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Positive energy representations of affine

algebras and Stokes matrices of

the affine Toda equations

Martin A. Guest and Takashi Otofuji

We give a construction which produces a positive energy represen-
tation of the affine Lie algebra ŝln+1C from the Stokes data of a
solution of the tt*-Toda equations. The construction appears to
play a role in conformal field theory. We illustrate this with several
examples: the fusion ring, W -algebra minimal models (Argyres-
Douglas theory), as well as topological-antitopological fusion itself.

1. Introduction

In this article we give a purely mathematical construction which relates
— integrable p.d.e. (affine Toda equations),
— Stokes data of linear meromorphic o.d.e., and
— representations of infinite-dimensional Lie algebras.

By “purely mathematical” we mean that the construction a priori does not
depend on concepts from physics. Nevertheless, our project was indeed mo-
tivated by physical ideas, originating from topological-antitopological fusion
and quantum cohomology. It seems to have a role — as a rather special
example, at least — in some mathematical aspects of conformal field theory.

Our principal motivation is the tt*-Toda equations (tt* equations of
Toda type). We review these equations and their (global) solutions in sec-
tion 2. In section 3 we give a Lie-theoretic description of the Stokes data
of these solutions — the main technical ingredient here is from [13]. Our
construction of positive energy representations of affine Lie algebras from
Stokes data is given in section 4.

In section 5 we give several applications of this construction in con-
formal field theory. We expect that this material could be expanded and
developed further. For example, the ingredients of the construction all occur
in the ODE/IM Correspondence, and we would expect a relation with that
intriguing area.
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2. The tt*-Toda equations

We begin with a brief review of the tt*-Toda equations, in order to motivate
our main construction in section 4.

The tt* equations were introduced by Cecotti-Vafa in their study of N =
2 supersymmetric field theory (see [2],[3]). They discussed several examples,
the most prominent being the tt* equations of “Toda type”, or tt*-Toda
equations. These are

(2.1) 2(wi)tt̄ = −e2(wi+1−wi) + e2(wi−wi−1), wi : C
∗ → R, i ∈ Z

where the real functions w0, . . . , wn satisfy wi = wi+n+1, wi = wi(|t|), wi +
wn−i = 0.

From physical considerations, Cecotti-Vafa predicted the existence of
solutions of (2.1) with certain properties. As a first step in this direction,
the following statement was proved in [18],[14],[15],[16],[22],[23].

Theorem 2.1. For each N > 0, there is a one-to-one correspondence be-
tween solutions of (2.1) on C∗ and sln+1C-valued 1-forms η(z) dz on (the
universal cover of) C∗, where

(2.2) η(z) =




zk0

zk1

. . .

zkn




.

Here the ki are real numbers satisfying ki ∈ [−1,∞), n+ 1 +
∑n

i=0 ki = N ,
and ki = kn−i+1 for i = 1, . . . , n. The variable z of (2.2) is related to the

variable t of (2.1) by t = n+1
N
z

N

n+1 .

A more meaningful correspondence is obtained by introducing real num-
bers m0, . . . ,mn with mi +mn−i = 0. The mi are defined by:

(2.3) mi−1 −mi + 1 = n+1
N

(ki + 1).
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(We make the convention that mi = mi+n+1.) In terms of the mi, we have a
one-to-one correspondence between solutions of (2.1) and the convex poly-
tope

{m = diag(m0, . . . ,mn) | mi−1 −mi + 1 ≥ 0,mi +mn−i = 0}.

Then the relation between m0, . . . ,mn and w0, . . . , wn is simply given by the
asymptotics of the solution at t = 0, namely

wi ∼ −mi log |t| (as t→ 0).

Writing w = diag(w0, . . . , wn), we have w ∼ −m log |t|. With this notation

(2.3) is equivalent to z
N

n+1
mη(z)z−

N

n+1
m = z

1

n+1

∑
n

i=0
kiη(1). Thus, themi arise

simply through “balancing” the ki.
It is well known that solutions of the Toda equations correspond to

certain kinds of harmonic maps. The above relation between solutions w
and 1-forms η(z) dz is, in fact, an example of the generalized Weierstrass
representation (or DPW representation) for harmonic maps of surfaces into
symmetric spaces [4]. This is based on the loop group Iwasawa factorization
[24].

We review this construction very briefly, referring to section 2 of [16]
for details. Introducing a loop parameter λ ∈ S1, one can solve the complex
o.d.e.

L−1Lz =
1
λ
η, L|z=0 = I

near z = 0 (at least, if all ki > −1, which is the case needed in this article).
Then the Toda equations (2.1) are the zero curvature condition for the 1-
form1 α = L−1

R
dLR, where L = LRL+ is a suitable Iwasawa factorization. It

can be shown that L+ = b+O(λ) where b = diag(b0, . . . , bn) and all bi > 0.
Then one defines wi = log bi −mi log |t|. So far this discussion is local (near
z = 0), and straightforward; the nontrivial aspect of Theorem 2.1 is that the
local solutions are in fact globally defined for all 0 < |t| <∞.

A summary of results related to Theorem 2.1, with some physical back-
ground, can be found in [11].

1For simplicity we are now modifying the notation of [16]. In [16], α denotes a
gauge equivalent 1-form α = (LRG)

−1d(LRG), which has the same zero curvature
condition. In [16], the nonzero entries of η are ciz

ki rather than zki , and the global
solutions are given by certain specific ci, but we may set all ci = 1 at the expense
of modifying the Iwasawa factorization.
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Remark 2.2. There are various equivalent forms of (2.1), which depend
on the definition of wi in terms of bi, and whether t or z is used. In terms
of z, for example, wi = log bi gives

2(wi)zz̄ = −|zki+1 |
2
e2(wi+1−wi) + |zki |

2
e2(wi−wi−1).

We use the t version (2.1) for consistency with [16]. □

3. Stokes data

The radial condition w = w(|t|) leads to another, quite different, interpreta-
tion of equation (2.1): it is the condition that a certain meromorphic con-
nection α̂ in the variable λ ∈ C∗ has the property that its monodromy data
is independent of z. Details of this formulation can be found in section 2 of
[16].

The isomonodromic connection α̂ has (single-valued) coefficients which
are holomorphic for λ ∈ C∗, but has poles of order 2 at λ = 0 and λ = ∞. Its
monodromy data consists of Stokes matrices relating solutions on sectors at
each pole and “connection matrices” relating solutions at λ = 0 and λ = ∞.
We refer to chapter 1 of [6] for these concepts from o.d.e. theory.

More generally, it was shown by Dubrovin [5] that the tt* equations
always have an isomonodromic formulation with the same pole structure
(poles of order 2 at λ = 0 and λ = ∞). Monodromy data of such connections
can be hard to calculate, but, for the tt*-Toda equations, calculations are
facilitated by the close relation between the Toda equations and Lie theory.

This monodromy data was calculated in [15],[16],[12],[13]. The result
permits another characterization of the (global) solutions of (2.1), as an
alternative to the asymptotic data m, as in the next theorem. Such a char-
acterization had also been predicted by Cecotti-Vafa.

In fact the connection matrices turn out to be the same for all (global)
solutions, so we ignore them here. The Stokes data may be specified effi-
ciently as follows:

Theorem 3.1. For each N > 0, there is a one-to-one correspondence be-
tween solutions of (2.1) on C∗ and n-tuples of “Stokes parameters”

s = (s1, . . . , sn) ∈ Rn

with si = sn−i+1. Explicitly, si is the i-th symmetric function of the n+ 1

numbers e(2m0+n)π
√

−1

n+1 , e(2m1+n−2)π
√

−1

n+1 , . . . , e(2mn−n)π
√

−1

n+1 .



✐

✐

“3-Guest” — 2023/8/18 — 18:48 — page 2081 — #5
✐

✐

✐

✐

✐

✐

Representations and Stokes matrices 2081

The Stokes parameters are (up to sign) the coefficients of the character-
istic polynomial of a certain “(n+ 1)-th root of monodromy” matrix M (0),
from which the Stokes matrices can be read off. The definition of M (0), and
the proof of the theorem, is given in section 6 of [13]. It should be noted that
the Stokes parameters are canonical, unlike the Stokes matrices themselves,
which depend on various choices. This is important for physical applications.

As it will play a role in the next section, we note the following Lie-
theoretic property of M (0), which implies the formula for si just given.

Theorem 3.2. Assume that all ki > −1. Then M (0) is conjugate to the
diagonal matrix

M
(0)
diag = e

2π
√

−1

n+1
(m+ρ)

where ρ = diag(n2 ,
n
2 − 1, . . . ,−n

2 ).

Proof. When all ki > −1, M (0) is diagonalizable, so the result follows from
Proposition 6.9 of [13]. In the notation of [13] and [20], ρ = x0. □

Remark 3.3. In the next section we shall restrict further to ki ∈ Z≥0. Then
η(z) dz is a holomorphic connection form on C, with a pole at z = ∞. The
Stokes data turns out to be equivalent to the Stokes data s = (s1, . . . , sn) of
α̂. However, the pole does not have semisimple residue, and its order depends
on the values of k0, . . . , kn so the Stokes data is harder to extract than in the
case of α̂. These difficulties may be dealt with by classical o.d.e. methods, but
it is more efficient to use homogeneity and replace the 1-form ω = 1

λ
η(z) dz

by a meromorphic 1-form ω̂ in the variable λ, just as we replaced α by α̂.
The 1-form ω̂ always has a semisimple pole of order 2 at λ = 0 and a pole
of order 1 at λ = ∞. The Iwasawa factorization shows that the Stokes data
of α̂ and ω̂ are the same at λ = 0. The Stokes data of ω̂ is easily calculated.
We note that α defines a harmonic bundle, and ω a corresponding Higgs
bundle; this is the point of view of [22], [23]. In our notation the harmonic
metric is e−2w (cf. section 4.2 of [11]). □

Remark 3.4. As stated in Remark 3.3, the Stokes data of the tt*-Toda
connection is the same as the Stokes data of the holomorphic connection, and
so the formula in Theorem 3.2 applies also to the holomorphic connection.
Although the condition ki = kn−i+1 was imposed in [13], the proof of the
formula in Theorem 3.2 makes no use of this condition; it remains valid for
arbitrary ki ≥ −1. We shall need this fact in sections 4 and 5. □
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4. Lie algebra representations from Stokes data

We shall now establish a relation between
— solutions w of (2.1) with all ki ∈ Z≥0

— positive energy representations of the affine Lie algebra ŝln+1C

by utilizing the matrices M (0) (i.e. the Stokes data of w).
For the Lie algebra g = sln+1C we choose the standard diagonal Cartan

subalgebra h = {diag(h0, . . . , hn) | hi ∈ C,
∑n

i=0 hi = 0}, and roots xi − xj
(0 ≤ i ̸= j ≤ n), where xi : diag(h0, . . . , hn) 7→ hi. We take αi = xi−1 − xi
(1 ≤ i ≤ n) as simple roots, then ψ = x0 − xn is the highest root. Here we
are using the Lie-theoretic conventions2 of Examples 2.1, 3.6, 3.11 of [13],
which generally follow those of Kostant [20].

We use the bilinear form B(X,Y ) = trXY to identify h∗ with h. Then
the basic weights are identified with ϵ1, . . . , ϵn ∈ h, where αi(ϵj) = δij . Ex-
plicitly:

ϵi = diag



(
1− i

n+1

)
(1, . . . , 1︸ ︷︷ ︸

i

, 0, . . . , 0︸ ︷︷ ︸
n+1−i

)− i
n+1(0, . . . , 0︸ ︷︷ ︸

i

, 1, . . . , 1︸ ︷︷ ︸
n+1−i

)


 .

We have ρ = ϵ1 + · · ·+ ϵn. The weight lattice is

P = {
∑n

i=1 viϵi | all vi ∈ Z}

(see Remark 4.1 below). The (fundamental) Weyl chamber is C =
{
∑n

i=1 viϵi | all vi ≥ 0}, and the dominant weights are P+ = P ∩ C. The
(fundamental) Weyl alcove is

A = {
∑n

i=1 viϵi | all vi ≥ 0 and
∑n

i=1 vi ≤ 1}.

Remark 4.1. In section 6 of [13] we put h♯ = {h ∈ h | all αi(h) ∈ R}, so
that √

−1 h♯ is the standard Cartan subalgebra of the compact real form
sun+1. Then the integer lattice is I = √

−1 h♯ ∩ 2π√
−1Zn+1. Thus the real

roots αreal = (2π√
−1 )−1α take integer values on the integer lattice, as do

2In this section we drop the requirement ki = kn−i+1, until it is needed (in Corol-
lary 4.5 below) for the relation with solutions w of (2.1).
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all real weights. The basic real weights are

Λreal
i = 1

2π√
−1

(
1− i

n+1

)
(x0 + · · ·+ xi−1)−

1
2π√

−1

i
n+1(xi + · · ·+ xn)

(1 ≤ i ≤ n), and the weight lattice isW = ⊕n
i=1ZΛ

real
i . With these definitions

the Weyl alcove is

A = {y ∈ √
−1 h♯ | all α

real
i ≥ 0 and ψreal(y) ≤ 1}.

To simplify the presentation in this article we use the convention “with-
out 2π√

−1 ” (which amounts to declaring that the exponential map is
X 7→ e2π

√
−1 X). We obtain P (instead of W ) and A (instead of A). Our

integer lattice is the set of integer diagonal matrices in sln+1C. □

We recall (see [19], [24]) that the affine Kac-Moody algebra ŝln+1C is
an extension of the loop algebra Λsln+1C by two additive generators, and
that the irreducible positive energy representations of ŝln+1C of level k are
parametrized by dominant weights (Λ, k), where Λ is a dominant weight of
sln+1C of level k.

For nontrivial representations we have k ∈ N. The dominant weights of
sln+1C of level k are

Pk = {
∑n

i=1 viϵi ∈ P+ |
∑n

i=1 vi ≤ k}.

The following fact is well known, but we give the short proof.

Lemma 4.2. We have Pk + ρ = P+ ∩ (k + n+ 1)Å where Å denotes the
interior of the Weyl alcove A.

Proof. Let v =
∑n

i=1 viϵi with all vi ∈ Z≥0. Then: (i) v ∈ Pk + ρ iff vi ≥ 1
and

∑n
i=1(vi − 1) ≤ k, i.e. vi > 0 and

∑n
i=1 vi < k + n+ 1; (ii) v ∈ ∩(k +

n+ 1)A iff vi ≥ 0 and
∑n

i=1 vi ≤ k + n+ 1. Hence v ∈ ∩(k + n+ 1)Å iff vi >
0 and

∑n
i=1 vi < k + n+ 1. Thus (i) and (ii) are equivalent. □

In view of this, we introduce the following notation:

Definition 4.3. Let Åk =
(

1
k+n+1P+

)
∩ Å. Let θ : Åk → Pk + ρ be the

identification given by θ(v) = (k + n+ 1)v ∈ P+ ∩ (k + n+ 1)Å = Pk + ρ.

Recall from section 3 that the Stokes data is represented by a certain

matrixM
(0)
diag = e

2π
√

−1

n+1
(m+ρ). With the conventions of [13], the corresponding
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Lie algebra element 2π√
−1

n+1 (m+ ρ) is in A (see Remark 4.1); with our current

conventions we have 1
n+1(m+ ρ) in A.

We now ask:
(i) for which m does 1

n+1(m+ ρ) lie in the subset Åk, for some k ?
(ii) in that case, what is the corresponding element of Pk + ρ?

The answers are:

Theorem 4.4. Assume that m arises from k0, . . . , kn ∈ Z≥0 through for-
mula (2.3) (with m0 + · · ·+mn = 0). Then:
(a) 1

n+1(m+ ρ) ∈ Åk for k =
∑n

i=0 ki, and
(b) the corresponding element of Pk + ρ is (

∑n
i=1 kiϵi) + ρ.

Proof. First we observe that formula (2.3) is equivalent to

(4.1) N 1
n+1(m+ ρ) = ρ+

∑n
i=1 kiϵi.

(To verify this, it suffices to apply each simple root αi to both sides, then
use αi(m) = mi−1 −mi and αi(ρ) = 1.) Next we put k =

∑n
i=0 ki (hence

N = n+ 1 + k). Then (4.1) says that θ( 1
n+1(m+ ρ)) = ρ+

∑n
i=1 kiϵi, where

θ is as in Definition 4.3. This gives both (a) and (b). □

Restricting now to the tt*-Toda situation (i.e. assuming ki = kn−i+1),
we obtain:

Corollary 4.5. Assume that ki ∈ Z≥0 and ki = kn−i+1. Let N = n+ 1 +∑n
i=0 ki. Then there is a one-to-one correspondence between

(i) solutions w of the tt*-Toda equation given by η (as in Theorem 2.1)
(ii) Stokes data M (0) given by m (as in Theorem 3.1)
(iii) positive energy representations of ŝln+1C with dominant weights
(Λ, k) = (

∑n
i=1 kiϵi, N − (n+ 1)).

Example 4.6. Let k0 = 1 and k1 = · · · = kn = 0. Then N = n+ 2 and
m = − 1

n+2ρ. The corresponding representation has dominant weight (0, 1);

this is the basic representation of ŝln+1C. Let us compute the Stokes param-
eters s1, . . . , sn, using Theorem 3.1. These are the elementary symmetric

functions of e
π
√

−1

n+2
n, e

π
√

−1

n+2
(n−2), . . . , e

π
√

−1

n+2
(−n).When n+ 1 is even, they are

the (n+ 2)-th roots of −1, excluding −1 itself. They are the roots of the
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polynomial

xn+2+1
x+1 = xn+1 − xn + xn−1 − · · · − x+ 1.

When n+ 1 is odd, they are the (n+ 2)-th roots of 1, excluding −1, i.e. the
roots of the polynomial

xn+2−1
x+1 = xn+1 − xn + xn−1 − · · ·+ x− 1.

In both cases, all si = 1. □

To comment on the significance of Theorem 4.4, one might say that it
is hardly surprising that a positive energy representation of ŝln+1C can be
concocted artificially from the element 1

n+1(m+ ρ) of the Weyl alcove, as
the Weyl alcove plays such a fundamental role in the theory of affine Lie
algebras. However, Corollary 4.5 says that the (dominant weight of the)
representation is given precisely by the integers ki from which the solution
w was constructed. Moreover the positive energy representations give all the
global solutions of (2.1) which are generic (i.e. mi−1 −mi + 1 > 0) and ra-
tional (i.e. mi ∈ Q). These form an open dense subset of all global solutions.
Thus the representations are tightly related to the solutions of the tt*-Toda
equations through our construction.

Remark 4.7. Positive energy representations of ŝln+1C give (projective)
representations of the loop group ΛSLn+1C. We have seen (and it is well
known) that ΛSLn+1C plays an important role in solving the Toda equations.
Thus one can expect a more direct role for the representation associated to w
in Corollary 4.5. Indeed, the solutions are obtained by taking the Iwasawa
factorization of the holomorphic ΛSLn+1C-valued function L, and this is
equivalent to the Birkhoff factorization of c(L)−1L, where c is the real form
involution of ΛSLn+1C. This should give a determinant formula for the τ -
function of w, as the Birkhoff factorization can be expressed in terms of
infinite determinants given by τ -functions. Although we have not pursued
this, the existence of such formulae is well known — see section 6 of [15]
for a brief explanation of a determinant formula due to Tracy and Widom
[27]. □

5. Relations with conformal field theory

In this section we describe three ways in which the construction of section 4
is relevant to conformal field theory. It is written mainly for mathematicians
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who might not be familiar with physics, but we hope that the ideas sketched
here are not too inaccurate and might also be of passing interest to physicists.
1. Topological-antitopological fusion

According to Cecotti and Vafa ([2],[3]) it is the solutions with “integer
Stokes data” which represent physically realistic models. With our notation,
this means solutions with integer Stokes parameters si. Then the si can be
interpreted as counting Bogomolnyi solitons.

Furthermore, the si appear as leading term coefficients in the asymp-
totics as t→ ∞ of the corresponding solution w (see [11] for a precise
statement). It follows from this (and Theorem 3.1 above) that the global
solutions are characterized equally well by their asymptotics at t = ∞ as by
their asymptotics at t = 0. This is another property predicted by Cecotti
and Vafa, on the grounds that w represents the renormalization group flow
between the chiral data at t = 0 (in our notation, the ki or mi) and the
soliton data at t = ∞ (the si).

We have seen a solution of this type already in Example 4.6, where
we have k0 = 1, k1 = · · · = kn = 0 and m = − 1

n+2ρ. All si are equal to 1
here. From the tt* point of view, this particular solution corresponds to the
supersymmetric An+1 minimal model. Geometrically, it corresponds to an
unfolding 1

n+2x
n+2 − tx of the An+1 singularity 1

n+2x
n+2.

Other solutions of the tt* equations with geometric interpretations are
those corresponding to the quantum cohomology of Kähler manifolds (or
orbifolds). It is implicit in [2] that all such solutions are expected to be
globally defined. In the (very special) case of the tt*-Toda equations, the
basic example is the quantum cohomology of CPn, complex projective space.
Here we have k0 = 0, k1 = · · · = kn = −1 and m = −ρ, and the solution is
indeed globally defined. However, the assumption ki > −1 is not satisfied
here, and Theorem 3.2 does not apply (in fact, M (0) is not diagonalizable).
Nevertheless the formula for the Stokes numbers in Theorem 3.1 does apply,
and it gives si =

(
n+1
i

)
.

Further examples (such as weighted projective spaces and their hyper-
surfaces) can be found in [17]. In all cases the assumption ki > −1 is violated.

With the prominent exception of the An+1 minimal model, however, the
“integer Stokes data” solutions are generally not of the type considered in
section 4.
2. The fusion ring

The fusion ring of the WZW model SU(n+1)k is a certain ring structure
on the set of positive energy representations of ŝln+1C of level k. We refer
to [10] for the background, and [21] for a treatment close to the context of
the current article.
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The ring can be described succinctly (using the notation of section 4) as
follows. For a positive energy representation with dominant weight (Λ, k),
where k ∈ N and Λ ∈ Pk, a “special element” is defined by

tΛ = e2π
√

−1 ζΛ , ζΛ = Λ+ρ
k+n+1 .

Then the level k fusion ideal Ik(SUn+1) of the representation ring R(SUn+1)
is defined by

Ik(SUn+1) = {representations whose characters vanish at all tΛ,Λ ∈ Pk}.

The level k fusion ring is then R(SUn+1)/Ik(SUn+1).
Our observation concerning this is that

ζΛ = 1
n+1(m+ ρ),

where m corresponds to Λ =
∑n

i=1 kiϵi as in section 4. This follows imme-
diately from (4.1). In other words, the special element tΛ is precisely our

matrix M
(0)
diag which represents the Stokes data of the holomorphic 1-form

η(z)dz (see Remark 3.4).
We do not know a satisfactory explanation of this coincidence. On the

one hand, it is well known that fusion arises geometrically from “fusing”
moduli spaces of flat SUn+1-connections over Riemann surfaces with a com-
mon boundary component, and it is known that such moduli spaces can be
described in terms of monodromy data. On the other hand the connections
in sections 1-3 are not SUn+1-connections.
3. Minimal models

It is well known (e.g. section 9.4 of [24]) that the Virasoro algebra acts
by intertwining operators on any ŝln+1C-module of positive energy. In this
way a positive energy representation gives a representation of the Virasoro
algebra. Irreducible representations are classified according to their central
charge c and conformal dimension h.

Representations of the Virasoro algebra can be used to construct special
examples of conformal field theories called minimal models; in a minimal
model, the Hilbert space of the theory is a sum of finitely many irreducible
representations, and the representations which occur are highly restricted.
The theory of these “Virasoro minimal models” is described in [7].

More generally, representations of the W -algebra Wn+1 (see [9],[1]) can
be used to construct “Wn+1 minimal models”. (The W -algebra W2 is the
Virasoro algebra.) The theory of Wn+1 minimal models is described in [1],
from which we quote the following result:
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Theorem 5.1. ([1]) Let p, p′ ∈ N be coprime. Let Λ(+),Λ(−) be dominant
weights of sln+1C. Then there exists an irreducible representation of Wn+1

whose central charge is

(5.1) c = n− n(n+ 1)(n+ 2) (p
′−p)2

pp′

and whose conformal dimension h is given by

(5.2) c− 24h = n− 12
∣∣∣α+(Λ

(+) + ρ) + α−(Λ
(−) + ρ)

∣∣∣
2
,

where ρ is as in Theorem 3.2, and α+ =
√
p′/p, α− = −

√
p/p′.

Some comments on the notation of [1] are in order before we proceed
further. The central charge formula is (6.13) in [1], and the conformal di-
mension formula is (6.74). The scalars α+, α− are given just after (6.13) and
in (6.75); we have taken the positive square root for α+.

For the Wn+1 minimal model of type (p, p′) the dominant weights
Λ(+),Λ(−) are restricted as follows:

Λ(+) ∈ Pp−(n+1), Λ(−) ∈ Pp′−(n+1).

This is (6.76) in [1]. However, dominant weights which lie in the same orbit
of the centre of SUn+1 should be identified. This is (6.77) in [1]. We shall
make the action explicit in a moment. By definition, the minimal model
of type (p, p′) consists of the set of equivalence classes with respect to this
action.

The special case p = n+ 1, p′ = N = n+ 1 + k = n+ 1 +
∑n

i=0 ki was
considered by Fredrickson and Neitzke in [8], in connection with Argyres-
Douglas theories of type (An, Ak−1). (Our n+ 1 is called K by them, and
our k =

∑n
i=0 ki is called N by them.) Here we have

Λ(+) = 0, Λ(−) ∈ Pk.

From now on we shall write Λ = Λ(−), in keeping with our earlier notation
for dominant weights (this should not be confused with the notation Λ =
α+Λ

(+) + α−Λ
(−) in (6.73) of [1], which we shall not use).

Formulae (5.1) and (5.2) become, in this case:

(5.3) c = n− 1
N
n(n+ 2)(N − (n+ 1))2

(5.4) c− 24h = n− 12n+1
N

|Λ− N−(n+1)
n+1 ρ|2
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Example 5.2. The values Λ(+) = Λ(−) = 0 are always permitted in the
Wn+1 minimal model, and for these weights we have h = 0. However a fea-
ture of the special case p = n+ 1 is that h ≤ 0 for all weights in the model.
This follows from formula (5.5) below. As a consequence, in this special case,
the model cannot be unitary. □

The weights Λ in the (n+ 1, n+ 1 + k) minimal model are restricted
to lie in Pk, but (as mentioned above) there is a further reduction given
by dividing by the action of the centre of SUn+1, i.e. by the cyclic group
{I, ιI, . . . , ιnI} where ι is a primitive (n+ 1)-th root of unity.

Proposition 5.3. The action of ι on the weight Λ =
∑n

i=1 kiϵi is given by

ι · Λ =

n∑

i=1

kσ·i ϵi

where σ is the cyclic permutation σ = (01 · · ·n). Here we are using the no-
tation k0, . . . , kn as in section 4, i.e. N = n+ 1 +

∑n
i=0 ki and the subscript

i of ki is interpreted mod n+ 1.

Proof. The essential ingredient here is the action of the centre on the alcove
A, which is explained in detail in [26] and in section 2.4 of [21]. An explicit
formula for the case SUn+1 can be found in section 4.4 of [26]. Applying
this formula to our alcove element 1

n+1(m+ ρ), we see that the action corre-
sponds to cyclic permutation of the subscripts of the mi (without changing
ρ). From our formula (2.3), this corresponds to cyclic permutation of the
subscripts of the ki. □

Thus the weights Λ =
∑n

i=1 viϵi which occur in the Wn+1 minimal
model of type (p, p′) = (n+ 1, N − (n+ 1)) are indexed by “cyclic (n+ 1)-
partitions of N − (n+ 1)”. These may be enumerated as follows.

Proposition 5.4. Assume that n+ 1 and N are coprime. Then there
are 1

N

(
N

n+1

)
equivalence classes of (n+ 1)-tuples (k0, . . . , kn) ∈ Zn+1

≥0 such
that

∑n
i=0 ki = N − (n+ 1), where the equivalence relation is defined by

(k0, . . . , kn) ∼ (l0, . . . , ln) if li = ki−s for some s ∈ N (all indices are mod
n+ 1).

Proof. A reference from the combinatorics literature is Corollary 1 of [25],
but we shall give a proof based on the properties of the holomorphic con-
nection ∇ = d+ η(z)dz, which seems appropriate for the present context.
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The equation for parallel sections of ∇ = d− η(z)tdz can be written

D



y0
...
yn


 = η(z)t



y0
...
yn


 , D = d

dz
.

Each yi satisfies a scalar o.d.e.

z−kiDz−ki−1D · · ·Dz−ki−nDyi = yi

where we interpret ki−(n+1) as ki. As i varies, these scalar equations differ
by cyclic permutations, and they are all equivalent in an obvious sense —
more formally, they define isomorphic D-modules.

To calculate the number of equivalence classes, we have to calculate the
number of (ordered) strings of symbols D (n+ 1 times) and z−1 (N − (n+
1) =

∑n
i=0 ki times) up to cyclic equivalence.

Now, there are
(

N
n+1

)
ways to choose the positions of the D’s. This gives

1
N

(
N

n+1

)
cyclic equivalence classes, assuming that the orbit of every string

has N distinct elements. An orbit has less than N distinct elements if and
only if it contains a sub-string of length l, containing m D’s say, repeated r
times (with l, r > 1). In that case we have lr = N and mr = n+ 1, but this
is impossible as n+ 1 and N are coprime. □

Now we shall connect this to the construction of section 4. Formula (4.1)
can be written

N 1
n+1m = Λ− N−(n+1)

n+1 ρ

where Λ =
∑n

i=1 kiϵi. Using this, (5.4) becomes

(5.5) c− 24h = n− 12 N
n+1 |m|2.

Substituting for c from (5.3), we can write the formula for h as

(5.6) 24h = − 1
N
n(n+ 2)(N − (n+ 1))2 + 12 N

n+1 |m|2.

Alternatively, using the fact that |ρ|2 = 1
12n(n+ 1)(n+ 2), we can write

(5.7) h = n+1
2N

(∣∣∣Λ− N−(n+1)
n+1 ρ

∣∣∣
2
−
∣∣∣N−(n+1)

n+1 ρ
∣∣∣
2
)
.

Fredrickson and Neitzke arrive at these considerations from a rather
different starting point, namely a certain moduli space of Higgs bundles on C.
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The moduli space admits an action of C∗, and the fixed points of this action
are the forms (or Higgs fields) η(z)dz with all ki ∈ Z≥0. In their notation the
quantity N

n+1 |m|2 is called µ, and it is identified with a “regulated norm” of
η(z)dz. Our formula (5.5) is then

c− 24h = n− 12µ.

Thus we recover Theorem 5.3 of [8]. This relation is the basis for the “some-
what mysterious” bijection ([8], section 5) between Higgs fields and repre-
sentations of Wn+1.

Our construction in section 4 gives a (mathematical) explanation of
this bijection. Namely, it shows how the representation arises directly from
η(z)dz by means of its Stokes data. Thus it is the Stokes data which provides
the crucial link.
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