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The nature of generic spacelike singularities in general relativity
is connected with first principles, notably Lorentzian causal struc-
ture, scale invariance and general covariance. To bring a new per-
spective on how these principles affect generic spacelike singular-
ities, we consider the initial singularity in spatially homogeneous
Bianchi type VIII and IX vacuum models in Hořava-Lifshitz grav-
ity, where relativistic first principles are replaced with anisotropic
scalings of Lifshitz type. Within this class of models, General Rel-
ativity is shown to be a bifurcation where chaos becomes generic.
To describe the chaotic features of generic singularities in Hořava-
Lifshitz cosmology, we introduce symbolic dynamics within Cantor
sets and iterated function systems.
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1. Introduction

The last couple of decades have seen considerable progress in our under-
standing of generic spacelike singularities in General Relativity (GR). In
particular it has been shown that there are connections between the nature
of such singularities and with three of the foundational first principles of
GR: (i) Lorentzian causal structure, (ii) (conformal) scale invariance, and
(iii) general covariance, i.e., spacetime diffeomorphism invariance, see e.g.
the reviews [96, 97] and references therein.

Heuristic arguments by Belinskǐı, Khalatnikov and Lifshitz (BKL) [8, 9,
57] suggest that generic spacelike singularities in GR are vacuum dominated
for a broad range of matter sources, i.e., generically such sources asymp-
totically become test fields because gravity asymptotically generates more
gravity than matter. For simplicity we will therefore only consider vacuum
models.

The importance of Lorentzian causal structure for the nature of generic
spacelike singularities in GR is connected with the locality conjecture of
BKL [8, 9, 57]. This conjecture states that the asymptotic evolution to-
ward a generic spacelike singularity in inhomogeneous cosmology is local,
in the sense that each spatial point evolves toward the singularity indepen-
dently of its neighbors as a spatially homogeneous model. By reformulating
the Einstein field equations in GR, using the so-called conformally Hubble-
normalized orthonormal frame dynamical systems approach, the BKL local-
ity conjecture was made more precise in [2, 28, 39, 58, 89, 96–98]. In this
formulation, there exists an invariant ‘local boundary set’ where the partial
differential equations (PDEs) of inhomogeneous cosmology reduce to the
ordinary differential equations (ODEs) of spatially homogeneous cosmology
at each spatial point. Moreover, on the local boundary set, there exists an
invariant subset identical to the attractor of the corresponding ODEs of
spatially homogeneous cosmology, for each spatial point. In this approach,
loosely speaking, the BKL locality conjecture amounts to that the invariant
subset on the local boundary corresponding to the ODE attractor, for each
spatial point, form a local PDE attractor, which describes the detailed na-
ture of generic spacelike singularities in inhomogeneous cosmology. Presum-
ably, a necessary condition for such asymptotic local evolution is asymptotic
silence, i.e., that the extreme gravity in the vicinity of a generic spacelike
singularity results in particle horizons that shrink to zero size toward the
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Bifurcations and chaos in Hořava-Lifshitz cosmology 2097

singularity [39, 58, 89, 96–98].1 If this is the case, the nature of generic space-
like singularities is connected with asymptotic Lorentzian causal structure
induced by extreme gravity and certain spatially homogeneous models.

To describe generic spacelike singularities, it is therefore presumably es-
sential to understand the properties of spatially homogeneous models, of
which there are two categories: the Bianchi models and the spherically sym-
metric Kantowski-Sachs models, where the latter are too special to be of rel-
evance for generic singularities. The Bianchi models are divided into class A
and class B. In contrast to the general class B models, the class A models
admit a Hamiltionan formulation and have a simpler hierarchical structure.
We will therefore henceforth restrict considerations to the class A Bianchi
models. Because of the BKL locality conjecture, this is further motivated
by that the most general models within this class, the Bianchi type VIII
and IX models, are believed to contain some of the key elements needed to
describe generic spacelike singularities.

The class A Bianchi models have three-dimensional symmetry groups,
which act simply transitively on the spatially homogeneous slices. These
models thereby admit a symmetry-adapted spatial (left-invariant) co-frame
{ω1,ω2,ω3}, such that

(1) dω1 = −n1ω2 ∧ ω
3 , dω2 = −n2ω3 ∧ ω

1 , dω3 = −n3ω1 ∧ ω
2 ,

where the structure constants n1, n2, n3 determine the Lie algebras of the
various class A Bianchi models, defined in Table 1, see also e.g. [102]:

Bianchi type nα nβ nγ
IX + + +
VIII − + +
VII0 0 + +
VI0 0 − +
II 0 0 +
I 0 0 0

Table 1. The class A Bianchi types are characterized by the zeroes and relative signs
of the structure constants (nα, nβ , nγ), where (αβγ) is a permutation of (123). There
are equivalent representations associated with an overall change of sign of the constants,
e.g., another Bianchi type IX representation is (−,−,−). It is also possible to scale the
constants, e.g., in type IX we can set n1 = n2 = n3 = 1.

1Recent results indicate that this is not the whole story. There is also a connection
between asymptotic silence, generic spacelike singularities, and infinitely recurring
oscillating inhomogeneous spikes, described by certain inhomogeneous solutions [2,
37, 38, 59–62].
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The class A Bianchi models form a hierarchical structure, where more
special models are obtained from more general ones by performing Lie con-
tractions, i.e., by setting structure constants to zero, which results in the
Lie contraction diagram given in Figure 1.

Type IX Type VIII

Type VII0 Type VI0

Type II

Type I

Figure 1. The class A Bianchi Lie contraction hierarchy.

The field equations of all vacuum GR models, and thus also the class A
Bianchi models, are conformally scale-invariant and thereby admit a scale
invariance symmetry. However, general covariance (i.e., diffeomorphism in-
variance), which also results in symmetries of the GR vacuum field equations,
is broken by the preferred spatial homogeneous foliations in Bianchi cosmol-
ogy. The symmetries of the Einstein vacuum field equations generated by
the principle of general covariance reduce to those generated by the spatial
diffeomorphisms that are compatible with the Bianchi symmetry groups,
which are locally characterised by their Lie algebras defined in Table 1.2

Furthermore, the symmetry generating spatial diffeomorphisms correspond
to the automorphisms of the Lie algebras, i.e., the linear transformations
of the symmetry adapted spatial frame that leave the associated structure
constants unchanged [44, 45].

As discussed in Appendix A, the automorphism groups can be used to
diagonalize the vacuum class A Bianchi models, which then leaves a diagonal
automorphism group for each model. As described in Table 1 and Figure 1,
the class A Bianchi types are grouped into a hierarchy defined by the num-
ber of non-zero structure constants: Bianchi types IX and VIII have three;
types VII0 and VI0 have two; type II has one; Bianchi type I has none. Each

2In the present paper, considerations are spatially local. For an investigation
about the role of spatial topology in a Hamiltonian description of Bianchi models,
see [5].
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structure constant that is zero results in a diagonal automorphism and an
associated symmetry, see e.g., [36, 45, 87, 88], and references therein. Due
to the increasing number of automorphisms as one goes down in the hierar-
chy by setting structure constants to zero (i.e., by performing Lie contrac-
tions), a new symmetry in the Einstein equations appears at each level of
the hierarchy. At the levels below Bianchi type IX and VIII in the class A
Bianchi symmetry hierarchy, the scale and automorphism groups combine
into scale-automorphism groups, which yields a symmetry hierarchy of the
class A Einstein vacuum field equations [36, 87, 88].

The above hierarchical features are naturally incorporated into the
conformally Hubble-normalized orthonormal frame dynamical systems ap-
proach to Einstein’s vacuum field equations. In this approach, each class A
Bianchi model yields an invariant set of the ODEs, denoted by Bianchi type
I, II, VI0, VII0, VIII and IX, respectively. Moreover, the class A Bianchi Lie
contraction hierarchy results in that each model in the hierarchy forms an
invariant boundary set of the models at the next higher level according to
Figure 1. Thus the invariant Bianchi type I set, which constitutes a circle of
fixed points, the Kasner circle, is the boundary of three physically equivalent
invariant Bianchi type II sets, where each type II set forms a hemisphere
filled with heteroclinic orbits (i.e. solution trajectories) between different
points of said circle, see, e.g., [102]. Apart from these kinematical ramifi-
cations, the scale-automorphism symmetry hierarchy also have dynamical
consequences. At the higher levels of the Lie contraction hierarchy the scale
and scale-automorphism symmetries generate monotone functions, which
limit the asymptotic dynamics in a hierarchical manner: asymptotically the
dynamics toward the initial singularity is pushed in the state space at the
top of the hierarchy (the Bianchi type IX and VIII models) toward the bot-
tom of the hierarchy, the Bianchi type II and I models, where the two latter
are completely determined by the scale-automorphism symmetries [36].

The scale-automorphism symmetries are complemented by discrete sym-
metries. Together these symmetries limit but do not completely determine
the asymptotic dynamics of Bianchi types VIII and IX. Nevertheless, the
(past) attractor in these models is expected to reside on the union of the
Bianchi type I and II boundary sets. Furthermore, the concatenation of het-
eroclinic type II orbits yields heteroclinic chains, which are expected to be
generically asymptotically shadowed toward the initial singularity by the
type VIII and IX orbits, see [11, 15] and references therein. The type II
heteroclinic orbits induce a discrete map that acts on the fixed points of
the Kasner circle, called the Mixmaster map. This map exhibits chaotic
properties, and it is because of this feature GR is said to be chaotic [46].
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Note that the above statements are partially supported by several theo-
rems [10, 11, 15, 33, 54, 55, 80, 83, 84].

There thereby exist intricate connections in GR between the nature of
generic spacelike singularities, asymptotic Lorentzian causal structure, spa-
tial homogeneous models, and hierarchically induced scale and diffeomor-
phism symmetries. To bring a new perspective on GR, we therefore ask:
What happens if the first principles that lead to the structure of generic
spacelike singularities in GR are gradually modified?

To investigate this question we have to go beyond GR and it is natural to
do so by considering Hořava-Lifshitz (HL) theories. These theories are based
on a preferred foliation of spacetime that breaks full spacetime diffeomor-
phism invariance and introduce anisotropic Lifshitz type scalings between
space and time, in analogy with condensed matter physics [41, 42, 75]. There
are two classes of HL theories: ‘projectable’ theories for which the lapse only
depends on time, which naturally encompasses spatially homogenous cos-
mology, and ‘nonprojectable’ theories with a lapse depending on time and
space, which was shown to result in dynamical inconsistencies in [40].

HL gravity is a gauge theory formulated in terms of a lapse N and a
shift vector N i, which serve as Lagrange multipliers for the constraints in
a Hamiltonian context, and a three-dimensional Riemannian metric gij on
the slices of the preferred foliation. In GR, these objects arise from a 3+1
decomposition of a 4-metric according to,

(2) g = −N2dt⊗ dt+ gij(dx
i +N idt)⊗ (dxj +N jdt).

In suitable units and scalings, the dynamics of HL vacuum gravity is gov-
erned by the action

(3a) S =

∫

N
√

det gij(T − V)dtd3x,

where T and V are given by

T = KijK
ij − λ(Kk

k)
2,(3b)

V = k1R+ k2R
2 + k3R

i
jR

j
i + k4R

i
jC

j
i + k5C

i
jC

j
i + k6R

3 + . . . .(3c)

Here Kij is the extrinsic curvature, R and Rij are the scalar curvature and
Ricci tensor (of the spatial metric gij), respectively, Cij is the Cotton-York
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tensor [40, 42], while the constants λ, k1, . . . k6 are real parameters. Repeated
indices are summed over according to Einstein’s summation convention.3

Full spacetime diffeomorphism invariance in GR fixes λ = 1 uniquely
and set all parameters of V in (3c) to zero, except k1 = −1 (i.e., V = −R),
see [41, 42]. Thus GR is a special case among the HL models. The intro-
duction of λ changes the scaling properties of the field equations, as does
the introduction of additional curvature terms. Since some of the curvature
terms have different scaling properties, sums of such terms in V result in that
the field equations no longer are scale-invariant. Nevertheless, as heuristi-
cally argued in Appendix A, when there is a sum of curvature terms in the
case of the HL class A Bianchi models, there is an ‘asymptotically dom-
inant’ curvature term toward the initial singularity. Since each curvature
term exhibits a certain scaling property, this implies that the correspond-
ing field equations are asymptotically scale-invariant. Although their scaling
properties differ, the HL and GR class A Bianchi models share the same Lie
contraction hierarchy, see Table 1, and consequently the same automorphism
structure. Combining the (asymptotic) scale and automorphism symmetry
groups for the different levels of the HL hierarchy continuously deforms the
corresponding scale-automorphism groups in GR. This in turn affects the
nature of the generic initial Bianchi type VIII and IX singularity.

Although a significant part of the previous literature on the dynam-
ics of cosmological HL models is about isotropic matter models, see
e.g. [16, 48, 52, 92], the present work is by no means the first dealing with the
anisotropic vacuum HL class A Bianchi models, see e.g. [6, 7, 29, 73, 76, 77].
The present paper, however, identifies and ties mathematical structures to
physical first principles and introduces new mathematical tools, which yield
rigorous results about discrete dynamics induced by heteroclinic chains.

Although established as an interesting research field in its own right,
the present primary purpose of HL gravity is that these models situate GR
in a broader context that makes it possible to study how a change of first
principles affect generic spacelike singularities. As we will see, this results
in a new perspective, which generates new ideas and tools for how to study
generic singularities not only in HL gravity but also in GR. This, however,
only requires retaining the parameter λ in (3b) and the vacuum GR potential
V = −R, which yield the so-called λ-R models [12, 30, 63]. For simplicity,
we therefore restrict considerations in the main part of the paper to the

3To study the differences that arise from imposing spacetime or only spatial
diffeomorphism invariance on a theory, it is illuminating to even go beyond HL
theories, as discussed in [17].
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vacuum λ-R class A Bianchi models. Nevertheless, we perform a heuristic
analysis of the HL models in Appendix A, which indicates that the generic
asymptotic dynamics toward the singularity for a large class of vacuum
HL class A Bianchi models formally coincide with that of the vacuum λ-R
class A Bianchi models. The results in the main part of the paper for the
λ-R models are thereby also relevant for a broad class of HL models.

In Appendix A, the Hamiltonian formulation for the spatially homoge-
nous vacuum λ-R class A Bianchi models is used to obtain the following
evolution equations,

Σ′
α = 4v(1− Σ2)Σα + Sα,(4a)

N ′
α = −2(2vΣ2 +Σα)Nα,(4b)

for α = 1, 2, 3, and the constraints,

0 = 1− Σ2 − Ωk,(4c)

0 = Σ1 +Σ2 +Σ3,(4d)

where

Σ2 :=
1

6

(

Σ2
1 +Σ2

2 +Σ2
3

)

,(5a)

Ωk := N2
1 +N2

2 +N2
3 − 2N1N2 − 2N2N3 − 2N3N1,(5b)

Sα := −4[(Nβ −Nγ)
2 −Nα(2Nα −Nβ −Nγ)].(5c)

Here (αβγ) is a permutation of (123). A ′ denotes the derivative with
respect to the chosen time variable, τ−, defined in Appendix A, which is
in the opposite direction of physical time. Since we are considering expand-
ing models, τ− → ∞ describes the dynamics toward the initial singularity.
Throughout, α-limits (τ− → −∞), ω-limits (τ− → ∞), and stability issues
refer to τ−. The parameter v is related to λ according to

(6) v :=
1

√

2(3λ− 1)
.

The GR class A Bianchi models have λ = 1 and hence v = 1/2. Since we
are primarily interested in continuous deformations of GR with v = 1/2, we
restrict v to v ∈ (0, 1), although the bifurcation values v = 0 and v = 1 are
briefly mentioned in the next section and in Appendix A.
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The equations (4) are invariant under permutations of the axes, i.e., they
are invariant under the transformation

(7) (Σ1,Σ2,Σ3, N1, N2, N3) 7→ (Σα,Σβ ,Σγ , Nα, Nβ , Nγ),

where (αβγ) is a permutation of (123), i.e., (αβγ) ∈ S3.
As defined in Appendix A, the variables Nα are equal to the structure

constants nα multiplied with positive time dependent functions. Thus there
is a one-to-one correspondence between the zeroes and signs of nα and Nα,
as seen by a comparison of Tables 1 and 2.

Bianchi type Nα Nβ Nγ Dim Scale-automorphism induced dynamics

IX + + + 4 One monotone function
VIII − + + 4 One monotone function
VII0 0 + + 3 Two monotone functions
VI0 0 − + 3 Two monotone functions
II 0 0 + 2 Hemispheres of heteroclinic orbits
I 0 0 0 1 Kasner circle of fixed points

Table 2. The invariant class A Bianchi sets of (4), characterized by different signs and
zeroes of the variables (Nα, Nβ , Nγ), where (αβγ) is a permutation of (123). Dim denotes
the dimension of the physical state space satisfying the constraints (4c) and (4d). The
scale-automorphism group induces a dynamical structure for each Bianchi type, derived
in Appendix B.

This in turn results in a correspondence between Bianchi types and
invariant sets in (4). Thus N1 = N2 = N3 = 0 leads to the invariant Bianchi
type I set, which yields a circle of fixed points, called the Kasner circle4,
denoted by K#. There are three invariant Bianchi type II sets, obtained by
a single non-zero Nα (and thus a non-zero nα) while the other two variables
Nβ and Nγ are zero (which corresponds to nβ = nγ = 0), where (αβγ) is a
permutation of (123). On each Bianchi type II set, the solutions will be shown
to be heteroclinic orbits connecting different fixed points on K#. Bianchi
type VI0 has two non-zero variables Nα with opposite signs, whereas type
VII0 has two non-zero variables Nα with the same sign. The Bianchi type
VIII models have three non-zero variables Nα where two of them have an

4In [12, 30, 63] it was discussed if λ-R gravity and GR were equivalent in the
asymptotically spatially flat case with ultra-local dynamics, i.e., locally Bianchi
type I. This is supported in the present work by the common description of the
Bianchi type I set as the Kasner circle K#. However, as we shall see, stability of
K# varies with v ∈ (0, 1).
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opposite signs compared to the third, while the Bianchi type IX models are
described by three non-zero variables Nα with the same sign, see Table 2.

Table 2 also indicates the dynamical structures induced by the scale-
automorphism group, derived in Appendix B, which is what remains of the
first principles of scale and spatial diffeomorphism invariance in the λ-R
class A Bianchi models. As will be seen, monotone functions push the dy-
namics as τ− → ∞ from the invariant sets at the top of the class A Bianchi
hierarchy to those at the bottom, in a similar manner as in GR. Moreover,
heuristic reasoning in Appendix A suggests that the asymptotic generic dy-
namics, as τ− → ∞, of Bianchi type VIII and IX, described by (4), reside on
the union of the invariant Bianchi type I and II sets, as in GR. The generic
asymptotic dynamics is therefore expected to be described by heteroclinic
chains obtained by concatenation of heteroclinic orbits of the three different
type II sets, where the ω-limit of one heteroclinic orbit in one type II set is
the α-limit of a subsequent heteroclinic orbit in another type II set. Note
that recent asymptotic proofs in GR exploits the Bianchi type II hetero-
clinic chains. From this perspective, an analysis of the Bianchi type I and
II heteroclinic structure is therefore a natural first step in the asymptotic
analysis of the vacuum λ-R class A Bianchi models.

To investigate the λ-R Bianchi type I and II heteroclinic structure, note
that the Bianchi type II sets give rise to the Kasner circle map K : K# →
K#, which maps the α-limit to the ω-limit of each heteroclinic orbit of type
II. The properties of K, which depend on v, give a discrete description of
the properties of the λ-R type II heteroclinic chains, and thus the expected
generic asymptotic continuous dynamics.

The parameter v ∈ (0, 1) in equation (4) situates GR in a broader con-
text. In particular, it will be shown that the GR value v = 1/2 corresponds
to a bifurcation. More precisely, the case v = 1/2, referred to as the ‘criti-
cal case’, corresponds to a transition from a situation without stable fixed
points in K# (the subcritical case, v ∈ (0, 1/2)) to one with stable fixed
points (the supercritical case, v ∈ (1/2, 1)). The existence of stable fixed
points in the supercritical case might tempt someone to conclude that all
points in K# end at one of them by the discrete dynamics of the Kasner cir-
cle map K, yielding finite Bianchi type II heteroclinic chains, which would
prevent asymptotic chaos. However, this is not the case: there remains a
Cantor set associated with infinite Bianchi type II heteroclinic chains with
chaotic dynamics. The critical GR case therefore represents a transition from
non-generic to generic chaos, and may also exemplify an ‘attractor crisis’,
an issue discussed in [31, 32]. More precisely, we will show:
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Theorem 1.1. General relativity (v = 1/2) is a bifurcation point:

(i) v ∈ (1/2, 1): The set of points in K# associated with infinite Bianchi
type II heteroclinic chains is a Cantor set C of measure zero. Moreover,
the Kasner circle map K is chaotic in the invariant set C.

(ii) v = 1/2: The set of points in K# associated with infinite Bianchi type
II heteroclinic chains has full measure. Moreover, K is generically
chaotic.

(iii) v ∈ (0, 1/2): All points in K# are associated with infinite Bianchi type
II heteroclinic chains. Moreover, the multivalued map K is chaotic.

Item (i) is proved in Theorems 4.1 and 4.2, which include bounds on
the Hausdorff dimension of C. For an iterative construction of the set C,
see Figure 13. Item (ii) was previously proved in [8, 46], see also [96, 97]
and references therein. Item (iii) is shown in Lemma 5.1 and in this case,
for which the Kasner circle map K is multivalued, we conjecture that K is
chaotic on the whole circle K#, which has been partially confirmed in [49].
To obtain our results, we use symbolic dynamics, not previously used in GR,
which results in a new description of chaos for generic spacelike singularities.

The outline of the paper is as follows. Section 2 describes the building
blocks for the heteroclinic structure, the Bianchi type I and II sets, which
yield the Kasner circle K# and the Kasner circle map K : K# → K#. We
also identify the three dynamically distinct regimes, supercritical, critical,
and subcritical. In the next three sections we focus on the concatenation of
Bianchi type II orbits into heteroclinic chains through iterates of the Kasner
circle map K, and describe associated chaotic aspects. Section 3 sketches
known results in the critical GR case. Section 4 treats the supercritical
case using symbolic dynamics. Section 5 explores the subcritical case using
iterated function systems. Then Section 6, primarily, contains proofs about
the asymptotic dynamics for the λ-R Bianchi type VI0 and VII0 models. The
main part of the paper is concluded with Section 7 which contains dynamical
asymptotic conjectures for the λ-R Bianchi type VIII and IX models (and
thereby implicitly also for more general HL models).

Appendix A contains a derivation of equation (4) and the associated
HL equations. It also provides a heuristic analysis of both the λ-R and HL
Bianchi models, which suggests that their generic asymptotic dynamics to-
ward the singularity is associated with the Bianchi type I and II heteroclinic
structure, described in the main part of the paper. In Appendix B, the scale-
automorphism groups at each level of the class A Bianchi Lie contraction
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hierarchy of the λ-R and HL Bianchi models is used to derive monotone
functions and conserved quantities, thereby tying the nature of generic sin-
gularities in GR, λ-R and HL gravity to physical first principles. Finally,
Appendix C contains a unified symbolic treatment of the chaotic regime in
the supercritical and critical cases.

2. Bianchi types I and II

In this section we describe the Bianchi type I set, i.e., the Kasner circle
of fixed points, K#, its stability features, and the three Bianchi type II
sets, which consist of heteroclinic orbits between fixed points in the set
K#, thereby yielding the Kasner circle map K : K# → K#. The heteroclinic
orbits of the different type II sets can subsequently be concatenated to het-
eroclinic chains on the Bianchi type I and II boundary sets of Bianchi type
VIII and IX; for the GR case, see e.g. [11, 15, 34, 96, 102]. To illustrate con-
catenation, we explicitly construct heteroclinic cycles/chains with period 3
when v ∈ [0, 1].

2.1. Bianchi type I

The Bianchi type I set is determined by N1 = N2 = N3 = 0, which according
to equation (4) results in the Kasner circle of fixed points:

(8) K# :=

{

(Σ1,Σ2,Σ3, 0, 0, 0) ∈ R6
∣

∣

∣

1− Σ2 = 0,
Σ1 +Σ2 +Σ3 = 0

}

.

There are three exceptional points in the set K# called the Taub points,
since they correspond to the Taub representation of Minkowski spacetime
in GR, see [94]. They are characterized by (Σ1,Σ2,Σ3) as follows:

(9) T1 := (2,−1,−1), T2 := (−1, 2,−1), T3 := (−1,−1, 2),

where Tα, α = 1, 2, 3, is the point in the set K# where Σα attains its maxi-
mum value 2, see Figure 2.

The parameter v plays an important role in the dynamics of the variables
Nα, α = 1, 2, 3, where a bifurcation occurs at v = 1/2. This can be seen from
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Bifurcations and chaos in Hořava-Lifshitz cosmology 2107

the linearization at T1 in (4):

v < 1/2 v = 1/2 v > 1/2

N ′
1 = −(2v + 2)N1; − (2v + 2) < 0 < 0 < 0,(10a)

N ′
2 = −(2v − 1)N2; − (2v − 1) > 0 = 0 < 0,(10b)

N ′
3 = −(2v − 1)N3; − (2v − 1) > 0 = 0 < 0.(10c)

The Taub point T1 thereby has one stable variable N1 while N2 and N3 are
central when v = 1/2, whereas for v ̸= 1/2 the Taub point becomes hyper-
bolic: N1 is stable and both N2 and N3 are unstable when v < 1/2, while
all Nα are stable when v > 1/2. Using the permutation symmetry (7) leads
to similar statements for T2 and T3.

In general, linearization of equation (4b) at K# results in

(11) N ′
α = −(2v +Σα|K#)Nα, α = 1, 2, 3.

For each α = 1, 2, 3, the stability behaviour of Nα changes when Σα|K# =
−2v. We define the unstable Kasner arc, denoted by int(Aα), to be the points
in K# that are unstable in the Nα variable, i.e., when Σα|K# < −2v. The
closure of int(Aα) is denoted by Aα and is given by

(12) Aα :=
{

(Σ1,Σ2,Σ3, 0, 0, 0) ∈ K# | Σα ≤ −2v
}

.

Due to the axis permutation symmetry (7), the Kasner arcs Aα are sym-
metric portions of K# with points Qα = −Tα in the middle, given by

(13) Q1 := (−2, 1, 1), Q2 := (1,−2, 1), Q3 := (1, 1,−2),

where Qα is the point where Σα attains its minimum value −2 in K#.
The boundary set ∂Aα consists of two fixed points, which we refer to as

tangential points, for reasons explained below, see Figure 3. These tangential
points are the Taub points when v = 1/2, but v ̸= 1/2 unfolds each Taub
point into two non-hyperbolic tangential points, see Figure 2. Such unfolding
may provide the route for a local description using bifurcation without pa-
rameters in [26, 56]. The tangential points are determined by Σα|K# = −2v,
which taken together with the constraints in (8) yield

(14) tβγ := (Σα,Σβ ,Σγ) = −vTα + (Tβ − Tγ)
√

(1− v2)/3,

where (αβγ) is a permutation of (123), while the Taub points were given
in (9). For example, the tangential points for the arcs A2 and A3 closest to
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T1 are given by

t12 = (v +
√

3(1− v2), v −
√

3(1− v2),−2v)(15a)

t13 = (v +
√

3(1− v2),−2v, v −
√

3(1− v2)).(15b)

The bifurcation at v = 1/2 induces the stability change of Nα in equa-
tion (11), where equation (15) entails that the tangential points t12 and
t13 pass through each other at T1 as v crosses the value 1/2; axis permu-
tations result in similar statements for the other tangential points near the
other Taub points, see Figure 2.

A2 ∩ A3

A1 ∩ A3A1 ∩ A2

t13t12

t32

t31

t23

t21

A3

A1

A2

T1

T2T3

Q1

Q3Q2

(a). Subcritical: v∈(0, 1/2).

Σ1

Σ2Σ3
A3

A1

A2

t12 = T1 = t13

T2T3

Q1

Q3Q2

(b). Critical: v = 1/2.

int(S)

int(S)int(S)

t12t13

t31

t32

t21

t23

A3

A1

A2

T1

T2T3

Q1

Q3Q2

(c). Supercritical: v∈(1/2, 1).

Figure 2. As v ∈ (0, 1) increases, the arc-length of each closed arc A1, A2 and A3

decreases. For v ∈ (0, 1/2) the union of all arcs covers K#, where the arc-length of
their intersections (in bold) decreases when v increases. At v = 1/2 the arcs only in-
tersect at the Taub points T1,T2,T3. For v ∈ (1/2, 1) the arcs do not intersect and
their union therefore do not cover K#, which results in the (dashed) set S, given by
S := K# \ int(A1) ∪ int(A2) ∪ int(A3).

We are primarily interested in continuous deformations of GR, v = 1/2,
and we therefore focus on the interval v ∈ (0, 1). These models admit three
cases, where (αβγ) is a permutation of (123):

(i) The subcritical case v ∈ (0, 1/2): The union of the three arcs Aα cover
K#, where both Nβ and Nγ are unstable in the region int(Aβ ∩Aγ)
containing Tα.

(ii) The critical case v = 1/2: The three arcs Aα cover K# and each pair
of arcs intersect only at a Taub point.

(iii) The supercritical case v ∈ (1/2, 1): The union of the three arcs Aα do
not cover K#. There is a closed region around the Taub points Tα

which is stable, defined by S := K# \ int(A1) ∪ int(A2) ∪ int(A3).
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Note that the fixed points in int(S) have negative eigenvalues associated
with the Nα variables, but, for future purposes, we also include the tangen-
tial boundary points in the definition of S, for which one of the negative
eigenvalues is replaced by a zero eigenvalue.

2.2. Bianchi type II

There are three physically equivalent type II sets, due to (7), each charac-
terized by a single non-zero variable Nα, α = 1, 2, 3, where each set yields a
two-dimensional hemisphere. The three hemispheres intersect only at their
common K# boundary. The Bianchi type II set with N1 ̸= 0, denoted by II1,
is given by

(16) II1 :=

{

(Σ1,Σ2,Σ3, N1, 0, 0) ∈ R6
∣

∣

∣

1− Σ2 −N2
1 = 0,

Σ1 +Σ2 +Σ3 = 0,
N1 ̸= 0

}

,

while the other two Bianchi type II sets II2 and II3 are obtained by permu-
tation of the axes according to (7). Without loss of generality, we therefore
explicitly only consider II1.

As follows from (4), the evolution equations for II1 can be written as

(Σ1,Σ2,Σ3)
′ = 4v

[

(1− Σ2)(Σ1,Σ2,Σ3) +
T1

v
N2

1

]

,(17a)

N ′
1 = −2(2vΣ2 +Σ1)N1.(17b)

The constraints are given by Σ1 +Σ2 +Σ3 = 0 and N2
1 = 1− Σ2, where Σ2

is defined in (5a).
Using N2

1 = 1− Σ2 to solve for N2
1 results in that (17a) can be written

as

(18)

[

(Σ1,Σ2,Σ3) +
T1

v

]′
= 4v(1− Σ2)

[

(Σ1,Σ2,Σ3) +
T1

v

]

,

where Σ1 is monotonically increasing for any initial condition in the interior
of II1. The term 4v(1− Σ2) is an Euler multiplier when Σ2 ̸= 1. This term
is eliminated by an appropriate time rescaling, (.)′ = 4v(1− Σ2) ˙(.), which
leads to ẇ = w where w := (Σ1,Σ2,Σ3) + T1/v.

Solutions of (18) are therefore straight lines in (Σ1,Σ2,Σ3)-space, which
we parametrize by introducing a variable η ∈ R, defined by

(19) η′ = 4v(1− Σ2)η.
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We thereby obtain

(20) (Σ1,Σ2,Σ3) = (Σi
1,Σ

i
2,Σ

i
3)η +

T1

v
(η − 1).

The straight lines pass through the auxiliary point Q1/v outside the
physical state space II1 when η = 0. A particular straight line solution then
enters the physical state space at a point p = (Σi

1,Σ
i
2,Σ

i
3) ∈ A1 in the set

K# when η = 1. This point is the α-limit of an associated heteroclinic orbit
in II1, with Σ2 < 1, for which η > 1 is monotonically increasing until the
solution ends at its ω-limit point pf = (Σf

1,Σ
f
2,Σ

f
3) in K#. The point pf is

determined by the constraints (4c) and (4d) when N1 = N2 = N3 = 0, and
equation (20). These conditions lead to two solutions for η: η = 1 (for p) and
η = g (for pf), where

(21) g :=
1− v2

1 + v2 +Σi
1v

≥ 1.

Using the constraints (4c) and (4d) for p to replace Σi
2 and Σi

3 with Σi
1, and

the latter with g according to the above equation, give

(22) N2
1 = 1− Σ2 =

(

1− v2

v2

)

(η − 1)(g − η)g−1.

Similar results are obtained by axis permutation for II2 and II3. Figure 3
gives an example of a Bianchi type II1 heteroclinic orbit, given by (20), (21),
(22), and its projected straight line in (Σ1,Σ2,Σ3)-space.

K#

II1

t23

t32p

pf

Q1
v

Figure 3. An example of a Bianchi type II solution; a heteroclinic orbit in the hemi-
sphere II1. Its projection is a (dotted) line parametrized by η in (Σ1,Σ2,Σ3)-space given
by (20). There are three special points on this line: the auxiliary point Q1/v outside the
physical state space II1 when η = 0, p when η = 1 and pf when η = g. Furthermore, the
nomenclature ‘tangential points’ is explained: they are the points where p = pf and hence
where the aforementioned lines are tangential to K#.
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Using equation (20) to eliminate η yields the unparametrized form of
the heteroclinic orbits in II1,

(23)

(

Σi
1 +

2

v

)

(Σ2 − Σ3) =
(

Σi
2 − Σi

3

)

(

Σ1 +
2

v

)

,

where a cyclic permutation of (123) yields the orbits in II2 and II3. Note that
equation (23) is derived in Appendix B from the scale-automorphism group.
In combination with axis permutations this establishes that the Bianchi type
II heteroclinic chains arise from first principles, in GR, λ-R and HL gravity.

The type II heteroclinic orbits induce a map between different Kasner
states on the Kasner circle, called the Kasner circle map K : K# → K#.
It maps the α-limits to the ω-limits of heteroclinic orbits in each of the
hemispheres II1, II2, II3, see Figures 3 and 4.

K(p)

p

Q1

v

Q2

v
Q3

v

Q1

Q3Q2

A2 ∩ A3

A1 ∩ A2 A1 ∩ A3

(a). Subcritical: v∈(0, 1/2).

2Q1

2Q2 2Q3

K(p) = T1

T2T3

p = Q1

Q3Q2

(b). Critical: v=1/2.

p

Q1
v

Q2
v

Q3
v

K(p) = Q1

Q3Q2

S

S S

(c). Supercritical: v∈(1/2, 1).

Figure 4. The Kasner circle map K can be obtained from the straight lines that emanate
from the three auxiliary points Qα/v, which intersect with two points in the set K#: p
and K(p) := pf . Each (bold dotted) line represents the projection onto (Σ1,Σ2,Σ3)-space
of a heteroclinic orbit from different hemispheres IIα, originating from the auxiliary point
Qα/v. Note that the points Qα/v approach Qα as v → 1, whereas Qα/v goes to infinity
as v → 0.

Each point p = (Σi
α,Σ

i
β ,Σ

i
γ) in the set K# is thereby mapped to pf =

(Σf
α,Σ

f
β ,Σ

f
γ) in K#, where pf is obtained from (20) and permutations thereof

by setting η = g. Thus,

(24) K(p) :=

{

g(p)p+ (g(p)− 1)Tα

v for p ∈ Aα

p for p /∈ A1 ∪A2 ∪A3

,
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where

(25) g(p) :=
1− v2

1 + v2 +Σi
αv

≥ 1, for p = (Σi
1,Σ

i
2,Σ

i
3) ∈ Aα,

and where the index α in Σi
α is the same index as for Aα.

When v ∈ [1/2, 1) the Kasner circle map K is well-defined and continu-
ous, since the unstable arcs int(A1), int(A2) and int(A3) are disjoint. Note
that the set S consists of fixed points of the Kasner circle map K. In the
critical case, v = 1/2, the Kasner circle map K is the Mixmaster map, dis-
cussed in Section 3, while the dynamics of K in the supercritical case (1/2, 1)
is discussed in Section 4.

For v ∈ [0, 1/2), however, K is not a well-defined map, since the unstable
arcs int(Aα) overlap and points in the overlapping regions int(Aα ∩Aβ)
have two possible Bianchi type II heteroclinic orbits, making K multivalued.
Moreover, a discontinuity on at least one of the boundary points of Aα ∩Aβ

is inevitable, since one must change the auxiliary vertex Qα/v for the map,
see Figure 4. Nevertheless, we can still define iterates of K through a family of
piece-wise continuous maps to capture features of the dynamics, as explored
in Section 5.

To describe the expansion properties of the Kasner circle map (24),
it is convenient to first introduce Misner parametrized variables (Σ+,Σ−)
adapted to the arc A1, which, according to Appendix A, are given by

Σ1 = −2Σ+,(26a)

Σ2 = Σ+ +
√
3Σ−,(26b)

Σ3 = Σ+ −
√
3Σ−,(26c)

which leads to Σ2 = Σ2
+ +Σ2

− where Σ2 = 1 on K#, due to the con-
straint (4c), thereby yielding a circle with unit radius. The variables
(Σ+,Σ−) have the advantage of solving the constraint (4d), but the draw-
back of making the permutation symmetry (7) implicit, whereas it is explicit
in (Σ1,Σ2,Σ3).

The variables Σ± lead to the following form for the Kasner circle
map (24):

K+(Σ
i
+,Σ

i
−) = g(−2Σi

+)

[

Σi
+ − 1

v

]

+
1

v
,(27a)

K−(Σ
i
+,Σ

i
−) = g(−2Σi

+)Σ
i
−,(27b)
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where g(−2Σi
+) is given by (25) in the Misner parametrization (26) of p ∈

A1.
Next we introduce an angular variable φ adapted to A1,

Σ+ = cos(φ),(28a)

Σ− = sin(φ),(28b)

which solves the remaining constraint (4c), since Σ2 = Σ2
+ +Σ2

− = 1 (similar
variables Σ± with associated angles φ can be introduced for A2 and A3, by
permutation of the axes). The map (27) can then be replaced by a map with
the arc-length φ of the Kasner unit circle K# as its domain,

(29) K(φi) =

∫ φi

t23

√

(DK+(φ))
2 + (DK−(φ))

2 dφ,

where D = d/dφ on A1, and similarly for A2 and A3.
The derivative of K(φi) with respect to φi is the tangent vector, with

length

(30) |DK(φi)| =
√

(DK+(φi))2 + (DK−(φi))2.

Applying the chain rule to (27) at φi yields

(31) |DK(p)| = g(p) =
1− v2

1 + v2 − 2 cos(φi)v
,

where g in (25) is expressed in φi by means of (28), which yields Σi
1 =

−2Σi
+ = −2 cos(φi). Using the symmetry under axes permutations (7)

proves the following Lemma:

Lemma 2.1. The derivative of the Kasner circle map K with respect to the
arc-length of the Kasner unit circle K#, φ ∈ Aα, is given by

(32) |DK(p)| =
{

g(p) for p ∈ Aα

1 for p /∈ A1 ∪A2 ∪A3.

In other words, the Kasner circle map K is expanding on the interior of
each Aα, but not uniformly5 since g is a varying function that attains 1 at

5Hence K is an example of a non-uniformly hyperbolic circle map, and it would
be interesting to investigate its dynamical properties with recent mathematical
methods developed in [11, 13, 47] and references therein.
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∂Aα. In the arc A1, the map K is symmetric with respect to Q1, which is due
to the permutation of Σ2 and Σ3 according to (7), and it is monotonically
increasing on each side of Q1 starting from the tangential points t32 and t23,
where g = 1, until g reaches its maximum g = (1 + v)/(1− v) at Q1, where
Σi
1 = −2, see Figure 5. Similar statements hold for A2 and A3 by permuting

the axes, as in (7).

g(p)

p ∈ K#

1+v
1−v

Q1t32

1

t23

Figure 5. The function g(p) for p ∈ A1 between the tangential points t32 and t23.

In Bianchi types VIII and IX, it is possible to concatenate type II het-
eroclinic orbits on the type I and II boundaries to form heteroclinic chains.
This heteroclinic structure is expected to play a key role for type VIII and
IX when τ− → ∞, and is the focus of the next three sections. However, be-
fore proceeding, we describe the bifurcations at v = 0 and v = 1. We then
construct heteroclinic chains with period 3 when v ∈ [0, 1], as an example of
concatenation of heteroclinic Bianchi type II orbits.

The cases v = 0 and v = 1. Even though the cases v = 0 and v = 1 are
not our main focus, they are useful in order to obtain results for v ∈ (0, 1), as
illustrated by the construction of the heteroclinic cycles/chains with period 3
below. In contrast to when v ∈ (0, 1), the Kasner circle map K is not chaotic
for v = 0 and v = 1, and thus bifurcations occur at these parameter values,
see Figure 6.

As v → 0, the heteroclinic orbits become parallel lines6, see Figure 6.
The derivative of the Kasner circle map K, given by (32), thereby equals 1

6Multiplying (23) by v and setting v = 0 results in Σ2 − Σi
2 = Σ3 − Σi

3 for the
v = 0 type II1 models, in agreement with Figure 6 when v = 0. In [29], the authors
considered Bianchi type II models with λ = 1 and a quadratic curvature term, which
is mathematically equivalent to v = 1/8 in the λ-R case, and a cubic curvature
term, which corresponds to v = 0, as seen in Appendix A.2. In the latter case,
it was pointed out that the Kasner parameter u = ui =

√
3 + 1 results in ui = uf ,
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at any point on K#, as is seen from the limit v → 0 in equation (25). Since
there is no expansion, the case v = 0 has a network of heteroclinic orbits that
is not associated with chaos, but see Appendix A.2 for further discussions
on HL models and their relation to the case v = 0. Note the connection with
‘frame transitions’ in, e.g., Bianchi type VI−1/9 vacuum models, and when
using an Iwasawa frame in GR [20, 39, 96, 97], since these also consist of
parallel heteroclinic orbits. In contrast to these situations in GR, however,
there are three (instead of two) families of non-expanding orbits when v = 0,
and no family of expanding type II orbits.

(a). For v → 0, the points Qα/v → ∞.
Hence the type II heteroclinic orbits are
parallel lines that emanate from infinity.
The overlapping arcs (in bold) have two
unstable directions. Moreover, |Aα| = π
and |Aα ∩Aβ | = π/3.

Q1

Q3Q2

(b). For v → 1, the points Qα/v → Qα

on K#, where Aα consists of a single
point Qα. Hence any point on K# can
be reached by a type II heteroclinic or-
bit from Qα. The dashed arcs have three
stable directions.

Figure 6. Heteroclinic type II orbits for v = 0 and v = 1 projected onto (Σ1,Σ2,Σ3)-
space.

As v → 1, the Kasner circle mapK is not continuous anymore: it becomes
the identity on K#, except at each of the three points Qα, which are mapped
to the entire set K#. In particular, the points Qα are mapped to each other,
thereby yielding a network of heteroclinic chains: chains of period 2 between
each two points Qα and Qβ , and chains with period 3 between the three
points Qα. The situation for v = 1 is somewhat reminiscent to that of the
Bianchi type I Einstein-Vlasov models, where there is a heteroclinic network
associated with the Taub points Tα, see [35]; for a recent paper on the future
dynamics of these Einstein-Vlasov models, see [51].

which yields the period 3 heteroclinic cycles in the present formulation. See [19] for
a broad discussion on the case v = 0.
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Example of Bianchi type II concatenation: Period 3 chains. We
will now construct heteroclinic chains with period 3 (i.e., period 3 hete-
roclinic cycles), and describe how these chains change as the parameter
v ∈ [0, 1] varies. For the GR case v = 1/2, these chains/cycles have been
previously found, see e.g. [34]. First, note that chains with period 3 consist
of equilateral triangles in the plane of the Kasner circle in the projected
(Σ1,Σ2,Σ3)-space, which follows from the permutation symmetry described
in (7), where the corners of the triangles on K# correspond to physically
equivalent Kasner states, again related by axis permutations. Second, there
are two equilateral triangles for each value of v ∈ [0, 1), which due to (7) are
symmetric with respect to reflections with respect to the coordinate lines Σα,
while the two triangles coalesce to a single one with corners at the points Qα

when v = 1. Third, the triangles depict (Σ1,Σ2,Σ3)-space projections of two
different heteroclinic chains on the Bianchi type II boundary of the Bianchi
type VIII and IX state spaces, with clockwise and anti-clockwise orientation
of the projected heteroclinic chains in (Σ1,Σ2,Σ3)-space, see Figure 7.

(a). v = 0. (b). v ∈ (0, 1/2). (c). v = 1/2.

(d). v ∈ (1/2, 1).

Q1

Q3Q2

(e). v = 1.

Figure 7. The two triangles in each figure depict the two periodic heteroclinic chains
with period 3 projected onto (Σ1,Σ2,Σ3)-space. As v ∈ [0, 1] increases, these triangles
rotate: the densely (sparsely) dotted one rotates clockwise (counter-clockwise).
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The heteroclinic chains with period 3 can be constructed as follows from
the v = 0 case, for which the period 3 chains are easily obtained due to
the simple heteroclinic structure. Without loss of generality, consider the
densely dotted triangle in Figure 7 for v = 0 and rotate it clockwise by an
angle θ ∈ (0, π/6]. The three prolonged sides of the rotated triangle intersect
each projected Σα axis (projected onto the plane that contains the Kasner
circle) at the same distance from K# due to the axis permutation symmetry.
Since the prolonged lines correspond to Bianchi type II orbits in the physical
state space, the points of intersection are given by Qα/v for some v = v(θ).
Continuity of the rotation and the parametrization v(θ) yields the period
3 chains for all θ ∈ [0, π/6], i.e., all v = v(θ) ∈ [0, 1]. The boundary cases
v = 0 and v = 1 yield limθ→0Qα/v(θ) → ∞ and limθ→π/6Qα/v(θ) → Qα,
respectively, see Figure 8.

Σ1

Σ3 Σ2

Q1
v(θ)

Q2
v(θ)

Q3
v(θ)

(a). Superposition of the densely dotted
heteroclinic chains with period 3 for dif-
ferent v ∈ [0, 1]. The prolonged sides of
each triangle intersect the projected Σα

axis at some Qα/v(θ) and describe type
II orbits.

1

1
v
θ

π
6

p

Q1
v

(b). The angle of rotation θ = θ(v) is
obtained by the law of sines using the
triangle in the plane of K# between the
center of K#, the point Q1/v and the ver-
tex p ∈ A3 of the triangle that describes
a period 3 chain.

Figure 8. As v increases, the triangles rotate clockwise by the angle θ ∈ [0, π/6] in (33).

Moreover, v(θ) = 2 sin θ, or alternatively,

(33) θ(v) = arcsin
(v

2

)

.
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This equation yields the clockwise (counter-clockwise) rotation of the
densely (sparsely) dotted triangle and can be derived as follows. The ro-
tation angle θ for the densely dotted triangle is given by the angle between
the line from Q1/v to the center of K# and the Bianchi type II trajectory
originating from Q1/v and ending at the vertex of the triangle in the arc
A3, which we denote by p, see Figure 8. Consider the triangle that connects
the center of K#, Q1/v, and the vertex p in the plane of K#, which has unit
radius in the (Σ+,Σ−) coordinates. In these coordinates, the line from the
origin (0, 0) to Q1/v has length 1/v, while the unit radius from (0, 0) to the
vertex p bisects the angle of the equilateral triangle, due to the permutation
symmetry (7), which yields an angle of π/6, see Figure 8. The law of sines
then implies that sin θ = v sin(π/6) = v/2, and thereby the above formula.
Combining the result in equation (33) with the geometry in Figure 8 yields

(34) Σ1 =

√

3

(

1−
(v

2

)2
)

− v

2

for the upper vertices (and thus with maximum Σ1) of the densely and
sparsely dotted period 3 triangles in Figures 7 and 8.

We have thereby proved the following result:

Proposition 2.2. There are two heteroclinic chains with period 3 for all
v ∈ [0, 1]. When projected onto the plane of the Kasner circle K#, these
chains/cycles are given by two equilateral triangles within K#. As v ∈ [0, 1)
increases, the two triangles rotate in different directions and coalesce into
one when v = 1.

3. Critical case

GR belongs to the critical case v = 1/2 where the concatenated Bianchi type
II orbits describe the heteroclinic chains that are expected to be asymptoti-
cally shadowed by solutions when τ− → ∞ in the Bianchi type VIII and IX
models. An example of part of a heteroclinic chain is given in Figure 9.
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2Q1

2Q2 2Q3

T1

T2T3

p

K(p)

K2(p)

K3(p)

Figure 9. The concatenation of three projected heteroclinic orbits onto (Σ1,Σ2,Σ3)-
space, which form part of a heteroclinic chain described by iterates of the Kasner circle
map K.

In GR it is useful to define the Kasner parameters (p1, p2, p3) on the
Kasner circle K# according to

(35) Σα = 3pα − 1, for α = 1, 2, 3,

where p1 + p2 + p3 = 1 = p21 + p22 + p23, due to the constraints (8) on K#.
The Kasner circle K# is described by six sectors characterized by pα <

pβ < pγ , where (αβγ) is a permutation of (123). All sectors are related by
axis permutations given by (7), see Figure 2. Each sector is half of an arc
int(Aα) when v = 1/2, excluding the boundary, which consists of the points
Qα and Tβ or Tγ .

The Kasner parameters (p1, p2, p3) can be described by a single param-
eter u such that

(36) pα =
−u

1 + u+ u2
, pβ =

1 + u

1 + u+ u2
, pγ =

u(1 + u)

1 + u+ u2
,

where u ∈ (1,∞) when pα < pβ < pγ , while u = 1 and u = ∞ at the bound-
ary points of the sectors, Qα and Tγ , respectively.

Invariance of u under axis permutations follows from Σ1Σ2Σ3 = 2 +
27p1p2p3 where

(37) p1p2p3 =
−u2(1 + u)2

(1 + u+ u2)3
, where u ∈ [1,∞],

which is monotone in u. In principle u can be replaced by Σ1Σ2Σ3 or p1p2p3
on K#.

The following theorem was shown in [8, 46], see also [96, 97] and refer-
ences therein.
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Theorem 3.1. There is only a countable set of points in the set K# associ-
ated with finite heteroclinic chains ending at a Taub point. The set of points
associated with periodic or infinite heteroclinic chains is thereby topologically
generic and has full measure.

There are different points of view regarding the genericity property. A
set is measure theoretical generic if it has full measure. On the other hand,
a set is topologically generic if it is a countable intersection of dense open
sets. Those definitions are not equivalent. In physical empirical contexts
measure theoretical genericity makes more sense, since it is a property that
is potentially observable.

The proof of Theorem 3.1 follows from describing the Bianchi type II
orbits in the GR case using the Kasner map (obtained from the Kasner
circle/Mixmaster map K in (24) when v = 1/2 by quoting out axis permu-
tations) for the Kasner parameter u in (36):

(38) u 7→
{

u− 1 if u ≥ 2
1

u−1 if u < 2
, u ∈ (1,+∞).

The properties of the Kasner map (38) are intimately connected with
the properties of continued fraction expansions of u, see [34, 46, 74, 90].
Using the parameter u and number theory, we obtain additional facts about
heteroclinic chains:

• Points in the set K# associated with finite heteroclinic chains corre-
spond to u ∈ Q, whereas u ̸∈ Q yields periodic or infinite heteroclinic
chains.

• Points in the set K# associated with periodic heteroclinic chains are
dense. They correspond to Kasner parameters u with periodic contin-
ued fraction expansions.

• Heteroclinic chains with points that are a finite distance away from
the Taub points are non-generic, whereas chains with points that come
arbitrarily close to the Taub points are generic.

The usefulness of the Kasner parameter u in the GR case is due to the
simplicity of the map induced by the Bianchi type II solutions, described
in (38). This simplicity and its relationship to continued fraction expansions
and number theory is lost when v ̸= 1/2. Nevertheless, for different values
of v we will establish some common elements using symbolic dynamics, such
as the chaoticity of the Kasner circle map K.
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Recall that the map K is chaotic if it is topologically mixing and periodic
orbits are dense. Mathematically the former means that given any open sets
A,B ⊆ K#, the n-th iteration Kn(A) intersects B for sufficiently large n;
the latter means that given p ∈ K#, there is a periodic heteroclinic chain
q ∈ U for every neighborhood U ⊆ K# of p. A popular description of chaos
includes sensitivity of initial conditions, but we omit this requirement since
it is a consequence of topological mixing and density of periodic orbits.

In order to prove that the discrete dynamical system generated by it-
erates of the Kasner map (38) is chaotic, we follow [66] and introduce the
inverse of the Kasner parameter x = 1/u, which leads to the Farey map on
the unit interval,

(39) x 7→
{

x
1−x if 0 ≤ x ≤ 1

2 ,

1−x
x if 1

2 ≤ x ≤ 1.

Then note that x = (
√
13− 1)/6 is a periodic point with minimal period 3,

see [65] and also [90, 102]. Therefore the ‘period 3 implies chaos theorem’
applies, proved independently by Sharkovsky [91] and Li and Yorke [53].
Thus the iterates of the Farey map (39) generate a chaotic discrete dynamical
system on [0, 1]. This leads to the following theorem:

Theorem 3.2. The Kasner map (38) is generically chaotic.

It is also possible to prove chaoticity of the Kasner circle map K in the
critical case by using symbolic dynamics, although there is a technicality
arising in the encoding of the Taub points into symbolic sequences. We pro-
vide such a new proof in Appendix C, which modifies the proof in Section 4
for the supercritical case v ∈ (1/2, 1), and shows how chaoticity is carried
from the supercritical case to the critical case v = 1/2.

4. Supercritical case

In the supercritical case, v ∈ (1/2, 1), the Kasner circle map K admits a
closed set of fixed points called the stable set S, defined by S := K# \
int(A1 ∪A2 ∪A3), where the interior of S contains fixed points of the dy-
namical system (4) with only negative eigenvalues in the eigendirections
normal to the Kasner circle K#, see Figures 2 and 4. The set S represents
the end of heteroclinic chains. Accordingly, periodic and infinite heteroclinic
chains are trajectories under the map K never ending at the set S.
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The set C of initial conditions leading to periodic and infinite heteroclinic
chains is thereby defined by

(40) C := {p ∈ K# | Kn(p) /∈ S for all n ∈ N0}.

For example, the two chains with period 3 obtained in Lemma 2.2, depicted
in Figure 7, and the three chains with period 2, see Figure 14, are contained
in C.

The complement of the set C in K# is defined by

(41) F := K# \ C = {p ∈ K# | Kn(p) ∈ S for some n ∈ N0}.

Two of our main results describe properties of the set C, and the associated
dynamics of the Kasner map K:

Theorem 4.1. The set C is a nonempty Cantor set of Lebesgues measure
zero and a Hausdorff dimension dH(C) satisfying

(42) dH(C) ∈





log(2)

log
(

2+v2

1−v2

) ,min







1,
log(2)

log
(

2(1−v2)

1+2v2−
√
12v2−3

)









 .

The bounds in (42) are positive and well-defined when v ∈ (1/2, 1), see
Figure 10. In particular, 12v2 − 3 > 0, where the v-dependent arguments,
both larger than 1, are the minimum and maximum expansion rates of the
Kasner circle map K restricted to the Cantor set C, as will be shown in
Lemma 4.4.

As a consequence of Theorem 4.1, the Cantor set C is non-generic both in
a measure theoretical and a topological sense. The former is not always true,
since there are some Cantor sets with positive measure, such as the Smith—
Volterra—Cantor set; the latter follows since Cantor sets by definition are
closed and nowhere dense.
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dH(C)

1

v

log(2)
log(3)

1/2 1

log(2)

log

(

2+v2

1−v2

)

log(2)

log

(

2(1−v2)

1+2v2−

√
12v2−3

)

Figure 10. The Hausdorff dimension dH(C) in (42) resides in the shaded region.

Theorem 4.2. The Kasner circle map K restricted to the Cantor set C
generates a chaotic discrete dynamical system.

Outside the Cantor set C the map K is not chaotic, since heteroclinic
chains end in the stable set S after finitely many iterations.

Let us now compare the GR critical case v = 1/2 with the supercritical
case v ∈ (1/2, 1), in view of Theorems 4.1 and 4.2. For GR, the set S is
the union of the three Taub points, while the analog of C is the set of
points never reaching the Taub points under some iteration of K, i.e., the
set associated with periodic or infinite heteroclinic chains. This set, however,
is not a Cantor set since it is not closed — its closure is the whole Kasner
circle K#, which is different than itself. Furthermore, this set is generic in
both a measure theoretical and a topological sense, while its complement is
countable, see Theorem 3.1. In conclusion, the generic chaos for v = 1/2 is
carried by the non-generic set C when v ∈ (1/2, 1).

The remaining section is divided into four parts. First, a background on
Cantor sets and their dimensionality. Second, we describe how C is itera-
tively constructed, which is the basis for Theorems 4.1 and 4.2. Third, we
characterize the connected components in each iterative step by means of
symbolic dynamics. Lastly, we prove Theorems 4.1 and 4.2.

4.1. Background: Cantor sets and Hausdorff dimension

A non-empty set C in a complete metric space is a Cantor set if it is perfect,
i.e., it is closed, without isolated points, and nowhere dense, i.e., its closure
has an empty interior.

As an illustration, consider the iteratively constructed ternary Cantor
set. Let T0 be the unit interval. The set Tn+1 is obtained from Tn by removing
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the open middle third of each connected component of Tn, see Figure 11.
Then define T as

(43) T :=
⋂

n∈N0

Tn.

In all steps n ≥ 1 of the construction, we can encode each closed connected
component of Tn by a sequence of symbols L or R, which respectively de-
notes the left or right connected component from the previous iterations,
see Figure 11. From this it follows that T fulfills the abstract definition of
a Cantor set and has measure zero. A similar procedure will be adapted in
order to construct the connected components of the set C in (40), and prove
that it is also a Cantor set of measure zero.

T0
L

T1
R

LL LR RL
T2

RR

LLL LLR LRL LRR RLL RLR RRL
T3

RRR

Figure 11. The iterations Tn for n = 0, 1, 2, 3 in the construction of the ternary Cantor
set. Note that T1 has two closed connected components, a left and right, denoted by L
and R. In the next step, each of those two components L and R has two further left and
right closed connected components in T2, denoted by LL,LR,RL,RR. Similarly for T3,
and onwards.

A natural question regarding Cantor sets is their dimensionality. There
are several notions of dimension, each with its advantages and disadvantages,
see [25]. By introducing the Hausdorff dimension a set within the Kasner
circle K# can have any real dimension between 0 and 1: more than a discrete
set of points, less than the circle itself.

Given d ∈ [0,∞), for any ϵ > 0 the d-Hausdorff measure of C is

(44) µd(C) := lim
ϵ→0

inf

{

∑

i∈N
[diam(Ui)]

d
∣

∣

∣
C ⊆ ∪i∈NUi with diam(Ui) ≤ ϵ

}

.

That is, consider all coverings ∪i∈NUi of C such that each Ui has a diameter7

at most ϵ minimizing the sum of the dth powers of the diameters. As ϵ
decreases the number of possible covers is reduced, which accounts for the

7Recall that the diameter is defined as diam(Ui) := sup{ρ(x, y) : x, y ∈ Ui},
where ρ(x, y) is the metric between x and y in the metric space (X, ρ).
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roughness of C: the more detailed a shape is, the more impact decreasing ϵ
has. The value of d incorporates the behavior of shapes under rescaling in a
d-dimensional space: scaling a set C with a factor r will scale its d-Hausdorff
measure with a factor rd.

The Hausdorff dimension of C is defined as

(45) dH(C) := inf
d≥0

{µd(C) = 0} = sup
d≥0

{µd(C) = ∞}.

The measure µd(C) is therefore 0 when d > dH(C) and ∞ for d < dH(C)
so that dH(C) is a value such that the measure µd(C) jumps from ∞ to
0. This means that if µd(C) is positive and bounded for some d, then this
value of d is the Hausdorff dimension dH(C). Intuitively, we compare the
d-dimensional scaling of the surrounding space with the set C: for too large
d the set C will be of negligible size (of measure zero), whereas if d is too
small then this leads to an over-sized C (infinite measure).

For example, the ternary Cantor set T in equation (43) has a Haus-
dorff dimension given by dH(T ) = log(2)/ log(3) ≈ 0.631, as can be seen as
follows: Divide the Cantor set T into its left TL := T ∩ [0, 1/2] and right
TR := T ∩ [1/2, 1] disjoint parts. Then µd(T ) = µd(TL) + µd(TR). Moreover,
since TL and TR have the same measure and are scalings of T by a factor
3−1, which scales the measure by 3−d, it follows that

(46) µd(T ) = 2 · 3−dµd(T ).

If µd(T ) ̸= 0,∞ for some d ≥ 0, then it can be divided out yielding 1 =
2 · 3−d, and its logarithm provides the desired dimension.

4.2. Characterization of C through iterations

Analogously to the ternary Cantor set in equation (43), which is obtained
by iteratively removing an open middle third from an interval, the set C
in equation (40) can be iteratively constructed by removing arcs given by
pre-images of S via K from K#.

For each n ∈ N0, consider the removal process iteratively defined by

C0 := K#,(47a)

Fn := intCn
(K−n(S)),(47b)

Cn+1 := Cn \ Fn,(47c)

where intCn
(B) := int(B ∩ Cn) ∪ (B ∩ ∂Cn) denotes the interior of the set

B = K−n(S) relative to Cn. See Figures 12 and 13 for a visualization of the
process defined in equation (47), which we now describe in more detail.
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int(S)

int(S) int(S)

t12t13

t31

t32

t21

t23
F1

F1F1

C2C2

(a). The set F1 in A1 is obtained as
follows: It is the interior (in the arc A1)
of the pre-image K−1(S), and hence con-
tains the tangential points t32 and t23,
but not the pre-image of the other four
tangential points. The set F1 has three
connected components in A1. Remov-
ing F1 from C1 yields the (thicker bold)
closed set C2 with two connected compo-
nents in A1. Repeating this argument for
the other arcs provides the full set C2.

int(S)

int(S) int(S)

(b). Repeating the argument in (a) for
the arcs A2, A3 yields the (bold) closed
set C2 with six connected components.
The set F2 in A1 is obtained by the pre-
images of the (thin) sets, since those are
the points reaching int(S) in two itera-
tions of K. The set F2 has six connected
components in A1, which when removed
yields the (thicker bold) closed set C3 in
A1. Figure (c) reveals more details for
the bottom arc A1.

t32 t23

K−1(t31) K−1(t21)

K−1(t12)K−1(t13)

F1

F1F1

F2

F2F2

F2

F2 F2

C1

C2 C2

C3C3 C3C3

(c). In A1 the (thin) set F1 has three connected components, which includes the
tangential points t32 and t23, but not the pre-images of the other four tangential
points. The (bold) closed set C2 has two connected components, and the (bold) set
F2 has six — both sets contain the pre-images of the four tangential points that
are not in F1. The (thicker bold) closed set C3 has four connected components.

Figure 12. The removal process of the open sets Fn from the Kasner circle K# in equa-
tion (47). The open set F0 = int(S) has three connected components. The closed set C1

consists of the three arcs A1, A2, A3. Due to the axis permutation (7), we only describe
the sets F1, C2 in (a) and F2, C3 in (b) in the bottom arc A1.

The removed set Fn consists of two different types of points within Cn,
int(K−n(S)) and ∂Cn, since we can write Fn as Fn = int(K−n(S)) ∪ ∂Cn.
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This is due to the fact that the points in Fn either have an nth iteration
Kn(p) that falls in the interior of the stable set, int(S), or points whose
(n− 1)th iteration Kn−1(p) ends at one of the tangential points, which are
the boundary points of Cn. Thus the tangential points and their pre-images
are all eventually removed. As a consequence, Cn+1 is the closed set of points
that remains after removing Fn from Cn. The removal procedure, which
is analogous to the removal process of the ternary Cantor set depicted in
Figure 11, is illustrated in Figures 12 and 13. .

The set C is obtained as the intersection of the sets (Cn)n∈N0
according

to Lemma 4.3 below, which is proved to be a nested sequence of closed sets
in Lemmata 4.5 and 4.6.

(a). Deleting the three
(dashed) connected compo-
nents of F0 from the Kas-
ner circle K# = C0 yields the
closed set C1.

(b). Removing the nine
(thin) connected compo-
nents of F1 from the three
arcs of C1 leads to the (bold)
closed set C2.

(c). Erasing the eighteen
(thin) connected compo-
nents of F2 from the six
components of C2 yields the
(bold) closed set C3.

Figure 13. The iterative construction of the Cantor set C: Start (at the left) with the
Kasner circle K# and remove (when going to the right) the (thin) arcs Fn keeping the
closed (bold) arcs Cn+1. Note that Cn has 3 · 2n−1 connected components for n ≥ 1, in
accordance with Lemma 4.5. To avoid clutter, we refrain from drawing the boundaries of
the arcs in (c).

Lemma 4.3. The sets C and F defined respectively in (40) and (41) can
be written as

(48) C =
⋂

n∈N0

Cn and F =
⋃

n∈N0

Fn,

where Cn and Fn are defined by (47).

Proof. First, we prove the equality for F . The inclusion ∪n∈N0
Fn ⊆ F follows

from the definition of Fn in (47b) and F in equation (41). The reverse,
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F ⊆ ∪n∈N0
Fn, is proved next, where we show that any point p ∈ F is also in

Fn for some n ∈ N0. For any p ∈ F , there is a minimal n0 ∈ N0, p /∈ K−k(S)
for all k ∈ N0 such that k < n0, whereas p ∈ K−k(S) for all k ≥ n0. In other
words, p ∈ Ck and p ̸∈ Fk for all k < n0. Consequently, p is not removed in
the n0 − 1 iteration and p therefore lies in Cn0

= Cn0−1 \ Fn0−1. There are
two possibilities: Either p ∈ Fn0

or p /∈ Fn0
. Since the former completes the

proof, we consider the latter and conclude that p ∈ Fn0+1. On the one hand,
p ̸∈ Fn0

= intCn0
(K−n0(S)), and on the other hand p ∈ K−n0(S). The point

p must therefore lie in the boundary of Fn0
, which is contained in Fn0+1, see

Figure 12.
Second, we prove the equality for C. The inclusion C ⊆ ∩n∈N0

Cn follows
from the claim C ⊆ Cn for all n ∈ N0, which is proved by induction. For the
basis, obviously C ⊆ C0 = K#. For the induction step, assume C ⊆ Cn for
all n ≤ N and show that C ⊆ CN+1. Note that C in (40) and FN in (47b) are
disjoint. The induction hypothesis and (47c) yield C ⊆ CN+1. The reverse
inclusion ∩n∈N0

Cn ⊆ C follows from the characterization of F since points
p ∈ ∩n∈N0

Cn are never removed in the iterative construction (47), that is,
p ̸∈ ∪n∈N0

Fn = F . Hence, p ∈ K#\F = C. □

The next Lemma describes the maximum and minimum expansion rates
of K within the set C, which are used later to bound the Hausdorff dimension
of C.

Lemma 4.4. The extrema of the derivative of the Kasner map within C
are

m := min
p∈C

|DK(p)| = 2(1− v2)

1 + 2v2 −
√
12v2 − 3

(49a)

M := max
p∈C

|DK(p)| = 2 + v2

1− v2
.(49b)

The proof is based on two main features. First, the three lines in
(Σ1,Σ2,Σ3)-space that connect each pair of auxiliary points Q1/v, Q2/v
and Q3/v describe physically equivalent heteroclinic chains with period 2 in
K#,8 constructed by concatenation of two heteroclinic Bianchi type II orbits

8Note that these heteroclinic chains with period 2 are the full unfolding of the
Taub points, as seen in Figure 14. These orbits collapse at the Taub points when
v → 1/2, and disappear when v ∈ (0, 1/2]. The role of the collapse of these objects
toward the Taub points when v → 1/2 in Bianchi type VIII and IX is unclear,
particularly the (two-dimensional) center manifold of the tangential points, and
the stable manifold of the chain with period 2, see also Appendix C.
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related by axis permutations, see Figure 14. In particular, the line between
Qα/v and Qβ/v is characterized by Σγ = 1/v, which yields a heteroclinic
chain of period 2 under iterates of K that maps two physically identical
Kasner states (related by interchanging the axes Σα and Σβ) at Aα and Aβ

to each other, where (α, β, γ) = (1, 2, 3) or a permutation thereof.
Second, due to symmetry under axis permutations (7), we can with-

out loss of generality restrict attention to the left half of the arc A1 when
considering |DK(p)| = g(p) (recall Lemma 2.1), where g(p) monotonically
increases between t32 and Q1, see Figure 5. As a consequence the minimum
m (maximum M) is determined by the left-most (right-most) point pm ∈ C
(pM ∈ C) in this half arc. Moreover, according to (25), the coordinate Σ1 of
pm and pM determines g(pm) and g(pM ), respectively.

pm

K(pm)

A1

A2 A3

int(S)

int(S) int(S)

Σ1

Σ2Σ3

Q1/v

Q2
v

Q3
v

t32 t23

(a). The minimum of g on C occurs
at pm where Σ3 = 1/v. Any point in A1

between t32 and pm eventually ends up
in S, since Σ3 > 1/v monotonically in-
creases on the type II1 and II2 subsets.

p∗ K(p∗)

pMA1

A2 A3

int(S)

int(S) int(S)

Q1

Q1/v

Q2
v

Q3
v

Σ1

Σ2Σ3

(b). The maximum of g|C is at pM :=
K−1(p∗), where p∗ has Σ1 = 1/v. Points
between pM and Q1 eventually end up
in S, since Σ1 > 1/v monotonically in-
creases on the type II2 and II3 subsets.

Figure 14. Depiction of the lines connecting each pair of points Q1/v, Q2/v and Q3/v,
which determine the periodic heteroclinic chains with period 2; the points pm and pM for
the extrema of |DK| = g on C; examples of points with finite heteroclinic chains ending
in S.

Proof. The point pm is determined by the periodic heteroclinic chain charac-
terized by the line between Q1/v and Q2/v for which Σ3 = 1/v. This follows
since pm thereby belongs to C, and since any point p in the half arc between
t32 and pm with g(p) < g(pm) is not in C. This is due to that p eventually
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ends up in S, either directly via a heteroclinic orbit or by a finite hete-
roclinic chain, since Σ3 monotonically increases when Σ3 > 1/v along such
heteroclinic orbits and chains, see Figure 14.

To find the coordinate Σ1 of pm we insert Σ3 = 1/v into the con-
straint (4d), which yields Σ2 = −(Σ1 + 1/v). Inserting the values for Σ2

and Σ3 into the constraint (4c), Σ2 = 1, results in

(50) Σ2
1 +

Σ1

v
+

1− 3v2

v2
= 0.

This equation has two solutions (which coincide with T3 for v = 1/2), where
the one with the smaller Σ1 yields a point that resides in the left arc of A1,
while the other solution gives the image of this point, which is in A2, see
Figure 14. The relevant solution is therefore the one with the smaller value

(51) Σ1 =
−1−

√
12v2 − 3

2v
.

Inserting this into g(pm) in (25) results in (49a), m = |DK(pm)| = g(pm), as
desired.

Next, we show that that the point pM is the pre-image K−1(p∗) ∈ A1,
where p∗ is the point in A2 determined by the line between Q2/v and Q3/v
characterized by Σ1 = 1/v, see Figure 14. Note that pM ∈ C, since K(pM ) =
p∗ resides on a heteroclinic cycle forming a heteroclinic chain with period 2.
Moreover, the point pM yields M , since any point p in the half arc between
pM and Q1 with g(p) > g(pM ) is not in C. This follows since p yields an orbit
such that K(p) ends above p∗ in Figure 13(b) with Σ1 > 1/v, either in S or
in A2. In the latter case the orbit is concatenated with other heteroclinic
orbits for which Σ1 > 1/v monotonically increases, which thereby yields a
finite heteroclinic chain that ends at S.

The point K(pM ) = p∗ is the ω-limit of the heteroclinic orbit with pM
as its α-limit. Inserting η = g(pM ) into (20) yields

(52) Σf
1 = Σi

1g(pM ) +
2

v
(g(pM )− 1) ,

where Σf
1 is the value of Σ1 at p∗ and g(pM ) is given in (25). Moreover,

Σf
1 = 1/v, since p∗ lies on the line between Q2/v and Q3/v, which, when

inserted into (52), gives

(53) Σi
1 = − 1 + 5v2

v(2 + v2)
.
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Inserting this result into (25) yields M = |DK(pM )| = g(pM ) and
thereby (49b). □

4.3. Characterization of C by symbolic dynamics

To know more about the connected components of Cn with n ≥ 1, i.e., the
bold sets in Figure 13, we introduce symbolic dynamics in a manner similar
to that of the ternary Cantor set in Figure 11, where each connected com-
ponent was encoded by a sequence of two symbols L and R. The starting
point n = 0 consists of the removal of the set F0 = int(S) from the Kasner
circle C0 = K#, which yields C1 = A1 ∪A2 ∪A3.

Consider any p ∈ Cn with n ≥ 1. By the definitions in equation (47),
there is a unique symbol an ∈ {1, 2, 3} such that Kn(p) ∈ int(Aan

) for each
n ∈ N. Since two consecutive iterations are never in the same unstable arc,
an ̸= an+1 for all n ∈ N. Furthermore, any p ∈ Aα has two pre-images of the
Kasner circle map K: one in Aβ and one in Aγ , where (α, β, γ) is a permu-
tation of (123), see Figure 4. It therefore follows that we can find points
visiting a prescribed sequence of expanding arcs, obtained from heteroclinic
chains. To describe a finite sequence of arcs we introduce the following no-
tation: wn = a0 . . . an−1, where wn is called a word. Consider the set of all
words wn of length n ≥ 1, also called an alphabet, and denote this set by

(54) Wn :=

{

a0 . . . an−1

∣

∣

∣

ak ∈ {1, 2, 3} for k = 0, . . . , n− 1,
ak+1 ̸= ak for k = 0, . . . , n− 2

}

.

It then follows that the alphabet Wn consists of 3 · 2n−1 words (three possi-
bilities for a0 and two possibilities for each following ak due to the restriction
ak+1 ̸= ak). Points p ∈ C are encoded by infinite sequences with n = ∞, i.e.,
w∞ ∈W∞.

To connect words with the iterative construction of C, we define the set
I(wn) to be the collection of points on K# that visits the arcs by iterations
of K prescribed by wn = a0 . . . an−1 ∈Wn. This is formally expressed as

(55) I(wn) :=

n−1
⋂

k=0

K−k(Aak
),

where a specific word wn yields a specific connected closed set I(wn), as
illustrated in Figure 15. Note that for p ∈ I(wn) = I(a0 . . . an−1) it follows
that Kk(p) ∈ Aak

, k = 0, . . . , n− 1, and, in particular, p ∈ Aa0
.
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The next lemmata guarantee that the union of I(wn) for all words
wn ∈Wn yield the set Cn in the iterative construction (47), and hence that
I(wn) are the connected components of Cn. Moreover, the family {I(wn)}n∈N
consists of shrinking nested closed sets. The veracity of these claims is illus-
trated by considering a sequence of one of the connected components of the
bold sets Cn for each n ≥ 1 in Figure 13 and by a step by step construction
of the nested closed sets in Figure 15.

Lemma 4.5. For n ≥ 1, the set Cn is given by the union of the 3 · 2n−1

closed, connected, disjoint sets I(wn):

(56) Cn =
⋃

wn∈Wn

I(wn).

Proof. First, we show that Cn ⊆ ∪wn∈Wn
I(wn). By the definitions in (47),

points p ∈ Cn are not in the kth removed set Fk for all k = 0, . . . , n− 1. There
is thereby a unique symbol ak ∈ {1, 2, 3} such that Kk(p) ∈ Aak

for each
k = 0, . . . , n− 1 and ak+1 ̸= ak for all k = 0, . . . , n− 2. Hence p ∈ I(wn) for
the word wn = a0 . . . an−1 ∈Wn.

Second, I(wn) ⊆ Cn for all wn = a0 . . . an−1 ∈Wn since p ∈ I(wn) are
not in Fk for all k = 0, . . . , n− 1, as follows from the definition (55) and the
iterative construction defined in (47). Hence p ∈ Cn.

To show disjointedness, consider two different words in Wn given by
wn = a0 . . . an−1 and w̃n = ã0 . . . ãn−1 such that ak ̸= ãk for some k. Then
any p ∈ I(wn) satisfies Kk(p) ∈ Aak

whereas Kk(p) /∈ Aãk
since Aak

and Aãk

are disjoint. Hence p /∈ I(w̃n).
Finally, the number of closed connected components of Cn is given by

the cardinality of Wn, which is 3 · 2n−1. □

Lemma 4.6. For any n ≥ 2, the set I(wn) is a closed nested set of K#:

(57) I(wn) ⊆ I(wn−1),

where wn = a0 . . . an−1 ∈Wn and wn−1 = a0 . . . an−2 ∈Wn−1. Moreover,

(58) 0 < |I(wn)| < 2πνn−2,

for some constant ν ∈ (0, 1), where | · | denotes the Lebesgue measure.

Proof. The arcs Aα for α = 1, 2, 3 are closed, and so are their pre-images
under the continuous map K. Since I(wn) is an intersection of closed sets
defined in (55), it follows that I(wn) is a closed set in K#.
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int(S)

int(S) int(S)

I(1)

I(3)I(2)

I(13)I(12)

(a). The (bold) set C2 within I(1) =
A1 has two closed connected components
given by I(w2), which are encoded by
words w2 = a0a1 ∈W2 such that a0 =
1. The set I(w2) with w2 = 12 encodes
points p ∈ A1 = I(1) such that K(p) ∈
A2, whereas w2 = 13 encodes p ∈ A1 =
I(1) with K(p) ∈ A3 = I(3).

int(S)

int(S)int(S)

I(3)I(23)

I(123)

(b). The (thicker bold) set C3 within
I(1) = A1 has four closed connected
components I(w3), which are encoded by
the words w3 = a0a1a2 ∈W3 such that
a0 = 1, K(p) ∈ Aa1 , K2(p) ∈ Aa2 , where
p ∈ A1. The sets I(w2) and I(w3) for the
bottom arc are described in detail in Fig-
ure (c).

t32 t23

I(1)

I(12) I(13)

I(131)I(121)

I(132)I(123)

(c). The sets I(wn), for n = 1, 2, 3, in the arc A1. The (thin) set C1 has one closed
connected component in A1 given by I(w1) encoded by the word w1 = 1 ∈W1, i.e.,
A1 = I(1). The (bold) set C2 has two closed connected components in A1 given by
I(w2), which are encoded by words w2 = a0a1 ∈W2 such that a0 = 1. The (thicker
bold) set C3 has four closed connected components in A1, given by I(w3) encoded
by the words w3 = a0a1a2 ∈W3 such that a0 = 1.

Figure 15. Illustration of the nested sets I(wn) for n = 1, 2, 3. The (bold) set C1 has
three closed connected component given by arcs A1, A2, A3, described in equation (12)
and Figure 2, and they are encoded by symbolic dynamics as I(w1) = Aw1 , with the
corresponding word w1 within the alphabet W1 = {1, 2, 3}.

The nested inclusion (57) follows from rewriting equation (55) as

(59) I(wn) = I(wn−1) ∩ K−(n−1)(Aan−1
).
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This also implies that |I(wn)| > 0, since I(wn) is connected and strictly
contains two nonempty closed disjoint subsets given by I(wn+1) for wn+1 =
a0 . . . an ∈Wn+1, where the word wn+1 is an extension of wn by concatenat-
ing a symbol an ̸= an−1 at the end, see Figure 15.

Next we show equation (58). The Kasner map restricted to the set I(wn),
given by K : I(a0 . . . an−1) → I(a1 . . . an−1), see Figure 15, is a diffeomor-
phism, which implies that x = K(p) leads to:

min
p∈I(wn)

|DK(p)| · |I(wn)| ≤
∣

∣

∣

∣

∣

∫

I(wn)
DK(p)dp

∣

∣

∣

∣

∣

(60)

=

∣

∣

∣

∣

∣

∫

I(a1...an−1)
dx

∣

∣

∣

∣

∣

= |I(a1 . . . an−1)|.

Since the sets I(wn) are nested as in (57), and since I(w2) is a connected
component of C2 for some w2 ∈W2, as described in equation (56), it follows
that

(61) min
p∈I(wn)

|DK(p)| ≥ min
p∈I(w2)

|DK(p)| ≥ min
p∈C2

|DK(p)| =: ν−1 > 1,

as illustrated by Figure 15. The last inequality, which yields ν < 1, follows
from that C2 is bounded away from the tangential points, see Figure 12, and
since the derivative then is strictly bigger than one, see (32) and Figure 5.

We then apply the inequality (60) recursively together with (61), which
leads to

(62) |I(wn)| ≤ νn−2 · |I(w2)|

for some w2 ∈W2. Together with |I(w2)| < |K#| = 2π this results in equa-
tion (58). □

Finally, note that the shrinking rate of |I(wn)| in (58) is not improved
by repeating the recursive procedure in (62) once more in order to bound
|I(wn)| by |I(w1)|. Then the right hand side of (61) is replaced with νn−2 ·
ν̃|I(w1)|, where ν̃−1 := minp∈C1

|DK(p)|. However, ν̃ = 1, since C1 consists
of the three arcs Aα, which contain tangential points for which the minimum
1 is attained, see Figure 5.
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4.4. Proof of Theorems 4.1 and 4.2

Based on the above ingredients we will now prove Theorems 4.1 and 4.2 in
six steps.

First step: Closedness and nonemptiness of the set C.
Since C is obtained in equation (48) as the intersection of closed sets

Cn, defined in (47), which in turn is the union of closed arcs I(wn) in equa-
tion (56), C is also closed.

Furthermore, given a word w∞ = (ak)k∈N0
∈W∞ and its truncations

wn = a0 . . . an−1, the family {I(wn)}n∈N consists of shrinking nested closed
sets such that its intersection consists of a single point p, due to
Lemma 4.6 and Cantor’s intersection Theorem in complete metric spaces
when diam(I(wn)) → 0 as n→ ∞. Such a point belongs to I(wn) for all
n ≥ 1, and also in Cn for every n ≥ 0 due to (56) and C0 = K#. Conse-
quently, p ∈ C, which is determined by the intersection of all Cn according
to (48). In other words,

(63)
⋂

n∈N0

I(wn) = p ∈ C.

Note that such a point p is associated with the word w∞ = a0a1a2 . . . ∈W∞,
whereas the next point in the heteroclinic chain, K(p), is associated with
the sequence w̃∞ = a1a2 . . ., which is the word w∞ without the first symbol
a0. Hence K(p) lies in the intersection of the family {I(w̃n)}n∈N0

. Different
points in the same heteroclinic chain are therefore distinguished by fixing
a0. This notion of deleting the first symbol is also called a shift to the left,
and is used to prove chaoticity in the sixth step.

Second step: No isolated points in C.
Consider a point p ∈ C and an ε-neighborhood of p in K#. Let w∞ =

(ak)k∈N0
∈W∞ be a sequence such that Kk(p) ∈ Aak

for all k ∈ N0. Ac-
cording to equation (58), there is an n ∈ N such that I(wn) = I(a0 . . . an−1)
contains p and has a length smaller than ε.

Next we prove that I(wn) contains a point q ∈ C different than p with
a distance smaller than an arbitrary ε, and hence that p is not isolated.
Let ãn ∈ {1, 2, 3} be different than an−1 and an. Hence, the word w̃n+1 :=
a0 . . . an−1ãn is without repetition and differs from wn+1 = a0 . . . an−1an.
Moreover, the disjoint sets I(wn+1) and I(w̃n+1) are both contained in
I(wn), since such arc sequences are nested (57), see Figure 15. We now
show that there is a q ∈ I(w̃n+1) which is also in C, but different than
p, since p ∈ I(wn+1). Consider the family {I(w̃k)}k∈N of shrinking nested
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closed sets, where w̃k := a0 . . . ak is the truncation of the word w̃∞ :=
a0 . . . an−1ãnanan+1 . . . ∈W∞. This guarantees that an−1, ãn and an are
pair-wise disjoint, and hence (63) implies that there is a q, which lies in C
and in the intersection of I(w̃k) for all k ∈ N, and consequently in I(w̃n+1).

Third step: C has an empty interior.
Since C is closed, C = C, we only have to prove that C has an empty

interior. Consider the same arbitrary point p ∈ C and I(wn) within an ε-
neighborhood for any ϵ > 0, as in the second step. We now show that I(wn)
contains a point r ∈ K# \ C, and hence that p is not an interior point and
that there thereby are no interior points.

Consider r ∈ ∂I(wn). Since the restriction K : I(wn) → I(a1 . . . an−1) is
a diffeomorphism, it preserves boundaries, i.e., K(r) ∈ ∂I(a1 . . . an−1). After
n− 1 iterations, Kn−1(r) ∈ ∂I(an−1). Note that I(an−1) is the arc Aan−1

,
and that its boundary consists of the tangential points, which are in S.
Hence Kn−1(r) ∈ S, and thus r ∈ K# \ C, see Figure 12.

Fourth step: C has measure zero.
We prove that F = K# \ C has full measure 2π, and hence that C has

measure zero.
Define the relative size of the nth removed set of the iterative construc-

tion (47) as

(64) qn :=
|Fn|
|Cn|

∈ (0, 1),

which is well-defined, since Cn contains the sets In(wn) of positive length.
Consider the following partial sum of the pairwise disjoint sets Fk:

(65) sn :=

n
∑

k=0

|Fk|.

Then

(66) |F | = s∞.

Applying the definition (47c) of Cn+1 recursively leads to

(67) |Cn+1| = 2π − sn.

We then use equations (64), (65) and (67) to obtain

(68) sn+1 − sn = |Fn+1| = |Cn+1|qn+1 = (2π − sn)qn+1.
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Note that the sequence (sn)n∈N0
in (65) is increasing and bounded above

by 2π and thereby converges to the limit |F | ∈ [0, 2π]. On the other hand,
the sequence (qn)n∈N0

is bounded, and thus admits converging subsequences
(qnk

)k∈N0
with a limit q. Taking the limit of (68) results in

(69) 0 = |F | − |F | = (2π − |F |)q.

Proving that F has full measure corresponds to excluding q = 0. We there-
fore show that qn is uniformly bounded away from 0. First, observe that
|Fn| = |Cn| − |Cn+1|, as follows from (47c), which enables us to rewrite (64)
as

(70) qn = 1− |Cn+1|
|Cn|

.

We now show that the quotient |Cn+1|/|Cn| is uniformly bounded away from
1, which follows from the expansion property of the Kasner circle map in
Lemma 2.1. Note that Cn+1 ⊆ C2 for every n ≥ 1, and that K(Cn+1) ⊆ Cn,
from which it follows that

(71) min
p∈C2

|DK(p)| · |Cn+1| ≤ min
p∈Cn+1

|DK(p)| · |Cn+1| ≤ |Cn|,

or, equivalently,

(72)
|Cn+1|
|Cn|

≤ 1

minp∈Cn+1
|DK(p)| ≤

1

minp∈C2
|DK(p)| = ν < 1,

where the last inequality was shown in connection with equation (61). More-
over, F1 removes a whole neighborhood of the tangential points, as follows
from (47), see Figure 12. Since |Cn+1|/|Cn| is uniformly bounded away from
1, it follows that qn is uniformly bounded away from 0, and hence any con-
verging subsequence of (qn)n∈N0

has a limit q > 0.
Fifth step: Bounds on the Hausdorff dimension of C.
The bounds (42) follow from Proposition 6 in [78], which we simplify

and adapt to our situation and notation.

Proposition 4.7. Consider the iterative construction of C given by Cn

in (47), with connected components I(wn) in (55) for wn ∈Wn. Suppose
there are closed sets I∗(wn) and I

∗(wn) of Lebesgue measure |I∗(wn)| = c/λ∗

and |I∗(wn)| = c/λ∗ for some c ∈ R+ and 0 < 1/λ∗ ≤ 1/λ∗ < 1 such that
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I∗(wn) ⊆ I(wn) ⊆ I∗(wn) where the sets int(I∗(wn)) and int(I∗(w̃n)) are dis-
joint for different words wn ̸= w̃n. Then,

(73)
log(2)

log(λ∗)
≤ dimH(C) ≤ log(2)

log(λ∗)
.

Recall that Cn in (47) is obtained by a non-uniform contraction of Cn−1

with a contraction rate given by the inverse of the expansion rate (32).
We exclude the case n = 1, which only divides K# into the three physically
equivalent arcs Aα and C into three identical parts with the same dimension,
one in each arc, see Figure 2. Then the following sets satisfy the above hy-
pothesis: for n > 1 let I∗(wn) and I

∗(wn) be uniform contractions of the set
I(wn−1) with respective contraction rates being the inverse of the expansion
rates given by λ∗ :=M = maxp∈C |DK(p)| and λ∗ := m = minp∈C |DK(p)|
so that c := |I(wn−1)|. Disjointness follows from the proof of Lemma 4.5,
which showed that I(wn) and I(wk) are disjoint, while Lemma 4.4 gave the
desired boundsM andm < M . Note also that C lies within K# and contains
no interval, and thus that its Hausdorff dimension has to be less than 1.

Although the bounds (42) now have been proven, it is useful to provide
an intuitive non-rigorous reasoning of this proof: our Cantor set lies between
two standard Cantor sets with removed sets being uniformly scaled by the
inverse of the minimum and maximum expansion of the Kasner map in (32).

The Cantor set C can be divided into three identical parts: the inter-
section of C with each arc Aα for α = 1, 2, 3, which are the three connected
components of the first iterate C1 in the construction (47) of C. Since those
three sets are disjoint,

(74) dH(C) = dH(C ∩Aα).

After such a first iterate, the construction is similar to the standard Cantor
set in an interval: three parts of each arc Aα are removed, yielding two
remaining subarcs, which are the two connected components of C2 ∩Aα.
The left and right parts of C in the two connected components of C2 ∩Aα

are called CL and CR, in analogy with the ternary Cantor set argument
in (46), see Figure 13. Then,

(75) µd(C ∩Aα) = µd(CL) + µd(CR) = 2δdµd(C ∩Aα),

where the first equality holds since the sets CL and CR are disjoint; the
second since such sets have the same measure and are obtained by contract-
ing C ∩Aα with a factor δ < 1, which is the inverse of the expansion of the
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set CL according to the Kasner circle map, scaled with the power of the
dimension d.

Note that the contraction rate δ < 1 is not uniform, since the expan-
sion of the Kasner circle map is not uniform. Moreover, each iteration has
a different contraction rate given by |Ck+1|/|Ck|. We therefore obtain the
following bounds:

(76) 2M−dµd(C ∩Aα) ≤ µd(C ∩Aα) ≤ 2m−dµd(C ∩Aα).

If µd(C ∩Aα) ̸= 0 and ∞ for some d ≥ 0, which we refrain from proving,
we obtain

(77) 2M−d ≤ 1 ≤ 2m−d,

where the logarithm implies the desired bounds (42). There remains to show
that µdM (C ∩Aα) <∞ and µd

∗

(Ci
1 ∩ C) ≥ ϵ > 0 in order to make the above

proof rigorous. This, however, follows in a similar manner as for the usual
ternary Cantor set, or, alternatively, see [78].

Sixth step: Chaoticity of K on C.
To determine chaoticity of K on the Cantor set C, we establish topologi-

cal conjugacy with the shift map, σ :W∞ →W∞, which shifts a sequence to
the right, i.e., σ(a0a1a2 . . . ) := a1a2a3 . . . , since the shift map is well-known
to be chaotic, see Chapter 1.6 in [23]. Note that W∞ is a subspace of all
possible infinite sequences, as two adjacent symbols can not coincide, and
thus σ is a one-sided subshift of finite type. To accomplish this we con-
struct an encoding map, which is a homeomorphism h : C →W∞ such that
h ◦ K = σ ◦ h, i.e., we need to establish the following commutative diagram:

(78) C
K

//

h
��

C

h
��

W∞ σ
//W∞

If such a map h exists, we say that the discrete dynamical systems K
and σ are topologically conjugate. Note that the dynamics of K and h are
equivalent, since K = h−1 ◦ σ ◦ h, and hence fixed points and periodic hete-
roclinic chains can be translated from one system to the other, see Chapter
1.7 in [23].

We construct the map h so that it encodes each point p ∈ C into an
infinite sequence of three symbols 1, 2, 3 without consecutive repetitions,
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which accounts for the arcs A1, A2, A3 the iterations of Kn(p) visits, i.e.,

(79)
h : C → W∞

p 7→ h(p) := w∞ = (ak)k∈N0
,

where for each k, we define ak by Kk(p) ∈ Aak
. Note thatW∞ is the alphabet

of words of infinite length, i.e., the set (54) when n = ∞, and that periodic
heteroclinic chains yield infinite periodic sequences.

Following the heteroclinic orbit that takes p to K(p) corresponds to a
shift to the right given by σ(a0a1a2 . . . ) := a1a2a3 . . . . In other words, the
diagram in (78) commutes. However, we also have to show that h is bijective,
continuous, and that h−1 is also continuous. This follows from the definition
of I(wn) in (55) and its properties given in Lemma 4.6, as shown next.

The map h is bijective since for any sequence w∞ ∈W∞ there is a unique
point p ∈ C such that h(p) = w∞. This point is p =

⋂

n∈N0
I(wn), as in (63),

where wn is the nth truncation of the infinite word w∞.
The map h is continuous at any point p ∈ C, since the neighborhood

I(wn) ∩ C of p, for any n ∈ N0, only contains points q ∈ C whose corre-
sponding sequences of symbols h(q) coincide with h(p) for the first n sym-
bols.

The map h−1 is also continuous. For any ε > 0, there is an n ∈ N0 such
that any two given sequences w∞, w̃∞ ∈W∞ for which the first n symbols
coincide, both h−1(w∞) and h−1(w̃∞) are in I(wn) = I(w̃n) with |I(wn)| <
ε, due to (58) in Lemma 4.6.

Note that the above proof does not carry over to the critical case with
v = 1/2 since the map h in (79) only encodes the Cantor set C, i.e., it does
not encode the set S, which includes the tangential points and the Taub
points. To deal with v ∈ (1/2, 1) and v = 1/2 in a unified manner, we make
an appropriate modification in Appendix C.

5. Subcritical case

In the subcritical case, v ∈ (0, 1/2), each point in the set K# admits at least
one unstable direction and hence the following Lemma holds:

Lemma 5.1. Every point in the set K# admits at least one infinite hete-
roclinic chain.

More precisely, all points in K# \ int(Aα ∩Aβ) have one unstable di-
rection, whereas points in int(Aα ∩Aβ) have two unstable directions, see
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Figure 2. A point within int(Aα ∩Aβ) thereby admits two different hete-
roclinic connections on the hemispheres IIα and IIβ given by (16), which
induces a multivalued Kasner circle map K, see Figure 4. To deal with this
situation we interpret K as a collection of maps on the Kasner circle K#,
i.e., we will reformulate K as a so-called expansive iterated function system.

Recall that the Kasner circle map (24) is expanding due to equa-
tion (32). However, the usual definition of an iterated function system (IFS)
is based on a family of contractions in a metric space X, i.e., F := {fi :
X → X | i = 1, ..., N, fi ∈ C1 and |f ′i | < 1}. According to [43], there exists
a unique nonempty compact set A ⊆ X called the attractor of F , which
satisfies A = ∪N

i=1fi(A).
An example is the ternary Cantor set T , iteratively constructed in (43),

which can be seen as the attractor of the IFS given by {fL, fR : [0, 1] →
[0, 1]}, where the left and right maps are fL(x) := x/3 and fR(x) := x/3 +
2/3, respectively. Then the nth-step of the construction Tn consists of the
union of all its connected components given by the image fin ◦ ... ◦ fi1([0, 1])
for some i1, ..., in ∈ {L,R}, see Figure 11.

Fewer efforts have been made in understanding families that are not
contractions, although see the construction of Koch curves using expansions
in [79] and the more recent work [64]. Both these investigations focus on
generating patterns occurring outside fractal sets and understanding iter-
ates, which in a non-compact space escape to infinity. Since we are dealing
with expansive iterates of a compact set, the Kasner circle K#, we propose
a theory of expansive iterated function system (eIFS) on compact metric
spaces9. We define an expansive iterated function system (eIFS) as a family
of expansions in a compact metric space X,

(80) F :=

{

fi : X → X
∣

∣

∣
i = 1, ..., N,

fi ∈ C1 almost everywhere,
|f ′i | > 1 on dense open sets

}

.

In the spirit of [43], we define the iterates of F by the Hutchinson operator:

(81) Fn(p) :=
⋃

i1,...,in∈{1,...,N}
fin ◦ ... ◦ fi1(p),

where the nth iterate yields a set consisting of at most Nn points, since the
Hutchinson operator Fn(p) is defined as the union over all possible iterates.

9Alternatively, one can consider the usual physical time direction (i.e., the reverse
of the present time direction), for which the Kasner map becomes a contraction
almost everywhere, and seek an attractor and its properties for a non-hyperbolic
IFS, see [4, 49, 68] and references therein.
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We now consider the Kasner circle map (24) as an expansive iterated
function system and state a conjecture regarding its dynamics. The Kasner
circle eIFS is defined as a collection of eight maps as follows:

(82) K := {Kµνζ(p) : K
# → K# | µ = 1, 2; ν = 1, 3; ζ = 2, 3},

where each individual map is given by

(83) Kµνζ(p) :=







































f1(p) for p ∈ A1\{(A1 ∩A2) ∪ (A1 ∩A3)}
f2(p) for p ∈ A2\{(A2 ∩A1) ∪ (A2 ∩A3)}
f3(p) for p ∈ A3\{(A3 ∩A1) ∪ (A3 ∩A2)}
fµ(p) for p ∈ A1 ∩A2

fν(p) for p ∈ A2 ∩A3

fζ(p) for p ∈ A1 ∩A3

where f∗(p) := g(p)p+ (g(p)− 1)T∗/v such that the symbol ∗ is to be re-
placed by 1, 2, 3 or µ ∈ {1, 2}, ν ∈ {2, 3}, ζ ∈ {1, 3}.

Any point that is not in the overlap regions, e.g. p ∈ A1\{(A1 ∩A2) ∪
(A1 ∩A3)}, has the same image under all maps Kµνζ(p), independently of
the indices µ, ν, ζ. On the other hand, points in the overlap regions, e.g.
p ∈ A1 ∩A2, have two different maps with different images: K1νζ(p) and
K2νζ(p), independently of the indices ν and ζ. This combinatorial problem
of choosing between two maps for each of the three overlapping arcs yields
the eight maps in (82).

Due to (24), each map (83) is expanding and C1 everywhere in K#, ex-
cept at certain tangential boundary points ∂(Aα ∩Aβ) where the derivative
is one. Nevertheless, if Kµνζ(p) is discontinuous at such a tangential point,
there is another Kµ′ν′ζ′(p) that is both C1 and strictly expanding at this
point.

The iterates of the Kasner eIFS are given by its Hutchinson operator:

(84) Kn(p) :=
⋃

µk=1,2; νk=2,3; ζk=1,3
for k=1,...,n

Kµnνnζn ◦ ... ◦ Kµ1ν1ζ1(p).

This allows us to formulate the following conjecture:

Conjecture 5.2. The Kasner circle eIFS is chaotic when v ∈ (0, 1/2).

We expect that the Kasner circle eIFS is chaotic due to the expanding
properties of each map of the Kasner circle eIFS (82). However, the notion
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of chaos still has to be further developed for multivalued maps. We suggest
two different approaches to tackle this problem. First, one can attempt to
generalize the notion of chaotic discrete dynamical systems to eIFS using
the Hausdorff distance between sets, since the image under the Hutchinson
operator of the Kasner map in (84) is a set of points. Second, one can try
to incorporate different symbols µνζ in the definition of chaos, and require
that topological mixing occurs for some, for generic, or for all symbols µνζ.
Roughly speaking, this means that there are chaotic realizations of the eIFS.
Such a realization of chaos for some symbols µνζ has been achieved for the
Kasner multivalued map in [49].

We also expect that there are two special iterations in the Hutchinson
operator (84) which dictate the chaotic dynamics. Whenever some iterate
of a point p reaches the overlap Aα ∩Aβ , there are two choices of maps:
one corresponding to orbits originating from the auxiliary point Qα/v and
one from Qβ/v. Consider the iteration Kµnνnζn ◦ ... ◦ Kµ1ν1ζ1(p), related to
a symbolic sequence (µk, νk, ζk)k∈N0

that always selects the map with min-
imum expansion rate among the two choices, and define it to be Kn

m(p).
Similarly, denote by Kn

M (p) the iteration that always selects the map with
maximum expansion among the two choices. These maps are uniquely de-
termined for each point that is not a Taub point. We expect the dynamics
of Kn

m and Kn
M to quantify how chaotic the full dynamics turns out to be,

although there are several technical problems which need to be resolved,
especially in connection with the Taub points.

Note that there is redundancy in the iteration of the maps (83) in the
Hutschinson operator (84), e.g., a point that is not in any overlap region
p ∈ Aα\{(Aα ∩Aβ) ∪ (Aα ∩Aγ)} is mapped by Kµνζ(p) for all µνζ in the
Hutchinson operator (84). Nevertheless, all these images coincide and consist
of a single point. To avoid redundancy, one can give alternative descriptions
of the multivalued Kasner circle map (24), which affect the number of maps
in an eIFS. For instance, instead of considering the maps (82) within the
eIFS framework in (80), one can consider a family of three C1 maps such that
the domain of each map corresponds to Aα. In this and similar descriptions,
one has to be careful about how images of some maps should be contained
within the domain of a different map in order to have a well-defined iteration.
To circumvent this problem, and have the whole Kasner circle K# as the
domain, we choose the maps in (82). The drawback with this choice is that
each map (83) is discontinuous at certain tangential points.

Even though the overall dynamical structure is far from being under-
stood, there are still special features which can be compared with the su-
percritical case. Consider the set C̃ of points in K# for which all iterates of
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the Kasner circle map K consist of exactly one positive eigenvalue in the Nα

variables10, see Figures 2 and 4, i.e.,

C̃ := {p ∈ K# | Kn(p) /∈ int((A1 ∩A2) ∪ (A1 ∩A3) ∪ (A2 ∩A3))(85)

for all n ∈ N0}.

This set is given by the points that never reach the overlaps int(Aα ∩Aβ).
The map K is thereby not a multivalued map on the set C̃, and thus K is
well-defined. Furthermore, the set C̃ is not empty since, e.g., there are two
(physically equivalent) period 3 cycles, given by Lemma 2.2 and depicted in
Figure 7, since the three vertices of each triangle do not lie in any of the
overlap regions Aα ∩Aβ .

The complement of the set C̃ in K# is given by

F̃ := {p ∈ K# | Kn(p) ∈ int((A1 ∩A2) ∪ (A1 ∩A3) ∪ (A2 ∩A3))(86)

for some n ∈ N0}.

Splitting the dynamics in K# into two disjoint invariant sets, C̃ and F̃ , is
a first step to tackle Conjecture 5.2. In particular, it has been proved in
[49] that the set F̃ is dense (in the circle) and thereby the generic dynamics
occurs in such a set, akin to the generic dynamics outside the Cantor set
C in (40) within the supercritical case. Certain properties of the invariant
set C̃, and how they depend on v, are still not clear: Is it a Cantor set or
not? What is its Hausdorff dimension? What is its internal dynamics and
the relation with the dynamics within the invariant set F̃?

6. First principles and the dynamical hierarchy

We now investigate the dynamical consequences summarized in Table 2 of
first principles, which for the vacuum λ-R class A Bianchi models reduce to
the scale-automorphism groups for the Lie contraction hierarchy in Figure 1.

The scale-automorphism group for each level of the hierarchy yields
monotone functions and conserved quantities derived in Appendix B.1. As
we will see, these monotone functions and conserved quantities restrict and
push the dynamics toward the initial singularity from the highest level of the
class A Bianchi hierarchy, Bianchi type IX and VIII, to the lowest levels of
the hierarchy, Bianchi type II and I, for which the dynamics are completely

10Note that the set C in (40) for v ∈ (1/2, 1) can also be described by this for-
mulation. Thus the properties of such a set (of points with exactly one positive
eigenvalue for all iterates) depend on v.
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determined by the scale-automorphism group, as shown in Appendix B.1.
The next level in the hierarchy are the Bianchi type VI0 and VII0 models,
where the scale-automorphism group give rise to several quantities that limit
the asymptotic dynamics. These quantities yield a complete qualitative de-
scription for this level of the hierarchy, which we focus on in this section.
The asymptotic dynamics of type VIII and IX form a considerable challenge
and we only present some limited results.

Bianchi type VI0 and VII0. To obtain the equations for the type VI0
and VII0 vacuum λ-Rmodels we set, without loss of generality,N1 = 0,N2 >
0, N3 < 0 for type VI0, and N1 = 0, N2 > 0, N3 > 0 for type VII0. Since
N1 = 0 selects a special direction, it is natural to replace (Σ1,Σ2,Σ3) with
the Σ± Misner variables given in (26). Setting N1 = 0 in (A.25) and (A.26)
yields the evolution equations

Σ′
+ = 2(1− Σ2)(1 + 2vΣ+),(87a)

Σ′
− = 4v(1− Σ2)Σ− + 2

√
3(N2

2 −N2
3 ),(87b)

N ′
2 = −2(2vΣ2 +Σ+ +

√
3Σ−)N2,(87c)

N ′
3 = −2(2vΣ2 +Σ+ −

√
3Σ−)N3,(87d)

and the constraint

(87e) 1− Σ2 − (N2 −N3)
2 = 0, where Σ2 := Σ2

+ +Σ2
−.

Due to the constraint (87e), the state spaces for the type VI0 and
VII0 models with N1 = 0 are 3-dimensional with a 2-dimensional bound-
ary given by the union of the invariant type II2, II3 and K# sets. Type
VI0 has a relatively compact state-space, whereas type VII0 has an un-
bounded one. Equation (87e) implies that Σ2

+ +Σ2
− ≤ 1. For type VI0,

(N2 −N3)
2 = N2

2 +N2
3 + 2|N2N3|, and hence (87e) yields N2

2 ≤ 1− Σ2 and
N2

3 ≤ 1− Σ2, where the equalities hold individually for the II2 and II3
boundary sets, respectively. For type VII0, on the other hand, introduc-
ing N± := N2 ±N3 results in that the constraint (87e) can be written as
Σ2 +N2

− = 1, and thus that Σ± and N− are bounded, while N+ is un-
bounded.

The analysis of the Bianchi type VI0 and VII0 scale-automorphism group
of the vacuum λ-R models in Appendix B.1 resulted in three quantities that
are essential for the asymptotics of the dynamical system (87):

(88) 1 + 2vΣ+, Zsup :=
(2v +Σ+)

2

|N2N3|
Zsub :=

(1 + 2vΣ+)
2

|N2N3|
,
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where Zsup = Zsub = Zcrit = (1 + Σ+)
2/|N2N3| when v = 1/2. Due to (87),

these quantities satisfy

(1 + 2vΣ+)
′ = 4v(1− Σ2)(1 + 2vΣ+),(89a)

Z ′
sup = 4

[

(1 + 2vΣ+)
2 + (4v2 − 1)Σ2

−
2v +Σ+

]

Zsup,(89b)

Z ′
sub = 4(2v +Σ+)Zsub,(89c)

and hence Z ′
crit = 4(1 + Σ+)Zcrit.

These functions behave differently for the subcritical, critical and su-
percritical cases, and they have different asymptotic consequences for the
type VI0 and VII0 vacuum λ-R models, primarily because the state space
of the type VII0 models is unbounded. Nevertheless, the two Bianchi types
share several features. For example, Σ+ = −1/(2v) is a 2-dimensional in-
variant subset in the supercritical case, v ∈ (1/2, 1), both for type VI0 and
VII0. They also have some common asymptotic features. In particular, they
have the same II2 ∪ II3 ∪K# boundary. In the supercritical case the sta-
ble set in the Kasner circle set K# is given by SVI0 = SVII0 = SVI0,VII0 :=
K#\int(A2 ∪A3), which, due to that N1 = 0, is different than the set S in
the supercritical Bianchi type VIII and IX models, cf. Figures 2 and 16,
although both SVI0,VII0 and S are defined as the sets where type II hetero-
clinic chains end. In the subcritical case, type VI0 and VII0 also share the
region A2 ∩A3 in K#, where both N2 and N3 are unstable in int(A2 ∩A3).
In the critical case, A2 ∩A3 reduces to the Taub point T1. These features
are illustrated in Figure 16.

Q2/v Q3/v
A2 ∩ A3

SVI0,VII0

(a). v ∈ (0, 1/2).

2Q2 2Q3

T1

T2T3

SVI0,VII0

Σ+

Σ−

(b). v = 1/2,

SVI0,VII0

SVI0,VII0

Q2/v Q3/v

(c). v ∈ (1/2, 1).

Figure 16. The common stable set SVI0,VII0 for Bianchi type VI0 and VII0. In addition,
projected onto (Σ+,Σ−

)-space, there are illustrative heteroclinic chains located on the
II2 ∪ II3 ∪K# boundary. In particular, v ∈ (1/2, 1) admits a heteroclinic cycle/chain with
period 2, which resides on the projected line between Q2/v and Q3/v characterized by
Σ+ = −1/(2v).
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Proposition 6.1. In Bianchi type VI0 the limit sets (in τ−) are as follows:

(i) When v ∈ (0, 1/2], the α-limit set for all orbits resides in the set A2 ∩
A3 in K#, where A2 ∩A3 reduces to the Taub point T1 when v = 1/2.
The ω-limit set for all orbits resides in the set SVI0.

(ii) When v ∈ (1/2, 1), the α-limit set for all orbits is the fixed point pVI0

given by
(90)

pVI0 :=

{

(Σ+,Σ−, N2, N3) =

(

− 1

2v
, 0,

√

1− 1/(4v2)

2
,−
√

1− 1/(4v2)

2

)}

.

Apart from pVI0, the ω-limit set of all orbits on the invariant subset
Σ+ = −1/(2v) consists of the heteroclinic chain with period 2, while
the ω-limit set of all orbits with Σ+ ̸= −1/(2v) resides in the set SVI0.

11

Proof. All type VI0 orbits satisfy Σ2 < 1, and thereby |Σ+| < 1, while Σ2 = 1
corresponds to the type I boundary set K#, since the constraint (87e) yields
(N2 −N3)

2 = N2
2 +N2

3 + 2|N2N3| = 0, and thus N2 = N3 = 0.
For the subcritical and critical type VI0 models, with v ∈ (0, 1/2], the

function 1 + 2vΣ+ is bounded according to 0 ≤ 1− 2v < 1 + 2vΣ+ ≤ 1 +
2v, and, due to (89a), it is monotonically increasing. Thus limτ−→±∞Σ2 =
1 in (89a), and hence limτ−→±∞(N2, N3) = (0, 0), due to the constraints.
Therefore both the α- and ω-limit sets for all type VI0 orbits belong to
the set K#. It then follows from the stability properties of K# that the α-
limit set for these orbits resides in the set A2 ∩A3 in the subcritical case,
v ∈ (0, 1/2), while it consists of the Taub point T1 with Σ+ = −1 in the
critical case v = 1/2. It also follows for both the subcritical and critical
cases that the ω-limit set of all type VI0 orbits lies in the stable set SVI0 .

In the supercritical case, v ∈ (1/2, 1), the function Zsup > 0 in (88) is
strictly monotonically increasing in the type VI0 state space, except at the
fixed point pVI0 , given by (90), where Zsup attains its global minimum,
Zsup(pVI0) = 4(4v2 − 1) > 0. Since Zsup is strictly monotonically increas-
ing for all non-pVI0 type VI0 orbits, it follows that their α-limits reside
at the minimum of Zsup at pVI0 , see the monotonicity principle in [102],
which also yields that Zsup → ∞ as τ− → ∞, for all non-pVI0 orbits. Since
the numerator (1 + 2vΣ+)

2 of Zsup in (88) is bounded, it follows that

11Therefore, the invariant set Σ+ = −1/(2v) is a co-dimension one stable set
for the heteroclinic chain with period 2. In particular, this set is equivalent to a
Bowen’s eye, where the fixed point pVI0 is surrounded by spiraling orbits toward
the heteroclinic chain with period 2, see [93] and [11].
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limτ−→∞N2N3 = 0, and thus that the ω-limit set of all non-pVI0 super-
critical type VI0 orbits resides in the II2 ∪ II3 ∪K# boundary. According
to (89a), 1 + 2vΣ+ = 0 describes an invariant separatrix surface, which di-
vides the remaining state space into two disjoint sets, 1 + 2vΣ+ < 0 and
1 + 2vΣ+ > 0, on which 1 + 2vΣ+ is monotone.12 It follows from mono-
tonicity principle [102] that the ω-limit set of all non-pVI0 orbits on the
invariant set Σ+ = −1/(2v) are given by the boundary, i.e., the heteroclinic
cycle/chain with period 2. With similar reasoning as in the subcritical and
critical cases, equation (89a) yields that the ω-limit set for all orbits in the
subset 1 + 2vΣ+ < 0 (1 + 2vΣ+ > 0) resides in the connected component of
the set SVI0 with 1 + 2vΣ+ < 0 (1 + 2vΣ+ > 0). □

Let us now turn to type VII0, but before presenting asymptotic results
we first consider the locally rotationally symmetric (LRS) type VII0 subset
(for additional information about the LRS models, see Appendix B.1). This
invariant set is given by N− = 0 and Σ− = 0, where the constraint (87e)
divides the LRS subset into two disjoint invariant sets consisting of the two
lines at Σ+ = 1 and Σ+ = −1, i.e.,

LRS± :=

{

(Σ+, 0, N2, N3) ∈ R4
∣

∣

∣

Σ+ = ±1,
N2 = N3 ̸= 0

}

,(91a)

where the superscript of LRS± is determined by the sign of Σ+. Let N :=
N2 = N3 > 0. Then the flow on the LRS± subsets is determined by

(92) N ′ = −2Σ+(2vΣ+ + 1)N, Σ+ = ±1.

On LRS+, where Σ+ = +1, the variable N ∈ (0,∞) monotonically decreases
from limτ−→−∞N = ∞ to 0, and hence the orbit in the invariant line ends
at Q1 in the set K# for all v ∈ (0, 1). On LRS−, where Σ+ = −1, there are
three v-dependent cases: the critical case, v = 1/2, which results in a line
of fixed points; the subcritical case, v ∈ (0, 1/2), which yields an orbit that
emanates from T1, where N ∈ (0,∞) subsequently monotonically increases,
which results in limτ−→∞N = ∞; the supercritical case, v ∈ (1/2, 1), re-
verses the flow and leads to an orbit for which limτ−→−∞N = ∞, while it
ends at T1.

The next Propositions address the α-limit and ω-limit sets for the type
VII0 models.

Proposition 6.2.
12As described in Appendix B.1, the existence of the invariant set 1 + 2vΣ+ = 0

follows from a discrete symmetry, which also results in that the flow of (89a) is
equivariant under a change of sign of 1 + 2vΣ+.
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The ω-limit set (in τ−) for all Bianchi type VII0 orbits resides in the
stable set SVII0 in the Kasner circle set K#, apart from three exceptions:

(i) When v ∈ (0, 1/2), the LRS− set consists of an orbit for which
limτ−→∞N = ∞.

(ii) When v = 1/2, the LRS− set is a line of fixed points N2 = N3 =
constant.

(iii) When v ∈ (1/2, 1), there is an invariant set of co-dimension one, char-
acterized by Σ+ = −1/(2v), for which the heteroclinic cycle with period
2 on the II2 ∪ II3 ∪K# boundary is the ω-limit set.

Proof. The first two exceptions follow from the previous analysis of the
LRS type VII0 subset, due to (92). Consider therefore type VII0 non-LRS
orbits, i.e., orbits for which Σ2

− +N2
− > 0 and thereby |Σ+| < 1 due to the

constraint. Note that in contrast to the type VII0 unbounded state space,
its boundary is given by the compact set II2 ∪ II3 ∪K#.

In the subcritical and critical cases, Zsub > 0 for all non-LRS− orbits.
In the LRS− case the orbit satisfies limτ−→∞N2N3 = ∞ in the subcritical
case, while LRS− yields a line of fixed points with constant N2 = N3 in the
critical case. Then note that

(1 + 2vΣ+)
′ = 4vN2

−(1 + 2vΣ+), N− := N2 −N3,(93a)

(1 + 2vΣ+)
′′|N−=0 = 0,(93b)

(1 + 2vΣ+)
′′′|N−=0 = 96(N2 +N3)

2Σ2
−(1 + 2vΣ+).(93c)

Thus (1 + 2vΣ+) is monotonically increasing for all non-LRS orbits (i.e.,
orbits such that Σ2

− +N2
− > 0), except when N− = 0 (and thereby Σ− ̸=

0), which corresponds to an inflection point in the growth of the positive
quantity (1 + 2vΣ+), due to (93). Thus all non-LRS− orbits eventually enter
the (positively) invariant set Σ+ > −2v. Since, due to (89c), Zsub > 0 is
strictly monotonically increasing in the invariant set Σ+ > −2v, it follows
that limτ−→∞ Zsub = ∞ and thereby limτ−→∞N2N3 = 0. Thus the ω-limit
set of all non-LRS− orbits in the subcritical and critical cases resides in the
II2 ∪ II3 ∪K# boundary set. The same local analysis of this boundary set
as in type VI0 yields the same result for the non-LRS− orbits in type VII0.

In the supercritical case, Σ+ = −1/(2v) forms an invariant separatrix
surface, which divides the VII0 state space into two disjoint invariant sub-
sets with 1 + 2Σ+ ̸= 0 on which 1 + 2vΣ+ is monotone, as in type VI0. Due
to (89b), Zsup > 0 in (88) is strictly monotonically increasing everywhere
in the type VII0 state space, except at two lines on the invariant subset
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Σ+ = −1/(2v) given by Σ− = 0 and thereby N2 = N3 ±
√

1− (1/2v)2, due
to the constraint (87e). However, these lines, denoted by L±

VII0
, are not in-

variant sets, in contrast to the fixed point pVI0 in type VI0, since Σ
′
−|L±

VII0

=

±2
√
3(N2 +N3)

√

1− (1/2v)2. This fact in combination with that N2 =
N3 ±

√

1− (1/2v)2 on the lines L±
VII0

implies that limτ−→∞ Zsup = ∞. Since
the numerator (2v +Σ+)

2 of Zsup in (88) is bounded, the unbounded growth
of Zsup implies that limτ−→∞N2N3 = 0. Thus at least one of N2 or N3 de-
cays to zero, while the other variable is asymptotically bounded due to the
constraint (87e). Hence the ω-limit set for all non-LRS− type VII0 orbits
resides in the II2 ∪ II3 ∪K# boundary set. This in turn leads to the same
conclusions for the ω-limit sets as for the non-pVI0 orbits in type VI0. □

Proposition 6.3. The α-limit set (in τ−) for all Bianchi type VII0 orbits
are as follows:

(i) When v ∈ (0, 1/2), the α-limit set of all non-LRS+ orbits reside
in the set A2 ∩A3. The LRS+ set consists of an orbit such that
limτ−→−∞N = ∞, where N := N2 = N3.

(ii) When v = 1/2, the α-limit set of all non-LRS orbits is the line of
fixed points, LRS−. The LRS+ set consists of an orbit for which
limτ−→−∞N = ∞.

(iii) When v ∈ (1/2, 1), all non-LRS orbits asymptotically satisfy

(94) lim
τ−→−∞

Σ+ = − 1

2v
, lim

τ−→−∞
N+ = ∞, N+ := N2 +N3,

whereas Σ− and N− := N2 −N3 are asymptotically oscillatory, since

in coordinates (Σ−, N−) = (
√

1− Σ2
+ cosψ,

√

1− Σ2
+ sinψ), the angle

ψ is strictly monotonic as τ− → −∞. Each LRS± set consists of an
orbit such that limτ−→−∞N = ∞.

Proof. The reasoning in the proof of the previous proposition about ω-limits
also yield the basic elements when τ− → −∞, but, due to the unboundedness
of the type VII0 state space, there are some new issues, which did not occur
when τ− → ∞.

In the subcritical and critical cases, similar arguments as in the previous
discussion about ω-limit sets lead to the following: (1 + 2vΣ+) is monoton-
ically decreasing when τ− → −∞, which shows that the α-limit set for all
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non-LRS+ orbits resides in the set A2 ∩A3 for the subcritical case, and in
the line of fixed points LRS− for the critical case.13

For the non-LRS orbits in the supercritical case, (1 + 2vΣ+)
2 > 0 is

monotonically decreasing as τ− → −∞, and orbits thereby approach the
invariant set Σ+ = −1/(2v). Similar reasoning as in the proposition for the
ω-limit using the monotone function Zsup results in limτ−→−∞N2N3 = ∞ for
the non-LRS orbits. SinceN2

+ = N2
− + 4N2N3,N± = N2 ±N3, and sinceN2

−
is bounded (N2

− = 1− Σ2 < 1) it follows that limτ−→−∞N+ = ∞. To study
the asymptotic behaviour of Σ− and N−, we introduce polar coordinates for
N− and Σ− and solve the constraint (87e). This leads to the following set
of new variables:

(95) (Σ+,Σ−, N−, N+) =

(

Σ+,
√

1− Σ2
+ cosψ,

√

1− Σ2
+ sinψ,

1√
3M

)

,

which result in the unconstrained dynamical system

Σ′
+ = (1− Σ2

+)(1 + 2vΣ+)[1− cos(2ψ)],(96a)

M ′ =
(

2Σ+(1 + 2vΣ+)(96b)

+ (1− Σ2
+)[2v(1 + cos(2ψ)) + 3M sin(2ψ)]

)

M,

ψ′ = − 2

M
− (2v +Σ+) sin(2ψ).(96c)

We have already shown that limτ−→−∞Σ+ = −1/(2v) and
limτ−→−∞N+ = ∞, from which it follows that limτ−→−∞M = 0. Due
to this, and since 2v +Σ+ is bounded, equation (96c) implies that ψ is
strictly monotonic as τ− → −∞.14 □

We now compare the ingredients for the proof given here for the critical
case with well-known proofs in GR. In our approach, Zsup and Zsub in (88)

13For type VII0 asymptotics in the critical GR case, see section 7 in [85] and
section 4 in [86]. A more detailed analysis of the critical GR case was performed
in [33], which showed that each fixed point on the LRS− subset is the α-limit set
for a one-parameter set of orbits.

14For brevity we will refrain from deriving explicit asymptotic expressions for Σ+,
M and ψ, and thereby Σ± and N2, N3 in the supercritical type VII0 case. However,
to derive such expressions there are several different methods one can use, e.g. those
in [50, 100], or in [82], or the asymptotic averaging method used in [1].
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become identical in the critical case:

(97) Zcrit := Zsup = Zsub =
(1 + Σ+)

2

|N2N3|
,

where

(98) Z ′
crit = 4(1 + Σ+)Zcrit.

In the traditional approach to the GR case, see [14, 81, 84, 101], two mono-
tone functions Z+ and Z− were respectively used for type VI0 and VII0:

(99) Z± :=
Σ2
− +N2

±
|N2N3|

,

where

(100) Z ′
± =

4(1 + Σ+)Σ
2
−

Σ2
− +N2

±
Z±.

Even though the evolution equation for the type VII0 function Z− can be
simplified to Z ′

− = 4Σ2
−(1− Σ+)

−1Z−, the functions Z± arguably gives a
more cumbersome analysis than the unified function Zcrit = Zsup = Zsub

in (97), which naturally arises from the scale-automorphism symmetry of
these models.

Bianchi types VIII and IX. In Appendix B.1, we derive the following
monotone function from the scale symmetry of the vacuum λ-R type VIII
and IX models:

(101) ∆ := 3|N1N2N3|2/3,

which, due to (4), satisfy

(102) ∆′ = −24vΣ2∆.

Thus ∆ is monotonically decreasing when Σ2 > 0, and has an inflection point
when Σ2 = 0, since

(103) ∆′′∣
∣

Σ2=0
= 0, ∆′′′∣

∣

Σ2=0
= −8v

(

S2
1 + S2

2 + S2
3

)

∆,

where S2
1 + S2

2 + S2
3 > 0. Therefore,

(104) lim
τ−→∞

∆ = 0,
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and consequently

(105) lim
τ−→∞

Σ2 ≤ 1,

since the definition of Ωk in (5b) implies Ωk +∆ ≥ 0,15 and hence Σ2 ≤
1 + ∆, due to the constraint (4c). Moreover, because of (104) it follows that
at least one of the variables Nα must decay to 0, for all v ∈ (0, 1). Thus the
ω-limit set of all Bianchi type IX orbits resides in the union of the closure
of the type VII0 subsets, whereas the ω-limit set of all type VIII orbits lies
in closure of the union of the single type VII0 subset and the two type VI0
subsets.16

Similarly to types VI0 and VII0, the dynamical system (4) for Bianchi
types VIII and IX admits invariant locally rotationally symmetric (LRS)
sets: the (physically equivalent) type IX LRS sets are given by

LRSα :=

{

(Σα,Σβ ,Σγ , Nα, Nβ , Nγ) ∈ R6
∣

∣

∣

Σβ = Σγ , Nβ = Nγ ,
satisfying (4c)-(4d)

}

,

(106a)

where (αβγ) is a permutation of (123), while type VIII only admits a single
LRS set since one of the variables N1, N2, N3 has an opposite sign compared
to the other two. The LRS type VIII and IX sets have three distinct dynam-
ical regimes, the subcritical, critical and supercritical cases, and boundaries
given by the one-dimensional sets LRS± in (91).

Next we turn to some dynamical conjectures for Bianchi type VIII and
IX. We expect that the above features will be important ingredients in future
proofs of these conjectures, both in the λ-R case and for more general HL
models.

15In type VIII, Ωk > 0 since the curvature scalar R < 0, while R can be positive
in type IX. Using that R = e−4vβλ

R̄ and that R̄ is a function of β±, as given
in (A.44a) in Appendix A, shows that R̄ has a negative minimum when β± = 0.
Adding a constant so that the minimum becomes zero, corresponds to adding ∆ to
Ωk, where Ωk +∆ = 0 when N1 = N2 = N3, which corresponds to β± = 0. Thus
Ωk +∆ ≥ 0.

16All initially expanding vacuum λ-R Bianchi type I–VIII models are forever ex-
panding, due to that the spatial curvature of these models satisfies R ≤ 0. However,
all initially expanding type IX solutions reach a point of maximum expansion and
then recollapse. This has been proven in [33] for GR, and a similar proof can be
given for the λ-R models. We thereby assume that initial data in type IX correspond
to initially expanding solutions, where we are interested in the initial singularity
when τ− → ∞.
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7. Dynamical conjectures

Apart from the previous section, the main part of the paper has focussed
on the discrete dynamics of the Kasner circle map K, associated with the
heteroclinic chains obtained by concatenation of Bianchi type II heteroclinic
orbits in the λ-R Bianchi type VIII and IX models with v ∈ (0, 1). In par-
ticular, we have shown that the critical case to which GR belongs, v = 1/2,
represents a bifurcation, where non-generic chaos on a Cantor set for the
supercritical case, v ∈ (1/2, 1), is replaced by generic chaos for the critical
and subcritical cases, v ∈ (0, 1/2].

It remains to connect the discrete dynamics of K with asymptotic con-
tinuous dynamics in Bianchi type VIII and IX, described by the dynamical
system (4). We therefore conclude with some dynamical conjectures, which
reflect an expected hierarchy of difficulty as regards possible proofs. The
conjectures can be divided into two classes: (i) if and how many type VIII
and IX solutions have an infinite heteroclinic chain on the Bianchi type I
and II boundary as their ω-limit set, (ii) if generic solutions of type VIII and
IX asymptotically approach the type I boundary or the union of the type I
and II boundary sets, and how this depends on the parameter v.

Conjecture 7.1. In the Bianchi type VIII and IX supercritical case, v ∈
(1/2, 1), each heteroclinic cycle has a stable invariant set (as τ− → ∞) of
co-dimension one.

It should be possible to prove this conjecture with, e.g., the methods
used in [10, 54, 55], but the situation for the period 2 cycle is arguably more
special than the problems in the aforementioned references, and other types
of proofs might therefore be possible. Loosely speaking, the heteroclinic
chains with period 2 form the ‘boundary’ of the infinite heteroclinic chains
associated with the Cantor set C. It thus seems natural to establish if the
period 2 chain has an attracting set of co-dimension one before addressing
the next more ambitious Conjecture (which contains the previous one as a
special case since heteroclinic cycles can be viewed as special examples of
infinite heteroclinic chains).

Conjecture 7.2. In the Bianchi type VIII and IX supercritical case, v ∈
(1/2, 1), each infinite heteroclinic chain associated with the Cantor set C
has a stable invariant set (as τ− → ∞) of co-dimension one.

Incidentally, the special role of C illustrates that it may not be sufficient
to establish the existence of a stable set for the full global understanding
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of asymptotics of a given model, such as the models with dimension 11 or
higher in [21]. Models with a stable set may thereby be more complicated
than one expects, and in quite interesting ways. Similar conjectures can be
formulated for the set C̃ ⊂ K# in the subcritical case, v ∈ (0, 1/2), e.g.,

Conjecture 7.3. In the Bianchi type VIII and IX subcritical case, v ∈
(0, 1/2), each infinite heteroclinic chain associated with the set C̃ ⊂ K#

in (85) has a stable invariant set (as τ− → ∞) of co-dimension one.

To address the more general issues in the two following conjectures,
presumably require more general methods than needed to prove the previous
conjectures, see [10, 11, 15].

Conjecture 7.4. In the Bianchi type VIII and IX supercritical case, v ∈
(1/2, 1), the stable set S on K# is the attractor A− (as τ− → ∞).

There are subtleties in how to define an attractor, as discussed in [69]. In
the present context we are interested in the behaviour of most orbits in the
state space, and thus we deal with an attractor that attracts generic sets of
orbits in the state space. This set is called the likely limit set in [69], which
is the unique maximal attractor. The Kasner circle consists of six physically
equivalent subsets, related by axis permutations (7), which thereby are the
six elements in the unique equivalence class of the quotient of the attractor
A− under the action of the symmetric group S3 according to (7). Combining
this feature with the above conjecture suggests that we refer to the quotient
space A−/S3 as the physical attractor.

It is clear from the local analysis of K# that S attracts all nearby orbits.
To prove Conjecture 7.4 requires establishing that all generic sets of solutions
only have points on S as their ω-limit. Even though we expect that there
is a set of solutions that has the heteroclinic chains associated with the
Cantor set C as their ω-limits, and thereby not S, we believe that this set
is non-generic, as suggested by Conjecture 7.2.

Conjecture 7.5. In the Bianchi type VIII and IX subcritical and critical
cases, v ∈ (0, 1/2], the attractor A− (as τ− → ∞) consists of the set K# ∪
II1 ∪ II2 ∪ II3.

Equation (104) shows that limτ−→∞∆ = 0 and hence that the ω-limits
of the type IX (VIII) solutions reside on the union of the type VII0 (VII0
and VI0), type II and type I boundary sets. This is the foundation for the
proof of the conjecture in the critical GR case for type IX, see [33, 84].
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The conjecture for the other cases is highly non-trivial, especially from the
perspective of the present dynamical system formulation. This is due to that
Conjecture 7.5 relies on the entire history of solutions when τ− → ∞ and
that the variables in the dynamical system (4) do not capture this feature
well.

In Appendix A the system (4) is derived from a Hamiltonian description
of the field equations by a change of variables. As a result the evolution
equation for one of the variables, not discussed in the main text, decouples.
The variables in (4) are thereby particular coordinates describing a projec-
tion of the original state space. It turns out that the original configuration
space variables βλ, β± in the Hamiltonian formulation are better in captur-
ing the above mentioned history. This is illustrated by the heuristic moving
wall analysis in Appendix A, which shows that on average β+ and β− oscil-
late with increasing amplitudes. This analysis also shows that excursions of
generic solutions into the type VI0 or VII0 subsets (where one of the cross
terms N1N2, N2N3, N3N1 is non-negligible) become increasingly unlikely.
Even though these excursions will happen, they become increasingly rare in
some probabilistic sense as τ− = −βλ → ∞, and thus generic solutions are
asymptotically described by sequences of Kasner states and Bianchi type II
solutions; for further details, see Appendix A. The conjecture is thus based
on the assumption that for generic solutions the probability that the cross
terms become non-zero tends to zero when τ− → ∞, which requires some
new statistical measure.

It is worth noticing that this situation is reminiscent of that in Bianchi
type VI−1/9 and when using an Iwasawa frame in GR, see [39, 96, 97] and ref-
erences therein. The dynamical systems analysis in [39] of the suppression of
‘double transitions’ (non-zero cross terms N1N2, N2N3, N3N1 in the present
formulation) is particularly pertinent, especially since it indicates how hard
it will be to rigorously establish such features by using a dynamical system
of the type (4).

Presumably, the most difficult conjecture to prove among the ones above
is Conjecture 7.5 for the subcritical case, especially when v becomes increas-
ingly small (if true; when v = 0 the unstable region for each of the cross terms
is half of K#, and thus the considerations in Appendix A concerning this
bifurcation value should come as no surprise). Nevertheless, can the meth-
ods in [33, 84] for the GR Bianchi type IX case be developed and adapted
to the λ-R Bianchi type IX subcritical models with v ∈ (0, 1/2)? Note that
these methods do not establish the conjecture for type VIII in GR, although
see [83] for some limited type VIII results, and also [11, 15]. The difficulties
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in GR for type VIII presumably also lead to difficulties for the subcritical
type VIII case and possibly also for type IX.

All the above conjectures rely on that limτ−→∞(N1N2, N2N3, N3N1) =
(0, 0, 0), and the behaviour of the individual terms N1, N2 and N3. Possible
proofs using the dynamical systems approach presumably involve the growth
and decay of these quantities, which we therefore now take a closer look at.
Without loss of generality, we describe the evolution equations using the Σ±
variables in (26), which are adapted to the Σ1-direction. In Appendix A we
derive a system of evolution equations, which can be written as follows,

Σ′
+ = 2(1− Σ2)(1 + 2vΣ+)− 6N1(2N1 −N2 −N3)],(107a)

Σ′
− = 4v(1− Σ2)Σ− + 2

√
3(N2 −N3)(N2 +N3 −N1),(107b)

N ′
1 = −4v

[

(

Σ+ − 1

2v

)2

+Σ2
− −

(

1

2v

)2
]

N1.(107c)

N ′
2 = −v

[

(

Σ+ +
√
3Σ− +

1

v

)2

+
(√

3Σ+ − Σ−
)2

− 1

v2

]

N2,(107d)

N ′
3 = −v

[

(

Σ+ −
√
3Σ− +

1

v

)2

+
(√

3Σ+ +Σ−
)2

− 1

v2

]

N3,(107e)

and the constraint

(107f) 1 = Σ2 +Ωk,

where

Σ2 := Σ2
+ +Σ2

−,(107g)

Ωk := N2
1 +N2

2 +N2
3 − 2N1N2 − 2N2N3 − 2N3N1.(107h)

Thus N1 monotonically decreases (increases) when (Σ+,Σ−) is outside (in-
side) the circle

(108)

(

Σ+ − 1

2v

)2

+Σ2
− =

(

1

2v

)2

,

which has its center at (Σ+,Σ−) = (1/2v, 0) and a radius 1/2v. It also follows
from (107) that the terms N2 and N3 decrease (increase) outside (inside)
similar circles, see Figure 17.
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A2 ∩ A3

A3A2

T1

T2T3

(a). v ∈ (0, 1/2).

T1

T2T3

(b). v = 1/2.

T1

T2T3

(c). v ∈ (1/2, 1).

Figure 17. The interior of the (gray) disk opposite to the location of the Taub point
Tα ∈ K# in (Σ1,Σ2,Σ3)-space indicates growth of each individual Nα, α = 1, 2, 3. Outside
their growth region the individual terms decay. As v ∈ (0, 1) increases, the disks radii
decrease and they move toward the middle, where Σ2 = 0. For v ∈ (0, 1/2) the disks cover
the whole region inside Σ2 = 1. At v = 1/2 the disks only intersects with Σ2 = 1 at the
Σα values of the Taub points. For v ∈ (1/2, 1) the disks intersect at the Σα values of the
heteroclinic chains with period two, and there is a neighborhood of the location of the
Taub points in (Σ1,Σ2,Σ3)-space with decay.

Expressing the evolution of the cross terms in the Σ± variables results
in the equations

(N1N2)
′ = −8v

[

(

Σ+ − 1

8v

)2

+

(

Σ− +

√
3

8v

)2

−
(

1

4v

)2
]

(N1N2),(109a)

(N3N1)
′ = −8v

[

(

Σ+ − 1

8v

)2

+

(

Σ− −
√
3

8v

)2

−
(

1

4v

)2
]

(N3N1),(109b)

(N2N3)
′ = −8v

[

(

Σ+ +
1

4v

)2

+Σ2
− −

(

1

4v

)2
]

(N2N3),(109c)

Hence, e.g., N2N3 is monotonically decreases (increases) when (Σ+,Σ−) is
outside (inside) the following circle

(110)

(

Σ+ +
1

4v

)2

+Σ2
− =

(

1

4v

)2

,

which has its center at (Σ+,Σ−) = (−1/4v, 0) and a radius 1/4v. It also
follows from (109) that the other cross terms decrease (increase) outside (in-
side) similar circles, obtained by axis permutations. In particular, N1N2 and
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N3N1 decay when Σ+ < −1/(8v) while N2N3 decays when Σ+ < −1/(2v).
These decay and growth regions are depicted in Figure 18.

A2 ∩ A3

A3A2

T1

T2T3

(a). v ∈ (0, 1/2).

T1

T2T3

(b). v = 1/2.

T1

T2T3

(c). v ∈ (1/2, 1).

Figure 18. The interior of the (dark gray) disk closest to the location of the Taub point
Tα in (Σ1,Σ2,Σ3)-space indicates growth of the cross term NβNγ , (α, β, γ) = (123) or
a permutation thereof. Outside their growth region the cross terms decay. As v ∈ (0, 1)
increases, the (gray) disks radii decrease and they move toward the middle, where Σ2 = 0.
For v ∈ (0, 1/2), the disks have parts both outside and inside Σ2 = 1, and in particular,
for v = 1/4, their boundary circles intersect at the Σα location of the Qα points. At
v = 1/2 the disks only intersects with Σ2 = 1 at the Σα values of the Taub points Tα. For
v ∈ (1/2, 1) the disks lie inside Σ2 = 1.

All the above conjectures are about the dynamical system (4), which
describes the dynamics of the vacuum λ-R class A models. In Appendix A.2
we show how to derive dynamical systems for the more general HL models,
and how the discrete statements about the dynamical system (4) translate
to these systems. Moreover, similar heuristic arguments as those in the λ-R
case suggest that dynamical conjectures, analogous to those above, can be
stated for broad classes of HL models. The results in Appendix A.2 also
indicate that if one is not able to obtain proofs for the λ-R case, then one is
not likely to be able to prove analogous results for more general HL models.
In other words, the λ-R models is a necessary step that needs to be overcome
before attempting to tackle more general HL models.

The above dynamical conjectures implicitly suggest that one uses a dy-
namical systems formulation of the type discussed in this work. However,
there are other possible approaches. In [80] the authors used metric variables
as the starting point for their analysis. Arguably the most efficient way to do
this is to use a Lagrangian or Hamiltonian approach, as done in Appendix A,
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and use a time variable defined by setting N = −1 in this appendix. Alter-
natively, one can use the billiard (metric configuration space) formulation
of Chitré and Misner [18, 70, 71], see p. 812 in [72], and also [20, 22, 39],
and attempt to estimate the terms that are heuristically neglected, which
contain the asymptotic history of the solutions, where the latter is essential
for Conjecture 7.5.

Appendix A. Hořava-Lifshitz models

In this appendix we derive the evolution equations (4) for the vacuum spa-
tially homogeneous λ-R class A Bianchi models. We also obtain a regular
constrained dynamical system for the Hořava-Lifshitz (HL) class A Bianchi
models. In addition, we heuristically argue that the heteroclinic structure
these models exhibit on the union of the Bianchi type I and II sets describes
the relevant asymptotic dynamical structure toward the singularity for the
λ-R models and a wide range of more general HL models. This is further
supported by the existence of a ‘dominant’ Bianchi type I and II invariant
set in the HL dynamical systems formulation which can be identified with
the Bianchi type I and II invariant set for the λ-R models. The main part
of the paper is therefore also relevant for a broad set of HL models.

Recall that the dynamics of HL gravity is based on the action (3a), where
the kinetic part is given by (3b) and the potential by (3c). We consider
vacuum spatially homogeneous HL class A Bianchi models, for which the
Bianchi type VIII and IX models are the most general ones. These models
admit a symmetry-adapted spatial (left-invariant) co-frame {ω1,ω2,ω3},
described in equation (1), which we repeat for the reader’s convenience:

(A.1) dω1 = −n1ω2 ∧ ω
3 , dω2 = −n2ω3 ∧ ω

1 , dω3 = −n3ω1 ∧ ω
2 ,

where the structure constants n1, n2, n3 determine the Lie algebras of the
three-dimensional simply transitive symmetry groups, which describe the
class A Bianchi models, see e.g. [102], and Table 1.

Expressing the components of the spatial metric in the symmetry
adapted spatial co-frame (A.1) leads to that they become purely time-
dependent. Since the GR and HL class A Bianchi models share the same
spatial symmetry adapted frame, they also have the same automorphism
groups. In the present context, automorphisms are linear transformations
of the spatial left-invariant frame that leave the structure constants of the
Bianchi symmetry groups unchanged. Since the automorphisms are what is
left of the symmetry generating spatial diffeomorphisms, it should come as
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no surprise that there is a close connection between them and the momen-
tum/Codazzi vacuum constraints, which are the same for all GR and HL
models, see e.g. [40]. In particular, the momentum/Codazzi constraints can
be set to zero by means of the class A off-diagonal automorphisms, which at
the same time can be used to diagonalize the spatially homogeneous spatial
metric, see [45, 67, 102] and references therein.17 We will use the symmetry
adapted co-frame with diagonal class A metrics throughout, and we also
set the shift vector Ni in (2) to zero. The only remaining constraint is the
Hamiltonian/Gauss constraint.

The diagonalized vacuum spatially homogeneous class A metrics are
given by

g = −N2(t)dt⊗ dt+ g11(t) ω
1 ⊗ ω

1(A.2)

+ g22(t) ω
2 ⊗ ω

2 + g33(t) ω
3 ⊗ ω

3,

where the lapse N = N(t) is a non-zero function determining the particular
choice of time variable. Due to the diagonal time-dependent spatial met-
ric (A.2), the extrinsic curvature is also diagonal, given by (K11,K22,K33) =
(ġ11, ġ22, ġ33)/(2N), where ˙ denotes a derivative with respect to t. Alterna-
tively, raising one of the indices, it takes the form

(A.3) (K1
1,K

2
2,K

3
3) =

1

2N

(

ġ11
g11

,
ġ22
g22

,
ġ33
g33

)

.

For the HL class A Bianchi models, the action (3a) expressed in terms
of the symmetry adapted co-frame (1) yields the field equations for the
associated metric (A.2). In order to simplify this action as much as possible
and thereby obtain simple Hamiltonian equations, we focus on the kinetic
part T in equation (3b), which can be written as

(A.4) T = (K1
1)

2 + (K2
2)

2 + (K3
3)

2 − λ(K1
1 +K2

2 +K3
3)

2.

17Diagonalization and the role of the automorphism group also depends on the
spatial topology, an issue which we neglect. For an investigation about the role of
spatial topology in a Hamiltonian description of Bianchi models, see [5].
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It follows that T is a quadratic form in the time derivatives of the metric.
To simplify T , we make a variable transformation from the metric compo-
nents to the variables β0, β+, β−, first introduced by Misner [70–72],

g11 = e2(β
0−2β+),(A.5a)

g22 = e2(β
0+β++

√
3β−),(A.5b)

g33 = e2(β
0+β+−

√
3β−).(A.5c)

This results in that T in equation (A.4) takes the form

(A.6) T =
6

N2

[

−
(

3λ− 1

2

)

(β̇0)2 + (β̇+)2 + (β̇−)2
]

.

Note that the character of the quadratic form (A.6) changes when λ = 1/3.
Since we are interested in continuously deforming the GR case λ = 1, we
restrict considerations to λ > 1/3. To simplify the kinetic part further, we
introduce a new variable βλ and a density-normalized lapse function N ,
defined by

βλ :=

√

3λ− 1

2
β0,(A.7a)

N :=
N

12
√
g
,(A.7b)

where g = g11g22g33 = exp(6β0) is the determinant of the spatial metric in
the symmetry adapted co-frame, which leads to,

(A.8)
√
gNT =

1

2N
[

−(β̇λ)2 + (β̇+)2 + (β̇−)2
]

.

It is convenient to define

(A.9) T :=

√
gN

N T = 12gT ,

so that NT is the kinetic part of the Lagrangian for the present spatially
homogeneous models, in analogy with the GR case, see e.g., ch. 10 in [102].
The density-normalized lapse N is kept in the kinetic term NT , since it is
needed in order to obtain the Hamiltonian constraint, which is accomplished
by varying N in the Hamiltonian.
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To proceed to a Hamiltonian description, we introduce the canonical
momenta

(A.10) pλ := − β̇
λ

N , p± :=
β̇±

N .

This leads to that T takes the form

(A.11) T =
1

2

(

−p2λ + p2+ + p2−
)

.

Similarly to the treatment of the kinetic part, we define

(A.12) V :=
√
gNV/N = 12gV.

Due to (3c),

(A.13) V = 1V + 2V + 3V + 4V + 5V + 6V + . . . ,

where

1V := 12k1gR,
2V := 12k2gR

2, 3V := 12k3gR
i
jR

j
i,(A.14a)

4V := 12k4gR
i
jC

j
i,

5V := 12k5gC
i
jC

j
i,

6V := 12k6gR
3.(A.14b)

The superscripts on AV (where A = 1, . . . , 6) thereby coincide with the sub-
scripts of the constants kA in (3c).

Based on (3a), this leads to a Hamiltonian H given by

(A.15) H :=
√
gN(T + V) = N (T + V ) = 0,

where T only depends on the canonical momenta pλ, p±, given by (A.11),
and V only depends on βλ, β±, given by (A.13) and (A.14).

In order to derive the ordinary differential equations for these models via
the Hamiltonian equations in terms of the variables βλ, β± and the canonical
momenta pλ, p±, we need to compute each AV (βλ, β±). We proceed with two
cases: one which minimally modifies vacuum GR in the present context, the
vacuum λ-R models in Section A.1; one which more generally modifies GR,
the HL models in Section A.2. Both cases have a Hamiltonian with the same
kinetic part, given in (A.11), but they have different potentials in (A.13)
and (A.14). The vacuum λ-R models are obtained by setting k1 = −1, k2 =
k3 = k4 = k5 = k6 = 0 in (A.14) and thus (A.13) yields V = 1V = −12gR,
i.e., the same potential as in GR. The more general vacuum HL models
are determined by the potentials AV with A = 1, . . . , 6, and combinations
thereof.
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A.1. λ-R Class A models

The vacuum λ-R models minimally modify the vacuum GR models [12, 30,
63]. They are obtained from an action that consists of the generalized kinetic
part in (3b), i.e, by keeping λ (GR is obtained by setting λ = 1), and the
vacuum GR potential in (3c), i.e., a potential arising from −R only, and
hence when k1 = −1 and k2 = k3 = k4 = k5 = k6 = 0 in (3c). These mod-
els suffice for our goal of illustrating the role of first principles and their
connection with the structure of generic spacelike singularities.

Derivation of the λ-R evolution equations. To obtain succinct ex-
pressions for the spatial curvature, and thereby the potential V = 1V =
−12gR, we introduce the following auxiliary quantities (see [34] for a dis-
cussion when one, or several, of the constants n1, n2, n3 is zero),

m1 := n1g11 = n1e
2(2vβλ−2β+),(A.16a)

m2 := n2g22 = n2e
2(2vβλ+β++

√
3β−),(A.16b)

m3 := n3g33 = n3e
2(2vβλ+β+−

√
3β−).(A.16c)

Here we have introduced the parameter v, which is defined by the relation

(A.17) v :=
1

√

2(3λ− 1)
,

and hence β0 = 2vβλ due to (A.7). The parameter v plays a prominent role
in this and the next Appendix, and in the evolution equations (4). Since
we are interested in continuous deformations of GR with λ = 1, and thus
v = 1/2, we restrict attention to v ∈ (0, 1), although v = 0 and v = 1, which
result in bifurcations, will sometimes also be considered. Specializing the
general expression for the spatial curvature in [24] to the diagonal class A
Bianchi models leads to18

(A.18) R1
1 =

1

2g
(m2

1 − (m2 −m3)
2),

where R1
1 = g11R11 = g−1

11 R11, and similarly by permutations for R2
2 and

R3
3. It follows that the spatial scalar curvature R = R1

1 +R2
2 +R3

3 is given

18Note that the expressions for the extrinsic and the spatial curvature with one
upper and one lower index coincide when using either the presently introduced
spatial co-frame or an associated orthonormal frame for the diagonal class A models,
as in [24].
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by

(A.19) R = − 1

2g
(m2

1 +m2
2 +m2

3 − 2m1m2 − 2m2m3 − 2m3m1).

This thereby yields the potential in (A.13) and (A.14) with k1 = −1:

V = 1V = −12gR(A.20)

= 6(m2
1 +m2

2 +m2
3 − 2m1m2 − 2m2m3 − 2m3m1),

where V depends on βλ and β± via m1, m2 and m3, according to equa-
tion (A.16).

The evolution equations for βλ, β±, pλ, p± are obtained from Hamilton’s
equations, where T and V in the Hamiltonian (A.15) are given by (A.11)
and (A.20), respectively, which yields

β̇λ =
∂H

∂pλ
= −Npλ, ṗλ = − ∂H

∂βλ
= −N ∂V

∂βλ
,(A.21a)

β̇± =
∂H

∂p±
= Np±, ṗ± = − ∂H

∂β±
= −N ∂V

∂β±
,(A.21b)

while the Hamiltonian constraint T + V = 0 is obtained by varying N .
Next, we choose a new time variable τ− := −βλ, which is directed to-

ward the physical past, since we are considering expanding models. This
is accomplished by setting N = p−1

λ in the first equation in (A.21a), and
thereby N = 12

√
g/pλ, which results in the following evolution equations:

dβλ

dτ−
= −1,

dpλ
dτ−

= − 1

pλ

∂V

∂βλ
,(A.22a)

dβ±

dτ−
=
p±
pλ
,

dp±
dτ−

= − 1

pλ

∂V

∂β±
.(A.22b)

We then rewrite the system (A.22) and the constraint T + V = 0 using
the non-canonical variable transformation,

(A.23) Σ± := −p±
pλ
, Nα := −2

√
3

(

mα

pλ

)

,

while keeping pλ. Note that Σ± = dβ±/dβλ = −dβ±/dτ−.



✐

✐

“4-Lappicy” — 2023/8/23 — 16:58 — page 2166 — #72
✐

✐

✐

✐

✐

✐

2166 J. Hell, P. Lappicy, and C. Uggla

These variables lead to a decoupling19 of the evolution equation for the
variable pλ,

(A.24) p′λ = −4v(1− Σ2)pλ,

where ′ denotes the derivative d/dτ−. This yields the following reduced sys-
tem of evolution equations

Σ′
± = 4v(1− Σ2)Σ± + S±,(A.25a)

N ′
1 = −2(2vΣ2 − 2Σ+)N1,(A.25b)

N ′
2 = −2(2vΣ2 +Σ+ +

√
3Σ−)N2,(A.25c)

N ′
3 = −2(2vΣ2 +Σ+ −

√
3Σ−)N3,(A.25d)

while the Hamiltonian constraint T + V = 0 results in

(A.25e) 1− Σ2 − Ωk = 0,

where

Σ2 := Σ2
+ +Σ2

−,(A.26a)

Ωk := N2
1 +N2

2 +N2
3 − 2N1N2 − 2N2N3 − 2N3N1,(A.26b)

S+ := 2[(N2 −N3)
2 −N1(2N1 −N2 −N3)],(A.26c)

S− := 2
√
3(N2 −N3)(N2 +N3 −N1).(A.26d)

Note that the variables Σ±, N1, N2 and N3, defined in (A.23), are di-
mensionless. Dimensions can be introduced in various ways, but terms in
a sum must all have the same dimension. The constraint (A.25e) is such a
sum. Since this sum contains 1, which obviously is dimensionless, it follows
that Σ+, Σ−, N1, N2 and N3 are dimensionless, and so is the time variable
τ−, as follows from inspection of (A.25).

The introduction of the Misner parametrization and the associated Σ±
variables breaks an axis permutation symmetry, which can be restored by

19More precisely, the variables result in a skew-product dynamical system where
the base dynamics acts in (Σ±, N1, N2, N3) while the fiber dynamics acts in pλ.
This notion was introduced in connection with ergodic theory in [3].
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introducing the variables

(A.27) Σ1 := −2Σ+, Σ2 := Σ+ +
√
3Σ−, Σ3 := Σ+ −

√
3Σ−.

By multiplying the equation for Σ+ with −2 and setting S1 = −2S+, we
obtain the equation for Σ1. Replacing (123) with (αβγ) then allows us to
write the above system of evolution equations (A.25) as the system (4),
which is invariant under the axis permutations in (7). Note that we only
need the equation for Σ+ and not the one for Σ− to obtain the system (4),
a strategy we will use for the HL models. The vacuum equations for GR are
obtained by setting v = 1/2.20

Heuristic λ-R considerations. To obtain some motivation for some
of the Conjectures in Section 7, we use Misner’s heuristic approximation
scheme, which he introduced in order to understand the initial Bianchi type
IX singularity in GR, see [45, 70, 71] and ch. 10 in [102], and apply it to
the class A Bianchi λ-R models. In this scheme, a class A Bianchi solution
toward the past initial singularity (i.e. when τ− = −βλ → ∞) is described
as a ‘particle’ moving in a potential well in (β+, β−) ∈ R2 space.

Let us begin with the λ-R Bianchi type I models for which n1 =
n2 = n3 = 0, according to Table 1, and thus m1 = m2 = m3 = 0 in equa-
tion (A.16). Hence the spatial curvature (A.19) is identically zero, and so
is the potential (A.20), which implies that the kinetic part (A.11) in the
Hamiltonian (A.15) determines the dynamics. It therefore follows that any
type I solution can be described as a ‘cosmological particle’ that is moving
with the constant velocity

(A.28) V⃗ = (V+, V−) =

(

dβ+

dτ−
,
dβ−

dτ−

)

= (−Σ+,−Σ−),

in β±-space, due to (A.22) and (A.23). Note that V⃗ , V± should not be
confused with the potential V . Since the Hamiltonian/Gauss constraint in
Bianchi type I reduces to T = 0, it follows that Σ2

+ +Σ2
− = 1, and hence

that the speed |V⃗ | of the ‘cosmological particle’ is |V⃗ | = 1. Thus the fixed
points in the Kasner circle set K# are interpreted in this picture as a particle
with a constant velocity V⃗ = (−Σ+,−Σ−) and speed |V⃗ | = 1 in β±-space.

20For a similar derivation of the GR case, see ch. 10 in [102], but note that the
present variables Nα differ from those in [102] by a factor 2

√
3.
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The λ-R Bianchi type II1 models are characterized by n1 ̸= 0, n2 = n3 =
0, see Table 1, and thus m1 ̸= 0,m2 = m3 = 0, as follows from (A.16). Sim-
ilar statements hold for II2 and II3. The evolution of the II1 models is de-
termined by

(A.29) T + V =
1

2

(

−p2λ + p2+ + p2−
)

+ 6m2
1 = 0,

where we recall due to (A.16) that

(A.30) m1 = n1e
2(2vβλ−2β+) = n1e

−4(vτ−+β+),

where the time variable is given by τ− := −βλ.
The steep exponential potential (A.30) is approximated by setting it to

be identically zero when the exponential in 6m2
1 is sufficiently small, and

replacing it with an infinite potential wall when the smallness condition
is violated. For a chosen sufficiently small constant C ≪ 1, the potential
attains this small value C = 6n21e

−8(vτ−+β+
0 ) for some β+0 ∈ R, which deter-

mines its location in β+ ∈ R as a function of the constants n1, v, C and the
time τ−, given by β+0 := log(6n21/C)

1/8 − vτ−. The steep potential (A.30)
is thereby approximated by a potential that is set to zero when β+ > β+0 ,
since then 6n21e

−8(vτ−+β+) < C, and an infinite potential wall at β+ = β+0 .
As τ− increases toward the singularity, the location of the wall at β+0 moves
in the negative β+-direction according to β+0 := log(6n21/C)

1/8 − vτ−, with
a velocity

(A.31) v⃗1 = (v+, v−) =

(

dβ+0
dτ−

,
dβ−0
dτ−

)

= (−v, 0),

and thus the wall has a speed |v⃗1| = v in the negative β+-direction. If
V+ < v+ = −v < 0 (and hence |V+| > v > 0), then the cosmological particle
eventually reaches and bounces against the infinite potential wall given by
the Bianchi type II1 potential 6m

2
1, see Figure A1. This occurs if −Σ+ < −v,

which corresponds to Σ1 < −2v in the coordinates (A.27). This coincides
with the instability criterion on K# in the Σ1-direction, which defines the
unstable arc int(A1) in equation (12).

Similarly, one can construct the infinite potential walls for the Bianchi
type II2 and II3 models, and obtain analogous results by adapting the β±

variables to those directions. Such walls, with respective potentials given by
6m2

2 and 6m2
3, have the following velocities in the present β± coordinates:

(A.32) v⃗2 =
1

2
(1,

√
3)v, v⃗3 =

1

2
(1,−

√
3)v.
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Bifurcations and chaos in Hořava-Lifshitz cosmology 2169

The general picture is therefore that a cosmological particle moves in
a Bianchi type I potential V = 0, with velocity V⃗ = (−Σ+,−Σ−), until it
encounters a Bianchi type II moving wall and bounces, thereby obtaining
new values of Σ±, determined by the Kasner circle map, see Figure A1. As
follows from (27b), a bounce against the II1 wall corresponds to

(A.33) sinφf =
(1− v2) sinφi

1 + v2 − 2v cosφi
,

where φi is the angle the straight line motion of the particle makes with the
β+-axis, while φf describes the outgoing motion after the bounce, which is
given by the subsequent Kasner solution. The bounce law (A.33) can also be
obtained in the present description by making boost in the β+-direction in
(βλ, β±)-space so that the potential wall does not move and using that the
ingoing and outgoing bounce angles then are equal. We will perform such
a boost in the next appendix. Finally, note that (A.33) reduces to the GR
case when v = 1/2, e.g. given in ch. 10 in [102].

β−

β+

v⃗1

β+
0 (τ−)

V⃗

φi

φf

(a). Incoming ‘particle’ with veloc-
ity V⃗ and moving potential II1 walls.

β−

β+

v⃗1

v⃗2

v⃗3

(b). Moving potential II1, II2, II3 walls
with respective veloticies v⃗1, v⃗2, v⃗3.

Figure A1. The cosmological particle with velocity V⃗ , determined by the Kasner solu-
tions, and the level sets of the type II1 potential described by a moving wall at β+

0 (τ
−
)

with velocity v⃗1, and similarly for II2 and II3. The particle reaches the moving wall II1
and bounces with the law given by (A.33) when |V+| > v.

Next, consider the Bianchi type VIII and IX models. According
to (A.20), the potential consists of the three combined Bianchi type II poten-
tials given by 6m2

1, 6m
2
2, 6m

2
3, which together form a triangular potential well

in β±-space, plus the three ‘cross terms’ −12m1m2, −12m2m3, −12m3m1,
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which form cross term walls. The cross terms are all negative in type IX,
while two are positive and one is negative in type VIII. They are given by
exponentials, which can be approximated by a region where each individual
term can be set to zero and a negative or positive (depending on its sign) in-
finite potential wall moving in β±-space depending on time τ−. For example,
the reasoning that resulted in equation (A.31) for the type II1 potential can
be replicated for the cross term −12m2m3 = −12n2n3 exp[4(−2vτ− + β+)].
This leads to a wall with a velocity v⃗2,3 = (2v, 0), and thus a speed 2v in
the positive β+-direction. By means of permutation symmetry, similar state-
ments hold for the other cross terms. According to (A.32), the Bianchi type
II2 and II3 potentials yield walls moving with a component of the velocity
given by v/2 in the positive β+-direction. For sufficiently large τ−, the cross
term walls will therefore be ‘hidden’ behind the type II walls, and hence
should not affect the asymptotic dynamics, since particles will bounce off
the type II walls before reaching the cross term walls. It is therefore ex-
pected that only Bianchi type II potentials play a role for the asymptotic
limit τ− → ∞.

The overall picture is thereby that the asymptotic dynamics is described
by free motion of a cosmological particle in β±-space with speed |V⃗ | = 1 in
a Bianchi type I zero potential, followed by bounces against Bianchi type II
walls moving with speed v, if the particle catches up with the moving walls,
which depends on the direction of the cosmological particle and the speed
v of the wall. The Bianchi type II1, II2 and II3 potentials form a triangular
potential well that is increasing in size in β±-space as τ− → ∞. The above
heuristic picture amounts to the claim that generic solutions of the evolution
equations (A.25) asymptotically follow heteroclinic Bianchi type II chains,
or end in the set S in K# in the supercritical case v > 1/2.

There is, however, a subtlety at the corners of the triangular potential
well. Take the corner at β− = 0. In this case, the type II walls described
by m2

2 = m2
3 ∝ exp(4(−2vτ− + β+)) have the same velocity 2v in the β+-

direction, as has the cross term wall given by −m2m3. Consider therefore
a possibly ‘dangerous’ region where the cross term −m2m3 near the corner
of the triangular well might affect the asymptotic dynamics. To understand
this better, define

(A.34) V̄ (β±) := e−8vβλ

V = e8vτ−V.

Note that the asymptotic dynamics for large times is described by τ− → ∞,
and consequently for large values of V̄ (β±).
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Without loss of generality we set n1 = n2 = n3 = 1 in type IX; n1 =
n2 = 1, n3 = −1 in type VIII; n1 = 0, n2 = n3 = 1 in type VII0; n1 = 0,
n2 = 1, n3 = −1 in type VI0; n1 = 1, n2 = n3 = 0 in type II. Due to (A.20)
and (A.16), this leads to the following potentials

V̄II = 6e−8β+

, for type II,(A.35a)

V̄VI0 = 24e4β
+

cosh2(2
√
3β−), for type VI0,(A.35b)

V̄VII0 = 24e4β
+

sinh2(2
√
3β−), for type VII0,(A.35c)

V̄VIII = 6
[

e−8β+ − 4e−2β+

sinh(2
√
3β−) + 4e4β

+

cosh2(2
√
3β−)

]

,(A.35d)

for type VIII,

V̄IX = 6
[

e−8β+ − 4e−2β+

cosh(2
√
3β−) + 4e4β

+

sinh2(2
√
3β−)

]

,(A.35e)

for type IX,

with level sets of V̄ depicted in Figures A1, A2 and A3.
Note that a translation in β+ simply rescales the potentials V̄VI0 and

V̄VII0 in (A.35), and hence all the potential level curves of V̄VI0 and V̄VII0 have
the same shape, see Figure A2. Furthermore, V̄VI0 and V̄VII0 approach the
type II2 and II3 potentials exponentially fast as |β−| increases. Thus V̄VI0 and
V̄VII0 can be approximated by the type II2 and II3 potentials when |β−| > ϵ,
for some ϵ > 0 sufficiently small. The region |β−| < ϵ, denoted by the ϵ-
corner region, is where the approximating infinite type II wall description
breaks down. In particular, it is at this region where the cross-term N2N3

has a significant role in the dynamical system picture.
As derived from first principles in Appendix B, in the dynamical sys-

tems picture the asymptotics as τ− → ∞ for solutions of type VIII and IX
for all v ∈ (0, 1) reside on the union of the disjoint relevant type VI0 and
VII0 boundary sets, and the union of the type II and I boundary sets. This
corresponds to that the level curves of the potentials V̄VIII and V̄IX increas-
ingly possess the same shape for large values of the potential, and that they
are locally described by the relevant type VI0 and VII0 potentials. The level
curves of the potentials V̄VIII and V̄IX are thereby asymptotically shape in-
variant, see Figure A3.

In a similar way as for the individual type II potential, we approximate
the type VIII and IX potentials V = e−8vτ− V̄ (β±) by setting them to be
identically zero when V < C for some chosen small constant C ≪ 1 (i.e., τ−
and V̄ are large), and an infinite potential wall when V = C, consisting of the
associated three infinite type II potential walls. This results in an equilateral
triangular potential well, which yields an increasingly good approximation
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β−

β+

−ϵ

ϵ

(a). Type VII0.

β−

β+

−ϵ

ϵ

(b). Type VI0.

Figure A2. Level curves of V̄ in (A.35) for type VII0 and VI0. Each level curve has
the same shape under translation in β+. Note that the ϵ-corner region, where the type II
approximation fails, has a fixed size 2ϵ independently of the level curves of V̄ .

as τ− increases, except at the ϵ-corner regions, which are asymptotically
described by type VI0, VII0, see Figures A1 and A3.

β−

β+

(a). Type IX.

β−

β+

(b). Type VIII.

Figure A3. Level curves for large V̄ in (A.35) for Bianchi type IX and VIII. As τ
−

increases (and thus V̄ becomes larger), each level curve has a larger perimeter, whereas
the ϵ-corners have fixed size 2ϵ, which asymptotically becomes negligible compared to the
remaining perimeter length given by the type II triangle of length 3L(τ

−
).

According to the above heuristic approximation scheme, a type VIII or
IX solution is described as a free particle moving with unit speed |V⃗ | = 1
in a triangular potential well with the ϵ-corners cut out (i.e., for now, we
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assume that the particle does not enter the corner regions). Similarly to each
single type II wall, the three approximating infinite type II potential walls
move with a speed |v⃗α| = v, where each individual IIα walls have velocities
v⃗1, v⃗2, v⃗3 in (A.31) and (A.32), respectively. If the particle hits an infinite
type II wall, it bounces according to that type II wall’s bounce law, which is
determined by the wall’s velocity, given by (A.33), unless it enters a corner
region. In the critical and subcritical cases, v ∈ (0, 1/2], as v decreases the
increasingly slow wall motion implies that the particle on average bounces
against the walls increasingly often. In the subcritical case, v ∈ (0, 1/2), the
regions Aα ∩Aβ correspond to directions where the particle might hit the
corner region between IIα and IIβ . In the supercritical case, v ∈ (1/2, 1), the
walls move faster and the particle bounces against walls less often. Note,
however, that the particle bounces against the type II walls infinitely if the
velocity directions are associated with the Cantor set C. Otherwise, after a
finite number of bounces, the particle acquires a velocity direction so that it
does not catch up with any wall, and thereby it enters a final Kasner state
described by the final velocity direction.21

The above heuristic picture assumes that the particle does not enter an
ϵ-corner region. However, consider a starting point at some (τ−)0 where the
length of the equilateral type II triangle is 3L0, and the ϵ-regions have fixed
length 6ϵ. Since the sides of the triangle are moving apart with speed v,
its size 3L(τ−) increases as τ− → ∞, whereas the ϵ-corners have fixed size
6ϵ independent of τ−, which means that the size of the corner regions be-
comes asymptotically negligible, i.e., limτ−→∞(2ϵ/L(τ−)) = 0. This suggests
that the probability that a generic particle (corresponding to non-locally
rotationally symmetric solutions) enters an ϵ-corner region tends to zero as
τ− → ∞, which corresponds to that the ‘cross terms’ asymptotically tend
to zero, in some statistically generic sense.

The above suggest that the type II heteroclinic chains describe the
asymptotic dynamics in the subcritical and critical cases, v ∈ (0, 1/2], in
some statistically generic sense, and that solutions associated with the Can-
tor set C in the supercritical case, v ∈ (1/2, 1), also asymptotically shadow
type II heteroclinic chains.

In the above discussion, we have assumed that the potential wall is not
affected by the bounce. This is not quite the case, but we will argue that
the effect is asymptotically negligible. During the Bianchi type I motion, pλ

21This might also happen before the wall description has become a good approx-
imation. This corresponds to that a solution ends at the stable set S before starting
to shadow the type II and I boundaries.
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and p± are all constants (for simplicity set N to a constant, and then note
that βλ and β± are all cyclic variables). Then write the Hamiltonian type
II1 constraint as

(A.36) Σ2
+ +Σ2

− +
12n21
p2λ

e−8(vτ−+β+) = 1,

where the Bianchi type I regime is determined by a wall 6n21e
−8(vτ−+β+

0 )p−2
λ =

C ≪ 1, where pλ, which we previously neglected, is a constant during the
Bianchi type I motion of the cosmological particle. However, pλ changes dur-
ing a bounce against the wall, where the difference is determined by the rele-
vant Bianchi type II1 solution, as seen as follows. Equations (19) and (A.24)
result in that pλ ∝ 1/η. Since we are considering expanding models, pλ is
negative, see (A.21a), and it is monotonically decreasing when τ− is increas-
ing, due to (A.24). Also, since pλ ∝ 1/η, then ηi = 1 and ηf = g according
to Section 2.2. Therefore,

(A.37)
pfλ − piλ
piλ

=
1

g
− 1,

due to a Bianchi type II bounce. In other words, the wall moves because
of the bounce, apart from its movement during the cosmological particle’s
Bianchi type I motion. However, we will now argue that this effect is asymp-
totically negligible for generic solutions.

Equation (A.24) yields pλ ∝ exp(
∫

[−4v(1− Σ2)]dτ−). In the dynamical
systems picture, the above heuristic cosmological particle description cor-
responds to that solutions to an increasing extent shadow the heteroclinic
Bianchi type II orbits. They thereby stay increasingly long times τ− near the
Kasner circle K# where 1− Σ2 = 0, while the effects on pλ of a given type
II bounce according to (A.37) are not affected by when a bounce takes place
in the evolution of the solution. However, the increasing size of the triangu-
lar potential well shows that solutions have a ‘memory’ of their evolution,
which is not locally seen, not in (A.37) nor in the local eigenvalue analysis
of K#. Due to increasingly accurate shadowing, the time τ− spent by the
particle during bounces becomes asymptotically negligible compared to the
time spent in Bianchi type I motion. This is due to that the time spent
during a bounce is determined by the time it takes the particle to move the
extra distance the wall has moved because of the bounce. Since this distance
is increasingly small when compared to the size of the increasing triangular
well, the (average) time during a bounce when compared to the (average)
time between bounces, which is increasing due to the increasing size of the
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triangular well, becomes asymptotically negligible (this has been illustrated
numerically in GR, see, e.g., Figure 11.1 in [102]).

The above heuristic discussion suggests that the following ‘dominant’
λ-R Hamiltonian captures the asymptotic dynamics of the original Hamil-
tonian:

(A.38)
HDom := N

(

1

2

(

−p2λ + p2+ + p2−
)

+ VDom

)

,

VDom := 6m2
1 + 6m2

2 + 6m2
3.

In other words, the potential VDom consists of the three type II poten-
tials, without the cross terms in the original potential V in (A.20). Ex-
pressing the Hamiltonian equations obtained from HDom in the variables
(Σ±, N1, N2, N3) and time τ− yields the same evolution equations as for the
λ-R models in (A.25), except that the cross terms N1N2, N2N3, and N3N1

are absent. This system has the same heteroclinic Bianchi type I and II
structure as the λ-R models. The above heuristic reasoning suggests that
both dynamical systems, associated with (A.15) and (A.38), respectively, are
asymptotically described by K# and the Bianchi type II heteroclinic chains,
in a manner that supports the conjectures in Section 7. The same conclusion
is obtained from the billiard formulation of Chitré and Misner [18, 70, 71],
see p. 812 in [72], and also [20, 22, 39]. Incidentally, it seems plausible that
the symbolic dynamics methods used in the main text could be used in this
billiard formulation. Also, it would be interesting to see if deforming first
principles in some restricted sense in more general models (such as those
discussed in [20], e.g., by considering string theory inspired modifications)
can lead to bifurcations that are related to those in the present case.

A.2. Hořava-Lifshitz Class A models

The vacuum spatially homogeneous Hořava-Lifshitz (HL) class A Bianchi
models have a Hamiltonian with the same kinetic part as the vacuum λ-R
models, but a potential V in (A.13) consisting of a sum of the potentials AV
with A = 1, . . . , 6, where the superscript A reflects the constants kA in (3c),
which multiply the spatial curvature expressions in (A.13) and (A.14), de-
termined by the spatial Ricci curvature Ri

j and the Cotton (Cotton-York)
tensor Ci

j .
For the diagonal class A models the only non-zero components of Ri

j are
the diagonal terms R1

1, R
2
2 and R3

3, and similarly for Ci
j . The reason for

writing these tensors with one upper and lower index is that the orthonormal
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frame expressions coincide with those obtained when using the left-invariant
frame in (A.2). This allows us to specialize the general orthonormal frame
expressions for the spatial curvature and the Cotton tensor in [24] to the
present diagonal class A Bianchi models, where R1

1 is given in (A.18), the
curvature scalar R in (A.19), and

(A.39) C1
1 = − 1

2g3/2

(

2m3
1 − (m2 +m3)

[

m2
1 + (m2 −m3)

2
])

,

where m1,m2,m3 are defined in (A.16). The remaining components R2
2, R

3
3

and C2
2, C

3
3 are obtained by permutation of indices 1, 2, 3 in the respective

formulas for R1
1 and C1

1.
As stated in the derivation of the dynamical system (A.25) for the λ-R

models, we only need to compute the equation for Σ+ and use permutations
to obtain the equations for the Σα variables, as argued after (A.27). In
addition, we will exploit that each potential term in V can be written as an
exponential in βλ times a function of β+ and β−, since each potential term
AV has a certain dimensional weight under conformal scalings of the spatial
metric. To make this weight explicit, we define

m̄1 := g−1/3m1 = n1e
−4β+

,(A.40a)

m̄2 := g−1/3m2 = n2e
2β++2

√
3β−

,(A.40b)

m̄3 := g−1/3m3 = n3e
2β+−2

√
3β−

.(A.40c)

Here we have introduced the convention that variables with an overbar are
functions of β± only. Denoting R1

1 and C1
1 with R1 and C1, respectively,

leads to that the equations (A.18) and (A.39) can be written as follows, by
means of (A.40) and g = exp(12vβλ),

R1 = e−4vβλ

R̄1, R̄1 =
1

2
(m̄2

1 − m̄2
−),(A.41a)

C1 = e−6vβλ

C̄1, C̄1 = −1

2

(

2m̄3
1 − m̄+(m̄

2
1 + m̄2

−)
)

,(A.41b)

where we define m̄± as

(A.42) m̄± := m̄2 ± m̄3.

The terms R2 = R2
2, R3 = R3

3, C2 = C2
2 and C3 = C3

3 are again obtained
by permutations. To obtain succinct expressions, we not only introduce m̄±,
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but also the following (Misner-like) parametrization of the diagonal compo-
nents of R̄i

j and C̄i
j :

Ā1 =
1

3

(

Ā− 2Ā+

)

,(A.43a)

Ā2 =
1

3

(

Ā+ Ā+ +
√
3Ā−

)

,(A.43b)

Ā3 =
1

3

(

Ā+ Ā+ −
√
3Ā−

)

,(A.43c)

where

Ā := Ā1 + Ā2 + Ā3,

Ā+ :=
1

2

(

Ā2 + Ā3 − 2Ā1

)

,

Ā− :=

√
3

2

(

Ā2 − Ā3

)

.

The Cotton tensor Ci
j is trace-free, and hence C̄ = C̄1 + C̄2 + C̄3 = 0 when

replacing Ā with C̄. Using the expressions in (A.41) for R̄1, C̄1, and permu-
tations thereof, in (A.43) gives

R̄ = −1

2

(

m̄2
1 − 2m̄1m̄+ + m̄2

−
)

,(A.44a)

R̄+ = −1

2

(

2m̄2
1 − m̄1m̄+ − m̄2

−
)

,(A.44b)

R̄− = −
√
3

2
m̄−(m̄1 − m̄+),(A.44c)

C̄+ =
3

4

(

2m̄3
1 − m̄2

1m̄+ − m̄+m̄
2
−
)

,(A.44d)

C̄− =

√
3

4
m̄−

(

m̄2
1 + 2m̄1m̄+ − 2m̄2

+ − m̄2
−
)

.(A.44e)
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The above parametrization leads to that potentials AV in (A.14) take
the form:

1V = e8vβ
λ

(1V̄ ), 1V̄ = 12k1R̄,(A.45a)
2V = e4vβ

λ

(2V̄ ), 2V̄ = 12k2R̄
2,(A.45b)

3V = e4vβ
λ

(3V̄ ), 3V̄ = 12k3R̄
i
jR̄

j
i = 4k3(R̄

2 + 2R̄2
+ + 2R̄2

−),(A.45c)
4V = e2vβ

λ

(4V̄ ), 4V̄ = 12k4R̄
i
jC̄

j
i = 8k4(R̄+C̄+ + R̄−C̄−),(A.45d)

5V = 5V̄ , 5V̄ = 12k5C̄
i
jC̄

j
i = 8k5(C̄

2
+ + C̄2

−),(A.45e)
6V = 6V̄ , 6V̄ = 12k6R̄

3,(A.45f)

which follows from (A.14) and (A.43). Thus all potentials AV depend ex-
plicitly on βλ as described in (A.45), whereas AV̄ are functions of m̄1, m̄2,
m̄3 due to (A.44) and (A.42), and thereby of β± according to (A.40).

Assigning a weight under spatial conformal scalings according to the
scale g1/6 = e2vβ

λ

results in that the potentials AV in (A.45) have the fol-
lowing weights, denoted by [AV ],

(A.46) [1V ] = 4, [2V ] = [3V ] = 2, [4V ] = 1, [5V ] = [6V ] = 0.

In other words, all potentials AV have an exponential dependence on βλ, but
with different powers of g1/6 = e2vβ

λ

according to (A.46). The integer rela-
tions between the weights for the different potential terms, [1V ] = [(2V )2] =
[(3V )2] = [(4V )4] play a role below.

All HL models share some common features. First, all HL models have
the same automorphism group and associated symmetries at each level
of the class A Bianchi hierarchy, IX, VIII; VII0, VI0; II; I, see Figure 1.
Second, each individual curvature term yields a potential with a certain
weight (A.46), which results in that each individual potential has a scale-
symmetry which can be combined with the automorphism group to yield a
scale-automorphism group.22 For this reason, we now describe the potentials
at each level of the class A Bianchi hierarchy below type VIII and IX (the
potentials of type VIII and IX where given in (A.45)).

The type VI0 and VII0 models are characterized by a single vanishing
structure constant n1, n2, n3. Without loss of generality, let n1 = 0 (and
hence m̄1 = 0) describe these models. Equations (A.40) and (A.42) then

22In Appendix B, this group is central for the dynamical properties at each level
in the class A Bianchi hierarchy, for both the λ-R and HL models.
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motivate the definitions

(A.47) m̃± := e−2β+

m± = n2e
2
√
3β− ± n3e

−2
√
3β−

,

where we introduce the convention that variables with a˜on top are functions
of β− only. It follows that dm̃±/dβ− = 2

√
3m̃∓. Equations (A.45) and (A.44)

imply that the type VII0 and VI0 potentials with n1 = 0 can be written as

1VVII0,VI0 = e4(2vβ
λ+β+)(1Ṽ ), 1Ṽ = −6k1m̃

2
−,(A.48a)

2VVII0,VI0 = e4(vβ
λ+2β+)(2Ṽ ), 2Ṽ = 3k2m̃

4
−,(A.48b)

3VVII0,VI0 = e4(vβ
λ+2β+)(3Ṽ ), 3Ṽ = 3k3m̃

2
−(2m̃

2
+ + m̃2

−),(A.48c)
4VVII0,VI0 = e2(vβ

λ+5β+)(4Ṽ ), 4Ṽ = −6k4m̃+m̃
2
−(m̃

2
+ + m̃2

−),(A.48d)

5VVII0,VI0 = e12β
+

(5Ṽ ), 5Ṽ =
3

2
k5(7m̃

2
+m̃

4
− + 4m̃2

−m̃
4
+ + m̃6

−),(A.48e)

6VVII0,VI0 = e12β
+

(6Ṽ ), 6Ṽ = −3

2
k6m̃

6
−.(A.48f)

To describe the HL Bianchi type II models, we consider, without loss
of generality, the II1 models, which are characterized by n2 = n3 = 0, which
yields m̄2 = m̄3 = 0 and m̄± = 0. The Bianchi type II1 potentials in (A.45)
with curvature terms (A.44) are thereby given by

1VII1 = −6k1e
8vβλ

m̄2
1 = −6k1n

2
1e

8(vβλ−β+) = −6k1n
2
1e

−8(vτ−+β+),(A.49a)
2VII1 = 3k2e

4vβλ

m̄4
1 = 3k2n

4
1e

4(vβλ−4β+) = 3k2n
4
1e

−4(vτ−+4β+),(A.49b)
3VII1 = 9k3e

4vβλ

m̄4
1 = 9k3n

4
1e

4(vβλ−4β+) = 9k3n
4
1e

−4(vτ−+4β+),(A.49c)
4VII1 = −12k4e

2vβλ

m̄5
1 = −12k4n

5
1e

2(vβλ−10β+)(A.49d)

= −12k4n
5
1e

−2(vτ−+10β+),
5VII1 = 18k5m̄

6
1 = 18k5n

6
1e

−24β+

,(A.49e)

6VII1 = −3

2
k6m̄

6
1 = −3

2
k6n

6
1e

−24β+

.(A.49f)

The common dimensional weight in (A.46) for 2V and 3V , and for 5V
and 6V , motivates that these two pairs of potentials are treated collectively,
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i.e.,

2,3V := 2V + 3V = e4vβ
λ

(2,3V̄ )(A.50a)

= e4vβ
λ [

4(3k2 + k3)R̄
2 + 8k3(R̄

2
+ + R̄2

−)
]

,
2,3VVII0,VI0 = e4(vβ

λ+2β+)(2,3Ṽ )(A.50b)

= 3e4(vβ
λ+2β+)m̃2

−
[

2k3m̃
2
+ + (k2 + k3)m̃

2
−
]

,
2,3VII1 = 3(k2 + 3k3)n

4
1e

4(vβλ−4β+),(A.50c)

and

5,6V := 5V + 6V = 5,6V̄ = 8k5(C̄
2
+ + C̄2

−) + 12k6R̄
3,(A.51a)

5,6VVII0,VI0 = e12β
+

(5,6Ṽ )(A.51b)

=
3

2
e12β

+ [

k5(7m̃
2
+m̃

4
− + 4m̃2

−m̃
4
+) + (k5 − k6)m̃

6
−
]

,

5,6VII1 =
3

2
(12k5 − k6))n

6
1e

−24β+

,(A.51c)

which follows from (A.45), (A.48) and (A.49).
To obtain a unified description of the various potentials, we refer to them

with a superscript A, i.e., AV , where A = 1, {2, 3}, 4, {5, 6}; thus A = 2, 3
and A = 5, 6 corresponds to 2,3V = 2V + 3V and 5,6V = 5V + 6V , respec-
tively. We also introduce the constants

1v = v :=
1

√

2(3λ− 1)
, 2,3v =

v

4
, 4v =

v

10
, 5,6v = 0,(A.52a)

1a = 2, 2,3a = 4, 4a = 5, 5,6a = 6,(A.52b)
1c = −12k1,

2,3c = 6(k2 + 3k3),
4c = −24k4,(A.52c)

5,6c = 36k5 − 3k6.

The models with 1v, 2,3v, 4v ∈ (0, 1) thereby correspond to λ ∈
(12 ,∞), (1132 ,∞), ( 67

200 ,∞), respectively.
The constants (A.52) allow us to write the HL potentials at each level

of the class A Bianchi hierarchy as follows:

AV = e4avβ
λ

(AV̄ ), for types IX and VIII,(A.53a)
AVVII0,VI0 = e2a(2vβ

λ+β+)(AṼ ),(A.53b)

for types VII0 and VI0, with n1 = 0,

AVII1 =
1

2
c na1 e

4a(vβλ−β+), for type II1,(A.53c)
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where we refrain from writing the superscript A on Aa, Av and Ac for nota-
tional brevity, e.g.,

AVII1 =
1

2
c na1 e

4a(vβλ−β+) =
1

2
(Ac)(n1)

(Aa) e4(
Aa)((Av)βλ−β+).

As can be seen by inspection, inserting (A.52) into the above expressions
yield (A.45), (A.48), with n1 = 0 for the type VII0 and VI0 potentials,
and (A.49) for type II1.

We will now derive a regular constrained dynamical system for the HL
case, and then perform a heuristic analysis of the HL models. In the latter
case, when there are several potential terms (A.45), we heuristically argue
that there is a single dominant potential, and that the scale-automorphism
group for this dominant potential is intimately linked to the asymptotic
dynamics toward the singularity, in the same manner as for the GR and λ-R
models.

Derivation of the HL evolution equations. To obtain a regular dy-
namical system for the HL models, we first consider the Hamiltonian equa-
tions with the Hamiltonian (A.15) for the variables βλ, β± and the canon-
ical momenta pλ, p±. The kinetic part T depends on pλ, p± and is given
by (A.11), while the potential V depends on βλ, β± according to (A.13)
and (A.45). We then use the same Σ± and Σα variables as in the λ-R case,
defined in (A.23) and (A.27), and the time variable τ− := −βλ. The Hamil-
tonian equations then result in the evolution equations

dβλ

dτ−
= −1,

dpλ
dτ−

= −Ωλpλ,(A.54a)

dβ±

dτ−
= −Σ±,

dΣ±
dτ−

= ΩλΣ± + S±,(A.54b)

subjected to the constraint

(A.55) Σ2
+ +Σ2

− +Ωk = 1,

where we have introduced the following dimensionless quantities

(A.56) Ωk :=
2

p2λ
V, Ωλ :=

1

p2λ

∂V

∂βλ
, S± := − 2

p2λ

∂V

∂β±
.
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The different quantities in (A.56) can be decomposed into objects that are
related to the individual potentials AV for A = 1, {2, 3}, 4, {5, 6} as follows

Ωk = 1Ωk +
2,3Ωk +

4Ωk +
5,6Ωk,(A.57a)

Ωλ = 1Ωλ + 2,3Ωλ + 4Ωλ + 5,6Ωλ,(A.57b)

S± = 1S± + 2,3S± + 4S± + 5,6S±,(A.57c)

where AΩk := 2p−2
λ (AV ), AΩλ := p−2

λ ∂∂βλ(AV ) and AS± :=
−2p−2

λ ∂∂β±(AV ). Due to (A.45), Ωλ is given by

(A.58) Ωλ = 4v(1Ωk) + 2v(2,3Ωk) + v(4Ωk),

where the coefficients are related to the scaling weights in (A.46). Note
that all AV̄ are homogeneous polynomials in m̄1, m̄2 and m̄3, which are
invariant under permutations of indices, as follows from (A.45), which is
a consequence of that the potentials have been constructed from curvature
scalars. It follows from the definitions that AΩk for A = 1, {2, 3}, 4, {5, 6} are
also homogeneous polynomials in m̄α and that AΩk, Ωk and Ωλ are invariant
under permutations.

To compute the equation for Σ+, we need to compute AS+ and S+. To
do so, note that the equations (A.40) and (A.42) yield

(A.59)
∂m̄1

∂β+
= −4m̄1,

∂m̄±
∂β+

= 2m̄±,

which together with the chain rule and (A.44) gives

∂R̄

∂β+
= 2(2m̄2

1 − m̄1m̄+ − m̄2
−),(A.60a)

∂R̄+

∂β+
= 8m̄2

1 − m̄1m̄+ + 2m̄2
−,(A.60b)

∂R̄−
∂β+

=
√
3(m̄1 + 2m̄+)m̄−,(A.60c)

∂C̄+

∂β+
= −9

2

(

4m̄3
1 − m̄2

1m̄+ + m̄+m̄
2
−
)

,(A.60d)

∂C̄−
∂β+

= −3
√
3

2
(m̄2

1 + 2m̄2
+ + m̄2

−)m̄−.(A.60e)

These expressions in combination with the chain rule applied to (A.45) yields
each AS+ as a homogeneous polynomial in m̄1, m̄2 and m̄3 of the same degree



✐

✐

“4-Lappicy” — 2023/8/23 — 16:58 — page 2183 — #89
✐

✐

✐

✐

✐

✐

Bifurcations and chaos in Hořava-Lifshitz cosmology 2183

as in AΩk. The polynomials are multiplied with p−2
λ and exponentials in βλ,

determined by the weights of AV in the same way as for AΩk. We then
change the Σ± variables to Σα, α = 1, 2, 3,

(A.61)
(

Σ1,
AS1,S1

)

:= −2(Σ+,
AS+,S+).

This leads to

(A.62) Σ′
α = ΩλΣα + Sα, α = 1, 2, 3,

where the equations for α = 2 and α = 3 are obtained by cyclic permutations
of (123) in the expressions involving m̄1, m̄2 and m̄3 when α = 1. There is
thereby no need to compute S−.

Our next step is to introduce dimensionless variables that replace βλ, β±

in (A.54) and pλ in order to obtain a regular dynamical system. In the λ-R
case, the single potential term given by V = 1V had a specific weight under
conformal scaling transformations, which yielded a symmetry that decoupled
the evolution equation for pλ. We now have potential terms in (A.45) with
different weights (A.46), where adding them breaks this symmetry. We there-
fore introduce separate dimensionless variables ANα, A = 1, {2, 3}, 4, {5, 6},
that respect the different weights and the polynomial nature of the potential
in terms of m̄α. This leads to twelve variables ANα, three for each value of
A, replacing the four variables βλ, β± and pλ. Due to the construction, the
equation for the dimensional variable pλ,

(A.63) p′λ = −Ωλpλ

decouples, but the redundance of variables ANα results in constraints be-
tween them.

To explicitly define the variables ANα, which will lead to explicit con-
straints, we first consider the type II1 potentials AVII1 in equation (A.49)
and define AΩII1 := 2(AVII1)/(−pλ)2. Permutation of axis allows us to obtain
the dimensionless expression

(A.64) AΩIIα =
2(AVIIα)

(−pλ)2
= ce4a v β

λ m̄a
α

(−pλ)2
,

where we refrain from writing the superscript A on Ac, Aa, Av for brevity.
We recall that pλ < 0 for an expanding model.

Throughout we will restrict considerations to HL models for which
(Ac)(nα)

(Aa) ≥ 0 when nα ̸= 0, i.e., models with non-negative Bianchi type
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II potentials and non-negative AΩIIα . This amounts to sign conditions on the
constants kA in (A.49). For example, k1 ≤ 0 in 1VII1 when n1 ̸= 0, whereas

(A.65) k2,3 := k2 + 3k3 ≥ 0, k5,6 := 12k5 − k6 ≥ 0,

are associated with 1VII2,3 and 1VII5,6 , respectively. Note that the term 4VII1
when n1 ̸= 0 is special: it is positive if k4 is negative and n1 is chosen to be
positive. But in Bianchi type VIII, one of the potentials 4VII1 ,

4VII2 ,
4VII3

by necessity has an opposite sign compared to the other two, irrespective
of the sign of k4. This occurs since two of the constants n1, n2, n3 have
opposite signs compared to the third, as in Table 1, and these constants
appear with odd powers in (A.49d). For this reason, we exclude the type
VIII models with k4 ̸= 0, except when k5,6 > 0, since 5,6V asymptotically
‘dominates’ over 4V , as will be seen below.

We then define new dimensionless variables that are linear in m̄α, as in
the λ-R case. This can be done because the potentials AV are homogeneous
polynomials in m̄α, α = 1, 2, 3, and thus the evolution equations has vari-
ables that respect these polynomial relationships. We therefore introduce
the following variables,

(A.66) ANα := a

√

AΩIIα = a
√
ce4vβ

λ m̄α

a
√

(−pλ)2
,

where we again drop the superscript A on Av, Aa, Ac. This leads to the
following:

1Nα :=
√

−12k1e
4vβλ

(

m̄α

−pλ

)

,(A.67a)

2,3Nα := 4
√

6k2,3e
vβλ

(

m̄α√−pλ

)

,(A.67b)

4Nα := 5
√

−24k4e
2vβλ/5





m̄α

5

√

p2λ



 ,(A.67c)

5,6Nα := 6
√

3k5,6

(

m̄α
3
√−pλ

)

.(A.67d)

As in the λ-R case, considering the Hamiltonian/Codazzi constraint in these
variables shows that they are dimensionless. Note that the dimension of kA
determines how both βλ and pλ enter the definitions, once one has decided to
adapt the variables to the polynomials in m̄α (or, equivalently, mα). Finally
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we choose to fix the remaining dimensionless constants that can multiply
the ANα variables by requiring that the coefficients for the Bianchi type II
terms in each AΩk are equal to one.

The evolution equations for the variables ANα, expressed in the variables
Σα, are obtained from the above definitions, (A.54), (A.61), and are given
by

(A.68) AN ′
α = −2

[

2(Av) + Σα − Ωλ
Aa

]

(ANα),

or, explicitly,

1N ′
α = (Ωλ − 4v − 2Σα)(

1Nα),(A.69a)

2,3N ′
α =

1

2
(Ωλ − 2v − 4Σα) (

2,3Nα),(A.69b)

4N ′
α =

2

5
(Ωλ − v − 5Σα) (

4Nα),(A.69c)

5,6N ′
α =

1

3
(Ωλ − 6Σα) (

5,6Nα),(A.69d)

where α = 1, 2, 3, and where Av has been replaced with v, defined in (6),
according to (A.52a).

As mentioned, there are twelve variables ANα, since α = 1, 2, 3 and
A = 1, {2, 3}, 4, {5, 6}, and thus they are not all independent since they are
functions of four variables, βλ, β±, pλ. The above evolution equations (A.69)
are therefore constrained. Using that there are integer weight relations be-
tween the different potentials AV , A = 1, {2, 3}, 4, {5, 6}, and inserting the
definitions (A.67) into these relations yield the following constraints

√

k32,3(
1Nα)(

4Nα)
5 = −k4

√

−25k1(
2,3Nα)

6, α = 1, 2, 3,(A.70a)

k2,3(
1Nα)(

5,6Nα)
3 =

√

−k1k5,6(2,3Nα)
4, α = 1, 2, 3,(A.70b)

(ANα)(
BNβ) = (ANβ)(

BNα), αβ = 12, 23, 31;(A.70c)

A,B = 1, {2, 3}, 4, {5, 6}.

Only nine of the above constraints above turn out to be independent, e.g.,
(A.70a), (A.70b) and (1Nα)(

2,3Nβ) = (1Nβ)(
2,3Nα), since the other ones can

be written in terms of these nine equations if k1, k2,3 = k2 + 3k3, k4, k5,6 =
12k5 − k6 are all non-zero. If any of these coefficients are zero, one can choose
a different set among the available constraints, but most three of the twelve
variables ANα are independent.
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The HL dynamical system thereby consists of the following evolution
equations,

Σ′
α = ΩλΣα + Sα,(A.71a)

1N ′
α = (Ωλ − 4v − 2Σα)(

1Nα),(A.71b)

2,3N ′
α =

1

2
(Ωλ − 2v − 4Σα) (

2,3Nα),(A.71c)

4N ′
α =

2

5
(Ωλ − v − 5Σα) (

4Nα),(A.71d)

5,6N ′
α =

1

3
(Ωλ − 6Σα) (

5,6Nα),(A.71e)

subjected to the constraints

0 = Σ1 +Σ2 +Σ3,(A.71f)

1 = Σ2 +Ωk, Σ2 := (Σ2
1 +Σ2

2 +Σ2
3)/6,(A.71g)

√

k32,3(
1Nα)(

4Nα)
5 = −k4

√

−25k1(
2,3Nα)

6, α = 1, 2, 3,(A.71h)

k2,3(
1Nα)(

5Nα)
3 =

√

−k1k5,6(2,3Nα)
4, α = 1, 2, 3,(A.71i)

(ANα)(
BNβ) = (ANβ)(

BNα), αβ = 12, 23, 31;(A.71j)

A,B = 1, {2, 3}, 4, {5, 6}.

where Ωk and Ωλ are obtained from (A.57) and (A.58); Sα is obtained by
permuting the indices in S1, which is computed from S+ according to (A.61).

There are in total fifteen variables (three Σα and twelve ANα) sub-
jected to eleven constraints (two constraints (A.71f) and (A.71g), which
also hold for the λ-R models and GR, and nine new independent con-
straints (A.71h),(A.71i) and (A.71j), relating the variables ANα). This re-
sults in a rather formidable constrained dynamical system. However, the
system (A.71) contains several less complicated special invariant sets, which
illustrate the above procedure of how to obtain the explicit equations. The
special invariant sets are of two types:

(i) sets obtained by setting some potentials AV to zero, A =
1, {2, 3}, 4, {5, 6}, which corresponds to setting the corresponding vari-
ables ANα with α = 1, 2, 3 to zero;

(ii) special Bianchi types obtained by setting one or more constants nα to
zero, which implies that the corresponding variables ANα are zero, for
all values of A.
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Bifurcations and chaos in Hořava-Lifshitz cosmology 2187

To illustrate the algorithmic procedure to obtain explicit equations,
which require expressing AΩk,

AΩλ and ASα, based on (A.56) in the variables
ANα, let us first consider the case where only k1 ̸= 0 (recall that k1 = −1
yields the λ-R case). Thus the invariant set defined by ANα = 0 for all
A = {2, 3}, 4, {5, 6}, α = 1, 2, 3 provides an example of an invariant subset
of type (i) above, where Ωk = 1Ωk, Ωλ = 1Ωλ, Sα = 1Sα. Equations (A.44a)
and (A.45a) yield

1V = 12k1e
8vβλ

R̄ = −6k1e
8vβλ

(m̄2
1 − 2m̄1m̄+ + m̄2

−)

= −6k1e
8vβλ

(m̄2
1 + m̄2

2 + m̄2
3 − 2m̄1m̄2 − 2m̄2m̄3 − 2m̄3m̄1),

(A.72)

where we have used (A.42).
Together with (A.56) and (A.67a), this leads to

(A.73) Ωk = N2
1 +N2

2 +N2
3 − 2N1N2 − 2N2N3 − 2N3N1.

Equation (A.58) yields Ωλ = 4vΩk. It remains to determine Sα. Equa-
tions (A.72), (A.60a), (A.42) and (A.67a) result in

(A.74) S1 = −4
[

(N2 −N3)
2 −N1(2N1 −N2 −N3)

]

,

where cyclic permutations of (123) yield S2 and S3.
A comparison shows that the dynamical system with k1 < 0 is identical

to the system (4), (A.26), for the λ-R case for which k1 = −1. The reason
for this is that single curvature terms, associated with the constant kA, with
A = 1, {2, 3}, 4, admit a scaling symmetry, which correspond to a translation
in βλ. This symmetry makes it possible to scale kA with an arbitrary positive
number, and hence scale the negative coefficient k1 so that k1 = −1.

To illustrate invariant subsets obtained by restricting to a particular
Bianchi type (i.e., invariant sets of type (ii) above), we consider Bianchi
types I and II. As in the λ-R case, the Bianchi type I subset is just
the Kasner circle K#. In the Bianchi type II1 case, n2 = n3 = 0 implies
AN2 =

AN3 = 0 for all A. This thereby leaves four variables AN1 when
all constants k1, k2,3, k4, k5,6 are non-zero. The constraints (A.71j) are
all identically zero since they involve AN2 and AN3. Similarly the con-
straints (A.71h) and (A.71i) are identically zero for α = 2, 3. This leaves
two constraints (A.71h) and (A.71i) for α = 1, and hence there are two in-
dependent variables AN1, A = 1, {2, 3}, 4, {5, 6}, in Bianchi type II1. Similar
statements hold for Bianchi type II2 and II3. The Bianchi type II models
break the formal permutation symmetry, e.g.,the type II1 models lead to
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that m̄2 and m̄3, and thereby m̄±, are set to zero. In this case, it is conve-
nient to use equation (A.49) and compute S− = 0 from its definition (A.56),
since β− is a cyclic variable, and then transform the result to obtain Sα,
which yields the following quantities

Ωk = (1N1)
2 + (2,3N1)

4 + (4N1)
5 + (5,6N1)

6,(A.75a)

Ωλ = 4v(1N1)
2 + 2v(2,3N1)

4 + v(4N1)
5,(A.75b)

(S1,S2,S3) = 4
[

2(1N1)
2 + 4(2,3N1)

4 + 5(4N1)
5 + 6(5,6N1)

6
]

T1,(A.75c)

from which it is straightforward to obtain the type II1 dynamical system.
Equation (A.75) illustrates that AΩk,

AΩλ and ASα for α = 1, 2, 3
are homogeneous polynomials of ANα of degrees 2, 4, 5, 6 when A =
1, {2, 3}, 4, {5, 6}, respectively. In Bianchi type VIII and IX, the number
of terms in AΩk,

AΩλ and ASα increases as the degree of the polynomials
become higher due to an increase in the number of cross terms, which leads
to a daunting number of terms in Ωk, Ωλ and Sα, when kA ̸= 0 for all A.

Heuristic HL considerations. Here we will heuristically argue that the
heteroclinic network obtained by concatenation of Bianchi type II orbits in
the λ-R models given by (A.25) describes the asymptotics of a broad class
of HL models (A.71).

Equation (A.53c) shows that the Bianchi type II potential walls for the
AV potential has a speed Av given by (A.52a) in the negative β+-direction,
which is obtained in the same way as equation (A.31) in the λ-R model.
Moreover, for the same reason as in the λ-R case, the cross terms for a po-
tential AV with A = 1, {2, 3}, 4 have approximating walls with higher speeds
than the Bianchi type II terms, and are not expected to affect generic asymp-
totic dynamics toward the singularity, as will be discussed below; the case
A = 5, 6 is special. Furthermore, a similar argument holds for the type II
terms that belongs to different potentials: 1VII yields slower moving walls
than all the other type II potentials, so if any of these are present, the
1VII contribution to the dynamics is expected to not affect the generic past
asymptotic dynamics; similarly 2,3VII is negligible if

4V or 5,6V (or both) are
non-zero; while if k5,6 > 0 all the other terms are expected to be dominated
by 5,6V .

This leads to a situation where the generic past dynamics is expected to
be characterised by a ‘dominant’ Hamiltonian of the form

(A.76) HDom = N (T + VDom) = 0,
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where the kinetic part T depends on the canonical momenta pλ, p±, ac-
cording to (A.11), while the ‘dominant’ potential VDom is the sum of the
type II1, II2 and II3 terms in the dominant potential AV , A = Dom, i.e., all
potentials with larger Bv and all the cross terms have been dropped. The
dominant potential depends on βλ, β± as follows:
(A.77)

VDom =
1

2
c
(

na1 e
4a(vβλ−β+) + na2 e

2a(2vβλ+β++
√
3β−) + na3 e

2a(2vβλ+β+−
√
3β−)

)

,

where we drop the superscript A = Dom on the constants Ac, Aa and Av for
brevity. The value of A in (A.77) is determined by the dominant potential,
i.e., if all potentials with larger A are zero. For example, A = 1 corresponds
to that k2,3 = k4 = k5,6 = 0, while A = 4 requires k5,6 = 0.

The case k5,6 > 0 requires special attention. Although the 5,6V potential
is expected to suppress all other potentials toward the singularity, note that
5,6V only depends on β±. Hence βλ is a cyclic variable in this case (using
e.g. N = constant as determining the time variable), which results in that
pλ becomes a conserved quantity. The term E = p2λ/2 can thus be viewed
as an energy for the reduced Hamiltonian problem with potential 5,6V (β±).
This potential yields a generalized Toda problem in two dimensions, see [14].
Once the existence of 5,6V has suppressed the effects of the other potentials,
the full remaining Toda problem must be addressed. In the limit, E → ∞,
one expects that the dynamics is described by the v = 0 Bianchi type I and
II heteroclinic network in the dynamical systems picture, but for small E, all
terms in 5,6V comes into play and one can expect a complicated dynamical
behaviour, in agreement with the discussions in [6] and [76].

We can adapt dynamical systems variables to the present dominant
Hamiltonian system (A.76). Based on (A.77), which consists of the three
dominant AVIIα , A = Dom, potentials, we define the following dimensionless
variables

Ñ1 :=
√

cna1

(

e2a(vβ
λ−β+)

−pλ

)

,(A.78a)

Σ± := −p±
pλ
, Ñ2 :=

√

cna2

(

ea(2vβ
λ+β++

√
3β−)

−pλ

)

,(A.78b)

Ñ3 :=
√

cna3

(

ea(2vβ
λ+β+−

√
3β−)

−pλ

)

,(A.78c)
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where we again drop the superscript A=Dom for brevity. In comparison with
the variables in (A.23) for the λ-R models, we keep the same variables Σ±,
but the variables Ñα are slightly modified. In particular, there exists an
overall factor Aa/2 in the exponent times an expression that is formally the
same as in the λ-R case, but with v replaced with Av.

The multiplicative factor Aa/2 can be eliminated by a change of the time
variable τ− according to τ̃− := 2τ−/Aa. Letting ′ denote the new derivative
d/dτ̃− yields the following system of evolution equations

Σ′
+ = 2

(

2v(1− Σ2)Σ+ + Ñ2
2 + Ñ2

3 − 2Ñ2
1

)

,(A.79a)

Σ′
− = 2

(

2v(1− Σ2)Σ− +
√
3Ñ2

2 −
√
3Ñ2

3

)

,(A.79b)

Ñ ′
1 = −4(vΣ2 − Σ+)Ñ1,(A.79c)

Ñ ′
2 = −2(2vΣ2 +Σ+ +

√
3Σ−)Ñ2,(A.79d)

Ñ ′
3 = −2(2vΣ2 +Σ+ −

√
3Σ−)Ñ3,(A.79e)

subjected to the constraint

(A.79f) 1− Σ2 − Ñ2
1 − Ñ2

2 − Ñ2
3 = 0.

This dynamical system is formally the same as that in (A.25), but with ab-
sent cross terms Ñ1Ñ2, Ñ2Ñ3, Ñ3Ñ1 and with v replaced by Av, where the
superscript A refers the dominant potential A=DomV . Thus the two dynam-
ical systems generated by (A.25) and (A.79) share the same Bianchi type I
and II heteroclinic structure. Since this structure is expected to describe the
generic asymptotic dynamics toward the singularity (at least when k5,6 = 0),
the analysis of the heteroclinic structure in the main part of the paper of
the λ-R models is therefore arguably of relevance for the generic singularity
of a large class of HL models.

Let us now deduce the ‘dominant’ dynamical system (A.79) from the
general HL dynamical system (A.71). Recall that the dominant dynamical
system was obtained by:

(i) setting all potentials AV to zero, except for the potential AV with A =
Dom, i.e., the potential with the largest value of A ∈ 1, {2, 3}, 4, {5, 6}
with non-zero coefficient kA. This corresponds to the invariant sub-
set of (A.71) for which all variables ANα are set to zero, except for
A = Dom, which leads to three non-zero DomNα variables. Note that
the constraints (A.70) are automatically satisfied for subsets that only
involve one of the potentials AV where A = 1, {2, 3}, 4, {5, 6}. We will
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Bifurcations and chaos in Hořava-Lifshitz cosmology 2191

refer to this invariant subset of (A.71) as the invariant dominant sub-
set ;

(ii) setting all the cross terms in the potential AV with A = Dom to zero,
which thereby yields VDom = AVII1 +

AVII2 +
AVII3 for A = Dom. In

the dynamical system this is achieved by setting all cross terms involv-
ing DomN1,

DomN2,
DomN3 in the invariant dominant subset in (A.71)

to zero. This results in a system where Ωk, Ωλ and Sα are linear in
(2,3Nα)

4, (4Nα)
5, (5,6Nα)

6, if A = Dom = {2, 3}, 4, {5, 6}, respectively.
This makes it possible to perform a variable transformation from
the dominant variables DomNα to new variables DomÑα which yield
quadratic polynomials, e.g., 2,3Ñα = (2,3Nα)

2 if A = Dom = {2, 3}.
To finally obtain the system (A.79) from (A.71), replace v with Av,
A = Dom, according to (A.52a), and replace DomNα with the new vari-
ables Ñα. Finally, change the time variable to τ̃− := 2τ−/Aa, where Aa
is defined in (A.52b) for A = Dom.

The heuristic arguments in this appendix thus suggest that the ω-limits
(as τ− → ∞) for generic Bianchi type IX solutions (and type VIII, if A =
Dom ̸= 4, as discussed previously) of the evolution equation (A.71) reside
on the union of the Bianchi type I and II subsets on the invariant dominant
subset. Replacing v with Av, A = Dom, and using the Hamiltonian/Gauss
constraint to solve for the single DomNα variable in each of the type IIα
subsets, leads to the equations in (Σ1,Σ2,Σ3)-space used in the main text
to discuss the heteroclinic network on the union of the type I and II subsets
for the λ-R models, if one changes the time variable according to τ̃− :=
2τ−/Doma.23 The results in the main part of the paper thereby heuristically
apply to a broad class of HL models.

Appendix B. First principles and the Bianchi hierarchy

In this appendix, we derive monotone functions and conserved quantities at
each level of the class A Bianchi hierarchy from the associated scale and
automorphism symmetry hierarchy. These structures are inherited from the

23This is the reason we obtain the results in [29] as special cases of our results
for the Bianchi type II λ-R models. Incidentally, we could have introduced the
Kasner parameter u, as in said reference. The Kasner map describing how u changes
follows from (24), (35) and (36). However, the range and domain of u differ from
the critical GR case when v ̸= 1/2. This suggests that one should use an extended
Kasner parameter, see [96]. However, since the parameter v leads to a complicated
expression for the Kasner map for u, we do not pursue this possibility.
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first principles of scale and diffeomorphism invariance, as shown for the GR
case in [36]. The present models do not change the automorphism group,
but they do have different scale symmetries, which yield different results for
the λ-R and HL models.

B.1. λ-R models

Bianchi types VIII and IX. We here derive a monotone function, called
∆. The decay of ∆ in time implies that the type VIII and IX solutions
converge to next level in the class A Bianchi hierarchy, the union of the
invariant type VI0 and VII0 boundary sets, as discussed in Section 6.

The Hamiltonian for Bianchi type VIII and IX is characterized by

(B.80) T + V =
1

2

(

−p2λ + p2+ + p2−
)

+ 6e8vβ
λ

V̄ (β±) = 0.

The kinetic part defines the DeWitt metric ηAB = diag(−1, 1, 1) for A,B =
λ,±, and its inverse ηAB = diag(−1, 1, 1), since we can write the kinetic
part as T = ηABpApB/2. The diagonal type VIII and IX models admit
no (diagonal) automorphisms since all the structure constants, n1, n2, n3,
are non-zero. However, the field equations of all vacuum λ-R models ad-
mit a scale symmetry, which thereby leads to a scale symmetry for the
potential in (B.80), obtained by translations in βλ. Moreover, in the po-
tential V = 6e8vβ

λ

V̄ (β±) the exponent 8vβλ is clearly timelike with re-
spect to ηAB in (βλ, β+, β−)-space when v ∈ (0, 1). Similarly as in GR,
see ch. 10 in [102] and [36], this leads to a monotone function, given by
e8vβ

λ

/p2λ ∝ |N1N2N3|2/3. Choosing to scale this with 3 so that Ωk +∆ ≥ 0
in Section 6 yields

∆ :=3|N1N2N3|2/3,(B.81a)

∆′ = − 8vΣ2∆,(B.81b)

where we have used the chain rule and (4b).

Bianchi types VI0 and VII0. We now show that the scale-
automorphism group for type VI0 and VII0 yields the functions (1 + 2vΣ+,
Zsub, Zsup and Zcrit). These functions have different consequences for the
subcritical, supercritical and critical cases, discussed in Section 6. In par-
ticular, 1 + 2vΣ+ is useful in all cases and is derived first; then we derive
Zsub (Zsup), which is useful for the subcritical (supercritical) case, where
Zsub = Zsup = Zcrit for the critical case.
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Let n1 = 0, n2 = n3 = 1 for type VII0 and n1 = 0, n2 = −n3 = 1 for
type VI0, without loss of generality. Then, according to equation (A.48a),
the Hamiltonian is described by,

(B.82) T + V =
1

2

(

−p2λ + p2+ + p2−
)

+ 6e4(2vβ
λ+β+)m̃2

− = 0,

where we recall that m̃− = n2e
2
√
3β− − n3e

−2
√
3β−

.
There are two special cases characterized by β− = p− = 0, discussed in

the dynamical systems framework in Section 6. The first is given by the lo-
cally rotationally symmetric (LRS) type VII0 models, which have an extra
space-time isometry and thereby a 4-dimensional multiply transitive isome-
try group. Since β− = p− = 0 implies m̃− = 0 and thus V = 0, both βλ and
β+ become cyclic variables and hence pλ and p+ are constants. Moreover,
the Hamiltonian constraint yields p+ = ±pλ, which corresponds to the two
invariant disjoint lines Σ+ = ±1, Σ− = 0, N := N2 = N3. The second case
results in the special type VI0 models, which exist due to the discrete symme-
try β− → −β−, and correspond to a space-time with a discrete isometry, in
contrast to the continuous extra isometry in the LRS type VII0 case. Since
β− = p− = 0 is an invariant set, it follows that so is Σ− = 0, N2 = −N3.
Moreover, since β− = p− = 0 implies m̃2

− = constant > 0, the Hamiltonian
constraint yields |Σ+| < 1. Below we will treat the special type VI0 models
together with the general ones.

Excluding the special cases with β− = p− = 0, the exponent 4(2vβλ +
β+) and m̃− in the potential in (B.82) shows that there are only two inde-
pendent variables in the Hamiltonian, 2vβλ + β+ and β−. It hence follows
that there is a cyclic variable and an associated conserved quantity. The
underlying reason is that the models with n1 = 0 admit a non-unimodular
automorphism in addition to the scale symmetry. Following [36] and [87]
and combining the non-unimodular autmorphism and the scale symmetry
appropriately yields a variational symmetry and thereby a conserved quan-
tity, given by

(B.83) pλ − 2vp+ = constant,

as follows from Hamilton’s equations.
Since pλ is monotone, apart from in the LRS type VII0 case, as follows

from Hamilton’s equation (A.24), dividing (B.83) with pλ yields a mono-
tone function, except when pλ − 2vp+ = 0. This, however, can only happen
in the supercritical case v ∈ (1/2, 1), since the Hamiltonian constraint yields



✐

✐

“4-Lappicy” — 2023/8/23 — 16:58 — page 2194 — #100
✐

✐

✐

✐

✐

✐

2194 J. Hell, P. Lappicy, and C. Uggla

|pλ| > |p+|. Expressing the quotient (pλ − 2vp+)/pλ in the dynamical sys-
tems variables results in

(B.84)
pλ − 2vp+

pλ
= 1 + 2vΣ+,

which evolves according to

(B.85) (1 + 2vΣ+)
′ = 4v(1− Σ2)(1 + 2vΣ+).

Further insights come from explicitly introducing cyclic variables that re-
spect the kinetic part of the Hamiltonian, which is done next. More specif-
ically, in the subcritical and supercritical cases, we make a Lorentz trans-
formation in the (βλ, β±)-space with respect to ηAB, where these transfor-
mations preserve the form of the kinetic part in (B.82) by definition, i.e.,
T = ηABpApB/2. However, note that with respect to ηAB, the exponent
4(2vβλ + β+) is spacelike for the subcritical case v ∈ (0, 1/2), null for the
critical case v = 1/2, and timelike for the supercritical case v ∈ (1/2, 1). The
different causal characters again reflect that a bifurcation takes place when
v = 1/2.

In the subcritical case, v < 1/2, a boost with velocity −2v results in

β̃λ = Γ(βλ + 2vβ+), βλ = Γ(β̃λ − 2vβ̃+),(B.86a)

β̃+ = Γ(2vβλ + β+), β+ = Γ(−2vβ̃λ + β̃+),(B.86b)

where Γ = (1− (2v)2)−1/2. Hence (B.82) is transformed to

(B.87) T + V =
1

2

(

−p̃2λ + p̃2+ + p2−
)

+ 6e4β̃
+/Γm̃2

− = 0.

The fact that p̃λ is conserved leads to a reduced problem for β̃+ and β−

with energy E = p̃2λ/2. Note that the Hamiltonian thereby takes the same
form as when v = 0, as for the HL models with dominant potential 5,6V . The
reduced problem thereby yields a generalized Toda problem in two dimen-
sions, see [14]. The conserved quantity p̃λ = Γ(pλ − 2vp+) results in (B.84),
and consequently (B.85). Moreover, p̃λ ̸= 0 due to (B.87), and since we are
considering expanding models, p̃λ < 0. Since p̃λ has the same sign as pλ, it
follows that p̃λ/pλ > 0, which implies that 1 + 2vΣ+ > 0 in the subcritical
case v < 1/2. As a consequence, 1 + 2vΣ+ is a monotone function in the
entire state space, as described in (B.85), apart from when Σ2 = 1, which
only happens for the Bianchi type I and the LRS type VII0 invariant sets.
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When p− ̸= 0, the Hamiltonian equations for the reduced Toda problem
for β̃+ and β− implies that a solution originates at β̃+ → −∞, and reaches a
maximal but finite value of β̃+, and then turn back and ends at β̃+ → −∞,
where the asymptotic origin and end correspond to τ− → ±∞. To trans-
late these claims into rigorous dynamical results, note that the exponential
e4β̃

+/Γ in the potential plays a key role. Dividing the conserved quantity p̃2λ
with this exponential yields a dimensionless quantity, which when expressed
in the dynamical systems variables results in

Zsub =
(1 + 2vΣ+)

2

|N2N3|
,(B.88a)

Z ′
sub = 4(2v +Σ+)Zsub.(B.88b)

In the supercritical case, v > 1/2, consider a boost with velocity−1/(2v),
i.e.,

β̃λ = Γ

(

βλ +
β+

2v

)

, βλ = Γ

(

β̃λ − β̃+

2v

)

,(B.89a)

β̃+ = Γ

(

βλ

2v
+ β+

)

, β+ = Γ

(

− β̃
λ

2v
+ β̃+

)

,(B.89b)

where Γ = (1− (2v)−2)−1/2. This results in that (B.82) takes the form

(B.90) T + V =
1

2

(

−p̃2λ + p̃2+ + p2−
)

+ 6e8vβ̃
λ/Γm̃2

− = 0.

In this case p̃+ is conserved, which implies that p̃+/pλ = Γ(1 + 2vΣ+) is
monotone when p̃+ ̸= 0, since pλ is monotone. Setting p̃+ = 0 yields the in-
variant set 1 + 2vΣ+ = 0. Invariance under the transformation (β̃+, p̃+) →
−(β̃+, p̃+) shows that the models exhibit a discrete symmetry. As a conse-
quence the invariant subset 1 + 2vΣ+ = 0 forms a separatrix surface which
divides the remaining state space into two disjoint sets. Moreover, the dis-
crete symmetry results in that the flow of (B.85) is equivariant under a
change of sign of the monotone function 1 + 2vΣ+. In addition, the in-
tersection of the special type VI0 subset, β− = p− = 0 (i.e., Σ− = 0 and
N2 = −N3) and the subset 1 + 2vΣ+ = 0 (i.e., β̃+ = p̃+ = 0) yields the fixed
point Σ+ = −1/(2v), Σ− = 0, N2 = −N3 =

√

1− (2v)−2.
In the supercritical case, the above structures are not the only ones that

can be extracted from the scale-automorphism group. As in the type VIII
and IX models, we have a potential with an exponential with a timelike vari-
able with respect to ηAB that multiplies a function that depends on spacelike
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variables (only β− in this case), see (B.90), after the transformation (B.86).

Following ch. 10 in [102], there is a monotone function given by 6e8vβ̃
λ/Γ/p̃2λ,

except when β̃+ = p̃+ = β− = p− = 0 in type VI0, i.e., at the fixed point

in these models. This results in that Zsup ∝ p̃2λe
−8vβ̃λ/Γ is monotone, and

expressing this function in the state space variables results in

Zsup =
(2v +Σ+)

2

N2N3
,(B.91a)

Z ′
sup = 4

[

(1 + 2vΣ+)
2 + (4v2 − 1)Σ2

−
2v +Σ+

]

Zsup,(B.91b)

where the last equation is obtained from (87). Hence Zsup is monotonically
increasing, except at the type VI0 fixed point (90). In type VII0, the variables
Σ+ = −1/(2v), Σ− = 0 do not correspond to an invariant subset. If an orbit
passes through these values, this implies that this only yields an inflection
point for the monotonically increasing Zsup.

In the critical GR case, v = 1/2, we introduce the null variables

(B.92) u := βλ + β+, w := βλ − β+,

which results in

(B.93) T + V = −2pupw +
1

2
p2− + 6e2um̃2

− = 0.

Since w is a cyclic variable, pw = (pλ − p+)/2 = constant ≤ 0, where the
inequality follows from the Hamiltonian constraint and from pλ < 0, which
holds for expanding models. The Hamiltonian constraint implies that the
equality only occurs for the LRS type VII0 models. Apart from this special
case, 1 + Σ+ is a monotone function in both type VI0 and VII0 according
to (B.85) with v = 1/2.

In the critical GR case, v = 1/2, the functions Zsub = Zsup = Zcrit

in (B.88) and (B.91) yields

Zcrit =
(1 + Σ+)

2

N2N3
,(B.94a)

Z ′
crit = 4(1 + Σ+)Zcrit(B.94b)

Thus Zsub = Zsup = Zcrit is thereby also a monotone function in the critical
case, except at the LRS type VII0 subset Σ+ = −1, Σ− = 0, N2 = N3 = N .

The underlying reason for the existence of the monotone function
Zsup = Zcrit in (B.94) is the scaling property of the potential obtained by a



✐

✐

“4-Lappicy” — 2023/8/23 — 16:58 — page 2197 — #103
✐

✐

✐

✐

✐

✐

Bifurcations and chaos in Hořava-Lifshitz cosmology 2197

translation in u, see (B.93), and the conserved momentum pw, which in turn
is a consequence of the scale-automorphism group. Apart from the LRS type
VII0 subset where pw = 0 and thereby Σ+ = −1, these two features taken
together yield the monotone function Zsup = Zcrit ∝ p2we

−4u = (pwe
−2u)2.

Thus Zsup is a monotone function when v ∈ [1/2, 1), but not in the subcrit-
ical case v ∈ (0, 1/2). The reason for this is the change in causal character
of the exponent 4(2vβλ + β+) in the potential and the Hamiltonian con-

straint (B.87), which prevents p̃−2
+ e4β̃

+/Γ from being a monotonically chang-
ing ‘energy’, as described in the qualitative picture of the dynamics in [99]
and ch. 10 in [102] when the exponent is timelike.

Incidentally, the Hamiltonian (B.90) for type VI0 is mathematically
closely related to the GR Bianchi type II models with a perfect fluid obeying
a linear equation of state p = wρ, w ∈ [0, 1), where p is the pressure and ρ the
energy density, see [95], ch. 10 in [102]. The difference is that due to steeper
walls in the heuristic wall description of the Hamiltonian (B.90) the present
models give rise to a heteroclinic cycle, which is not the case for the type
II perfect fluid models. Also note that in the subcritical case, v ∈ (0, 1/2),
the special type VI0 models with β− = p− = 0 yield the same mathematical
problem as the type II models discussed next when restricted to the type II
LRS case with p− = 0, after appropriate translations and rescalings of β̃λ,
β̃+ and τ−. Moreover, in the supercritical case, the special type VI0 models
yield the same mathematical problem as the LRS GR Bianchi type I models
with a perfect fluid with p = wρ.

Bianchi types II. Next we derive the key building block for the het-
eroclinic structure from scale-automorphism symmetries, i.e., the straight
Bianchi type II trajectories in Σ±-space, and thereby those in (Σ1,Σ2,Σ3)-
space, given by (23).

Without loss of generality, we consider the Bianchi type II1 case with
the Hamiltonian:

(B.95) T + V =
1

2

(

−p2λ + p2+ + p2−
)

+ 6e8(vβ
λ−β+) = 0.

Since β− is a cyclic variable, p− is constant. This occurs since the type II
models with n2 = n3 = 0 admit a unimodular automorphism, which gener-
ates a variational symmetry and thereby the conserved momentum p−. As in
the type VI0 and VII0 cases, these models also admit a scale-automorphism
symmetry, obtained by combining the scale symmetry with the remaining
non-unimodular automorphism, which yields a variational symmetry and an
additional cyclic variable. This is made explicit by performing a boost in the
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β+-direction in (βλ, β±)-space with a velocity v, i.e.,

β̃λ = Γ(βλ − vβ+), βλ = Γ(β̃λ + vβ̃+),(B.96a)

β̃+ = Γ(−vβλ + β+), β+ = Γ(vβ̃λ + β̃+),(B.96b)

where Γ = (1− v2)−1/2. This leads to the following expression,

(B.97) T + V =
1

2

(

−p̃2λ + p̃2+ + p2−
)

+ 6e−8β̃+/Γ = 0,

which shows that not only β− but also β̃λ is a cyclic variable. Thus both p−
and p̃λ are constant.24

Since both p− and p̃λ = Γ(pλ + vp+) are constants, it follows that divid-
ing the following relation between the constants p− ∝ pλ/v + p+ with −pλ,
and using that Σ± = p±/(−pλ), leads to

(B.98) Σ− = constant

(

Σ+ − 1

v

)

,

where the constant parametrizes the various heteroclinic Bianchi type II
orbits. This equation also holds for the initial values Σi

± of Σ± on K# and
dividing the above equation with Σi

− = constant (Σi
+ − v−1) yields

(B.99)

(

Σi
+ − 1

v

)

Σ− = Σi
−

(

Σ+ − 1

v

)

.

Equation (23) then follows from the definitions Σ1 = −2Σ+ and Σ2,3 = Σ+ ±√
3Σ−.

Bianchi type I. The Kasner circle of fixed points K# follows straight-
forwardly from the scale-automorphism symmetry group. Bianchi type I is
obtained by a Lie contraction of Bianchi type II, which results in that all
structure constants become zero, which yield an Abelian symmetry group.
This leads to one more special automorphism, which, together with the other
automorphisms and the (trivial) scale symmetry, implies that all variables
βλ, β+, β− are cyclic, and hence that all momenta pλ, p+, p− are conserved.

24Note that in the heuristic moving wall description, the wall moves in the positive
β+-direction in (βλ, β±)-space with a speed v, while the wall moves in the negative
β+-direction with time τ− = −βλ. The speed of the wall is also the speed of the
above boost, which thereby transforms the moving wall to a motionless wall. This
yields the bounce law (A.33) for the moving particle by means of the conserved
quantities.
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Thus Σ+ and Σ− are constants, and due to the Hamiltonian constraint,
T + V = (−p2λ + p2+ + p2−)/2 = 0, they satisfy Σ2

+ +Σ2
− = 1.

B.2. HL models

Equation (A.52) and (A.53) provide a unified picture of the individual AV
potentials for the HL class A Bianchi hierarchy, which we here, for the
reader’s convenience, repeat:

AV = e4avβ
λ

(AV̄ ), for types IX and VIII,(B.100a)
AVVII0,VI0 = e2a(2vβ

λ+β+)(AṼ ), for types VII0(B.100b)

and VI0, with n1 = 0,

AVII1 =
c na1
2

e4a(vβ
λ−β+), for type II1,(B.100c)

where, for notational brevity, we have refrained from writing the superscript
A on Aa, Av and Ac, where

1v = v :=
1

√

2(3λ− 1)
, 2,3v =

v

4
, 4v =

v

10
, 5,6v = 0,(B.101a)

1a = 2, 2,3a = 4, 4a = 5, 5,6a = 6,(B.101b)
1c = −12k1,

2,3c = 6k2,3,
4c = −24k4,

5,6c = 3k5,6.(B.101c)

The automorphism group is the same for all models, but the scale-
property of the individual potentials is different for different A. Nevertheless,
as seen from (B.100) there is a close relationship, one simply replace the con-
stants 1v = v, 1a = 2 and 1c = 12 in the λ-R case with Av, Aa and Ac to take
care of this difference. There is thereby a close connection between all single
potential term HL models. However, note that for type IX and VIII the
exponent e4avβ

λ

is timelike when A = 1, {2, 3}, 4 while it is a constant when
A = 5, 6 where A = 5, 6 represent a bifurcation since 5,6v = 0. Hence, for the
same reason as for the λ-R models, e4avβ

λ

/p2λ yields a monotone function
for each HL model with a specific value of A ∈ 1, {2, 3}, 4. When A = 5, 6,
pλ is conserved, which results in that (5,6N1)(

5,6N2)(
5,6N3) = constant.

In type VII0, VI0 and II1, one just replaces the boost in the λ-R case
with an analogous boost that follows from (B.100), to obtain similar con-
served quantities and monotone functions for each HL model. However,
in the dynamical systems description these quantities sometimes take a
different form due to the different relations with the associated Nα vari-
ables, see (A.66) and (A.67), but e.g., 1 + 2vΣ+ in the λ-R type VII0
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and VI0 models is just replaced with 1 + 2AvΣ+. Similarly in type II1,
Σ− = constant(Σ+ − v−1) is replaced with Σ− = constant(Σ+ − (Av)−1),
and thus models with A = 1, {2, 3}, 4 have formally the same heteroclinic
type II structure as the λ-R models with v ∈ (0, 1), although recall that Av
for those values of A are differently related to λ than 1v = v, see (B.101a).
There are thus very strong relationships between the dynamics of the λ-R
models and the HL models with single curvature terms as potentials.

Then recall the heuristic argument that asymptotically toward the sin-
gularity there exists a dominant single potential (the one with the largest
value of A), and an associated invariant subset in the HL dynamical sys-
tems formulation. With the exception that if this is the 5,6V potential, which
corresponds to a bifurcation since 5,6v = 0, the correspondence between con-
served quantities and monotone functions between the λ-R models and the
remaining HL models suggests that generic dynamics toward the singularity
is going to be described by the heteroclinic Bianchi type II and I structure
on the dominant invariant subset. This is also suggested by the dominant
Hamiltonian and the associated dominant dynamical system. Hence we con-
jecture that the discrete analysis of the heteroclinic structure in the λ-R case
in the main part of the paper is also describing the asymptotic dynamics of
HL models for which 5,6V = 0. The above also suggests that the there are
similar dynamical conjectures for these HL models as those in Section 7 for
the λ-R case.

Appendix C. A unified critical and supercritical treatment

In this Appendix we modify the proof about chaos within the non-generic
Cantor set of the supercritical case, given in Section 4.4, to also accommo-
date the critical GR case, in which chaos is generic. The method pursued in
order to achieve chaoticity that suits both the critical and the supercritical
cases is the construction of a topological conjugacy to a shift map, in anal-
ogy with the use of the encoding map h in (79). This yields a new proof for
chaos in GR and relates the supercritical symbolic dynamics construction
to the limiting case of GR, thereby providing a unified treatment of the two
cases.

Before we proceed, we mention that there are different ways to incorpo-
rate the methods of symbolic dynamics used in the supercritical case to also
describe chaos in the critical GR case. We will give a description that is a
continuous transition from the supercritical case v > 1/2 to the critical case
v = 1/2. This is accomplished by designing a new encoding map h̃ which
is continuous in v ∈ [1/2, 1). This new map behaves in a similar manner as
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the encoding map h in (79) for infinite heteroclinic sequences when v > 1/2,
but it also appropriately encodes points that reach the Taub points when
v = 1/2, and thus it remains a well-defined homeomorphism in the limit
v → 1/2.

The challenge of a unified treatment lies in the following continuity issue.
For all v ∈ [1/2, 1), define the set Cv of points that never reach the set S,
as in (40). When v > 1/2 decreases, the set S shrinks and collapses to the
Taub points at v = 1/2 (i.e., S = T1 ∪ T2 ∪ T3 when v = 1/2), where C1/2

thereby consists of points that never reach the Taub points via the Kanser
circle map K. On the other hand, the heteroclinic chains with period 2, see
Figure 14, which are in Cv (and behaves like its ‘boundary’) when v > 1/2,
converge to the Taub points as v → 1/2, which do not belong to C1/2. This
implies that the set Cv is not continuous with respect to the parameter v at
v = 1/2. In other words, the set limv→1/2Cv is different than C1/2.

25 Thus
one should not expect that the encoding map h, given by (79), is continuous
(in v) at v = 1/2. To deal with this discrepancy, and guarantee an accurate
continuous transition of non-generic to generic chaos, we also have to encode
the Taub points (and their pre-images) in the limit v = 1/2, which are the
limits of the heteroclinic chains with period 2 when v > 1/2.

Two problems arise when trying to encode the Taub points when v =
1/2. Consider (αβγ) a permutation of (123). First, each Taub point lies in
two different arcs, Tα ∈ Aβ ∩Aγ , and could thereby be described by two
different symbols, β or γ, which would make the encoding map ill-defined.
Second, it is not clear how to encode each Taub point in order to obtain
infinite sequences in W∞, since it is possible to assign different infinite tails
to the finite heteroclinic chains that end at the Taub points.

To resolve these problems, recall that each heteroclinic chain with period
2 (where the sequence of points in the set K# of the heteroclinic chain is
encoded by βγβγ . . . or γβγβ . . . , in Figure 14) converges to the Taub point
Tα when v → 1/2. In order to guarantee a continuous limit, it is natural
that both infinite sequences, βγ := βγβγ . . . and γβ := γβγβ . . . , encode the
Taub point Tα at v = 1/2. To ensure that the encoding map is well-defined,
each Taub point should be encoded by a single infinite sequence of symbols,

25Recall that Cv is a Cantor set (closed, without isolated points and nowhere
dense) for v ∈ (1/2, 1). On the one hand, the only common feature the set C1/2

possesses when compared to Cv with v > 1/2 is that both sets have no isolated
points, whereas C1/2 is not closed, nor nowhere dense, since the (countably many)
pre-images of Taub points are removed from the Kasner circle. On the other hand,
the limiting set limv→1/2 Cv is the whole Kasner circle, and is thereby closed, but
it has no isolated points and is dense.
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and thus the two periodic sequences given by βγ and γβ will be considered
to be in the same equivalence class in the space of infinite words W∞. This
assures that each chain with period 2 is encoded by a single infinite sequence
for v > 1/2, and that each Taub point is encoded by the same sequence when
v = 1/2, which results in continuity in v.

More precisely, we define an equivalence relation ∼ in W∞ as follows.
Two sequences (ak)k∈N0

and (bk)k∈N0
in W∞ are equivalent (ak)k∈N0

∼
(bk)k∈N0

if, and only if there is an n ∈ N0 such that ak = bk for all k =
0, . . . , n− 1 with (ak)k≥n = βγ and (bk)k≥n = γβ for some β ̸= γ ∈ {1, 2, 3}.
We then consider the quotient space endowed with the quotient topology

(C.102) W̃∞ :=W∞/ ∼

whose elements are the equivalence classes of sequences (ak)k∈N0
, denoted

by [(ak)k∈N0
]. An equivalence class thereby contains two or one element(s),

if the tail of (ak)k∈N is with period 2 or not, respectively.
The above construction solves the issue of encoding the Taub points,

but it introduces a new problem for the heteroclinic chains with period 2:
for v > 1/2 the two distinct points of the heteroclinic chain with period 2
given by βγ and γβ have the same encoding in W̃∞, since

[

βγ
]

=
[

γβ
]

. To
guarantee injectivity of the encoding map, we must relate these two points
by means of another equivalence relation. When v > 1/2 we consider the
quotient space

(C.103) C̃v := Cv/ ∼,

where two points p, q ∈ C̃v are equivalent if, and only if, they are contained
in the same heteroclinic chain with period 2 of the Kasner circle map K. To
summarize: elements of C̃v are the equivalence classes of points p, denoted
by [p], where an equivalence class contains two or one element(s) if p has
period 2 or not, respectively.

The encoding map is now defined as

(C.104)
h̃ : D(h̃) → W̃∞

[p] 7→ h̃([p]) := [(ak)k∈N] ,

where the domain is the set

(C.105) D(h̃) =







C̃v if v > 1/2,

lim
v→1/2

C̃v if v = 1/2,
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and where the sequence (ak)k∈N0
is built as follows:

1) If Kk(p) ̸= Tα for all k ∈ N0, then the symbol ak is uniquely defined for
all k ∈ N0 as the index of the open arc where Kk(p) lies, i.e. Kk(p) ∈
int(Aak

).

2) If Kn(p) = Tα for some n ∈ N0, where n is the minimum of such values,
let

(C.106) h([p]) :=
[

a0 . . . an−1βγ
]

,

where (αβγ) is a permutation of (123).

For v > 1/2 the domain is the previously constructed Cantor set Cv = C,
which does not contain the Taub points, and thus case 2 above never hap-
pens. Moreover, the encoding h̃ coincides with h in (79), except for the hete-
roclinic chains with period 2: they consist of two distinct points in Cv which
are identified in C̃v by the equivalence relation in (C.103), and their two en-
codings in W∞ are identified in W̃∞ by the equivalence relation in (C.102)
(for example

[

βγ
]

=
[

γβ
]

). Furthermore, it is only for v = 1/2 that the Taub
points can be reached, so that case 2 above occurs, where a period 2 tail has
been added in order to obtain a continuous limit.

Hence, h̃ is a well-defined homeomorphism in the following commuting
diagram,

D(h̃)
K

//

h̃
��

D(h̃)

h̃
��

W̃∞ σ
// W̃∞

where σ is the shift to the right of sequences, which thereby establishes that
the map K is chaotic.
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in Hořava-Lifshitz gravity. J. High Energ. Phys. 131, (2010).
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