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Superconformal field theories (SCFT) are known to possess solv-
able yet nontrivial sectors in their full operator algebras. Two prime
examples are the chiral algebra sector on a two dimensional plane in
four dimensional N = 2 SCFTs, and the topological quantum me-
chanics (TQM) sector on a line in three dimensionalN = 4 SCFTs.
Under Weyl transformation, they respectively map to operator al-
gebras on a great torus in S1 × S3 and a great circle in S3, and are
naturally related by reduction along the S1 factor, which amounts
to taking the Cardy (high-temperature) limit of the four dimen-
sional theory on S1 × S3. We elaborate on this relation by explicit
examples that involve both Lagrangian and non-Lagrangian the-
ories in four dimensions, where the chiral algebra sector is gener-
ally described by a certain W-algebra, while the three dimensional
descendant SCFT always has a (mirror) Lagrangian description.
By taking into account a subtle R-symmetry mixing, we provide
explicit dictionaries between selected operator product expansion
(OPE) data in the four and three dimensional SCFTs, which we
verify in the examples using recent localization results in four and
three dimensions. Our methods thus provide nontrivial support for
various chiral algebra proposals in the literature. Along the way,
we also identify three dimensional mirrors for Argyres-Douglas the-
ories of type (A1, D2n+1) reduced on S1, and find more evidence
for earlier proposals in the case of (A1, A2n−2), which both real-
ize certain superconformal boundary conditions for the four di-
mensional N = 4 super-Yang-Mills. This is a companion paper to
arXiv:1911.05741.
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1. Introduction

This paper reports on a recent progress in understanding two similar con-
structions in supersymmetric field theories with eight supercharges via ex-
ploring examples and applications. Our focus is on the relation between
vertex algebras in 4d N = 2 superconformal field theories (SCFTs) [1] and
1d TQFTs, or topological quantum mechanics (TQM), in 3d N = 4 field
theories [2–4]. These algebraic structures are two most studied examples in
the family of constructions that identify lower-dimensional field theories in
the cohomology of higher-dimensional field theories with extended super-
symmetry [1–8].

Recent months have seen exciting new developments on the three-
dimensional side: [9] initiate the mathematical study of “short” star products
that appear in 3d, and describe certain classification results; [10] propose and
test in a large set of examples an intriguing IR formula for the twisted trace
capturing the TQM, which is a direct analog of the IR formula for the Schur
index of 4d N = 2 theories [11, 12]; in [13] the authors study TQM in cases
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when it describes quantization of the minimal nilpotent orbit of a complex
simple Lie algebra and carry out the bootstrap analysis for 3d SCFTs realiz-
ing the TQM. In a companion paper [14], a connection between the VOA in
4d and the TQM in 3d was explained on general grounds, and in particular
relation to the non-commutative Zhu algebra [15] of a VOA was spelled out.

The goal of this paper is threefold: first, we expand [14] by numerous
examples and applications, verifying and providing alternative arguments
for the statements made there; second, we apply it to propose and test
previously unknown 3d mirror duals for a class of Argyres-Douglas theories
[16, 17]; finally, the computations we do serve as consistency checks for the
statements previously made in the literature that aims to identify VOAs
of certain 4d N = 2 SCFTs [1, 11, 18–28], though we do not consider all
examples proposed there. Some other recent literature on the subject also
includes [29–45].

We consider the high temperature limits of 4d N = 2 SCFTs placed on
S3 × S1, which is the proper choice of background to address the question of
dimensional reduction of the VOA construction [14].1 We always assume the
divergent behavior to be controlled by the Cardy-Di Pietro-Komargodski for-
mula [54–58], and that after subtraction of the appropriate 3d supergravity
counter-terms2 [60–62], we are left with the unambiguous finite piece inter-
preted as the S3 partition function3 of the 3d N = 4 theory [14],4 which
works well when the 4d Weyl anomalies obey c4d > a4d [57, 69].

First we study theories whose chiral algebra is the affine VOA for a
simple Lie algebra g, in which case the corresponding TQM is described by
a short star product on the filtered quantization of the minimal nilpotent
orbit of g. The quantum algebra in this case is the quotient of U(g), the
universal enveloping algebra of g, by the Joseph ideal. Then we consider
more involved examples of VOAs given by W-algebras. Due to the relation
to the Zhu algebra [15] found in [14], it is clear that the corresponding TQM
should be described by (a quotient of) the finite W-algebra [70], though we

1It is conceivable that the version of Ω-background [46–48] constructed in [49, 50]
can also be used, at least for answering some questions. The Omega background
was used to quantize Higgs and Coulomb branches in [51–53], however the relation
to TQM discussed here must involve some highly non-trivial change of basis.

2See also related classification of counter-terms in 4d new minimal supergravity
[59].

3Reduction of indices to sphere partition functions were previously considered in
[63–67].

4There can be scheme dependence at the subleading order O(β) (where β is the
size of S1), as explained in the recent paper [68].
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do not probe this structure in full generality and mostly focus on various
subalgebras. In this case, we first consider a Lagrangian example of SU(N)
SQCD, mostly for N = 3, and then move to the (A1, A2n+1) and (A1, D2n)
Argyres-Douglas theories.5 In all these examples, various mixing phenomena
between abelian symmetries play central roles. One of them is the mixing
between the U(1)r conformal R-symmetry in 4d and the Coulomb branch
(or topological) global symmetries that emerge in 3d [67], which is expected
to happen in 4d N = 2 SCFTs reduced on the circle generically, and in
particular plays an important role for Argyres-Douglas theories, as we also
mention in the next paragraph.

We also use our framework to propose and test previously unknown
3d mirrors for (A1, D2n+1) Argyres-Douglas theories (as well as test closely
related (A1, A2n−2) theories, whose free mirrors were proposed in [76]). In
the process, we also employ a few other, non-VOA, techniques to verify
our claims, such as the Coulomb branch index on lens spaces [35], and the
constructions of these theories using the 4d N = 4, or maximal, super Yang-
Mills (MSYM) dimensionally reduced on the interval, relying on [77–80]. As
mentioned in the previous paragraph, for S1 reductions of generic 4d N =
2 SCFTs, the relation between 4d conformal U(1)r and the 3d conformal
SU(2)C R-symmetries involves mixing with the Coulomb branch symmetries
noticed in [67]. For (A1, D2n+1) theories, in particular, this is crucial for
proper identification of their 3d reductions, since mixing generates imaginary
Fayet-Iliopoulos (FI) parameters in 3d [81] that deform the TQM relations.

In the end, we find plenty of evidence that the 3d mirror of a (A1, D2n+1)
theory can be described by n decoupled sectors, one of which is the SQED2,
also known as the T [SU(2)] SCFT, and the others are simply free 3d hy-
permultiplets. Correspondingly, the direct dimensional reduction is given by
the T [SU(2)] theory (which is self-mirror) and n− 1 decoupled free twisted
hypermultiplets. Each twisted hypermultiplet is of course well-known to be
dual to SQED1. A closely related claim, which we also verify (and explain
its relation to (A1, D2n+1)) is that the (A1, A2n−2) theory simply reduces to
n− 1 free twisted hypermultiplets, i.e. its 3d mirror is a set of n− 1 free
hypermultiplets. This latter example is slightly outside the main scope of
this paper, as the VOA of this theory is C2-cofinite and is completely lifted
in the 3d limit. Nonetheless, the 3d limit of the Schur index still carries
non-trivial information that allows to check our claim.

5See also [71–73] where the S1 reduction is studied using the N = 1 Lagrangian
of the Argyres-Douglas theories [74, 75].
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The structure of this paper is as follows. We start in Section 2 with
the sample analysis of the torus correlation functions for the affine VOA,
and their high-temperature (or small complex structure τ → +0i) limit. We
call it the sample analysis because its basic features keep showing up in
later examples when we either study particular affine VOAs, or look at the
affine subalgebras of more complicated VOAs. In Section 3 we focus on
the Deligne-Cvitanović (DC) exceptional series of SCFTs [22], as well as
(A1, D2n+1) Argyres-Douglas theories, as these possess affine VOAs as their
chiral algebras, minimal nilpotent orbits as their Higgs branches, and the
TQM gives quantization of the latter. In Section 4 we perform an exten-
sive analysis of (A1, D2n+1) and (A1, A2n−2) theories, proposing and testing
their 3d mirrors. We continue in section 5 with Lagrangian examples, of-
ten focusing on technical details. In Section 6 we focus on (A1, A2n−1) and
(A1, D2n+2) theories, which are related by Higgsing like the (A1, D2n+1) and
(A1, A2n−2) in earlier Sections. Some of the more cumbersome computations
are described in Appendices.

Note added: during the final stage of preparation of this article, the
paper [82] appeared, which has some overlap with our results.

2. Sample analysis: affine VOA

Let us start with the high-temperature limit of vacuum torus correlators
for affine VOAs at the non-critical level. This class of examples is both
tractable and relatively rich, and serves as a sample case for all applications
that follow. Torus correlators for current algebras were of course considered
before, see [83, 84], and we focus on the τ → 0 limit. We use dimensionless
coordinate z on the torus,

(2.1) z ∼ z + 2π ∼ z + 2πτ.

It is convenient to introduce a length scale ℓ, so the OPE is written as

(2.2) JA(z1)JA(z2) ∼
kψ

2

2 δAB

ℓ2(z1 − z2)2
+
ifAB

CJC(z2)

ℓ(z1 − z2)
,

where δAB is the invariant metric on g, and ψ2 is the squared long root
of a simple Lie algebra g. The case of abelian g is slightly special because
there is no ψ2, nor canonical normalization for abelian currents, but it can
be formally included in this analysis by picking some normalization.
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We now determine the two- and three-point functions following [83]. By
symmetry, ⟨JA⟩ = 0 and the two-point function is proportional to δAB, while
the OPE implies it only has the second order pole, which is easily matched
by the Weierstrass function:

(2.3) ⟨JA(z1)JB(z2)⟩ =
kψ2

2ℓ2
δAB

(
1

(2π)2
℘

(
z1 − z2
2π

, τ

)
+ e(τ)

)
.

The remainder term e(τ) is holomorphic and thus a constant, depending
only on the complex structure of the torus. Because ℘(z) has no constant
term in its Laurent expansion, e(τ) is determined through the Sugawara
construction,

(2.4)
kψ2

2ℓ2
|G|e(τ) =

∑

A

∮
dw

2πiw
⟨JA(z + w)JA(z)⟩ = ψ2(k + h)⟨TSug(z)⟩.

The stress tensor one point function is

(2.5) ⟨TSug⟩ = − 1

ℓ2
d logZ

d log q
= − 1

2πiℓ2
d logZ

dτ
,

where Z is the torus partition function.

In terms of the genus-1 Szegö kernels [83],

(2.6) Si(z|τ) =
θ′1(0; τ)θi(z; τ)
θi(0; τ)θ1(z; τ)

, i = 2, 3, 4,

which obey

(2.7) [Si(z|τ)]2 = ℘(z; τ)− ei(τ), ei(τ) = −4πi
d

dτ
ln
θi(0; τ)

η(τ)
,

where η(τ) is the standard Dedekind function, the two-point function can
be written as

(2.8) ⟨JA(z1)JB(z2)⟩ =
kψ2

2ℓ2
δAB

∑

i=2,3,4

Wi(τ)

[
Si

(
z1 − z2
2π

; τ

)]2
,

where

(2.9)
∑

i

Wi(τ) =
1

(2π)2
,
∑

i

Wi(τ)ei(τ) = −e(τ).



✐

✐

“2-Dedushenko” — 2023/8/10 — 1:43 — page 2017 — #7
✐

✐

✐

✐

✐

✐

4d/2d → 3d/1d 2017

The three-point function has a simple expression in terms of these as well,6

(2.10) ⟨JA(z1)JB(z2)JC(z3)⟩

= − iψ
2kfABC
4πℓ3

∑

i

WiSi

(z12
2π

)
Si

(z23
2π

)
Si

(z31
2π

)
.

The τ → 0 limit. Let us now study the τ → 0 limit of torus correlators.
The τ → 0 asymptotic behavior of ℘(z; τ) follows from:

(2.11)

∫ τ

0
dw℘(z + w, τ) = −1

τ
G2(−

1

τ
) = −π

2

3τ
+O(e−

2πi

τ ),

where G2 is the first Eisenstein series, which implies that

(2.12) ℘(z; τ) = − π2

3τ2
+ exponentially small corrections.

Using expressions (2.6) and the τ → 0 behavior of theta-functions, it is
straightforward to obtain

S2(z; τ) = 0 +O(e−i
#

τ ) ,

S3(z; τ) = 0 +O(e−i
#

τ ) ,(2.13)

S4(z; τ) =
iπ

τ
Sgn (Re(z)) +O(e−i

#

τ ) .

To fully describe the τ → 0 asymptotics of the two- and three-point func-
tions, it remains to determine that of e(τ), which, unlike Si’s, depends on
the precise choice of the module we use to define torus correlators. Since we
are studying the vacuum torus correlators, e(τ) is determined via (2.4),(2.5),
with Z the vacuum character.

The vacuum character equals the Schur index of the parent 4d SCFT,
and at least for c4d > a4d, the τ → 0 behavior of the latter is given by [22,
55, 57, 58]

(2.14) logZ ∼ 4πi(c4d − a4d)

τ
,

implying the following behavior of e(τ):

(2.15) e(τ) ∼ n

τ2
, where n =

4(k + h∨)(c4d − a4d)

k dim g
.

6Equations (2.9) leave a one-parameter freedom in Wi’s, which does not affect
the current two- and three-point functions [83].
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Using this to solve (2.9), we obtain

(2.16) W2 +W3 =
1 + 6n

6π2
, W4 =

1− 12n

12π2
,

resulting in the following τ → 0 behavior of correlators:

⟨JA(a1)JB(z2)⟩ ∼ − ψ2

2ℓ2τ2
δAB

(
k

12
− 4(k + h∨)(c4d − a4d)

dim g

)
,

⟨JA(z1)JB(z2)JC(z3)⟩ ∼
ψ2fABC
4ℓ3τ3

(
k

12
− 4(k + h∨)(c4d − a4d)

dim g

)

× Sgn(Re(z12))Sgn(Re(z23))Sgn(Re(z13)).(2.17)

To have finite τ → 0 limits, we ought to renormalize currents by τ ,

(2.18) jA ≡ −iτJA.

The correlators of jA we obtain are topological, depending only on the order-
ing of operators, as expected. The two-point function determines the metric,
and the three-point function encodes the non-commutative associative star-
product,7

jA ⋆ jB =: jAjB : +
iℏ

2
fAB

CjC +
ℏ2

4
µψ2δAB,

where µ =
k

6
− 8(k + h∨)(c4d − a4d)

dim g
.(2.19)

We have introduced two new notations here. One is ℏ = ℓ−1, and the other
is : jAjB :, which is simply defined as the dimension-two operator appearing
in jA ⋆ jB that is orthogonal to all lower-dimension operators. This : jAjB :
can be thought of as the normal ordering in 1d (related to normal ordering
in 3d), and it differs from the VOA normal ordering (jAjB) via mixing with
the lower-dimension operators jA and the identity 1. In the 3d CFT, µ is
related to the flavor central charge CJ of the global symmetry g by

(2.20) µ = −CJ
32
.

Let us compare this to the formula obtained in [14]. There, the same
star-product was derived from modularity, with the scalar parameter given

7Note that we assume fACDfBCD = h∨ψ2δAB , therefore ψ2 determines the nor-
malization of generators.
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by

µ =
4(k + h∨)∆̃min

dim g
.(2.21)

The derivation we presented here is more explicit but uses the asymptotic
behavior of the Schur index. The two answers agree if

(2.22) ∆̃min =
k dim g

24(k + h∨)
− 2(c4d − a4d) =

c2d
24

− 2(c4d − a4d),

where c2d = cSug is the 2d Sugawara central charge. This ∆̃min agrees with

h̃min from [22].

The algebra (2.19) describes quantization of the minimal nilpotent orbit
of g, and is expected to apply to theories whose Higgs branch is the latter.
Such theories provide the simplest non-trivial examples of our construction,
and at the same time serve as a base for more involved applications to
theories with the W-algebra chiral symmetry.

3. Minimal nilpotent orbits

In this section, we consider theories whose chiral algebra is the affine VOA of
some simple g. Examples include the Deligne-Cvitanović (DC) exceptional
series of rank-1 theories and the (A1, D2n+1) Argyres-Douglas theories (of
which (A1, D3) also belongs to the DC series), which share the common
feature that the Higgs branch is described by the minimal nilpotent orbit
of g.

All the DC theories except the (A1, D3) have a simplifying property that
their UV and IR R-charges match. Namely, a charge (R, r) of the SU(2)R ×
U(1)r representation in the UV coincides with the charge of representation
of the enhanced IR R-symmetry SU(2)H × SU(2)C

(3.1) RR = RH , r = RC

where we adopt the convention that the SU(2) spins RC , RH , RR ∈ Z/2 and
r = ±1/2 for the 4d supercharges.

We refer to this case as “no mixing”. On the contrary, for the (A1, D2n+1)
theories, the U(1)r R-charges are fractional and cannot match the SU(2)C
R-charges: the latter are given by mixing of the former with the Coulomb
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branch symmetries [67]. We refer to this as the “mixing” case, which is
expected to be generic in the space of 4d N = 2 SCFTs.

3.1. Without R-symmetry mixing

Minimal 3d N = 4 theories with g flavor symmetry (acting on the Higgs
branch given by the minimal nilpotent orbit of g) were recently considered
in [13]. In particular, they determine quantizations of the minimal nilpotent
orbits, which describe the 1d protected sectors of these theories, from the
bootstrap approach. The corresponding quantum algebra is a quotient of
the universal enveloping algebra U(g) over the Joseph ideal, – see also the
discussion in [9]. For algebras different from An, this ideal is unique, and
so is the quantization; for An, n ≥ 2, there is a one-parameter family of
quantizations, only one of which is even; finally, for the spacial case of g =
A1, there is a one-parameter family of even quantizations (see [85–87]). We
focus on the value of the quadratic Casimir, which is proportional to µ
as in the previous section. For g = A1, this µ parametrizes the family of
quantization.8 The value of µ that follows from the bootstrap approach is
read off from the Table 6 in [13] (it is twice their λ2):

g An−1, n ≥ 3 Bn Cn Dn E6 E7 E8 F4 G2

µ − n
2(n+1) −2n−3

2n −1
4 −2(n−2)

2n−1 −12
13 −24

19 −60
31 −3

4 −4
9

Table 1. µ from the 3d bootstrap.

3.1.1. DC theories excluding the A1 case. We expect all theories
from the Table 1 to exist as 3d N = 4 SCFTs. Indeed, the ABCDE type
3d theories all have quiver gauge theory descriptions in the UV [88]. While
for the G2 and F4 the explicit constructions are missing, there are no known
obstructions to their existence as well.

Their 4d lifts, however, do not always exist. Perturbative anomaly con-
siderations restrict g to the DC exceptional series (apart from the free hyper
case). Global anomaly matching further rules out the F4, and the fate of
G2 is not clear yet [89]. Therefore we are left with the following list of 4d

8The corresponding star product is non-degenerate as long as µ stays away from
the values corresponding to finite-dimensional representations of A1, which in our
normalization are µ = n(n+ 2)/6, n ∈ Z≥0 [9].
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“minimal” theories with g symmetry (we also do not consider the A0 case
which corresponds to the empty Higgs branch): A1, A2, D4, E6, E7, E8. The
A1 theory exhibits mixing and thus will be considered later. Here we look
at the remaining five cases.

The A2 theory has as chiral algebra the affine VOA V−3/2(A2), the
D4 theory has the chiral algebra V−2(D4), and the E6,7,8 Minahan-
Nemeschansky (MN) theories have the chiral algebras V−3(E6), V−4(E7)
and V−6(E8), respectively. We summarize the relevant parameters and the
resulting µ, computed using (2.19), in the following table:

g dim g h∨ k c4d a4d µ

A2 8 3 −3/2 2
3

7
12 −3

8

D4 28 6 −2 7
6

23
24 −4

7

E6 78 12 −3 13
6

41
24 −12

13

E7 133 18 −4 19
6

59
24 −24

19

E8 248 30 −6 31
6

95
24 −60

31

Table 2. µ for DC theories from the VOA.

This perfectly matches the 3d results from Table 1.9 Below, we give a slightly
more detailed treatment of the D4 and A2 cases.

3.1.2. SU(2) SQCD, or more on the D4 DC theory. The D4 DC
theory has a simple Lagrangian description as the 4d N = 2 SU(2) gauge
theory with Nf = 4 fundamental hypermultiplets, whose chiral algebra is
indeed V−2(so(8)) = V−2(D4) [1]. Dimensional reductions of this theory is
the 3d gauge theory with the same gauge group SU(2) and the same number
of fundamental hypermultiplets. One can then apply the techniques of [4]

9Note that the conformal and flavor central charges for the candidate F4 and G2

theories were determined in [1, 22], which after using (2.19) do give the expected
answers for the 3d theories as in Table 1. Even though the 4d F4 theory is ruled
out in [89] and the existence of the 4d G2 theory is unclear, we see that at the level
of the 2d chiral algebra, the S1 reduction does give the expected TQM as predicted
by the general argument in [14].
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to determine the value of µ from localization, which can be compared to
µ = −4

7 given above, testing both the 3d bootstrap and the VOA answers.

In this particular case, it is convenient to think of the 4d theory in terms
of half-hypers, and the result of [4] — the matrix model coupled to quantum
mechanics that captures the 1d sector — can be presented in the following
form,

(3.2) Z =
1

2

∫
dσ 4 sinh2(πσ)

∫
DXe−S1d .

Here the 1d action is written in terms of fields Xiα(φ), i = 1 . . . 8, α = 1, 2
on the circle as

(3.3) S1d = − 1

2ℏ

∫ π

−π
dφεαβXiβ

(
∂φXi + σ

τ3

2
Xi

)

α

,

where τ i denotes Pauli matrix acting on the gauge indices α, β, . . . , ℏ is
related to the radius of the sphere via ℏ = 1/(8πℓ), and we use the convention
ε12 = ε21 = +1. The correlators of gauge-invariant operators are topological
(depend only on the order of operator insertions), so it is enough to know
the Green’s function (for a given value of σ) at ϵ→ 0 only,

(3.4) ⟨Xiα(ϵ)Xjβ(0)⟩σ ∼ −ℏ

2
δij

[
Sgn(ϵ)εβα + tanh

πσ

2
(τ1)αβ

]
.

The so(8) generators are defined by

(3.5) Jij = iεαβX[iβXj]α = iεαβ lim
ϵ→+0

Xiβ(ϵ)Xjα(0)−Xjβ(ϵ)Xiα(0)

2
.

Using (3.4) and Wick contractions, it is straightforward to find the following
correlators,

⟨Jij(ϵ)Jkm(0)⟩ = −
(
ℏ

2

)2

(δikδjm − δimδjk)

〈
2

cosh2 πσ2

〉
,

⟨Jij(ϵ+ µ)Jkm(ϵ)Jpq(0)⟩ϵ,µ>0(3.6)

=

(
iℏ

2

)3 (
δik(δjpδmq − δjqδmp)− δim(δjpδkq − δjqδkp)

− δjk(δipδmq − δiqδmp) + δjm(δipδkq − δiqδkp)
)
·
〈

2

cosh2 πσ2

〉
,
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where

(3.7)

〈
2

cosh2 πσ2

〉
=

∫
dσ sinh2 πσ

(cosh2(πσ/2))4
· 2
cosh2(πσ/2)∫

dσ sinh2 πσ
(cosh2(πσ/2))4

=
8

7
.

These results imply the following star-product of currents,

Jij ⋆ Jkm =: JijJkm : +
iℏ

2
(δikJjm − δimJjk + δjmJik − δjkJim)(3.8)

+
ℏ2

4
×
(
−8

7

)
(δikδjm − δimδjk),

where : JijJkm : by definition is a dimension-2 operator that appears in this
product and is orthogonal to all lower-dimension operators. This product is
of the form (2.19): the O(ℏ) term contains the so(8) structure constants in
the ψ2 = 2 normalization, and the O(ℏ2) term implies

(3.9) µ = −4

7
,

matching the value in the Table 2.

3.1.3. (A1, D4) AD, or more on the A2 DC theory. The A2 DC
theory coincides with the (A1, D4) Argyres-Douglas (AD) theory. Though
non-Lagrangian in 4d, its 3d reduction is known to admit a Lagrangian
description [] as an SQED3, whose 3d mirror is also Lagrangian and given
by a U(1)× U(1) gauge theory with hypers of charges (1, 0), (1, 1) and (0, 1)
(this is also equivalent to a 3-node necklace quiver).

We may use either of the available 3d descriptions to find the protected
algebra. In particular, the SQEDN for general N was studied in details in
[4], and the N = 3 specialization is described by the algebra

JIJ ⋆ JKL = JIKJL +
iℏ

2
(iδJKJIL − δLI JKJ)(3.10)

+
ℏ2

4
×
(
−3

4

)(
δLI δ

J
K − 1

3
δJI δ

L
K

)
,

where JIJ should be thought of as traceless complex 3× 3 matrices (i.e., the
generators of sl3). Again being careful about the normalization, we conclude
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that ψ2 = 2 and

(3.11) µ = −3

8
,

in agreement with the corresponding entry in Table 2. One can also ob-
tain the same answer from the Coulomb branch computation in the mirror
dual U(1)× U(1) gauge theory using the technique developed in [7], see
Appendix A.

3.2. With R-symmetry mixing

In general, when a 4d N = 2 SCFT is reduced on S1, the Higgs branch is
unrenormalized, whereas the Coulomb branch gets enhanced by extra fiber
coordinates [90] from 4d BPS line operators wrapping the S1 factor. In
the 3d limit, this is often accompanied by the appearance of accidental U(1)
symmetries associated to the topological currents on the 3d Coulomb branch,
which we refer to as Coulomb branch symmetries. The Coulomb branch
symmetries can enter mixing relations that identify the 4d U(1)r current as
the combination of 3d currents that involve the Cartan of SU(2)C and the
Coulomb branch symmetries. As explained in [67], this happens when the
4d theory contains Coulomb branch chiral primaries with r /∈ 1

2Z.

The supersymmetric S1 × S3 background couples to the 4d U(1)r sym-
metry. Therefore, in the 3d limit, we obtain the S3 background coupled to
U(1)r, which is not the right R-symmetry due to mixing. This background
differs from the supersymmetric S3 coupled to the conformal R-symmetry
only by the presence of imaginary masses for symmetries that participate
in mixing [81]. Such imaginary masses for the Coulomb branch (or topo-
logical) symmetries are equivalent to imaginary FI parameters for abelian
gauge symmetries. They can deform the Higgs branch TQM in 3d, and must
be taken into account in relation to the VOA. If the generator r of U(1)r
and the Cartan element RC of SU(2)C are related through mixing with the
topological charges T 1, . . . , T m,

(3.12) r = RC +

m∑

a=1

caT a,

then the FI parameters for the corresponding U(1)a gauge factors in 3d are
simply given by [67]

(3.13) ζa =
i

ℓ
ca.
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Each of the (A1, D2n+1) Argyres-Douglas theories has a different
Coulomb branch of complex dimension n, but all share the same Higgs
branch C2/Z2 (the minimal nilpotent orbit for g = A1). The correspond-
ing chiral algebras are V− 4n

2n+1
(sl2). These theories have fractional Coulomb

branch spectrum given by 2i
2n+1 with i = n+ 1, n+ 2, . . . , 2n, which is why

they exhibit mixing.

3.2.1. (A1, D3) AD, or the A1 DC theory. In the special case of
n = 1, the 4d SCFT belongs to the DC series. The corresponding chiral
algebra is V− 4

3
(sl2). This reduces to a 3d TQM via (2.19) which is a universal

enveloping algebra U(A1) (with central quotient) with

(3.14) µ = − 8

27
.

On the other hand, the 3d SCFT from S1 reduction is described by N =
4 SQED with 2 unit-charge hypermultiplets, usually called T [SU(2)]. The
TQM of this theory was solved in [4], and

(3.15) µ3d = −1

3

As we have mentioned, the discrepancy between (3.14) and (3.15) comes
from the nontrivial R-symmetry mixing, which in this case is given in [67]
by

(3.16) r = RC +
1

3
T ,

where T denotes the accidental U(1) symmetry (enhanced to SU(2)) on the
3d Coulomb branch. The corresponding FI deformation is given by i

ℓ times
the coefficient in the mixing relation (3.16),

(3.17) ζ =
i

3ℓ
.

Recall the 3d TQM from the 3d SQED2 with a general FI parameter ζ from
[4],

JIJ ⋆ JKL = JIKJL − 1

2ℓ
(δJKJIL − JKJδLI )(3.18)

− ζ2ℓ2 + 1

6ℓ2
(δLI δ

J
K − 1

2
δJI δ

L
K),
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where 1
ℓ = ℏ puts algebra into the canonical form. With the FI parameter

value in (3.17),

(3.19) µ = −1 + ζ2ℓ2

3
= − 8

27
,

in agreement with the answer (3.14) from reducing the chiral algebra.

3.2.2. General (A1, D2n+1) AD and free twisted hypers. For gen-
eral n, the (A1, D2n+1) SCFT has conformal central charges

(3.20) a4d =
n(8n+ 3)

8(2n+ 1)
, c4d =

3n

6
.

In particular,

(3.21) 24(c4d − a4d) =
3n

2n+ 1
,

which signals mixed branches. Applying (2.19), the chiral algebra V− 4n

2n+1
(sl2)

reduced on S1 also produces a TQM given by the central quotient of U(sl2),
but with a different value of µ,

(3.22) µ = − 4n(n+ 1)

3(2n+ 1)2
.

The 3d theory from the S1 reduction (or its mirror dual, the so-called 3d
mirror) is not known for the (A1, D2n+1) theories. A natural proposal that
we make and test below is that

(A1, D2n+1) → h⊗ · · · ⊗ h︸ ︷︷ ︸
n−1 times

⊗SQED2,

where h = {free twisted hyper} ,(3.23)

and SQED2 appears with an FI deformation that generalizes (3.17),

(3.24) ζ =
i

(2n+ 1)ℓ
.

In other words, we propose that the (A1, D2n+1) theory reduces to n
decoupled sectors, one of which is the interacting theory SQED2 ≡ T [SU(2)],
while the others are free twisted hypers. We will give more evidence below.
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Only the SQED2 contributes to the Higgs sector, and ensures that the FI
deformed TQM is given by the central quotient of U(sl2) with

(3.25) µ = −1 + ζ2ℓ2

3
= − 4n(n+ 1)

3(2n+ 1)2
,

matching the prediction (3.22) from the chiral algebra. In Section 4 we will
elaborate more on (3.23), provide further checks, and comment on a related
issue of reducing the (A1, A2n) theories.

4. From interacting 4d SCFT to free fields in 3d

In this section, we provide further evidence for the proposal (3.23) on the S1

reduction of the (A1, D2n+1) theory. Furthermore, we explain why h in (3.23)
is precisely the twisted hyper, not its discrete gauging. It proves helpful to
study this problem in conjunction with the reduction of the (A1, A2n−2)
theory on the circle, as their class S constructions are related by Higgsing,
and the S1 reductions have very similar features, despite (A1, A2n−2) the-
ories having no Higgs branch. Furthermore, while the 3d reduction and 3d
mirrors of the (A1, A2n−1) and (A1, D2n) theories have received attention in
the literature [67, 91, 92], we cannot say the same about (A1, A2n−2) and
(A1, D2n+1).

10 This makes the question interesting on its own, even outside
the present context.

In Class S construction [93], the (A1, D2n+1) theory is realized by twisted
compactification of the A1 (2, 0) theory on a sphere with one regular punc-
ture and one irregular puncture [92, 94–96].With z a complex coordinate on
the sphere, the irregular puncture is described by a singularity of the Higgs
field at z = 0 of the following form,

(4.1) Φ(z) =
T

zn+
3

2

+ regular,

where T is a regular semisimple element of su(2). The Seiberg-Witten (SW)
curve is given by

(4.2) x2 +
z2n+1 +m2 +

∑n
a=1 uaz

n+1−a +
∑n

a=1 vaz
n+a−1

z2
= 0,

with the SW differential λ = xdz. Here m denotes the mass parameter for
the su(2) flavor symmetry, and ua is (the vev of) the Coulomb branch chiral

10See, however, [76] on (A1, A2n−2).
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primary of dimension ∆a = 1 + 2a−1
2n+1 , while va is the corresponding chiral

coupling with dimension 2(n−a+1)
2n+1 .

A closely related Class S setup that only involves the above irregular
singularity (4.1) on the sphere describes the (A1, A2n−2) theory. The SW
curve becomes

(4.3) x2 + z2n−1 +

n−1∑

a=1

uaz
n−1−a +

n−1∑

a=1

vaz
n−3+a = 0,

with the same SW differential λ = xdz. We have labeled the parameters in
the SW curve purposefully so that it is obvious that the Coulomb branch
spectrum of the (A1, A2n−2) theory is identical to that of (A1, D2n+1), apart
from the additional operator vev un with ∆n = 2− 2

2n+1 , and coupling vn
that (A1, D2n+1) has. The latter pair comes from Hitchin moduli of the
regular puncture in the Class S setup.

At the physical level, the two theories are related by Higgsing, namely
by giving a vev to the moment map operator associated to the su(2) flavor
symmetry of (A1, D2n+1). In the class S setup, it is known that Higgsing
corresponds to closing (reducing) regular punctures [79]. When we reduce
these theories on S1, since moment map operators (or any Higgs branch
chiral primary) are unambiguously identified between 4d and 3d, we expect
the resulting 3d theories to be related by the same Higgsing as well. Together
with our proposal (3.23) for the S1 reduction of (A1, D2n+1), we are lead to
the prediction that

(A1, A2n−2) → h⊗ · · · ⊗ h︸ ︷︷ ︸
n−1 times

,(4.4)

where h is the same twisted hypermultiplet as in (3.23). Moreover, as we shall
show below, the relevant R-symmetry mixing is captured by the masses ζa for
the ⊗n−1

a=1U(1)a Coulomb branch (topological) symmetries, under which the
free twisted hypers are charged. We always refer to masses for the Coulomb
branch symmetries as FI parameters.11 They are given by

(4.5) ζa =
i

ℓ

2a− 1

2n+ 1
, 1 ≤ a ≤ n− 1,

11A twisted hyper is dual to SQED1, in which case the mass literally corresponds
to the FI term across duality.
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which holds for both the reduction of (A1, A2n−2) and (A1, D2n+1) theories.
Recall that the reduction of (A1, D2n+1) theory has one more topological
symmetry with the FI term given in (3.24).

4.1. The reduction of (A1, A2n−2).

The (A1, A2n−2) reduces to a 3d N = 4 SCFT that has no Higgs branch,
while the Coulomb branch acquires quaternionic dimension n− 1. Cor-
respondingly, the 3d mirror has no Coulomb branch and an (n− 1)-
dimensional Higgs branch. An obvious way to realize this scenario for the
3d mirror is by taking n− 1 free hypermultiplets, or equivalently, n− 1 free
twisted hypermultiplets to describe the direct 3d reduction, which is pre-
cisely what happens, as we argue below (thus confirming the proposal of
[76]). We could also contemplate the possibility of discrete gaugings in this
free system, but as we will see from the Coulomb branch index, this does
not happen.

An a-th twisted hyper contributes two operators to the Coulomb branch
chiral ring in 3d, which we denote as qa and q̃a. They both have dimension
∆ = 1

2 , SU(2)C R-charge RC = 1
2 , and they form a doublet with respect to

yet anther SU(2). The topological symmetry is the maximal torus of the
latter SU(2), so the corresponding charges are ±1

2 . We claim that these
operators are emergent in the IR. The operator that directly flows from the
corresponding 4d Coulomb branch chiral primary ua is, in fact, a composite
operator qaqa in 3d. This operator has ∆ = RC = 1, and the topological
charge T a = 1. Recall that ua has the 4d dimension and r-charge ∆a = ra =
1 + 2a−1

2n+1 . This shows that the predicted mixing relation,

(4.6) 1 +
2a− 1

2n+ 1
= ra = RC + caT a,

indeed holds if the mixing coefficient is

(4.7) ca =
2a− 1

2n+ 1
,

which is consistent with the imaginary FI parameter value stated in (4.5).

We now proceed to provide more evidence for these claims. The FI cou-
plings (4.5) can be verified by studying directly the S1 reduction of the 4d
Schur index and comparing to (FI-deformed) S3 partition of the proposed
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3d SCFT. The Schur index of the (A1, A2n−2) theory is given by

(4.8) I(A1,A2n−2) = PE

[
q2 − q2n

(1− q)(1− q2n+1)

]
.

We would like to take the τ → 0 limit. A useful trick is to rewrite the plethys-
tic exponential (PE) in terms of an ordinary exponential of a sum of Lambert
series,

(4.9) Lq(s, x) ≡
∞∑

k=1

ksqkx

1− qk
,

which have simple behavior as τ → 0. The particular limit formula we need
here is

(4.10) Lq(−1, x) = − ζ(2)

log q
+ log

Γ(x)√
2π

+ log log
1

q

(
x− 1

2

)
+O(log q),

which describes the q → 1 behavior. By writing

I(A1,A2n−2) = PE

[
q2 + q3 + · · ·+ q2n−1

1− q2n+1

]
(4.11)

= exp



2n−1∑

j=2

Lq2n+1

(
−1,

j

2n+ 1

)


and using (4.10), we obtain

log I(A1,A2n−2) =
(n− 1)

12(2n+ 1)

2πi

τ
(4.12)

+

2n−1∑

j=2

log
Γ(j/(2n+ 1))√

2π
+O(log q).

The first term above diverges as τ → 0 and captures the Cardy limit of the
index, whose coefficient is determined in terms of the 4d conformal central
charges as

(4.13) lim
τ→0

(−iτ) log ISchur = 4π(c4d − a4d),
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according to the general arguments of [22, 55, 57, 58]. This is clearly consis-
tent with the central charges of the (A1, A2n−2) theory [97],

(4.14) a
(A1,A2n−2)
4d =

(n− 1)(24n− 5)

24(2n+ 1)
, c

(A1,A2n−2)
4d =

(n− 1)(6n− 1)

6(2n+ 1)
.

We are interested in the finite piece, which determines the partition
function of the 3d SCFT in the IR, and which we compare to the partition
function of twisted hypers,

(4.15) Z3d =

2n−1∏

j=2

Γ (j/(2n+ 1))√
2π

.

This indeed naturally factorizes into a product of n− 1 twisted hypermul-
tiplet partition functions with the FI deformations (that give masses to the
twisted hypers) as

(4.16) Z3d =

n−1∏

a=1

Zη(ζa),

with

(4.17) Zη(ζ) ≡
Γ(1/2 + iℓζ/2)Γ(1/2− iℓζ/2)

2π
=

1

2 coshπ ℓζ2
,

where 1
2 in ℓζ

2 originates from the topological charges of elementary fields,
and the FI parameter is

(4.18) ζa =
i

ℓ

2a− 1

2n+ 1
,

which confirms (4.5) for the (A1, A2n−2) theories.

We see that our computations agree with the hypothesis that (A1, A2n−2)
flows to the collection of n− 1 free twisted hypers in 3d, and furthermore,
that the 4d Coulomb branch operators ua flow to the dimension-1 composites
qaqa, which is illustrated in Figure 1a. However, we have not identified the
elementary fields qa and q̃a, therefore have not excluded the possibility that
the 3d theory actually consists of the Z2-gauged twisted hypers. Such a
3d theory would have the same S3 partition function, would also contain
operators like qaqa, but not qa or q̃a individually.
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(a) (A1, A2n−2): dimensions ∆ flow to 1.
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(b) (A1, D2n+1): one operator flows to
∆ = 2.

Figure 1. Schematic RG flow of Coulomb branch chiral operators in
(A1, A2n−2) and (A1, D2n+1) theories. The plot for (A1, D2n+1) contains
(A1, A2n−2) as a subplot, and has one more special operator correspond-
ing to the T [SU(2)] in 3d.

To distinguish free twisted hypers from their Z2-gauged version, it is
useful to consider quantities other than the Schur index, and backgrounds
other than the round sphere. In particular, the lens spaces L(p, 1) = S3/Zp
give a useful family of backgrounds. For even p, the Z2 gauge theory can have
a nontrivial holonomy around the 1-cycle of L(p, 1), thus introducing twisted
sectors for the hypers. Therefore, partition functions on such backgrounds
would differ for ordinary and Z2-gauged hypers by a factor of 2. We could
then use known results on the lens space indices (see, e.g., [98–102]) to study
the high-temperature limits thereof.

Instead, we will do something even simpler, namely look at the 4d
Coulomb branch index on lens spaces. On a round sphere, such an index
simply counts Coulomb branch chiral operators ua. Its lens space gener-
alizations are known and have been computed in [35] (see also [103] for
generalizations). Furthermore, it is known that in the p→ ∞ limit, the lens
space reduces to S2 (the Hopf fiber shrinks to a point), and the S1 × L(p, 1)
index reduces to the S1 × S2, i.e. the usual 3d index [98]. In particular, if we
start with the Coulomb branch index in 4d, we expect to obtain its analog
in 3d, that is simply a generating function of the Coulomb branch chiral
spectrum in the 3d N = 4 theory we flow to. Here we implicitly assume that
shrinking the thermal circle and shrinking the Hopf circle lead to the same
3d theory, which seems reasonable in local QFT.

We also have to be careful and remember that in 4d, the Coulomb branch
index counts states according to their conformal r-charge, and can be written
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as

(4.19) I(t) = TrC(−1)F tr,

where TrC denotes trace over the subspace of Coulomb branch states.12 As
we take the p→ ∞ limit, we will have to account for the r-symmetry mixing
to get the correct answer in 3d. Thus we will not obtain the Coulomb index
in 3d on the nose, but rather its close cousin,

(4.20) lim
p→∞

I(t) = TrC,3d(−1)F tRC+
∑

a
caT a

,

where the trace goes over the space of 3d Coulomb branch operators, but
the counting is affected by our familiar mixing. For the (A1, A2n−2) theories,
the lens space index was obtained in [35],

(4.21) In,p(t) =
n−1∑

k=0

t
k(k+1)

2(2n+1)
p

∏k
a=1

(
1− t

2(n+a)

2n+1

)(
1− t−

2a−1

2n+1

)∏n−1
a=k+1

(
1− t

2a+1

2n+1

)(
1− t

2(n−a)

2n+1

) ,

where different terms in the sum correspond to fixed points of the Hitchin
action on the wild Hitchin moduli space that arises from the class S con-
struction of these theories. Taking the p→ ∞ limit, assuming that |t| < 1,
kills all the terms with k > 0, and the only remaining term has k = 0,

(4.22) lim
p→∞

In,p(t) =
1

∏n−1
a=1

(
1− t

2a+1

2n+1

)(
1− t

2(n−a)

2n+1

) =

2n−1∏

j=2

1

1− t
j

2n+1

.

A simple computation gives the values of RC +
∑

a caT a for the elementary
hypermultiplet chirals,

For qa : RC + caT a =
1

2
(1 + ca) =

n+ a

2n+ 1
, a = 1 . . . n− 1,

For q̃a : RC + caT a =
1

2
(1− ca) =

n− a+ 1

2n+ 1
, a = 1 . . . n− 1,(4.23)

which are just j
2n+1 with j ranging from 2 to 2n− 1, in perfect agreement

with (4.22). This computation gives us confidence that the operators qa, q̃a

12One can find other expressions in the literature, including the ones with tr−R

or tr+R. Since we view this simply as a counting function here, and since all the
Coulomb branch operators have R = 0, tr is enough for our purposes.
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Rx
3

Rx
3

N X

Free hypers on R
3

(a) (A1, A2n−2) setup.

Rx
3

T[SU(2)]+N X

T[SU(2)]+free hypers on R
3

(b) (A1, D2n+1) setup.

Figure 2. Constructions of 3d mirrors for (a) (A1, A2n−2) and (b)
(A1, D2n+1) from the 5d MSYM compactified on a cigar with one or two
punctures, and the corresponding 4d MSYM on the interval.

do belong to the 3d Coulomb branch spectrum, implying that we indeed
obtain ordinary, not Z2-gauged, free twisted hypers. Notice that qa and q̃a
emerge in the 3d limit, perhaps from line operators wrapping the shrinking
1-cycle.

4.2. On 4d N = 4 SYM with boundary conditions.

Recall that class S theories are described by holomorphic compactifications
of the 6d theory on a Riemann surface with punctures [92, 94–97, 104, 105].
Since we further reduce to 3d on a circle, we can consider reversing the order
of compactifications: this will first produce the 5d maximal super Yang-Mills
(5d MSYM), which we then compactify on a Riemann surface. Due to pe-
culiar properties of the 6d theory, this will actually result in the 3d mirror
description of the same theory. Degenerating the Riemann surface, one can
equivalently look at this as a 4d MSYM compactified on a certain graph, as
was done in [80], which builds up on the study of supersymmetric bound-
ary conditions in 4d MSYM [77, 78]. Since for Argyres-Douglas theories
the Riemann surface is just a sphere with one or two punctures, the cor-
responding graph becomes very simple, – it is just an interval. Punctures
determine what boundary conditions one has to impose at the endpoints of
the interval. Therefore, one considers 4d MSYM reduced on an interval with
specific boundary conditions, which flows to the 3d N = 4 SCFT in the IR,
see Figure 2.

For the (A1, A2n−2) case that we considered so far, one starts with the
A1 theory in 6d, and there is only one irregular (or wild) puncture on the
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sphere. Therefore, we have the SU(2) MSYM in 5d, and the reduction to
4d involves degenerating the cigar as depicted on Figure 2a. One end of the
cigar is completely empty, which is known to lead to the Neumann boundary
condition (call it N) in the 4d degeneration limit [78, 79]. Another end
involves the wild puncture, and the corresponding 4d boundary condition, —
denote it X, — is not known. Nevertheless, our previous conjecture imposes
constraints on this boundary condition.

Indeed, the 3d mirror of (A1, A2n−2) has no Coulomb branch, and we
argued that it is given by a collection of free hypermultiplets. There cannot
exist any 3dN = 4 gauge-theoretic description of this theory, simply because
the mere presence of 3d N = 4 vector multiplets implies that the Coulomb
branch is non-empty. If we look at the construction involving the 4d MSYM
on an interval, however, we notice that the N boundary condition leaves 3d
N = 4 vector multiplet worth of unfixed field components at the boundary.
If we, for example, were to impose the same boundary condition N at the
other end of the interval, then in the 3d limit, the low-energy modes of
the 4d fields would be effectively described by the true 3d N = 4 vector
multiplet. In other words, we would obtain a gauge theory, which as we
said is undesirable. Therefore, whatever boundary condition X is, it should,
in cooperation with N, completely freeze the bulk, leaving no “trapped”
degrees of freedom in the IR. Such pairs of boundary conditions, like N and
X here, were called complimentary or transversal in [106, 107] (see also [108]
for examples of trapped degrees of freedom).

The standard half-BPS Neumann and Dirichlet boundary conditions
form such a transversal pair (with the proper choice of splitting for the vec-
tor multiplet scalars [77]). Therefore, a reasonable conjecture would be to
guess that X is simply given by the Dirichlet boundary condition, with addi-
tional n− 1 free hypermultiplets living at the boundary. Precise description
of the boundary condition following from the irregular puncture might be
more complicated, but it should be equivalent to this in the IR. The reader
might assume that X is precisely such a boundary condition, however what
we are going to say now does not depend on its precise choice. All we need
to know is that in the 3d limit, all the 4d SYM fields freeze, and there are
n− 1 free hypers somehow originating from the boundary.

Now, let us move to the (A1, D2n+1) case, which we will analyze using
similar methods below. In the class S construction, one obtains (A1, D2n+1)
from (A1, A2n−2) by adding a regular puncture at the opposite tip of the
cigar, see Figure 2b. The corresponding boundary condition in the 4d limit
is known [78, 79], – it is simply given by the Neumann boundary condition
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coupled to the T [SU(2)] at the boundary. This immediately tells us what
happens in the 3d limit. Indeed, the T [SU(2)] at the boundary interacts
with the bulk through the N boundary conditions, and then the bulk further
mediates its interaction with the other boundary. Because the (N, X) pair
of boundary conditions completely freezes the bulk fields in the 3d limit,
it implies that the T [SU(2)] simply decouples, and the rest of the system
is identical to what we studied above for (A1, A2n−2). In other words, the
3d mirror of (A1, D2n+1) should be given by the T [SU(2)] and a decoupled
sector given by the 3d mirror of (A1, A2n−2), which, as we know now, is
simply a collection of n− 1 free hypers. This is our main proposal, which
we are going to test now.

4.3. The reduction of (A1, D2n+1).

As suggested above, the 3d limit of (A1, D2n+1) contains a decoupled sector
described by T [SU(2)], and the rest is identical to the 3d limit of (A1, A2n−2).
For the (A1, A2n−2) part, we expect the same exact behavior: the Coulomb
branch operators u1, . . . , un−1 flow to composites qaqa, and the values of FI
parameters are precisely the same as in the pure (A1, A2n−2) case. The re-
maining Coulomb branch operator un has dimension ∆n = 2− 2

2n+1 , and we
expect it to flow to the dimension 2 monopole operator in the T [SU(2)] (see
Figure 1b for an expected RG flow of the Coulomb branch chiral spectrum).
Indeed, since the VOA reduction implies the FI parameter ζ = i

ℓ
1

2n+1 , as
given in (3.24), the mixing relation in the T [SU(2)] sector becomes

(4.24) 2− 2

2n+ 1
= r = RC +

1

2n+ 1
T ,

which suggests RC = 2 and T = −2 as the minimal universal way to satisfy
it for all n. We therefore propose that un flows to the dimension 2, charge
−2 monopole operator in T [SU(2)]. Recall that the minimal operators in
the chiral ring of T [SU(2)] have dimension 1, therefore we again propose
that they are emergent in the IR.13

13Also note that our analysis cannot determine the sign of ζ, so we could take
ζ → −ζ, and claim that un flows to the charge +2 monopole operator in 3d. Dis-
tinguishing these two cases requires a more refined analysis.
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To test these claims, we similarly carry out the reduction of the flavored
Schur index of the (A1, D2n+1) theory,

(4.25) I(A1,D2n+1) = PE

[
(q − q2n+1)χ1(z)

(1− q)(1− q2n+1)

]
,

where χ1 denotes the adjoint character for the SU(2) flavor symmetry, and
z is a flavor fugacity related to the 3d mass m via z = qim. Taking the Cardy
limit in this case, we find

log I(A1,D2n+1) =
n

4(2n+ 1)

2πi

τ
(4.26)

+

2n∑

j=1

(
log

Γ((j + im)/(2n+ 1))√
2π

+ log
Γ((j − im)/(2n+ 1))√

2π

+ log
Γ((j)/(2n+ 1))√

2π

)
+O(log q).

Once again, the leading term is consistent with the Cardy formula (4.13)
using

(4.27) c
(A1,D2n+1)
4d − a

(A1,D2n+1)
4d =

3n

24(2n+ 1)
.

The finite piece determines the S3 partition function of the 3d SCFT from
S1 reduction

Z3d =

2n∏

j=1

Γ
(

j
2n+1

)

√
2π

Γ
(
j+im
2n+1

)
Γ
(
j−im
2n+1

)

√
2π

(4.28)

=
1

2 sin π
2n+1

sinh πm
(2n+1)

sinhπm

2n−1∏

j=2

Γ
(

j
2n+1

)

√
2π

.

This agrees with the factorization

Z3d = ZSQED2
(ζ,m)

n−1∏

a=1

Zη(ζa),

where ZSQED2
(ζ,m) =

1

2 sinhπζ

sinπmζ

sinhπm
,(4.29)
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where the FI parameters ζa are given in (4.5), and ZSQED2
(ζ,m) denotes the

S3 partition function for SQED2 [109] with an arbitrary mass parameter m
and the FI parameter ζ from (3.24). To avoid clutter in the final expression,
we put ℓ = 1, which can be easily restored by dimensional analysis.

We see a complete agreement with the proposal that the 3d limit is
given by the T [SU(2)] and n− 1 decoupled twisted hypers. To complete the
story, we also test the 3d limit in the Coulomb branch lens space index, just
like we did in the (A1, A2n−2) case. The lens space Coulomb index for the
(A1, D2n+1) theories was computed in [35] as well,

(4.30) In,p(t, λ) =
1

∏n
k=1

(
1− t

2k−1

2n+1

)(
1− t

2n+2−2k

2n+1

)

+

n∑

i=1

tpµ
(1)
i + tpµ

(2)
i

∏i
k=1

(
1− t

2n+2k

2n+1

)(
1− t−

2k−1

2n+1

)∏n
k=i+1

(
1− t

2k−1

2n+1

)(
1− t

2n+2−2k

2n+1

) ,

where

(4.31) µ
(1)
i =

i(i+ 1)

2(2n+ 1)
− i

2n+ 1
· λ
p
, µ

(2)
i =

(i− 1)i

2(2n+ 1)
+

i

2n+ 1
· λ
p
,

and λ ∈ {0, 1, . . . , p} denotes the holonomy around the 1-cycle of the lens
space for the flavor SU(2) symmetry of (A1, D2n+1). In order to take the
3d limit, we ought to turn off this holonomy, λ = 0, and send p→ ∞, again
assuming that |t| < 1. Only two terms survive this limit,

lim
p→∞

In,p(t, 0) =
1

∏n
k=1

(
1− t

2k−1

2n+1

)(
1− t

2n+2−2k

2n+1

)

+
1(

1− t
2n+2

2n+1

)(
1− t−

1

2n+1

)∏n
k=2

(
1− t

2k−1

2n+1

)(
1− t

2n+2−2k

2n+1

)

=
1 + t(

1− t
2n

2n+1

)(
1− t

2n+2

2n+1

)
2n−1∏

j=2

1

1− t
j

2n+1

,(4.32)

where we have massaged the last expression into a very suggestive form. The
product part coincides with (4.22), and thus counts the chiral spectrum of
free twisted hypermultiplets. The factor

(4.33)
1 + t(

1− t
2n

2n+1

)(
1− t

2n+2

2n+1

) ,
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therefore, must be counting the Coulomb branch spectrum of T [SU(2)],
if our proposal is correct. The Coulomb branch chiral ring of T [SU(2)] is
generated by three operators X,Y, Z, whose dimensions and RC-charges are
all 1, and the topological charges are +1, −1, and 0, respectively. To account
for the mixing (4.24), we compute their r-charges,

r(X) = 1 +
1

2n+ 1
=

2n+ 2

2n+ 1
,(4.34)

r(Y ) = 1− 1

2n+ 1
=

2n

2n+ 1
, r(Z) = 1.

Observe that these are precisely the powers that appear in (4.33). Also,
the generators satisfy XY = Z2, so general chiral operators can be written
as P0(X,Y ) + ZP1(X,Y ), where P0,1 are arbitrary polynomials. Counting
such operators weighted by tr indeed gives (4.33), which is thus the Coulomb
branch index14 of T [SU(2)] with the unusual weight factor tr, where the r
charges are given by (4.34). This confirms our proposal again. Notice that
the operators X,Y, Z do not come directly from the 4d Coulomb branch
operators, so they must emerge in the 3d limit from line operators wrapping
the shrinking 1-cycle.

5. Lagrangian theories

Let us now focus on the class of examples coming from Lagrangian 4d N = 2
theories. The sort of mixing discussed before does not occur in such cases,
which slightly simplifies the story, as we do not have to worry about the FI
terms. More importantly, a large set of Lagrangian tools makes them more
amenable to explicit analysis.

5.1. Matrix model reduction

The flavored S3 × S1 partition function has a matrix model description that
follows from the localization (see, e.g., [66, 110–112]), – we will use the
form of the answer employed in [113, 114]. For concreteness, let us focus on
theories built from vectormultiplets and full hypermultiplets, and write the

14Of course it is also the Higgs branch index, since T [SU(2)] is self-mirror.



✐

✐

“2-Dedushenko” — 2023/8/10 — 1:43 — page 2040 — #30
✐

✐

✐

✐

✐

✐

2040 M. Dedushenko and Y. Wang

answer in terms of Jacobi theta functions,

(5.1) Z =
q−

1

4

∑⟨wf ,af ⟩2

|W|

×
∫ 2π

0

[
da

2π

]r
η(τ)3r−|G|+|R|

∏
α∈∆\0 θ1(⟨α, a⟩/2π; τ)∏

(w,wf )∈R θ4((⟨w, a⟩+ ⟨wf , af ⟩)/2π; τ)
,

where w and wf denote gauge and flavor weights of the matter multiplets
respectively. The 3d, or high-temperature, limit of this partition function
has been analyzed in great details and in full generality in [57], and the
readers should consult that reference for more details. In the simplest case
of theories obeying c4d > a4d, it is enough to perform a somewhat more
simplistic analysis to get the correct result. First, it is necessary to write
the integration region as a ∈ (−π, π)r, rather than (0, 2π)r, – this change
does not affect the exact answer due to periodicity of the integrand, yet is
important for proper asymptotic analysis, as the leading contribution comes
from the region close to a = 0. Next, we rescale the integration variable a
and the flavor fugacity af according to

(5.2) a = βσ, af = βmf .

The integration now ranges over σ ∈
(
−π
β ,

π
β

)
. Now we take the β → 0 limit

and approximate the integrand by its β → 0 asymptotics. While for the eta-
function it is enough to write η(τ) ≈ 1√

−iτ q̃
1

24 , with q̃ = e−2πi/τ = e−4π2/β ,

for theta function it is useful to perform the modular S transform and use
the product formula, which gives:

(5.3)

θ1(z; τ) =
i√
−iτ e

−π

τ
iz22 sin

(
π
z

τ

)
q̃

1

8

[(
1− e2πi

z

τ q̃
) (

1− e−2πi z
τ q̃
)]

×
[(
1− e2πi

z

τ q̃2
) (

1− e−2πi z
τ q̃2
)]
. . .

θ4(z; τ) =
1√
−iτ e

−π

τ
iz22 cos

(
π
z

τ

)
q̃

1

8

[(
1 + e2πi

z

τ q̃
) (

1 + e−2πi z
τ q̃
)]

×
[(
1 + e2πi

z

τ q̃2
) (

1 + e−2πi z
τ q̃2
)]
. . .

When z is small, the factors in square brackets can be neglected in the
τ → +0i limit, but they start contribute one by one as we increase z up
to 1, 2 etc. In general, as we take the τ → +0i limit, one might encounter
several saddle points in the integral (5.1) as was found in [57]. Again, the
simplest situation is when only the saddle near a = 0 contributes, in which
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case we approximate theta functions near z = 0, and all factors in the square
brackets can be dropped:

(5.4)

θ1(z; τ) ≈
i√
−iτ e

−π

τ
iz22 sin

(
π
z

τ

)
q̃

1

8 ,

θ4(z; τ) ≈
1√
−iτ e

−π

τ
iz22 cos

(
π
z

τ

)
q̃

1

8 .

With these approximations, one finds the τ → +0i asymptotics:

(5.5) Z ≈ q̃
1

12
(dim(G)−dimC(R)) 1

|W|

×
∫

t

drσ

∏
α∈∆\0 2 sinh (⟨α, σ⟩)∏

(w,wf )∈R 2 cosh (π (⟨w, σ⟩+ ⟨wf ,mf ⟩))
,

which is the well-known Kapustin-Willett-Yaakov matrix model in 3d [115],
with the divergent factor implying c4d − a4d = 1

24(dimC(R)− dim(G)). In
particular, theories with enough matter satisfy c4d > a4d.

One can also repeat this exercise and reduce the matrix model coupled
to symplectic bosons on the two-torus, as derived in [113, 114], to a matrix
model coupled to quantum mechanics on the circle found in [4]. In doing
this, we integrate out all non-zero Kaluza-Klein modes on the torus, while
only keeping the zero modes of symplectic bosons unintegrated. We then
take the τ → +0i limit, similar to the above discussion. For theories ad-
mitting the standard high-temperature behavior governed by the Di Pietro-
Komargodski formula, this works straightforwardly: the Cardy-like term is
precisely as in (5.5), and the correlators behave well in the τ → +0i limit.

5.2. Testing the W-algebra reduction: SU(3) SQCD

Since the SU(2) SQCD has already been analyzed, here we turn to the next
simplest example – the SU(3) SQCD, which is much more involved because
the corresponding VOA is a W-algebra [1]. In fact, for SU(N), Nf = 2N
gauge theory with arbitrary N ≥ 3, the W-algebra has been conjectured in
[1] to be generated by the su(Nf )−N ⊕ u(1)−N affine currents,

Ji
j(z)Jk

l(0) ∼ −
N
(
δliδ

j
k − 1

Nf
δji δ

l
k

)

z2
+
δliJk

j(0)− δjkJi
l(0)

z
,

J(z)J(0) ∼ −2N2

z2
,(5.6)
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together with an additional pair of strong generators at level L0 =
N
2 . These

are Virasoro primaries corresponding to the baryonic chiral ring genera-
tors given by the antisymmetric SU(Nf )-tensors with

Nf

2 = N flavor indices
each,

bi1i2...iN = εα1α2...αN qα1i1qα2i2 . . . qαN iN ,

b̃i1i2...iN = εα1α2...αN
q̃α1i1 q̃α2i2 . . . q̃αN iN ,(5.7)

where we adopt the notations of [1]. In particular, q, q̃ are symplectic bosons,
ε is the SU(N)-invariant tensor, and αi are gauge indices. In these notations,
the affine currents are

Ji
j = qαiq̃

αj − 1

Nf
δji qαkq̃

αk,

J = qαkq̃
αk,(5.8)

and the only non-obvious OPE one should specify is between b and b̃. For
N = 3, it is given in [1]:

bi1i2i3(z)̃b
j1j2j3(0) ∼

36δ
[j1
[i1
δj2i2 δ

j3]
i3]

z3
−

36δ
[j1
[i1
δj2i2 Ji3]

j3](0)

z2
(5.9)

+
18δ

[j1
[i1

(
Ji2

j2Ji3]
j3]
)
(0)− 18δ

[j1
[i1
δj2i2 ∂Ji3]

j3](0)

z
.

The stress-energy tensor coincides with the one provided by the Sugawara
construction,

(5.10) T =
1

Nf

(
(Ji

jJj
i)− 1

Nf
(JJ)

)
,

with the two-dimensional central charge

(5.11) c2d = 2− 4N2.

We now want to study the dimensional reduction for this model from various
points of view, verifying our general results and exemplifying various further
subtleties that appear in this problem.

5.2.1. Analysis in 3d. The 3d reduction is the SU(N) gauge theory with
Nf = 2N fundamental hypers, and as usual, we apply the techniques of [4].
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Now it is convenient to work with full hypers, and their 1d relatives Qαi and
Q̃αi have the following propagator at the fixed Coulomb parameter σ,

⟨Qαi(φ1)Q̃
βj(φ2)⟩σ = δji (Gσ)α

β(φ1 − φ2),

Gσ(φ) = −sgn(φ) + tanh(πσ)

8πℓ
e−σφ,

Gσ(0) = −tanh(πσ)

8πℓ
.(5.12)

The generators Ji
j , J , b, and b̃ have the same expressions in 1d as their

2d counterparts (5.8) and (5.7), with q, q̃ replaced by Q, Q̃. Using the
propagator (5.12), we find for general N :

⟨J ji (φ)J lk(0)⟩σ = − 1

(8πℓ)2

(
δliδ

j
k −

1

Nf
δji δ

l
k

)
TrR

[
1

cosh2(πσ)

]
,

⟨J(φ)J(0)⟩σ = − Nf

(8πℓ)2
TrR

[
1

cosh2(πσ)

]
(5.13)

+
N2
f

(8πℓ)2
[TrR tanh(πσ)]2 .

We next have to compute integrals over sigma, and in particular the partition
function is

Z =

∫

R2

drσ⃗

∏
α∈∆\0 2 sinh(π⟨α, σ∨⟩)(∏
w∈R 2 cosh(π⟨w, σ∨⟩)

)Nf
,(5.14)

where σ⃗ = (σ1, σ2, . . . , σr) and σ∨ =
∑

i σiα
∨
i , with α∨

i the coroots (this is
simply a convenient choice of normalization of σ). For general N , such inte-
grals are complicated and can be studied using the techniques developed in
[116–120]. Focusing on the case N = 3, we obtain

〈
TrR

[
1

cosh2(πσ)

]〉
=

46848− 4725π2

35 (448− 45π2)
,

〈
[TrR tanh(πσ)]2

〉
=

8
(
1575π2 − 15544

)

35 (448− 45π2)
,(5.15)
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thus giving

⟨J ji (φ)J lk(0)⟩ = − 1

(8πℓ)2

(
δliδ

j
k −

1

6
δji δ

l
k

)
46848− 4725π2

35 (448− 45π2)
,

⟨J(φ)J(0)⟩ = − 1

(8πℓ)2
18
(
7552− 765π2

)

448− 45π2
.(5.16)

It is also straightforward to compute for φ1 > φ2 > φ3,

⟨J ji (φ1)J
l
k(φ2)J

n
m(φ3)⟩ =

1

(8πℓ)3
(δliδ

j
mδ

n
k − δni δ

j
kδ
l
m − traces)

×
〈
TrR

[
1

cosh2(πσ)

]〉
,

⟨J(φ1)J(φ2)J(φ3)⟩ = 0 ,(5.17)

and thus identify star products in the subalgebra of currents as

J ji ⋆ J
l
k =: J ji J

l
k : −

1

8πℓ
(δliJ

j
k − δjkJ

l
i )

+
1

(8πℓ)2

(
δliδ

j
k −

1

Nf
δji δ

l
k

)
µ1 ,

J ⋆ J =: JJ : +
1

(8πℓ)2
µ2 ,(5.18)

where for N = 3,

(5.19) µ1 = −46848− 4725π2

35 (448− 45π2)
, µ2 = −18

(
7552− 765π2

)

448− 45π2
.

Here, as usual, : AB : is defined as the highest-dimension operator appear-
ing in A ⋆ B, made orthogonal to all the lower-dimension operators via the
Gram-Schmidt procedure. In the above expression, this means that : Ji

jJk
l :

and : JJ : are necessarily orthogonal to the identity and the dimension-1 op-
erators (currents), but they might not be orthogonal to each other, i.e. there
is still some residual mixing between : Ji

jJk
l : and : JJ :. Also notice that in

our case there exist dimension-32 operators b and b̃, but : Ji
jJk

l : and : JJ :
obviously cannot mix with them.

5.2.2. Analysis in 4d. Let us now verify that the same answers follow
from the high-temperature limit of torus correlators. Like in section 2, it is
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straightforward to write the currents two-point functions by matching the
pole structure in the OPE,

⟨J ji (z1)J lk(z2)⟩ = −N
ℓ2

(
δliδ

j
k −

1

Nf
δji δ

l
k

)

×
(

1

(2π)2
℘

(
z1 − z2
2π

; τ

)
+ e1(τ)

)
,

⟨J(z1)J(z2)⟩ = −2N2

ℓ2

(
1

(2π)2
℘

(
z1 − z2
2π

; τ

)
+ e2(τ)

)
,(5.20)

with the only difference that now we have two z-independent functions
e1,2(τ), since the underlying Lie algebra is not simple and has precisely
two direct summands. They are of course given by the one-point functions
of the normal products of currents,

⟨(J ji J lk)⟩ = −N
ℓ2

(
δliδ

j
k −

1

Nf
δji δ

l
k

)
e1(τ),

⟨(JJ)⟩ = −2N2

ℓ2
e2(τ).(5.21)

We know that the Weierstrass function behaves as ℘ ∼ − pi2

3τ2 in the τ → 0
limit, so it only remains to find the high-temperature asymptotics of e1,2(τ).
The natural expectation, which we will confirm below, is that the behave as

(5.22) e1(τ) ∼
A

τ2
, e2(τ) ∼

B

τ2
,

Implying the following limits

lim
τ→0

τ2⟨J ji (z1)J lk(z2)⟩ = ℏ
24N

(
δliδ

j
k −

1

Nf
δji δ

l
k

)(
− 1

12
+A

)
,

lim
τ→0

τ2⟨J(z1)J(z2)⟩ = ℏ
28N2

(
− 1

12
+B

)
,(5.23)

which result in the same 1d algebra as given in (5.18), with the relation
between A,B and µ1, µ2 as follows,

A =
1

12
+
µ1
4N

, B =
1

12
+

µ2
8N2

.(5.24)

These values of A,B also agree with the Cardy behavior, as one can easily
check. Indeed, the one-point function of the stress tensor (5.10) follows from
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the one point functions (5.21), and is given by

(5.25) ⟨T ⟩ = −
(N2

f − 1)e1(τ)

2ℓ2
+
e2(τ)

2ℓ2
.

Using the asymptotics (5.22), with A,B given in (5.24), and µ1, µ2 taking
values (5.19), we find

(5.26) ⟨T ⟩ ∼ 5/6

ℓ2τ2
.

On the other hand, the torus partition function Z behaves in accordance
with (2.14),

(5.27) Z ∼ q̃
dim(G)−Nf dim

C
(R)

12 = e
iπ

6τ
(N2+1),

indeed implying the same behavior of ⟨T ⟩,

(5.28) ⟨T ⟩ = − 1

2πiℓ2
d

dτ
log(Z) ∼ N2 + 1

12ℓ2τ2
=

5/6

ℓ2τ2
.

We also confirm the behavior (5.22) of e1(τ) and e2(τ), with A,B given in
(5.24), from the chiral algebra computation in Appendix B.

5.2.3. Star products from the flavored Schur index. Another
method to extract the τ → 0 limits of correlators of currents is by look-
ing at the τ → 0 limit of the flavored Schur index. It is somewhat redundant
in the present case since it obviously gives the same results, but will be the
only technique available to us in later sections. The flavored Schur index
gives the flavored vacuum character of the VOA,

(5.29) I(τ, af ) = TrV q
L0− c2d

24 u
Jf
0

f ,

where uf = eiaf is the flavor fugacity, and Jf0 =
∮

dz
2πJ

f (z) is the charge
of the affine current Jf (z), with the integral going over the spacial S1 ⊂
S3. In the high-temperature limit, as was previously mentioned, we scale
af = βmf = −2πiτmf , and mf becomes the 3d mass. By taking derivatives
with respect to mf , we can compute integrated correlators of currents in
1d. Because the 1d limit of the two-point function of currents is a constant
(which is simply the constant term of Jf ⋆ Jf ), this allows to compute the
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1d two-point function of two arbitrary currents. Namely,

(5.30)
1

I

∂2I

∂m2
f

∣∣∣
mf=0

= −(2π)2τ2
∮

dz1
2π

∮
dz2
2π

⟨Jf (z1)Jf (z2)⟩.

Taking the τ → 0 limit, the z-dependence of the two-point function drops
out, the integrals become trivial, and we can simply write,

(5.31) ⟨J1 ⋆ J2⟩ = − lim
τ→+0i

1

(2π)2I(τ,m)

∂2I(τ,m)

∂m1∂m2

∣∣∣
m=0

,

where we generalized to the case of several currents Ji with the associated
masses denoted mi. In the next Section, this will help to extract star prod-
ucts directly from the flavored Schur index.

6. More on Argyres-Douglas theories

The general construction of Argyres-Douglas theories from twisted compact-
ification of (2, 0) theory of ADE type j on a Riemann surface C with irregular
and regular punctures were carried out in [95, 96] extending previous results
for the A-type case [92, 94, 97, 104, 105]. The requirement of superconformal
symmetry fixes C to be a sphere (with holomorphic coordinate z) and the
irregular puncture at z = 0 to be described by a singularity (Hitchin pole)
of the Higgs field

(6.1) Φ =
T

z2+
κ

b

+ . . .

where T is an element in the Cartan subalgebra of j, b is selected from a set
of positive integers fixed by j, and κ ∈ Z satisfies κ > −b. The construction
allows another regular puncture at z = ∞ labeled by Y , which is a Young-
tableau that captures the Hitchin partition for the classical Lie algebras j,
and more generally given by Bala-Carter labels for the exceptional cases.
The SCFT constructed by such a pair of irregular and regular punctures in
the 6d (2, 0) theory is denoted (Jb[κ], Y ), and the one that is produced by
the irregular puncture alone is named Jb[κ] [95].15

15Note that it is common for a given 4d N = 2 SCFT to have multiple class S
constructions and this gives rise to identifications among the labels (Jb[κ], Y ).
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The 2d chiral algebra for the (Jb[κ], Y ) theory is a W-algebra [23] of the
type16

(6.2) W k(j, Y ), k = −h∨ +
b

κ+ b

where h∨ denotes the dual Coxeter number of j (see also Table 5 in [43]).
Such W-algebra arises from the quantum-Drinfeld-Sokolov (qDS) reduction
of the affine Kac-Moody (AKM) algebra Vk(j), which corresponds to the
special case of (6.2) when Y = F labels a full (principal) regular puncture.

The Higgs branch of the SCFT (Jb[κ], Y ) is identified with the associated
variety of the W-algebra, and given by the intersection of the Slodowy slice
SY transverse to the coadjoint nilpotent orbit OY with another nilpotent
orbit,

(6.3) MHB =

{
Nj ∩ SY if κ > 0,

XM ∩ SY if κ < 0,

where Nj denotes the nilpotent cone and XM is the closure of certain nilpo-
tent orbits of j that depends on k [22, 23].

We focus on the case j = sln in this paper. In previous sections (sec-
tion 3.2.2 and 4), we have studied the special cases where the 2d chiral
algebra is either a Virasoro algebra (for (A1, A2n−2) theories which corre-
spond to A2

1[2n− 1] above) or an AKM algebra (for (A1, D2n+1) theories
correspond to (A2

1[2n− 1], [1, 1])). Below we extend the analysis to more
general Argyres-Douglas SCFTs that realize nontrivial W-algebras.

6.1. (A1, A2n−1) AD theories

The (A1, A2n−1) SCFT has an n− 1 complex dimensional Coulomb branch
and a two complex dimensional Higgs branch, with U(1) global symmetry
(enhanced to SU(2) for the n = 2 case). The conformal central charges are

(6.4) a4d =
12n2 − 5n− 5

24(n+ 1)
, c4d =

3n2 − n− 1

6(n+ 1)
.

This is a special case of the (Jb[κ], Y ) theories in [95] as (Ann−1[1], [n− 1, 1]).
Their Higgs branch is described by the intersection of the Slodowy slice of

16In general there are certain constraints on (j, b, κ) for this statement to be true
[23]. Such (j, b, κ) exist for all the cases we consider in this paper.
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sln, transverse to the subregular nilpotent orbit [1, n− 1], with the nilpotent
cone Nsln ,

(6.5) MHB = N sln ∩ S[n−1,1] = C
2/Zn,

which is equivalent to the An−1 singularity. The chiral algebra here is [23]

(6.6) W
−n2

n+1 (An−1, [n− 1, 1]),

which contains a U(1) current subalgebra that descends from the flavor
symmetry multiplet in the 4d SCFT.

The 3d SCFT from S1 reduction has the following quiver description,

(6.7) U(1)
q1,q̃1

U(1)
q2,q̃2

· · ·
qn−1,q̃n−1

U(1)
qn,q̃n

U(1) ,

with n− 1 U(1) gauge nodes. The mirror quiver is simply that of SQEDn,

(6.8) SU(n)
pa,p̃a

U(1).

In the first description, we denote the n hypermultiplets by (qa, q̃a) with
a = 1, 2, . . . , n, which are subjected to the D-term relations

(6.9) qaq̃a = qbq̃b

for all a and b. The Higgs branch chiral ring is generated by

(6.10) J = q1q̃1, X = q1q2 . . . qn, Y = q̃1q̃2 . . . q̃n,

subject to the ring relation

(6.11) XY = Jn.

In particular J is the moment map operator associated with the U(1) flavor
symmetry.

The spectrum of Coulomb branch chiral primaries in the (A1, A2n−1)
SCFT is given by

(6.12) ∆ = r = 1 +
a

n+ 1
for a = 1, 2, . . . , n− 1.

The fractional U(1)r charge indicates that upon S
1 reduction, the 3d SU(2)C

R-symmetry Cartan RC must be given by a combination of the 4d U(1)r gen-
erator and emergent Coulomb branch topological U(1) symmetries. The 4d
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Coulomb branch chiral primaries map to monopole operators in the quiver
gauge theory (6.7), while in the mirror SQEDn description with the hyper-
muliplets denoted by pa, p̃

a for a = 1, 2, . . . , n, the relevant 3d operators are
simply built from gauge invariant combinations of pa, p̃

a.

The precise R-symmetry mixing was worked out in [67], which we rewrite
in a different way as

(6.13) r = Rc −
n∑

a=1

n+ 1− 2a

2(n+ 1)
ha,

where ha are Cartan generators of the the enhanced SU(n) symmetry (man-
ifest in the SQEDn description) such that the charges of the hypermultiplets
in SQEDn are normalized as

(6.14) ha(pb) = δabpb, ha(p̃b) = −δabp̃b.

Consequently, the 3d chiral primaries corresponding to the 4d Coulomb
branch operators (6.12) are p1p̃a+1 (up to mixing with operators with the
same U(1)r quantum number).

The FI parameters in the quiver (6.7) that capture the R-symmetry
mixing are

(6.15) ζa = − i
ℓ

1

n+ 1
, a = 1, 2, . . . , n− 1,

or equivalently in the mirror description (see Appendix C for the mirror-
map) the masses are

(6.16) ma =
i

ℓ

n+ 1− 2a

2(n+ 1)
.

In the following sections, we verify that with these FI (mass) parameters, the
reduction of the 4d flavored Schur index gives directly the 3d sphere partition
function. Consequently, the subsector of the full TQM involving the U(1)
moment map operator J agrees with the Cardy limit of the corresponding
sector of the W-algebra.

6.1.1. Analysis in 4d. The flavored Schur index for the (A1, A2n−1) the-
ory is given by

(6.17) I(A1,A2n−1) = PE

[
q(1 + q)(1− qn−1) + (a+ a−1)q

n

2 (1− q2)

(1− q)(1− qn+1)

]
.
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For n = 2, we have further simplification,

(6.18) I(A1,A3) = PE

[
q(1− q2)χ1(a)

(1− q)(1− qn+1)

]
,

with enhanced SU(2) flavor symmetry.

Using the q → 1 limit of the Lambert series, the Cardy limit can be
easily obtained:

(6.19) lim
τ→0

(−iτ) log ISchur =
π

6
.

Furthermore, taking into account the flavor fugacities a = qim, we obtain
the 3d mass-deformed partition function:

Z3d(m) =
1

(2π)n+1

∏

s∈{+1,−1}
Γ

(
n+ 2sim

2(n+ 1)

)
Γ

(
n+ 2 + 2sim

2(n+ 1)

)
(6.20)

×
n−1∏

j=1

Γ

(
j

n+ 1

)
Γ

(
j + 1

n+ 1

)

=
1

2(n+ 1)

sin
(
πn
n+1

)

sin
(
π(n+2im)
n+1

)
sin
(
π(n−2im)
n+1

) .

By taking derivatives with respect to m, we obtain correlators of J in the 1d
TQM from the reduction of the 2d chiral algebra. In particular, two point
function of the U(1) moment map operator J is

(6.21)
⟨J ⋆ J⟩ = − 1

(2π)2
∂2m logZ3d(m)|m=0 = − 1

(n+ 1)2 cos
(

π
2(n+1)

)2 .

6.1.2. Analysis in 3d. Here we derive the deformed sphere partition
function directly from the 3d quiver gauge theory. For this purpose, we find
it convenient to use the mirror description, in which case the FI parame-
ters (6.15) translate into the mass parameters (6.16) for the SU(n) flavor
symmetry of SQED, and the U(1) mass parameter translates into the FI
parameter of SQED,

(6.22) m = η.
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In this case, using the identity (C.17), we obtain:

Z
(A1,A2n−1)
3d (ma, η) =

1

(−i)n−1(eπη − (−1)ne−πη)
(6.23)

×
n∑

a=1

e−2πimaη

∏
b ̸=a 2 sinh(πmab)

=
1

2(n+ 1)

sin πn
n+1

sin π(n+2iη)
2(n+1) sin π(n−2iη)

2(n+1)

,

in agreement with (6.20). Correspondingly, the correlators of J in the TQM
(which can be obtained from taking derivatives with respect to η = m) agree
with the ones from reduction of the 4d Schur index.

6.2. (A1, D2n+2) AD theories

The 4d SCFT has an n complex dimensional Coulomb branch and a four
complex dimensional Higgs branch, with SU(2)× U(1) global symmetry.
The conformal central charges are

(6.24) a4d =
12n+ 2

24
, c4d =

3n+ 1

6
.

This theory corresponds to (An+2
n+1[−1], [n, 1, 1]) in [95]. The Higgs branch

of theory is given by the Slodowy slice of sln+2 transverse to the sub-sub-
regular nilpotent orbit [n, 1, 1], and intersected with the subregular nilpotent
orbit [n+ 1, 1],

(6.25) MHB = O[n+1,1] ∩ S[n,1,1].

The chiral algebra is the qDS reduction of V−n(n+2)

n+1

(sln+2) at the subregular

nilpotent element [23],

(6.26) W−n(n+2)

n+1 (sln+2, [n, 1, 1]),

which contains the AKM subalgebra V− 2n+1

n+1
(sl2) responsible for the SU(2)

flavor symmetry of the 4d SCFT.



✐

✐

“2-Dedushenko” — 2023/8/10 — 1:43 — page 2053 — #43
✐

✐

✐

✐

✐

✐

4d/2d → 3d/1d 2053

The 3d SCFT from S1 reduction has the following quiver description,

(6.27) SU(2)
QI ,Q̃I

U(1)
q1,q̃1

· · ·
qn−1,q̃n−1

U(1)
qn,q̃n

U(1) ,

with n U(1) gauge nodes. The mirror quiver is

(6.28) SU(n)
pa,p̃a

U(1)
s,s̃

U(1)
t,t̃

U(1) ,

which makes manifest the enhanced SU(n)× U(1) symmetry on the 3d
Coulomb branch.

The quiver gauge theory has hypermultiplets (QI , Q̃
J) in the fundamen-

tal representation of SU(2) (here I, J = 1, 2), and bifundamental hypermul-
tiplets (qa, q̃a) with a = 1, 2, . . . , n, which are subject to the D-term relations

(6.29) QIQ̃
I = qaq̃a

for all a. The Higgs branch chiral ring is generated by gauge invariant holo-
morphic combinations of hypermultiplets,

(6.30) MI
J = QIQ̃

J , P = qnq̃n, WI = QIq1q2 . . . qn, W̃
I = Q̃I q̃1q̃2 . . . q̃n,

subject to the ring relations:

(6.31)
M1

1 +M2
2 = P, M1

1M2
2 =M1

2M2
1,

WIW̃
J =MI

JPn, MI
JWK =MK

JWI , MI
JW̃K =MI

KW̃ J .

The (A1, D2n+2) theory and the (A1, A2n−1) theory are related by Hig-
gsing (as in the case of (A1, D2n+1) and (A1, A2n−2)). This is obvious from
the 3d perspective in which case the Higgsing is implemented by giving a
vev to the moment map operator MI

J . This is also easy to see in the class
S setup using the A1 (2, 0) theory. In this case, the (A1, D2n+2) is realized
as A1

1[n], and the (A1, A2n−1) is realized as (A1
1[n], F ), which involve the

same irregular puncture [92, 95]. The two are obviously related by closing
the regular A1 puncture. The Coulomb branch chiral primary spectrum of
the (A1, D2n+2) contains, in additional to those in (A1, A2n−2) (see (6.12)),
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an operator of dimension

(6.32) ∆ = r =
2n+ 1

n+ 1
,

which arises from local Hitchin moduli of the regular puncture and gets
lifted upon Higgsing to (A1, A2n−2).

Not surprisingly, the R-symmetry mixing relation that involves the 3d
SU(2)C R-symmetry and emergent Coulomb branch topological symme-
tries is similar to that of (A1, A2n−1) [67]. In fact, in the mirror description
(6.28), the mixing is captured by the same mass deformations for the en-
hanced SU(n) symmetry as in (6.16) for SQEDn, which is the 3d mirror for
the (A1, A2n−1) theory. Labeling the hypermultiplets in the mirror quiver as
in (6.28), which makes manifest the SQEDn subsector with hypermuliplets
pa, p̃a, the identification between 4d Coulomb branch primaries and Higgs
branch operators in the 3d mirror proceeds as before, with the exception
of the operator (6.32) which is identified to the dimension 3

2 3d chiral pri-
mary p̃1s̃t̃ (again up to mixing with operators of the same U(1)r quantum
number).

Using the mirror-map (C.10), the corresponding FI parameters in the
quiver (6.27) are

(6.33) ζa =
i

ℓ

(
n− 1

2n+ 2
,− 1

n+ 1
, . . . ,− 1

n+ 1

)
.

In the following sections, we verify that with these FI deformations, the
reduction of the 4d flavored Schur index gives directly the 3d sphere partition
function. Consequently, the subsector of the full TQM generated by the U(1)
moment map operator J and the SU(2) moment map operator JIJ agrees
with the Cardy limit of the corresponding sector in the W-algebra.

6.2.1. Analysis in 4d. The flavored Schur index for the (A1, D2n+2) the-
ory is given by

(6.34) I(A1,D2n+2) = PE

[(1 + χ1(z))q(1− qn) + (a+ a−1)χ 1

2
(z)q

n+1

2 (1− q)

(1− q)(1− qn+1)

]
.

For n = 1, we have further simplification,

(6.35) I(A1,D4) = PE

[(1 + χ1(z))q + (a+ a−1)χ 1

2
(z)q

(1− q2)

]
= PE

[
qχ

SU(3)
8 (y)

(1− q2)

]
,
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with SU(3) fugacities y1 = z1/2a and y2 = z1/2a−1, due to the enhanced
SU(3) flavor symmetry.

From the q → 1 limit, on easily recovers the Cardy formula that accounts
for the divergent pieces in log I(A1,D2n+2),

(6.36) lim
τ→0

(−iτ) log I(A1,D2n+2) = 4π(c4d − a4d) =
π

3
.

Next defining z = qm and a = qu, using the asymptotic behavior of the Lam-
bert series, we extract the finite piece in the Cardy limit,

Z3d(m) =
1

(2π)2(n+1)

∏

s1,s2∈{+1,−1}
Γ

(
n+ 1 + 2s1u+ 2s2m

2(n+ 1)

)
(6.37)

×
n∏

j=1

Γ

(
j

n+ 1

)2

Γ

(
j + 2m

n+ 1

)
Γ

(
j − 2m

n+ 1

)

=
1

(n+ 1)2n+2

1

cos π(u+m)
n+1 cos π(u−m)

n+1

n∏

j=1

1

sin π(j+2m)
n+1

.

By taking derivatives with respect to m and u respectively, we compute
the correlators in the 1d TQM from the S1 reduction of the 2d chiral algebra,

(6.38)

JIJ ⋆ JKL = JIKJL − 1

2ℓ
(δJKJIL − JKJδLI )

− 1

12ℓ2

(
1

(n+ 1)2
+ 2

)
(δLI δ

J
K − 1

2
δJI δ

L
K),

J ⋆ J =: J2 : − 1

2(n+ 1)2ℓ2
.

Here JIKJL denotes the normal ordered product in the OPE of SU(2)
moment-map operators, which is orthogonal to lower dimensional opera-
tors but has non-vanishing overlap with : J2 : (similar to the case of SU(3)
SQCD discussed in Section 5).

6.2.2. Analysis in 3d. Here we directly compute the 3d sphere partition
function with the FI parameters and mass deformations taken into account.

Again, we find it convenient to work with the mirror description, in
which case the mass and FI parameters are given by (see (C.10) for the
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mirror-map)

(6.39) ma =
n+ 1− 2a

2(n+ 1)
i, η1 = m− u, η2 = 2m.

In this case, the matrix model for the sphere partition function is given by

Z
(A1,D2n+2)
3d ({ηi}, {ma})(6.40)

=

∫
dσ1dσ2

e2πi(η1σ1+η2σ2)

2 cosh(πσ2)2 cosh(π(σ1 − σ2))
∏n
a=1 2 cosh(π(σ1 +ma)

=

∫
dσ2

e2πiη2σ2

2 cosh(πσ2)
ZSQEDn+1

(η1, {ma, σ2}).

After some algebra (for details see Appendix C), we obtain:

(6.41) Z
(A1,D2n+2)
3d ({ηi}, {ma})

=
1

4(n+ 1)

sinh 2πm
n+1

cosh π(m−u)
n+1 cosh π(m+u)

n+1 sinh (2πm)
.

This agrees with the answer (6.37) from reducing the 4d index after using
the identity (C.17). Consequently, all correlators of the U(1) and SU(2)
moment map operators J,JIJ agree with the Cardy limit of the W-algebra

7. Conclusions and discussions

In this paper we have explored relations between protected operator al-
gebras in four and three dimensional superconformal field theories (SCFT).
They are respectively described by the 2d chiral algebra in 4d N = 2 SCFTs
and the 1d topological quantum mechanics (TQM) in 3d N = 4 SCFTs. In
particular, by taking the supersymmetric Cardy (high-temperature) limit
of the 4d theory on S1 × S3 in a number of examples, we deduced explicit
dictionaries between the 3d and 4d SCFTs for a subset of the operator prod-
uct expansion (OPE) data, that includes central charges for global symme-
tries and (twisted) correlation functions of Higgs branch BPS operators.
We tested these relations by studying a variety of 4d SCFTs of both La-
grangian and non-Lagrangian type. In the former case, we saw explicitly
from supersymmetric localization that the 4d matrix model which captures
observables in the corresponding chiral algebra sector becomes the 3d matrix
model governing the TQM. In the latter non-Lagrangian case, despite the
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lack of localization formulae in 4d, we took proposals from the literature for
the chiral algebra and in particular its torus partition function (the flavored
Schur index of the 4d SCFT), and determined a subset of the OPE data of
the would-be 3d N = 4 theory from the S1 reduction. For some of these non-
Lagrangian theories in 4d, such as the Deligne-Cvitanović (DC) exceptional
series of SCFTs, and the (A1, A2n−1) and (A1, D2n+2) type Argyres-Douglas
theories, the corresponding 3d (mirror) Lagrangians were known, and we
used them to explicitly verify predictions from the 2d chiral algebra, there-
fore providing concrete support for these chiral algebra proposals. In other
cases, such as the (A1, A2n−2) and (A1, D2n+1) type Argyres-Douglas the-
ories, where the 3d (mirror) Lagrangians were missing, we gave a proposal
based on the Cardy limit of the 2d chiral algebra, that passes various non-
trivial checks beyond the chiral algebra/TQM subsector. Below we outline
a number of interesting future directions:

• For 4d non-Lagrangian SCFTs, a Higgs branch free field realization of
the 2d chiral algebra sector was proposed in [27], which provides a sys-
tematic way to extract OPE data (similar in spirit to the localization
formulae of [113, 114]). It would be interesting to explore the Cardy
limit in this free field realization in relation to the TQM sector of the
corresponding 3d SCFT.

• A related question is about the uplift of matrix models describing the
TQM sector of 3dN = 4 SCFTs. Certainly, we do not expect all TQMs
to be realized as reductions of 2d chiral algebras that arise in 4d N = 2
SCFTs, due to the physical conditions such as superconformal sym-
metry and unitarity constraints in 4d. But it would be interesting to
understand these obstructions of uplifting from the 3d/1d perspective.

• We have mostly focused on local operator algebras in this paper.
However, extended operators must be taken into account to estab-
lish a more complete dictionary between operator algebras across dif-
ferent spacetime dimensions. In particular, as we saw in the case of
(A1, A2n−2) and (A1, D2n+1) theories, the Cardy limit generates emer-
gent monopole operators of dimension 1/2 and 1 respectively, which
do not originates from 4d local operators. They must come from line
operators wrapping the vanishing S1. It would be interesting to under-
stand this phenomena by studying the line operator spectrum of the
4d theory. More generally, the chiral algebra sector can be enriched
by including surface defects, which leads to new observables in the 3d
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theory that may involve line and surface defects that are worth explor-
ing. The TQM setup in 3d can independently be enriched by extended
objects (e.g., a variety of line operators that 3d N = 4 theories admit
[121]), which also remains mostly unexplored.

• In all examples we considered in this paper, the 3d N = 4 SCFT that
arises in the Cardy limit of the 4d N = 2 SCFT has a (mirror) La-
grangian description. It would be interesting to see if our general pre-
scription can give predictions for the OPE data in non-Lagrangian 3d
SCFTs using the input from the 2d chiral algebra sectors of 4d N = 2
SCFTs.

• For families of SCFTs with a large N limit, via AdS/CFT, the pro-
tected operator algebras are dual to subsectors of string/M-theory in
the bulk [8, 33, 40, 122]. In particular, it was proposed in [33] that the
2d chiral algebra (a super W-algebra) sector of the 4d N = 4 SU(N)
super-Yang-Mills in the large N limit is described by a Chern-Simons
theory on an AdS3 slice, and the gauge algebra is given by the wedge
algebra of the large N super W-algebra. Later in [122], the 1d TQM
sector of the large N U(N)1 × U(N)−1 ABJM theory was shown to be
dual to a 2d Yang-Mills theory on an AdS2 slice in AdS4. In this case
the gauge algebra (in a Z2 even sector) is given by Sdiff(S2), the area-
preserving diffeomorphisms on an emergent S2, and the interactions
involve, in addition to the Yang-Mills action, certain higher-derivative
terms from the higher Casimir invariants of Sdiff(S2). It is plausible
that the bulk dual 3d Chern-Simons and 2d Yang-Mills theories are
related by an S1 reduction (see for example [123]), and it would be in-
teresting to explore this connection in more detail, especially since the
Chern-Simons dual of the large N super W-algebra is not completely
settled.
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Appendix A. Computation using the 3d mirror of (A1, D4)

The 3d mirror of the (A1, D4) theory is a U(1)× U(1) gauge theory with
hypers of charges (1, 0), (1, 1) and (0, 1). The Coulomb branch TQM of this is
equivalentto the Higgs branch TQM of the direct dimensional reduction from
4d. We compute the Coulomb TQM here using the shift operator techniques
from [6, 7].

Since we deal with the abelian rank-2 theory, all quantities of the type
X⃗ will mean two-dimensional vectors. We use the North pole picture for the
shift operators. We have the scalar fields,

(A.1) Φ⃗ =
1

ℓ

(
σ⃗ +

i

2
B⃗

)
,

and the monopoles,

(A.2) Mb⃗ =

[
3∏

I=1

(−1)(q⃗I ·⃗b)+

ℓ|q⃗I ·⃗b|/2

(
1

2
+ iℓq⃗I · Φ⃗

)

(q⃗I ·⃗b)+

]
e−b⃗·(

i

2
∂σ⃗+∂B⃗),

where b⃗ is the magnetic charge, and q⃗I is the gauge charge of the I’th hyper-
multiplet. These operators are the basic building blocks, and the algebra is
simply generated by them, with all the relations following from the structure
of shift operators.

We expect to obtain the quantization of the minimal nilpotent orbit of
A2, hence we use the typical Lie algebra notations below. We identify the
following linear combinations of scalars with the Cartan subalgebra genera-
tors,

H1 =
√
2Φ1 +

1√
2
Φ2,

H2 =

√
3

2
Φ2,(A.3)
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and the following monopoles with the A2 root system,

M(±1,0) = E±α1 ,

iM(∓1,±1) = E±α2 ,

M(0,±1) = E±(α1+α2),(A.4)

where α1 and α2 are the simple roots of A2.

These operators generate the whole algebra of shift operators, and in
particular we can easily check that commutators indeed reproduce the A2

algebra,

[Hi, E
α] =

i

ℓ
αiE

α,

[Eα, E−α] =
i

ℓ
α ·H,

[Eα2 , Eα1 ] =
i

ℓ
Eα1+α2 ,

etc.(A.5)

The normalization of the Killing form is

(A.6) K(Eα, E−α) = K(Hi, Hi) = 6,

which implies that ψ2 = 2 in our conventions. We then compute the Casimir
element,

(A.7) C = (H2
1 +H2

2 ) +
∑

α∈∆
Eα ⋆ E−α =

6

4ℓ2
.

To bring the algebra into our canonical form, we identify

(A.8) ℏ =
i

ℓ
,

which then implies the same value of µ as the Higgs computation in the
main text,

(A.9) µ = −3

8
.
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Appendix B. One point functions of current bilinears

Here we compute the τ → 0 asymptotics of the torus one point functions of
current bilinears (J ji J

l
k) and (JJ). This can be done using the explicit rep-

resentation of the chiral algebra of Lagrangian theories on S3 × S1 by sym-
plectic bosons coupled to the matrix model, as derived in [113, 114]. There,
one first computes correlators at the fixed value of a – the S1 holonomy
which is the matrix model variable appearing in (5.1). Then one integrates
over a. Using the torus propagator for symplectic bosons (see eqn. (4.49)
in [113]), and the expressions of currents in terms of symplectic bosons, it
straightforward to find the following,

⟨J ji (z)J lk(0)⟩a =
(
δliδ

j
k −

1

Nf
δji δ

l
k

) −1

(2π)6ℓ2

[
θ′1(0; τ)

θ1
(
z

2πi ; τ
)
]2

× TrR

[
θ4
(
z

2πi − a
2π ; τ

)

θ4
(
− a

2π ; τ
) θ4

(
− z

2πi − a
2π ; τ

)

θ4
(
− a

2π ; τ
)

]

= −
(
δliδ

j
k −

1

Nf
δji δ

l
k

)
1

(2π)6ℓ2

[
2πi

z
− 1

6

θ′′′1 (0; τ)
θ′1(0; τ)

z

2πi
+O(z3)

]2

× TrR

[
1 +

( z

2πi

)2
(
θ′′4(

a
2π ; τ)

θ4(
a
2π ; τ)

−
(
θ′4(

a
2π ; τ)

θ4(
a
2π ; τ)

)2
)

+O(z4)

]

= −
(
δliδ

j
k −

1

Nf
δji δ

l
k

)
1

(2π)6ℓ2

× TrR

{
−1

3

θ′′′1 (0; τ)
θ′1(0; τ)

+
θ′′4(

a
2π ; τ)

θ4(
a
2π ; τ)

−
(
θ′4(

a
2π ; τ)

θ4(
a
2π ; τ)

)2
}

+ singular +O(z2),(B.1)

where the final expression gives ⟨(J ji J lk)⟩a. In the similar computation for J ,

⟨J(z)J(0)⟩a =
N2
f

(2π)6ℓ2

(
TrR

[
θ′4
(
a
2π ; τ

)

θ4
(
a
2π ; τ

)
])2

− Nf

(2π)6ℓ2

[
θ′1(0; τ)

θ1
(
z

2πi ; τ
)
]2

× TrR

[
θ4
(
z

2πi − a
2π ; τ

)

θ4
(
− a

2π ; τ
) θ4

(
− z

2πi − a
2π ; τ

)

θ4
(
− a

2π ; τ
)

]
,(B.2)
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the first term comes from self-contractions in J . Subtracting the pole, this
give:

⟨(JJ)⟩a =
N2
f

(2π)6ℓ2

(
TrR

[
θ′4
(
a
2π ; τ

)

θ4
(
a
2π ; τ

)
])2

− Nf

(2π)6ℓ2
TrR

{
−1

3

θ′′′1 (0; τ)
θ′1(0; τ)

+
θ′′4(

a
2π ; τ)

θ4(
a
2π ; τ)

−
(
θ′4(

a
2π ; τ)

θ4(
a
2π ; τ)

)2
}
.(B.3)

It is easier to first compute the τ → 0 behavior, and then perform the matrix
model integration, which also simplifies in this limit, as we saw in (5.5). We
use the following,

θ′′′1 (0; τ)
θ′1(0; τ)

= −π
2

τ2
− 6πi

τ
+O(q̃) ,

θ′4(z; τ)
θ4(z; τ)

= −2πiz

τ
− π

τ
tan(πz/τ) +O(q̃) ,

θ′′4(z; τ)
θ4(z; τ)

= −
(
2πz

τ

)2

+
(2π)2iz

τ2
tan(πz/τ)− π2

τ2
− 2πi

τ
+O(q̃) ,(B.4)

and find that

lim
τ→0

(
τ2⟨(J ji J lk)⟩a

)
= − 1

π2(8πℓ)2

(
δliδ

j
k −

1

Nf
δji δ

l
k

)

× TrR

{
1

3
− 1

cosh2 πσ

}
,

lim
τ→0

(
τ2⟨(JJ)⟩a

)
= −

N2
f

π2(8πℓ)2
(TrR tanhπσ)2

− Nf

π2(8πℓ)2
TrR

{
1

3
− 1

cosh2 πσ

}
.(B.5)

These expressions completely agree with the ones that previously entered
the computation of µ1, µ2 in 3d (c.f. (5.13)), once we take the linear relation
(5.24) between A,B and µ1, µ2 into account. Therefore, we see a complete
agreement between the purely 3d computation and the 4d→3d reduction of
the VOA sector.
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Appendix C. 3d sphere partition functions and identities

The sphere partition function of a general 3d N = 4 quiver gauge theory
T with gauge group G ≡ ⊗n

i=1(Gi) and Higgs branch flavor symmetry GH
reduces to a matrix model over the real Coulomb branch scalar vevs, by
performing a supersymmetric localization computation.17

For notational simplicity, we define

(C.1) ch(x) ≡ 2 cosh(πx), sh(x) ≡ 2 sinh(πx).

We also set ℓ = 1 in this appendix.

The matrix model for the quiver gauge theory T then takes the form 18

(C.2) ZT ({ηi}, {ma}) =
1

|W |

∫ ∏

cartan

dσe2πi
∑

k
i=1 ηi tri σ

detad sh(σ)

detR⊗S ch(σ +m)
,

where R⊗ S labels the (reducible) representation of the hypermultiplets un-
der G⊗GH . We have included the FI parameters ηi and mass parameters
ma that are compatible with the localization procedure. The mirror symme-
try for 3d N = 4 gauge theories amounts to the relation

(C.3) ZT ({ηi}, {ma}) = Zmirror
T ({ξa}, {ui}),

with certain identification (or the mirror-map) between the mass and FI
parameters ({ηi}, {ma}) and ({ξa}, {ui}) of the mirror-dual pair.

For example, the sphere partition function for SQEDn with FI and mass
deformations is

ZSQEDn
(η, {ma}) =

∫
dσ

e2πiση∏n
a=1 ch(σ +ma)

=
1

(−i)n(eπη + (−1)ne−πη)

n∑

a=1

e−2πimaη

∏
b ̸=a sh(mab)

,(C.4)

where the integral was evaluated explicitly in [109].

17For a comprehensive review on the sphere partition functions of 3d supersym-
metric gauge theories see [124].

18It is possible to include Chern-Simons levels for the gauge group, but we will
not need them here.
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On the other hand, the mirror description involves a linear quiver (6.7)
with n− 1 U(1) gauge group nodes,

(C.5) Zmirror
SQEDn

({ξa}, u) =
∫ n∏

a=1

dσa
e2πi

∑
n−1
a=1 ξaσa

ch(σ1)ch(σn + u)
∏n−2
a=1 ch(σa − σa+1)

.

Using the Fourier transformation repeatedly,

(C.6)
1

ch(x)
=

∫
dx
e2πixy

ch(y)
,

it is straightforward to derive the identification:

(C.7)

ZSQEDn
(η, {ma}) = Zmirror

SQEDn
({ξa}, u),

Mirror map :

{
ξa = ma −ma−1,

u = η.

For the quiver (6.27) that arises from the S1 reduction of the (A1, D2n+2)
theory, the matrix model is given by

(C.8) Z(A1,D2n+2)({ξa}, {u1, u2})

=

∫ n∏

a=1

dσae
2πiσaξa 1

ch(σ1 ± u1)ch(σn + u2)
∏n−1
a=1 ch(σa − σa+1)

,

and similarly for the mirror quiver (6.28),

(C.9) Zmirror
(A1,D2n+2)

({η1, η2}, {ma})

=

∫
dσ1dσ2

e2πi(σ1η1+σ2η2)

ch(σ1 − σ2)ch(σ2)
∏n
a=1 ch(σ1 +ma)

.

Once again, using Fourier transform, we derive the identification

(C.10)

Zmirror
(A1,D2n+2)

({η1, η2}, {ma}) = Z(A1,D2n+2)({ξa}, {u1, u2}),

Mirror map :





(ξ1, ξ2, . . . , ξn)

= (m1,m2 −m1, . . . ,mn −mn−1),

(u1, u2) = (η2−2η1
2 , η22 ).
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We determine the explicit form of Z(A1,D2n+2)({η1, η2}, {ma}) below for
the special case,

(C.11) ma =
n+ 1− 2a

2(n+ 1)
i,

relevant for the reduction of the 4d SCFT on S1. We start by rewriting the
two dimensional Coulomb branch integral as

Zmirror
(A1,D2n+2)

({η1, η2}, {ma})(C.12)

=

∫
dσ2

e2πiη2σ2

ch(σ2)
ZSQEDn+1

(η1, {ma, σ2}).

Using (C.4), we have

ZSQEDn+1
(η, {ma, σ2})(C.13)

=
1

(−i)n(eπη + (−1)ne−πη)

×
( n∑

a=1

e−2πimaη

2 sinh(π(ma − σ2))
∏
b ̸=a 2 sinh(πmab)

+
e−2πiσ2η

∏n
b=1 2 sinh(π(σ2 −mb))

)
.

Therefore,

Zmirror
(A1,D2n+2)

({η1, η2}, {ma})(C.14)

=
1

(−i)n(eπη1 + (−1)ne−πη1)

×
( n∑

a=1

−ie−2πimaη1
∏
b ̸=a 2 sinh(πmab)

ZSQED2
(η2, {0, i/2−ma})

+ inZn+1
QED(η21, {0, i/2−mb})

)

≡ 1

(−i)n(eπη1 + (−1)ne−πη1)
(I1 + I2).
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Using (C.4) again, we obtain

(C.15)

I1 =
i

2(n+ 1) sinhπη2

×



sin πn

2

(
1 + 2iη1

n+1

)

cosh πη1
n+1

− eπη2
sin πn

2

(
1 + 2i(η1−η2)

n+1

)

cosh π(η1−η2)
n+1


 ,

I2 =
in

2(n+ 1)

e
nπ(η2−η1)

n+1

cosh π(η2−η1)
n+1

.

Putting together the two terms above and simplifying, we obtain

Zmirror
(A1,D2n+2)

({η1, η2}, {ma})(C.16)

=
1

4(n+ 1)

sinh 2πm
n+1

cosh π(m−u)
n+1 cosh π(m+u)

n+1 sinh (2πm)
.

We find useful the following product and sum identities involving trigono-
metric functions,

(C.17)

n∏

a=1

sin
π(a+ 2im)

2(n+ 1)
=

sinh(2πm)

sinh
(
2πm
n+1

) ,

n∑

a=1

e
π(n+1−2a)

n+1
η sin

πa

n+ 1
=

coshπη sin π
n+1

sin π(1±2iη)
2(n+1)

.

The first equality above implies in particular

(C.18)

n∏

a=1

sin
πa

n+ 1
=

n∏

a=1

cos
π(n+ 1− 2a)

2(n+ 1)
=
n+ 1

2n
.
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