was obtained in [1J.
Briefly speaking, under the antisymmetric condition, a solution of the AYBE
is an O-operator associated to the dual representation of the adjoint repre-
sentation, while an O-operator gives an antisymmetric solution of the AYBE
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in a semi-direct product associative algebra. Furthermore, the role played by
pre-Lie algebras in CYBE is similarly played by dendriform algebras intro-
duced by Loday [31], that is, any O-operator induces a dendriform algebra
structure on the representation space and conversely, a dendriform algebra
gives a natural O-operator and hence there is a construction of (antisymmet-
ric) solutions of the AYBE from dendriform algebras [8, [11]. Moreover, such
relationships are generalized to connect the solutions of the AYBE satisfying
certain “invariant” conditions and O-operators with weights [, [10].

In turn, these studies of the AYBE by O-operators with weights led to the
introduction of similar O-operators on Lie algebras. These generalizations
have found fruitful applications to the CYBE and further to Lax pairs, Lie
bialgebras and PostLie algebras [7, [9].

1.2. Nonhomogeneous AYBE and its operator form

The notion of a nonhomogeneous associative classical Yang-Baxter
equation (nhacYBe) [30] is the equation (detailed in Definition

(2) 712713 + 713723 — 723712 = UT13,

where p is a fixed constant. Its opposite form, given in Eq. , was called
the associative classical Yang-Baxter equation of weight p in [19].
Taking pu = 0 recovers the AYBE.

The nhacYBe arose from the study of the quantum Yang-Baxter equa-
tion and Bezout operators. Another motivation for introducing the nhacYBe
is the p-infinitesimal bialgebras, that is, a triple (A4, -, A) consisting of an
algebra (A,-) and a coalgebra (A, A) satisfying the compatibility condition

Az -y) = (L(z) ©1d)A(y) + A(2)(id @ R(y)) — pr @y, Yo,y € A,

where L(x), R(z) are the left and right multiplication operators of (A, -)
respectively. When p = 1, it was also called a unital infinitesimal bial-
gebra [32] and appeared in several topics such as combinatorics, operads
and pre-Lie algebras [211, 22], 47, [48]. A solution of the opposite form of the
nhacYBe in a unital algebra gives a p-infinitesimal bialgebra [19] 36].

Note that while the AYBE has its origin from the CYBE for Lie algebras,
when p # 0, the nhacYBe does not have a counterpart for Lie algebras since
the term r13 on the right hand side of Eq. does not make sense for a Lie
algebra.

As in the cases of the CYBE and the AYBE, it is important to study
the nhacYBe through its operator forms, to give further understanding on
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the nature of the equation, and to provide constructions of its solutions.
To address the challenge from the nonhomogeneity, O-operators and Rota-
Baxter operators are generalized and new approaches are introduced (see

Remark [3.14)).

1.3. Outline of the paper

We next provide some details of our operator approach of the nhacYBe
which also serve as an outline of the paper.

In Section [2] we first generalize the notion of an O-operator whose weight
is a scalar to one whose weight is a binary operation. We then interpret
solutions of the nhacYBe equivalently in terms of generalized O-operators
(Theorem and, in the presence of a symmetric Frobenius algebra, in
terms of generalized Rota-Baxter algebras (Theorem . On Frobenius
algebras, such an interpretation also gives a correspondence between solu-
tions of the AYBE and Rota-Baxter systems introduced in [15], rather than
Rota-Baxter operators by themselves (Corollary . In order to make a
connection with the existing notion of O-operators and Rota-Baxter oper-
ators, we explore the additional conditions for solutions of the nhacYBe.
As it turns out, a solution r of the nhacYBe can be interpreted in terms
of an O-operator precisely when it satisfies the symmetrized invariant
condition that the extended symmetrizer

(3) ri=r+o(r)—pulel)

of r is invariant, where o is the flip map (Theorem . Note that the
parameter p appears in both the nhacYBe and the invariant condition, es-
pecially as the scalar multiple of 1 ® 1 for the latter. In particular, the
vanishing of the extended symmetrizer of a solution r means that (r, —o(r))
is an associative Yang-Baxter pair in the sense of [I5] (Corollary [2.28).

In Section [3| we present a close relationship between the nhacYBe and
Rota-Baxter operators including but exceeding the known relationships be-
tween the antisymmetric solutions of the AYBE and Rota-Baxter operators
of weight zero on Frobenius algebras given in [10]. In unital symmetric Frobe-
nius algebras, when the extended symmetrizer is a multiple of the nonde-
generate invariant tensor corresponding to the nondegenerate bilinear form
defining the Frobenius algebra structure, that is, the extended symmetrizer
is a nondegenerate invariant tensor or zero, there is a characterization of
the solutions of the nhacYBe by Rota-Baxter operators (Theorem . As
special cases, taking the matrix algebras gives the correspondence in [36],
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and taking the trivial extended symmetrizer and g = 0 yields the corre-
spondence in [I0]. Assume that the extended symmetrizer is degenerate.
Then in one direction, there is a construction of solutions of the nhacYBe
from Rota-Baxter operators satisfying its own invariant conditions (Propo-
sition . Based on such a construction, we obtain symmetrized invariant
solutions of the nhacYBe for p # 0 in semi-direct product algebras from O-
operators of weight zero as well as from dendriform algebras of Loday [31].
Note that these constructions are different from the construction of solu-
tions of the AYBE from O-operators given in [I0] due to the appearance
of the new term (1 ® 1) in Eq. (Remark [3.14)). In the other direction,
Rota-Baxter operators can also be obtained from solutions of the nhacYBe
in an augmented algebra, that is, the unitization of an associative algebra
(Theorem and Corollary [3.19).

In Section [d] we give the classification of the symmetrized invariant solu-
tions of the nhacYBe for i # 0 in the unital complex algebras in dimensions
two and three. These examples indicate that the symmetrized invariant so-
lutions of the nhacYBe only comprise a small part of all solutions of the
nhacYBe. Moreover, we also find that all symmetrized invariant solutions
of the nhacYBe for p # 0 in the unital complex algebras in dimensions two
and three are obtained from Rota-Baxter operators.

Notations. Throughout the paper, we fix a base field k. Unless otherwise
specified, all the vector spaces and algebras are finite-dimensional, although
some results and notions remain valid in the infinite-dimensional case. By a
k-algebra, we mean an associative algebra over k not necessarily having a
unit.

2. Characterizations of nhacYBe by generalized O-operators

We first recall some basic definitions and facts that will be used in this paper.
We then introduce the notion of a generalized O-operator whose weight
is a binary operation. Especially, when the binary operation is obtained
from an A-bimodule k-algebra, we recover the notion of the O-operator
of weight A\. We moreover give a general interpretation of the nhacYBe
in terms of generalized O-operators, including a correspondence between
solutions of the nhacYBe with p = 0, that is, the AYBE, and Rota-Baxter
systems [I5] on Frobenius algebras. Finally under the additional invariant
condition, this interpretation gives a correspondence between symmetrized
invariant solutions of the nhacYBe and O-operators with weight A.
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2.1. O-operators and Rota-Baxter operators for bimodules

We generalize the notions of O-operators and Rota-Baxter operators from
those with scalar weights to the ones with weights given by binary opera-
tions. We first briefly recall some background and refer the reader to [6, [10]
for further details.

Let (A,-) be a k-algebra. An A-bimodule is a k-module V, together
with linear maps ¢,7 : A — Endy (V) satisfying

Uz -y)v=Lz)(l(y)v), vr(z-y)= (or(x))r(y),
(U(x)v)r(y) = () (vr(y), Va,yeAveV.

If we want to be more precise, we also denote an A-bimodule V' by the triple

(Vi 4,r).
Given a k-algebra A = (A,-) and x € A, define

L(z):A— A Lz)y=ay; R(zx):A— A yR(z)=yx,Vye A
to be the left and right actions on A. We further define

L=Lj:A— Endk(A), x — L(x);
R=Rj:A— Endg(A), z — R(z), Vx € A.

Clearly, (A, L4, R4) is an A-bimodule, called the adjoint A-bimodule.

There is a natural characterization of semi-direct product extensions of
a k-algebra (A4, -) by an A-bimodule. Let ¢, : A — Endy (V') be linear maps.
Define a multiplication on A @ V' (still denoted by -) by

(a+u) - (b+v):=a-b+ (L(a)v+ur(b)), Va,be Au,veV.

Then as is well known, A @ V' is a k-algebra, denoted by A x,, V and called
the semi-direct product of A by V, if and only if (V, ¢, r) is an A-bimodule.

For a k-module V and its dual module V* := Homy(V, k), the usual
pairing between them is given by

(): VXV =k, (u*,v) =u"(v), Vu* € V5 veV.

Identifying V' with (V*)*, we also use (v, u*) = (u*,v).
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Let A be a k-algebra and let (V,¢,r) be an A-bimodule. Define linear
maps *,r* : A — Endg(V*) by

(U™ (2),v) = (u*, L(z)v), (r*(z)u’,v) = (u,vr(z)),
Vee Aju e V5veV,

respectively. Then (V*,7*,¢*) is also an A-bimodule, called the dual A-
bimodule of (V,¢,7).

To give an operator interpretation of solutions of the nhacYBe, we gen-
eralize the notion of O-operators with weights introduced in [10] by drop-

ping the condition that the multiplication o on R turns (R,o,/,r) into an
A-bimodule k-algebra.

Definition 2.1. Let (A4,-) be a k-algebra. Let (R,¢,r) be an A-bimodule
and o a binary operation on R. A linear map a: R — A is called an O-
operator of weight o associated to (R,/¢,r) or simply a generalized
O-operator if « satisfies

a(u) - a(v) = all(a(u))v) + a(ur(a(v))) + a(uowv), Yu,v € R.

In particular, if (R,¢,r) = (A, La, Ra) is the adjoint A-bimodule and o is
a binary operation on A, then an O-operator o : A — A of weight o associ-
ated to the A-bimodule (A, L4, R,) is called a Rota-Baxter operator of
weight o. In this case « satisfies

a(z) - a(y) = ala(z) -y) + alz - aly)) + a(zoy), Vr,ye A

Example 2.2. In the definition of Rota-Baxter operators with weight o,
when o is given by zoy := Az -y for a given A\ € k, we recover the usual
Rota-Baxter operator of weight A\, with its defining operator identity

(4)  Pl)-P(y) = P(v-y) + P(P(x) -y) + AP(z-y), Va,ye A,

Here the notion is named after the mathematicians G.-C. Rota [39] and G.
Baxter [12] for their early work motivated by fluctuation theory in proba-
bility and combinatorics, which again appeared in the work of Connes and
Kreimer on renormalization of quantum field theory [18] as a fundamental
algebraic structure. See [23] for further details.

We separately define a special case that will be important to us.
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Definition 2.3. Let (A,-) be a k-algebra and (R, ¢,7) be an A-bimodule.
Let s: R — A be a linear map. A linear map o : R — A is called an O-
operator right twisted by s associated to (R, ¢, ) if

a(u) - a(v) = al(l(a)u))v) + a(ur(a(v))) + a(ur(s(v))), Yu,v € R.

Likewise « is called an O-operator left twisted by s associated to
(R, ¢, r) when the third term one the right hand side of the above equation
is replaced by a(¢(s(u))v).

When the A-bimodule is taken to be (A, L, Ra), the operator is called
the Rota-Baxter operator right twisted by s (resp. left twisted by s).

Obviously the operators in Definition are the special cases of the
operators in Definition when the binary operation o are defined by

uov :=ur(s(v)) (resp. uowv:=£(s(u))v), VYu,v € R.

To recover the notion of O-operators with scalar weights introduced
in [I0], we recall a concept combining A-bimodules with k-algebras [46].

Definition 2.4. Let (A,:) be a k-algebra with multiplication - and let
(R, 0) be a k-algebra with multiplication o. Let ¢,r : A — Endyg(R) be linear
maps. We call R (or the quadruple (R,o,¢,7)) an A-bimodule k-algebra
if (R,¢,r) is an A-bimodule that is compatible with the multiplication o on
R in the sense that

Uz)(vow) = (U(z)v)ow, (vow)r(x)=vo (wr(x)),
(vr(z)) ow = vo (U(x)w),

for all x,y € A,v,w € R.

Obviously, (A, -, La, R4) is an A-bimodule k-algebra.

In Definition when the A-bimodule (R, ¢,r) with multiplication * is
assumed to be an A-bimodule k-algebra and when uwo v = Au x v for A € k,
we recover the following notion of an O-operator with weight A in [10] which
is also called a relative Rota-Baxter operator [11].

Definition 2.5. Let (A,:) be a k-algebra and let (R,*,¢,r) be an A-
bimodule k-algebra. Let A € k. A linear map «: R — A is called an O-
operator of weight \ associated to (R, *,{,r) if a satisfies

a(u) - a(v) = all(a(u))v) + a(ur(a(v))) + Aa(uxv), Yu,v € R.
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When % = 0, then O is called an O-operator (of weight zero) associate to
the A-bimodule (R, ¢, 7).

When R is the A-bimodule k-algebra (A, L4, R4) with uowv := Au-v
for A € k and the default multiplication - of A, we recover the notion of a
Rota-Baxter operator P of weight A defined in Eq. .

These structures can be summarized in the commutative diagram

Rota-Baxter operators ¢ Rota-Baxter operators > Rota-Baxter operators

left /right twisted by s of weight o of weight A
O-operators C O-operators 5 O-operators
left /right twisted by s of weight o of weight A

2.2. Operator forms of solutions of nhacYBe

We recall the notion of the nhacYBe and give an interpretation of solutions
of the nhacYBe in terms of the generalized O-operators just introduced.

Let (A,-,1) be a unital k-algebra of which the multiplication - is often
suppressed. For r =3 a; ® b; € A® A, denote

(5) 712 ::Zai@)bi@l, 713 ::Zai®1®bz~, 7923 ::Z].@ai@bi.

Then r19713, 713723, r23712 are elements in the k-algebra A ® A ® A.
Definition 2.6. Let A be a unital k-algebra and let r € A ® A.

(a) r is a solution of the associative Yang-Baxter equation (AYBE)
(6) T12713 + 713723 — r23r12 = 0

in A if the equation holds with the notation in Eq. .

b) Fix a u € k. r is a solution of the y-nonhomogeneous associative
H H
Yang-Baxter equation (u-nhacYBe)

(7) 712713 + 713723 — 23712 = U713
in A if the equation holds with the notation in Eq. .
The opposite form of Eq. is [19]

(8) 713712 + 723713 — T'12723 = JT13.
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Definition 2.7. Let A be a unital k-algebra and p € k. Let r € A® A.
Define the p-extended symmetrizer of r to be

9) r:=r+o(r)—ule1l).

The prefix p in Definitions and [2.7 will be suppressed when its mean-
ing is clear from the context.

Let r € A® A. Define linear maps ¥, 7% : A* — A by the canonical bi-
jections

()F: A® A = Homy (A*, k) ® A = Homy (A%, A),
O¥ = ()fo : A® A — Homy (A", A).

Explicitly, f and 7% are determined by
(rf(a*),b%) = (r,a* @b*), (r™*(a*),b*) = (r,b* @ a*), Va*,b* € A"

With these notations, r is called nondegenerate if the linear map r# or rt
is a linear isomorphism. Otherwise, r is called degenerate. Furthermore, r
is symmetric if and only if

(r,a* @ b*) = (r,b* ® a*), that is, (rf(a*),b*) = (r*(b*),a*), Va*,b* € A*.

We now give an operator form of solutions of the nhacYBe in terms of
the generalized O-operators with weights given by binary operations.

Theorem 2.8. Let (A,-,1) be a unital k-algebra. For r € A® A, let r be
the extended symmetrizer of r and letr! : A* — A be the corresponding linear
map. Then the following statements are equivalent.

(a) The tensor r is a solution of the nhacYBe in A.

(b) The following equation holds.

(10) 7 (a*) - 7 (b*) + rf(a* L* (r* (b))
— rH(R* (¥ (a))b*) — prf ((1,0%)a*) = 0, Va*,b* € A"

(¢) The linear map r from r is an O-operator right twisted by —rf asso-
ciated to (A*, R*, L*).
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(d) The following equation holds.
(11) rf(a*) - r#(0") = r¥(a* L* (" (b")))
+ rH(R*(r* (a*))b*) — prt((1,a*)b*) = 0,Va*, b* € A*.

(e) The linear map r** from o(r) is an O-operator left twisted by —r* as-
sociated to (A, R*,L*).

Proof. Let r =), a; ® b; and a*,b*,c* € A*.
@) = . We have

(ri2-r13,0" @ 0" @ ") = Z<ai -aj, a”) (b, b%) (b, ¢)
iJ
= (%) - aj,a®) (bj, )
J
= (rf(a"L*(r*(b))), ),
(r13 - 193,a" @ b" @ ") = Z(ai, a®){a;,b"){b; - bj, c*)
= Z (aj,b*)(r*(a*) - bj,c")
= <Tﬂ(a*)‘ F(6%), "),

(—ro3 - 1T19,a* @D* @ c*) = —Z(ai, a*)a; - b, b*) (bs, )
:—Za] r#(a*),b*) (bj, c*)
= (= (R*( ( ))b*) ),

(—pris,a” @ b* @ c*) ——pz a;,a “Y(bi, c*)

= <_:U’Tﬁ( )7 >< 7b*> - <_:U’Tﬁ(<17b*>a*)70*>'

Hence r satisfies Eq. if and only if Eq. holds.
(]E[) = . From the definition of the extended symmetrizer of r: r =
r+o(r) — p(l®1), we obtain

v (0%) = ¥ (0%) + r¥ (") — p(1,0%)1, Vb* € A*
and hence

(") = = (") + e (0%) + p(1,0%)1, Vb € A*.



Nonhomogeneous associative Yang-Baxter equation 1977
Further L*(1) is the identity map on A*. Thus Eq. is equivalent to

rf(a®) - rH(bF) — rf(a* L (r4 (b))
— rH(R*(r* (a))b*) + r¥(a* L* (rF (b)) = 0, Va*,b* € A%,

as needed.
@ —= @ Similarly, we have

(ri2-mg,a" @b* @) = (r#(b*) - ay,a%) (b, ¢")
J
= (r#(0") - r'¥(c*), a"),
(riz - r23,a" @b* ® ™) = Z(ai, a*)(b; - r*(b*), ¢*)
J
= (r(R*(r jj(b*)) *) *>,
(—ro3-112,a" 0" @ ") = — Z ai, a ) - bi, b%)

—(r tﬁ(b*L*( f(e*)),a"),
(—priz, a* @b © ) = (—pr'(c"), a")(1,5%)
= (—pr®((1,0%)¢"), a*).

Hence r satisfies Eq. @ if and only if Eq. holds.
@ = @ The proof is the same as for (]ED = . g

We now show that the opposite nhacYBe in Eq. also affords an
operator form.

Lemma 2.9. Let (A,-,1) be a unital k-algebra. Let r € A® A. Then r
satisfies Eq. if and only if o(r) satisfies Eq. (8).

Proof. Let r =%, a; ® b; € A® A. Then r satisfies Eq. @ if and only if
(12) Z(ai'aj®bi®bj+ai®aj®bi‘bj
i,
—a; ®a;-bj @b — pa; ®1®b;) =

On the other hand, o(r) =), b; ® a; satisfies Eq. if and only if

(13) Z(bi'bj®aj®ai+bj®bi®ai'aj
1,3
—bi®ai-bj®aj—ubi®1®ai):0.
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Let 013 : A A® A — A® A® A be the linear map defined by o(z @ y ®
2) =2y for z,y,z € A. It is straightforward to check that the left
hand side of Eq. coincides with applying o135 to the left hand side of
Eq. . This completes the proof. O

Then we have

Corollary 2.10. Let (A,-,1) be a unital k-algebra. For r € A® A, let r
be the extended symmetrizer of v and let rf : A* — A be the corresponding
linear map. Then r satisfies Eq. if and only if the linear map 1t : A* — A
from 1 is an O-operator left twisted by —r® associated to (A*, R*, L*).

Proof. Since o(r)* =%, the conclusion follows from Theorem and
Lemma, [2.9] O

2.3. Operator forms of solutions in a Frobenius algebra

We now consider the solutions of the nhacYBe in a Frobenius algebra.

Definition 2.11. Let (A,-) be a k-algebra. A tensor s € A® A is called
invariant if

(id® L(x) — R(zx) ®id)s =0, Vo € A.

Lemma 2.12. ([I0]) Let (A,-) be a k-algebra. Let s € A ® A be symmetric.
Then the following conditions are equivalent.

(a) s is invariant.

(b) s satisfies
R*(s*(a*))b* = a*L*(s*(b*)), Va*,b* € A*.
(c) s' satisfies
sH(R*(z)a*) =z - s%(a*), s*(a*L*(2)) = s*(a*) -z, Vre A a* e A

Remark 2.13. For a unital k-algebra (A4, 1), it is obvious that 1 ® 1 is not
invariant when dim A > 2.
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Definition 2.14. A bilinear form B := B( , ) on a k-algebra (A, -) is called
invariant if

B(a-b,c)=B(a,b-c), Ya,bce A

A Frobenius algebra (A, B) is a k-algebra A with a nondegenerate invari-
ant bilinear form B(, ). A Frobenius algebra (A4,B) is called symmetric
if B(, ) is symmetric.

Let Isox(M,N) denote the set of linear bijections between k-vector
spaces M and N of the same dimension. Let NDHom(A ® A,k) and
ND(A ® A) denote the sets of nondegenerate bilinear forms on A and nonde-
generate tensors in A ® A respectively. Then by definition, the linear bijec-
tion Homy (A ® A, k) = Homy (A, A*) restricts to a bijection NDHomy (A ®
A, k) = Isox (A, A*). Similarly, the linear bijection A ® A = Homy (A*, A) re-
stricts to a bijection ND(A ® A) = Isox(A*, A). Then thanks to the bijection
Isok (A, A*) = Isox(A*, A) by taking inverse, we obtain a bijection

(14) NDHomy(A ® A, k) = Isok(A4, A*) = Isox (A", A) 2 ND(A® A).

Explicitly, let B be a nondegenerate bilinear form. Let ¢f = gbﬁ% AT — A
be the linear isomorphism defined by

(15) (¢* ' (2),y) = B(a,y), Yo,y € A.

The corresponding tensor ¢ € A ® A is the one induced from the linear
map ¢F.

Lemma 2.15. Let (A,-) be a k-algebra. A nondegenerate bilinear form 56
is symmetric and invariant (and hence gives a symmetric Frobenius algebra
(A,-,B)) if and only if the corresponding ¢ € A® A wvia Eq. is sym-
metric and invariant.

Proof. For a*,b* € A*, let x = ¢*(a*) and y = ¢*(b*). Then from Eq.

we obtain

B(z,y) = ((¢") " (2),y) = (a*, ¢ (b)) = (b* ® a*, 9).

Thus B(z,y) — By, z) = (b* ® a* — a* ® b*, ¢) which shows that B is sym-
metric if and only if ¢ is symmetric.
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Then under the symmetric condition of 25 and hence of ¢, for z € A, we
have

By - z,2) — By, 2 ) = B(H(b*) - 2,0 (a*)) — B(¢*(b), 2 - ¢*(a”))
* )

= <a 7¢ﬁ(b*) "R)— <b*7z ’ (bﬁ(a*»
(a"L*($H(b7)), 2) — (R (¢ (a")b", 2)
= (@* L*(¢*(b")) — (R*(¢*(a"))b", 2)

By Lemma this shows that 98 is symmetric and invariant if and only
if ¢ is symmetric and invariant. O

Theorem 2.16. Let (A,-,1,B) be a unital symmetric Frobenius algebra.
Let ¢f : A* — A be the linear isomorphism defined by Eq. . Forre A®
A, let the linear maps P,, Pt : A — A be defined respectively by

(16)  Po(2) =4 (¢H) " L(@), Pl(x):=r"(¢)) " (2), Yz e A

Let vf(a*) := rf(a*) + r¥¥(a*) — u(1,a*)1,a* € A* be defined by the extended
symmetrizer v of r. Then the following statements are equivalent.

(a) r is a solution of the nhacYBe in A.
(b) The following equation holds.

(17) Pr(z) - Pr(y) = Pr(Pr(z) - y)
— Pz - Pi(y)) + pB(1,y) P (x), Y,y € A.

(¢) The following equation holds.

(18)  Pl(x)- Ply) = P(=Po(x) -y)
+ Pl(a- Pl(y) + nB(1,2)P(y), Vay € A

(d) The operator P. on A is a Rota-Baxter operator right twisted by
—rf(¢") L, that is,

Pr(x) ’ Pr(y) = Pr(Pr(x) ’ y) + Pr(x ’ Pr(y))
= Pz r¥(¢) 7N (1), Y,y € A,
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(e) The operator P! on A is a Rota-Bazter operator left twisted by
—rf(¢") 71, that is,
Pi(z) - Pl(y) = P/(P/(x) - y) + Pi(x - Pl(y))
- Pf(rn(gbﬁ)_l(l‘) : y)a V:B,y €A

Proof. For x,y € A, setting a* = qﬁﬁ*l(x), b* = Qﬁﬁfl(y), we have

Po() - Po(y) = r¥(a*) - r(b"),
Po(Py(z) -y) = ri¢t T (i () - $F(67))

= rigt T (rh(a) - S (6)) = (R (rH(a))b),
Po(z- Pl(y)) = r'¢? (@) - vt (y))

= rigf T (g (a®) - PR (b)) = rH(a* L (P (7)),
B(1,y)P,(x) = P¢*(a")B(1,y) = r((1,b°)a").

Note that the invariance of ¢ given by Lemma [2.15] is used in deriving

Egs. and . By Theorem r satisfies Eq. if and only if P,
satisfies Eq. . Similarly, we show that r satisfies Eq. @ if and only if P!
satisfies Eq. . Hence statements @ - are equivalent.

Next for any = € A and b* € A*, we have

(P(x) + PH(x),b*) = (¢4 (2)) + 1P (¢4 (2)), b%)
= (4! (@) + (@t (2),1)1,b%)
= (rﬁ¢ﬁ71(x) + uB(x, 1)1,b%).
Hence
Pi(z) = —P.(z) + rﬁ¢ﬁ71(x) + pB(z,1)1, Va e A.

Then the equivalence of the statement (]ED (resp. ) to the statement @
(resp. () follows from applying this equation. O

We give an application to Rota-Baxter systems introduced by
Brzezinski [15].

Definition 2.17. Let A be a k-algebra. Let P,.S: A — A be two linear
maps. The triple (A, P, S) is called a Rota-Baxter system if for z,y € A,
the following equations hold

P(z)P(y) = P(P(x)y +zS(y)), S(x)S(y) = S(P(z)y +zS(y)).
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Taking 1 = 0 in the equivalent statements @f in Theorem m gives

Corollary 2.18. Let (A,-,1,8) be a unital symmetric Frobenius algebra.
Forr e A® A, let P, and P! be defined as in Eq. . Then r is a solution
of the AYBE in FEq. @ if and only if (A, P, —P!) is a Rota-Baxter system.

r

2.4. Operator forms of symmetrized invariant solutions of
nhacYBe

We now show that, under an invariant condition, solutions of the nhacYBe
can be interpreted in terms of the usual O-operators in Definition [2.5

Definition 2.19. Let (A,-,1) be a unital k-algebra. A tensor r € A® A
is called symmetrized invariant if its extended symmetrizer r defined in
Eq. @D is invariant.

Lemma 2.20. (a) Let (A,-,1) be a unital k-algebra. Let s € A® A be
symmetric and invariant. Set

(19) a* ob* = a*L*(s* (b)) = R*(s*(a*))b*, Va*,b* € A"

Then (A*,o, R*, L*) is an A-bimodule k-algebra.
(b) Let (A*,o, R*,L*) be an A-bimodule k-algebra. Define a linear map

st A* = A, or equivalently s € A® A, by

(20) (s,a* @b*) := (s*(a*),b*) := (b* 0 a*,1), Va* b* € A"
Suppose

(21) (a*ob*,1) = (b* 0a*,1), Va*, b* € A™,
and s' satisfies

(22) (s*(a¥) - 2,b") = (b* o a*,z), V& € A a*,b* € A*.

Then s is symmetric and invariant.
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Proof. @ Let a*,b*, ¢ € A* and x,y € A. Then we have

(a*ob*)oc* = a*L*(s*(b*)) o ¢* = a*L*(s*(b*)) L*(s*(c")),
a*o (b*oc*) =a* ob*L*(s*(c*)) = a*L*(s*(b*L*(s*(c))))
= a*L*(s* (b*) * s*(c¥)).

Hence (A*,0) is a k-algebra. Moreover,

(R*(x)(a" 0 b%),y) = (a"L*(s*(b")),y - z) = '
(R*(x)a*) o b*,y) = (R*(x)a", s*(b") - y) = (a", s (0") -y - ).

Hence R*(x)(a* o b*) = (R*(x)a*) o b*. Similarly, we have
(@* o b*)L*(z) = a* o (b*L*(x)), (a*L*(x))ob* =a* o (R*(x)b").

Therefore (A*, 0, R*, L*) is an A-bimodule k-algebra.
(]ED. Applying Eq. gives

(s,a* @ b*) = (s*(a*),b") = (b* 0 a*,1) = (a* 0 b*,1)
= (s*(b*),a*) = (s,b* ®a*), Va* b* € A"

Hence s is symmetric. Since (A*, o, R*, L*) is an A-bimodule k-algebra, we
have

= ((a*L*(x)) o b*,1) = (a* o (R*(z)b"), 1)

= ((R*(z)a”) o b",1) = (b" o (R*(x)a"), 1)
(b"L*(x)) 0 a*, 1) = (a* o (b"L*(2)), 1) = (s*(b*L*(2)),a*),
where z € A, a*,b* € A*. Hence s is invariant. O

Remark 2.21. In fact, under the same conditions as for Lemma
Eqgs. and hold if and only if the following equation holds

(s*(a*) - 2, b*) = (b* o a*,z) = (x- s*(b*),a*), Vo € A, a*,b" € A*.
Theorem 2.22. Let (A,-,1) be a unital k-algebra. Let r € A® A be sym-

metrized invariant. Let o be the binary operation defined from r by Eq. (19).
Then the following statements are equivalent.
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(a) The tensor r is a solution of the nhacYBe in Eq. (7).

(b) When r =0, the map rf is an O-operator of weight zero associ-
ated to the A-bimodule (A*, R*,L*), and when r # 0, the map rt s
an O-operator of weight —1 associated to the A-bimodule k-algebra
(A* o, R* L*).

(¢c) When r =0, the map rt is an O-operator of weight zero associ-
ated to the A-bimodule (A*, R*,L*), and when r # 0, the map rtt s
an O-operator of weight —1 associated to the A-bimodule k-algebra
(A* o, R*, L*).

Proof. (a) <= (B). Since a* ob* :=a*L*(r*(b*)) and, by Lemma m
(A*, 0, R*, L*) is an A-bimodule k-algebra, the equivalence follows from The-

orem [2.8]
The proof of @ = follows from the same argument. O

Corollary 2.23. Let (A,-,1) be a unital k-algebra. Let r € A® A be sym-
metrized invariant. Then r is a solution of the mhacYBe if and only if r

satisfies Eq. .

Proof. By Theorem [2.22] the tensor r is a solution the nhacYBe if and only
if o(r) is a solution of the nhacYBe, which holds if and only if r is a solution

of Eq. by Lemma O

Remark 2.24. For a unital k-algebra (A,1), it is obvious that u(1® 1)
is a solution of the nhacYBe. However, if ;1 # 0 and dim A > 2, then the
extended symmetrizer of u(1 ® 1) is not invariant (see also Remark [2.13)).

Corollary 2.25. Let (A,-,1) be a unital k-algebra and (A*,o, R*, L*) be
an A-bimodule k-algebra satisfying Eq. . Let s : A* — A be the linear
map from o defined by Eq. and satisfying Eq. . Let P: A* — A be
a linear map satisfying

(23) P(a*) + P*(a*) = s*(a*) + p{a*, 1)1, Va* € A%,
where P* : A* — A* is the dual map of P. Then the following statements
are equivalent.

(a) When s* =0, P is an O-operator of weight 0 associated to (A*, R*, L*)
and when s* #0, P is an O-operator of weight —1 associated to
(A*, 0, R*,L").
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(b) When s* =0, P* is an O-operator of weight zero associated to
(A*,R*,L*) and when s* # 0, P* is an O-operator of weight —1 as-
sociated to (A*, o, R*, L*).

(c) The tensor r € A® A defined by r* = P is a symmetrized invariant
solution of the nhacYBe.

(d) The tensor r € A® A defined by r** = P is a symmetrized invariant
solution of the nhacYBe.

Proof. By Lemma the tensor s from s is symmetric and invariant. Set
P =%, Then for a*,b* € A*, we have

(P(a*) + P*(a") + s*(a*) — p{a*,1)1,b")
=(r+o(r)+s—p(1®1),a"@0b").

Hence P satisfies Eq. if and only if the extended symmetrizer of r is
symmetric and invariant. By Theorem m statement @ holds if and only
if statement holds. Note that in this case, P* = rt. Therefore by Theo-
rem statement (]E[) holds if and only if statement @ or statement
holds.

Furthermore, by the symmetry of P and P*, if we set P =, then
by the above discussion, we can directly show that statement @ holds if
and only if statement @ holds. This proves that all the statements are
equivalent. O

We end this subsection with displaying a relationship between solutions
of the nhacYBe with trivial extended symmetrizers and associative Yang-
Baxter pairs.

Definition 2.26. ([15]) Let A be a k-algebra. An associative Yang-
Baxter pair is a pair of elements r, s € A ® A satisfying

T12713 — r237T12 + 713523 = 0, 112813 — S23512 + S13523 = 0.
Proposition 2.27. ([15]) Let (A, 1) be a unital k-algebra. Letr,s € A® A.

Ifr — s =1 ®1, then the pair (r, s) is an associative Yang-Bazter pair if and
only if r satisfies the nhacYBe with pu = 1.
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Corollary 2.28. Let (A,1) be a unital k-algebra. Let r € A® A. If
r+o(r)=ple1l)

with p # 0, then r is a solution of the nhacYBe in Eq. if and only if
(r,—o(r)) is an associative Yang-Baxter pair.

Proof. Let r € A ® A be a solution of the nhacYBe and r + o(r) = p(1 ® 1)
with p # 0. Then ' = ir is a solution of the nhacYBe with =1 and
7+ o(r') = 1 ® 1. By Proposition 2.27, (', —c(r")) is an associative Yang-
Baxter pair. Hence (r, —o(r)) is an associative Yang-Baxter pair. Similarly,
the converse also holds. ]

3. NhacYBe and Rota-Baxter operators

In this section, we first give a correspondence between certain Rota-Baxter
operators and symmetrized invariant solutions of the nhacYBe with a spe-
cific extended symmetrizer r in unital symmetric Frobenius algebras.

When the tensor r is degenerate, solutions of the nhacYBe in semi-
direct product algebras can still be derived from Rota-Baxter operators,
O-operators and dendriform algebras, while Rota-Baxter operators can be
derived from solutions of the nhacYBe in unitization algebras.

3.1. NhacYBe and Rota-Baxter operators on Frobenius algebras

Extending the correspondence between solutions of the AYBE and Rota-
Baxter systems on Frobenius algebras given in Corollary to the
nhacYBe, we obtain

Theorem 3.1. Let (A,-,1,B) be a unital symmetric Frobenius algebra. Let
Pt A* — A be the linear isomorphism from B defined by Eq. and let
o€ AR A be the corresponding invariant symmetric tensor. Suppose r €
A® A has its extended symmetrizer given by

(24) r=r+o(r)—pu(le®l)=-X
Define linear maps P,, P! : A — A respectively by
(25) P.(z) := rﬁqﬁﬁfl(a?), Pl(z) = Ttnqﬁrl(m), Vo e A.

Then the following conditions are equivalent.
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(a) r is a solution of the nhacYBe in A.
(b) P, is a Rota-Baxter operator of weight \, that is, Eq. holds.
(c) P! is a Rota-Bazter operator of weight \.

Proof. 1t follows from Theorem by taking rf = —\¢!. O

A different construction of Rota-Baxter operators from solutions of the
opposite form of the nhacYBe in Eq. can be found in [19].

Taking A = u = 0 in Theorem we obtain the following result. Note
that in this case, P! = —P,.

Corollary 3.2. [10, Corollary 3.17] An antisymmetricr € A® A is a so-
lution of the AYBE in Eq. @ if and only if the linear map P, defined by
Eq. is a Rota-Baxter operator of weight zero.

Example 3.3. Let (A4,-) = (Endk(V),-) = (M,(k),-) be the matrix alge-
bra, where n = dim V. It is a Frobenius algebra with the invariant bilinear
form being the trace form, that is,

(26) B(z,y) :=Tr(z-y), Vr,y € A.

Take a basis {e1,--- ,e,} of A such that B(e;,e;) = ;5. Let
¢ = Z e; ® €.

Therefore Eq. holds. Moreover, since Endy (V) ® Endk (V) = Endg(V ®
V), it is known that ¢ is the flip map c on V@ V.
Let T:Ziai(@bi € A® A. Then

Po(x) = ¢t (z) = Y (¢F (@), i)ty = Z B(z,a;)b; = Z Tr(z - a;)bi.

Similarly, P!(z) =, Tr(x - b;)a;. Suppose that
r+o(r)=-X+pull)=-X+ulx1l).

If r satisfies Eq. , then both P, and P! are Rota-Baxter operators of

r

weight A. This is exactly the example given in [36].

Example 3.4. We can be more explicit with Example [3.3|when n = 2. Let
Eij € Msy(k), 1 <1i,5 <2, be the matrix whose (7, j)-entry is 1 and other
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entries are zero. Now the matrix algebra A = My(C) is a Frobenius algebra
with the invariant bilinear form 8 given by Eq. (26]). An orthonormal basis
with respect to the form is

1
e1 = —=(En + Ex), €2ZE(E11—E22)7
3 = ——(E1g + Fa1), €4 = ——(Eyg — Eay).

3 \/§( 12 + Fa1), eq (B12 — E21)

Hence the ¢ in Example [3.3] is

-5
EH

p=e1 Qe t+eaRes+e3Res+e4 ey
=FE11 @ E11 4 E9 @ Eog + E12 ® E91 4+ E91 @ Eya.

Note that the unit 1 in My(C) is E11 + E22. Then
1®1=FE11QE11+E11 @ Ea+ Eoy ® By + Eog @ Eaa.

On the other hand, by a direct calculation, we find that r = Ei1o ® Fo1 —
E11 ® Eg is a solution of the nhacYBe with = —1 in M3(C). Then we
have

r4+0o(r)=Fia® FEy —FE11 @ Fag+ E9y @ F1g — FExo®@Ejp =¢—1® 1.

Hence by Theorem [3.1] we have a Rota-Baxter operator P, of weight —1
determined by

P.(E1n) = —FE, Pr(E2) = Eo, P (E12) = Pr(E22) =0.

3.2. From O-operators and dendriform algebras to nhacYBe on
semi-direct product algebras

We now show that O-operators of weight zero and dendriform algebras can
give rise to solutions of the nhacYBe in some semi-direct product algebras.
We first generalize one direction of Theorem [3.1] by relaxing the condition
that the extended symmetrizer of r is a multiple of a nondegenerate invariant
tensor giving by a symmetric Frobenius algebra.
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Proposition 3.5. Let (A,-,1) be a unital k-algebra. Let s € A® A be sym-
metric and invariant. Let P : A — A be a linear map satisfying

s*P*(a*) + Ps*(a*) = —Ast(a*) + p(a*, 1)1, Va* € A*,

where P* is the linear dual of P. Let r1 and ro be defined by 7‘§ = s'P* and
rg = Pst. Explicitly, setting s =, a; ®b;, then

(27) r o= ZP(CLZ) ®b;, 1o = Z a; ¥ P(bz)

If P is a Rota-Bazter operator of weight A, then r1 and ro are symmetrized
inwvariant solutions of the nhacYBe in A.
Conversely, suppose that s is nondegenerate. Let r € A ® A satisfy

r+o(r)=-As+pu(l®1).
Let P., Pt : A — A be the linear maps defined respectively by
P.(z) := rﬁsﬁil(az), Pi(z) := it ti71(36), Vo e A.

If r is a solution of the nhacYBe, then P, and P! are Rota-Bazter operators
of weight .

Proof. In fact, we have rg = r’iﬁ since

(rth(a*),b%) = (s'P*(b%), a*) = (s*(a*), P*(b"))
— (Ps(a*),b*) = (rh(a*),b*), Va*,b* € A",

Hence ry = o(r1). For a*,b* € A*, we have
(rm+o(r)+As—p(l®l),a @0b%)
*

= (s*P*(a%),b*) + (s"P*(b*),a*) 4+ \(s*(a*), b*) — pu(1,a*)(1,b*)
= (s*P*(a*) 4+ Ps*(a*) + As*(a*) — p(a®,1)1,0) = 0.
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Hence r1 4+ o(r1) + As — p(1 ® 1) = 0. For a*,b*, ¢* € A*, we have

(rh (@) - r}(b"),¢*) = (s"P*(a¥) -
= (s"P*(b")

(b*, P(s*(c") - s"P*(a")))

(b*, —P(s*(c") - P(s*(a"))))

+ (b, P(=Ast(c*) - s*(a") + p(1,a%)s*(c))),

( jiP*(OL*L*(SMD*(b*))

<a*’ ﬁp*(b*) P( *

(a*, s*(P*(b*)L*P(s*(c

(b*, P(P(s*(c")) - s*(a™))),

( (s

(

(

(

S

(i (a*L* (5 (0))), ")

s*P*(R*(s
R*(s*P*(a*
b*, P(s*(c*)) - s
b*, —P(sﬁ(c

* S —
. P S
T v
—
=)
N—

(rh (R (r}(a*))b*), ¢*) =
(Mri(a*L - (b)), ¢) =

Hence if P is a Rota-Baxter operator of weight A, then r% is an O-operator

associated to the A-bimodule k-algebra (A* o, R*, L*), where o is defined
from —As. Hence 7 is a solution of the nhacYBe by Theorem jjl By
Theorem again, 7o is also a solution of the nhacYBe since 75 = 7"1 =
(2 (Tl)ﬁ.

If s is nondegenerate, then from the above proof, it is obvious that the
converse is true. Alternatively, note that when s is nondegenerate, symmet-
ric and invariant, then it corresponds to a nondegenerate, symmetric and
invariant bilinear form B by Lemma [2.15] through Eq. such that (A, B)
is a Frobenius algebra. Then the conclusion follows from Theorem g

Remark 3.6. When y = 0, the tensor r; in Eq. recovers a construction
n [19].

In the rest of this subsection, we provide symmetrized invariant solutions
of the nhacYBe in semi-direct product algebras from O-operators of weight
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zero and dendriform algebras by applying Proposition We first supply
more background.

Let (A,-) be a k-algebra and (V,[,r) be an A-bimodule. Let (V*,r*, [*)
be the dual A-bimodule. Denote the semi-direct product algebras

A=Ax, V, A:i=Axpp V"

Identify a linear map 8 : V — A with an element in A ® A by the injective
map

Homg(V,A) Z A V' — AR A.

Proposition 3.7. ([8]) Let A be a k-algebra and (V,£,1) be an A-bimodule.
Let a: V — A be a linear map. Then « is an O-operator of weight zero if
and only if the linear map

(28) a(z,u) = (a(u), =), Y € A,uecV,
is a Rota-Baxter operator of weight A on the algebra A.

Lemma 3.8. ([10]) Let (A,-) be a k-algebra and (V,1,r) be an A-bimodule.
Let 5:V — A be a linear map. Then =+ o(f) € A® A is invariant if
and only if B is a balanced A-bimodule homomorphism, that is,

(29) Bl(x)u) =z - B(v), Blur(zx)) =pL(u) -z,
(B(w))v = ur(B(v)), Yz € A,u,v € V.

o~

Theorem 3.9. Let (A,-,1) be a unital k-algebra and (V,4,r) be an A-
bimodule. Assume that o : V — A is an O-operator of weight zero and (3 :
V* — Ais a balanced ﬁl—bz@odule homomorphism. Let a be given by Eq.
and B:=PB+o(B) € A® A. Let r1,r3 € AR A be defined by
Tg = Bﬁ@*, Tg = apt.
If a and B satisfy
Ba*(x*) + af*(z*) = pla*, 1)1, Va* e A",

then r1 and ro are symmetrized invariant solutions of the nhacYBe in 2,
with s = 5.
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Proof. By Proposition a is a Rota-Baxter operator of weight A on A.
By Lemma B € A® A is invariant. Moreover, we have

(%, u") = (0,0%(z%) = Mu*), BH(a",u*) = (B(u"), B*(z%)),
V' e A* u* e V*.
Hence for z* € A*,u* € V, we have

Brar (a*,u )+aﬁﬂ(fv )+ ABH (2, ut) — (2%, 0%, (1,0))(1,0)
= (Ba”(z%) = AB(u"),0) + (af™(z"), —AB*(z"))
+ AB(u), 7(x%)) — (u{z", 1)1,0)
= (Ba”(z%) + af*(z") — p(z",1)1,0) = 0.
By Proposition the desired result follows. U

Corollary 3.10. Let (A,1) be a unital k-algebra. Let s € A® A be sym-
metric and invariant. Let P : A — A be a linear map satisfying

s*P*(a*) + Ps*(a*) = p(a*, 1)1, Va* € A*.
Suppose that P is a Rota-Baxter operator of weight zero.
(a) Letri,ro € A® A be defined by
rﬁ = st P, rg .= Ps*.

Then r1 and ro are symmetrized invariant solutions of the nhacYBe in
A whose extended symmetrizers are zero.

(b) Set A:= Ay RA. Let P be given by Eq. (28) with st=st+ o(st) €
A® A. Let r3,T4 € A® A be defined by

rg = (;j)ﬁﬁ*, ri = ]3(.9~ﬁ)ﬁ

Then r3 and r4 are symmetrized invariant solutions of the nhacYBe in
A with s = st

Proof. (a) follows from Proposition (3.5 with A = 0.

(b) follows from Theoremwhere (V,l,r)=(A,L,R) and P = «, =
st. Note that in this case, if s is invariant and symmetric, then s* is a
balanced A-module homomorphism, that is, s* satisfies Eq. . (I
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Corollary 3.11. Let (A,-,1) be a unital k-algebra. Set A=A X pe 1+ A*.
Assume that B : A — A is a linear map satisfying

(30) Bla-y)=Bx)-y=1z-By), Y,y € A

Let o : A* — A be an O opemtor of weight zero associated to (A* R*LY).
Let a be given by Eq. and,B B+ o(B) cA®A. Let 7,1’ EA®A be
defined by

= glar, = aph
If a and B satisfy

fa(x¥) + af*(z*) = pla*, 1)1, Va* e A",

then r and 71 are symmetrized invariant solutions of the nhacYBe in g, when
taking s = B. In particular, suppose that 8 =id. Then [ satisfies Eq. .
Suppose that

a(z*) + a*(2*) = pla*, 1)1, Va* € A*.
(a) Let r1,m2 € A® A be defined by

1dﬁ’\* Tg = aiaﬁ.

Then r1 and r2 are symmetrized invariant solutions of the nhacYBe in
A with s = id.

(b) Let rz,rs € A® A be defined by

Then rs3 and rq are symmetrized invariant solutions of the nhacYBe
in A.

Proof. The first part follows from Theorem by taking (V,l,r):=
(A*, R*, L*). Note that in this case, Eq. is exactly Eq. .

(a) follows from the first part when § =i

(b) follows from Corollary [2.25]in the case that the extended symmetrizer
is zero. 0

We finally provide solutions of the nhacYBe from dendriform algebras.
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Definition 3.12. [31I] Let A be a vector space with two binary operations <
and . Then (A, <, >) is called a dendriform algebra if for all a,b,c € A,

(a<b)<c=a<(b<c+b>c), (a=b)<c=a (b=<c),
(a<b+a=b)>c=a>(b>c).

Let (A, <,>) be a dendriform algebra. For a € A, let L-(a), R<(a) and
L. (a), R.(a) denote the left and right multiplication operators on (A, <)
and (A, >), respectively. Furthermore, define linear maps

Ry, Ly : A— Endgx(A), a— R<(a), a> Ly(a), Va € A.
As is well known, for a dendriform algebra (A, <, >), the multiplication
axb:=a<b+a>=b, VabeA,

defines a k-algebra (A, x), called the associated algebra of the dendriform
algebra. Moreover, (A, L., R<) is a bimodule of the algebra (A, x) [6, 31].

A unital dendriform algebra [20] is a k-module A := k1 & A* such
that (AT, <,>) is a dendriform algebra and the operations < and > are
extended (partially) to A by

r<1=1>=z=2, z>1=1<z=0 VrecA".

Note that 1 <1 and 1> 1 are not defined. Then (A,*,1) is a unital k-
algebra.

Corollary 3.13. Let (A, <,>,1) be a unital dendriform algebra with the
unit 1. Let (A,x) be the associated unital k-algebra with the unit 1. Suppose
that there is a linear map B : A* — A satisfying

BRZ(2)y") = x % B(y"), B(y"L(x)) = B(y") x x,
RZ(B(y"))z" = y" LL(B(z)),

for x € Ajy* 2" € A*. Set A=A Xr. r, A Let id be given by Eq. ,
that 1is,

i?i(x,y) = (y,—\y), Vx,y € A,
and B = B + o(B) e A® A. If in addition, B satisfies

pla®) + (") = pla”, 11, Va* e A,
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then r1 and ro defined by
o B, e A
are symmetrized invariant solutions of the nhacYBe in A\, with s = E

Proof. Note that the identity map id is an O-operator of the associated
algebra (A, x) associated to the bimodule (A, L., R~). Hence the conclusion
follows from Theorem [3.91 d

Remark 3.14. The above constructions of symmetrized invariant solu-
tions of the nhacYBe are different from the construction of solutions of the
AYBE from O-operators given in [10], where the symmetric invariant tensors
appearing in the symmetric parts of solutions in the semi-direct product al-
gebras can be “lifted” from linear maps from the bimodules to the k-algebras
themselves as Lemma [3.8] illustrates. However, it is not true for the symmet-
ric tensor 1 ® 1 any more, that is, the approach in [I0] does not apply here
due to the appearance of the new term p(1® 1).

3.3. From nhacYBe to Rota-Baxter operators on unitization
algebras

We end this section with constructions of Rota-Baxter operators from so-
lutions of the nhacYBe in unitization algebras, or equivalently, augmented
algebras.

The unitization of a not necessarily unital k-algebra A’ is the direct
sum k-algebra A := k @& A’. An augmentation map on a unital k-algebra
(A,-,1) is a k-algebra homomorphism ¢ : A — k. An augmented unital
k-algebra is a unital k-algebra (A4, -,1) with an augmentation map e.

As is well known [I7, Theorem 5.1.1], augmented unital k-algebras are
precisely the unitizations of (not necessarily unital) algebras given by

ko A+ (A e),
where A :=k @ A’, ¢ is the projection to k, while A’ is kere.

Remark 3.15. For an augmented unital k-algebra (A,-,1,¢) with aug-
mentation map e, there is a basis {e1,---,e,} of A such that e; =1 and

{e2, -+ ,e,} isabasis of kere = A’. Let {ef, -, e} } be the dual basis. Then
e=e€j].
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The following conclusion is obvious.

Lemma 3.16. Let (A,-, 1) be a unital k-algebra and € be an augmentation
map. Then (1) = 1y, and

(Bl e(@-y-2)=ely -z -z)=c(z-z-y) =e(x)e(y)e(z), Vo,y,z € A.
Let (A,-,1,¢) be an augmented unital k-algebra. Define linear maps
g ARA—->k®A e, : ARA—> ARk

respectively by
g:=e®id, g :=id®e.

Similarly, define linear maps

612A®A®A%k®k®A, 823A®A®A*>A®k®k,
c13: ARARA—-k® ARk

respectively by
€12 =eRe®id, €93 =id®e®e, €13:=eRid®e.
Denote the natural isomorphisms of algebras [23]
G k®@A— A 1lxyQRara; B,: Ak — Az @1 — x, Vo € A.
Similarly, define natural isomorphisms of algebras

B2 k@k®A— A 1,01z~ 2z,
Boz: ARKk®k > A, 2R 1x® 1k +— x,
13 : k@ ARk - A, 1Ixy®@2xQ@1lx—x, Vo e A.

For xz € A, set

x(1) =r®1e AR A, Z(r) =1z e AR A,
Z(1) =rzR1R1c AR AR A, Z(2) =1RrxrR1c AR AR A,
Z(3) =1R1rxrc AR AR A.
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Theorem 3.17. Let (A,-,1,¢) be an augmented unital k-algebra. Let
r=7y,.0;0b €A® A be a solution of the nhacYBe and r be the extended
symmetrizer of r. Define linear maps P,P': A — A by

(32) P(z):=Y e(a;i-2)by, Pl(x):=) e(b;-x)a;, Yz € A

(a) Ifr is nonzero and satisfies
(33) Bila(r-z@))) =z, Vx € A,

then P and P’ are Rota-Baxter operators of weight —1.
(b) If r =0, then P and P' are Rota-Baxter operators of weight zero.

Proof. . Let z,y € A. By definition, we have

(34) P(z) = Biei(r - zq)) = Bis(e1s(riz - 7 (1))
= Pr2(e12(r13 - (1)) = Brz2(e12(r23 - 7(2))),

(35) P'(z) = Brer(r-(y) = Biei(o(r) - xq)) = Pas(e2s(r12 - 2(2)))
= (a3(ea3(r13 - 1‘(3))) = Bis(e1s(res - 95(3)))-

Since r satisfies Eq. , we have

T12°T13 " T(1)  Y2) T 130723 T(1) " Y2) — 7237120 T(1) " Y(2)
= HT13 (1) " Y(2)-

Applying Bioe12: AQ A® A — A to both sides of the above equation, we
get

(36) Broera(riz - ri3 - () - Y) + 713 - 723 T(1) - Y2) — 23 T12 - T(1) - Y(2))
= pPr2(e12(r1s - (1) - Y2)))-
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Furthermore, we have

(37) Brz(era(riz - 13- 21y Yr2))) = 512(512(2(6% aj - x) ® (b - y) @ by))
= 512(2 8(; caj - x) @e(bi-y) @ by)
.Z (P'(y) - a; - x)b;

2 Za(aj -z - P'(y))b;
J

D P Py).

Similarly, we have

(38) Bra(e12(r13 - ra3 - 1y - y(2))) = P(x) - P(y),
(39) Bra(e12(ras - m12 - 21y - y(2))) = P(P(x) - y),
(40) Bz (e12(r13 - 2(1) - Yz ))) = e(y)P(w).
Substituting Eqgs. — into Eq. gives

(41) P(z) - P(y) + P(z - P'(y)) — P(P(z) - y) = pe(y) P(z).

Since the extended symmetrizer r of r is nonzero, we have
Bie((r +o(r) - zq) — pzy) = Bielr - zq))-

By Egs. , and , we obtain

(42) P'(z) =z + pe(z)1 — P(x).

Substituting Eq. into Eq. yields

P(x) - P(y) + Pz (y+ pe(y)1 = P(y)) ) - P(P(x) - y)
= P(x) - P(y) + P(z ) + p=(y) P(x) — P(z - P(y)) - P(P(x) )
= pe(y)P(x),
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that is,
P(z)- P(y) = P(P(z) -y) + P(x- P(y)) — P(x-y),

as required. Similarly, we prove that P’ is also a Rota-Baxter operator of
weight —1.
(]ED. By an argument similar to the proof of Item @, we also have

(43) P(x)- P(y) + Pz P'(y)) — P(P(z) - y) = pe(y) P(z).
Since the extended symmetrizer of r is zero, we obtain
T+U<T)_M(1®1) :07
and so
Bie((r +a(r)) - zq) — paq) =0.
By Egs. -, we have
(44) P'(z) = pe(z)1 — P(x).

Substituting Eq. into Eq. shows that P is a Rota-Baxter operator
of weight zero. A similar argument proves that P’ is a Rota-Baxter operator
of weight zero. O

Corollary 3.18. Let (A,-,1,¢) be an augmented unital k-algebra. Let r €
A® A be anti-symmetric (i.e. v+ o(r) =0). If r satisfies the AYBE, then
the operator P defined by Eq. is a Rota-Baaxter operator of weight zero.

Proof. It follows from Theorem () by taking p = 0. O

Corollary 3.19. With the conditions in Theorem |3.17, suppose that r €
A® A is nonzero and invariant, that is, r-xq) =z -1, Vz € A. As in
Remark; let {e1 =1,e2,--- ,en} be a basis of A and {e7,e5,--- ,e}} be

the dual basis such that € = e]. Moreover, suppose

r=1Q1+ Z 8ij€; &K €.
2,7>1

Then the linear maps P and P defined by Eq. are Rota-Baxter operators
of weight —1.
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Proof. For all x € A, we have

Biei(r - z) = Biei(ay 1) = feQ) @x) + > Bilsijeles) @ (- ¢;)) =,

ij>1

that is, r satisfies Eq. (33)). Hence the conclusion follows from Theorem
U

Proposition 3.20. Let (A,-,1) be a unital k-algebra. If e : A — k is an
augmentation map, then the bilinear form B on A defined by

(45) B(z,y) :=e(x)e(y), Vo,y € A,
is symmetric and invariant. Moreover, B satisfies
B(x-y,z) =By x,2), Vr,y,z € A.

In particular, if B is nondegenerate, then A is commutative. Conversely, if
B is a symmetric invariant bilinear form satisfying

B(z,y) =B(r-y,1) =B(z,1)B(y,1), Vz,y € A,
then the linear map € : A — k defined by
e(x) :=B(x,1), V€ A,
18 an augmentation map.
Proof. All the statements can be verified directly from the definitions. [

Example 3.21. Let (A,-,1,¢) be an augmented unital commutative k-
algebra. Let 8 be the bilinear form defined by Eq. . Suppose that
B is nondegenerate. Then (A,-,B) is a symmetric Frobenius algebra. Let
@ : A* — A be the linear isomorphism defined by Eq. . Let {e; =
1,ea, -+ ,en} be a basis of A satisfying

%(eiaej) = 5137 VZ?] = 1a Iz

Then ¢ € A® A is invariant and

n n
¢:Z€i®€i:1®1+zei®ei-
i—1 =2
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By Theorem and Corollary we find that if r satisfies Eqs. @
and , then the linear maps P and P’ defined by Eq. are Rota-
Baxter operators of weight A. Note that this conclusion also follows form
Theorem since in this case, P = P. and P’ = P!, where P, and P! are

defined by Eq. .

4. Classification of symmetrized invariant solutions of
nhacYBe in low dimensions

In this section, we classify symmetrized invariant solutions of the nhacYBe
for p # 0 in the unital complex algebras with dimensions two and three,
and find that all of them are obtained from Rota-Baxter operators through
Theorem It would be interesting to see what happens for algebras in
higher dimensions.

4.1. The classification in dimension two

The set of symmetric invariant tensors of a k-algebra A is a subspace of
A ® A and is denoted by Inv(A).

There are two two-dimensional unital C-algebras whose nonzero prod-
ucts with respect to a basis {e1,e2} are given by [37]

(Al) 1 €e1€1 = €1,€1€69 = €9€1 = €9,

(AQ) . €1€1 = €1,€2€9 = €9.

By [30], for the algebra (A1), there is only one nonzero solution r = pe; ® e;
of the nhacYBe Eq. . By Remark this solution is not symmetrized
invariant.

Consider the solutions of the nhacYBe in the algebra (A2). We find that
eight of the nine nonzero solutions are symmetrized invariant, given by

rm=pler®er +ea®ex+e1®eg), 1o=ple1 e +ea®@ex+ex®eq),
r3 = ey Qez, 14 = e ey,

r5 = puler ®ep +e1 ®ez), r6=pler ®er +ea®ey),
rr=p(ea ®eg +e1 ®ea), 15 = pu(ea ®ea + €2 @ eq).

Moreover, all of these solutions are obtained from Rota-Baxter operators by
Theorem B.11
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To see this, note that
ro = 0'(7‘1), T4 = 0(7’3), re — 0'(7’5), rg = O’(T7),
and the unit of the algebra (A2) is e; + ea. It is straightforward to show
that Inv(A2) = span{e; ® e1,e2 ® ea}. Let B and Bs be the bilinear forms
on (A2) defined by

Bi(er,e1) = Bi(eg,e2) =1,Bi(er,e2) = Bi(eg,er) = 0;
%2(61761) = 17%2(€2a62) = _17%2(61762) = %2(62761) = 0.

Then both B; and B, are symmetric, nondegenerate and invariant. Their
corresponding symmetric, invariant tensors from Lemma [2.15] are

p1=e1®e;tea®er, P2 =e1 Qe —ex X ey,

-1
so that B,(z,y) = <<Z>f (x),y) for z,y € (A2) and i = 1,2. Now the 8 sym-
metrized invariant solutions of the nhacYBe satisfy

ri+o(r) =r2+o(r2) =ri+r2 = pd1 + pler +e2) ® (e1 + e2);
r3+o(r3) =ra+0o(ry) =713+ 74 = —pd1 + pler +e2) @ (e1 + e2);
r5 +0(rs) =16 +0(re) = 15 + 76 = 2 + per +e2) ® (e1 + e2);
re+o(r7) =rs+o(rs) =17 +rg = —ude + pler + e2) ® (e1 + e2).

By Theorem [3.1] their corresponding linear operators Py, Py,, Py, P, are
Rota-Baxter operators of weight —p and P, P,,, P.., P, are Rota-Baxter
operators of weight .

4.2. The classification in dimension three

Any three-dimensional unital C-algebra is isomorphic to one of the following
five [26] [43], defined by their nonzero products on a basis {e1, e2, e3}

c €161 = €1,€2€2 = €2,€3€3 = €3]

W W
w N
SO =

€1€1 = €1,€2€2 = €2,€3€2 = €2€3 = €3]
€1€1 = €1,€1€2 = €2€] = €2,€1€3 = €3€]1 = €3,€2€2 = €3;

€1€1 = €1,€1€62 = €2€] = €2,€1€3 = €3€] = €3,€3€2 = €2,€3€3 = €3]

(
(
(
(
(

€1€1 = €1,€1€2 = €2€] = €2,€1€3 = €3€1 = €3.
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Solutions of the nhacYBe in these algebras were classified in [30]. For the
algebras (B3) and (B5), there is exactly one nonzero solution r = pe; ® e;
and it is not symmetrized invariant.

For the algebra (B4), it is straightforward to prove that Inv(B4) = 0.
Then by [30], none of the nonzero solutions is symmetrized invariant.

For the algebra (B2), e; + ez is the unit. Moreover, the vector sub-
space S spanned by e; and eg is a unital subalgebra of (B2). It is in fact
(A2) in Section As discussed there, there are 8 symmetrized invari-
ant solutions 7;, 1 < i <8, of the nhacYBe in S, together with the corre-
sponding Rota-Baxter operators P,,,1 <1i < 8 on (A2). In fact, they are the
only nonzero symmetrized invariant solutions of Eq. in (B2). The corre-
sponding Rota-Baxter operators on (B2) are derived from P, ,i=1,---,8
by setting Py, (e3) = 0, as shown in [3].

For the algebra (B1), among the total of 73 nonzero solutions of the
nhacYBe given in [30], there are exactly 48 nonzero solutions that are sym-
metrized invariant. All of these solutions are obtained from Rota-Baxter
operators thanks to Theorem

Note that the unit 1 is e; + eo 4+ e3 and

Inv(B1) = span{e; ® e1,e3 ® e, €e3 @ e3}.
Set

pri=e1®@e;+ea®eytez®es, Pri=e1@e; +ex3®ey —e3® es,
P3:=e1®e1 —ea®ex+e3®e3, ¢Pp:=—e1®@e1+ex®ex+e3 @ e3.

According to their extended symmetrizers
re=r+o(r)—ul®l),
these 48 solutions are grouped together as follows.

r=plea®er+e3®@er +e3@en), T2 =pler ®ea+e1 ®e3z+ex @ ez),
T3 =plea®e1+ea®@eztez®er), rya=ple1 ez +e3@ex+er @ es),
r5 = jple1 ®e3+ea®er +ea®ez), 16 = ez ®ey +e1 @ ez +e3 @ ez),

for which r = —u¢; and hence their corresponding linear operators in The-
orem [3.1] are Rota-Baxter operators of weight p. Similarly, we have

ri =1ri—¢ + up1, 7 <1i<12,
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for which r = u¢; and hence correspond to Rota-Baxter operators of weight
—Hs

ri =ri—12 + ples®@ez), 13 <i <18,
for which r = —u¢s and hence correspond to Rota-Baxter operators of
weight u;

ri=rr_18 + ule1 @e;p +e2®ea), 19 <i <24,

for which r = u¢s and hence correspond to Rota-Baxter operators of weight
—Hs

i = Ti—24 + ,u(eg ® 62), 25 <1< 30,
for which r = —u¢3 and hence correspond to Rota-Baxter operators of
weight p;

ri = Ti—30 + ple1 ® e +e3®ez), 31 <1 <36,

for which r = u¢s and hence correspond to Rota-Baxter operators of weight
—H;

Ty = Ti—36 + ,LL(€1 X 61), 36 S 7 S 42,
for which r = —u¢4 and hence correspond to Rota-Baxter operators of
weight p;

T =Ti—42 + ulea ®ea + ez @eg), 43 <i <48,

for which r = u¢4 and hence correspond to Rota-Baxter operators of weight
_M.
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