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The duality covariant geometry and DSZ

quantization of abelian gauge theory

C. Lazaroiu and C. S. Shahbazi

We develop the Dirac-Schwinger-Zwanziger (DSZ) quantization of
classical abelian gauge theories with general duality structure on
oriented and connected Lorentzian four-manifolds (M, g) of arbi-
trary topology, obtaining as a result the duality-covariant geomet-
ric formulation of such theories through connections on principal
bundles. We implement the DSZ condition by restricting the field
strengths of the theory to those which define classes originating in
the degree-two cohomology of a local system valued in the groupoid
of integral symplectic spaces. We prove that such field strengths
are curvatures of connections A defined on principal bundles P
whose structure group G is the disconnected non-abelian group
of automorphisms of an integral affine symplectic torus. The con-
nected component of the identity of G is a torus group, while its
group of connected components is a modified Siegel modular group
which coincides with the group of local duality transformations of
the theory. This formulation includes electromagnetic and magne-
toelectric gauge potentials on an equal footing and describes the
equations of motion through a first-order polarized self-duality con-
dition for the curvature of A. The condition involves a combination
of the Hodge operator of (M, g) with a taming of the duality struc-
ture determined by P , whose choice encodes the self-couplings of
the theory. This description is reminiscent of the theory of four-
dimensional euclidean instantons, even though we consider a two-
derivative theory in Lorentzian signature. We use this formulation
to characterize the hierarchy of duality groups of abelian gauge
theory, providing a gauge-theoretic description of the electromag-
netic duality group as the discrete remnant of the gauge group of
P . We also perform the time-like reduction of the polarized self-
duality condition to a Riemannian three-manifold, obtaining a new
type of Bogomolny equation which is modified by the given taming
and duality structure induced by P . We give explicit examples of
such solutions, which we call polarized dyons.

2213



✐

✐

“5-Shahbazi” — 2023/8/18 — 0:37 — page 2214 — #2
✐

✐

✐

✐

✐

✐

2214 C. Lazaroiu and C. S. Shahbazi

Introduction 2214

1 Classical abelian gauge theory 2219

2 The Dirac-Schwinger-Zwanziger condition 2237

3 Siegel bundles and connections 2254

4 Prequantum abelian gauge theory 2264

5 Time-like dimensional reduction and polarized
Bogomolny equations 2275

Appendix A Local abelian gauge theory 2291

Appendix B Integral symplectic spaces and integral
symplectic tori 2302

References 2309

Introduction

Abelian gauge theory on Lorentzian four-manifolds is a natural extension of
Maxwell electrodynamics, which locally describes a finite number of abelian
gauge fields interacting through couplings which are allowed to vary over
space-time. Such theories occur frequently in high energy physics. For in-
stance, the low energy limit of a non-abelian gauge theory coupled to scalar
fields which can be maximally higgsed contains an abelian gauge theory
sector; this occurs in particular on the Coulomb branch of supersymmet-
ric non-abelian gauge theories. Moreover, the universal bosonic sector of
four-dimensional ungauged supergravity involves a fixed number of abelian
gauge fields interacting with each other through couplings which can vary
over space-time due to their dependence on the scalars of the theory. This
sector of four-dimensional supergravity can be described by pulling back an
abelian gauge theory defined on the target space of the sigma model of the
scalar fields [32].

The local behavior of abelian gauge theories (including their supersym-
metric extensions) was studied intensively in the physics literature, where
the subject has achieved the level of textbook material [16]. Despite intense
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activity, a global geometric formulation of such theories on arbitrary space-
times is still missing. At the level of field strengths, such a description was
given in [32] (see [34] for a summary) in the wider context of the geometric
description of the universal sector of classical supergravity in four dimen-
sions. As explained there and recalled in Section 1, the global formulation
requires the specification of a “duality structure”, defined as a flat sym-
plectic vector bundle ∆ = (S, ω,D) on the spacetime manifold M . The even
rank 2n of S equals the number of field strengths, where both electromag-
netic and magnetoelectric fields are included. When the spacetime is not
simply connected, such a bundle need not be trivial and it ‘twists’ the local
formulation in such a way that the combination of all electromagnetic and
magnetoelectric field strengths can be described globally by a dD-closed two-
form V defined on M and valued in S, where dD is the differential induced
by the flat connection D of the duality structure. A classical electromag-
netic field strength configuration is a dD-closed two-form V. The classical
equations of motion are encoded by the condition that V be self-dual with
respect to a ‘polarized Hodge operator’ obtained by tensoring the Hodge
operator ∗g defined by the Lorentzian spacetime metric g with a (generally
non-flat) taming J of the symplectic bundle (S, ω), an object which encodes
all couplings and theta angles in a fully geometric manner. A classical field
strength solution is a field strength configuration which obeys the polar-
ized self-duality condition. This provides a global formulation of the theory
on oriented Lorentzian four manifolds of arbitrary topology, which is mani-
festly covariant with respect to electromagnetic duality. In this formulation,
classical duality transformations are described by (based) flat symplectic au-
tomorphisms of ∆. Such theories admits global solutions which correspond
to ‘classical electromagnetic U-folds’ – a notion which had been used previ-
ously in the physics literature without being given a mathematically clear
definition.

While the treatment found in the physics literature discusses local gauge
potentials and local gauge transformations (which are described using dif-
ferential forms defined locally on spacetime), a fully general and manifestly
duality-covariant geometric formulation of such theories in terms of con-
nections on an appropriate principal bundle has not yet been given. Such
a formulation is required by the Aharonov-Bohm effect [1] and by Dirac-
Schwinger-Zwanziger (DSZ) “quantization” [23, 42, 47], which force the field
strengths to obey an integrality condition implied by the requirement of a
consistent coupling between classical gauge fields and quantum charge car-
riers. Imposing this condition restricts the set of allowed field strengths,
defining a so-called prequantum abelian gauge theory As pointed out in [32],
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the general formulation of this condition involves the choice of a Dirac sys-
tem L for ∆, defined as a D-flat fiber sub-bundle of S whose fibers are full
symplectic lattices inside the fibers of S. Every Dirac system has a type
t = (t1, . . . , tn), where t1, . . . , tn are positive integers such that t1|t2| . . . |tn.
A duality structure is called semiclassical if it admits a Dirac system. The
choice of a Dirac system L refines a semiclassical duality structure ∆ to an
integral duality structure ∆ = (S, ω,D,L) and reduces the group of duality
transformations to a discrete group, which generalizes the arithmetic dual-
ity group known from the local formulation found in the physics literature.
In the global setting, the Dirac system replaces the “Dirac lattice” of the
local approach and makes the DSZ condition is rather subtle since it re-
quires the use of cohomology with local coefficients (see [28, 43, 44, 48]). In
particular, the bundle-valued two-form V (which describes all electromag-
netic and magnetoelectric field strengths simultaneously) cannot in general
be the curvature of a connection defined on a principal torus bundle. Indeed,
the vector bundle S is generally non-trivial, while the adjoint bundle of any
principal torus bundle is trivial.

In the present paper, we ‘solve’ the DSZ integrality condition determined
by a Dirac system L by giving the geometric formulation of prequantum
abelian gauge theory in terms of connections defined on an adequate prin-
cipal bundle P . More precisely, we show that the combined field strength
V is the curvature of a connection defined on a principal bundle with non-
abelian and disconnected structure group G, whose connected component of
the identity is a torus group and whose group of connected components is
a modified Siegel modular group. This shows that the manifestly duality-
covariant formulation of such gauge theories is not truly abelian, since it
involves a non-abelian structure group. Instead, the structure group G is
weakly abelian, in the sense that only its Lie algebra is abelian. As a conse-
quence, the gauge group of P has a “discrete remnant” which encodes equiv-
ariance of the theory under electromagnetic duality transformations. Using
this framework, we show that the electromagnetic duality transformations
of the theory are given by (non-infinitesimal) gauge transformations, a fact
that provides a geometric interpretation for the former. Principal connec-
tions A on P describe the combined electromagnetic and magnetoelectric
gauge potentials of the theory. The polarized self-duality condition becomes
a first-order differential equation for A which is reminiscent of the instanton
equations, though the signature of our spacetime is Lorentzian and the the-
ory is of second order. These results provide a global geometric formulation
of prequantum abelian gauge theory as a theory of principal connections, in
a manner that is manifestly covariant under electromagnetic duality.
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To extract the principal bundle description, we proceed as follows. We
first show that integral duality structures of rank 2n and type t are asso-
ciated to Siegel systems of rank 2n, which we define to be local systems
Z of free abelian groups of rank 2n whose monodromy is contained in the
modified Siegel modular group Γ = Spt(2n,Z) of type t. The latter is defined
as the group of automorphisms of a full symplectic lattice of rank 2n and
type t and is a subgroup of Sp(2n,R) which contains the usual Siegel modu-
lar group Sp(2n,Z), to which it reduces when t coincides with the principal
type δ = (1, . . . , 1). The vector bundle of the duality structure is given by
S = Z ⊗Z R while the flat connection D is induced by the monodromy con-
nection of Z. A classical field strength configuration V is called integral if it
satisfies the DSZ quantization condition, which states that the cohomology
class [V]D ∈ H2

D(M,S) of V with respect to dD lies in the image of the lo-
cal coefficient cohomology group H2(M,Z) through the natural morphism
H2(M,Z) → H2

D(M,S), where H2
D(M,S) is the the second cohomology of

the complex (Ω∗(M,S), dD). We then show that V is integral if and only
if it coincides with the adjoint curvature VA of a connection A defined on
a principal bundle P (called a Siegel bundle) whose structure group is the
group G = Afft of automorphisms of an integral affine symplectic torus and
whose adjoint bundle identifies with S. The group Afft is a semidirect prod-
uct A⋊ Γ of the torus group A = R2n/Z2n with the modified Siegel modular
group Γ = Spt(2n,Z) and hence has a countable group of components which
is isomorphic with Γ. The dD-cohomology class of VA coincides with the im-
age in H2

D(M,S) of the twisted Chern class c(P ) ∈ H2(M,Z) of P . The
Siegel system Z (and hence the duality structure ∆) is uniquely determined
by the Siegel bundle P and Siegel bundles are determined up to isomor-
phism by the pair (Z, c). The classifying space of such principal bundles is a
twisted Eilenberg MacLane space [27] of type 2, namely aK(Z2n, 2)-fibration
over K(Spt(2n,Z), 1) whose κ-invariant is trivial and whose monodromy is
induced by the fundamental action of Spt(2n,Z) on Z2n.

There exists a large group of classical ‘pseudo-duality’ transformations
which identifies the spaces of classical field strength configurations and so-
lutions of different abelian gauge theories. Locally, such transformations
involve matrices T ∈ Sp(2n,R) acting on the field strengths and the DSZ
integrality condition with respect to a Dirac lattice of type t restricts T
to lie in the arithmetic group Spt(2n,Z). As already pointed out in [32],
the global theory of such duality transformations is much richer. We de-
velop this theory from scratch, defining a hierarchy of duality groups and
providing short exact sequences to compute them. We exploit this geomet-
ric framework to show that the electromagnetic duality transformations of
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abelian gauge theory correspond to gauge transformations of Siegel bundles,
elucidating the geometric origin of electromagnetic duality. In particular, we
emphasize the role played by the type t of the underlying Dirac system and
by the monodromy representation of the Siegel system Z in the correct def-
inition and computation of the discrete duality group of the prequantum
theory. The fact that a symplectic lattice need not be of principal type is
well-known in the theory of symplectic tori as well as in that of Abelian va-
rieties, where non-principal types correspond to non-principal polarizations.
The physical implications of non-principal types have been systematically
explored only recently in the context of supersymmetric field theories, see
for instance [4–8, 14, 15] and references therein.

The construction of the present paper produces a class of geometric
gauge models which is amenable to the methods of mathematical gauge the-
ory [24]. In particular, it allows for the study of moduli spaces of solutions
(which, as shown in [32], can be viewed as ‘electromagnetic U-folds’) using
techniques borrowed from the theory of instantons. In this spirit, we perform
the time-like reduction of the polarized self-duality equations, obtaining a
novel system of Bogomolny-like equations. Solutions of these equations de-
fine polarized abelian dyons, of which we describe a few examples.

The paper is organized as follows. Section 1 recalls the description of
classical abelian gauge theories with arbitrary duality structure in terms
of combined electromagnetic and magnetoelectric field strengths, following
[32]. In the same section, we describe the hierarchy of duality groups of such
theories and give a few short exact sequences to characterize them. Section 2
discusses the DSZ integrality condition for general duality structures, relat-
ing the notion of Dirac system (which appears in its formulation) to various
equivalent objects. Section 3 discusses Siegel bundles and connections show-
ing in particular that a Siegel induces a canonical integral duality structure.
In Section 4, we give the formulation of “prequantum” abelian gauge theory
(defined as classical abelian gauge theory supplemented by the DSZ inte-
grality condition) as a theory of principal connections on a Siegel bundle.
Section 5 discusses the time-like dimensional reduction of the polarized self-
duality equations, which leads to the notion of polarized abelian dyon. In the
same section, we construct examples of polarized abelian dyons on the punc-
tured affine 3-space. Appendix A recalls the duality-covariant formulation
of abelian gauge theory on contractible Lorentzian four-manifolds, starting
from the local treatment found in the physics literature. Appendix B dis-
cusses integral symplectic spaces and integral symplectic tori, introducing
certain notions used in the main text.
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0.1. Notations and conventions

All manifolds and fiber bundles considered in the paper are smooth, Haus-
dorff and paracompact. The manifold denoted by M is assumed to be con-
nected. In our convention, a Lorentzian four-manifold (M, g) has “mostly
plus” signature (3, 1). If E is a fiber bundle defined on a manifold M , we
denote by C∞(M,E) the set of globally-defined smooth sections of E and
by C∞(E) the sheaf of smooth sections of E.

Acknowledgements. We thank V. Cortés for useful comments and dis-
cussions. C.S.S would like to thank P. C. Argyres, A. Bourget, M. Martone
and R. Szabo for useful comments and suggestions. Part of the work of
C. I. L. on this project was supported by grant IBS-R003-S1. The work of
C.S.S. is supported by the Germany Excellence Strategy Quantum Universe
- 390833306.

1. Classical abelian gauge theory

In this section we introduce the configuration space and equations of mo-
tion defining classical abelian gauge theory on an oriented Lorentzian four-
manifold (M, g) and discuss its global dualities and symmetries. Appendix A
gives the description of this theory for the special case when M is con-
tractible, which recovers the local treatment found in the physics literature.
The global formulation presented in this section was proposed in a wider
context in reference [32], to which we refer the reader for certain details.
The definition of classical abelian gauge theory on (M, g) is given in terms
of field strengths and relies on the choice of a duality structure (defined as
a flat symplectic vector bundle ∆ = (S, ω,D) on M) equipped with a tam-
ing J of (S, ω), which encodes the gauge-kinetic functions (coupling con-
stants and theta angles) in a globally-correct and frame-independent man-
ner. The equations of motion of the theory are encoded by the J -polarized
self-duality condition for the combined electromagnetic and magnetoelec-
tric field strengths, which are modeled mathematically by a D-flat two-form
valued in the underlying vector bundle S of the duality structure.

1.1. Duality structures

Let M be a connected smooth manifold and (S, ω) be a symplectic vec-
tor bundle defined on M with symplectic structure ω. Since Sp(2n,R) and
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GL(n,C) are homotopy equivalent to their common maximal compact sub-
group U(n), the classification of symplectic, complex and Hermitian vector
bundles defined on M are equivalent. In particular, any complex vector bun-
dle admits a Hermitian pairing and any symplectic vector bundle admits a
complex structure which is compatible with its symplectic pairing and makes
it into a Hermitian vector bundle. Thus a real vector bundle of even rank
admits a symplectic pairing if and only if it admits a complex structure. The
classifying spaces BSp(2n,R) and BU(n) are homotopy equivalent, hence the
fundamental characteristic classes of a symplectic vector bundle (S, ω) are
Chern classes, which we denote by ck(S, ω).

Remark 1.1. Suppose that dimM = 4 and let S be an oriented real vec-
tor bundle of rank 2n defined on M , thus w1(S) = 0. If S admits a complex
structure J inducing its orientation, then its third Stiefel-Whitney class
w3(S) must vanish and its even Stiefel-Whitney classes w2(S) and w4(S)
must coincide with the mod 2 reduction of the Chern classes c1(S,J ) and
c2(S,J ) of the complex rank n vector bundle defined by S and J . In particu-
lar, the third integral Stiefel-Whitney class W3(S) ∈ H3(M,Z) must vanish,
i.e. S must admit a Spinc structure (notice that W5(S) vanishes for di-
mension reasons). These conditions are not always sufficient. To state the
necessary and sufficient conditions (see [37]), we distinguish the cases:

• n = 1, i.e. rkS = 2. Then S always admits a complex structure (equiva-
lently, a symplectic pairing) which induces its orientation (since SO(2) =
U(1)).

• n = 2, i.e. rkS = 4. In this case, S admits a complex structure (equiva-
lently, a symplectic pairing) which induces its orientation if and only if it
satisfies W3(S) = 0 and c4(S) = 0, where c4(S) ∈ H4(M,Z) is an integral
obstruction class described in [37, Theorem II].

• n ≥ 3, i.e. rkS ≥ 6. Then S admits a complex structure (equivalently, a
symplectic pairing ω) which induces its orientation if and only if W3(S) =
0.

Notice that an oriented real vector bundle S of rank four on a four-manifold
M is determined up to isomorphism by its first Pontryaghin class p1(S) ∈
H4(M,Z), its second Stiefel-Whitney class w2(S) ∈ H2(M,Z2) and its Euler
class e(S) ∈ H4(M,Z).

Definition 1.2. A duality structure ∆
def.
= (S, ω,D) on M is a flat sym-

plectic vector bundle (S, ω) over M equipped with a flat connection D :
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C∞(M,S) → Ω1(M,S) which preserves ω. The rank of ∆ is the rank of the
vector bundle S, which is necessarily even.

Notice that the Chern classes c1(S, ω) and c2(S, ω) of the underlying sym-
plectic vector bundle of a duality structure must be torsion classes.

Definition 1.3. A based isomorphism of duality structures from ∆ =
(S, ω,D) to ∆′ = (S ′, ω′,D′) is a based isomorphism of vector bundles
f : S

∼
−→ S ′ which satisfies the conditions ω′ ◦ (f ⊗ f) = ω and D′ ◦ f =

(idT ∗M ⊗ f) ◦ D.

Here and below, we let based morphisms of vector bundles act on sections
in the natural manner. We denote by Dual(M) be the groupoid of duality
structures defined on M and based isomorphisms of such.

The group Autb(S, ω) of based automorphisms of a symplectic vec-
tor bundle (S, ω) is called its group of symplectic gauge transformations.
Such transformations φ act on the set of linear connections D defined on S
through:

D → (idT ∗M ⊗ φ) ◦ D ◦ φ−1

and preserve the set of flat symplectic connections. The group Autb(∆) of
based automorphism of a duality structure ∆ = (S, ω,D) coincides with the
stabilizer of D in Autb(S, ω). For any such duality structure, we have:

c1(S, ω) = δ(ĉ1(D)) , c2(S, ω) = δ(ĉ2(D)) ,

where ĉ1(D) ∈ H1(M,U(1)) and ĉ2(D) ∈ H3(M,U(1)) are the Cheeger-
Chern-Simons invariants of the flat connection D and δ : H i(M,C/Z) →
H i+1(M,Z) are the Bockstein morphisms in the long exact sequence:

. . . → H i(M,Z) → H i(M,R)
exp

∗→ H i(M,U(1))

δ
→ H i+1(M,Z) → H i+1(M,R) → . . .

induced by the exponential sequence:

0 → Z → R → U(1) → 0 .

The Cheeger-Chern-Simons invariants depend only on the gauge equivalence
class of D.
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1.2. The twisted de Rham complex of a duality structure

Given a duality structure ∆ = (S, ω,D) on a connected manifold M , let
dD : Ω(M,S) → Ω(M,S) be the exterior covariant derivative twisted by D
(notice that dD|Ω0(M,S) = D). This defines a cochain complex:
(1)

0 → C∞(M,S)
D
−→ Ω1(M,S)

dD−−→ Ω2(M,S)
dD−−→ Ω3(M,S)

dD−−→ Ω4(M,S) → 0 ,

whose total cohomology group (viewed as a Z-graded abelian group) we
denote by H∗

D(M,S).

Definition 1.4. The vector spaces Hk
D(M,S) (where k = 0, . . . , 4) are

called the twisted de Rham cohomology spaces of the duality structure ∆.

Let Ωk
flat(S) be the locally-constant sheaf of D-flat S-valued k-forms. Then a

straightforward modification of the Poincaré lemma shows that the complex
of sheaves:

0 → C∞
flat(S) →֒ Ω0(S)

D
−→ Ω1(S)

dD−−→ Ω2(S)
dD−−→ Ω3(S)

dD−−→ Ω4(S) → 0

is exact and hence provides a resolution of the locally-constant sheaf C∞
flat(S).

Since M is paracompact, each of the sheaves Ωk(S) is acyclic. Thus the
sheaf cohomology of Ω0

flat(S) can be computed as the cohomology of the
complex (1). This gives a natural isomorphism of graded vector spaces:

H∗
D(M,S) ≃ H∗(M, C∞

flat(S)) ,

where the right hand side denotes sheaf cohomology.

1.3. Flat systems of symplectic vector spaces

Let Π1(M) be the fundamental groupoid of a connected manifold M , whose
objects are the points of M and whose set of morphisms Π1(m,m′) from m
to m′ is the set of homotopy classes of piecewise-smooth curves starting at m
and ending at m′. Let Symp be the groupoid of finite-dimensional symplectic
vector spaces (see Appendix B). The functor category [Π1(M), Symp] is a
groupoid since all its morphisms (which are natural transformations) are
invertible.

Definition 1.5. A flat system of symplectic vector spaces (or Symp-valued
local system) on M is a functor F : Π1(M) → Symp, i.e. an object of the
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groupoid [Π1(M), Symp]. An isomorphism of such systems is an isomorphism
in this groupoid. A flat system F of symplectic vector spaces has rank1 2n
if dimF (m) = 2n for all m ∈ M .

Recall that a symplectic representation of a group G is a representation
ρ : G → Aut(V, ω) of G through automorphisms of a finite-dimensional sym-
plectic vector space (V, ω). An equivalence (or isomorphism) of symplec-
tic representations from ρ : G → Aut(V, ω) to ρ′ : G → Aut(V ′, ω′) is an
isomorphism of symplectic vector spaces φ : (V, ω)

∼
−→ (V ′, ω′) such that

φ ◦ ρ(g) = ρ′(g) ◦ φ′ for all g ∈ G. We denote by SympRep(G) the groupoid
of symplectic representations of G equipped with this notion of isomorphism.

Definition 1.6. Let F be a flat system of symplectic vector spaces
on M . The holonomy representation of F at a point m ∈ M is
the morphism of groups holm(F ) : π1(M,m) = Π1(m,m) → Aut(F (m)) =
Symp(F (m), F (m)) defined through:

holm(F )(c) = F (c) , ∀ c ∈ π1(M,m) .

The holonomy group of F at m is the subgroup of Aut(F (m)) defined
through:

Holm(F )
def.
= im(holm(F )) .

Notice that holm(F ) is a symplectic representation of π1(M,m) on F (m).
Any homotopy class γ ∈ Π1(m,m′) of paths fromm tom′ induces an isomor-
phism of symplectic vector spaces F (γ) : F (m)

∼
→ F (m′) which intertwines

the holonomy representations of F at the points m and m′:

F (γ) ◦ holm(F )(c) = holm′(F )(γ cγ−1) ◦ F (γ) , ∀ c ∈ π1(M,m) .

Since M is connected, it follows that the holonomy representation of F at
a fixed basepoint m0 ∈ M determines its holonomy representation at any
other point of M . Moreover, the isomorphism class of the holonomy group
of F at m0 does not depend on the choice of m0 ∈ M .

Proposition 1.7. Let m0 ∈ M be any point of M . Then the map holm0

which sends a Symp-valued local system F defined on M to its holonomy
representation holm0

(F ) at m0 and sends an isomorphism f : F
∼
−→ F ′ of

Symp-valued local systems to the equivalence of representations holm0
(f)

def.
=

1The rank is constant on M since M is connected.
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f(m0) : holm0
(F )

∼
−→ holm0

(F ′) defines an equivalence of groupoids from
[Π1(M), Symp] to SympRep(π1(M,m0)). In particular, isomorphism classes
of flat systems of symplectic vector spaces of rank 2n defined on M are in
bijection with the points of the character variety:

(2) R(π1(M,m0), Sp(2n,R))
def.
= Hom(π1(M,m0), Sp(2n,R))/Sp(2n,R) ,

where Sp(2n,R) acts on Hom(π1(M), Sp(2n,R)) through its adjoint repre-
sentation.

Proof. An isomorphism f : F
∼
−→ F ′ of Symp-valued local systems is a col-

lection of isomorphisms of symplectic vector spaces f(m) : F (m) → F ′(m)
for all m ∈ M which satisfies:

f(m) ◦ F (γ) = F ′(γ) ◦ f(m) , ∀ γ ∈ Π1(m,m′) , ∀ m,m′ ∈ M .

Taking m′ = m = m0 in this relation shows that f(m) is an equivalence
between the holonomy representations of F and F ′ at m:

holm0
(F ′)(c) = f(m) ◦ holm0

(F )(c) ◦ f(m0)
−1 , ∀ c ∈ π1(M,m0) .

Conversely, it is easy to see that any such equivalence of representations
extends to an isomorphism from F to F ′. □

1.4. The flat system of symplectic vector spaces defined by a
duality structure

Definition 1.8. The parallel transport functor T∆ ∈ [Π1(M), Symp] of a
duality structure ∆ = (S, ω,D) is the functor which associates to each point

m ∈ M the symplectic vector space T∆(m)
def.
= (Sm, ωm) and to the homo-

topy class (with fixed endpoints) c ∈ Π1(M) of any piecewise-smooth curve
c : [0, 1] → M the isomorphism of symplectic vector spaces:

T∆(c) : (Sc(0), ωc(0))
∼
−→ (Sc(1), ωc(1))

given by the parallel transport of D.
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Notice that T∆ : Π1(M) → Symp is a flat system of symplectic vector spaces.
The map which sends ∆ to T∆ extends in an obvious manner to an equiva-
lence of groupoids:

T : Dual(M)
∼
→ [Π1(M), Symp] ,

which sends a based isomorphism f : ∆ = (S, ω,D)
∼
→ ∆′ = (S ′, ω′,D′) of

duality structures to the invertible natural transformation T (f) : T∆
∼
−→ T∆′

given by the isomorphisms of symplectic vector spaces:

T (f)(m)
def.
= fm : (Sm, ωm)

∼
→ (S ′

m, ωm) , ∀ m ∈ M .

These isomorphisms intertwine T ∆(c) and T ∆′

(c) for any c ∈ Π1(M)(m,m′)
since f satisfies D′ ◦ f = (idT ∗M ⊗ f) ◦ D. Hence one can identify duality
structures and systems of flat symplectic vector spaces defined onM . For any
duality structure ∆ = (S, ω,D) on M , the holonomy representation holm(D)
of the flat connection D at m ∈ M coincides with the holonomy representa-
tion of the flat system of symplectic vector spaces defined by ∆:

holm(D) = holm(T∆) .

In particular, the holonomy groups of D and T∆ at m ∈ M coincide:

Holm(D) = Holm(T∆) .

Since M is connected, Proposition 1.7 implies that isomorphism classes of
duality structures defined on M are in bijection with the character vari-
ety (2).

1.5. Trivial duality structures

Definition 1.9. Let ∆ = (S, ω,D) be a duality structure defined on M .
We say that ∆ is:

1) topologically trivial, if the vector bundle S is trivializable, i.e. if it
admits a global frame.

2) symplectically trivial if the symplectic vector bundle (S, ω) is isomor-
phic to the trivial symplectic vector bundle, i.e. if it admits a global
symplectic frame (a global frame in which ω has the standard form).

3) trivial (or holonomy trivial), if ∆ admits a global flat symplectic frame,
i.e. if the holonomy group of D is the trivial group.



✐

✐

“5-Shahbazi” — 2023/8/18 — 0:37 — page 2226 — #14
✐

✐

✐

✐

✐

✐

2226 C. Lazaroiu and C. S. Shahbazi

A symplectically trivial duality structure is automatically topologically triv-
ial, while a holonomy trivial duality structure is symplectically trivial. IfM is
simply-connected then every duality structure is holonomy trivial. A global
flat symplectic frame of a holonomy-trivial duality structure ∆ = (S, ω,D)
of rank 2n has the form:

E = (e1, . . . , en, f1, . . . , fn) ,

where ei, fj are D-flat sections of S such that:

ω(ei, ej) = ω(fi, fj) = 0 , ω(ei, fj) = −ω(fi, ej) = δij , ∀ i, j = 1, . . . , n .

Any choice of such a frame induces a trivialization isomorphism τE : ∆
∼
−→

∆n between ∆ and the canonical trivial duality structure:

(3) ∆n
def.
= (R2n, ω2n, d) ,

of rank 2n, where ω2n is the constant symplectic pairing induced on the triv-
ial vector bundle R2n = M × R2n by the canonical symplectic pairing ω2n of
R2n and d: C∞(M,R2n) → Ω1(M,R2n) is the ordinary differential. Any two
flat symplectic frames E and E ′ of ∆ are related by a based automorphism
T ∈ Autb(∆):

E ′ = TE ,

which corresponds to the constant automorphism τE ′ ◦ τ−1
E ∈ Autb(∆n) of

∆n induced by an element T̂ ∈ Sp(2n,R).

1.6. Electromagnetic structures

As before, let M be a connected manifold.

Definition 1.10. An electromagnetic structure defined on M is a pair Ξ =
(∆,J ), where ∆ = (S, ω,D) is a duality structure on M and J ∈ End(S)
is a taming of the symplectic vector bundle (S, ω), i.e. a complex structure
on S which:

• is compatible with ω, i.e. it satisfies:

ω(J x,J y) = ω(x, y) ∀(x, y) ∈ S ×M S
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• has the property that the symmetric bilinear pairing QJ ,ω defined on S
through:

(4) QJ ,ω(x, y)
def.
= ω(J x, y) ∀(x, y) ∈ S ×M S

is positive-definite.

The rank of Ξ is the rank of ∆.

Notice that the taming J is not required to be flat with respect to D. The
bundle-valued one-form:

ΨΞ
def.
= Dad(J ) = D ◦ J − (idT ∗M ⊗ J ) ◦ D ∈ Ω1(M,End(S))

is called the fundamental form of Ξ and measures the failure of D to preserve
J . The electromagnetic structure Ξ is called unitary if ΨΞ = 0. We refer the
reader to [32] for more detail on the fundamental form.

Definition 1.11. Let Ξ = (∆,J ) and Ξ′ = (∆′,J ′) be two electromagnetic
structures defined on M . A based isomorphism of electromagnetic structures
from Ξ to Ξ′ is a based isomorphism of duality structures f : ∆

∼
−→ ∆′ such

that J ′ = f ◦ J ◦ f−1.

Remark 1.12. A taming J of a duality structure ∆ can also be described
using a positive complex polarization. Let ∆C = (SC, ωC,DC) be the complex-
ification of ∆. Then J is equivalent to a complex Lagrangian sub-bundle
L ⊂ SC such that:

iω(x, x̄) > 0 , ∀ x ∈ ṠC ,

where ṠC is the complement of the zero section in SC. By definition, such a
Lagrangian sub-bundle is a positive complex polarization of the symplectic
vector bundle (S, ω). A detailed description of this correspondence can be
found in [32, Appendix A]. Note that the physics literature sometimes uses a
local version of positive polarizations when discussing Abelian gauge theory.
In our global framework this requires the supplementary step of complexi-
fying the vector bundle S.

Definition 1.13. A taming map of size 2n defined on M is a smooth map
J : M → Mat(2n,R) such that J (m) is a taming of the standard symplectic
form ω2n of R2n for all m ∈ M (in particular, we have J (m) ∈ Sp(2n,R) for
all m).
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We denote by Jn(M) the set of all taming maps of size 2n. Let Ξ = (∆,J )
be an electromagnetic structure of rank 2n defined on M whose underlying
duality structure ∆ = (S, ω,D) is holonomy trivial. Choosing a flat global
symplectic frame E , we can identify ∆ with the canonical trivial duality
structure (3) through an isomorphism τE : ∆

∼
−→ ∆n. This identifies J with

the section τE ◦ J ◦ τ−1
E of the trivial vector bundle R2n, which in turn can

be viewed as a smooth map from M to R2n. Since τE transports ω to the
constant symplectic form induced on R2n by ω2n, it is easy to see that this
map is a taming map of size 2n defined on M . Hence any choice of global
flat symplectic frame identifies the set of tamings of ∆ with Jn(M).

1.7. The polarized Hodge operator

Let (M, g) be an oriented Lorentzian four-manifold. Let Ξ = (∆,J ) be an
electromagnetic structure of rank 2n defined on M and let Q := QJ ,ω be
the Euclidean scalar product induced by J and ω on S as in equation (4).
The Hodge operator ∗g of (M, g) extends trivially to an automorphism of

the vector bundle ∧∗(M,S)
def.
= ∧∗T ∗M ⊗ S, which we denote by the same

symbol.

Definition 1.14. The J -polarized Hodge operator of (M, g,Ξ) is the auto-
morphism ⋆g,J of the vector bundle ∧∗(M,S) defined through:

⋆g,J
def.
= ∗g ⊗ J = J ⊗ ∗g .

Let (·, ·)g be the pseudo-Euclidean scalar product induced by g on the total

exterior bundle ∧∗(M)
def.
= ∧∗T ∗M . Together with Q, this pairing induces

a pseudo-Euclidean scalar product (·, ·)g,Q on the vector bundle Λ∗(M,S),
which is uniquely determined by the condition:

(ρ1 ⊗ ξ1, ρ2 ⊗ ξ2)g,Q = δk1,k2
(−1)k1Q(ξ1, ξ2)(ρ1, ρ2)g

for all ρ1 ∈ Ωk1(M), ρ2 ∈ Ωk2(M) and ξ1, ξ2 ∈ C∞(M,S). The polarized
Hodge operator ⋆g,J induces an involutive automorphism of the space
Ω2(M,S). We have a (·, ·)g,Q-orthogonal splitting:

∧2(M,S) = ∧2
+(M,S)⊕ ∧2

−(M,S)

into eigenbundles of ⋆g,J with eigenvalues +1 and−1 for the polarized Hodge
operator. The sections of ∧2

+(M,S) and ∧2
−(M,S) are called respectively
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polarized self-dual and polarized anti-self-dual S-valued two-forms. Notice
that the definition of these notions does not require complexification of S.

1.8. Classical abelian gauge theory

Let (M, g) be an oriented Lorentzian four-manifold.

Definition 1.15. The classical configuration space defined by the duality
structure ∆ = (S, ω,D) on M is the vector space of two-forms valued in S
which are closed with respect to dD:

Conf(M,∆)
def.
=
{

V ∈ Ω2(M,S) | dDV = 0
}

.

Definition 1.16. The classical abelian gauge theory determined by an elec-
tromagnetic structure Ξ = (∆,J ) on (M, g) is defined by the polarized self-
duality condition:

⋆g,JV = V

for V ∈ Conf(M,∆). The solutions of this equation are called classical elec-
tromagnetic field strengths and form the vector space:

Sol(M, g,Ξ) = Sol(M, g,∆,J )
def.
= {V ∈ Conf(M,∆) | ⋆g,J V = V} .

Notice that classical abelian gauge theory is formulated in terms of field
strengths. In later sections, we will formulate the pre-quantum version of
this theory (which is obtained by imposing an appropriate DSZ quantization
condition) in terms of connections defined on certain principal bundles called
Siegel bundles (see Definition 3.2). The classical theory simplifies when M
is contractible, since in this case any duality structure defined on M is
holonomy-trivial. This case corresponds to the local abelian gauge theory
discussed in Appendix A, which makes contact with the formulation used
in the physics literature. Notice that the traditional physics formulation
(which is valid only locally or for holonomy-trivial duality structures) relies
on gauge-kinetic functions, leading to complicated formulas which obscure
the geometric structure displayed by Definition 1.16. It was shown in [32]
that elements of Sol(M, g,Ξ) correspond to classical electromagnetic U-folds
when the duality structure ∆ is not holonomy trivial.
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1.9. Classical duality groups

Let (M, g) be an oriented Lorentzian four-manifold and S be a vector bundle
defined on M . Let Aut(S) be the group of those unbased vector bundle
automorphisms of S which cover orientation-preserving diffeomorphisms of
M and let Autb(S) ⊂ Aut(S) the subgroup of based automorphisms, i.e.
those automorphisms which cover the identity of M . Let Diff(M) be the
group of orientation-preserving diffeomorphisms of M . Given u ∈ Aut(S),
let fu ∈ Diff(M) be the orientation-preserving diffeomorphism of M covered
by u. This defines a morphism of groups:

Aut(S) ∋ u → fu ∈ Diff(M) .

The group Aut(S) admits an R-linear representation:

Aut(S) ∋ u → Au ∈ Aut(Ω∗(M,S))

given by push-forward; we will occasionally also use the notation: u · (−)
def.
=

Au(−). When fu is not the identity the push-forward action of u ∈ Aut(S)
must be handled with care; we refer the reader to [32, Appendix D] for a
detailed description of this operation and its properties. On decomposable
elements of Ω∗(M,S) = Ω∗(M)⊗ C∞(M,S), it is given by:

Au(α⊗ ξ) = u · (α⊗ ξ) = (fu∗α)⊗ (u · ξ) = (fu∗α)⊗ (u ◦ ξ ◦ f−1
u ) ,

where fu∗α is the push-forward of α on M as defined in [32, Appendix D].
For instance, if α ∈ Ω1(M) we have:

(fu∗α)(v) = α(f−1
u∗ (v)) ◦ f

−1
u

= α(df−1
u (v) ◦ fu) ◦ f

−1
u ∈ C∞(M) , ∀ v ∈ X(M) .

In particular, restricting to a given point m ∈ M we obtain the familiar
formula:

(fu∗α)(v)m = α(f−1
u∗ (v))f−1

u (m) = αf−1
u (m)(df

−1
u |m(vm)) .

Recall that f−1
u∗ (v) ∈ X(M) is again a vector field on M whereas

df−1
u (v) : M → TM is a vector field along fu. For any duality structure
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∆ = (S, ω,D) defined on M , let:

Aut(∆)
def.
= {u ∈ Aut(S) | ωu = ω , Du = D} ,

be the group of unbased automorphisms of ∆, defined as the stabilizer of the
pair (ω,D) in Aut(S). Here Du is the push-forward of the connection D by
u, which is defined through:

(Du)v(s) = u · Df−1
u∗ (v)(u

−1 · s)

= u ◦ (Df−1
u∗ (v)(u

−1 ◦ s ◦ fu)) ◦ f
−1
u , ∀ s ∈ Γ(S) ∀ v ∈ X(M) ,

where f−1
u∗ · v = df−1

u (v) ◦ fu. Note that if s ∈ Γ(S) is a parallel section of
S with respect to D, then u · s ∈ Γ(S) is parallel with respecto Du for all
u ∈ Aut(∆). We have a short exact sequence:

1 → Autb(∆) → Aut(∆) → Diff∆(M) → 1 ,

where Diff∆(M) ⊂ Diff(M) is the subgroup formed by those orientation-
preserving diffeomorphisms ofM that can be covered by elements of Aut(∆).
Given a taming J ∈ End(S) of (S, ω), we define:

Ju
def.
= u ◦ J ◦ u−1 ∈ End(S) ,

which is a taming of the duality structure ∆u
def.
= (S, ωu,Du). On the other

hand, if g is a Lorentzian metric on M , we set:

gu
def.
= (fu)∗(g) .

Finally, we define Ξu
def.
= (∆u,Ju) and we denote by Iso(M, g) the group of

orientation-preserving isometries of (M, g).

Definition 1.17. Let Ξ = (∆,J ) be an electromagnetic structure de-
fined on M .

• The group Aut(∆) of unbased automorphisms of ∆ is called the unbased
pseudo-duality group defined by ∆. The unbased pseudo-duality transfor-
mation defined by u ∈ Aut(∆) is the linear isomorphism:

(5) Au : Conf(M,∆)
∼
−→ Conf(M,∆) ,

which restricts to an isomorphism:

Au : Sol(M, g,∆,J )
∼
−→ Sol(M, gu,∆,Ju) .
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• The unbased duality group Aut(g,∆) of the pair (g,∆) is the stabilizer of
g in Aut(∆):

Aut(g,∆)
def.
= StabAut(∆)(g) = {u ∈ Aut(∆) | fu ∈ Iso(M, g)} .

The unbased duality transformation defined by u ∈ Aut(g,∆) is the linear
isomorphism (5), which restricts to an isomorphism:

Au : Sol(M, g,∆,J )
∼
−→ Sol(M, g,∆,Ju) .

• The group Autb(∆) is called the (electromagnetic) duality group defined
by ∆. The duality transformation defined by u ∈ Autb(∆) is the linear
isomorphism (5), which restricts to an isomorphism:

Au : Sol(M, g,∆,J ) → Sol(M, g,∆,Ju) .

Remark 1.18. The fact that Au restricts as stated above follows from a
direct yet subtle computation. Since the conditions involved are linear, it is
enough to verify it on an homogeneous element. If V = α⊗ ξ ∈ Sol(M,∆),
u ∈ Aut(∆) and v ∈ X(M) we compute:

d(Du)vAu(V)7 = d(Du)v((fu∗α)⊗ (u · ξ))

= (ιvfu∗dα)⊗ (u · ξ) + (fu∗α)⊗ ((Du)vu · ξ)

= (fu∗ιf−1
u∗ (v)dα)⊗ (u · ξ) + (fu∗α)⊗ (u · Df−1

u∗ (v)ξ)

= Au((ιf−1
u∗ (v)dα)⊗ (ξ) + α⊗ (Df−1

u∗ (v)ξ))

= Au(dD
f
−1
u∗ (v)

V) = 0 .

On the other hand, if V = α⊗ ξ ∈ Sol(M, g,Ξ) we compute:

⋆gu,Ju
Au(V) = (∗gufu∗α)⊗ (Ju ◦ u · ξ)

= fu∗(∗gα)⊗ u ◦ J (ξ) ◦ f−1
u = Au(⋆g,JV) = Au(V) ,

implying that the restrictions of Au to Sol(M,∆) and Conf(M, g,Ξ) are
well-defined as stated above.

We have obvious inclusions:

(6) Autb(∆) ⊂ Aut(g,∆) ⊂ Aut(∆)

and a short exact sequence:

(7) 1 → Autb(∆) → Aut(g,∆) → Iso∆(M, g) → 1 ,
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where Iso∆(M, g) ⊂ Iso(M, g) denotes the group formed by those
orientation-preserving isometries of (M, g) that can be covered by elements
of Aut(g,∆).

The classical duality group Autb(∆) consists of all based automorphisms
of S which preserve both ω and D. Therefore (see [24, Lemma 4.2.8]) fixing a
point m0 ∈ M it can be realized as the centralizer Cm0

(∆) of the holonomy
group Holm0

(D) of D at m0 inside the group Aut(Sm0
, ωm0

) ≃ Sp(2n,R):

Autb(∆) ≃ Cm0
(∆) .

In particular, Autb(∆) is a closed subgroup of Sp(2n,R) and hence it is
a finite-dimensional Lie group. The same holds for Iso∆(M, g), which is a
closed subgroup of the finite-dimensional2 Lie group Iso(M, g). The sequence
(7) implies that Aut(g,∆) is also a finite-dimensional Lie group. In general,
the groups defined above differ markedly from their local counterparts de-
scribed in Appendix A.2. We stress that the latter are not the adequate
groups to consider when dealing with electromagnetic U-folds (since in that
case the duality structure is not holonomy trivial).

Definition 1.19. Let Ξ = (∆,J ) be an electromagnetic structure defined
on M .

• The group:

Aut(Ξ)
def.
= {u ∈ Aut(∆) | Ju = J }

of unbased automorphisms of Ξ is called the unbased unitary pseudo-
duality group defined by Ξ. The unbased unitary pseudo-duality trans-
formation defined by u ∈ Aut(Ξ) is the linear isomorphism:

Au : Sol(M, g,Ξ)
∼
−→ Sol(M, gu,Ξ) .

• The unbased unitary duality group of the pair (g,Ξ) is the stabilizer of g
in Aut(Ξ):

Aut(g,Ξ)
def.
= StabAut(Ξ)(g)(8)

= StabAut(g,∆)(J )

= {u ∈ Aut(∆) | Ju = J & fu ∈ Iso(M, g)} .

2It is well-known that the isometry group of any pseudo-Riemannian manifold is
a finite-dimensional Lie group. See for example [31, Theorem 5.1, p. 22].
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The unbased unitary duality transformation defined by u ∈ Aut(g,Ξ) is
the linear automorphism:

Au : Sol(M, g,Ξ)
∼
−→ Sol(M, g,Ξ) .

• The group Autb(Ξ) of based automorphisms of Ξ is called the classical
unitary duality group defined by Ξ:

Autb(Ξ) = StabAutb(∆)(J ) = {u ∈ Autb(∆) | Ju = J } .

The classical unitary duality transformation defined by u ∈ Autb(Ξ) is the
linear automorphism:

Au : Sol(M, g,Ξ)
∼
−→ Sol(M, g,Ξ)

We have obvious inclusions:

Autb(Ξ) ⊂ Aut(g,Ξ) ⊂ Aut(Ξ)

and a short exact sequence:

(9) 1 → Autb(Ξ) → Aut(g,Ξ) → IsoΞ(M, g) → 1 ,

where IsoΞ(M, g) is the group formed by those orientation-preserving isome-
tries of (M, g) which are covered by elements of Aut(g,Ξ). Arguments sim-
ilar to those above show that Autb(Ξ), Aut(g,Ξ) and IsoΞ(M, g) are finite-
dimensional Lie groups. The previous definitions give global mathemati-
cally rigorous descriptions of several types of duality groups associated to
abelian gauge theory on Lorentzian four-manifolds. In general, these can
differ markedly from their “local” counterparts described in Appendix A.2,
which are considered traditionally in the physics literature.

1.10. The case of trivial duality structure

Let (M, g) be an oriented Lorentzian four-manifold. For any n ≥ 0, the set
C∞(M, Sp(2n,R)) of smooth Sp(2n,R)-valued functions defined on M is a
group under pointwise multiplication, whose group of automorphisms we
denote by Aut(C∞(M, Sp(2n,R))).

Lemma 1.20. Let (S, ω) be a symplectic vector bundle of rank 2n defined
on M which is symplectically trivializable. Then any symplectic trivialization
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of (S, ω) induces an isomorphism of groups:

Aut(S, ω) ≃ C∞(M, Sp(2n,R))⋊α Diff(M) ,

where α : Diff(M) → Aut(C∞(M, Sp(2n,R))) is the morphism of groups de-
fined through:

α(φ)(f)
def.
= f ◦ φ−1 , ∀ φ ∈ Diff(M) , ∀ f ∈ C∞(M, Sp(2n,R)) .

In particular, we have a short exact sequence of groups:

1 → C∞(M, Sp(2n,R)) → Aut(S, ω) → Diff(M) → 1

which splits from the right.

Proof. Let τ : S
∼
→ M × R2n be a symplectic trivialization of (S, ω). Then

the map Ad(τ) : Aut(S, ω) → Aut(M × R2n, ω2n) defined through:

Ad(τ)(f)
def.
= τ ◦ f ◦ τ−1 , ∀ f ∈ Aut(S, ω) ,

is an isomorphism of groups. Let f ∈ Aut(S, ω) be an unbased auto-
morphism of (S, ω) which covers the diffeomorphism φ ∈ Diff(M). Then
Ad(τ)(f) is an unbased automorphism ofM × R2n which covers φ and hence
we have:

Ad(τ)(f)(m,x) = (φ(m), f̃(m)(x)) , ∀ (m,x) ∈ M × R2n ,

where f̃ : M → Sp(2n,R) is a smooth map. Setting h
def.
= f̃ ◦ φ−1 ∈

C∞(M, Sp(2n,R)), we have:

(10) Ad(τ)(f)(m,x) = (φ(m), h(φ(m))(x)) , ∀ (m,x) ∈ M × R2n

and the correspondence f → (h, φ) gives a bijection between Aut(S, ω)
and the set C∞(M, Sp(2n,R))×Diff(M). If f1, f2 ∈ Aut(S, ω) correspond
through this map to the pairs:

(h1, φ1), (h2, φ2) ∈ C∞(M, Sp(2n,R))×Diff(M) ,

then direct computation using (10) gives:

Ad(τ)(f1 ◦ f2)(m,x) = ((φ1 ◦ φ2)(m), h1(m)(h2 ◦ φ
−1
1 )(m)(x)) ,

showing that f1 ◦ f2 corresponds to the pair (h1 · α(φ1)(h2), φ1 ◦ φ2). □



✐

✐

“5-Shahbazi” — 2023/8/18 — 0:37 — page 2236 — #24
✐

✐

✐

✐

✐

✐

2236 C. Lazaroiu and C. S. Shahbazi

Corollary 1.21. Let ∆ = (S, ω,D) be a holonomy trivial duality struc-
ture defined on M . Then any trivialization of ∆ induces an isomorphism of
groups:

Aut(∆) ≃ Sp(2n,R)×Diff(M) .

Proof. Follows from Lemma 1.20 by noticing that the action α of Diff(M)
on C∞(M, Sp(2n,R)) restricts to the trivial action on the subgroup:

{f ∈ C∞(M, Sp(2n,R)) | df = 0} ≃ Sp(2n,R)

of constant Sp(2n,R)-valued functions defined on M . □

Fix an electromagnetic structure Ξ = (∆,J ) of rank 2n defined on M
with holonomy-trivial underlying duality structure ∆ = (S, ω,D). Choosing
a global flat symplectic frame E of S, we identify ∆ with the canonical trivial
duality structure (3) and J with a taming map of size 2n. Then D identifies
with the trivial connection and dD identifies with the exterior derivative
d: Ω(M,R2n) → Ω(M,R2n) extended trivially to vector-valued forms. Using
Lemma 1.20 and its obvious adaptation, we obtain:

Autb(S) ≡ C∞(M,GL(2n,R)) ,

Aut(S) ≡ C∞(M,GL(2n,R))⋊α Diff(M) ,

Autb(S, ω) ≡ C∞(M, Sp(2n,R)) ,

Aut(S, ω) ≡ C∞(M, Sp(2n,R))⋊α Diff(M) .

On the other hand, Corollary 1.21 gives:

Autb(∆) ≡ Sp(2n,R) , Aut(∆) ≡ Sp(2n,R)×Diff(M) ,

Aut(g,∆) = Sp(2n,R)× Iso(M, g) .

Moreover, we have:

Autb(Ξ) ≡ UJ (n)
def.
= {γ ∈ Sp(2n,R) | γJ γ−1 = J } ,

Aut(Ξ) ≡ {(γ, f) ∈ Sp(2n,R)×Diff(M) | γJ γ−1 = J ◦ f} ,

as well as:

Aut(g,Ξ) ≡ {(γ, f) ∈ Sp(2n,R)× Iso(M) | γJ γ−1 = J ◦ f} .

Hence we recover the local formulas obtained in Appendix A.2 for the duality
groups of local abelian gauge theory. Notice that Autb(Ξ) is isomorphic with
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the unitary group U(n) when the electromagnetic structure Ξ is unitary,
which amounts to the map J being constant.

2. The Dirac-Schwinger-Zwanziger condition

The previous section introduced classical abelian gauge theory as a theory
of field strengths, i.e. a theory of dD-closed two-forms valued in the flat
symplectic vector bundle S with equation of motion given by the polarized
self-duality condition. Well-known arguments originally due to Dirac as well
as the Aharonov-Bohm effect [1] imply that a consistent coupling of the
theory to quantum charge carriers imposes an integrality condition on field
strength configurations. This is traditionally called the DSZ “quantization”
condition, even though it constrains classical field strength configurations –
in fact, only particles which carry the corresponding charges are quantized
in such arguments, but not the gauge fields themselves. To avoid confusion,
we prefer to call it the DSZ integrality condition. For local abelian gauge
theories of rank 2n (which are discussed in Appendix A), this condition can
be implemented using a full symplectic lattice in the standard symplectic
vector space (R2n, ω2n), as usually done in the physics literature [42, 47]. For
abelian gauge theories with non-trivial electromagnetic structure defined on
an arbitrary Lorentzian four-manifold, we shall implement this condition
using a Dirac system, as originally proposed in [32]. We begin with some
preliminaries.

2.1. Principal bundles with discrete structure group

Let Γ be a discrete group and Q be a principal bundle with structure group Γ
and projection p : Q → M . Then the total space of Q is a (generally discon-
nected) covering space of M . Let UQ : Π1(M) → Φ0(Q) be the monodromy
transport of the covering map p : Q → M , where Φ0(Q) is the bare fiber
groupoid of Q. By definition, the objects of Φ0(Q) are the fibers of Q while
its morphisms are arbitrary bijections between the latter. By definition, the
functor UQ associates to the homotopy class c ∈ Π1(M)(m,m′) of any curve
c : [0, 1] → M with c(0) = m and c(1) = m′ the bijection U(c) : Qm

∼
−→ Qm′

given by UQ(c)(x)
def.
= c̃x(1) ∈ Qm′ , where c̃x is the the unique lift of c to

Q through the point x ∈ Q (thus c̃x(0) = x). Notice that x and U(c)(x)
lie on the same connected component of Q and hence the diffeomorphism
UQ(c) : Q

∼
−→ Q induces the trivial permutation of π0(Q). For any γ ∈ Γ, the

curve c̃γx defined through c̃γx(t)
def.
= c̃(t)γ for all t ∈ [0, 1] is a lift of c through
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the point xγ. The homotopy lifting property of p implies that c̃γx and c̃xγ
are homotopic and hence UQ(c)(xγ) = U(c)(x)γ. This shows that UQ acts
through isomorphisms of Γ-spaces and hence it is in fact a functor:

UQ : Π1(M) → Φ(Q) ,

where Φ(Q) is the principal fiber groupoid of Q (whose objects coincide with
those of Φ0(Q) but whose morphisms are isomorphisms of Γ-spaces). This
implies that UQ is the parallel transport of a flat principal connection defined
on Q, which we shall call the monodromy connection of Q. The holonomy
morphism:

αm(Q) : π1(M,m) → AutΓ(Qm)

of this connection at a point m ∈ M will be called the monodromy morphism
of Q at m, while its image:

Holm(Q)
def.
= im(αm(Q)) ⊂ AutΓ(Qm)

will be called the monodromy group of Q at m. The monodromy morphism
at a fixed point m0 ∈ M induces a bijection between the set of isomorphism
classes of principal Γ-bundles and the character variety:

R(π1(M,m0),Γ)
def.
= Hom(π1(M,m),Γ)/Γ .

Remark 2.1. For the purposes of this work, the most important class
of principal bundles with discrete structure group are principal Spt(2n,Z)
bundles, which are naturally associated to Siegel bundles (see Section 3).

2.2. Bundles of finitely-generated free abelian groups

Let F be a bundle of free abelian groups of rank r defined on M . Then F is
isomorphic with the bundle of groups with fiber Zr associated to a principal
GL(r,Z)-bundle Q through the left action ℓ : GL(r,Z) → AutZ(Zr):

F ≃ Fr(Q)
def.
= Q×ℓ Z

r ≃ M̂ ×ℓ◦αm(Q) Z
r ,

where αm(Q) : π1(M,m) → GL(r,Z) is the monodromy morphism of Q at
m. The monodromy connection of Q induces a flat Ehresmann connection
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which we shall call themonodromy connection of F and whose parallel trans-
port:

UF : Π1(M) → Φ(F)

acts by isomorphisms of groups between the fibers of F . The holonomy
morphism:

σm(F) : π1(M,m) → AutZ(Fm)

at m ∈ M can be identified with the morphism ℓ ◦ αm(P ) : π1(M,m) →
AutZ(Zr) upon choosing a basis of Fm. The holonomy group:

Holm(F)
def.
= im(σm(F)) ⊂ AutZ(Fm) ≃ GL(r,Z)

is called the monodromy group of F at m and identifies with a subgroup of
GL(r,Z) upon choosing an appropriate basis of Fm.

Conversely, let Fr(Zr) be the set of all bases of the free Z-module Zr.
Then GL(r,Z) has a natural free and transitive left action µ on this set.
Taking the set of bases of each of fiber gives the bundle of frames Fr(F) of F .
This is a principal GL(r,Z)-bundle whose monodromy morphism coincides
with that of F . This gives the following result.

Proposition 2.2. The correspondences Q 7→ Fr(Q) and F 7→ Fr(F) extend
to mutually quasi-inverse equivalences between the groupoid of bundles of
free abelian groups of rank r defined on M and the groupoid of principal
GL(r,Z)-bundles defined on M .

2.3. Dirac systems and integral duality structures

Definition 2.3. Let ∆ = (S, ω,D) be a duality structure defined on M . A
Dirac system for ∆ is a smooth fiber sub-bundle L ⊂ S of full symplectic
lattices in (S, ω) which is preserved by the parallel transport T∆ of D. That
is, for any piece-wise smooth path γ : [0, 1] → M we have:

T∆(γ)(Lγ(0)) = Lγ(1) .

A pair:

∆
def.
= (∆,L)

consisting of a duality structure ∆ and a choice of Dirac system L for ∆ is
called an integral duality structure.
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Let DualZ(M) be the groupoid of integral duality structures defined on
M , with the obvious notion of isomorphism. For every m ∈ M , the fiber
(Sm, ωm,Lm) of an integral duality structure ∆ = (∆,L) of rank 2n is an
integral symplectic space of dimension 2n (see Appendix B for details). Each
such space defines an integral vector (called its type) belonging to a certain
subset Divn of Zn

>0 endowed with a partial order relation ≤ which makes it
into a complete meet semi-lattice. The type of an integral symplectic space
depends only on its isomorphism class (which it determines uniquely) and
every element of Divn is realized as a type. Moreover, the group of automor-
phisms of an integral symplectic space of type t ∈ Divn is isomorphic with
the modified Siegel modular group Spt(2n,Z) of type t (see Definition B.6).
This is a discrete subgroup of Sp(2n,R) which contains the Siegel modu-
lar group Sp(2n,Z), to which it reduces when t equals the principal type
δ = (1, . . . , 1). If t and t′ are elements of Divn such that t ≤ t′, then the lat-
tice Λ of any integral symplectic space (V, ω,Λ) of type t admits a full rank
sublattice Λ′ such that (V, ω,Λ′) is an integral symplectic space of type t′. In
this case, we have Spt(2n,Z) ⊂ Spt′(2n,Z). Since we assume that M is con-
nected and that D preserves L, the integral symplectic spaces (Sm, ωm,Lm)
are isomorphic to each other through the parallel transport of D, hence their
type does not depend on the base-point m ∈ M .

Definition 2.4. The type t∆ ∈ Divn of an integral duality structure ∆ =
(S, ω,D,L) (and of the corresponding Dirac system L) is the common type
of the integral symplectic spaces (Sm, ωm,Lm), where m ∈ M .

Let DualtZ(M) be the full subgroupoid of DualZ(M) consisting of integral
duality structures of type t.

Definition 2.5. A duality structure ∆ is called semiclassical if it admits a
Dirac system.

Not every duality structure is semiclassical, as the following proposition
shows.

Proposition 2.6. A duality structure ∆ = (S, ω,D) admits a Dirac system
of type t ∈ Divn if and only if the holonomy representation of D at some
point point (equivalently, at any point) m ∈ M :

T∆|π1(M,m) : π1(M,m) → Sp(Sm, ωm) ≃ Sp(2n,R)
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can be conjugated so that its image lies inside the modified Siegel modular
group:

Spt(2n,Z) ⊂ Sp(2n,R)

of type t. In this case, ∆ is semiclassical and the greatest lower bound of
those t ∈ Divn with this property is called the type of ∆ and denoted by t∆.

Proof. Assume ∆ = (S, ω,D) admits a Dirac system L of type t. Then (as ex-
plained in Appendix B) the automorphism group of every fiber (Sm, ωm,Lm)
is isomorphic to Spt(2n,Z), which is the automorphism group of the standard
integral symplectic space (R2n, ω2n,Λt) of type t. Since L is preserved by the
parallel transport of D, it follows that we have T∆(π1(M,m)) ⊂ Spt(2n,Z)
after identifying (Sm, ωm,Lm) with (R2n, ω2n,Λt) and hence Sp(Sm, ωm,Lm)
with Sp(2n,R). The converse follows immediately from the associated bun-
dle construction. □

Remark 2.7. A duality structure ∆ = (S, ω,D) of rank 2n admits a Dirac
system L of type t = (t1, . . . , tn) ∈ Divn if and only if M admits an open
cover U = (Uα)α∈I such that for each α ∈ I there exists a D-flat frame

(e
(α)
1 , . . . , e

(α)
2n ) of S|Uα

with the property:

(11)
ω(ei, ej) = ω(en+i, en+j) = 0 , ω(ei, en+j) = tiδij ,

ω(en+i, ej) = −tiδij , ∀ i, j = 1, . . . , n .

For each α, β ∈ I with Uα ∩ Uβ ̸= ∅ we have:

e
(β)
k =

2n
∑

l=1

T
(αβ)
lk e

(α)
l , ∀ k = 1, . . . , 2n onUα ∩ Uβ ,

where T
(αβ)
lk ∈ Z for all k, l = 1, . . . , 2n. Furthermore:

⊕2n
k=1Ze

(α)
k (m) = Lm , ∀ α ∈ I , ∀ m ∈ Uα ,

and the matrices T (αβ) def.
= (T

(αβ)
kl )k,l=1,...,2n belong to Spt(2n,Z).

Every integral duality structure ∆ = (S, ω,D,L) on M defines a parallel
transport functor:

T∆ : Π1(M) → SympZ ,

where SympZ is the groupoid of integral symplectic spaces defined in Ap-
pendix B. This functor associates the integral symplectic vector space
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(Sm, ωm,Lm) to every point m ∈ M and the isomorphism of symplectic

vector spaces T∆(c)
def.
= T∆(c) to every homotopy class c ∈ Π1(M)(m,m′)

of curves from m ∈ M to m′ ∈ M . The functor T∆ defines a flat system of
integral symplectic vector spaces (that is, a SympZ-valued local system) on
M . As in Section 1, the correspondence ∆ 7→ T∆ extends to an equivalence
of groupoids:

T : DualZ(M)
∼
−→ [Π1(M), SympZ]

between DualZ(M) and the functor groupoid [Π1(M), SympZ]. Thus one can
identify integral duality structures with SympZ-valued local systems defined
on M . This implies the following result, whose proof is similar to that of
Proposition 1.7.

Proposition 2.8. For any m0 ∈ M , the set of isomorphism classes of inte-
gral duality structures of type t defined on M is in bijection with the character
variety:
(12)

R(π1(M,m0), Spt(2n,Z))
def.
= Hom(π1(M,m0), Spt(2n,Z))/Spt(2n,Z) .

For later reference, we introduce the following:

Definition 2.9. An integral electromagnetic structure defined on M is a
pair:

Ξ
def.
= (Ξ,L) ,

where Ξ = (S, ω,D,J ) is an electromagnetic structure on M and L is a
Dirac system for the duality structure ∆ = (S, ω,D).

2.4. Siegel systems

Integral duality structures are associated to certain local systems of free
abelian groups of even rank defined on M .

Definition 2.10. Let n ∈ Z>0. A Siegel system of rank 2n onM is a bundle
Z of free abelian groups of rank 2n defined on M equipped with a reduction
of its structure group from GL(2n,Z) to a subgroup of some modified Siegel
modular group Spt(2n,Z), where t ∈ Divn. The greatest lower bound of the
set of those t ∈ Divn with this property is called the type of Z and is denoted
by tZ .

Let Sg(M) be the groupoid of Siegel systems on M and Sgt(M) be the full
sub-groupoid of Siegel systems of type t.
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Remark 2.11. Let R be the trivial real line bundle on M and U0 :
Π1(M) → Φ(R) be the transport functor induced by its trivial flat connec-
tion. The following statements are equivalent for a bundle Z of free abelian
groups of rank 2n defined on M :

(a) Z is a Siegel system of type t defined on M .

(b) The vector bundle S
def.
= Z ⊗Z R carries a symplectic pairing ω which is

invariant under the parallel transport UZ ⊗Z U0 of the flat connection
induced from Z and which makes the triplet (Sm, ωm, Zm) into an
integral symplectic space of type t for any m ∈ M .

(c) For any m ∈ M , the 2n-dimensional vector space Sm
def.
= Zm ⊗Z R

carries a symplectic form ωm which makes the triplet (Sm, ωm, Zm)
into an integral symplectic space of type t and we have Holm(Z) =
Aut(Sm, ωm, Zm).

By definition, any Siegel system Z of type t is isomorphic with the bundle of
groups with fiber Z2n associated to a principal Spt(2n,Z)-bundle Q through
the left action ℓ : Spt(2n,Z) → AutZ(Z2n) of Spt(2n,Z) on Z2n:

Z ≃ Z(Q)
def.
= Q×ℓ Z

2n ≃ M̂ ×ℓt◦αm(Q) Z
2n ,

where αm(Q) : π1(M,m) → Spt(2n,Z) is the monodromy morphism of Q at
m and M̂ is the universal cover of M . The monodromy morphism σm(Z)
of Z at m identifies with ℓ ◦ αm(Q) upon choosing an integral symplectic
basis of the integral symplectic space (Sm, ωm, Zm). This also identifies the
monodromy group Holm(Z) ⊂ AutZ(Zm) with Spt(2n,Z). Conversely, let
Frt(Z2n) be the set of those bases of the free Z-module Z2n in which the
standard symplectic form ω2n of R2n = Z2n ⊗Z R takes the form ωt (see
Appendix B). Then Spt(2n,Z) has a natural free and transitive left action
µt on this set. Taking the set of bases of each of fiber gives the bundle of
frames Fr(Z) of the Siegel system Z, which is a principal Spt(2n,Z)-bundle.
The previous discussion implies the following result.

Proposition 2.12. The correspondences Q 7→ Z(Q) and Z 7→ Fr(Z)
extend to mutually quasi-inverse equivalence of groupoids between
PrinSp

t
(2n,Z)(M) and Sgt(M).

In particular, the set of isomorphism classes of Siegel systems of
type t defined on M is in bijection with the character variety
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R(π1(M,m0), Spt(2n,Z)) of equation (12). Let 1 be the unit section of the
trivial real line bundle R = M × R.

Proposition 2.13. Let Z be a Siegel system defined on M . Then there
exists a unique integral duality structure ∆ = (S, ω,D,L) such that S =
Z ⊗Z R and L = Z ⊗Z Z and this duality structure has the same type as
Z. Moreover, the parallel transport UD : Π1(M) → Φ(S) of D is given by:
(13)
UD(c) = UZ(c)⊗Z U0(m,m′) , ∀ c ∈ Π1(M)(m,m′) , ∀ m,m′ ∈ M ,

where UZ : Π1(M) → Φ(Z) is the monodromy transport of Z and U0 :
Π1(M) → Φ(R) is the trivial transport of R.

Remark 2.14. The fiber of L at m ∈ M is given by:

(14) Lm
def.
= {z ⊗Z 1 | z ∈ Zm} ≡ Zm ,

where 1 is the unit element of the field R. It is clear that the transport UD

defined by (13) gives bijections from Lm to Lm′ and hence preserves L. Any
locally-constant frame (s1, . . . , s2n) of Z defined above a non-empty open set
V ⊂ M determines a local flat symplectic frame (e1, . . . , e2n) of ∆ defined
above V given by:

(15) ei
def.
= si ⊗Z 1 , ∀ i = 1, . . . , 2n

and the matrix of ω with respect to this frame is integer-valued.

Proof. The restriction of UD to L gives isomorphisms of groups between the
fibers (14) of L and hence it must agree with the monodromy transport UZ

of Z in the sense that:

UD(c)(z ⊗Z 1) = UZ(c)(z)⊗Z 1 , ∀ c ∈ Π1(M)(m,m′) , ∀ m,m′ ∈ M .

This implies (13) since UD is R-linear and Lm are full lattices in Sm =
Zm ⊗Z R. Remark 2.14 gives a D-flat symplectic pairing ωZ on SZ such that
the integral symplectic spaces (Sm, ω,Lm) have type tZ and such that L is
preserved by the parallel transport of D. □

Remark 2.15. Notice that S identifies with the vector bundle associated
to the frame bundle Fr(Z) of Z through the linear representation q = φ ◦ ι :
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Spt(2n,Z) → AutR(R2n) defined by the inclusion morphism:

ι : Spt(2n,Z) →֒ Sp(2n,R) ,

where Sp(2n,R) acts on R2n through the fundamental representation φ :
Sp(2n,R) → AutR(R2n). The representation q preserves the canonical sym-
plectic form ωt of R2n and the latter induces the symplectic pairing ω of S.

We denote by∆(Z) the integral duality structure defined by Z as in Proposi-
tion 2.13. Conversely, any integral duality structure ∆ = (S, ω,L,D) defines
a Siegel system Z(∆) upon setting:

Z(∆)
def.
= L

and it is easy to see that ∆ is isomorphic with ∆(L). Therefore, we obtain
the following result:

Proposition 2.16. The correspondences Z 7→ ∆(Z) and ∆ → Z(∆) ex-
tend to mutually quasi-inverse equivalences of groupoids between Sgt(M)
and DualtZ(M).

2.5. Bundles of integral symplectic torus groups

In the following we use the notions of integral symplectic torus group dis-
cussed in Appendix B.

Definition 2.17. A bundle of integral symplectic torus groups of rank 2n
is a bundle A of 2n-dimensional torus groups defined on M whose structure
group reduces from GL(2n,Z) to a subgroup of some modified Siegel mod-
ular group Spt(2n,Z), where t ∈ Divn. The greatest lower bound tA of the
set of elements t ∈ Divn with this property is called the type of A.

Let A be a bundle of integral symplectic torus groups of type t. Then the
zero elements of the fibers determine a section s0 ∈ C∞(M,A). The struc-
ture group Spt(2n,Z) acts on Am preserving the distinguished point s0(m)
and the abelian group structure of each fiber. Since such a bundle is associ-
ated to a principal Spt(2n,Z)-bundle, it carries an induced flat Ehresmann
connection whose holonomy group is a subgroup of Spt(2n,Z) and whose
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holonomy representation at m ∈ M we denote by:

(16) ρm(A) : π1(M,m) → Spt(2n,Z) ⊂ GL(2n,Z) .

The parallel transport of this connection preserves the image of the section
s0 as well as a fiberwise symplectic structure which makes each fiber into
an integral symplectic torus group of type t in the sense of Appendix B. We
have:

A ≃ M̂ ×ρ

(

R2n/Z2n
)

.

Remark 2.18. When M is compact, the fiber bundle A is virtually trivial
by [17, Theorem 1.1.], i.e. the pull-back of A to some finite covering space
of M is topologically trivial.

It follows from the above that bundles of integral symplectic torus groups of
type t defined on M are classified by group morphisms (16), i.e. the set of
isomorphism classes of such bundles is in bijection with the character vari-
etyR(π1(M,m0), Spt(2n,Z), which also classifies integral duality structures.
This also follows from the results below.

Proposition 2.19. Let ∆ = (S, ω,D,L) be an integral duality structure of
type t defined on M . Then the fiberwise quotient:

A(∆)
def.
= S/L ,

is a bundle of integral symplectic torus groups of type t defined on M .

Proof. It is clear that A(∆) is a fiber bundle of even-dimensional torus
groups, whose zero section s0 is inherited from the zero section of S. The
fiberwise symplectic pairing ω of S descends to a translation-invariant col-
lection of symplectic forms on the fibers of A(∆), making the latter into
integral symplectic torus groups of type t. Since the parallel transport of D
preserves both L and ω, this bundle of torus groups inherits a flat Ehresmann
connection which preserves both its symplectic structure and the image of
the section s0 and whose holonomy group reduces to Spt(2n,Z). In partic-
ular, the structure group of A(∆) reduces to Spt(2n,Z). □

As explained in Appendix B, any integral symplectic torus groupA = (A,Ω)
of type t determines an integral symplectic space (H1(A,R), ω,H1(A,Z)),
where ω is the cohomology class of Ω, viewed as a symplectic pairing on the
vector space H1(A,R).
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Proposition 2.20. Given a bundle A of integral symplectic torus groups of
type t defined on M , let SA be the vector bundle with fiber at m ∈ M given
by H1(Am,R) and LA be the bundle of discrete Abelian groups with fiber at
m ∈ M given by H1(Am,Z). Moreover, let ωA be the fiberwise symplectic
pairing defined on SA through:

ωA,m = ωm , ∀ m ∈ M ,

where ωm is the cohomology class of the symplectic form Ωm of the fiber Am.
Then the flat Ehresmann connection of A induces a flat linear connection
DA on SA which makes the quadruplet:

∆(A)
def.
= (SA, ωA,DA,LA) ,

into an integral duality structure of type t defined on M .

Proof. DA is the connection induced by the flat Ehresmann connection of
D on the bundle of first homology groups of the fibers, which preserves the
bundle LA of integral first homology groups of these fibers. The remaining
statements are immediate. □

The two propositions above imply the following statement.

Proposition 2.21. The correspondences ∆ 7→ A(∆) and A 7→ ∆(A) ex-
tend to mutually quasi-inverse equivalences between the groupoid DualtZ(M)
of integral duality structures of type t defined on M and the groupoid Tt(M)
of bundles of integral symplectic torus groups of type t defined on M .

Combining everything, we have a chain of equivalences of groupoids:

PrinSp
t
(2n,Z)(M) ≃ Sgt(M) ≃ Tt(M) ≃ DualtZ(M) .

2.6. The exponential sheaf sequence defined by a Siegel system

Let Z be a Siegel system of type t ∈ Divn on M . Let SZ
def.
= Z ⊗Z R be the

underlying vector bundle of the integral duality structure ∆(Z) defined by

Z and AZ
def.
= SZ/Z be the associated bundle of integral symplectic torus

groups. The exponential sequence the torus group R2n/Λt ≃ R2n/Z2n (where
the canonical symplectic lattice Λt of type t is defined in Appendix B) in-
duces a short exact sequence of bundles of abelian groups (where j is the
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inclusion):

0 → Z
j
→ SZ

exp
→ AZ → 0 .

In turn, this induces an exact sequence of sheaves of abelian groups:

0 → C(Z)
j
→ C∞(SZ)

exp
→ C∞(AZ) → 0 ,

where C(Z) is the sheaf of continuous (and hence locally constant) sections
of Z. This induces a long exact sequence in sheaf cohomology, of which we
are interested in the following piece:

(17) H1(M, C(Z))
j∗
→ H1(M, C∞(SZ))

exp
∗→ H1(M, C∞(AZ))

δ
→ H2(M, C(Z)) → H2(M, C∞(SZ)) ,

where δ is the Bockstein morphism. The sheaf C∞(SZ) is fine and hence
acylic since M is paracompact and SZ is a vector bundle on M . Thus:

Hj(M,SZ) = 0 , ∀j > 0 ,

which by the long sequence above implies that δ is an isomorphism of groups.
We also have H∗(M, C(Z)) = H∗(M,Z), where in the right hand side Z is
viewed as a local system of Z2n coefficients. Hence we can view δ as an
isomorphism of abelian groups:

(18) δ : H1(M, C∞(AZ))
∼
−→ H2(M,Z) .

2.7. The lattice of charges of an integral duality structure

For every integral duality structure ∆ = (∆,L) on M , the sheaf C∞
flat(A)

of flat smooth local sections of the bundle A
def.
= A(∆) = S/L of integral

symplectic torus groups defined by ∆ fits into the short exact sequence of
sheaves of abelian groups:

1 → C(L)
j0
−→ C∞

flat(S)
exp
−−→ C∞

flat(A) → 1 ,

where j is the inclusion. This induces a long exact sequence in sheaf coho-
mology, of which we are interested in the following terms:

. . . → H1(M, C∞
flat(A))

δ0−→ H2(M, C(L))
j0∗
−−→ H2(M, C∞

flat(S))
exp

∗−−−→ H2(M, C∞
flat(A)) → . . . ,
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where δ0 is the Bockstein morphism. Notice that H∗(M, C(L)) ≃ H∗(M,Z),
where Z = L is the Siegel system defined by L, which we view of a local sys-
tem of Z2n coefficients. Moreover, we have H2(M, C∞

flat(A)) = H2(M,Adisc),
the right hand side being the cohomology with coefficients in the local sys-
tem defined by A when the fibers of the latter are endowed with the dis-
crete topology. Since H∗(M, C∞

flat(S)) = H∗
D(M,S), the sequence above can

be written as:

(19) . . . → H1(M,Adisc)
δ0−→ H2(M,Z)

j0∗
−−→ H2

D(M,S)
exp

∗−−−→ H2(M,Adisc) → . . .

Denote by H2(M,Z)tf ⊂ H2(M,Z) the torsion free part of H2(M,Z).

Definition 2.22. The lattice:

L∆

def.
= j0∗(H

2(M,Z)) = j0∗(H
2(M,Z)tf) ⊂ H2

D(M,S)

is called the lattice of charges defined the integral duality structure ∆. Ele-
ments of this lattice are called integral cohomology classes or charges.

Proposition 2.23. There exists a natural isomorphism:

(20) Hk
D(M,S) ≃ Hk(M,Z)⊗Z[π] R ≃ Hk(M,Z)tf ⊗Z[π] R ,

for all k. In particular, the kernel of j0∗ coincides with the torsion part of
H2(M,Z) and j∗(H

2(M,Z)) is a full lattice in H2
D(M,S).

Proof. Let π
def.
= π1(M,m) and Z[π] be the group ring of π. The universal

coefficient theorem for cohomology with local coefficients of [29] gives a short
exact sequence:

0 → Hk(M,Z)⊗Z[π] R → Hk
D(M,S) → TorZ[π](H

k+1(M,Z),R) → 0 ,

where R is the Z[π]-module corresponding to the trivial representation of π
in R. Since the latter module is free, we have TorZ[π](H

k+1(M,Z),R) = 0
and the sequence above gives the natural isomorphism (20). □



✐

✐

“5-Shahbazi” — 2023/8/18 — 0:37 — page 2250 — #38
✐

✐

✐

✐

✐

✐

2250 C. Lazaroiu and C. S. Shahbazi

Remark 2.24. We have a commutative diagram with exact rows:

0 // C(Z)

id
��

j0
// C∞

flat(SZ)
exp

//

τ

��

C∞
flat(AZ)

ι

��

// 0

0 // C(Z)
j

// C∞(SZ)
exp

// C∞(AZ) // 0

where j0, j and τ, ι are inclusions. In turn, this induces a commutative dia-
gram with exact rows:

H1(M,Z)

id
��

j0∗
// H1

DP
(M,SZ)

τ∗

��

exp
∗
// H1(M,AZ,disc)

ι∗

��

δ0
// H2(M,Z)

id
��

j0∗
// H2

DP
(M,SZ)

τ∗

��

H1(M,Z)
j∗

// 0
exp

∗
// H1(M, C∞(AZ))

δ
// H2(M,Z)

j∗
// 0

In particular, we have δ0 = δ ◦ ι∗.

2.8. The DSZ integrality condition

Let (M, g) be an oriented and connected Lorentzian four-manifold. Given
an integral duality structure ∆ = (∆,L), we implement the DSZ condition
by restricting the configuration space Conf(M,∆) to a subsets determined
by the charge lattice L∆. We will show in later sections that integral field
strengths are adjoint curvatures of connections defined on a certain principal
bundle.

Definition 2.25. Let∆ = (∆,L) be an integral duality structure on (M, g)
with underlying duality structure ∆ = (S, ω,D). The set of integral electro-
magnetic field strength configurations defined by ∆ on M is the following
subset of Conf(M,∆):

Conf(M,∆)
def.
= {V ∈ Conf(M,∆) | 2π[V]D ∈ L∆} ,

where [V]D ∈ H2
D(M,S) is the dD-cohomology class of the S-valued two-

form V ∈ Conf(M,∆) and L∆ ⊂ H2
D(M,S) is the lattice of charges defined

by ∆.

Definition 2.26. Let Ξ = (∆,J ) be an integral electromagnetic structure
defined on (M, g) with electromagnetic structure Ξ = (∆,J ) and integral
duality structure ∆ = (∆,L). The set of integral field strength solutions
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defined by Ξ on (M, g) is the subset of Sol(M, g,Ξ) defined through:

Sol(M, g,Ξ)
def.
= Sol(M, g,Ξ) ∩ Conf(M,∆)

and hence consists of those elements of Conf(M,∆) which satisfy the equa-
tions of motion (i.e. the polarized self-duality condition) of the classical
abelian gauge theory defined by Ξ.

2.9. Integral duality groups

The DSZ integrality condition restricts the classical duality groups of Sub-
section 1.9 to certain subgroups.

Definition 2.27. Fix an integral duality structure ∆ on (M, g).

• The integral unbased pseudo-duality group defined by ∆ is the group
Aut(∆) ⊂ Aut(∆) formed by those elements u ∈ Aut(∆) which satisfy
u(L) = L.

• The integral unbased duality group defined by∆ is the subgroup Aut(g,∆)
of Aut(∆) which covers Iso(M, g).

• The integral duality group defined by ∆ is the subgroup Autb(∆) of
Aut(∆) consisting of those elements which cover the identity of M .

Definition 2.28. Fix an integral electromagnetic structure Ξ = (∆,J ) on
(M, g).

• The integral unbased unitary pseudo-duality group defined by Ξ is the
group:

Aut(Ξ)
def.
= {u ∈ Aut(∆) | Ju = J }

• The integral unbased unitary duality group defined by Ξ is:

Aut(g,Ξ)
def.
= {u ∈ Aut(Ξ) | gu = g} .

• The integral unitary duality group defined by Ξ is the subgroup Autb(Ξ)
of Aut(Ξ) consisting of those elements which cover the identity of M .

It is easy to check that Au with u belonging to the groups defined above
restrict to transformations similar to those of Subsection 1.9 between the
sets of integral configurations and solutions. The discrete duality groups in-
troduced above are the global counterparts of the discrete duality group
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considered in the physics literature on local abelian gauge theory. The latter
is usually taken to be Sp(2n,Z) due to the fact that the symplectic lattice
of charges appearing in the local treatment of abelian gauge theory is tradi-
tionally assumed to have principal type t = δ = (1, . . . , 1). As explained in
[32] and recalled in Appendix A, Sp(2n,Z) is not always the correct duality
group even in the local case, since the local lattice of charges need not be
principal. In Section 4.1, we consider a natural gauge-theoretic extension
of the discrete duality groups defined above, which clarifies the geometric
origin of electromagnetic duality.

2.10. Trivial integral duality structures

Let Z be a trivializable Siegel system of type t ∈ Divn and ∆ = (S, ω,D) be
the associated duality structure, where S = Z ⊗Z R. Pick a flat trivialization
τ : S

∼
−→ M × S of S, where S ≃ R2n. This takes ω into a symplectic pairing

ωS on the vector space S and restricts to an isomorphism τ0 : Z
∼
−→ M × Λ

between Z and M × Λ, where Λ is a full symplectic lattice in (S, ωS). Let

A
def.
= S/Λ be the torus group defined by (S,Λ) and A

def.
= S/Z be the bundle

of torus groups defined by (S, Z). Then τ induces a trivialization τ̄ : A
∼
−→

M ×A of A, which fits into a commutative diagram of fiber bundles:

Z

τ0
��

j
// S //

τ
��

A

τ̄
��

M × Λ
i

// M × S // M ×A

where i and j are inclusions. Since τ identifies D with the trivial connection
on M × S, it induces an isomorphism of graded vector spaces:

τ∗ : H
∗
D(M,S)

∼
−→ H∗(M,S)

whose restriction coincides with the isomorphism of graded abelian groups:

τ0∗ : H
∗(M,Z)

∼
−→ H∗(M,Λ)
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induced by τ0. Moreover, τ̄ induces an isomorphism of graded abelian groups
τ̄∗ : H

∗(M,A)
∼
−→ H∗(M,A). Hence the diagram above induces an isomor-

phism of long exact sequences of abelian groups:

. . . // H1(M,A) //

τ̄∗
��

H2(M,Z)

τ0∗
��

j∗
// H2(M,S) //

τ∗
��

H2(M,A)

τ̄∗
��

// . . .

. . . // H1(M,A) // H2(M,Λ)
i∗

// H2(M,S) // H2(M,A) // . . .

Since Λ is free while S is a vector space, we have isomorphisms of abelian
groups:

H∗(M,S) ≃ H∗(M,R)⊗R S , H∗(M,Λ) ≃Z H∗(M,Z)⊗Z Λ .

and:

H∗(M,S) ≃ H∗(M,Λ)⊗Z R ≃ H∗(M,Λ)tf ⊗Z R .

The latter agrees with the isomorphism (20) through the maps τ0∗ and
τ∗. The map i∗ : H

k(M,Λ) → Hk(M,S) is obtained by tensoring the map
Hk(M,Z) → Hk(M,R) with the inclusion Λ ⊂ S, while its restriction itf∗ :
Hk(M,Λ)tf → Hk(M,S) is obtained by tensoring the inclusion Λ ⊂ S with
the map H l(M,Z)tf → Hk(M,R). Since the latter is injective, it follows that
itf∗ is injective and henceH l(M,Λ)tf identifies with a full lattice inHk(M,S).
Since A and (S,+) are divisible groups while H0(M,Z) = Z and Λ are free,
the universal coefficient sequence for cohomology gives isomorphisms:

Hk(M,S) ≃ HomZ(Hk(M,Z), S) = HomZ(Hk(M,Z)tf , S) ,

Hk(M,Λ) ≃ HomZ(Hk(M,Z),Λ) = HomZ(Hk(M,Z)tf ,Λ)(21)

and:

Hk(M,A) ≃ HomZ(Hk(M,Z), A) ≃ HomZ(Hk(M,Z)tf , A)

for all k. The first of these is the period isomorphism:

per(ω)(c) := perc(ω) = c ∩ ω =

∫

c

ω , ∀ ω ∈ Hk(M,S) , ∀ c ∈ Hk(M,Z) .

The map i∗ : H
k(M,Λ) → Hk(M,S) agrees with the injective map induced

by the inclusion Λ →֒ S though the isomorphisms (21). Hence:

Hk(M,Λ) ≃ per−1(HomZ(Hk(M,Z),Λ)) = i∗(H
k(M,Λ))

= {ω ∈ Hk(M,S) | perc(ω) ∈ Λ& c ∈ Hk(M,Z)} .
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3. Siegel bundles and connections

In this section we use the notion of integral affine symplectic torus, for which
we refer the reader to Appendix B.

3.1. Automorphisms of integral affine symplectic tori

We denote by Afft the group of affine symplectomorphisms of the integral
affine symplectic torus At = (A,Ωt) of type t ∈ Divn. Here A is the under-
lying 2n-dimensional affine torus (which is a principal homogeneous space
for the torus group U(1)2n ≃ R2n/Z2n), while Ωt is the integral symplectic
form of type t on A, which is translationally-invariant. As explained in Ap-
pendix B, Afft is a non-compact disconnected Lie group whose connected
component of the identity is the 2n-dimensional torus group U(1)2n. We
have π0(Afft) ≃ Spt(2n,Z) and:

(22) Afft ≃ U(1)2n ⋊ Spt(2n,Z) ,

where Spt(2n,Z) acts on U(1)2n through the restriction of the group mor-
phism defined in equation (B.17) of Appendix B, an action which we denote
by juxtaposition. Thus Afft identifies with the set U(1)2n × Spt(2n,Z), en-
dowed with the composition rule:

(a1, γ1) (a2, γ2) = (a1 + γ1a2, γ1γ2) ,

∀ a1, a2 ∈ U(1)2n , ∀ γ1, γ2 ∈ Spt(2n,Z) .

Let ℓ : Afft → Diff(Afft) be the left action of Afft on itself:

ℓ(g)(g′)
def.
= gg′ , ∀ g, g′ ∈ Afft ,

and let pr1 : Afft → U(1)2n and pr2 : Afft → Spt(2n,Z) be the projections
of the set-theoretic decomposition Afft = U(1)2n × Spt(2n,Z). Notice that
pr2 is a morphism of groups. Define left actions ℓ1 and ℓ2 of Afft on U(1)2n

and Spt(2n,Z) through:

ℓ1(g)(a)
def.
= pr1(ℓ(g)(a, 1)) , ℓ2(g)(γ)

def.
= pr2(ℓ(g)(0, γ)) ,

∀g ∈ Afft , ∀a ∈ U(1)2n , ∀γ ∈ Spt(2n,Z) .

Then ℓ1 is given by:

(23) ℓ1(a, γ)(a
′) = a+ γa′ , ∀ γ ∈ Spt(2n,Z) , ∀ a, a′ ∈ U(1)2n .
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This action is transitive with stabilizer isomorphic with Spt(2n,Z). On the
other hand, ℓ2 is given by:

(24) ℓ2(a, γ)(γ
′) = γγ′ = p2(a, γ)γ

′ , ∀ γ, γ′ ∈ Spt(2n,Z) , ∀ a ∈ U(1)2n

and is transitive with stabilizer isomorphic to U(1)2n. This gives the right-
split short exact sequence:

0 → U(1)2n → Afft → Spt(2n,Z) → 1 .

Notice that ℓ = ℓ1 × ℓ2. The Lie algebra afft of Afft is abelian and coincides
with the Lie algebra of U(1)2n:

afft = R2n ≃ H1(At,R) .

The exponential map exp : afft → Afft has kernel Λt ≃ H1(At,Z) and image
A, giving the exponential sequence:

(25) 0 → Λt → afft
exp
→ U(1)2n → 0 .

Lemma 3.1. The adjoint representation Ad: Afft → GL(2n,R) of Afft co-
incides with its fundamental linear representation, that is:

(26) Ad(a, γ)(v) = γ(v) , ∀ (a, γ) ∈ Afft , ∀ v ∈ R2n .

In particular, we have Ad = j ◦ pr2, where j : Spt(2n,Z) → GL(2n,R) is the
fundamental representation of Spt(2n,Z).

Proof. Let α = (γ, 1) : I → Afft = U(1)2n × Spt(2n,Z) be a smooth path in
Afft such that α(0) = Id. Set:

d

dt
α(t)|t=0 = v ∈ R2n .

For every x = (x1, x2) ∈ Afft = U(1)2n × Spt(2n,Z) we have:

xα(t)x−1 = (x1, x2) (γ, 1) (−x−1
2 x1, x

−1
2 ) = (x2γ, 1) .

Hence:
d

dt
(xα(t)x−1)|t=0 = x2(v) ,

which immediately implies:

Ad(x) = j ◦ pr2(x) ,
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for every x ∈ Afft and hence we conclude. □

3.2. Siegel bundles

Let M be a connected manifold.

Definition 3.2. A Siegel bundle P of rank n and type t ∈ Divn is a principal
bundle on M with structure group Afft. An isomorphism of Siegel bundles
is a based isomorphism of principal bundles.

Let Sieg(M) be the groupoid of Siegel bundles defined on M and Siegt(M)
be the full subgroupoid of Siegel bundles of type t. Fix a Siegel bundle P of
type t ∈ Divn, whose projection we denote by π. We introduce several fiber
bundles associated to P .

3.2.1. The bundle of integral affine symplectic tori defined by P .

Definition 3.3. A fiber bundle A defined onM is called a bundle of integral
affine symplectic tori of rank n if its fibers are 2n-dimensional tori and the
structure group of A reduces to a subgroup of Afft for some t ∈ Divn. The
smallest element tA ∈ Divn with this property is called the type of A.

Notice that bundles of integral symplectic torus groups coincide with those
bundles of integral affine symplectic tori which admit a smooth global sec-
tion. Indeed, such a section gives a further reduction of structure group from
Afft to Spt(2n,Z). Given a Siegel bundle P of type t ∈ Divn defined on M ,
the fiber bundle:

A(P )
def.
= P ×ℓ1 U(1)

2n

associated to P through the action (23) is a bundle of integral affine sym-
plectic tori of type t. The fibers of the latter admit integral symplectic forms
of type t which vary smoothly over M . The group Sp(V, ω) acts freely and
transitively on the set Fr(V, ω,Λ) of integral symplectic bases of any inte-
gral symplectic space (V, ω,Λ). Any bundle A of integral affine symplectic
tori of type t is associated through the action ℓ1 to its Siegel bundle P (A)
of unpointed torus symplectic frames, which has type t and whose fiber at
m ∈ M is defined through:

P (A)m
def.
= Fr(H1(Am,R), H1(Am,Z), ωm)× Am .



✐

✐

“5-Shahbazi” — 2023/8/18 — 0:37 — page 2257 — #45
✐

✐

✐

✐

✐

✐

The duality covariant geometry of abelian gauge theory 2257

Here ωm
def.
= [Ωm] ∈ H2(Am,R) ≃ ∧2H1(Am,R)∨ is the cohomology class of

the symplectic form Ωm of Am, viewed as a symplectic pairing defined on
H1(Am,R). More precisely, we have:

Proposition 3.4. The correspondences P → A(P ) and A → P (A) extend
to mutually quasi-inverse equivalences of groupoids between Sieg(M) and the
groupoid of bundles of integral affine symplectic tori and these equivalences
preserve type.

This statement parallels a similar correspondence which holds for affine torus
bundles (see [11] as well as Theorem 2.2. and Remark 2.3 in [12]).

3.2.2. The Siegel system defined by P . Given a Siegel bundle of type
t ∈ Divn, consider the bundle of discrete abelian groups defined through:

Z(P )m
def.
= H1(A(P )m,Z) , ∀ m ∈ M .

Since torus translations act trivially onH1(A(P )m,Z), the structure group of
Z(P ) reduces to Spt(2n,Z). Thus Z(P ) is a Siegel system on M . Moreover,
Z(P ) is isomorphic with the bundle of discrete abelian groups associated
to P through the projection morphism p2 : Afft → Spt(2n,Z), when the lat-
ter is viewed as a left action of Afft through automorphisms of the group
(Z2n,+).

Definition 3.5. Z(P ) is called the Siegel system defined by P .

Notice that the the monodromy of P at a point m ∈ M
acts through automorphisms of the integral symplectic space
(H1(A(P )m,R), H1(A(P )m,Z), [Ωm]).

3.2.3. The adjoint bundle and integral duality structure of P . The
adjoint bundle ad(P ) of P can be identified with the tensor product Z(P )⊗Z

R, whose fiber at m ∈ M is given by:

ad(P )m = Z(P )m ⊗Z R ≃ H1(A(P )m,R) .

Notice that ad(P ) carries the fiberwise symplectic pairing ωP given by

(ωP )m
def.
= [Ωm] for all m ∈ M (see Lemma 3.1). Since the Lie algebra

of Afft is abelian, the structure group of ad(P ) reduces to Spt(2n,Z).
The Siegel system Z(P ) is naturally a sub-bundle of ad(P ) whose fibers
Z(P )m = H1(A(P )m,Z) are full symplectic lattices with respect to [Ωm].
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The monodromy of Z(P ) induces a unique flat connection DP on ad(P )

whose parallel transport preserves Z(P ). Setting SP
def.
= ad(P ), it follows

that the system:

∆(P )
def.
= (∆(P ), Z(P )) , where∆(P )

def.
= (SP , ωP ,DP ) ,

is an integral duality structure of type t, whose underlying duality structure
is ∆(P ).

Proposition 3.6. There correspondence defined above extends to an essen-
tially surjective functor:

∆ : Sieg(M) → DualZ(M) ,

which associates to every Siegel bundle P of type t ∈ Divn defined on M the
integral duality structure ∆(P ), which has type t.

Proof. It is clear that the correspondence extends to a functor. Given ∆ =
(∆,L) ∈ DualZ(M), denote by Q the frame bundle of the Siegel system
defined by L, which is a principal Spt(2n,Z)-bundle (see Proposition 2.12).
Let P be the Siegel bundle associated to Q through the natural left action
l of Spt(2n,Z) on Afft:

P = Q×l Afft .

Then ∆(P ) = ∆, showing that the functor is essentially surjective. □

3.2.4. The bundle of integral symplectic torus groups defined by
P . Consider a Siegel bundle P defined on M .

Definition 3.7. The bundle of integral symplectic torus groups defined by
P is the bundle:

A(P ) = A(∆(P )) = ad(P )/Z(P )

of integral symplectic torus groups defined by the integral duality structure
∆(P ).

3.2.5. Siegel bundles with trivial monodromy.

Proposition 3.8. Let P be a Siegel bundle of rank n and type t ∈ Divn

defined on M . Then the following statements are equivalent:

(a) The Siegel system Z(P ) has trivial monodromy.
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(b) Z(P ) is trivial as a bundle of discrete Abelian groups.

(c) The structure group of P reduces to the torus group U(1)2n.

(d) The structure group of the bundle of integral symplectic affine tori
A(P ) reduces to U(1)2n.

(e) The structure group of the bundle of integral symplectic torus groups
A(P ) is trivial.

(f) The duality structure ∆(P ) is holonomy-trivial.

In this case, A(P ) identifies with a principal torus bundle and A(P ) is a
trivial bundle of integral symplectic torus groups. Moreover, P is isomorphic
with the fiber product A(P )×M Γ, where Γ is the trivial Spt(2n,Z)-bundle
defined on M . Thus P identifies with a countable collection of copies of the
principal torus bundle A(P ), indexed by elements of Spt(2n,Z).

Proof. The fact that (a) implies (b) follows from the standard characteriza-
tion of flat bundles in terms of holonomy representations of the fundamental
group of the underlying manifold. If Z(P ) is trivial as a bundle of discrete
groups then the holonomy representation preserves a global frame of Z(P ),
which in turn implies, using the explicit form of the adjoint representation of
Afft, that the holonomy representation takes values in U(1)2n ⊂ Afft. The
associated holonomy bundle defines a reduction of P to a principal torus
bundle with structure group U(1)2n. This immediately implies (d), (e) and
(f). Since the flat connection on ∆(P ) is by definition the real linear ex-
tension of the flat connection of Z(P ) the latter has trivial monodromy if
and only if ∆(P ) has trivial monodromy, that is, if and only if ∆(P ) is
holonomy-trivial. This proves (f) ⇒ (a). □

3.3. Classification of Siegel bundles

Let P be a Siegel bundle of type t ∈ Divn defined on M and ∆ := ∆(P ) =
(SP = ad(P ), ωP ,DP , Z(P )) be the integral duality structure defined by P .
The Bockstein isomorphism (18) reads:

δ : H1(M, C∞(A(P )))
∼
−→ H2(M,Z(P )) .

It was shown in [11] that P determines a primary characteristic class c′(P ) ∈
H1(M, C∞(A(P ))).
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Definition 3.9. The twisted Chen class of P is:

c(P )
def.
= δ(c′(P )) ∈ H2(M,Z(P )) .

Recall from Proposition 3.4 that isomorphism classes of Siegel bundles de-
fined on M are in bijection with isomorphism classes of bundles of integral
affine symplectic tori. This allows one to classify Siegel bundles by adapting
the classification of affine torus bundles given in [11, Section 2] (see also
[12, Theorem 2.2]). Since the modifications of the argument of loc. cit. are
straightforward, we simply describe the result. Adapting the argument of
[11] we obtain:

Theorem 3.10. Consider the set:

Σ(M)
def.
=
{

(Z, c) |Z ∈ Ob[Sg(M)] & c ∈ H2(M,Z)
}

/∼,

where (Z, c) ∼ (Z ′, c′) if and only if there exists an isomorphism of Siegel
systems φ : Z → Z ′ such that φ∗(c) = c′. Then the map:

P 7→ (Z(P ), c(P ))

induces a bijection between the set of isomorphism classes of Siegel bundles
defined on M and the set Σ(M).

A more conceptual explanation of this result is given in [35]. Let ρ :
Spt(2n,Z) → Aut(U(1)2n) denote the action of Spt(2n,Z) on U(1)2n and
ρ0 : Spt(2n,Z) → AutZ(Z2n) be the corresponding action on Z2n. Then
the classifying space of the Afft is a twisted Eilenberg-McLane space L :=
LSp

t
(2n,Z)(Z

2n, 2) in the sense of [27], which is a sectioned fibration over BΓ ≃
K(Γ, 1) whose fibers are homotopy equivalent with BU(1)2n ≃ K(Z2n, 2) ≃
(CP∞)×2n. This space is a homotopy two-type with:

π1(L) = Spt(2n,Z) , π2(L) = Z2n .

The results of [27] are used in [35] to show that isomorphism classes of
principal Afft-bundles P defined on a pointed space X are in bijection
with isomorphism classes of pairs (α, c), where α : π1(X) → Spt(2n,Z) is
a morphism of groups and c ∈ H2(X,Zα), where Zα is the local system
with fiber Z2n and monodromy action at the basepoint of X given by
ρ0 ◦ α : π1(X) → AutZ(Z2n). When X = M is a manifold, this local system
coincides with Z(P ), while the cohomology class c coincides with c(P ).
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3.4. Principal connections on Siegel bundles

Let P be a Siegel bundle of type t ∈ Divn defined on a connected manifold
M , whose projection we denote by π : P → M . For ease of notation, we

set G
def.
= Afft, Γ

def.
= Spt(2n,Z) and A

def.
= U(1)n. We denote the abelian Lie

algebra of A by a ≃ R2n. Let ∆ = (∆, Z) be the integral duality structure
∆(P ) determined by P , where ∆ = ∆(P ) = (S, ω,D) with S = SP = ad(P ),
ω = ωP and D = DP and Z = Z(P ) is the Siegel system determined by P .
Let:

Conn(P ) =
{

A ∈ Ω1(P, a) | r∗a,γ(A) = γ−1A & Ay(X
a
y ) = a

∀y ∈ P ∀ (a, γ) ∈ G
}

,

be the set of principal connections on P , where rg denotes the right action of
g ∈ G on P and we used the fact that the adjoint representation Ad : G →
Aut(a) is given by (26). Let:

ΩAd(P, a)
def.
=
{

η ∈ Ω(P, a) | r∗a,γ(η) = γ−1η & ιXη = 0

∀(a, γ) ∈ G ∀X ∈ V (P )
}

,

be the set of equivariant horizontal forms on P , where V (P ) is the space
of vertical vector fields defined on P . Then ΩAd(P, a) is naturally isomor-
phic with Ω(M,S). In particular, the curvature ΩA = dAA ∈ Ω2

Ad(P, a) of
any principal connection A ∈ Conn(P ) identifies with a S-valued two-form
VA ∈ Ω2(M,S), which is the adjoint curvature of A. Since a is an abelian
Lie algebra, we are in the situation considered in [35]. Hence the covariant
exterior derivative defined by A restricts to the ordinary exterior derivative
on the space ΩAd(P, a):

(27) dA|ΩAd(P,a) = d : ΩAd(P, a) → ΩAd(P, a) .

Moreover, the principal curvature of A is given by:

ΩA = dA

and the Bianchi identity dAΩA = 0 reduces to:

(28) dΩA = 0 .

As explained in [35], relation (27) implies that all principal connections on P
induce the same linear connection on the adjoint bundle ad(P ) = S, which
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coincides with the flat connection D of the duality structure ∆ defined by
P . Moreover, the adjoint curvature VA ∈ Ω2(M,S) satisfies:

dDVA = 0 .

Let Siegc(M) be the groupoid of Siegel bundles with connection, whose
objects are pairs (P,A) where P is a Siegel bundle and A ∈ Conn(P ) and
whose morphisms are connection-preserving based isomorphisms of principal
bundles. Let DualcZ(M) be the groupoid of pairs (∆,V), where ∆ is an
integral duality structure onM and V ∈ Conf(M,∆) is a dD-closed S-valued
2-form whose dD-cohomology class belongs to the charge lattice of ∆. There
exists a natural functor:

∆c : Siegc(M) → DualcZ(M)

which sends (P,A) to the pair (∆(P ),VA). Let Siegc(M)0 ⊂ Siegc(M) be
the full subgroupoid consisting of Siegel bundles with flat connection.

Theorem 3.11. There exists a short exact sequence of groupoids:

1 → Siegc(M)0
κ
−→ Siegc(M)

curv
−−→ DualcZ(M) → 1 ,

where κ is the inclusion and curv is the curvature map. In particular, for
every integral duality structure ∆ on M and every V ∈ Conf(M,∆), there
exists a Siegel bundle with connection (P,A) such that:

VA = V ,

and the set of pairs (A,VA) with this property is a torsor for Siegc(M)0.

Proof. It is clear that an object in Siegc(M) defines an integral duality
structure and a cohomology class in H2

D(M,S), whence it defines an ob-
ject in Siegc(M). Functoriality of this assignment follows from invariance of
the aforementioned cohomology class under gauge transformations. This is
proved in Lemma 4.5. The key ingredient of the proof is now to show that
this cohomology class is in fact integral, that is, belongs to j∗(H

2(M,Z)),
where Z is the Siegel system defined by P . This is a technical point which
is proved in detail in [35], to which we refer the reader for more details.
Once this is proven, it follows from Theorem 3.10 that the curvature map is
surjective onto DualcZ(M) and that its kernel is precisely the pairs of integral
duality structures and flat connections. □
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The previous theorem shows that integral electromagnetic field strengths
can always be realized as curvatures of principal connections defined on
Siegel bundles, which therefore provide the geometric realization of integral
configurations of abelian gauge theory.

Remark 3.12. Theorem 3.11 can be elaborated to obtain the Dirac quan-
tization of abelian gauge theory in terms of a certain twisted differential
cohomology theory, though we do not pursue this here. Recall that the
DSZ quantization of various gauge theories using the framework of algebraic
quantum field theory and differentiable cohomology has been considered be-
fore in the literature, see [13, 45] and references therein.

3.5. Polarized Siegel bundles and polarized self-dual connections

Let M be a connected manifold.

Definition 3.13. A polarized Siegel bundle is a pair P = (P,J ), where P
is a Siegel bundle and J is a taming of the duality structure ∆ := ∆(P )
defined by P .

A polarized Siegel bundle P = (P,J ) determines an integral electromagnetic

structure ΞP

def.
= (∆(P ),J ), where∆(P ) = (∆(P ), Z(P )) is the integral du-

ality structure defined by P .

Definition 3.14. Let P = (P,J ) be a polarized Siegel bundle. A principal
connection A ∈ Conn(P ) is called polarized selfdual, respectively polarized
anti-selfdual if its adjoint curvature satisfies:

⋆g,JVA = VA , respectively ⋆g,J VA = −VA .

Recall the definitions:

Ω2
±,J (M,S)

def.
=
{

V ∈ Ω2(M,S) | ⋆g,J VA = ±VA

}

,

where ∆(P ) = (S, ω,D).

Remark 3.15. The polarized selfduality condition is a first-order partial
differential equation for a connection on a Siegel bundle which, to the best
of our knowledge, has not been studied in the literature on mathematical
gauge theory.
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4. Prequantum abelian gauge theory

Let (M, g) be an oriented and connected Lorentzian four-manifold. As ex-
plained in the previous section, imposing the DSZ integrality condition on
an abelian gauge theory allows us to identify its prequantum gauge degrees
of freedom with principal connections on a Siegel bundle. More precisely, let
P = (P,J ) be a polarized Siegel bundle on (M, g) and ∆ := ∆(P ) = (∆, Z)
be the integral duality structure defined by P , where ∆ := ∆(P ) = (S, ω,D)
(with S = ad(P )) and Z := Z(P ) are the duality structure and Siegel system
defined by P . LetΞ := Ξ(P ) = (∆,J ) be the integral electromagnetic struc-
ture defined by P and Ξ := Ξ(P ) = (∆,J ) be its underlying electromagnetic
structure. By Theorem 3.11, the set of integral field strength configurations
determined by the integral duality structure ∆ = ∆(P ) coincides with the
set of adjoint curvatures of principal connections defined on P :

Conf(M,∆) = {VA | A ∈ Conn(P )} ,

while the set of integral field strength solutions determined by Ξ := Ξ(P ) =
(∆,J ) is:

Sol(M, g,Ξ) = {VA | A ∈ Conn(P ) & ⋆g,J VA = VA} .

This motivates the following.

Definition 4.1. The set of prequantum gauge configurations determined
by P is the affine set:

Conf(M,P )
def.
= Conn(P )

of principal connections defined on P . The adjoint curvature VA ∈
Conf(M,∆) of a principal connection A ∈ Conn(P ) is called the integral
field strength configuration defined A. The prequantum abelian gauge theory
defined by P on (M, g) is described by the condition:

(29) ⋆g,JVA = VA forA ∈ Conn(P ) .

The solutions A of this equation are called gauge potentials or polarized
self-dual connections and form the set:

Sol(M, g,P) = Sol(M, g, P,J )

def.
= {A ∈ Conn(P ) | ⋆g,J VA = VA} ⊂ Conf(M,P ) .
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We have:

Sol(M, g,Ξ) = {VA | A ∈ Sol(M, g,P)}

and the adjoint curvature map of P gives surjections:

Conf(M,P ) → Conf(M,∆) andSol(M, g,P) → SolZ(M, g,Ξ) .

Remark 4.2. Condition (29) reduces locally to a system of first-order
differential equations for 2n real-valued one-forms, which describe the lo-
cal electromagnetic and magnetoelectric potentials of the theory (see Ap-
pendix A). Also notice that any A ∈ Sol(M, g,P) satisfies the following
second order equation of Abelian Yang-Mills type:

dD ⋆g,J VA = 0 .

4.1. The duality hierarchy of prequantum abelian gauge theory

In this subsection we discuss the duality groups of prequantum abelian gauge
theory. Let P be a Siegel bundle of type t ∈ Divn defined on M . For sim-
plicity, we use the notations:

A
def.
= U(1)2n , Γ

def.
= Spt(2n,Z) , G

def.
= Afft = A⋊ Γ

and denote the Abelian Lie algebra of G by g = afft ≃ R2n. Let q : G → Γ
be the epimorphism entering the short exact sequence of groups:

1 → A → G
q
−→ Γ → 1 ,

which splits from the right.

Definition 4.3. The discrete remnant bundle of P is the principal Γ-bundle

Γ(P )
def.
= P ×q Γ.

We denote the adjoint representation of G by Ad : G → AutR(g) and the
adjoint action of G (i.e the action of G on itself by conjugation) by AdG :
G → Aut(G). The restriction of the latter to the normal subgroup A ⊂ G is
denoted by AdAG : G → Aut(A). Since A is Abelian, this factors through q
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to the characteristic morphism ρ : Γ → Aut(A):

AdAG = ρ ◦ q ,

while the adjoint representation factors through q to the reduced adjoint
representation ρ̄ : Γ → AutR(g):

(30) Ad = ρ̄ ◦ q .

This representation of Γ on g preserves the canonical symplectic form on
R2n ≃ g. The exponential map of G gives a surjective morphism of Abelian
groups expG : g → A whose kernel is a full symplectic lattice Λ of g which
identifies with Λt. This lattice is preserved by the reduced adjoint represen-
tation, which therefore induces a morphism of groups:

ρ0 : Γ → AutZ(Λ) .

Accordingly, Ad = ρ̄ ◦ q also preserves Λ and hence induces a morphism of
groups:

Ad0 = ρ0 ◦ q : G → AutZ(Λ) .

Let ∆ = (∆, Z) be the duality structure defined by P , where ∆ = (S, ω,D)
(with S = ad(P )) and Z = Z(P ) are the duality structure and Siegel system
defined by P . We have:

ad(P ) = P ×Ad g = Γ(P )×ρ g ,

Z(P ) = P ×Ad0
Λ = Γ(P )×ρ0

Λ , A(P ) = P ×AdA
G
A ,

where A(P ) = A(∆(P )) = ad(P )/Z(P ) = S/Z is the bundle of integral
symplectic torus groups defined by P . As shown in [35], the connection D
coincides with the flat connection induced on S by the monodromy connec-
tion of Γ(P ) and the symplectic pairing ω of S = ad(P ) = P ×ρ0

g coincides
with that induced by the canonical symplectic pairing of R2n ≃ g.

Let Aut(P ) be the group of those unbased automorphisms of P which
cover orientation-preserving diffeomorphisms of M . We have a short exact
sequence:

1 → Autb(P ) → Aut(P ) → DiffP (M) → 1 ,

where DiffP (M) ⊂ Diff(M) is the group formed by those orientation-
preserving diffeomorphisms of M that can be covered by elements of
Aut(P ). Here Autb(P ) is the group of based automorphisms of P . For any
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u ∈ Aut(P ), denote by fu ∈ Diff(M) the orientation-preserving diffeomor-
phism of M covered by u. Every u ∈ Aut(P ) induces an unbased automor-
phism adu ∈ Aut(S) of the adjoint bundle S = ad(P ) defined through:

adu([y, v])
def.
= [u(y), v] , ∀ [y, v] ∈ S = ad(P ) = P ×ad g .

Notice that adu covers fu.

Proposition 4.4. For every u ∈ Aut(P ), the map adu : S → S is an un-
based automorphism of the integral duality structure ∆ defined by P . More-
over, the map adP : Aut(P ) → Aut(∆) defined through:

adP (u) = adu ∀u ∈ Aut(P )

is a morphism of groups.

Proof. It is clear from its definition that adu preserves ω and Z. It also pre-
serves D, since the latter is induced by the monodromy connection of Γ(P ),
which is unique. The fact that adP is a morphism of groups is immediate. □

Notice that adP restricts to a morphism adP : Autb(P ) → Autb(∆). We set:

gu
def.
= (fu)∗(g) ∀u ∈ Aut(P ) .

Let A : Aut(P )× Conn(P ) → Conn(P ) be the affine left action of Aut(P )
on Conn(P ) defined through:

Au(A)
def.
= u∗(A) ∀A ∈ Conn(P ) ∀u ∈ Aut(P ) ,

where u∗ : C
∞(P, T ∗P ⊗ g) → C∞(P, T ∗P ⊗ g) denotes the push-forward of

u extended trivially to g-valued forms defined on P .

Lemma 4.5. For every u ∈ Aut(P ), we have a commutative diagram of
affine spaces and affine maps:

Conn(P )
Au

//

V
��

Conn(P )

V
��

2πj0∗(c(P ))
adu

// 2πj0∗(c(P ))

where V : Conn(P ) → ΩdD-cl(M,S) is the adjoint curvature map of P ,
c(P ) ∈ H2(M,Z) is the twisted Chern class of P and the map j0∗ :
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H2(M,Z) → H2(M, C∞
flat(S)) = H2

D(M,S) is induced by the sheaf inclusion
C(Z) →֒ C∞

flat(S) (see the exact sequence (19)). Here 2πj0∗(c(P )) is viewed
as an affine subspace of ΩdD-cl(M,S) consisting of dD-closed S-valued forms
which differ by dD-exact S-valued forms and hence as an affine space mod-
eled on the vector space Ω2

dD-ex(M,S).

Proof. It is shown in [35] that the curvature map V, which is clearly affine,
takes values in 2πj∗(c(P )). Therefore, it only remains to prove that if:

[VA] = 2π j∗(c(P )) ,

then:

[VAu(A)] = 2π j∗(c(P )) ,

or, equivalently, that [VAu(A)] = [VA] for every u ∈ Autb(P ). SinceA is a con-
nection, Au(A) is also a connection on P , whence there exists an equivariant
and horizontal one-form τ̂ ∈ Ω1(P, a) such that:

Au(A) = A+ τ̂ .

Hence, dAu(A) = dA+ dτ̂ , which descends to M as follows:

VAu(A) = VA + dDτ ,

where τ ∈ Ω1(M,SP ) denotes the one-form with values in SP defined by
τ . On the other hand, considering VAu(A) ∈ Ω2(P, afft) as a two-form on P
taking values in afft a direct computation shows that:

VAu(A) = u∗(VA) ∈ Ω2(P, afft) ,

which, by the equivariance properties of the latter, immediately implies:

VAu(A) = adu · VA ∈ Ω2(M,∆) ,

where the dot action of an automorphism of ∆ on two- forms taking values
in ∆ was defined in subsection 1.9. Hence we conclude. □

Proposition 4.6. For any u ∈ Aut(P ), the map Au : Conn(P ) → Conn(P )
restricts to a bijection:

Au : Sol(M, g, P,J ) → Sol(M, gu, P,Ju) .
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Proof. Since VAu(A) = adu · VA, it suffices to prove the relation:

(31) ⋆gu,Ju
◦ adu = adu ◦ ⋆g,J .

For α ∈ Ωk(M) and ξ ∈ C∞(M,S), we compute:

⋆gu,Ju
adu · (α⊗ ξ) = (∗gufu∗α)⊗ (Ju ◦ adu(ξ) ◦ f

−1
u )

= fu∗(∗gα)⊗ adu ◦ J (ξ) ◦ f−1
u = adu · (⋆g,J (α⊗ ξ)) ,

which implies (31) □

Definition 4.7. Let P = (P,J ) be a polarized Siegel bundle defined on
M .

• The group Aut(P ) is the unbased gauge group of P . For any u ∈ Aut(P ),
the map:

Au : Sol(M, g, P,J ) → Sol(M, gu, P,Ju)

is the unbased gauge transformation induced by u.

• The group:

Aut(g, P )
def.
= {u ∈ Aut(P ) | fu ∈ Iso(M, g)}

is the unbased gauge duality group defined by P and g. For any u ∈
Aut(g, P ), the map:

Au : Sol(M, g, P,J ) → Sol(M, g, P,Ju)

is the unbased gauge duality transformation induced by u.

• The gauge group Autb(P ) of P is the gauge (electromagnetic) duality group
of the abelian gauge theories with underlying Siegel bundle P . For any
u ∈ Autb(P ), the map:

Au : Sol(M, g, P,J ) → Sol(M, g, P,Ju)

is called the gauge duality transformation induced by u.
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Lemma 4.5 implies that for any u ∈ Aut(P ) we have a commutative diagram:

Sol(M, g, P,J )
Au

//

V
��

Sol(M, gu, P,Ju)

V
��

Sol(M, g,∆,J )
adu

// Sol(M, gu,∆,Ju)

and similar diagrams for the other groups in the previous definition. Hence
gauge transformations of P induce integral pseudo-duality and duality trans-
formations of the abelian gauge theory defined by (P,J ).

Definition 4.8. Let P = (P,J ) be a polarized Siegel bundle on M .

• The group:

(32) Aut(P)
def.
= {u ∈ Aut(P ) | Ju = J }

is the unbased unitary gauge group defined by P on (M, g). For any u ∈
Aut(P), the map:

Au : Sol(M, g,P) → Sol(M, gu,P)

is the unbased unitary gauge transformation induced by u.

• The group:

(33) Aut(g,P)
def.
= {u ∈ Aut(P ) | gu = g andJu = J }

is the unbased unitary gauge duality group defined by P on (M, g). For
any u ∈ Aut(g,P), the map:

Au : Sol(M, g,P) → Sol(M, g,P)

is the unbased unitary gauge duality transformation induced by u.

• The group:

Autb(P)
def.
= {u ∈ Autb(P ) | Ju = J } .

is the unitary gauge group defined by P on M . For any u ∈ Autb(P), the
map:

Au : Sol(M, g,P) → Sol(M, g,P) .

is the unitary gauge transformation induced by u.
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Let Ξ
def.
= (∆,J ). For any u ∈ Aut(P), we have a commutative diagram:

Sol(M, g,P)
Au

//

V
��

Sol(M, gu,P)

V
��

Sol(M, g,Ξ)
adu

// Sol(M, gu,Ξ)

and similar diagrams for the other groups in the previous definition. We
have a short exact sequence:

(34) 1 → Autb(P ) → Aut(g, P ) → IsoP (M, g) → 1 ,

where IsoP (M, g) ⊂ Iso(M, g) is the group formed by those orientation-
preserving isometries that can be covered by elements of Aut(g, P ). Sim-
ilarly, we have an exact sequence:

1 → Autb(P) → Aut(g,P) → IsoP(M, g) → 1 ,

where IsoP(M, g) is the group formed by those orientation-preserving isome-
tries of M which are covered by elements of Aut(g,P).

Definition 4.9. The standard subgroup of the unbased gauge group of P
is defined through:

C(P )
def.
= ker(adP ) ⊂ Aut(P ) .

When dimM > 0 and dimA > 0, the group C(P ) is infinite-dimensional.
The classical duality group of a duality structure was shown to be a finite
dimensional Lie group in Section 1. This is no longer true of the gauge
groups introduced above. Instead, they are infinite-dimensional extensions
of the integral duality groups introduced in Section 2.

Proposition 4.10. The gauge group of P fits into the short exact sequence
of groups:

(35) 1 → C(P ) →֒ Autb(P )
adP−−→ Autb(∆) → 1 .

Remark 4.11. There exist similar short exact sequences for the remaining
groups introduced in Definition 4.7.
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Proof. It suffices to prove that adP (Autb(P )) = Autb(∆). Recall that L =
P ×Ad0

Λ = Γ(P )×ρ0
Λ and S = P ×Ad g = Γ(P )×ρ̄ g, where Λ ≡ Λt and

g ≡ R2n. Also recall that the gauge group Autb(P ) is naturally isomor-
phic with the group C∞(P,G)G of G-equivariant maps from P to G, where
G = A× Γ = U(1)2n ⋊ Spt(2n,Z) acts on itself through conjugation. This
isomorphism takes u ∈ Autb(P ) to the equivariant map f ∈ C∞(P,G)G

which satisfies:

(36) u(p) = pf(p) ∀p ∈ P ∀g ∈ G .

Since the action of G on P is free and we have Γ ≡ Aut(R2n, ω2n,Λt) ≃
Aut(Sm, ωm,Lm) for all m ∈ M while the reduced adjoint representation ρ̄
is faithful, every automorphism φ ∈ Aut(∆) determines a map φ̄ : P → Γ
which satisfies:

(37) φ([p, v]) = [p, ρ̄(φ̄(p))(v)] ∀p ∈ P ∀v ∈ g

as well as:

φ̄(pg) = q(g)−1φ̄(p)q(g) ∀p ∈ P ∀g ∈ G .

The last relation follows from (37) and from the condition φ([pg, v]) =
φ([p, ρ̄(q(g))(v)]) of invariance under change of representative of the equiv-
alence class, where we used (30). Let u ∈ Autb(P ) be the based automor-
phism of P which corresponds to the G-equivariant map f : P → G defined
through:

f(p)
def.
= (0A, φ̄(p)) ∈ G = A⋊ Γ ∀p ∈ P .

For any p ∈ P and v ∈ g, we have:

adP (u)([p, v]) = [u(p), v] = [pf(p), v]

= [p,Ad(f(p))(v)] = [p, ρ̄(φ̄(p))(p)] = φ([p, v]) ,

where we used (36) and (37). This shows that adP (u) = φ. Since φ ∈
Autb(∆) is arbitrary, we conclude that adP (Autb(P )) = Autb(∆). □

The previous proposition clarifies the geometric origin of electromagnetic du-
ality as a ‘discrete remnant’ of gauge symmetry, a notion which is discussed
in more detail in [35]. In particular, Autb(P ) is an extension of Autb(∆) by
the continuous group C(P ). Intuitively, elements of the latter correspond to
the gauge transformations of a principal torus bundle.



✐

✐

“5-Shahbazi” — 2023/8/18 — 0:37 — page 2273 — #61
✐

✐

✐

✐

✐

✐

The duality covariant geometry of abelian gauge theory 2273

4.2. Duality groups for Siegel bundles with trivial monodromy

Let M be a connected and oriented four-manifold.

Lemma 4.12. Let P be a trivial principal G-bundle over M . Then any
trivialization of P induces an isomorphism of groups:

Aut(P ) ≃ C∞(M,G)⋊α Diff(M) ,

where α : Diff(M) → Aut(C∞(M,G)) is the morphisms of groups defined
through:

α(φ)(f)
def.
= f ◦ φ−1 , ∀ φ ∈ Diff(M) , ∀ f ∈ C∞(M,G) .

In particular, we have a short exact sequence of groups:

1 → C∞(M,G) → Aut(P ) → Diff(M) → 1

which is split from the right.

Proof. Let τ : P
∼
→ M ×G be a trivialization of P . Then the map Ad(τ) :

Aut(P ) → Aut(M ×G) defined through:

Ad(τ)(f)
def.
= τ ◦ f ◦ τ−1 , ∀ f ∈ Aut(P ) ,

is an isomorphism of groups. Let f ∈ Aut(P ) be an unbased automorphism
of P which covers the diffeomorphism φ ∈ Diff(M). Then Ad(τ)(f) is an
unbased automorphism of M ×G which covers φ and hence we have:

Ad(τ)(f)(m, g) = (φ(m), f̂(m, g)) , ∀ (m, g) ∈ M ×G ,

where f̂ : M ×G → G is a smooth map which satisfies:

f̂(m, g1g1) = f̂(m, g1)g2 , ∀ m ∈ M , ∀ g1, g2 ∈ G .

The last relation is equivalent with the condition that f̂ has the form:

f̂(m, g) = f̃(m)g , ∀ (m, g) ∈ M ×G ,

where f̃ : M → G is a smooth function which can be recovered from f̂
through the relation:

f̃(m) = f̂(m, 1) , ∀ m ∈ M .
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Setting h
def.
= f̃ ◦ φ−1 ∈ C∞(M,G), we have:

(38) Ad(τ)(f)(m, g) = (φ(m), h(φ(m))g) , ∀ (m, g) ∈ M ×G ,

and the correspondence f → (h, φ) gives a bijection between Aut(P ) ≃
Aut(M ×G) and the set C∞(M,G)×Diff(M). If f1, f2 ∈ Aut(P ) cor-
respond through this map to the pairs (h1, φ1), (h2, φ2) ∈ C∞(M,G)×
Diff(M), then direct computation using (38) gives:

Ad(τ)(f1 ◦ f2)(m, g) = ((φ1 ◦ φ2)(m), h1(m)(h2 ◦ φ
−1
1 )(m)g) ,

showing that f1 ◦ f2 corresponds to the pair (h1 · α(φ1)(h2), φ1 ◦ φ2). □

Let P be a Siegel bundle or rank n and type t ∈ Divn on (M, g) and let
∆ = (∆, Z) be the integral duality structure defined by P . Suppose that P
is topologically trivial and that Z = Z(P ) has trivial monodromy, so that
∆ is holonomy trivial. Choosing a trivialization of P gives:

P ≡ M ×Afft , ∆ ≡ (M × R2n, ω2n, d,M × Λt)

and:

Autb(P ) ≡ C∞(M,Afft) , Aut(P ) ≡ C∞(M,Afft)⋊α Diff(M) ,

where the last identification follows from Lemma 4.12. Since Afft = U(1)2n ⋊
Spt(2n,Z) and Spt(2n,Z) is discrete, we have:

C∞(M,Afft) = C∞(M,U(1)2n)⋊ Spt(2n,Z) .

In particular, maps h ∈ C∞(M,Afft) can be identified with pairs (f, γ),
where f ∈ C∞(M,U(1)2n) and γ ∈ Spt(2n,Z). The unbased gauge duality
group is given by:

Aut(g, P ) ≡ C∞(M,Afft)⋊α Iso(M, g) .

The integral pseudo-duality, relative duality and duality groups of ∆ are in
turn given by:

Aut(∆) ≡ Spt(2n,Z)×Diff(M) ,

Aut(g,∆) ≡ Spt(2n,Z)× Iso(M, g) ,

Autb(∆) ≡ Spt(2n,Z) ,
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and we have short exact sequences:

1 → C∞(M,U(1)2n) → Aut(P ) → Aut(∆) → 1 ,

1 → C∞(M,U(1)2n) → Aut(g, P ) → Aut(g,∆) → 1 ,

1 → C∞(M,U(1)2n) → Autb(P ) → Autb(∆) → 1 .

Let us fix a taming of ∆, which we view as a map J ∈ C∞(M, Sp(2n,R)).
Then the unbased unitary gauge group of the tamed Siegel bundle P =
(P,J ) is:

Aut(g,P) ≡
{

(f, γ, φ) ∈
[

C∞(M,U(1)2n)× Spt(2n,Z)
]

⋊α Iso(M, g) |

γJ γ−1 = J ◦ φ
}

,

while its unitary gauge group is:

Autb(P) ≡
{

(f, γ) ∈ C∞(M,U(1)2n)× Spt(2n,Z) | γJ γ−1 = J
}

.

The integral unbased unitary duality group of the integral electromagnetic
structure Ξ = (∆,J ) is:

Aut(g,Ξ) ≡
{

(γ, φ) ∈ Spt(2n,Z)× Iso(M, g) | γJ γ−1 = J ◦ φ
}

,

while the integral unitary duality group of Ξ is:

Autb(Ξ) ≡
{

γ ∈ Spt(2n,Z) | γJ γ−1 = J
}

⊂ Spt(2n,Z) .

We have short exact sequences:

1 → C∞(M,U(1)2n) → Aut(g,P) → Aut(g,Ξ) → 1

1 → C∞(M,U(1)2n) → Autb(P) → Autb(Ξ) → 1 .

5. Time-like dimensional reduction and polarized

Bogomolny equations

This section investigates the time-like dimensional reduction of the equations
of motion of abelian gauge theory on an oriented static space-time (M, g) of
the form:

(M, g) = (R× Σ,−dt2 ⊕ h) ,

where t is the global coordinate on R and (Σ, h) is an oriented Riemannian
three-manifold. We show that the reduction produces an equation of Bogo-
molny type, similar to the dimensional reduction of the ordinary self-duality
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equation on a Riemannian four-manifold. Unlike that well-known case, here
we reduce the polarized self-duality condition on a Lorentzian four-manifold.

5.1. Preparations

Consider the time-like exact one-form θ = dt ∈ Ω1(M). Let νh be the volume
form of (Σ, h) and orient (M, g) such that its volume form is given by:

νg = θ ∧ νh .

Let ∗g and ∗h be the Hodge operators of (M, g) and (Σ, h) and ⟨ , ⟩g,
⟨ , ⟩h be the non-degenerate bilinear pairings induced by g and h on Ω∗(M)
and Ω∗(Σ). Let p : M → Σ be the projection of M = R× Σ on the second
factor and consider the distribution D = p∗(TΣ) ⊂ TM , endowed with the
fiberwise Euclidean pairing given by the bundle pullback hp of h. This dis-
tribution is integrable with leaves gives by the spacelike hypersurfaces:

Mt
def.
= {t} × Σ , ∀ t ∈ R ,

on which hp restricts to the metric induced by g. Using hp, we extend ⟨ , ⟩h
and ∗h in the obvious manner to the space C∞(M,∧∗D∗) ⊂ Ω∗(M). We have:

C∞(M,∧∗D∗) = {ω ∈ Ω∗(M) | ι∂t
ω = 0} .

Since g has signature (3, 1) while h has signature (3, 0), we have:

∗g ◦ ∗g = −π , ∗h ◦ ∗h = idC∞(M,∧D∗) ,

where π
def.
= ⊕4

k=0(−1)kidΩk(M) is the signature automorphism of the exterior
algebra (Ω∗(M),∧) (see [36]). Moreover, we have ⟨θ, θ⟩g = −1 and:

⟨νg, νg⟩g = −1 , ⟨νh, νh⟩h = +1 .

Any polyform ω ∈ Ω∗(M, g) has a unique decomposition:

(39) ω = ω∥ + ω⊥ ,

such that ω∥, ω⊥ ∈ Ω∗(M) satisfy [36]:

(40) θ ∧ ω∥ = 0 , ι∂t
ω⊥ = 0 .
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The second of these conditions amounts to the requirement that ω⊥ ∈
C∞(M,∧∗D∗), while the first is solved by:

ω∥ = θ ∧ ω⊤whereω⊤
def.
= −ι∂t

ω ∈ C∞(M,∧∗D∗) .

As shown in loc. cit., the map ω → (ω⊤, ω⊥) gives a linear isomorphism
between Ω∗(M) and C∞(M,∧∗D∗)⊕2. For any k = 0, . . . , 4 and any ω, η ∈
Ωk(M), we have:

⟨ω, η⟩g = −⟨ω⊤, η⊤⟩h + ⟨ω⊥, η⊥⟩h , ⟨ω∥, η∥⟩g = −⟨ω⊤, η⊤⟩h .

Hence the isomorphism above identifies the quadratic space (Ω∗(M), ⟨ , ⟩h)
with the direct sum of quadratic spaces (C∞(M,∧∗D∗),−⟨ , ⟩h)⊕
(C∞(M,∧∗D∗), ⟨ , ⟩h). Notice that νh = ι∂t

νg = −(νg)⊤. An easy compu-
tation gives:

Lemma 5.1. For any polyform ω ∈ Ω∗(M), we have:

(41) (∗gω)⊤ = ∗hπ(ω⊥) , (∗gω)⊥ = − ∗h ω⊤

and hence:

(42) ∗gω = − ∗h ω⊤ + θ ∧ ∗hπ(ω⊥) .

Given any vector bundle V defined on M , the Hodge operators of g
and h extend trivially to operators ∗g : Ω∗(M,V ) → Ω∗(M,V ) and ∗h :
C∞(M,∧∗D∗ ⊗ V ) → C∞(M,∧∗D∗ ⊗ V ). The decomposition (39) holds for
any ω ∈ Ω∗(M,V ), with components ω∥, ω⊥ ∈ Ω∗(M,V ) satisfying (40).

We have ω⊥ ∈ C∞(M,∧∗D∗ ⊗ V ) and ω∥ = θ ∧ ω⊤ with ω⊤
def.
= −ι∂t

ω ∈
C∞(M,∧∗D∗ ⊗ V ). Finally, Lemma 5.1 holds for any ω ∈ Ω∗(M,V ).

5.2. Timelike dimensional reduction of abelian gauge theory

Let P be a Siegel bundle of type t ∈ Divn defined on Σ, whose projection we

denote by π : P → Σ. Let P̂
def.
= p∗(P ) be the p-pullback of P to M , whose

projection we denote by π̂. The map φ : P̂ → R× P defined through:

φ(t, σ, y)
def.
= (t, y) , ∀ (t, σ) ∈ R× Σ , ∀ y ∈ Pσ = π−1(σ)

allows us to identify P̂ with the principal Afft-bundle with total space
given by R× P , base M = R× Σ and projection given by R× P ∋ (t, y) →
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(t, π(y)) ∈ M . We make this identification in what follows. Accordingly, we
have:

π̂(t, y) = (t, π(y)) , ∀ (t, y) ∈ P̂ ≡ R× P .

Let τ : P̂ → P be the unbased morphism of principal Afft-bundles given by
projection on the second factor:

τ(t, y)
def.
= y , ∀ (t, y) ∈ P̂ ,

which covers the map p : M → Σ:

π ◦ τ = p ◦ π̂ .

Consider the action ρ : R → Aut(P̂ ) of (R,+) through unbased automor-
phisms of P̂ given by:

(t, y) → ρ(a)(t, y)
def.
= (t+ a, y) , ∀ (t, y) ∈ P̂ ≡ R× P .

This covers the action of R on M = R× Σ given by time translations:

π̂(ρ(a)(t, y)) = (t+ a, π(y)) , ∀ (t, y) ∈ P̂ ≡ R× P .

Definition 5.2. A principal connection on Â ∈ Conn(P̂ ) is called time-
invariant if it satisfies:

ρ(a)∗(Â) = Â , ∀ a ∈ R .

Notice that time-invariant principal connections defined on P̂ form an affine
subspace Conns(P̂ ) of Conn(P̂ ). The timelike one-form θ ∈ Ω1(M) pulls
back through π̂ to an exact one-form defined on P̂ which we denote by

θ̂
def.
= p∗(θ) ∈ Ω1(P̂ ).
Let ∆ = (S, ω,D) be the duality structure defined by P on Σ. Then it

is easy to see that the duality structure ∆̂ = (Ŝ, ω̂, D̂) defined by P̂ on M
is given by:

Ŝ = p∗(S) , ω̂ = p∗(ω) , D̂ = p∗(D) .
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Lemma 5.3. A connection Â ∈ Conn(P̂ ) is time-invariant if and only if
it can be written as:

(43) Â = −(Ψπ ◦ τ)θ̂ + τ∗(A)

for some Ψ ∈ C∞(Σ,S) and some A ∈ Conn(P ). In this case, Ψ and A are
determined uniquely by Â and any pair (Ψ,A) ∈ C∞(Σ,S)× Conn(P ) de-
termines a time-invariant connection on P̂ though this relation. Moreover,
the curvature of Â is given by:

(44) VÂ = θ ∧ p∗(dDΨ) + p∗(VA) ∈ Ω2(Σ, Ŝ)

and we have:

(45) dDVA = 0 .

Remark 5.4. Relation (44) gives the decomposition (39) of VÂ since
ι∂t

p∗(VA) = ι∂t
p∗(dDΨ) = 0. Thus:

(46) (VÂ)⊤ = p∗(dDΨ) , (VÂ)⊥ = p∗(VA) .

Proof. Any principal connection A ∈ Conn(P̂ ) ⊂ Ω1(P̂ , a) decomposes
uniquely as:

Â = −Φθ̂ +A⊥ ,

where Φ ∈ Ω0
Ad(P̂ , a) and A⊥ ∈ Conn(P̂ , a) satisfies A⊥(∂t) = 0. It is clear

that Â is time-invariant if and only if Φ = Ψ′ ◦ τ for some Ψ′ ∈ Ω0
Ad(P, a)

and Â⊥ = τ∗(A) for some A ∈ Conn(P ). Since Ω0
Ad(P, a) ≃ C∞(Σ,S), we

have Ψ′ = Ψπ for some Ψ ∈ C∞(Σ,S). Since dθ̂ = 0, the principal curvature
of Â reads:

ΩÂ = dÂ = dΦ ∧ θ̂ + τ∗(ΩA) ,

which is equivalent with (44). Relation (45) follows from the results of [35].
The remaining statements are immediate. □

Definition 5.5. The Bogomolny pair of a time-invariant connection Â ∈
Conns(P̂ ) is the pair (Ψ,A) ∈ C∞(Σ,S)× Conn(P ) defined in Lemma 5.3.
The section Ψ ∈ C∞(Σ,S) is called the Higgs field of the pair.

Let J be a taming of ∆. Then the p-pullback Ĵ of J defines a time-invariant
taming of Ŝ, thus (P̂ , Ĵ ) is a polarized Siegel bundle. Let ⋆h,J = ∗h ⊗ J be
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the polarized Hodge operator defined by h and J . Since J 2 = −idS while
∗h squares to the identity on Ω∗(Σ), we have:

⋆h,J ◦ ⋆h,J = −idΩ∗(Σ,S) .

Proposition 5.6. A time-invariant connection Â ∈ Conns(P̂ ) is polarized
self-dual with respect to Ĵ if and only if its Bogomolny pair (Ψ,A) satisfies
the polarized Bogomolny equation with respect to J :

(47) ⋆h,JVA = dDΨ ⇐⇒ ⋆h,J dDΨ = −VA .

A polarized Bogomolny pair (Ψ,A) which satisfies this equation is called a
polarized abelian dyon relative to J .

Proof. Relations (46) and (42) give:

∗gVÂ = −p∗(∗hdDΨ) + θ ∧ p∗(∗hVA) ,

which implies:

⋆g,ĴVÂ = −p∗(⋆h,J dDΨ) + θ ∧ p∗(⋆h,JVA) .

Comparing this with (44) shows that the polarized self-duality condition
for VÂ amounts to (47), where we used uniqueness of the decomposition
(39). □

Let:

Dyons(Σ, h,P)
def.
= {(Ψ,A) ∈ C∞(Σ,S)× Conn(P ) | ⋆h,J VA = dDΨ}

be the set of all polarized abelian dyons relative to J .

Remark 5.7. Equation (47) is reminiscent of the usual Bogomolny equa-
tions obtained by dimensional reduction of the self-duality equations for a
connection on a principal bundle over a four-dimensional Riemannian man-
ifold. However, it differs from the latter in two crucial respects:

• The usual Bogomolny equations arise by dimensional reduction of the self-
duality equations (which are first order equations for a connection) in four
Euclidean dimensions. By contrast, equation (47) is the reduction along
a timelike direction of the complete second order equations of motion
defining abelian gauge theory in four Lorentzian dimensions, once these
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equations have been re-written as first-order equations by doubling the
number of variables through the inclusion of both electromagnetic and
magnetoelectric gauge potentials. In particular, our reduction yields a
system of first-order differential equations, despite originating in a theory
that was initially defined by local second-order PDEs (see Appendix A).

• Equation (47) is modified by the action of the taming J , which is absent
in the usual Bogomolny equations.

5.3. Gauge transformations of polarized abelian dyons

As explained in Subsection 4.1 (see [35] for more detail), the gauge group
Autb(P ) of the Siegel bundle P over Σ has an action:

adP : Autb(P ) → Autb(S)

through based automorphisms of the vector bundle S = ad(P ). This action
agrees through the adjoint curvature map with the pushforward action:

A : Autb(P ) → Aff(Conn(P ))

of the gauge group on the space of principal connections defined on P . For
any principal connection A ∈ Conn(P ) and any u ∈ Autb(P ), we have:

VAu(A) = adP (u)(VA) .

Similar statements hold for the gauge group of the Siegel bundle P̂ defined
on M = R× Σ.

Definition 5.8. A gauge transformation û ∈ Autb(P̂ ) of P̂ is called time-
invariant if:

u ◦ ρ(a) = ρ(a) ◦ u , ∀ a ∈ R .

Notice that time-invariant gauge transformations of P̂ form a subgroup
of Autb(P̂ ), which we denote by Autsb(P̂ ). Such transformations stabilize
the affine subspace Conns(P ) of time-invariant principal connections de-
fined on P̂ . Since P̂ = p∗(P ), we have AdG(P̂ ) = p∗(AdP ). It is easy to
see that û ∈ Autb(P̂ ) is time-invariant if and only if the corresponding
section σû ∈ C∞(M,AdG(P̂ )) is the bundle pull-back by p of a section
σ ∈ C∞(Σ,AdG(P )). The latter corresponds to a gauge transformation of
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P which we denote by u ∈ Autb(P ). We have:

(48) σû = (σu)
p ,

(where the subscript p denotes bundle pullback by p) as well as:

(49) τ ◦ û = u ◦ τ .

Conversely, any gauge transformation u of P determines a gauge transfor-
mation û of P̂ by relation (48) and û satisfies (49). The correspondence
u → û gives an isomorphism of groups between Autb(P ) and Autsb(P̂ ).

The following proposition shows that the map which takes a time-
invariant principal connection defined on P̂ to its Bogomolny pair intertwines
the action of Autsb(P̂ ) ≃ Aut(P ) on Conns(P ) with the action of Autb(P )
on the set C∞(Σ,S)× Conn(P ) given by:

µ
def.
= adP × A : Autb(P ) → AutR(C

∞(Σ,S))×Aff(Conn(P )) .

Proposition 5.9. Let Â be a time-invariant principal connection on P̂ and
(Ψ,A) ∈ C∞(Σ,S)× Conn(P ) be the Bogomolny pair defined by Â. For any
u ∈ Autb(P ), the Bogomolny pair (Ψu,Au) of the time-invariant connection
Aû(Â) obtained from Â by applying the time-invariant gauge transformation
û is given by:

Ψu = adP (u)(Ψ) , Au = Au(A) .

In particular, we have:

VAu
= adP (u)(VA) .

Proof. We have Aû(Â) = (û−1)∗(Â). Using Lemma 5.3, this gives:

Aû(Â) = −(Ψπ ◦ u−1 ◦ τ)θ̂ + τ∗((u−1)∗(A)) = −(Ψπ
u ◦ τ)θ̂ + τ∗(Au(A)) ,

where we used relation (49) and noticed that (û−1)∗(θ̂) = θ since θ̂ = π̂∗(θ)
and π̂ ◦ û−1 = û because û−1 is a based automorphism of P̂ . □

Notice that the discrete remnant (see [35]) of any gauge transformation of
P̂ is time-invariant since Σ (and hence M) is connected and therefore any
discrete gauge transformation of P̂ is constant on M . In particular, the
groups of discrete gauge transformations of P̂ and P can be identified. As
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explained in [35], we have:

adP (u) = adΓ(P )(ū) , ∀ u ∈ Autb(P ) ,

where ū is the discrete remnant of u. This implies that Autb(P ) acts on S
through based automorphism of the integral duality structure ∆ determined
by P :

adP (u) ∈ Autb(∆) , ∀ u ∈ Autb(P )

and hence induces an integral duality transformation of Ψ.

Proposition 5.10. Let J be a taming of S. Then (Ψ,A) ∈ C∞(Σ,S)×
Conn(P ) is a polarized abelian dyon with respect to J if and only if (Ψu,Au)

is a polarized abelian dyon with respect to the taming Ju
def.
= adP (u) ◦ J ◦

adP (u)
−1. In particular, the action µ of Autb(P ) restricts to bijections:

µ(u) : Dyons(M, g, P,J )
∼
−→ Dyons(Σ, g, P,Ju) , ∀ u ∈ Autb(P ) .

Proof. Applying adP (u) shows that the polarized Bogomolny equation (47)
relative to J is equivalent with the polarized Bogomolny equation relative
to Ju:

⋆h,Ju
VAu

= dDΨu ,

where we used Proposition 5.9 and the fact that adP (u) commutes with D,
which is proved in [35]. □

5.4. The case when Z(P ) has trivial monodromy on Σ

Suppose that Z(P ) has trivial monodromy on Σ, so the duality structure
∆ := ∆(P ) is holonomy-trivial and its Siegel system is trivial. Then there
exists a flat trivialization of ∆ which identifies the integral duality structure
∆ = (∆,L) of P with (Σ× R2n, ω2n, d,Σ× Λt). Notice that a Higgs field
identifies with a smooth map from Σ to R2n, which we decompose into
maps Φ,Υ : Σ → Rn according to:

(50) Ψ =

(

−Φ
Υ

)
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Proposition 5.11. A pair (Ψ,A) ∈ C∞(Σ,R2n)× Conn(P ) satisfies the
polarized Bogomolny equations iff:

(51) dΨ =

(

E
−RE − I ∗h B

)

,

where E ∈ Ω1(Σ,Rn) and B ∈ Ω2(Σ,Rn) are determined by VA through the
relation:

(52) VA =

(

B
−RB + I ∗h E

)

.

Proof. In the chosen trivialization of ∆, tamings identify with taming maps
J : Σ → GL(2n,R). By Proposition A.7, the latter have the form:

J =

(

I−1R I−1

−I −RI−1R −RI−1

)

,

where N = R+ iI : Σ → SHn is the corresponding period matrix map. A
similar equation relates the taming Ĵ = J ◦ p of ∆̂ to the period matrix map

N̂
def.
= N ◦ p = R̂+ iÎ : M → GL(2n,R) (where R̂

def.
= R ◦ p and Î

def.
= I ◦ p)

defined on M . By Lemma A.4, the adjoint curvature of A is twisted self-dual
with respect to Ĵ if and only if it has the form:

(53) VÂ =

(

F̂

Gg(N̂ , F̂ )

)

for some F̂ ∈ Ω2(M,Rn), where:

Gg(N̂ , F̂ )
def.
= −R̂ F̂ − Î ∗g F̂ .

Lemma 5.1 gives:

Gg(N̂ , F̂ )⊤ = −R̂F̂⊤ − Î ∗h F̂⊥ , Gg(N̂ , F̂ )⊥ = −R̂F̂⊥ + Î ∗h F̂⊤ .

Thus (53) amounts to:

(54) (VÂ)⊤ =

(

F̂⊤

−R̂F̂⊤ − Î ∗h F̂⊥

)

, (VÂ)⊥ =

(

F̂⊥

−R̂F̂⊥ + Î ∗h F̂⊤

)

.

These relations imply:

F̂⊤ = p∗(E) , F̂⊥ = p∗(B)
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for some E ∈ Ω1(Σ,Rn) and B ∈ Ω2(Σ,Rn). Using (54), we conclude
that (46) is equivalent with:

dΨ =

(

E
−RE − I ∗h B

)

, VA =

(

B
−RB + I ∗h E

)

.

Notice that the pair (E,B) is uniquely determined by VA through the second
of these relations. □

We will refer to the forms E ∈ Ω1(Σ,Rn) and B ∈ Ω2(Σ,Rn) as the electro-
static and magnetostatic field strengths of A. Equation (51) is equivalent to
the system:

dΦ = E , dΥ = −RE − I ∗h B ,

which in turn amounts to:

(55) E⃗ = −gradhΦ , IB⃗ +RE⃗ = −gradhΥ ,

where we defined E⃗, B⃗ ∈ C∞(Σ, TΣ)⊗ Rn through:

E⃗ = E♯ , B⃗ = (∗hB)♯ .

Here ♯ denotes the musical isomorphism given by raising of indices with the
metric h. Equation dVA = 0 amounts to the system:
(56)
dB = 0 , d(−RB + I ∗h E) = 0 ⇐⇒ divhB⃗ = 0 , divh(R B⃗ + I E⃗) = 0 .

5.5. Polarized dyons in prequantum electrodynamics

Prequantum electrodynamics defined on M corresponds to setting n = 1
and R = θ

2π , I = 4π
g2 with constant θ ∈ R in the previous subsection (see

Appendix A). Then:

J = Jθ
def.
=

(

g2θ
8π2

g2

4π

−4π
g2 − g2θ2

16π3 − g2θ
8π2

)

,

and relation (52) becomes:

(57) VA =

(

B

− θ
2πB + 4π

g2 ∗h E

)

.
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In this case, relations (55) reduce to:

(58) E⃗ = −gradhΦ ,
4π

g2
B⃗ +

θ

2π
E⃗ = −gradhΥ ,

which imply B⃗ = − g2

4π gradh(Υ− θ
2πΦ) and:

(59) curlhE⃗ = curlhB⃗ = 0 .

On the other hand, relations (56) become:

(60) dB = d(∗hE) = 0 ⇐⇒ divhB⃗ = divhE⃗ = 0 .

Equations (59) and (60) describe source-free Maxwell electromagnetostat-
ics on Σ, where the vector fields E⃗, B⃗ ∈ A(Σ) are the classical static elec-

tric and magnetic fields. Relation (58) shows that Φ and g2

4πΥ− g2θ
8π2Φ are

globally-defined classical electrostatic and magnetostatic scalar potentials.
Since H1(Σ,R) need not vanish, relation (59) need not imply (58). Hence
polarized dyons describe special potential electromagnetostatic configura-
tions, i.e. solutions of the static Maxwell equations on Σ which admit both
a globally-defined electric scalar potential and a globally-defined magnetic
scalar potential. Even though E⃗ and B⃗ satisfy (60), such solutions need not
admit a globally-defined vector electric or vector magnetic potential, since
H2(Σ,R) may be non-zero. The condition that the configuration (E⃗, B⃗) ad-
mits globally-defined electric and magnetic scalar potentials is a consequence
of the fact that a polarized dyon originates from a principal connection de-
fined on P̂ , which itself is a consequence of the DSZ integrality condition.
We formalize this as follows.

Definition 5.12. An electromagnetostatic configuration defined on (Σ, h)
is a pair of vector fields (E⃗, B⃗) ∈ A(Σ)×A(Σ) which satisfies the static
source-free Maxwell equations (59) and (60). Such a configuration is said to
be potential if there exist real-valued smooth functions Φ,Υ defined on Σ
such that relations (58) hold.

Let EMC(Σ, h) denote the vector space of all electromagnetostatic config-
urations defined on (Σ, h) and EMCpot(Σ, h) denote the subspace of those
configurations which are potential. Consider the map:

Hθ : Dyons(Σ, h, P,Jθ) → EMCpot(Σ, h)
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which associates the electromagnetostatic configuration (E⃗, B⃗) defined
through relation (57) to the polarized dyon (Ψ,A). As in Subsection 2.10,
the chosen trivialization of ∆ induces isomorphisms:

H2
D(Σ,S) ≃ H2(M,R2n) , H2(Σ,L) ≃ H2(Σ,Λt) ,

which allow us to identify the morphism j : H2(Σ,L) → H2
D(Σ,S) with the

morphism ι appearing in the long exact sequence:

. . . → H1(Σ, A) → H2(Σ,Λt)
i
−→ H2(Σ,R2n) → H2(Σ, A) → . . .

induced by the exponential sequence:

0 → Λt → R2n → A → 0 .

The relation [VA]D = 2πj∗(c(P )) becomes:

[VA] = 2πi∗(c(P )) ,

where [ω] denotes the de Rham cohomology class of a form ω ∈ Ωk(M,S).
Conversely, any closed two-form V ∈ Ω2

cl(Σ,R
2n) which satisfies [V] =

2πi∗(c(P )) identifies with the curvature of some principal connection A on
P . For any (E⃗, B⃗) ∈ EMC(Σ, h), let:

Vθ
E⃗,B⃗

def.
=

(

B

− θ
2πB + 4π

g2 ∗h E

)

,

where E
def.
= E⃗♭ and B

def.
= − ∗h (B⃗

♭).

Theorem 5.13. The image of the map Hθ coincides with the set:

EMCpot(Σ, h; θ, c(P ))
def.
= {(E⃗, B⃗) ∈ EMCpot(Σ, h) | [V

θ
E⃗,B⃗

] = 2πι∗(c(P ))} .

Moreover, the Hθ-preimage of a configuration

(E⃗, B⃗) ∈ EMCpot(Σ, h; θ, c(P ))

is given by:

H−1
θ ({(E⃗, B⃗)}) =

{

(Ψ, A) ∈ Dyons(Σ, h,Jθ) |

VA = Vθ
E⃗,B⃗

& gradhΨ =

(

E⃗

− θ
2π E⃗ − 4π

g2 B⃗

)

}

.
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Proof. Let (Ψ,A) be a polarized abelian dyon. Then Hθ(Ψ,A) ∈
EMCpot(Σ, h) and by equation (57), there exists an electromagnetostatic

configuration (E⃗, B⃗) such that:

Vθ
A =

(

B

− θ
2πB + 4π

g2 ∗h E

)

.

Since Vθ
A is the curvature of a connection A on P , it satisfies [Vθ

A]D =

2πj∗(c(P )) and hence (E⃗, B⃗) ∈ EMCpot(Σ, h; θ, c(P )). On the other hand,

if (E⃗, B⃗) ∈ EMCpot(Σ, h; θ, c(P )), equation [Vθ
E⃗,B⃗

] = ι∗(c(P )) implies that

there exists a connection A on P whose curvature is Vθ
E⃗,B⃗

and since (E⃗, B⃗)

is a potential electromagnetostatic solution, choosing potentials Φ and Υ
and defining:

(61) Ψ =

(

−Φ
Υ

)

we conclude that (Ψ,A) is a polarized abelian dyon whence (E⃗, B⃗) ∈
Im(Hθ). It is now clear that the only freedom in choosing a preimage of
(E⃗, B⃗) by Hθ lies only in choosing the potentials Φ and Υ as prescribed in
the statement of the theorem and hence we conclude. □

5.6. Polarized Bogomolny equations on the punctured Euclidean
3-space

In this subsection, we construct families of solutions (which generalize the
dyons of ordinary electromagnetism) on the punctured Euclidean space Σ =

R3
0
def.
= R3\ {0}. Spherical coordinates give a diffeomorphism:

R3
0 ≃ R>0 × S2 ,

and we denote by r ∈ R>0 the radial coordinate. The metric h reads:

h = dr2 + r2hS2 ,

where hS2 is the unit round metric of S2. We have νh = r2dr ∧ νS2 , where
νS2 is the volume form of S2. Let q : R3

0 → S2 be the map defined though:

q(x)
def.
=

x

||x||
,
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where ||x|| is the Euclidean norm of x. Up to isomorphism, any Siegel bundle
of rank n and type t ∈ Divn defined on P on R3

0 is the pull-back through q
of a Siegel bundle of the same rank and type defined on S2, which reduces
to a principal torus bundle since S2 is simply connected. Accordingly, the
duality structure ∆ of P is holonomy trivial and we can fix a global flat
trivialization in which ∆ identifies with:

(62) ∆ ≡ (Σ× R2n, ω2n, d) ,

and the Dirac system L determined by P identifies with Σ× Λt. Hence
a Bogomolny pair consists of a map Ψ ∈ C∞(Σ,R2n) and a connection
A ∈ Conn(P ) whose curvature can be viewed as a vector-valued two-form
VA ∈ Ω2(Σ,R2n). Moreover, a taming of ∆ can be viewed as a map J ∈
C∞(Σ,GL(2n,R)) which squares to minus the identity everywhere and sat-
isfies J t(σ)ω̂2nJ (σ) = ω̂2n for all σ ∈ Σ.

Let us assume that J and Ψ depend only on r. Then dΨ = ∂rΨdr and
∗h(dr) = ι∂r

νh = r2q∗(νS2), hence the polarized Bogomolny equation reads:

(63) VA = −r2J (r)
dΨ

dr
q∗(νS2) ,

Since VA and νS2 are closed, a necessary condition for this equation to admit
solutions A ∈ Conn(P ) is:

d

dr
(r2J

d

dr
Ψ) = 0 .

The general solution of this integrability condition is:

Ψ = −

∫

J v

2r2
dr + v′ ,

for constant vectors v, v′ ∈ R2n. Using this in (63) gives:

VA = −
1

2
v q∗(νS2) .

The last relation determines A up to a transformation of the form:

A → A+ ω

where ω ∈ Ω1
Ad(P,R

2n) is closed and hence corresponds to a closed 1-form
ω′ ∈ Ω1(Σ,R2n) (recall that dD = d in our trivialization of S). Notice that
ω′ need not be exact since Σ = R3

0 is not contractible.
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5.6.1. The integrality condition for v. Since S2 is a deformation re-
tract of Σ, the map q∗ : H∗(S2,R2n/Λt) → H∗(Σ,R2n/Λt) induced by q on
cohomology is an isomorphism of groups for any abelian group of coefficients
A. Since H1(S

2,Z) = 0, the universal coefficient theorem for cohomology
gives:

(64) H2(S2,Λt) ≃Z HomZ(H2(S
2,Z),Λt) ≃Z Λt ,

where the last isomorphism is given by evaluation on the fundamental
class [S2] ∈ H2(S

2,Z). This allows us to view the characteristic class c(P ) =
q∗(c(P0)) as an element of Λt. Moreover, we have isomorphisms of vector
spaces:

(65) H2(S2,R2n) ≃R H2(S2,Z)⊗Z R2n ≃R R2n ,

the last of which takes u⊗Z x to x for all x ∈ R2n. Through the isomorphisms
(64) and (65), the map i∗ : H

2(S2,Λt) → H2(S2,R2n) corresponds to the
inclusion Λt ⊂ R2n and 2πc(P ) identifies with the de Rham cohomology
class of VA. The free abelian group H2(S2,Z) is generated by half of the
Euler class e(S2) of S2, which satisfies:

∫

S2

e(S2) = χ(S2) = 1 + (−1)2 = 2 .

On the other hand, the de Rham cohomology class u
def.
=
[νS2

4π

]

∈ H2(S2,R2n)
satisfies:

u = i∗

(

1

2
e(S2)

)

.

We have:

[VA] = 2πi∗(c(P )) ,

which implies v ∈ Λt as well as:

c(P0) =
1

2
v e(S2) and i∗(c(P0)) = vu .

Hence we obtain an integrality condition for the integration constant v,
which guarantees the existence of a solution and determines through the
previous equation the topological type of the bundle P carrying the solution.
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Appendix A. Local abelian gauge theory

This appendix discusses the duality-covariant formulation and global sym-
metries of source-free U(1)n abelian gauge theory on a contractible oriented
four-manifold M endowed with an arbitrary metric of signature (3, 1), with
the goal of motivating the geometric model introduced in Section 1 and of
making contact with the physics literature. The local study of electromag-
netic duality for Maxwell electrodynamics in four Lorentzian dimensions has
a long history, see [21, 22] as well as [41] and its references and citations.
Let ∗g be the Hodge operator of (M, g).

The prototypical example of local abelian gauge theory is given by clas-
sical electrodynamics, which is defined by the Lagrangian density functional:

L[A] = −
4π

g2
(FA)ab(FA)

ab +
θ

2π
(FA)ab (∗gFA)

ab ,

F = dAwithA ∈ Ω1(M) ,

where θ ∈ R is the theta angle. Classical Maxwell theory is obtained for
θ = 0. Below, we discuss the more general construction of local abelian gauge
theories, which is motivated by the local structure of four-dimensional super-
gravity and supersymmetric field theory and which involves a finite number
of abelian gauge fields.

A.1. Lagrangian formulation

Given n ∈ Z>0 and a Lorentzian metric g on M , consider the following
generalization of the previous Lagrangian density, which allows all couplings
to be smooth real-valued functions:

L[A1, . . . , An] = −IΛΣ ⟨FΛ
A , FΣ

A ⟩g +RΛΣ ⟨FΛ
A , ∗gF

Σ
A ⟩g .

Here Λ,Σ = 1, . . . , n and :

FΛ
A = dAΛ , Λ = 1, . . . n ,

where AΛ ∈ Ω1(M) and RΛΣ, IΛΣ ∈ C∞(M) are the components of an Rn-
valued one-form A ∈ Ω1(M,Rn) and of functions R, I ∈ C∞(M,Mats(n,R))
valued in the space Mats(n,R) of symmetric square matrices of size n with
real entries. To guarantee a positive-definite kinetic term we must assume
that I is positive-definite everywhere. Notice that classical electrodynam-
ics corresponds to n = 1 with R = θ

2π and I = 4π
g2 . Since ∗2gF

Λ = −FΛ, the
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action is equivalent to:

S[A1, . . . , An] =

∫

L[A1, . . . , An]volg

= −

∫

(

IΛΣ FΛ
A ∧ ∗gF

Σ
A +RΛΣ FΛ

A ∧ FΣ
A

)

.

The partial differential equations obtained as critical points of the variational
problem with respect to compactly supported variations are:

d(RΛΣF
Σ
A + IΛΣ ∗g F

Σ
A ) = 0 ,

or, in matrix notation:

d(RFA + I ∗g FA) = 0 ,

where FA = dA ∈ Ω2
cl(M,Rn) = Ω2

ex(M,Rn) is an Rn-valued closed (and
hence exact) two-form. These equations define classical local abelian gauge
theory. Since both R and I are symmetric and I is positive definite, the
pair (R, I) is equivalent to a map:

N
def.
= R+ iI : M → SHn ,

where SHn denotes the Siegel upper half space of symmetric n× n complex
matrices with positive definite imaginary part.

Definition A.1. A period matrix map of size n on M is a smooth func-
tion N ∈ C∞(M, SHn) valued in SHn. We denote the set of such maps by
Pern(M).

When the metric g is fixed, classical local abelian gauge theory is uniquely
determined by a choice of period matrix map.

Definition A.2. Let N = R+ iI be a period matrix map of size n. The
local abelian gauge theory associated to N is defined through the following
system of equations:

(A.1) d(RFA + I ∗g FA) = 0 ,

with unknowns given by the vector valued one-form A ∈ Ω1(M,Rn), where

FA
def.
= dA ∈ Ω2

cl(M,Rn).
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Remark A.3. The equations of motion of local abelian gauge theory have
a gauge symmetry consisting of transformations of the type:

A 7→ A+ dα , α ∈ C∞(M,Rn) .

Variables A ∈ Ω1(M,Rn) related by such gauge transformations should be
viewed as physically equivalent.

Let us write the equations of motion (A.1) in a form amenable to geometric
interpretation. Given a period matrix map N = R+ iI and a vector of two-
forms F ∈ Ω2(M,Rn), define:

Gg(N , F )
def.
= −RF − I ∗g F .

Then the condition dF = 0 together with the equations of motion (A.1) are
equivalent with the single equation:

(A.2) dV = 0 ,

where the R2n-valued two-form V is related to F by:

(A.3) V =

(

F
Gg(N , F )

)

∈ Ω2(M,R2n) = Ω2(M,Rn ⊕ Rn) .

As the following lemma shows, not every vector-valued two-form V ∈
Ω2(M,R2n) can be written as prescribed by equation (A.3).

Lemma A.4. Let N = R+ iI ∈ Pern(M) be a period matrix map of size
n on M . A vector valued two-form V ∈ Ω2(M,R2n) can be written as:

V =

(

F
Gg(N , F )

)

for some F ∈ Ω2(M,Rn) if and only if:

(A.4) ∗gV = −JV ,

where J ∈ C∞(M,GL(2n,R)) is the matrix-valued map defined through:

J =

(

I−1R I−1

−I −RI−1R −RI−1

)

.

We have J 2 = −1. Moreover, F with the property above is uniquely deter-
mined by V.
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Remark A.5. Notice that J can be viewed as a complex structure defined
on the trivial real vector bundle of rank 2n over M . For classical electrody-
namics, the taming map is constant and given by:

J =

(

g2θ
8π2

g2

4π

−4π
g2 − g2θ2

16π3 − g2θ
8π2

)

.

In this case, the period matrix map is constant and given by:

N =
4π

g2
+ i

θ

2π
,

being traditionally denoted by τ .

Proof. If:

V =

(

F
Gg(N , F )

)

,

then direct computation using the fact that ∗2g = −1 on two-forms shows

that V satisfies ∗gV = −JV. On the other hand, writing V =

(

F
G

)

with

F,G ∈ Ω2(M,Rn) shows that the equation ∗gV = −JV is equivalent to:

(

∗gF
∗gG

)

=

(

−I−1RF − I−1G
−(I +RI−1R)F −RI−1G

)

,

which in turn amounts to G = Gg(N , F ). □

Let ω2n be the standard symplectic form on R2n, which in our conventions
has the following matrix in the canonical basis E = (e1, . . . , en, f1, . . . , fn) of
the latter:

(A.5) ω̂2n =

(

0 In
−In 0

)

.

Here In is the identity matrix of size n. We have:

(A.6) ω2n
def.
=

n
∑

a=1

e∗a ∧ f∗
a ,

where E∗ = (e∗1, . . . , e
∗
n, f

∗
1 , . . . , f

∗
n) is the basis dual to

E = (e1, . . . , en, f1, . . . , fn).
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The following result gives a geometric interpretation of the equations of
motion (A.4). Recall that an almost complex structure J on R2n is called a
taming of the standard symplectic form ω2n if:

ω2n(Jξ1, Jξ2) = ω2n(ξ1, ξ2) , ∀ ξ1, ξ2 ∈ R2n ,

and:

ω2n(Jξ, ξ) > 0 , ∀ ξ ∈ R2n\ {0} .

Definition A.6. A taming map of size 2n defined on M is a smooth map
J ∈ C∞(M,GL(2n,R)) such that J (m) is a taming of ω2n for every m ∈ M .
We denote the set of all such maps by Jn(M).

Proposition A.7. A matrix-valued map J ∈ C∞(M,GL(2n,R)) can be
written as:

(A.7) J =

(

I−1R I−1

−I −RI−1R −RI−1 ,

)

in terms of a period matrix map N = R+ iI ∈ Pern(M) iff J ∈ Jn(M).

Proof. If J is taken as in equation (A.7) for a period matrix map N then
direct computation shows that J (m) is a taming of ω2n for all m ∈ M .
For the converse, assume that J (m) ∈ GL(2n,R) is a taming of ω2n for
all m ∈ M (we omit to indicate the evaluation at m for ease of notation).
Let E = (e1, . . . , en, f1, . . . , fn) the canonical basis of R2n. The vectors Ef =
(f1, . . . , fn) form a basis over C of the complex vector space (R2n,J (m)) ≃
Cn, hence there exists a unique map τ ∈ C∞(M,Mat(n,C)) which satisfies:

(A.8) ea = τ(m)ab fb , ∀ a = 1, . . . , n ,

where we use Einstein summation over repeated indices. Thus:

δab = ω2n(ea, fb) = ω2n(τ(m)ac fc, fb) = Im(τ(m))ac ω2n(J (m)fc, fb) ,

which implies that Im(τ(m)) is symmetric and positive-definite. Using the
previous equation and compatibility of J (m) with ω2n, we compute:

0 = ω2n(ea, eb) = Re(τ(m))ba − Im(τ(m))bc ω2n(J (m)(ea), fc)

= Re(τ(m))ba − Re(τ(m))ab ,
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which shows that Re(τ(m)) is symmetric. Hence the smooth map N ∈
C∞(M,SHn) defined through N = R+ iI, where:

R
def.
= Re(τ) , I

def.
= Im(τ) ,

is a period matrix map. Equation (A.8) gives:

J (m)(ea) = R(m)abI
−1(m)bc ec −R(m)abI(m)−1

bc R(m)cd fd

− I(m)ad fd

J (m)(fa) = I(m)−1
ab eb − I(m)−1

ab R(m)bc fc ,

which is equivalent to (A.7). □

Proposition A.8. The map Θ: Pern(M) → Jn(M) defined through:

Pern(M) ∋ N = R+ iI 7→ Θ(N )
def.
=

(

I−1R I−1

−I −RI−1R −RI−1

)

∈ Jn(M)

is a bijection between Pern(M) and Jn(M).

Proof. Follows directly from the proof of Proposition A.7. The inverse of Θ
takes a taming map J ∈ Jn(M) to the period matrix Θ−1(J ) = Re(τ) +
i Im(τ), where, for all m ∈ M , τ(m) is the complex symmetric matrix of size
n uniquely determined by the expansion ea = τabfb of ea over C when R2n

is endowed with the complex structure J (m). □

Since M is contractible, we have Ω2
cl(M,R2n) = Ω2

ex(M,R2n). By the discus-
sion above, this implies that local abelian gauge theory can be formulated
equivalently as a theory of closed R2n-valued two-forms V ∈ Ω2

cl(M,R2n)
satisfying the condition:

∗gV = −JV

with respect to a fixed taming map J ∈ Jn(M). Consequently, the theory
is uniquely determined by the choice of taming map. The condition dV =
0 is equivalent with V = dA, where A ∈ Ω1(M,R2n) is considered modulo
gauge transformations A 7→ A+ dα with α ∈ C∞(M,R2n). The map [A] 7→
dA gives a well-defined bijection Ω1(M,R2n)/Ω1

cl(M,R2n)
∼
−→ Ω2

cl(M,R2n).
Thus we can formulate classical local abelian gauge theory either in terms
of electromagnetic gauge potentials A ∈ Ω1(M,R2n) taken modulo gauge-
equivalence or in terms of electromagnetic field strengths V ∈ Ω2

cl(M,R2n).
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Definition A.9. Let J ∈ Jn(M) be a taming map. The space of elec-
tromagnetic gauge configurations of the U(1)n local abelian gauge is
Ω1(M,R2n).

Two gauge configurations are called gauge equivalent if they differ by an
exact one-form. The theory is defined by the polarized self-duality condition
for A ∈ Ω1(M,R2n):

(A.9) ∗gVA = −JVA , where VA
def.
= dA .

The space of electromagnetic gauge fields (or electromagnetic gauge poten-
tials) of the theory is the linear subspace of Ω1(M,R2n) consisting of those
elements which satisfy (A.9):

Soln(M, g,J )
def.
=
{

A ∈ Ω1(M,R2n) | ∗g VA = −JVA

}

.

Elements A ∈ Ω1(M,R2n) are called (electromagnetic) gauge potentials or
gauge fields. The space of field strength configurations is the vector space:

Confn(M)
def.
= Ω2

cl(M,R2n) ,

while the space of field strengths is defined through:

Soln(M, g,J )
def.
= {V ∈ Confn(M) | ∗g V = JV} .

The map [A] 7→ dA gives a bijection Ω1(M,R2n)/Ω1
cl(M,R2n)

∼
−→

Confn(M), which restricts to a bijection Soln(M, g,J )/Ω1
cl(M,R2n)

∼
−→

Soln(M, g,J ).

A.2. Duality groups

Let Diff(M) be the group of orientation-preserving diffeomorphisms of M
and J ∈ Jn(M) be a taming map of rank 2n defined on M . For (γ, f) ∈
GL(2n,R)×Diff(M), consider the linear isomorphism:

(A.10) Aγ,f : Ω
k(M,R2n)

∼
−→ Ωk(M,R2n) , ω 7→ γ(f∗ω) ,

where f∗ : Ω
k(M,R2n) → Ωk(M,R2n) is the push-forward through the dif-

feomorphism f . This gives a linear action of GL(2n,R)×Diff(M) on
Ωk(M,R2n). Since this action commutes with the exterior derivative, it pre-
serves the space Confn(M) of field strength configurations.
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For any γ ∈ Sp(2n,R), the map:

Jγ,f
def.
= γ(J ◦ f−1)γ−1 ,

is a taming map. This gives an action µ of Sp(2n,R)×Diff(M) on Jn(M)
defined through:

µ(γ, f)(J )
def.
= Jγ,f , ∀ (γ, f) ∈ Sp(2n,R)×Diff(M) .

Proposition A.10. For every (γ, f) ∈ Sp(2n,R)×Diff(M), the map Aγ,f

induces by restriction a linear isomorphism:

Aγ,f : Soln(M, g,J )
∼
−→ Soln(M,f∗(g),Jγ,f ) ,

where f∗(g) denotes the push-forward of g by f ∈ Diff(M).

Remark A.11. If we consider a pair (γ, f) ∈ GL(2n,R)×Diff(M) with
γ ̸∈ Sp(2n,R), then Jγ,f is not a taming map, so it does not define a local
abelian gauge theory. From a different point of view, such a transformation
would not preserve the energy momentum tensor of the theory and its La-
grangian formulation. See [41] and references therein for more details about
this point.

Proof. For any V ∈ Ω2
cl(M,R2n), we have:

∗gV = −JV ⇐⇒ Aγ,f (∗gV) = −Aγ,f (JV)

⇐⇒ ∗f∗(g)(Aγ,fV) = −Jγ,fAγ,f (V) .

□

Consider the infinite rank vector bundle with total space:

Soln(M)
def.
=

∏

(g,J )∈Met3,1(M)×Jn(M)

Soln(M, g,J ) ,

and infinite-dimensional base Bn(M)
def.
= Met3,1(M)× Jn(M), with the nat-

ural projection. Let σ be the action of Sp(2n,R)×Diff(M) on Bn(M) de-
fined though σ = f∗ × µ, i.e.:

σ(γ, f)(g,J ) = (f∗(g),Jγ,f ) .

Then Proposition A.10 shows that the restriction of A gives a linearization of
σ on the vector bundle Soln(M). In particular, each fiber of Soln(M) carries
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a linear representation of the isotropy group of the corresponding point in
the base. Let Iso(M, g) be the group of orientation-preserving isometries of
(M, g). Then:

StabSp(2n,R)×Diff(M)(g,J ) = {(γ, f) ∈ Sp(2n,R)× Iso(M, g) | Jγ,f = J }

and we have:

Corollary A.12. Let (γ, f) ∈ Sp(2n,R)× Iso(M, g) such that Jγ,f = J ,
i.e. J ◦ f = γJ γ−1. Then Aγ,f is a linear automorphism of Soln(M, g,J ).

Definition A.13. Let J ∈ Jn(M) be a taming map and g be a Lorentzian
metric on M .

• The group Sp(2n,R)×Diff(M) is called the unbased pseudo-duality group.
The linear isomorphism:

Aγ,f : Soln(M, g,J )
∼
−→ Soln(M,f∗(g),Jγ,f ) ,

induced by an element of this group is called a unbased pseudo-duality
transformation.

• The group Sp(2n,R)× Iso(M, g) is called the unbased duality group. The
linear isomorphism:

Aγ,f : Soln(M, g,J )
∼
−→ Soln(M, g,Jγ,f ) ,

induced by an element (γ, f) of this group is called a unbased duality
transformation.

• The group Sp(2n,R) is called the duality group. The linear isomorphism:

Aγ,idM
: Soln(M, g,J )

∼
−→ Soln(M, g,Jγ) ,

where Jγ
def.
= Jγ,idM

= γJ γ−1, is called a classical duality transformation.

Definition A.14. Let J ∈ Jn(M) be a taming map and g be a Lorentzian
metric on M .
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• The stabilizer:

U(M,J )
def.
=
{

(γ, f) ∈ Diff(M, g)× Sp(2n,R) |(A.11)

J ◦ f = γJ γ−1
}

,

of J in Sp(2n,R)×Diff(M) with respect to the representation µ is called
the unbased unitary pseudo-duality group. The linear isomorphism:

Aγ,f : Soln(M, g,J )
∼
−→ Soln(M, f∗(g),J ) ,

induced by an element of this group is called an unbased unitary pseudo-
duality transformation.

• The stabilizer:

U(M, g,J )
def.
=
{

(γ, f) ∈ Sp(2n,R)× Iso(M, g) |(A.12)

J ◦ f = γJ γ−1
}

,

of J in Sp(2n,R)× Iso(M) with respect to the representation µ is called
the unbased unitary duality group. The linear isomorphism:

Aγ,f : Soln(M, g,J )
∼
−→ Soln(M, g,J ) ,

induced by an element of this group is called an unbased unitary duality
transformation.

• The stabilizer:

UJ (n)
def.
=
{

γ ∈ Sp(2n,R) | γJ γ−1 = J
}

.

of J in Sp(2n,R) with respect to the action J → γJ γ−1 is called the
unitary duality group. The linear automorphism:

Aγ,f : Soln(M, g,J )
∼
−→ Soln(M, g,J )

of Soln(M, g,J ) induced by an element of this group is called a unitary
duality transformation.
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We have inclusions:

UJ (n) ⊂ U(M, g,J ) ⊂ U(M,J )

and short exact sequences:

1 → UJ (n) → U(M, g,J ) → IsoJ (M, g) → 1 ,(A.13)

1 → Iso(M, g)J → U(M,J ) → SpJ (2n,R) → 1 ,(A.14)

where IsoJ (M, g) is the subgroup of those f ∈ Iso(M, g) for which there
exists γ ∈ Sp(n,R) such that J ◦ f = γJ γ−1, while SpJ (2n,R) is the sub-
group of those γ ∈ Sp(2n,R) for which there exists f ∈ Iso(M, g) such that
J ◦ f = γJ γ−1. Finally, the group:

Iso(M, g)J
def.
= {f ∈ Iso(M, g) | J ◦ f = J }

is the stabilizer of J in Iso(M, g). In particular, we have:

Corollary A.15. If UJ (n) = 1 then U(M, g,J ) = IsoJ (M, g). If
Iso(M, g)J = 1 then U(M, g,J ) = SpJ (2n,R).

A.3. Gluing local abelian gauge theories

Let now M be an arbitrary oriented manifold admitting Lorentzian metrics.
Let U = (Uα)α∈I be a good open cover of M , where I is an index set. Denote
by gα the restriction of g to Uα. Roughly speaking, the definition of abelian
gauge theory on (M, g) given in Section 1 is the result of gluing the local
U(1)n abelian gauge theories defined on the contractible Lorentzian four-
manifolds (Uα, gα) using electromagnetic dualities. In order to implement
this idea, we choose a locally constant Sp(2n,R)-valued C̆ech cocycle for U :

uαβ : Uα ∩ Uβ → Sp(2n,R)

and a family of taming maps Jα : Uα → R2n for ω2n such that:

Jβ = uαβ Jαu
−1
αβ

on double overlaps. The collection:

{(Uα)α∈I , (gα)α∈I , (Jα)α∈I , (uαβ)α,β∈I} ,

is equivalent to a flat symplectic vector bundle (S, ω,D) with symplectic
form ω and symplectic flat connection D, equipped with an almost complex
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structure J which is a taming of ω. A family (Vα)α∈I of solutions of the
local abelian gauge theories defined by (Jα)α∈I on (Uα, gα) which satisfies:

Vβ = uαβVα

corresponds to an S-valued two-form V ∈ Ω2(M,S) which obeys:

dDV = 0 ,

where dD : Ω∗(M,S) → Ω∗(M,S) is the exterior differential twisted by D.
This construction motivates the global geometric model introduced in [32]
and further elaborated in Section 1.

Appendix B. Integral symplectic spaces and integral

symplectic tori

This appendix recalls some notions from the theory of symplectic lattices
and symplectic tori which are used throughout the paper. We also introduce
the notion of integral symplectic torus.

Definition B.1. An integral symplectic space is a triple (V, ω,Λ) such that:

• (V, ω) is a finite-dimensional symplectic vector space over R.

• Λ ⊂ V is full lattice in V , i.e. a lattice in V such that V = Λ⊗Z R.

• ω is integral with respect to Λ, i.e. we have ω(Λ,Λ) ⊂ Z.

An isomorphism of integral symplectic spaces f : (V1, ω1,Λ1) → (V2, ω2,Λ2)
is a bijective symplectomorphism from (V1, ω1) to (V2, ω2) which satisfies:

f(Λ1) = Λ2 .

Denote by SympZ the groupoid of integral symplectic spaces and isomor-
phisms of such. Let Aut(V ) be the group of linear automorphisms of the
vector space V and Sp(V, ω) ⊂ Aut(V ) be the subgroup of symplectic trans-
formations. Then the automorphism group of the integral symplectic space
(V, ω,Λ) is denoted by:

Sp(V, ω,Λ) = {T ∈ Sp(V, ω) | T (Λ) = Λ} .

Definition B.2. An integral symplectic basis of a 2n-dimensional integral
symplectic space (V, ω,Λ) is a basis E = (ξ1, . . . , ξn, ζ1, . . . , ζn) of Λ (as a free
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Z-module) such that:

ω(ξi, ξj) = ω(ζi, ζj) = 0 ,

ω(ξi, ζj) = tiδij , ω(ζi, ξj) = −tiδij , ∀ i, j = 1, . . . , n ,

where t1, . . . , tn ∈ Z are strictly positive integers satisfying the divisibility
conditions:

t1|t2| . . . |tn .

By the elementary divisor theorem, see [19, Chapter VI], every integral sym-
plectic space admits an integral symplectic basis and the positive integers
t1, . . . , tn (which are called the elementary divisors of (V, ω,Λ)) do not de-
pend on the choice of such a basis. Define:

Divn
def.
= {(t1, . . . , tn) ∈ Zn

>0 | t1|t2| . . . |tn} ,

and:

δ(n)
def.
= (1, . . . , 1) ∈ Divn .

Let ≤ be the partial order relation on Divn defined through:

(t1, . . . , tn) ≤ (t′1, . . . , t
′
n) iff ti|t

′
i ∀i = 1, . . . , n .

Then δ(n) is the least element of the ordered set (Divn,≤). Notice that this
ordered set is directed, since any two elements t, t′ ∈ Divn have an upper
bound given by (t1t

′
1, . . . , tnt

′
n). In fact, (Divn,≤) is a lattice with join and

meet given by:

t ∨ t′ = (lcm(t1, t
′
1), . . . , lcm(tn, t

′
n)) , t ∧ t′ = (gcd(t1, t

′
1), . . . , gcd(tn, t

′
n)) .

This lattice is semi-bounded from below with bottom element given by δ(n)
and it is complete for meets (i.e., it is a complete meet semi-lattice).

Definition B.3. The type of an integral symplectic space (V, ω,Λ) is the
ordered system of elementary divisors of (V, ω,Λ), which we denote by:

t(V, ω,Λ) = (t1, . . . , tn) ∈ Divn .

The integral symplectic space (V, ω,Λ) is called principal if:

t(V, ω,Λ) = δ(n) ∈ Divn .
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Let ω2n denotes the standard symplectic pairing on R2n.

Proposition B.4. Two integral symplectic spaces have the same type if
and only if they are isomorphic. Moreover, every element of Divn is the type
of an integral symplectic space. Hence the type induces a bijection between
the set of isomorphism classes of integral symplectic spaces and the set Divn.

Proof. The first statement is obvious. For the second statement, fix t
def.
=

(t1, . . . , tn) ∈ Divn. Consider the full lattice Λt ⊆ R2n defined as follows:

(B.15) Λt
def.
= {(l1, . . . , ln, t1ln+1, . . . , tnl2n) | l1, . . . , l2n ∈ Z} .

Then (R2n, ω2n,Λt) is an integral symplectic space of type t. □

Definition B.5. The lattice Λt defined in (B.15) is called the standard
symplectic lattice of type t and (R2n, ω2n,Λt) is called the standard integral
symplectic space of type t.

We have Λδ(n) = Z2n. Moreover, Λt is a sub-lattice of Z2n and we have
Z2n/Λt ≃ Zt1 × . . .× Ztn for all t ∈ Div(n). For t, t′ ∈ Divn, we have Λt′ ⊂ Λt

if and only if t ≤ t′. The lattice Λt admits the basis:

ξ1 = e1 = (1, 0, . . . , 0), . . . , ξn = en = (0, . . . , 0, 1, 0, . . . , 0)

ζ1 = t1f1 = (0, . . . , 0, t1, 0, . . . , 0), . . . , ζn = tnfn = (0, . . . , 0, tn) ,

in which the standard symplectic form of R2n has coefficients:

ω2n(ξi, ξj) = ω2n(ζi, ζj) = 0

ω2n(ξi, ζj) = tiδij , ω2n(ζi, ξj) = −tiδij .

The isomorphism which takes ξi to ei and ζj to fj identifies (R2n, ω2n,Λt)
with the integral symplectic space (R2n, ωt,Z2n), where ωt is the symplectic
pairing defined on R2n by:

ωt(ei, ej) = ωt(fi, fj) = 0 ,(B.16)

ωt(ei, fj) = δij , ωt(fi, ej) = −δij , ∀ i = 1, . . . , n .

Given t = (t1, . . . , tn) ∈ Divn, consider the diagonal n× n matrix:

Dt
def.
= diag(t1, . . . , tn) ∈ Mat(n,Z) ,
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as well as:

Γt
def.
=

(

In 0
0 Dt

)

∈ Mat(2n,Z) .

Definition B.6. The modified Siegel modular group of type t ∈ Divn is the
subgroup of Aut(R2n, ω2n) ≃ Sp(2n,R) defined through:

Spt(2n,Z)
def.
=
{

T ∈ Aut(R2n, ω2n) | T (Λt) = Λt

}

≃
{

T ∈ Sp(2n,R) | ΓtTΓ
−1
t = T

}

.

Since (R2n, ω2n,Λt) ≃ (R2n, ωt,Z2n), we have

Spt(2n,Z) ≃ Aut(R2n, ωt,Z
2n).

Hence Spt(2n,Z) is a subgroup of GL(2n,Z). The remarks above give:

Proposition B.7. [32, Proposition F.12] Let (V, ω,Λ) be an integral sym-
plectic space of dimension 2n. Any integral symplectic basis of this space
induces an isomorphism of integral symplectic spaces between (V, ω,Λ) and
(R2n, ω2n,Λt) as well as an isomorphism of groups between Sp(V, ω,Λ) and
Spt(2n,Z).

We have Spδ(n)(2n,Z) = Sp(2n,Z) and Spt(2n,Z) ⊆ Spt′(2n,Z) when t ≤ t′.
Hence Spt(2n,Z) forms a direct system of groups and we have Sp(2n,Z) ⊂
Spt(2n,Z) for all t ∈ Divn. The direct limit lim−→t∈Divn Spt(2n,Z) identifies

with the following subgroup of Sp(2n,R):

Sp∞(2n,Z)
def.
= {T ∈ GL(2n,R) | ∃ tT ∈ Divn : T ∈ SptT (2n,Z)} ,

through the isomorphism of groups φ : Sp∞(2n,Z) → lim−→t∈Divn Spt(2n,Z)
which sends T ∈ Sp∞(2n,Z) to the equivalence class [α(T )] ∈
lim−→t∈Divn Spt(2n,Z) of the family α(T ) ∈ ⊔t∈DivnSpt(2n,Z) defined
through:

α(T )t
def.
=

{

T if tT ≤ t

1 if tT ≰ t
.

Notice that Sp(2n,Z) = Spδ(n)(2n,Z) is a subgroup of Sp∞(2n,Z).

Definition B.8. The type of an element T ∈ Sp∞(2n,Z) is defined as the
greatest lower bound t(T ) ∈ Divn of the finite set {t ∈ Divn|t|tT }, where tT
is any element of Divn such that T ∈ Spt(2n,Z).

Notice that the type of T is well-defined and that we have T ∈ Spt(T )(2n,Z).
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B.1. Integral symplectic tori

The following definition distinguishes between a few closely related notions.

Definition B.9. A d-dimensional torus is a smooth manifold T diffeomor-
phic with the standard d-torus Td def.

= (S1)d. A d-dimensional torus group is
a compact abelian Lie group A which is isomorphic with the standard d-
dimensional torus group U(1)d as a Lie group. A d-dimensional affine torus
is a principal homogeneous space A for a d-dimensional torus group. The
standard affine d-torus is the d-dimensional affine torus Ad defined by the
right action of U(1)d on itself.

The underlying manifold of the standard d-dimensional torus group is the
standard d-torus while the underlying manifold of a d-dimensional torus
group is a d-torus. Moreover, any d-dimensional affine torus group is iso-
morphic with a standard affine d-torus. The transformations of an affine
torus given the right action of its underlying group will be called transla-
tions. Choosing a distinguished point in any affine torus makes it into a
torus group having that point as zero element. Conversely, any torus group
defines an affine torus obtained by ‘forgetting’ its zero element. The singular
homology and cohomology groups of a d-torus T are the free abelian groups
given by:

Hk(T,Z) ≃ ∧kH1(T,Z)

Hk(T,Z) ≃ ∧kH1(T,Z) ≃ ∧kH1(T,Z)
∨

for all k = 0, . . . , d, where H1(T,Z) ≃ H1(T,Z) ≃ Zd. The underlying torus

group of any affine torus A is isomorphic with A
def.
= H1(A,R)/H1(A,Z). The

group of automorphisms of a d-dimensional torus group A is given by:

Aut(A) = Aut(H1(A,R), H1(A,Z)) ≃ GL(d,Z) .

Note that the group of automorphisms of the d-dimensional affine torus is
isomorphic to U(1)d ⋊Aut(U(1)d) ≃ U(1)d ⋊GL(2n,Z), where GL(2n,Z)
acts on U(1)d through the morphism of groups ρ : GL(2n,Z) → Aut(A) given
by:

(B.17) ρ(T )(exp(2πix)) = exp(2πiT (x)) , ∀ T ∈ GL(d,Z) , ∀ x ∈ Rd .

Here exp : Rd → U(1)d is the exponential map of U(1)d, which is given by:

exp(v) = (ev1 , . . . , evd) , ∀ v = (v1, . . . , vd) ∈ Rd .
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Definition B.10. Let T be a torus of dimension at least two. A subtorus
T′ ⊂ T is called primitive if H1(T

′,Z) is a primitive sub-lattice of H1(T,Z),
i.e. if the abelian group H1(T,Z)/H1(T

′,Z) is torsion-free.

Definition B.11. A symplectic torus is a pair T = (T,Ω), where T is an
even-dimensional torus and Ω is a symplectic form defined on T. A symplectic
torus group is a pairA = (A,Ω), where A is an even-dimensional torus group
and Ω is a symplectic form defined on the underlying torus which is invariant
under translations by all elements of A. An affine symplectic torus is a pair
A = (A,Ω), where A is an even-dimensional affine torus and Ω is a symplectic
form on A which is invariant under translations.

Definition B.12. A symplectic torus T = (T,Ω) is called integral if the
symplectic area

∫

T ′ Ω of any of its primitive two-dimensional subtori T ′ is
an integer.

Let (T,Ω) be a symplectic torus. The cohomology class of Ω is a non-
degenerate element ω ∈ H2(T,R) ≃ ∧2H1(T,R)∨, i.e a symplectic pairing
on the vector space H1(T,R). The symplectic torus (T,Ω) is integral if and
only if the triplet (H1(T,R), H1(T,Z), ω) is an integral symplectic space. In
this case, ω descends to a symplectic form Ω̂ which makesH1(T,R)/H1(T,Z)
into an integral symplectic torus group. If A = (A,Ω) is an integral affine
symplectic torus, then Ω is determined by its cohomology class ω, hence A

can also be viewed as a pair (A, ω) where A is an affine torus and ω is a
symplectic form on H1(A,R) which is integral for the lattice H1(A,Z). In
this case, any choice of a point in T allows us to identify A with the integral
symplectic torus group (H1(A,R)/H1(A,Z), Ω̂).

Let (R2n, ω2n,Λt) be the standard integral symplectic space of type t ∈
Divn and Ωt be the translationally invariant symplectic form induced by ω2n

on the torus group R2n/Λt. Then the symplectic torus group
(

R2n/Λt,Ωt

)

is integral.

Definition B.13. The 2n-dimensional standard integral symplectic torus
group of type t ∈ Divn is:

At
def.
=
(

R2n/Λt,Ωt

)

.

The integral affine symplectic torus At obtained from At by forgetting the
origin is the standard integral affine symplectic torus of type t.
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Note that every integral affine symplectic torus A is affinely symplectomor-
phic to a standard affine symplectic torus At, whose type t is uniquely-
determined and called the type of A. Similarly, every integral symplectic
torus group A is isomorphic with a standard integral symplectic torus group
At whose type t is uniquely determined by A and called the type of A. The
group of automorphisms of At for t ∈ Divn is given by:

Aut(At) = Spt(2n,Z) ,

while the group of automorphisms of an integral symplectic affine torus
At = (At,Ω) of type t ∈ Divn is:

Aut(At) = A⋊ Spt(2n,Z) ,

where A = H1(A,R)/H1(A,Z) is the underlying torus group of A and the ac-
tion of Spt(2n,Z) ⊂ GL(2n,Z) ≃ Aut(A) on A coincides with that induced

from the action on H1(A,R) ≃ R2n. We denote by Afft
def.
= Aut(At) the au-

tomorphism group of the integral affine symplectic torus of type t. We have:

Afft = U(1)2n ⋊ Spt(2n,Z) ,

where Spt(2n,Z) ⊂ GL(2n,Z) acts on U(1)2n through the restriction
of (B.17).

Definition B.14. Let A = (A,Ω) and A′ = (A′,Ω′) be two integral sym-
plectic torus groups. A symplectic isogeny from A to A′ is a surjective mor-
phism of groups f : A → A′ with finite kernel such that f∗(Ω′) = Ω.

The following statement is immediate.

Proposition B.15. Let t, t′ ∈ Divn be such that t ≤ t′, namely t′i = qiti
(where qi ∈ Z>0) for all i = 1, . . . , n. Then the map f : At′ → At defined
through:

f(x+ Λt′) = x+ Λt ∀x ∈ R2n

is a symplectic isogeny whose kernel is given by:

ker(f) ≃ Zq1 × . . .× Zqn .

In particular, At is isogenous with Aδ(n) for all t ∈ Divn.
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B.2. Tamings

Definition B.16. A tamed integral symplectic space is a quadruple
(V, ω,Λ, J), where (V, ω,Λ) is an integral symplectic space and J is a taming
of the symplectic space (V, ω). The type of a tamed integral symplectic space
is the type of its underlying integral symplectic space.

Given a tamed integral symplectic space (V, ω,Λ, J) of type t ∈ Divn, the
taming J makes V into a n-dimensional complex vector space, which we
denote by VJ . The symplectic pairing ω induces a Kahler form Ω which
makes the complex torus VJ/Λ into a (generally non-principal) polarized
abelian variety whose underlying symplectic torus coincides with At. We
refer the reader to [32, Appendix F] for details on the relation between tamed
integral symplectic spaces and (generally non-principal) abelian varieties.

References

[1] Y. Aharonov and D. Bohm, Significance of electromagnetic potentials
in the quantum theory, Phys. Rev. 115 (1959), 485–491.

[2] L. Andrianopoli, M. Bertolini, A. Ceresole, R. D’Auria, S. Ferrara,
P. Fre and T. Magri, N=2 supergravity and N=2 superYang-Mills the-
ory on general scalar manifolds: Symplectic covariance, gaugings and
the momentum map, J. Geom. Phys. 23 (1997), 111–189.

[3] L. Andrianopoli, R. D’Auria and S. Ferrara, U duality and central
charges in various dimensions revisited, Int. J. Mod. Phys. A 13 (1998),
431–490.

[4] P. C. Argyres and M. Martone, 4d N =2 theories with disconnected
gauge groups, JHEP 03 (2017), 145.

[5] P. C. Argyres, A. Bourget and M. Martone, On the moduli spaces
of 4d N = 3 SCFTs I: triple special Kähler structure, preprint,
arXiv:1912.04926.
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