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Construction of Cauchy data for the

dynamical formation of apparent

horizons and the Penrose Inequality

Nikolaos Athanasiou and Martin Lesourd

Based on scale critical initial data, we construct smooth asymptot-
ically flat Cauchy initial data for the Einstein vacuum system that
does not contain Marginally Outer Trapped Surfaces (MOTS) but
whose future evolution contains a trapped region, which itself is
bounded by an apparent horizon (a smooth hypersurface foliated
by MOTS).

Using estimates for the ADM mass of the data and the area of
the MOTS foliating the apparent horizon, this construction yields
a dynamical setting in which to study the spacetime Penrose In-
equality. We show that the inequality holds in an open region in
the future of the initial data, which itself can be controlled by the
parameters of the initial data.
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1. Introduction

General relativity provides a framework to describe the structure of
Lorentzian (n+ 1)-manifolds (M, g) obeying the Einstein field equations

(1.1) Ricg −
1

2
g Rg = T

where Rg is the scalar curvature of g and T is a source term for possible
matter fields in M. Here we are concerned with the vacuum case of (1.1)
where T = 0 and the equations become

(1.2) Ricg = 0

Viewing (1.2) from the perspective of the Cauchy problem, the task is to
specify suitable initial data and generate a spacetime by Cauchy evolution
of this data. By ‘suitable’ we mean that the initial data must satisfy the
constraint equations. For T = 0 these are

Rg − |k|2 + (trk)2 = 0,(1.3)

divgk − d(trk) = 0(1.4)

where M is an n-dimensional Riemannian manifold with metric g and k is a
symmetric two-tensor on M with M isometrically embedding as a spacelike
hypersurface of a spacetime (M, g) satisfying (1.2).

Once a solution (M, g, k) to (1.3-4) is given, the field equations de-
scribe how it generates a spacetime (M, g) by Cauchy evolution. This
Cauchy problem is well posed in the sense that, for any such (M, g, k), there
exists a continuously and uniquely determined (up to isometry) spacetime
called the maximal Cauchy development of (M, g, k). Obtaining spacetimes
from general initial data sets and understanding their properties is the
focus of many outstanding conjectures in mathematical general relativity.

In the language of PDE, these conjectures take the form of global existence
and uniqueness questions and a binding theme among them is to understand
the development of singularities. Only in the specific setting of the spheri-
cally symmetric scalar field, due to Christodoulou [8], [9], is this understood.

The family of Kerr black hole solutions provide an explicit class of
vacuum, axisymmetric, asymptotically flat, singular spacetimes. This
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family is thought to be archetypal in the class of asymptotically flat vacuum
black hole spacetimes, and indeed there are a number of conjectures aiming
to provide a better understanding of how these fit within the space of
generic asymptotically flat vacuum solutions. A central problem is to
determine whether and how, in the course of black hole formation, the
spacetimes that are generated share the properties of this family. This is
the so-called Final State Conjecture and it states that the generic outcome
of gravitational collapse is a black hole spacetime whose exterior geometry
approaches some member of the family.

The purpose of this paper is to construct a class of Cauchy initial
data sets that can serve as models for the formation of black holes for the
Einstein vacuum system. The two main result are as follows.

1) Based on the scale critical initial data of [5], we construct smooth
Cauchy initial data without trapped surfaces or MOTS, whose future
evolution contains both such surfaces. These MOTS are strung out in
a smooth hypersurface, i.e. apparent horizon, whose approach to a null
hypersurface can be controlled by the initial data. This gives the first
apparent horizon formation result from Cauchy initial data.

2) Owing to estimates for the ADM mass of our initial data sets and the
area of the MOTS produced by evolution, the construction yields the
first dynamical (non-spherically symmetric) setting in which to test
the conjectured general spacetime Penrose inequality. We prove that
the inequality holds for an open region in the evolution, whose size
that can be controlled by the initial data.

We note in addition that one obtains a connection between Kerr stability
and the conjectures of Weak Cosmic Censorship and Final State for scale
critical data. In particular, if a certain form of Kerr stability holds, then this
construction would yield scale critical dynamical vacuum examples of the
conjectures of Weak Cosmic Censorship and Final State, whereby a black
hole is formed from initial data that does not contain a trapped surface.
This connection is also present in [17], but the specific estimates we obtain
are different and may make the connection more tractable.

1.1. Previous Work

The first trapped surface existence result is due to Schoen-Yau [26]. The re-
sult was refined by Yau [27], and extended into a hoop conjecture statement
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by Alaee-Lesourd-Yau [1]. These results are purely at the level of the ini-
tial data: one formulates conditions on a Riemannian manifold with bound-
ary which imply the existence of a trapped surface within. In a landmark
contribution, Christodoulou [10] found a way of forming a trapped surface
dynamically for the vacuum Einstein system.

Theorem 1.1 (Christodoulou 2009). Consider the characteristic initial
value problem for (1.2) such that H0 coincides with a backwards lightcone
in Minkowski space for 0 ≤ u ≤ 1. For every B > 0 and u∗ ≤ 1, there exists
δ = δ(B, u∗) > 0 sufficiently small such that if the initial χ̂0, prescribed on
H1 for 0 ≤ u ≤ δ, satisfies

(1.5)
∑

i≤5,j≤3

δ
1

2
+j ||∇i∇j

4χ̂0||L∞

u L2(Su,u) ≤ B

then the solution to (1.2) remains regular in u∗ ≤ u ≤ 1, 0 ≤ u ≤ δ. More-
over, if the initial data satisfies the lower bound

(1.6) inf
ω∈S1,0

∫ δ

0
|χ̂0(u

′, ω)|2du′ ≥M∗ ≥ 2(1− u∗)

then after choosing δ sufficiently small (depending on B, u∗, and M∗) if
necessary, the sphere Su∗,δ is a trapped surface.

Christodoulou’s argument relies on identifying a certain hierarchy
among quantities that is preserved under the non-linear evolution of the
Einstein vacuum system. Identifying and maintaining this hierarchy makes
existence possible whilst permitting certain quantities to grow large, in
particular those needed for trapped surface formation.

Shortly thereafter, Klainerman-Rodnianski [15] found a simplified and
more direct argument for the formation of trapped surfaces, which reduced
the number of derivatives of curvature needed from two to one.

Another major contribution was brought by Li-Yu [17], who found a
way to re-express a version of Theorem 1.1 in the language of Cauchy
initial data. Their idea was to improve the estimates of [10] in order to
use the local deformation result of Corvino-Schoen [11], [12] and glue an
asymptotically flat slice (isometric to Kerr outside a compact set) onto the
dynamical slab in [10]. To achieve this extra control, they insisted that the
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initial shear specified in Theorem 1.1 satisfy

(1.7) m0 =
1

4

∫ δ

0
|χ̂0(u

′, ω)|2du′

for some constant m0, so that the total shear along u ∈ [0, δ] is independent
of ω. With this assumption, they eventually obtained the following.

Theorem 1.2 (Li-Yu 2015). Let Σ be a 3-dimensional differential man-
ifold diffeomorphic to R3 and seperated into four concentric regions

Σ = ΣM ∪ ΣC ∪ ΣS ∪ ΣK

with ΣM diffeomorphic to the 3-ball, ΣC and ΣS diffeomorphic to the 3-
annulus, and ΣK diffeomorphic to R3\B3. Then for any ϵ > 0 sufficiently
small, there is a Riemannian metric g and a symmetric two tensor k on Σ
satisfying (1.3-4) such that

1) ΣM is a constant time slice in Minkowski spacetime (g, k) = (δij , 0),

2) ΣK is isometric to a constant time slice all the way to spacelike infinity
in a Kerr spacetime with mass m and angular momentum a satisfying
|m−m0|+ |a| ≲ ϵ,

3) Σ is free of trapped surfaces,

4) there are trapped surfaces in the development of Σ.

Note here that ΣC is a spacelike hypersurface traversing the dynamical
spacetime slab arises from the characteristic initial value problem of
Theorem 1.1 with (1.7).

At around the same time, Klainerman-Luk-Rodnianski [16] were able
to find an anisotropic mechanism to form trapped surfaces.

Theorem 1.3 (Klainerman-Luk-Rodnianski 2015). Take as starting
point the characteristic initial value problem of Theorem 1.1. If (1.6) is
replaced with

(1.8) sup
ω∈S1,0

∫ δ

0
|χ̂0(u

′, ω)|2du′ ≥M∗ > 0
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then, after choosing δ smaller if necessary, a compact trapped surface can
be guaranteed to form to the future of the initial data, within the domain in
which the solution remains regular.

In replacing ‘inf’ with ‘sup’, they only require the initial shear to be
large in the neighborhood of a single geodesic, thus yielding an isotropic
formation result.

In a different direction, An-Luk [5] proved a trapped surface forma-
tion under ‘scale critical’ data for the Einstein vacuum system. Their result
made use of techniques developed by Luk-Rodnianski [20], [21], which those
authors had developed to study interacting impulsive waves.

Theorem 1.4 (An-Luk 2017). Consider the following characteristic ini-
tial value problem the Einstein vacuum system. The initial incoming hyper-
surface H0 is required to coincide with a backwards lightcone in Minkowski
space with 0 ≤ u ≤ 1. On the initial outgoing hypersurface H1, the initial χ̂0

satisfies

(1.9)
∑

i≤7

||∇iχ̂0||L∞

u L2(Su,u) ≤ a1/2

for 0 ≤ u ≤ δ. There exists a universal large constant b0 such that if b0 ≤ b ≤
a and δa1/2b < 1, then the unique solution to (1.2) remains regular in the
region δa1/2b ≤ u ≤ 1, 0 ≤ u,≤ δ. Moreover, if the initial data also verify
the lower bound

(1.10) inf
ω∈S1,0

∫ δ

0
|χ̂0(u

′, ω)|2du′ ≥ 4a1/2bδ

then the sphere Sbδa1/2,δ is trapped.

Note that after choosing a = B2δ−1 and b = b0 one basically recovers a
version of Theorem 1.1 as a corollary.

Corollary 1.1 (An-Luk 2017). Replace (1.9) with

(1.11)
∑

i≤7

δ1/2||χ̂0||L∞

u L2(Su,u) ≤ B

for 0 ≤ u ≤ δ. Then there exists a universal large constant b0 such that the
solution to (1.2) remains regular in u∗ ≤ u ≤ 1, 0 ≤ u ≤ δ for u∗ = b0Bδ

1/2.
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Moreover, if the initial data also verify the lower bound

(1.12) inf
ω∈S1,0

∫ δ

0
|χ̂0(u

′, ω)|2du′ ≥ 4b0Bδ
1/2

then the sphere Su∗,δ is a trapped surface.

The significance of Theorem 1.4 lies in the fact that the size of the incoming
radiation, given by

inf
θ∈S1,0

∫ δ

0
|χ̂|2(u′, θ)du′,

can be of the same order of magnitude as the length scale δ. In particular,
there exist initial data satisfying the conditions of Theorem 1.4 for which
the metric is only large in H

3

2 and small in Hs for all s < 3
2 . More precisely,

one can construct initial data satisfying the conditions of Theorem 1.4 in
which

∥γ∥Hs ≈ a
1

2 δ
3

2
−s.

This is in contrast to Theorem 1.1, in which the data are large in Hs for
all s > 1. The significance of the H

3

2 space is that it is a critical space in
terms of scaling considerations for the Einstein vacuum equations. It is in
this sense that the data are termed mild. Broadly speaking, therefore, scale-
critical data can be thought of as the smallest initial data, in terms of size,
known to produce a trapped surface in evolution.

More recently, based on the spacetime whose existence was shown in [5], An
[2] found an additional initial condition permitting to prove the existence of
an apparent horizon, i.e., a hypersurface in the spacetime foliated by MOTS.
An’s argument extends the ideas set forth in [16], and yields the following.

Theorem 1.5 (An 2018). Given δ, for every B, there exist a0 = a0(B)
and b0 = b0(B) sufficiently large such that the following holds. Pick any a
and b satisfying a0 ≤ a ≤ δ−1 and b0 ≤ b ≤ a

1

2 ≤ δ−
1

2 . Along H1, for 0 ≤
u ≤ δ prescribe

(1.13)
∑

0≤i<∞,0≤j<∞

δja−
1

2 ||∇j
e4∇

iχ̂0||L∞

u L2(S1,u) ≤ B

Prescribe

(1.14)

∫ u

0
|χ̂0(u

′, ω)|2du′ = f(u, ω)ua for each δba−1/2 ≤ u ≤ δ
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where f(u, ω) is a smooth function such that 20
21 ≤ f(u, ω) ≤ 22

21 and
∂iωf(u, ω) ≲ 1 for all i ∈ N and ω ∈ S2, then, along every Hu with u ∈

[bδa−1/2, δ], there exists a unique MOTSMu and these join to make a smooth
hypersurface.

The paper [2] contains other results, but we will only invoke the above.
As in [16], the argument involves studying an elliptic PDE that is singled
out after computing the null expansion of spheres in the development.

Most recently, Li-Mei [18] extended [17] by performing the gluing procedure
of [17] inside the black hole region of a pre-existing spacetime that is iso-
metric to the Kerr solution in a neighborhood of future timelike infinity. By
invoking Cauchy stability, they can extend this interior region to a region
outside the event horizon. In doing so, they thus obtain the following.

Theorem 1.6 (Li-Mei 2020). There exists a class of solutions (M, g) to
the Einstein vacuum equations that are isometric to the Kerr spacetime in
a neighborhood of future timelike infinity such that

1) there is a spacelike slice Σ that does not intersect the black hole region
B ⊂M ,

2) there is a trapped surface in the development of Σ.

This theorem is perhaps the closest available towards black hole forma-
tion. That said, all results available (included our own) lies still a long way
from a black hole formation result where the future is merely asymptotic
(as opposed to isometric) to Kerr.

1.2. Statement of Theorems

We show two main theorems. The first sets up the initial data and extends
the MOTS existence result [2] labelled as Theorem 1.5 above. The second
builds on this and yields the Cauchy initial data.

Theorem 1.7 (Formation of Apparent Horizon). Consider the follow-
ing characteristic initial value problem for the Einstein vacuum equations.
The initial incoming null hypersurface H0 is required to coincide with a
backwards light cone in Minkowski space with 0 ≤ u ≤ 1. Given δ, for every
B, there exists a0 = a0(B) and b0 = b0(B) sufficiently large such that the

following holds. Pick any a and b satisfying a0 ≤ a < b2, b0 ≤ b, a
1
2

b < δ−1.
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For H1, prescribe χ̂0 as follows, where note that ω denotes the angular co-
ordinates on S1,0.

1) Smooth. χ̂0 = 0 on u = 0 and u = δ and χ̂→ 0 smoothly, both in u
and ω, on approach of u = 0 and u = δ.

2) Scale Critical. For 0 ≤ u ≤ δ

(1.15)
∑

0≤i<∞,
0≤j<∞

δja−
1

2 ∥∇j
e4∇

iχ̂0∥L∞

u L2(S0,u) ≤ B

3) Averaged Angular Independence. Along 0 ≤ u ≤ δ

(1.16)

∫ δ

0
|χ̂0(u, ω)|

2du′ = 4m0

for a constant m0 independent of ω.

4) u-Dependence. Here, (λ, γ, µ) are o(1) parameters which may be
chosen freely up to the requirements that λ = 1− o(1) < 1, γ = o(1),

γ a
1
2

b < λ, and µ = 1 + o(1) > 1. After having chosen (λ, γ, µ), require
the following.

• For u ∈

[
γ a

1
2

b δ, λδ

]

(1.17)

∫ u

0
|χ̂0|

2(u′, ω)du′ = a
1

2 bµf(u, ω)u

for a smooth, in both u and ω, function f(u, ω) satisfying 1− 1
c1

≤

f(u, ω) ≤ 1 + 1
c1

with c1 > 20, and moreover |∂iωf(u, ω)| ≲ 1 for all

i ∈ N and all ω ∈ S2.
• For u ∈ [λδ, λ′δ] where λ′ is another parameter like λ such that
λ < λ′ < 1− o(1)

(1.18)

∫ u

0
|χ̂0(u

′, ω)|2du′ = a
1

2 bµf(u, ω)ζ(u, ω)u+ (1− ζ(u, ω))4m0

where ζ(u, ω) is a smooth (in both ω and u) cut-off function = 1 for
u ≤ λδ and = 0 for u ≥ λ′δ, and moreover which satisfies ζ(u)(1−
1
c2
) ≤ ζ(u, ω) ≤ ζ(u)(1 + 1

c2
) for c2 > 20, |∂iωζ(u, ω)| ≲ 1 for i ∈ N

and ω ∈ S2 where ζ(u) is a smooth cut-off function in u which is 1
at u = λδ, and 0 at u = λ′δ.
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• The contributions from u ∈ [0, λδ] is

∫ u

0
|χ̂0(u

′, ω)|2du′ =

∫ λδ

0
|χ̂0(u

′, ω)|2du′ +

∫ λ′δ

λδ
|χ̂0(u

′, ω)|2du′

+

∫ u

λ′δ
|χ̂0(u

′, ω)|2du′

=M∗(ω) +N(λ′δ, ω) + 0

(1.19)

where M∗(ω) =
∫ λδ
0 |χ̂0(u

′, ω)|2du′ and M∗(ω) ∼ d0N(λ′δ, ω) for
some universal large constant d0.

Then the Einstein vacuum equations admit a unique solution in the re-
gion given by u ∈ [0, 2δ] and 1 ≤ u ≤ ba1/2δ. Moreover, along each Hu with

γ a1/2

b δ ≤ u ≤ 2δ, there exists a unique smooth marginally outer trapped sur-
face Mu, and for different u, the union

⊔

γ a
1
2

b
δ≤u≤2δ

Mu

forms a 3-dimensional smooth hypersurface. Moreover, with an additional
condition on the initial data, this horizon can be shown to be spacelike, and
it tends to a null hypersurface in a way that can be controlled by the initial
data.

To state the second theorem we briefly describe how to construct Cauchy
initial data which can be glued onto the spacetime obtained in Theorem 1.7.
Since the gluing takes place outside u = δ, the resulting spacetime will
differ from that above in the region u ∈ [δ, 2δ] above, and indeed this is why
we cannot, as we did above for the region u ∈ [δ, 2δ], use [5] to infer existence.

Let Σ be a 3−dimensional differentiable manifold diffeomorphic to R3

and let (x1, x2, x3) be the standard coordinate system. Let |·| denote the
usual radius function. Let r0 > 1 be a given number. We divide Σ into four
concentric regions Σ = ΣM ∪ ΣAL ∪ ΣS ∪ ΣK , where

ΣM =
{
x | |x| ≤ r0

}
, ΣAL =

{
x | r0 ≤ |x| ≤ r1

}
,

ΣS =
{
x | r1 ≤ |x| ≤ r2

}
, ΣK =

{
x | |x| ≥ r2

}
.

The numbers r1, r2 will be fixed later on such that r1 − r0 = O(δ) and r2 −
r1 = O(ϵ0) for some small positive ϵ0, δ.
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(1, 0)

(1, δ)

(δa1/2b, 0)

(δa1/2b, a
1
2

b δ)

(1, 2δ)

trχ = 0

trχ < 0

Figure 1: Theorem 1.7.

Theorem 1.8 (Cauchy Initial Data). Take as starting point the region
of existence covered by 1 ≥ u ≥ δa1/2b and u ∈ [0, δ] in Theorem 1.7. Define

(1.20) ϵ ≡
δ1/2a1/2

u1/2
C > 0

for some universal constant C > 0. Then for any sufficiently small ϵ, there
exists an ϵg > 0, independent of ϵ once ϵ is picked sufficiently small, such
that, to any of the spacetimes obtained in Theorem 1.7, we can associate a
complete Cauchy initial data set (Σ, g, k)

Σ = ΣM ∪ ΣAL ∪ ΣS ∪ ΣK

satisfying

1) (g, k) = (δij , 0) on ΣM ,

2) ΣAL is a spacelike hypersurface with boundary at u = 0 and u = δ that
traverses the region u ∈ [0, δ] in Theorem 1.7,
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g = gK

J +

i0

g = η

trχ = 0

trχ < 0

(1, 0)

(1, δ)

(δa1/2b, 0)

||g − gS ||Ck−3 ≤ ε

(1, δ + εg)

(1− εg, δ)

Σt

Σt0(>t)

Figure 2: Theorem 1.8.

3) ΣK is isometric to a constant time slice all the way to spacelike infintiy
in a Kerr spacetime with mass m and angular momentum a satisfying
|m−m0|+ |a| ≲ ϵ,

4) there is a unique solution to the Einstein vacuum equations in the
region connecting 3 and 4

(u, u) | δ ≤ u ≤ δ + ϵgr, 1− ϵgr < u ≤ 1

traversed by ΣS,

5) there are no trapped surfaces or MOTS on Σ, its future domain of
dependence contains both such surfaces, and the MOTS are exactly

those arising in Theorem 1.7 in the region u ∈ [γ a
1
2

b δ, δ].

In Figure 2 the dark region is trapped and bounded by MOTS which
foliate a smooth hypersurface tending to a null hypersurface. The light gray
region is close to Schwarzschild, the exterior region up to i0 (and thus a
portion of J + is isometric to Kerr), and everything to the future of these
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regions would fall under the scope of Kerr Stability. Σt′>t are the kind of
slices for which we give a dynamical test of the spacetime Penrose Inequality.

We now note various differences with [17] and [18], which might seem
similar at first glance. In [17] the goal is to translate [10] in the language
of Cauchy data, and in this sense one could say that Theorem 1.8 is a
translation of the scale critical result of [5] into the language of Cauchy
initial data. In doing so however, we find that scale critical data allows for
greater control on the evolution and the following applications:

1) the dynamical formation of MOTS and of an apparent horizon,

2) a dynamical collapse setting in which to study and verify the conjec-
tured spacetime Penrose inequality.

We explain these points in more detail below.

1.3. The Initial Data

There turns out to be a topological fact which makes certain naive guesses
for possible |χ̂0| unsuitable.

• A Topological Fact. Due to the non-existence of non-vanishing lin-
early independent vector fields on S2, a traceless two tensor on S2

must vanish at least at one point. Thus we cannot simply choose |χ̂0|
to lie in some non-zero interval everywhere on each sphere. Moreover,
in order to give χ̂0 freedom to vary, its zero set ought not be fixed -
for instance we do not wish to impose χ̂0 = 0 along on a fixed null
geodesic generator of the outgoing null hypersurface.

To see that initial data satisfying these examples can be constructed, it
suffices to produce a symmetric example.

An Example. Consider co-ordinates (ω, u) on a S2 × [0, δ] and separate

u ∈ [0, δ] into three intervals I = [0, a
1
2

b δ], II = [a
1
2

b δ, λδ] and III = [λδ, δ].
For ω ∈ Ω for some solid angle Ω covering all but a region of size o(1)

of the sphere1, let χ̂0(ω, u) = f(u) be smooth and independent of ω so that∫ u
0 |χ̂0(ω, u

′)|2du′ grows monotonically in I, is linear in u in II, and reaches
a constant C at u = δ, and that the dominant contribution (by a factor
given by a universal large constant) occurs in I and II.

1Ω is such that
∫
Ω2 ω = 4π − o(1).
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Throughout I, II, III, suppose that χ̂0(u, ω) = 0 only at a single point
for each u ∈ (0, δ), and that the zero set is constant in ϕ and visits an
interval of size o(1) in the θ ∈ [0, π] direction. Suppose that the zero set
visits each point (say from π

2 − o(1) to π
2 + o(1)) only once, and that for any

u ∈ (0, δ), |χ̂0| is constant outside of a neighborhood of ω0 where χ̂0(ω0) = 0
for that u, and described by a smooth symmetric cut-off function around 0.
Require that

(1.21)
∑

0≤i<∞

δj ||∇j
e4∇

iχ̂0(u, ω)||L2(Su) ≤ C1

for some constant C1 eventually chosen to satisfy (1.16). Clearly such a
choice is possible.

Finally, to compensate for having χ̂0 having been 0 in the region
ω ̸∈ Ω, we suppose that for ω ̸∈ Ω, |χ̂0(u, ω)| ∈ [0, f(u)(1 + o(1))] such that∫ u
0 |χ̂0(u, ω)|

2du lies within o(1) of
∫ u
0 |χ̂0(ω, u)|

2 and reaches the constant
C at u = δ.

Note that since all the relevant quantities are o(1), there is no poten-
tially harmful ‘squeezing’ of χ̂0 in the angular directions.

We note in addition that the condition on
∫ δ
0 |χ̂0| in (1.16) can be

replaced by a right hand side that involves 4m0 + ϵ0 for some sufficiently
small ϵ0 which would also appear in the final theorem, i.e., Theorem 1.7
and 1.8 hold for some sufficiently small ϵ0. This would of course greatly
simplify the construction of explicit examples, as described in the previous
paragraph.

1.4. Outline of the Argument

The argument combines ideas and results in [12], [10], [17], [20], [21], [5], [2],
[3] and the basic strategy is as in [17].

1) Assume an averaged angular dependence on the initial data which
permits obtaining greater control on the region of existence in [5].

2) Construct a transition region by posing initial data on a null hyper-
surface extending beyond the outgoing null cone in [5].

3) Tune the initial data in a smooth and controlled fashion to obtain
geometric closeness to Schwarzschild in the transition region.
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4) Invoke the gluing argument of [17] and [12] to study the Penrose in-
equality for the dynamically obtained MOTS.

Given that the strategy of the proof is broadly in the spirit of [17], let us
note some crucial differences.

• Since the initial data comes from [5] and not [10], we cannot resort,
as in [17], to the exhaustive term-by-term analysis of [10] and must
instead obtain certain key estimates directly.

• Although our estimates are for renormalized quantities (following [20],
[21] and [5]), we found that the most convenient way of constructing
the transition region (especially the existence part) is to go back to the
standard setting and employ [19], rather than the more general [21].
Going back and forth between the renormalized and standard setting
is a useful method that can be exploited in other circumstances.

• Similar to how [5] contains a version of [10] in Corollary 1.1 above, we
can think of a version of [17] as essentially being obtainable from Theo-
rem 1.8. Moreover, the scale critical data allows for much more quanti-
tative control on the size and relation of the parameters a, b, µ, κ, δ, λ, γ
which are involved in the problem. To say it another way, in [10] (and
consequently [17], [18]) the data does not permit (to our knowledge)
obtaining quantitative control on δ relative to the other parameters
involved.

• Due to the scale critical data and our use of renormalized quantities,
our construction is readily applicable to more singular kinds of initial
data.

As for the structure of what follows, the rest of Section 1 describes the
connection with Kerr Stability and the Penrose Inequality. In 2 we set up
the relevant tools and notation. In 3 we carry out the higher order energy
estimates. In 4 we construct the transition region, and in 5 we describe the
formation of an apparent horizon.

1.5. The Penrose Inequality

The Penrose inequality is a conjectured inequality between the ADM mass
of asymptotically flat initial data sets (M, g, k) and the area of the data set’s
boundary, ∂M , when the latter is taken to be a MOTS, see [22] for a review.

The inequality was motivated by Penrose [23] which he derived by a
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heuristic argument representing the “establishment viewpoint” on gravita-
tional collapse. His idea was to propose a test for the difficult evolutionary
conjectures that were (and still are) far beyond reach, i.e. a counterexample
to the inequality would put the conjectures in doubt. Penrose’s heuristic
was developed and its modern form is as follows.

Conjecture 1.1. Let (M, g, k) be an initial data set satisfying the dominant
energy condition2. Suppose that ∂M has boundary given by a MOTS whose
strictly minimizing hull has area A. Then

mADM ≥

√
A

16π

with equality if and only if (M, g, k) belongs to the Schwarzschild spacetime.

The special case when k = 0, known as the Riemannian Penrose
Inequality, was proved by Huisken-Ilmanen [14] and Bray [7].

In the general case, outside of spherical symmetry, the only known
spacetime Penrose-type inequality like Conjecture 1.1 that does not have
unwanted constants on the right hand side is the recent result of Alaee-
Lesourd-Yau [1], which holds for a certain class of admissible initial data
sets. There is also a null Penrose Inequality, where the Bondi mass along
J − replaces the ADM mass. This inequality is in a sense stronger than the
one above and it has been shown to hold by Roesch [25] in a certain setting.

The current construction offers a dynamical test of the Penrose in-
equality. More precisely, in Section 5 we show that the MOTS Mu obtained

in Theorem 1.8 in the region u ∈ [γ a
1
2

b δ, δ] satisfy the following area bounds

(1.22) (
1

4
− o(1))bµa1/2u ≤

√
|Mu|

16π
≤ (

1

4
+ o(1))bµa1/2u

for some o(1) ≪ 1. By assumption, the initial data satisfies

(1.23) bµa1/2λδ(1 + o(1)) = 4m0

2The dominant energy condition (trivially satisfied in vacuum) says that µ ≥ |J |
where µ and J appear on the right hand side of (1.3-4).
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for a quantity o(1) ≪ 1. The gluing procedure described in [12] and [17]
yields

(1.24) mADM = m0 ± ϵ

Combining these leads to

(1.25) mADM −

√
|Mu|

16π
≥ bµa1/2(

1

4
± o(1)) (λδ − u)± ϵ

Evaluating the inequality at u = γ a
1
2

b δ gives

(1.26) mADM −

√
|Mu|

16π
≥

1

4
bµa1/2δ(λ− γ

a
1

2

b
)± ϵ

with ϵ ≲ δ1/2a1/2. To show that this is positive, we express quantities in
terms of a as above to get

(1.27)
1

4
bµa1/2δ(λ− γ

a
1

2

b
)± ϵ =

(
aκµ−

y

2 o(1)± c2

)
a

1

2
− y

2

where c2 is an unknown constant > 0 that is independent of δ = a−y. Our
initial data requires κµ+ 1

2 < y, 1
2 < κ < 1.

So upon choosing for any 0 < t < 1
2

(1.28) κµ+
1

2
= (

1

2
+ t)y

we obtain

(1.29) mADM −

√
|Mγδ|

16π
≥ (aty−

1

2 o(1)± c2)a
1

2
−y

This means that, for any 0 < t < 1
2 , choosing y sufficiently large, we obtain

(1.30) mADM −

√
|Mγδ|

16π
> 0

and thus there is an open region in the spacetime for which the Penrose
inequality is satisfied.
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Note that this argument becomes inconclusive when u approaches λδ.
In particular, when u− λδ ≲ δ

3

2 , then (1.38) becomes

(1.31) (aκµ+
1

2
−y− 1

2 ± c2)a
1

2
− y

2

but since κµ+ 1
2 < y the sign of (1.44) now depends on the unknown

constant c2.

Note that this test of the Penrose Inequality is made possible by [2]
and the data being scale critical. In particular, there are no dynamically
obtained MOTS or indeed dynamical horizons in either [17] in [18]. There
are pre-existing MOTS in [18] but these are not dynamically formed:
they are there by virtue of the solutions being isometric to Kerr in a
neighborhood of future timelike infinity, where the Penrose inequality is
immediate.

Note also that this argument does not permit violating the Penrose
inequality since the error in m−m0 is not known.

1.6. Different estimates towards black hole formation

At present, we do not possess non-spherically symmetric dynamical exam-
ples of black hole formation for the Einstein vacuum system. The examples
in [18] may be the closest thing available, but in virtue of being isometric
to Kerr in a neighborhood of future timelike infinity, they circumvent Weak
Cosmic Censorship and Final State.

The results in [17] bring about a connection between Kerr Stability,
Weak Cosmic Censorship, and Final State.3 The connection is that if one
can show that the Cauchy development of the spacetimes produced in [17]
yield a future complete event horizon (i.e., global existence up to future
timelike infinity), then this would give a class of examples of black hole
formation - that is, initial data without trapped surfaces whose complete
future development is globally like Kerr (in the exterior region). Since the
spacetimes in [17] are shown to be close to Kerr, continuing the Cauchy
evolution all the way to future timelike infinity amounts to solving a form
of Kerr Stability.

3This is somewhat similar to Dafermos-Luk [13], who show that Kerr Stability
would imply the failure of the C0 version of Strong Cosmic Censorship.
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We simply want to point out that Theorem 1.8 brings about the
same connection, but with different that may be easier estimates to work
with. More precisely, using Theorem 1.8, one can set-up a new characteristic
initial value problem, where the outgoing one is exactly Kerr and the in-
coming cone u = δ, truncated at a MOTS locating at u = δa1/2bµ(1 + o(1)),
satisfies the following estimates.

For all integers k ≥ 0 we have

∥uk∇kχ̂∥L2(Su,δ) ≲
δa

u
,(1.32)

∥ui+1∇iσ̌∥L2(Su,δ) + ∥ui+1∇iσ∥L2(Su,δ) ≲
δa

1

2

u
,(1.33)

∥uk+1∇kβ∥L2(Su,δ) ≲
δa

u
,(1.34)

∥∥∥uk+1∇k

(
trχ−

2

u
+

4m0

u2

)∥∥∥
L∞

u L∞

u L2(Su,δ)
≲
δa

u
1

2

+
δa

1

2

u
,(1.35)

∥∥∥u
(
ω +

m0

2u2

)∥∥∥
L2(Su,δ)

≲
δ

1

2a
1

2

u
1

2

,(1.36)

∥∥∥uk+1∇k+1

(
ω +

m0

2u2

)∥∥∥
L2(Su,δ)

≲
δ

1

2a
1

2

u
1

2

,(1.37)

∥∥∥uk+2∇k

(
ρ+

2m0

u3

)∥∥∥
L2(Su,δ)

≲
δ

1

2a
1

2

u
1

2

,(1.38)

∥uk+1∇kα∥L2(Su,δ) ≲
δ

1

2a
1

2

u
1

2

, ∥uk+1∇kα∥L2(Su,δ) ≲
δa

u
.(1.39)

where these estimates are with reference to their values in a Schwarzschild
spacetime of mass m0.

Expressing the quantities in terms of a

b = aκ, δ = a−y

the initial data conditions a1/2/b < 1 and δa1/2bµ < 1 become

(1.40)
1

2
< κ < 1, 1 < µ, κµ− y +

1

2
< 0
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and the worst estimate on the incoming cone is

(1.41) ≲
δ1/2a1/2

u1/2

which for the MOTS located at u = δa1/2bµ(1 + o(1)) becomes

(1.42) ≲
δ1/2a1/2

bµ/2a1/4δ1/2
= a

1

4
−κµ

2 = a−C

Seeking to make C = κµ
2 − 1

4 large, (1.21) restricts us to C < 1
2y −

1
2 , and so

the estimates for the incoming cone are

(1.43) ≤ Cδ1/2 and ≤ Cδ,

for a constant C independent of δ.

Note that in [17] the estimates obtained on the incoming cone Cu=δ

up to the trapped surface (which lies at u = u∗ in the language of Theorem
1.1 above) are for a different set of quantities and are of the form

(1.44) ≲
δ1/2

uk>0

for k ∈ N+ with k different for various components. The estimates here are
uniform in u and there is an extra smallness factor δ1/2 for some components.
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2. Setting, equations and notations

In this section, we will introduce the geometric setup and the double null fo-
liation gauge. We then write the Einstein equations as a system of equations
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for the Ricci coefficients and curvature components adapted to this gauge.
After that, we introduce the necessary notations and the norms that we will
use.

2.1. Double null foliation

The concept of a double null foliation is introduced here. Given a spacetime
(M̄, ḡ) solving the Einstein vacuum equations Rµν = 0, we define a double
null foliation by solving the eikonal equations

(g−1)µν ∂µu∂νu = 0, (g−1)µν ∂µu∂νu = 0,

for u and u such that u = 1 on H1 and u = 0 on H0. According to our
convention, u is increasing towards the future whilst u is decreasing towards
the future.

Define the future-directed, null geodesic vector fields

L′µ = −2(g−1)µν ∂νu, L
′µ = 2(g−1)µν∂νu

and define the null lapse function Ω by

2Ω−2 = −g(L′, L′).

Define the normalized vector fields

e3 = ΩL′, e4 = ΩL′,

which satisfy, by construction,

g(e3, e4) = −2.

These are the frames that we will use to decompose the Ricci coefficients
and the curvature components. Define also the equivariant vector fields

L = Ω2L′, L = Ω2L′.

We fix the gauge on the initial hypersurfaces such that

Ω = 1, on H1 and H0.
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Denote by Hu the level sets of u and by Hu the level sets of u. By the
eikonal equations, Hu and Hu are in fact null hypersurfaces. The topology
of the intersections Hu ∩Hu is that of a 2−sphere. Denote these 2−spheres
by Su,u.

2.2. The coordinate system

We define a coordinate system (u, u, θ1, θ2) in the spacetime. On the stan-
dard sphere S1,0, define a coordinate system (θ1, θ2) such that on each co-
ordinate patch the metric γ is smooth, bounded and positive definite. We
then define the coordinates on the initial hypersurfaces by requiring θA to be
constant along null generators of the initial hypersurface. In the spacetime,
we define u and u to be solutions to the eikonal equations, as described in
the previous subsection. Moreover, we naturally extend θ1, θ2 by

/LLθ
A = 0,

where /L denote the restriction of the Lie derivative to TSu,u. Relative to the
coordinate system (u, u, θ1, θ2), the vector fields e3 and e4 can be written as

e3 = Ω−1

(
−
∂

∂u
+ dA

∂

∂θA

)
, e4 = Ω−1 ∂

∂u
,

for some functions dA such that dA = 0 on H0 and the metric g takes the
form

g = −2Ω2(du⊗ du+ du⊗ du) + γAB(dθ
A − dAdu)⊗ (dθB − dBdu).

2.3. The Einstein vacuum equations relative to a double null
foliation

We provide a decomposition of the Ricci coefficients and the null curvature
components with respect to a null frame e3, e4 defined above and a frame
e1, e2 tangent to the spheres Su,u. Using the indices A,B taking values in
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the set
{
1, 2
}
, we define the Ricci coefficients relative to the null frame:

χAB = g(DAe4, eB), χAB
= g(DAe3, eB),

ηA = −
1

2
g(D3eA, e4), ηA = −

1

2
g(D4eA, e3),

ω = −
1

4
g(D4e3, e4), ω = −

1

4
g(D3e4, e3),

ζA =
1

2
g(DAe4, e3).

(2.1)

αAB =W (eA, e4, eB, e4), αAB =W (eA, e3, e3),

βA =
1

2
W (eA, e4, eB, e4), βA =

1

2
W (eA, e3, eB, e3),

ρ =
1

4
W(e3, e4, e3, e4), σ =

1

4
∗W (e3, e4, e3, e4).

(2.2)

Here ∗W denotes the the Hodge dual ofW , the Weyl curvature tensor, which
for the vacuum Einstein equations equals the Riemann curvature tensor. Let
∇ be the induced covariant derivative operator on Su,u and ∇3,∇4 be the
projections to Su,u of the covariant derivativesD3, D4. We note the following
useful identities regarding the Ricci coefficients:

ω = −
1

2
∇4(logΩ), ω = −

1

2
∇3(logΩ),

ηA = ζA +∇A(logΩ), ηA = −ζA +∇A(logΩ).
(2.3)

Define the following contractions of the tensor product of ϕ(1) and ϕ(2) with

respect to the metric γAB. For symmetric 2−tensors ϕ
(1)
AB, ϕ

(2)
AB, define

ϕ(1) · ϕ(2) := (γ−1)AC(γ−1)BDϕ
(1)
AB ϕ

(2)
CD,

ϕ(1) ∧ ϕ(2) := /ϵAB(γ−1)CDϕ
(1)
AB ϕ

(2)
CD,

(2.4)

where /ϵ is the volume form of the metric γ. Continuing our introduction of

notation, define for two 1-forms ϕ
(1)
A , ϕ

(2)
A , the following:

ϕ(1) · ϕ(2) := (γ−1)ABϕ
(1)
A ϕ

(2)
B ,

ϕ(1) ∧ ϕ(2) := /ϵABϕ
(1)
A ϕ

(2)
B ,(

ϕ(1) ⊗̂ϕ(2)
)
AB

:= ϕ
(1)
A ϕ

(2)
B + ϕ

(1)
B ϕ

(2)
A − γAB(ϕ

(1) · ϕ(2)).

(2.5)
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For a symmetric 2−tensor ϕ
(1)
AB and a 1−form ϕ

(2)
A , define the contraction

(2.6)
(
ϕ(1) · ϕ(2)

)
A
:= (γ−1)BC ϕ

(1)
AB ϕ

(2)
C .

We also define the operation ∗ for 1−forms ϕ(1) and symmetric 2−tensors
ϕ(2) respectively as follows:

∗ϕ
(1)
A := γAC /ϵ

CB ϕ
(1)
B ,

∗ϕ
(2)
AB := γBD /ϵ

DC ϕ
(2)
AC .

(2.7)

For totally symmetric tensors, the divergence and curl operators are defined
by the formulae

(divϕ)A1...Ar
:= ∇BϕBA1...Ar

,

(curlϕ)A1...Ar
:= /ϵBC∇BϕCA1...Ar

.
(2.8)

Define the operator ∇⊗̂ on a 1−form ϕA by

(2.9) (∇⊗̂ϕ) := ∇AϕB +∇BϕA − γAB divϕ.

Finally, define the trace to be

(2.10) (tr ϕ)A1...Ar−1
:= (γ−1)BCϕBCA1...Ar−1

.

Let χ̂, χ̂ be the traceless parts of χ and χ respectively, so that

χ = χ̂+
1

2
trχγ, χ = χ̂+

1

2
trχγ.

The components χ and χ̂ obey the following transport equations:

∇4 trχ+
1

2
(trχ)2 = −|χ̂|2 − 2ω trχ,(2.11)

∇4 χ̂+ trχ χ̂ = −2ω χ̂− α,(2.12)

∇3 trχ+
1

2
(trχ)2 = −|χ̂|2 − 2ω trχ,(2.13)

∇3 χ̂+ trχ χ̂ = −2ω χ̂− α,(2.14)

∇4 trχ+
1

2
trχtrχ = 2ω trχ+ 2ρ− χ̂ · χ̂+ 2divη + 2|η|2,(2.15)

∇4χ̂+
1

2
trχ χ̂ = ∇⊗̂η + 2ω χ̂−

1

2
trχ χ̂+ η⊗̂η,(2.16)
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∇3trχ+
1

2
trχtrχ = 2ω trχ+ 2ρ− χ̂ · χ̂+ 2divη + 2 |η|2,(2.17)

∇3χ̂+
1

2
trχ χ̂ = ∇⊗̂η + 2ω χ̂−

1

2
trχ χ̂+ η⊗̂η.(2.18)

The other components satisfy the following transport equations:

∇4η = −χ · (η − η)− β,(2.19)

∇3η = −χ · (η − η)− β,(2.20)

∇4ω = 2ωω − η · η +
1

2
|η|2 +

1

2
ρ,(2.21)

∇3ω = 2ωω − η · η +
1

2
|η|2 +

1

2
ρ,(2.22)

as well as the constraint equations

div χ̂ =
1

2
∇trχ−

1

2
(η − η) · (χ̂−

1

2
trχ)− β,(2.23)

div χ̂ =
1

2
∇trχ+

1

2
(η − η) · (χ̂−

1

2
trχ) + β,(2.24)

curlη = −curlη = σ +
1

2
χ̂ ∧ χ̂,(2.25)

K = −ρ−
1

4
trχtrχ+

1

2
χ̂ · χ̂.(2.26)

Here K is the Gauss curvature of the spheres Su,u. The null curvature com-
ponents satisfy the null Bianchi equations

∇4β + 2trχβ = divα− 2ωβ + η · α,(2.27)

∇3β + trχβ = ∇ρ+ ∗∇σ + 2χ̂ · β + 2ωβ + 3(ηρ+ ∗ησ),(2.28)

∇4β + trχβ = −∇ρ+ ∗∇σ + 2χ̂ · β + 2ωβ − 3(ηρ− ∗ησ),(2.29)

∇3β + 2trχβ = −divα− 2ωβ + ηα,(2.30)

∇4α+
1

2
trχα = −∇⊗̂β + 4ωα− 3(χ̂ρ− ∗χ̂σ) + (ζ − 4η)⊗̂β,(2.31)

∇3α+
1

2
trχα = ∇⊗̂β + 4ωα− 3(χ̂ρ+ ∗χ̂σ) + (ζ + 4η)⊗̂β,(2.32)

∇4ρ+
3

2
trχρ = divβ −

1

2
χ̂ · α+ ζ · β + 2η · β,(2.33)

∇3ρ+
3

2
trχρ = −divβ −

1

2
χ̂ · α+ ζ · β − 2η · β,(2.34)

∇4σ +
3

2
trχσ = −div ∗β +

1

2
χ̂ · ∗α− ζ · ∗β − 2η · ∗β,(2.35)
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∇3σ +
3

2
trχσ = −div ∗β +

1

2
χ̂ · ∗α− ζ · ∗β − 2η · ∗β.(2.36)

Defining σ̌ = σ + 1
2 χ̂ ∧ χ̂, the null Bianchi equations (2.27)-(2.36) can be re-

written so as to replace ρ, σ, α with K and σ̌, yielding the following null
structure equations for χ and χ:

∇3β + trχβ = −∇K + ∗∇σ̌ + 2ωβ − 3(ηK − ∗ησ̌) +
1

2
(∇(χ̂ · χ̂)

+ ∗∇(χ̂ ∧ χ̂))−
3

4
ηtrχtrχ+

3

2
(ηχ̂ · χ̂+ ∗ηχ̂ ∧ χ̂)

−
1

4
(∇trχtrχ+ trχ∇trχ),

∇4σ̌ +
3

2
trχσ̌ = −div ∗β − ζ ∧ β − 2η ∧ β −

1

2
χ̂ ∧ (∇⊗̂η)−

1

2
χ̂ ∧ (η⊗̂η)

∇4K + trχK = −div β − ζ · β − 2η · β +
1

2
χ̂ · ∇⊗̂η +

1

2
χ̂ · (η⊗̂η)

−
1

2
trχdiv η −

1

2
trχ|η|2,

∇3σ̌ +
3

2
trχσ̌ = −div ∗β + ζ ∧ β − 2η ∧ β +

1

2
χ̂ ∧ (∇⊗̂η) +

1

2
χ̂ ∧ (η⊗̂η),

∇3K + trχK = div β − ζ · β + 2η · β +
1

2
χ̂ · ∇⊗̂η +

1

2
χ̂ · (η⊗̂η)

−
1

2
trχ̂div η −

1

2
trχ|η|2,

∇4β + trχβ = ∇K + ∗∇σ̌ + 2ωβ + 2χ̂ · β + 3(−ηK + ∗ησ̌)

−
1

2
(∇(χ̂ · χ̂)− ∗∇(χ̂ ∧ χ̂)) +

1

4
(∇trχtrχ+ trχ∇trχ)

−
3

2
(ηχ̂ · χ̂− ∗ηχ̂ ∧ χ̂) +

3

4
ηtrχtrχ.

2.4. The norms

Fix a positive integer N ≥ 4. First we define the norms for the curvature
components:

RN =
∑

i≤N

(
sup
u

(
1

δ
1

2a
1

2

∥ui+1∇iβ∥L2(Hu)

)
(2.37)

+ sup
u

(
1

δ
1

2a
1

2

∥∥∥∥u
i+1∇i

(
K −

1

|u|2
, σ̌

)∥∥∥∥
L2(Hu)

))
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+
∑

1≤i≤N

(
sup
u

(
1

δ
3

2a
3

4

∥∥∥∥u
i+2∇i

(
K −

1

|u|2
, σ̌

)∥∥∥∥
L2(Hu)

)

+ sup
u

(
1

δ
3

2a
3

4

∥ui+2∇iβ∥L2(Hu)

))

+ sup
u

(
1

δ
3

2a
3

4

∥∥∥∥u
2

(
K −

1

|u|2

)∥∥∥∥
L2(Hu)

)
.

We then define the norms for the Ricci coefficients. We begin with those for
the highest order derivatives:

ÕN+1,2 = sup
u

(
1

δ
1

2a
1

2

∥uN+1∇N+1(χ̂, trχ, ω)∥L2(Hu)

)
(2.38)

+ sup
u

(
1

δ
1

2a
1

2

∥uN+1∇N+1η∥L2(Hu)

)

+ sup
u

(
1

δ
3

2a
3

4

∥uN+2∇N+1(η, η)∥L2(Hu)

)

+ sup
u,u

(
|u|

1

2

δ a
1

2

∥uN+1∇N+1(χ̂, trχ, ω)∥L2(Hu)

)
.

For i ≤ N we define the following L2−norms:

Oi,2 = sup
u, u

(
1

a
1

2

∥ui∇i(χ̂, ω, trχ)∥L2(Su, u)

+
|u|

δa
1

2

∥∥∥∥u
i∇i

(
η, η,∇ logΩ, χ̂, trχ+

2

u
, ω

)∥∥∥∥
L2(Su,u)

)
,

while for i ≤ N − 2 we define the following L∞−norms:

Oi,∞ = sup
u, u

(
|u|

a
1

2

∥ui∇i(χ̂, ω, trχ)∥L∞(Su, u)

+
|u2|

δa
1

2

∥∥∥∥u
i∇i

(
η, η, χ̂, trχ+

2

u
, ω

)∥∥∥∥
L∞(Su,u)

)
.

As a shorthand, we denote

ON =
∑

i≤N−2

Oi,∞ +
∑

i≤N

Oi,2.
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2.5. The theorem of An-Luk

Based on the norms defined above, An-Luk were able to show that if N = 4
in the section above we have the following:

Theorem 2.1. Consider the following characteristic initial value problem
for the Einstein vacuum equations. The initial incoming hypersurface H0 is
required to coincide with a backwards light cone in Minkowski space with 0 ≤
u ≤ 1. On the initial outgoing hypersurface H1, the initial data are smooth
and the shear χ̂0 satisfies the following bounds

∑

i≤7

∥∇iχ̂0∥L∞

u L2(Su,u) ≤ a
1

2 ,

uniformly in 0 ≤ u ≤ δ. Then there exists a universal large constant b0 and
two large numbers b, a such that if b0 ≤ b ≤ a and δa

1

2 b < 1, the unique so-
lution to the Einstein vacuum equations exists and obeys the following esti-
mates in the region δa

1

2β ≤ u ≤ 1, 0 ≤ u ≤ δ :

O + Õ5,2 +R ≲ 1.

Here the implicit constant is independent of a, b and δ.

3. Higher order energy estimates

The goal of this section is to show that the desired higher order energy esti-
mates go through using the hierarchy of [5]. More precisely, we will establish
the following.

Theorem 3.1 (Higher order energy estimates). Fix a natural number
N ≥ 4 and consider the following characteristic initial value problem for the
Einstein vacuum equations. The initial incoming hypersurface H0 is required
to coincide with a backwards light cone in Minkowski space with 0 ≤ u ≤ 1.
On the initial outgoing hypersurface H1, the initial data are smooth and the
shear χ̂0 satisfies the following bounds

∑

i≤N+3

∥∇iχ̂0∥L∞

u L2(Su,u) ≤ a
1

2 ,
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uniformly in 0 ≤ u ≤ δ. Then there exists a universal large constant b0 and
two large numbers b, a such that if b0 ≤ b ≤ a and δa

1

2 b < 1, the unique so-
lution to the Einstein vacuum equations exists and obeys the following esti-
mates in the region δa

1

2 b ≤ u ≤ 1, 0 ≤ u ≤ δ :

ON + ÕN+1,2 +RN ≲ 1

The proof of the theorem is carried out in Section 3 and can be summa-
rized by the following observation: estimates for higher orders of derivatives
in the transport equations are done using the commutation formula to ob-
tain transport equations for ∇iψ. A similar philosophy is followed in the
elliptic and the energy estimates. The point here is that the commutation
formula holds for arbitrary natural numbers, i.e. for any number of angular
derivatives.

3.1. The extended bootstrap assumptions

In analogy to the lower order estimates, the higher order estimates require
similar bootstrap assumptions on more derivatives. We make the following
bootstrap assumptions on the first N derivatives of the Ricci coefficients:

∑

i≤N

1

δa
1

2

∥ui+1∇iψ∥L2(Su,u) +
∑

i≤N−2

1

δa
1

2

∥ui+2∇iψ∥L∞(Su,u) ≤ b
1

4 ,(3.1)

∑

i≤N

1

a
1

2

∥ui∇iψ∥L2(Su,u) +
∑

i≤N−2

1

a
1

2

∥ui+1∇iψ∥L∞(Su,u) ≤ b
1

4 .(3.2)

We also make the following bootstrap assumptions on the top order norms
of the Ricci coefficients and the curvature norms

ÕN+1,2 +RN ≤ b
1

4 .(3.3)

We make the final bootstrap assumption, useful when developing elliptic
estimates:

(3.4)
∑

i≤N−1

∥∥∥∥u
i+1∇i

(
K −

1

|u|2

)∥∥∥∥
L∞

u L∞

u L2(Su,u)

≤ 1.

In particular, using the same arguments as in [5], we can give the following
improvements on (3.1)–(3.4):
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∑

i≤N

1

δa
1

2

∥ui+1∇iψ∥L2(Su,u) +
∑

i≤N−2

1

δa
1

2

∥ui+2∇iψ∥L∞(Su,u) ≤ 1,(3.5)

∑

i≤N

1

a
1

2

∥ui∇iψ∥L2(Su,u) +
∑

i≤N−2

1

a
1

2

∥ui+1∇iψ∥L∞(Su,u) ≤ 1.(3.6)

ÕN+1,2 +R ≤ 1.(3.7)
∑

i≤N−1

∥∥∥∥u
i+1∇i

(
K −

1

|u|2

)∥∥∥∥
L∞

u L∞

u L2(Su,u)

≤
1

b
3

4

.(3.8)

We will rigorously argue, in the remainder of this section, that these higher
order bootstrap assumptions can be improved following the same philoso-
phy/approach as in [5].

3.2. Metric Components

The following straightforward estimates hold, cf. Section 5.1 of [5].

Proposition 3.1. Under the assumptions of Theorem 2.1 and the bootstrap
assumptions (3.1)-(3.4), we have

||Ω−1 − 1||L∞(Su,u) ≲
δa

1

2 b
1

4

|u|

Proposition 3.2. Under the assumptions of Theorem 2.1 and the bootstrap
assumptions (3.1)-(3.4), we have

sup
u,u

|Area(Su,u)− Area(Su,0)| ≲
δa

1

2 b
1

4

|u|

3.3. Transport Equations

Next, we introduce two propositions from [5] that will be useful in controlling
transport equations.

Proposition 3.3. Let ϕ be an Su,u−tangent tensor of arbitrary rank. Under
the assumptions of Theorem 1.7 and the bootstrap assumptions (3.1)–(3.4)
there holds

∥ϕ∥L2(Su,u) ≲ ∥ϕ∥L2(Su,u′ ) +

∫ u

u′

∥∇4ϕ∥L∞(Su,u′′ ) du
′′.
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Proposition 3.4. Under the same assumptions as in Proposition 3.3, let ϕ
and F be Su,u-tangent tensor fields of rank k satisfying the following trans-
port equation:

∇3ϕA1...Ak
+ λ0trχϕA1...Ak

= FA1...Ak
.

Define λ1 := 2λ0 − 1. Then there holds

uλ1∥ϕ∥L2(Su,u) ≲ ∥ϕ∥L2(S1,u) +

∫ 1

u
|u′|λ1∥F∥L2(Su′,u) du

′.

3.4. Sobolev Embedding

We will also need the following Sobolev Embedding statements, cf. Sec 5.3
of [5].

Define the isoperimetric constant

I(S) = sup
U,∂U∈C1

min{Area(U),Area(U c)}

(Perimeter(∂U))2

where S is one of the 2-spheres Su,u adapted to the double null foliation.

Proposition 3.5 (Lemma 5.6 of [5]). Under the assumptions of Theorem
2.1 and the bootstrap assumptions (3.1)-(3.8), the isoperimetric constant
obeys the bound

I(Su,u) ≤
1

π

for 0 ≤ u ≤ δ and δa1/2b ≤ u ≤ 1.

We now quote two Sobolev embedding theorems from [10].

Proposition 3.6 (Lemma 5.1 [10]). For any Riemannian 2-manifold
(S, γ), we have the estimate

(Area(S))−
1

p ||ϕ||Lp(S)

≤ Cp

√
max{I(S), 1}

(
||∇ϕ||L2(S) + (Area(S))−

1

2 ||ϕ||L2(S)

)

for any 2 < p <∞ and for any tensor ϕ.

Proposition 3.7 (Lemma 5.2 [10]). For any Riemannian 2-manifold
(S, γ), we have the estimate
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||ϕ||L∞(S) ≤ Cp

√
max{I(S), 1}

×Area(S)
1

2
− 1

p

(
||∇ϕ||Lp(S) + (Area(S))−

1

2 ||ϕ||Lp(S)

)

for any 2 < p and for any tensor ϕ.

Combining Propositions 3.1,3.2,3.3, using preliminary estimates for met-
ric components Area(Su,u) ∼ |u|2, cf. Prop 5.3 of [5], one obtains the follow-
ing.

Proposition 3.8. Under the assumptions of Theorem 2.1 and the the boot-
strap assumptions (3.1)-(3.8), we have

||ϕ||L∞(Su,u) ≲
∑

i≤2

||ui−1∇iϕ||L2(Su,u)

3.5. Commutation formula

We will make repeated use of the following commutation formulae.

Proposition 3.9. For a scalar function f , there holds

[∇4,∇]f =
1

2
(η + η) · ∇4f − χ · ∇f,

[∇3,∇]f =
1

2
(η + η)∇3f − χ · ∇f.

Proposition 3.10. For an Su,u−tangent 1−form Ub, there holds

[∇4,∇a]Ub = −χac∇cUb + ϵac
∗βbUc +

1

2
(ηa + η

a
)∇4Ub − χacηbUc + χabη · U,

[∇3,∇a]Ub = −χ
ac
∇cUb + ϵac

∗βbUc +
1

2
(ηa + η

a
)∇3Ub − χacηbUc + χ

ab
η · U.

Proposition 3.11. For an Su,u−tangent 2−form Vbc, there holds

[∇4,∇a]Vbc =
1

2
(ηa + η

a
)∇4Vbc − η

b
Vdcχad − η

c
Vbdχad

− ϵbd
∗βaVdc − ϵcd

∗βcVbd + χacVbdηd
+ χabVdcηd − χad∇dVbc,



✐

✐

“1-Lesourd” — 2023/12/24 — 23:47 — page 2411 — #33
✐

✐

✐

✐

✐

✐

Construction of Cauchy data 2411

[∇3,∇a]Vbc =
1

2
(ηa + η

a
)∇3Vbc − ηbVdcχad

− ηcVbdχad

− ϵbd
∗βaVdc − ϵcd

∗βcVbd + χ
ac
Vbdηd

+ χ
ab
Vdcηd − χ

ad
∇dVbc.

Proposition 3.12. Assume ∇4ϕ = F0. Let ∇4∇
iϕ = Fi. Then

Fi =
∑

i1+i2+i3=i

∇i1(η + η)i2∇i3F0 +
∑

i1+i2+i3+i4=i−1

∇i1(η + η)i2∇i3β∇i4ϕ

+
∑

i1+i2+i3+i4=i

∇i1(η + η)i2∇i3χ∇i4ϕ.

Assume now that ∇3ϕ = G0. Let ∇3∇
iϕ = Gi. Then

Gi +
i

2
trχ∇iϕ =

∑

i1+i2+i3=i

∇i1(η + η)i2∇i3G0

+
∑

i1+i2+i3+i4=i−1

∇i1(η + η)i2∇i3β∇i4ϕ

+
∑

i1+i2+i3+i4=i−1

∇i1(η + η)i2∇i3(χ̂, t̃rχ)∇i4ϕ

+
∑

i1+i2+i3+i4=i−1

∇i1(η + η)i2+1∇i3trχ∇i4ϕ

Finally, we can replace β, β by expressions involving Ricci coefficients,
under the Codazzi equations:

β = −divχ̂+
1

2
∇trχ−

1

2
(η − η) · (χ̂−

1

2
trχ),

β = divχ̂−
1

2
∇trχ−

1

2
(η − η)(χ̂−

1

2
trχ).

That way, we arrive at the following:

Proposition 3.13. Suppose ∇4ϕ = F0. Let ∇4∇
iϕ = Fi. Then

Fi =
∑

i1+i2+i3=i

∇i1ψi2∇i3F0 +
∑

i1+i2+i3+i4=i

∇i1ψi2∇i3(ψ, χ̂)∇i4ϕ.

Similarly, suppose ∇3ϕ = G0. Let ∇3∇
iϕ = Gi. Then

Gi +
i

2
trχ∇iϕ =

∑

i1+i2+i3=i

∇i1ψi2∇i3G0
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+
∑

i1+i2+i3+i4=i

∇i1ψi2∇i3(ψ, χ̂, t̃rχ)∇i4ϕ

+
∑

i1+i2+i3+i4=i−1

∇i1ψi2+1∇i3trχ∇i4ϕ.

3.6. General elliptic estimates for Hodge systems

We will also make use of the following statements on Hodge systems coming
from [4].

Proposition 3.14. Under the assumptions of Theorem 1.7 and the boot-
strap assumptions (3.1)–(3.4), if ϕ is a totally symmetric (r + 1)-covariant
tensor field on a 2−sphere (S2, γ) satisfying

div ϕ = f, curl ϕ = g, trϕ = h,

then for 1 ≤ i ≤ N there holds

∥ui∇iϕ∥L2(Su,u)

≲

i−1∑

j=0

(
∥uj+1∇j(f, g)∥L2(Su,u) + ∥uj∇jh∥L2(Su,u) + ∥uj∇jϕ∥L2(Su,u)

)
.

Proof. Recall the following identity from Chap. 7 in [10] that for ϕ, f , g,
and h as above

(3.9)

∫

Su,u

(
|∇ϕ|2 + (r + 1)K|ϕ|2

)
=

∫

Su,u

(
|f |2 + |g|2 +K|h|2

)

Notice that ||K||L∞

u L∞

u L∞(Su,u) ≲
1

|u|2 by the bootstrap assumption (3.4).

This implies the conclusion for i = 1 after multiplying by u2. For i > 1 we
recall again from [10] that the symmetrized angular derivative of ϕ defined
by

(∇ϕ)sBA1···Ar+1
≡

1

r + 2


∇BϕA1···Ar

+

r+1∑

i=1

∇Ai
ϕA1···<Ai>B···Ar+1




satisfies the div-curl system

div (∇ϕ)s = (∇f)s −
1

r + 2
(∗∇g)s + (r + 1)Kϕ−

2K

r + 1
(γ ⊗s h),
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curl (∇ϕ)s =
r + 1

r + 2
(∇g)s + (r + 1)K(∗ϕ)s,

tr(∇ϕ)s =
2

r + 2
f +

r

r + 2
(∇h)s,

where

(γ ⊗s h)A1···Ar+1
≡ γAiAj

∑

i<j=1,···,r+1

hA1···<Ai>···<Aj>···Ar+1

and

(∗ϕ)sA1···Ar+1
≡

1

r + 1

r+1∑

i=1

/ϵBAi
ϕA1···<Ai>B···Ar

Using (3.9) and iterating we get for i ≤ N

||∇iϕ||2L2(S)u,u) ≲ ||∇i−1(f, g)||2L2(Su,u)
+ ||K(|∇i−2(f, g)|2

+ |∇i−1(ϕ, h)|2)||L1(Su,u)

+ ||K


 ∑

i1+2i2+i3=i−3

∇i1Ki2+1∇i3(ϕ, h)




2

||L1(Su,u)

+ ||K


 ∑

i1+2i2+i3=i−4

∇i1Ki2+1∇i3f




2

||L1(Su,u)

+
∑

i1+2i2+i3=i−2

||∇i1Ki2+1∇i3(ϕ, h)||2L2(Su,u)

+
∑

i1+2i2+i3=i−3

||∇i1K∇i2(f, g)||2L2(Su,u)

where we have adopted the convention that
∑

i≤−1 = 0. Whenever a K-term
appears with at most N − 4 derivatives, we estimate it in L∞. Whenever a
K-term contains between N − 3 and N − 2 derivatives we shall estimate it
in L2 and the rest of the terms in L∞, noting that we can estimate terms of
the form ||∇i(f, g, h)||L∞ with i ≤ N − 4 by the corresponding norms in L2

through the standard Sobolev embedding. Using the argument of Lemma
6.1 in [4], after translating back to standard Lp norms, there holds

∑

i≤N−4

|||u|i∇iK||L∞(Su,u) +
∑

j≤N−2

|||u|j∇jK||L2(Su,u) ≲ 1
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Therefore, for i ≤ N , we have

|||u|i∇iϕ||2L2(Su,u)
≲
∑

j≤i−1

(
|||u|j−1∇j(f, g)||2L2(Su,u)

+ |||u|j∇j(ϕ, h)||2L2(Su,u)

)

which finishes the proof. □

Proposition 3.15. Suppose ϕ is a symmetric traceless 2−tensor satisfying

div ϕ = f.

Then, under the assumptions of Theorem 1.7 and the bootstrap assumptions
(3.1)–(3.4), there holds

∥ui∇iϕ∥L2(Su,u) ≲

i−1∑

j=0

(
∥uj+1∇jf∥L2(Su,u) + ∥uj∇jϕ∥L2(Su,u)

)
.

Proof. This is an application of Proposition 3.14 by noticing that curl ϕ =∗

f . This is a straightforward calculation, using that the 2-tensor ϕ is sym-
metric and traceless. □

3.7. Estimates for the Ricci coefficients

Our goal in this section will be to rigorously verify the inequality

ON ≲ 1 + ÕN+1,2 +RN .

We shall give the proof for an example term, in particular the first term χ̂
and the other proofs are done by following [5] in the same way as for χ̂.

Proposition 3.16. Under the assumptions of Theorem 1.7 and the boot-
strap assumptions (3.1), (3.2), (3.3) and (3.4) we have

∑

i1+i2≤N

∥ui1+i2+1∇i1ψi2+1∥L2(Su,u) ≲
∑

i≤N

∥ui+1∇iψ∥L2(Su,u)

and

∑

i1+i2≤N−2

∥ui1+i2+2∇i1ψi2+1∥L∞(Su,u) ≲
∑

i≤N−2

∥ui+2∇iψ∥L∞(Su,u).

In particular, using the bootstrap assumption (3.1) we obtain
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∑

i1+i2≤N

∥ui1+i2+1∇i1ψi2+1∥L2(Su,u)

+
∑

i1+i2≤N−2

∥ui1+i2+2∇i1ψi2+1∥L∞(Su,u) ≲ δa
1

2 b
1

4 .

Proof. Notice that we can write the expression ∇i1ψi2+1 as

∇i1ψi2+1 =

i2+1∑

k=1

∇jkψ,

where j1 + · · ·+ ji2+1 = i1. Assume, without loss of generality, that the term
ji2+1 is the largest. We then write

ui1+i2+1∇i1ψi2+1 = ui2 · (uji2+1+1∇ji2+1ψ) ·

i2∏

k=1

(u · ∇)jkψ.

Our philosophy is to choose the ψ term with the highest order of derivatives
and estimate it in L2(Su,u). The crucial point to notice is that, in the expres-
sion above, each of the terms j1, . . . , ji2 is at most N − 2. This is easy to see
by contradiction. Indeed, assume without loss of generality that j1 ≥ N − 1.
Then since j1 ≤ ji2+1 we have

2N − 2 ≤ j1 + ji2+1 ≤ i1 ≤ i1 + i2 ≤ N,

a contradiction for N ≥ 3. What follows is that we can estimate every other
term in L∞(Su,u) using the bootstrap assumptions, since our bootstrap as-
sumptions for L∞ norms include derivatives up to order N − 2. Thus, there
holds

∑

i1+i2≤N

∥ui1+i2+1∇i1ψi2+1∥L2(Su,u)

=
∑

i1+i2≤N

∥ui2 · (uji2+1+1∇ji2+1ψ) ·

i2∏

k=1

(u · ∇)jkψ∥L2(Su,u)

≲ ui2 · ∥uji2+1+1∇ji2+1ψ∥L2(Su,u) ·

i2∏

k=1

∥(u · ∇)jkψ∥L∞(Su,u).
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Each term estimated in L∞ can be bounded by δa
1
2 b

1
4

u2 by the bootstrap
assumption (3.1). It follows that

∑

i1+i2≤N

∥ui1+i2+1∇i1ψi2+1∥L2(Su,u)

≲ ui2 · ∥uji2+1+1∇ji2+1ψ∥L2(Su,u) ·

(
δa

1

2 b
1

4

u2

)i2

≲ ∥uji2+1+1∇ji2+1ψ∥L2(Su,u) ≲
∑

i≤N

∥ui+1∇iψ∥L2(Su,u),

since δa
1

2 b
1

4 /u ≤ 1/b
3

4 ≲ 1. The second statement follows similarly. □

We are now in a position to move on and estimate χ̂.

Proposition 3.17. Under the assumptions of Theorem 1.7 and the boot-
strap assumptions (3.1)–(3.4), there holds

∑

i≤N

∥ui∇iχ̂∥L2(Su,u) ≤ a
1

2 .

Proof. There holds

∇3χ̂+
1

2
trχχ̂ = ∇η + (ψ, ψ)ψ.

Using Proposition 3.12 and commuting with i angular derivatives, we have
that for any i there holds

∇3∇
iχ̂+

i+ 1

2
trχ∇iχ̂ = ∇i+1η +

∑

i1+i2=i

∇i1ψi2+2

+
∑

i1+i2+i3=i

∇i1ψi2+1∇i3ψ

+
∑

i1+i2+i3=i−1

1

u
∇i1ψi2+1∇i3ψ.

We apply Proposition 3.4 which tells us that the quantity
∥ui∇iχ̂∥L∞

u L∞

u L2(Su,u) can be controlled by the sum of ∥ui∇iχ̂∥L∞

u L∞

u L2(S1,u)

and the ∥ui·∥L∞

u L∞

u L2(Su,u) norm of the right-hand side in the equation
above. We now estimate each of the terms on the right-hand side for i ≤ N :
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• We first look at the linear term in η. For i ≤ N − 1, the ∇i+1η term
can be controlled by the bootstrap assumptions on ON . In particular,
we have

∑

i≤N−1

∥ui∇i+1η∥L1
uL

2(Su,u) ≤

∥∥∥∥
1

u2

∥∥∥∥
L1

u

∥ui+2∇i+1ψ∥L∞

u L2(Su,u)(3.10)

≲
δa

1

2 b
1

4

u
,

where we have used the bootstrap assumption (3.1). For the top-order
term i = N we estimate

∥uN∇N+1η∥L1
uL

2(Su,u) ≤

∥∥∥∥
1

u

∥∥∥∥
L2

u

∥uN+1∇N+1η∥L2
uL

2(Su,u)(3.11)

≲
δ

1

2a
1

2

u
1

2

ÕN+1,2 ≲
δ

1

2a
1

2 b
1

4

u
1

2

,

where in the last inequality we used the bootstrap assumption (3.3).

• We then control the second and third terms together. Here, we use the
estimates derived in Proposition 3.16. There holds

∑

i≤N

∥∥∥∥
∑

i1+i2+i3=i

ui∇i1ψi2+1∇i3(ψ, ψ)

∥∥∥∥
L1

uL
2(Su,u)

(3.12)

≲
∑

i1+i2≤N

∥ui1+i2−1∇i1ψi2+1∥L1
uL

2(Su,u)

·
∑

i3≤N−2

∥ui3+1∇i3(ψ, ψ)∥L∞

u L∞(Su,u)

+
∑

i1+i2≤N

∥ui1+i2−1∇i1ψi2+1∥L1
uL

∞(Su,u)

·
∑

i3≤N−2

∥ui3+1∇i3(ψ, ψ)∥L∞

u L2(Su,u)

≲
δa

1

2 b
1

4

u

(
a

1

2 b
1

4 +
δa

1

2 b
1

4

u

)
≲
δab

1

2

u
.

• Finally, the last term is estimated as follows

∑

i≤N

∥∥∥∥
∑

i1+i2+i3=i−1

ui−1∇i1ψi2+1∇i3ψ

∥∥∥∥
L1

uL
2(Su,u)

(3.13)
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≲
∑

i1+i2≤N−1

∥ui1+i2−1∇i1ψi2+1∥L1
uL

2(Su,u)

·
∑

i3≤1

∥ui3+1∇i3ψ∥L∞

u L∞(Su,u)

+
∑

i1+i2≤1

∥ui1+i2−1∇i1ψi2+1∥L1
uL

∞(Su,u)

·
∑

i3≤N−1

∥ui3+1∇i3ψ∥L∞

u L2(Su,u)

≲
δa

1

2 b
1

4

u

(
a

1

2 b
1

4 +
δa

1

2 b
1

4

u

)
≲
δab

1

2

u
.

Finally, applying the condition that u > δa
1

2 b it is easy to see that all
the terms above are bounded by a

1

2 . Also, recalling that initially we
have

∑

i≤N+3

∥∇iχ̂0∥L∞

u L2(S1,u) ≤ a
1

2 ,

we get

∑

i≤N

∥ui∇iχ̂∥L∞

u L2(Su,u) ≲ a
1

2 .

The estimates for the rest of the Ricci coefficients are obtained in the same
way. □

The way to generalize the energy estimates to higher order is still of the
same philosophy. In particular, the introduction of the crucial functions ω†

and µ and their commutation formula is preserved.We assume at this stage
the inequality

(3.14) ON ≲ 1 + ÕN+1,2 +RN

and give an example of how one can show

ÕN+1,2 ≲ 1 +RN .

We are ready to address the elliptic estimates.



✐

✐

“1-Lesourd” — 2023/12/24 — 23:47 — page 2419 — #41
✐

✐

✐

✐

✐

✐

Construction of Cauchy data 2419

Proposition 3.18. Under the assumptions of Theorem 1.7 and the boot-
strap assumptions (3.1)–(3.4), there holds

∥uN+2∇N+1trχ∥L2
uL

2(Su,u) ≲ δ
3

2ab
1

4

and

∥uN+1∇N+1χ̂∥L2
uL

2(Su,u) ≲ δ
1

2a
1

2 (1 +R).

Proof. Consider the following equation

∇4trχ+
1

2
(trχ)2 = −|χ̂|2 − 2ωtrχ.

Commuting (N + 1) times with angular derivatives, we get

∇4∇
N+1trχ =

∑

i1+i2+i3+i4=N+1

∇i1ψi2∇i3ψ∇i4ψ.

Using Proposition 3.3 we can estimate ∥uN+2∇N+1trχ∥L∞

u L∞

u L2(Su,u) by the

∥uN+2·∥L∞

u L1
uL

2(Su,u) norm of the right-hand side. It is important here once
again to differentiate between the case where all the derivatives fall on a ψ
and the other cases.

∥∥∥∥u
N+2

∑

i1+i2+i3+i4=N+1

∇i1ψi2∇i3ψ∇i4ψ

∥∥∥∥∥
L∞

u L1
uL

2(Su,u)

(3.15)

≲ δ
1

2 ∥uψ∥L∞

u L∞(Su,u)∥u
N+1∇N+1ψ∥L∞

u L2
uL

2(Su,u)

+ δ
∑

i≤N−2

∥ui+1∇iψ∥L∞

u L∞

u L∞(Su,u)

∑

i1+i2≤N

∥ui∇iψ∥L∞

u L∞

u L2(Su,u)

+ δ
∑

i1+i2≤N−2

∥ui1+i2+2∇i1ψi2+1∥L∞

u L∞

u L∞(Su,u)

×
∑

i3≤N−2

∥ui3+1∇i3ψ∥L∞

u L∞(Su,u) ·
∑

i4≤N

∥ui4∇i4ψ∥L∞

u L∞

u L2(Su,u)

+ δ
∑

i1+i2≤N−2

∥ui1+i2+2∇i1ψi2+1∥L∞

u L∞

u L2(Su,u)

×
∑

i3≤N−2

∥ui3+1∇i3ψ∥L∞

u L∞(Su,u) ·
∑

i4≤N

∥ui4∇i4ψ∥L∞

u L∞

u L∞(Su,u)

≲ δab
1

4 .



✐

✐

“1-Lesourd” — 2023/12/24 — 23:47 — page 2420 — #42
✐

✐

✐

✐

✐

✐

2420 N. Athanasiou and M. Lesourd

Recall that ∇N+1trχ = 0 initially on H0. Therefore, we have
∥uN+2∇N+1trχ∥L∞

u L2(Su,u) ≲ δab
1

4 . Taking L2 in u we arrive at

∥uN+2∇N+1trχ∥L2
uL

2(Su,u) ≲ δ
3

2ab
1

4 .

As for χ̂, we employ the elliptic estimates for Hodge systems using a starting
point the Codazzi equation

div χ̂ =
1

2
∇trχ− β + ψψ.

Using Proposition 3.15 we obtain

∥uN+1∇N+1χ̂∥L2(Su,u)(3.16)

≲
∑

i≤N

∥ui+1∇i+1trχ∥L2(Su,u) +
∑

i≤N

∥ui+1∇iβ∥L2(Su,u)

+
∑

i≤N

∥
∑

i1+i2=i

ui+1∇i1ψ∇i2ψ∥L2(Su,u) +
∑

i≤N

∥ui∇iχ̂∥L2(Su,u).

Taking L2 in u and using the bootstrap assumptions, the control on ψ de-
rived from the lower-order Ricci coefficient estimates as well as the bound
on trχ just obtained, we have

∥uN+1∇N+1χ̂∥L2
uL

2(Su,u)(3.17)

≲
∑

1≤i≤N

∥ui+1∇i+1trχ∥L2
uL

2(Su,u) +
∑

i≤N

∥ui+1∇i+1β∥L2
uL

2(Su,u)

+
∑

i≤N

∑

i1+i2=i

∥ui+1∇i+1ψ∇i2ψ∥L2
uL

2(Su,u)

+
∑

i≤N

∥ui∇iχ̂∥L2
uL

2(Su,u)

≲
δ

3

2ab
1

4

u
+ δ

1

2a
1

2 + δ
1

2a
1

2RN ≲ δ
1

2a
1

2 (1 +RN ).

□

The rest of the elliptic estimates are carried in the same spirit.

3.8. Energy estimates

By this stage we have managed to prove the following two inequalities:

ON ≲ 1 + ÕN+1,2 +RN ,(3.18)
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ÕN+1,2 ≲ 1 +RN .(3.19)

The goal of this section will be to explain how we can arrive at the desired

(3.20) RN ≲ 1.

We are going to need several preliminary propositions.

Proposition 3.19. Suppose ϕ1 and ϕ2 are tensorfields. Then,

∫∫

D(u,u)
ϕ1∇4ϕ2 +

∫∫

D(u,u)
ϕ2∇4ϕ1

=

∫

H(1,u)
u

ϕ1ϕ2 −

∫

H
(1,u)
0

ϕ1ϕ2 +

∫∫

D(u,u)
(2ω − trχ)ϕ1ϕ2.

Proposition 3.20. If (1)ϕ is an r−tensorfield and (2)ϕ is an (r −
1)−tensorfield, then

∫∫

D(u,u)

(1)ϕA1...Ar∇Ar

(2)ϕA1...Ar−1
+

∫∫

D(u,u)
∇Ar (1)ϕA1...Ar

(2)ϕA1...Ar−1

= −

∫∫

D(u,u)
(η + η) (1)ϕ (2)ϕ.

To control the components satisfying ∇3-equations, we need an analogue
of Proposition 3.19.

Proposition 3.21. Suppose ϕ is an r−tensorfield and let λ1 = 2(λ0 −
1
2).

Then

2

∫∫

D(u,u)
|u|2λ1ϕ(∇3 + λ0trχ)ϕ

=

∫

H
(0,u)
u

|u|2λ1 |ϕ|2 −

∫

H
(0,u)
0

|u|2λ1 |ϕ|2 +

∫∫

D(u,u)
|u|2λ1f |ϕ|2,

where f obeys the estimate

|f | ≲
δa

1

2 b
1

4

|u|2
.
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Proposition 3.22. Under the assumptions of Theorem 1.7 and the boot-
strap assumptions (3.1)–(3.4), there holds

∑

1≤i≤N

(∥∥∥∥u
i+2∇i

(
K −

1

|u|2
, σ̌

)∥∥∥∥
L∞

u L2
u(Su,u)

+ ∥ui+2∇iβ∥L∞

u L2
uL

2(Su,u)

)

≲ δ
3

2a
3

4 .

Proof. We begin with the following schematic Bianchi equations for K −
1

|u|2 , σ̌, β:

∇3σ̌ + div ∗β +
3

2
trχσ̌ =

∑

i1+i2=1

ψi1+1∇i2ψ,(3.21)

∇3

(
K −

1

|u|2

)
+ divβ +

3

2
trχ

(
K −

1

|u|2

)
(3.22)

=
∑

i1+i2=1

ψi1+1∇i2ψ +
1

|u|
µ+

1

|u|2
(trχ+

2

|u|
) +

Ω−1 − 1

|u|3

and finally

∇4β −∇K − ∗∇σ̌(3.23)

= ψ(K, σ̌) +
∑

i1+i2+i3=1

ψi1∇i2

(
trχ+

2

|u|
, χ̂, ω

)
∇i3ψ

+
∑

i1+i2=1

ψi1∇i2trχ.

Commuting (3.21), (3.22) and (3.23) with i angular derivatives, we have

(3.24) ∇3∇
iσ̌ + div +

3 + i

2
trχ∇iσ̌ = F1,i

where F1,i is given by

(3.25) F1,i =
∑

i1+i2+i3=i+1

∇i1ψi2+1∇i3ψ +
1

|u|

∑

i1+i2+i3=i−1

∇i1ψi2+1∇i3 σ̌

and the equation

(3.26) ∇3∇
i

(
K −

1

|u|2

)
− div∇iβ +

3 + i

2
trχ∇i

(
K −

1

|u|2

)
= F2,i,
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where F2,i admits the schematic form

F2,i =
∑

i1+i2+i3=i+1

∇i1ψi2+1∇i3ψ +
1

|u|
∇iµ(3.27)

+
1

|u|

∑

i1+i2+i3=i

∇i1ψi2+1∇i3ψ

+
1

|u|2

∑

i1+i2+i3=i

∇i1ψi2∇i3

(
trχ+

2

|u|

)

+
1

|u|3

∑

i1+i2+i3=i

∇i1ψi2∇i3(1− Ω−1)

+
∑

i1+i2+i3=i

∇i1ψi2+1∇i3

(
K −

1

|u|2

)

+
∑

i1+i2+i3=i−1

1

|u|
∇i1ψi2+1∇i3

(
K −

1

|u|2

)

and finally the equation

(3.28) ∇4∇
iβ − div∇i

(
K −

1

|u|2

)
− ∗∇∇iσ̌ = F3,i,

where F3,i admits the schematic form

F3,i =
∑

i1+i2+i3+i4=i+1

∇i1ψi2∇i3

(
trχ+

2

|u|
, χ̂, ω

)
∇i4ψ(3.29)

+
∑

i1+i2+i3=i

∇i1ψi2+1∇i3(K −
1

|u|2
, σ̌).

Using (3.24),(3.26) and (3.28), we can obtain the energy estimates. Using
Proposition 3.19 and equation (3.28), we get

1

2

∫

H(1,u)
u

(
ui+2∇iβ

)2
(3.30)

=
1

2

∫

H
(1,u)
0

(
ui+2∇iβ

)2
+

∫∫

D(u,u)
⟨ui+2β, ui+2∇4∇

iβ⟩γ

−

∫∫

D(u,u)
(ω −

1

2
trχ)(ui+2∇iβ)2

=
1

2

∫

H
(1,u)
0

(
ui+2∇iβ

)2
+

∫∫

D(u,u)
⟨ui+2β, ui+2F3i⟩γ
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+

∫∫

D(u,u)

〈
ui+2∇iβ, ui+2

(
∇∇i

(
K −

1

|u|2
+ ∗∇∇iσ̌

))〉

γ

.

Now applying Proposition 3.21 and (3.24) we have

1

2

∫

H
(0,u)
u

(
ui+2∇iσ̌

)2
=

1

2

∫

H
(0,u)
1

(
ui+2∇iσ̌

)2
(3.31)

+

∫∫

D(u,u)

〈
ui+2σ̌, ui+2

(
∇3 +

i+ 3

2
trχ

)
∇iσ̌

〉

γ

−
1

2

∫∫

D(u,u)
f
(
ui+2∇iσ̌

)2

=
1

2

∫

H
(0,u)
1

(
ui+2∇iσ̌

)2
+

∫∫

D(u,u)

〈
ui+2σ̌, ui+2F1i

〉

γ

−

〈
ui+2σ̌, ui+2(div ∗∇iβ)

〉

γ

−
1

2

∫∫

D(u,u)
f
(
ui+2∇iσ̌

)2
.

In the same spirit, using Proposition 3.21 and (3.26) we get

1

2

∫

H
(0,u)
u

(
ui+2∇i

(
K −

1

u2

))2

=
1

2

∫

H
(0,u)
1

(ui+2∇i(K − 1))2(3.32)

+

∫∫

D(u,u)

〈
ui+2∇i

(
K −

1

u2

)
, ui+2F2,i

〉

γ

+

∫∫

D(u,u)

〈
ui+2∇i

(
K −

1

u2

)
, ui+2(div∇iβ)

〉

γ

−
1

2

∫∫

D(u,u)
f

(
ui+2∇i

(
K −

1

u2

))2

.

Now, we can integrate by parts on the spheres Su,u using Proposition 3.20 to
show that the sum of the terms with the highest order of angular derivatives
in (3.30), (3.31) and (3.32) cancels up to a lower order error term:

∫∫

D(u,u)

〈
ui+2∇iβ, ui+2

(
∇∇i

(
K −

1

|u|2
+ ∗∇∇iσ̌

))〉

γ

(3.33)
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−

〈
ui+2σ̌, ui+2(div ∗∇iβ)

〉

γ

+

∫∫

D(u,u)

〈
ui+2∇i

(
K −

1

u2

)
, ui+2(div∇iβ)

〉

γ

≲

∥∥∥∥u
2i+4∇i

(
K −

1

u2
, σ̌

)
ψ∇iβ

∥∥∥∥
L1

uL
1
uL

1(Su,u)

≲
δ

3

2a
1

2 b
1

4

u
3

2

∥∥∥∥u
i+2∇i

(
K −

1

u2
, σ̌

)∥∥∥∥
L∞

u L2
uL

2(Su,u)

∥ui+2∇iβ∥L∞

u L2
uL

2(Su,u),

where in the last line we have used the bootstrap assumption (3.1). Upon
addition of (3.30), (3.31) and (3.32), using (3.33) and the bound for f in in
Proposition 3.21, we obtain

∥∥∥∥u
i+2∇i

(
K −

1

u2
, σ̌

)∥∥∥∥
2

L2
uL

2(Su,u)

+ ∥ui+2∇iβ∥2L2
uL

2(Su,u)

(3.34)

≲

∥∥∥∥u
i+2∇i

(
K −

1

u2
, σ̌

)∥∥∥∥
2

L2
uL

2(S1,u)

+ ∥u2i+4∇iσ̌F1,i∥L1
uL

1
uL

1(Su,u)

+

∥∥∥∥u
2i+4∇i

(
K −

1

u2
, σ̌

)
F2,i

∥∥∥∥
L1

uL
1
uL

1(Su,u)

+

∥∥∥∥
δa

1

2 b
1

4

u2
· u2i+4∇i

(
K −

1

u2
, σ̌

)
∇i

(
K −

1

u2
, σ̌

)∥∥∥∥
L1

uL
1
uL

1(Su,u)

+
δ

3

2a
1

2 b
1

4

u
3

2

∥ui+2∇i

(
K −

1

u2
, σ̌

)
∥L∞

u L2
uL

2(Su,u)∥u
i+2β∥L∞

u L2
uL

2(Su,u).

For the second, third and fourth terms, we can apply Cauchy-Schwarz in
either the H or the H hypersurfaces, so that the terms

∥∥∥∥u
i+2∇i

(
K −

1

u2
, σ̌

)∥∥∥∥
L2

uL
2(Su,u)

and ∥ui+2∇iβ∥L2
uL

2(Su,u) can be absorbed to the left. For the fifth term,
noticing that

∥∥∥∥
δa

1

2 b
1

4

u2

∥∥∥∥
L1

u

≲
1

b
3

4

,
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we can control it by Grönwall’s inequality. Finally, since

∥∥∥∥
δ

3

2a
1

2 b
1

4

u
3

2

∥∥∥∥
L∞

u

≲
1

b
5

4

,

the term can be absorbed to the left hand side after using Schwarz’s inequal-
ity. Therefore, (3.34) implies that

∥∥∥∥u
i+2∇i

(
K −

1

u2
, σ̌

)∥∥∥∥
2

L2
uL

2(Su,u)

+ ∥ui+2∇iβ∥2L2
uL

2(Su,u)
(3.35)

≲

∥∥∥∥u
i+2∇i

(
K −

1

u2
, σ̌

)∥∥∥∥
2

L2
uL

2(S1,u)

+ ∥ui+2F1,i∥L1
uL

2
uL

2(Su,u)

+ ∥ui+2F2,i∥L1
uL

2
uL

2(Su,u) ++∥ui+2F3,i∥L1
uL

2
uL

2(Su,u).

Summing over 1 ≤ i ≤ N and using the fact that

∑

1≤i≤N

∥∥∥∥∇
i

(
K −

1

u2

)
, σ̌

∥∥∥∥
L2

uL
2(S1,u)

≲ δ
1

2a
1

2 ,

we obtain

(3.36)
∑

1≤i≤N



∥∥∥∥u

i+2∇i

(
K −

1

u2
, σ̌

)∥∥∥∥
2

L2
uL

2(Su,u)

+ ∥ui+2∇iβ∥2L2
uL

2(Su,u)




≲ δ
1

2a
1

2 +
∑

1≤i≤N

(
∥ui+2F1,i∥L1

uL
2
uL

2(Su,u)

+ ∥ui+2F2,i∥L1
uL

2
uL

2(Su,u) ++∥ui+2F3,i∥L1
uL

2
uL

2(Su,u)

)
.

We will estimate the right hand side of (3.36) term by term. Let us recall
the schematic form of F1,i:

F1,i =
∑

i1+i2+i3=i+1

∇i1ψi2+1∇i3ψ +
1

|u|

∑

i1+i2+i3=i−1

∇i1ψi2+1∇i3 σ̌.

Notice, in particular, that it consists of a schematic term involving only Ricci
coefficients and one involving curvature (in particular σ̌). We deal with these
terms separately. For the first term, assume without loss of generality that
i1 ≤ i3. We bound separately the contributions where there are at most NH
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derivatives falling on any of the Ricci coefficients, where N + 1 derivatives
fall on (trχ, χ̂, ω) and where N + 1 derivatives fall on (η, η). In particular,
we have

∑

i≤N

∥∥∥∥u
i+2

∑

i1+i2+i3=i+1

∇i1ψi2+1∇i3ψ

∥∥∥∥
L1

uL
2
uL

2(Su,u)

(3.37)

≲
∑

i1+i2≤N+1
i1≤N−2

∥ui1+i2+2∇i1ψi2+1∥L∞

u L∞

u L∞(Su,u)

×

(
δ

1

2

∑

i3≤N

∥ui3+1∇i3ψ∥L∞

u L∞

u L2(Su,u)∥u
−2∥L1

u

+ δ
1

2 ∥uN+1∇N+1(trχ, χ̂, ω)∥L∞

u L2
uL

2(Su,u)∥u
−1∥L2

u

× ∥uN+2∇N+1(η, η)∥L∞

u L2
uL

2(Su,u)∥u
−2∥L1

u

)

≲ δa
1

2 b
1

4

(
δ

3

2a
1

2 b
1

4

u
+
δ

3

2a
3

4

u

)
≲
δ

5

2a
5

4 b
1

4

u
.

For the remaining contributions in F1,i, we will prove the slightly more
general bound where we allow (K − 1

u2 , σ̌) in place of σ̌. Using Sobolev
embedding, we have

∑

i≤N

∥∥∥∥u
i+2

∑

i1+i2+i3=i

∇i1ψi2+1∇i3

(
K −

1

u2
, σ̌

)∥∥∥∥
L1

uL
2
uL

2(Su,u)

(3.38)

≲
∑

i1+i2≤N
i1≤N−2

∥ui1+i2+1∇i1ψi2+1∥L∞

u L∞

u L2(Su,u)

·
∑

i3≤N

∥∥∥∥u
i3+2∇i3

(
K −

1

u2
, σ̌

)∥∥∥∥
L∞

u L2
uL

2(Su,u)

· ∥u−2∥L1
u

≲
δ

5

2a
5

4 b
1

2

u
.

The final term in F1,i can also be controlled as above:

∑

i≤N

∥∥∥∥u
i+1

∑

i1+i2+i3=i−1

∇i1ψi2+1∇i3

(
K −

1

u2
, σ̌

)∥∥∥∥
L1

uL
2
uL

2(Su,u)

(3.39)

≲
∑

i1+i2≤N−1
i1≤N−2

∥ui1+i2+1∇i1ψi2+1∥L∞

u L∞

u L2(Su,u)
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×
∑

i3≤N−1

∥∥∥∥u
i3+2∇i3

(
K −

1

u2
, σ̌

)∥∥∥∥
L∞

u L2
uL

2(Su,u)

· ∥u−2∥L1
u

≲
δ

5

2a
5

4 b
1

2

u
.

We move on to estimates for F2,i. Notice that the first, sixth and seventh
terms are already estimated above in (3.37), (3.38) and (3.39). For the second
term, we need to use the improved estimates for ∇iµ provided in the elliptic
estimates section. In particular, we need to use the fact that i ≥ 1.

∑

1≤i≤N

∥ui+1∇iµ∥L1
uL

2
uL

2(Su,u)(3.40)

≲ δ
1

2

∑

1≤i≤N

∥ui+3∇iµ∥L∞

u L∞

u L2(Su,u)∥u
−2∥L1

u
≲
δ

5

2a
5

4 b
1

4

|u|
.

For the third term in F2,i, we have

∑

i≤N

∥ui+1
∑

i1+i2+i3=i

∇i1ψi2+1∇i3ψ∥L1
uL

2
uL

2(Su,u)(3.41)

≲ δ
1

2

∑

i1+i2≤N
i1≤N−2

∥ui1+i2+2∇i1ψi2+1∥L∞

u L∞

u L∞(Su,u)

×
∑

i3≤N

∥ui3+1∇i3ψ∥L∞

u L∞

u L2(Su,u) · ∥u
−2∥L1

u

≲
δ

5

2ab
1

2

|u|
.

For the fourth term in F2,i, we need to use the improved bounds in ∇i(trχ+
2
|u|) and the fact that i ≥ 1.

∑

1≤i≤N

∥∥∥∥u
i

∑

i1+i2+i3=i

∇i1ψi2∇i3

(
trχ+

2

|u|

)∥∥∥∥
L1

uL
2
uL

2(Su,u)

(3.42)

≲ δ
1

2

∑

1≤i≤N

∥∥∥∥u
i+ 3

2∇i

(
trχ+

2

|u|

)∥∥∥∥
L∞

u L∞

u L2(Su,u)

∥u−
3

2 ∥L1
u

+ δ
1

2

∑

i1+i2≤N−2

∥∥∥∥u
i1+i2+2∇i1ψi2+1

∥∥∥∥
L∞

u L∞

u L∞(Su,u)

×
∑

i3≤N

∥ui3+1∇i3ψ∥L∞

u L∞

u L2(Su,u) · ∥u
−2∥L1

u
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≲
δ2a

3

4

|u|
1

2

+
δ

5

2ab
1

2

|u|
.

For the fifth term in F2,i, finally, we use the fact that i ≥ 1 and the improved
bounds on ∇i(Ω−1 − 1). We have

∑

1≤i≤N

∥∥∥∥u
i−1

∑

i1+i2+i3=i

∇i1ψi2+1∇i3
(
Ω−1 − 1

)∥∥∥∥
L1

uL
2
uL

2(Su,u)

(3.43)

≲ δ
1

2

∑

1≤i≤N

∥ui+
1

2∇i(log Ω)∥L∞

u L∞

u L2(Su,u)∥u
− 3

2 ∥L1
u

+ δ
1

2

∑

i1+i2≤N−2

∥ui1+i2+2∇i1ψi2+1∥L∞

u L∞

u L∞(Su,u)

×
∑

i3≤N−1

∥ui3+1∇i3ψ∥L∞

u L∞

u L2(Su,u)∥u
−2∥L1

u

+ δ
1

2

∑

i1+i2≤N

∥ui1+i2+1∇i1ψi2+1∥L∞

u L∞

u L2(Su,u)

×
∑

i3≤N−1

∥u(1− Ω−1)∥L∞

u L∞

u L2∞(Su,u)∥u
−2∥L1

u

≲
δ2a

3

4

|u|
1

2

+
δ

5

2ab
1

2

|u|
.

We move on to estimates for F3,i. For the first term, we have

∑

i≤N

∥∥∥∥u
i+2

∑

i1+i2+i3+i4=i+1

∇i1ψi2∇i3

(
trχ+

2

|u|
, χ̂, ω

)∥∥∥∥
L1

uL
2
uL

2(Su,u)

(3.44)

≲ δ
∑

i1+i2≤N+1
i1≤N−2

∥ui1+i2+2∇i1ψi2+1∥L∞

u L∞

u L∞(Su,u)

×
∑

i3≤N

∥ui3∇i3ψ∥L∞

u L∞

u L2(Su,u)∥u
−1∥L2

u

+ δ
1

2 ∥u2ψ∥L∞

u L∞

u L∞(Su,u)∥u
N+1∇N+1ψ∥L∞

u L∞

u L2(Su,u)∥u
−1∥L2

u

+ δ
∑

i1+i2≤N+1
i1≤N

∥ui1+i2+1∇i1ψi2+1∥L∞

u L∞

u L2(Su,u)

×
∑

i3≤N−2

∥ui3+1∇i3ψ∥L∞

u L∞

u L2(Su,u)∥u
−1∥L2

u
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+ δ

∥∥∥∥u
N+1∇N+1

(
trχ+

2

|u|
, χ̂, ω

)∥∥∥∥
L∞

u L2
uL

2(Su,u)

∥uψ∥L∞

u L∞

u L∞(Su,u)

≲
δa2b

1

4

|u|
1

2

.

For the second term, we use Sobolev embedding to get

∑

i≤N

∥∥∥∥u
i+2

∑

i1+i2+i3=i

∇i1ψi2+1∇i3(K, σ̌)

∥∥∥∥
L1

uL
2
uL

2(Su,u)

(3.45)

≲ δ
1

2

∑

i1+i2≤N

∥ui1+i2+1∇i1ψi2+1∥L∞

u L∞

u L2(Su,u)

×
∑

i3≤N

∥∥∥∥u
i3+2∇i

(
K −

1

|u|2
, σ̌

)∥∥∥∥
L∞

u L2
uL

2(Su,u)

∥u−2∥L2
u

+ δ
∑

i1+i2≤N

∥ui1+i2+1∇i1ψi2+1∥L∞

u L∞

u L2(Su,u)∥u
−1∥L2

u

≲
δ3a

5

4 b
1

2

|u|
3

2

+
δ2a

1

2 b
1

4

|u|
1

2

.

For the final term in F3,i, we use the improved estimates for ∇itrχ, where
i ≥ 1. More precisely, there holds

∑

i≤N

∥∥∥∥u
i+1

∑

i1+i2+i3=i+1

∇i1ψi2+1∇i3trχ

∥∥∥∥
L1

uL
2
uL

2(Su,u)

(3.46)

≲

(
δ

1

2 ∥uN+2∇N+1trχ∥L∞

u L2
uL

2(Su,u)

+ δ
∑

i≤N

∥ui+1∇itrχ∥L∞

u L∞

u L2(Su,u)

)
∥u−1∥L2

u

+ δ
∑

i1+i2≤N+1
i1≤N−2

∥ui1+i2+2∥L∞

u L∞

u L∞(Su,u)

×
∑

i3≤N

∥ui3∇i3ψ∥L∞

u L∞

u L2(Su,u)∥u
−1∥L2

u

+ δ
∑

i1+i2≤N+1
i1≤N

∥ui1+i2+1∇i1ψi2+1∥L∞

u L∞

u L2(Su,u)
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×
∑

i3≤N−2

∥ui3∇i3ψ∥L∞

u L∞

u L∞(Su,u)∥u
−1∥L2

u

≲
δ2ab

1

4

|u|
1

2

.

Collecting all the above estimates and using |u| ≥ δa
1

2 b, the result follows.
□

The rest of the energy estimates are carried out in the same way. We sum-
marize the results of this section in the following way:

Theorem 3.2. There exists a universal constant k such that the following
holds, for all N . Consider the following characteristic initial value problem
for the Einstein vacuum equations. The initial incoming null hypersurface
H0 is required to coincide with a backwards light cone in Minkowski space
with 0 ≤ u ≤ 1. Given δ, for every B > 0, there exist a0(B) and b0 = b0(B)
such that the following holds. Pick any a and b satisfying a0 ≤ a < δ−1 and
b0 ≤ a

1

2 ≤ b < a < δ−1 and assume that, along H0, the initial shear satisfies

∑

i≤N+k

∥∇iχ̂0∥L∞

u L2(Su,u) ≤ a
1

2 ,

for all 0 ≤ u ≤ δ, then there exists a unique solution to the Einstein vac-
uum equations in the region δa

1

2 b ≤ u ≤ 1, 0 ≤ u ≤ δ. Moreover, the solution
obeys the following higher order energy estimates:

ON + ÕN+1,2 +RN ≲ 1.

Moreover, the following improved bounds hold:

∑

i≤N

∥∥∥ui+1∇i

(
trχ−

2

u

)∥∥∥
L2(Su,u)

≲ δa,
∑

i≤N−1

∥∥∥ui+2∇i

(
K −

1

u2

)∥∥∥
L2(Su,u)

≲ δa
1

2 .

The implicit constant depends only on the initial data.

4. The transition region

The goal here is to obtain estimates on the following pieces.
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1) The sphere S1,δ on the edge of the outgoing null cone of the initial
data.

2) The (non-trivial) incoming null cone at the border of the region of
existence.

3) The additional outgoing null cone extending beyond the region of ex-
istence, on which we impose no additional shear χ̂ = 0.

4) The spacetime region developing from the characteristic initial value
problem defined by these outgoing and incoming null cones. This region
is called the transition region. Its existence is proved by using the
estimates shown in 2 and 3. Such existence results have been shown
by [19] and with an initial curvature singularity by [20], [21].

Throughout this paper we shall impose an extra condition on the initial
data, namely

(4.1)

∫ δ

0
|χ̂(1, u, θ)|2 du′ = 4m0,

for some positive constant m0. We can think of this constant as representing
the mass of a Schwarzschild spacetime, the geometry of which is close to the
geometry of the entire transition region.

Remark 1. Crucially, throughout this section, we assume a bound on all
the derivatives of χ̂0:

∞∑

i=0

∥∇iχ̂0∥L∞

u L2(Su,u) ≤ a
1

2 .

This means, thanks to Theorem 3.2, that for any given N , the estimates

ON + ÕN+1,2 +RN ≲ 1

hold in the region of existence.

4.1. The geometry of S1,δ

The purpose of this section is to prove the following lemma which, roughly
speaking, says the geometry of the two sphere S1,δ is close to the geometry
of a given 2−sphere in a Schwarzschild spacetime with mass m0.
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Lemma 4.1. On the sphere S1,δ we have α ≡ 0 and for all k

(
|∇k (trχ− 2 + 4m0)|, |∇

kβ|, |∇kσ|, |∇k(K − 1)|, |∇k(ρ+ 2m0)|
)
≲ δa.

Proof. To begin with, the fact that α ≡ 0 follows from (2.12) and the fact

that χ̂ has compact support in C
(0,δ)
1 . For trχ on C1, we can recall the

equation (2.11) that reads

∇4trχ = −
1

2
(trχ)2 − |χ̂|2 − 2ω trχ.

Integrate this equation along [0, δ] to obtain

|trχ(1, δ)− 2 + 4m0|(4.2)

≲

∫ δ

0
|trχ(u′, 1)|2 du′ +

∫ δ

0
|ω(u′, 1)||trχ(u′, 1)|du′

≲ δ∥trχ∥2L∞(Su,u)
+ δ∥trχ∥L∞(Su,u)∥ω∥L∞(Su,u)

≲ δ · a
1

2 · a
1

2 = δa.

Here we have used Theorem 3.2. Moreover, for k ≥ 1, the same Theorem
implies that

(4.3)
∥∥∥uk+1∇k

(
trχ−

2

u

)∥∥∥
L2(Su,u)

≲ δa.

Consequently, for u = 1, u = δ, there holds

∥∥∥∇k

(
trχ−

2

u

)∥∥∥
L2(S1,δ)

≲ δa,

for all k. Using the Sobolev embedding Theorem 3.8, there holds, for all
k ≥ 1,

(4.4)
∥∥∥∇k (trχ− 2 + 4m0)

∥∥∥
L∞(S1,δ)

≲ δa.

For β, on the initial outgoing cone C1, recall that we have

divχ̂ =
1

2
∇trχ− χ̂ · η +

1

2
trχη − β.

We rewrite this as

β =
1

2
∇trχ− χ̂ · η +

1

2
trχη − div χ̂
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Now notice that χ̂ ≡ 0 on S1,δ, so that

β =
1

2
∇trχ+

1

2
trχη,

on S1,δ. Differentiating k times by ∇, we get

|∇kβ|(1, δ) ≲ |∇k+1trχ|(1, δ) +
∑

k1+k2=k

|∇k1η|(1, δ) · |∇k2trχ|(1, δ)(4.5)

≲
∥∥∥∇k+1 (trχ− 2 + 4m0)

∥∥∥
L∞(S1,δ)

+
∑

k1+k2=k

∥∇k1trχ∥L∞(S1,δ)∥∇
k2η∥L∞(S1,δ)

≲ δa+ a
1

2 · δa
1

2

≲ δa,

where we have used (4.4) and the fact that |∇k1η|(1, δ) ≲ δa
1

2 by Theo-
rem 3.2.

For σ on the initial cone C1, we have

curl η = σ −
1

2
χ̂ ∧ χ̂ = σ̌.

Since |∇k+1η|(1, δ) ≲ δa
1

2 and χ̂ ≡ 0 on S1,δ , taking ∇k on both sides of the
above yields the desired estimates.

For ∇k(K − 1) on S1,δ, Proposition 6.9 in [5] along with Theorem 3.2 and
an application of Sobolev’s embedding yields

|∇k(K − 1)| ≲ δa
1

2 (1 + Õk+1,2 +Rk) ≲ δa
1

2 .

Moving on to estimates for ρ+ 2m0, notice that there holds

ρ+
2m0

u3
=−

(
K −

1

u2

)
−

1

4

(
trχ−

2

u
+

4m0

u2

)(
trχ+

2

u

)
(4.6)

+
1

2
χ̂ · χ̂+

1

2u

(
trχ−

2

u
+

4m0

u2

)

−
1

2u

(
trχ+

2

u

)
+
m0

u2

(
trχ+

2

u

)
.

Given the fact that u = 1 and χ̂ = 0 on S1,δ, applying ∇k to both sides of
the above identity and using the estimates on trχ+ 2

u from Theorem 3.2,
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we arrive at

(4.7) |∇k(ρ+ 2m0)| ≲ δa.

□

4.2. The geometry of the incoming cone

Throughout this section, our main goal will to establish the fact that the
geometry of the cone Cδ is close, in a rigorous sense to be given below, to
the geometry of an incoming cone in a Schwarzschild spacetime with mass
m0, where m0 is given by (4.1). This will be achieved by propagating the
appropriate null structure equations. This is where equation (4.1) and the
control on the geometry of S1,δ will prove useful, as it is those that enable
us to achieve the desired closeness. We shall prove the estimates in a series
of propositions. We begin with the estimates for χ̂.

Proposition 4.1. There holds

∥uk∇kχ̂∥L2(Su,δ) ≲
δa

u
.

Proof. We begin with the structure equation

(4.8) ∇3χ̂+
1

2
trχ χ̂ = ∇⊗̂η + 2ω χ̂−

1

2
trχ χ̂+ η⊗̂η.

Commuting this with i angular derivatives, we have

∇3∇
iχ̂+

i+ 1

2
trχ∇iχ̂(4.9)

=
∑

i1+i2+i3=i

∇i1ψi2∇i3+1η +
∑

i1+i2+i3+i4=i

∇i1ψi2∇i3ω∇i4χ̂

+
∑

i1+i2+i3+i4=i

∇i1ψi2∇i3η∇i4η +
∑

i1+i2+1=i

∇i1+1trχ∇i2χ̂

+
∑

i1+i2+i3+i4+1=i

∇i1ψi2+1∇i3trχ∇i4χ̂

+
∑

i1+i2+i3+i4=i

∇i1ψi2∇i3(ψ, χ̂, t̃rχ)∇i4χ̂.
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Let us look at Proposition 3.16. We follow the proof of Proposition 3.17.
There holds

∇3χ̂+
1

2
trχχ̂ = ∇η + (ψ, ψ)ψ.

Using Proposition 3.12 and commuting with i angular derivatives, we have
that for any i there holds

∇3∇
iχ̂+

i+ 1

2
trχ∇iχ̂ = ∇i+1η +

∑

i1+i2=i

∇i1ψi2+2

+
∑

i1+i2+i3=i

∇i1ψi2+1∇i3ψ

+
∑

i1+i2+i3=i−1

1

u
∇i1ψi2+1∇i3ψ.

We now apply Proposition 3.4, which tells us that the quantity
∥ui∇iχ̂∥L2(Su,δ) can be controlled by the sum of ∥ui∇iχ̂∥L2(S1,δ) and the
∥ui·∥L1

uL
2(Su,δ) norm of the right-hand side in the equation above. We now

estimate each of the terms on the right-hand side:

• For the linear term in η, there holds

(4.10) ∥ui∇i+1η∥L1
uL

2(Su,δ) ≲

∥∥∥∥
1

u2

∥∥∥∥
L1

u

∥ui+2∇i+1ψ∥L∞

u L2(Su,u) ≲
δa

1

2

u
,

where we have used the improved bound on ∥ui+2∇i+1ψ∥L∞

u L2(Su,u)

obtained in Theorem 3.2.

• We then control the second and third terms together. Here, we use the
estimates derived in Proposition 3.16. There holds

∥∥∥∥
∑

i1+i2+i3=i

ui∇i1ψi2+1∇i3(ψ, ψ)

∥∥∥∥
L1

uL
2(Su,δ)

(4.11)

≲
∑

i1+i2+i3=i

∥ui1+i2−1∇i1ψi2+1∥L1
uL

2(Su,δ) · ∥u
i3+1∇i3(ψ, ψ)∥L∞

u L∞(Su,δ)

≲
δa

1

2

u
· a

1

2 ≲
δa

u
.
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• Finally, the last term is estimated as follows

∥∥∥∥
∑

i1+i2+i3=i−1

ui−1∇i1ψi2+1∇i3ψ

∥∥∥∥
L1

uL
2(Su,u)

(4.12)

≲
∑

i1+i2+i3=i−1

∥ui1+i2−1∇i1ψi2+1∥L1
uL

2(Su,δ) · ∥u
i3+1∇i3ψ∥L∞

u L∞(Su,δ)

≲
δa

1

2

u
· a

1

2 ≲
δa

u
.

Recalling that initially we have

∥∇iχ̂0∥L2(S1,δ) = 0,

we get

∥ui∇iχ̂∥L∞

u L2(Su,δ) ≲
δa

u
.

This concludes the proof for χ̂. □

Notice that Remark 1 at the start of this Section implies that we have L2

and L∞–control on all derivatives of the Ricci coefficients, which allowed us
to close the estimates in the above Proposition. We move on to estimates
for σ̌ and σ:

Proposition 4.2. There holds

∥ui+1∇iσ̌∥L2(Su,δ) + ∥ui+1∇iσ∥L2(Su,δ) ≲
δa

1

2

u
.

Proof. We begin with the estimates for σ̌. The fact that χ̂ = 0 on S1,δ im-
plies that σ̌ = σ on S1,δ. Consequently, the bounds for σ̌ on S1,δ are the

same as those for σ, meaning ∥∇kσ̌∥L∞(S1,δ) ≲ δa
1

2 for all k. We proceed by
commuting

∇3σ̌ +
3

2
trχσ̌ = −div ∗β + ζ ∧ β − 2η ∧ β +

1

2
χ̂ ∧ (∇⊗̂η) +

1

2
χ̂ ∧ (η⊗̂η).

with i angular derivatives. We obtain

(4.13) ∇3∇
iσ̌ +

3 + i

2
trχ∇iσ̌ = G
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where G is given by

G =
∑

i1+i2+i3=i+1

∇i1ψi2+1∇i3ψ(4.14)

+
1

u

∑

i1+i2+i3=i−1

∇i1ψi2+1∇i3 σ̌ + div
∗
∇iβ

:= G1 +G2 +G3.

We now apply proposition 3.4 with λ0 =
i+3
2 , so that

|u|i+2∥∇iσ̌∥L2(Su,δ) ≲ ∥∇iσ̌∥L2(S1,δ) +

∫ 1

u
|u′|i+2∥G∥L2(Su′,δ) du

′.

There holds

∫ 1

u
|u′|i+2∥G∥L2(Su′,δ) du

′ ≲

3∑

j=1

∫ 1

u
|u′|i+2∥Gj∥L2(Su′,δ) du

′.

We estimate these terms separately.

• There holds

∥∥∥
∑

i1+i2+i3=i+1

ui+2∇i1ψi2+1∇i3ψ
∥∥∥
L1

uL
2(Su,δ)

(4.15)

≲
∑

i1+i2+i3=i+1

∥ui1+i2−1∇i1ψi2+1∥L1
uL

2(Su,δ) · ∥u
i3+2∇i3ψ∥L∞

u L∞(Su,δ)

≲
δ · a

1

2

u
· δa

1

2 ≲
δ2a

u
.

• For the second term, there holds, recalling that σ̌ = curl η = ∇ψ
schematically,

∥∥∥
∑

i1+i2+i3=i−1

ui+1∇i1ψi2+1∇i3 σ̌
∥∥∥
L1

uL
2(Su,δ)

(4.16)

≲
∑

i1+i2+i3=i−1

∥ui1+i2−1∇i1ψi2+1∥L1
uL

2(Su,δ)∥u
i3+3∇i3+1ψ∥L∞

u L∞(Su,δ)

≲
δa

1

2

u
· δa

1

2 +
δa

1

2

u2
· u · δ · a

1

2 ≲
δ2a

u
.
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• Finally, we estimate the term involving β,

∥∥∥ui+2∇i+1β
∥∥∥
L1

uL
2(Su,δ)

=

∫ 1

u
|u′|i+2∥∇i+1β∥L2(Su′,δ) du

′(4.17)

≲

(∫ 1

u
|u′|2i+6∥∇i+1β∥2L2(Su′,δ)

du′

) 1

2

·

(∫ 1

u
|u′|−2 du′

) 1

2

≲
1

u
1

2

·
∥∥∥ui+3∇i+1β

∥∥∥
L2

uL
2(Su,δ)

≲
1

u
1

2

·
∥∥∥ui+3∇i+1β

∥∥∥
L2(Hδ)

≲
δ

3

2a
3

4

u
1

2

.

Consequently, the worst term comes from the initial data, so that multiplying
by u−1 we get

(4.18) ∥ui+1∇iσ̌∥L2(Su,δ) ≲
δa

1

2

u
.

For σ, there holds

σ̌ = σ +
1

2
χ̂ ∧ χ̂.

Consequently, we have

∥ui+1∇iσ∥L2(Su,δ)(4.19)

≲ ∥ui+1∇iσ̌∥L2(Su,δ) +
∥∥∥ui+1

∑

i1+i2=i

∇i1χ̂∇i2 · χ̂
∥∥∥
L2(Su,δ)

≲
δa

1

2

u
+

∑

i1+i2=i

∥ui1∇i1χ̂∥L2(Su,δ) · ∥u
i2+1∇i2χ̂∥L∞(Su,δ)

≲
δa

1

2

u
+
δa

u
·
δa

1

2

u
≲
δa

1

2

u
.

We recall here that we have chosen a
1

2 ≤ b so that δa ≤ u. Moreover, we
have used the improved estimates for χ̂ on the incoming cone from Propo-
sition 4.1. This concludes the result for σ. □

We now bound β.

Proposition 4.3. There holds

∥ui+1∇iβ∥L2(Su,δ) ≲
δa

u
.
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Proof. We begin with the Bianchi equation for β:

∇3β + trχβ = −∇K + ∗∇σ̌ + 2ωβ − 3(ηK − ∗ησ̌)(4.20)

+
1

2
(∇(χ̂ · χ̂) + ∗∇(χ̂ ∧ χ̂))−

3

4
η trχtrχ

+
3

2
(ηχ̂ · χ̂+ ∗ηχ̂ ∧ χ̂)−

1

4
(∇trχtrχ+ trχ∇trχ).

Commuting with i angular derivatives and using the schematic representa-
tion, we have

(4.21) ∇3∇
iβ +

i+ 2

2
trχ∇iβ = Gi,

where

Gi =
∗D1

(
∇i

(
K −

1

u2

)
,∇iσ̌

)
+ ψ∇i+1ψ(4.22)

+
1

u
∇i+1trχ+ ψ∇i+1(χ̂, trχ)

+
∑

i1+i2+i3=i

∇i1ψi2+1∇i3

(
K −

1

u2
, σ̌

)

+
∑

i1+i2+i3=i+1
i1,i3≤i

∇i1ψi2+1∇i3ψ

+
1

u

∑

i1+i2+i3=i

∇i1ψi2+1∇i3ψ +
1

u2

∑

i1+i2=i

∇i1ψi2+1.

Applying Proposition 3.4 with λ0 =
i+2
2 , we can bound

∥ui+1∇iβ∥L2(Su,δ) ≲ ∥∇iβ∥L2(S1,δ) + ∥ui+1Gi∥L1
uL

2(Su,δ).

• There holds

∥∥∥ui+1∇i+1

(
K −

1

u2
, σ̌

)∥∥∥
L1

uL
2(Su,δ)

(4.23)

≲
∥∥∥ui+2∇i+1

(
K −

1

u2
, σ̌

)∥∥∥
L2

uL
2(Su,δ)

·
∥∥∥1
u

∥∥∥
L2

u

≲
δa

1

2

u
,

where we have used the improved bounds on K − 1
u2 from Proposi-

tion 3.2 as well as the improved estimates on σ̌ from the previous
proposition.
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• There holds

∥∥∥ui+1ψ∇i+1ψ
∥∥∥
L1

uL
2(Su,δ)

(4.24)

≲ ∥uψ∥L2
uL

∞(Su,δ)∥u
i∇i+1ψ∥L2

uL
2(Su,δ)

≲
δa

1

2

u
1

2

·
a

1

2

u
1

2

≲
δa

u
.

• There holds

(4.25) ∥ui∇i+1trχ∥L1
uL

2(Su,δ) =
∥∥∥ui∇i+1

(
trχ−

2

u

)∥∥∥
L1

uL
2(Su,δ)

≲
δa

u
.

• There holds

∥∥∥ui+1ψ∇i+1
(
χ̂, trχ

)∥∥∥
L1

uL
2(Su,δ)

(4.26)

≲ ∥ψ∥L2
uL

∞(Su,δ)

∥∥∥ui+1∇i+1
(
χ̂, trχ

)∥∥∥
L2

uL
2(Su,δ)

≲
a

1

2

u
1

2

·
δa

1

2

u
1

2

≲
δa

u
.

• There holds

∥∥∥ui+1
∑

i1+i2+i3=i

∇i1ψi2+1∇i3

(
K −

1

u2
, σ̌

)∥∥∥
L1

uL
2(Su,δ)

(4.27)

≲
∑

i1+i2+i3=i

∥ui1+i2∇i1ψi2+1∥L2
uL

∞(Su,δ)

×
∥∥∥ui3+1∇i3

(
K −

1

u2
, σ̌

)∥∥∥
L2

uL
2(Su,δ)

≲
δa

1

2

u
· δ

1

2a
1

2 ≲
δ

3

2a

u
.

• There holds

∥∥∥ui
∑

i1+i2+i3=i

∇i1ψi2+1∇i3ψ
∥∥∥
L1

uL
2(Su,δ)

(4.28)

≲
∑

i1+i2+i3=i

∥ui1+i2∇i1ψi2+1∥L2
uL

2(Su,δ)

∥∥∥ui3∇i3ψ
∥∥∥
L2

uL
∞(Su,δ)

≲
δa

1

2

u
1

2

·
a

1

2

u
1

2

≲
δa

u
.
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• There holds

(4.29)
∑

i1+i2=i

∥ui1+i2−1∇i1ψi2+1∥L1
uL

2(Su,δ) ≲
δa

1

2

u
.

Consequently, there holds

(4.30) ∥ui+1∇iβ∥L2(Su,δ) ≲
δa

u
.

□

We proceed to control the term trχ− 2
u + 4m0

u2 .

Proposition 4.4. There holds

∥∥∥ui+1∇i

(
trχ−

2

u
+

4m0

u2

)∥∥∥
L2(Su,δ)

≲
δa

u
1

2

+
δa

1

2

u
≲
δ

1

2a
1

2

u
1

2

.

Proof. Recall the transport equation

(4.31) ∇3trχ+
1

2
trχtrχ = 2ω trχ+ 2ρ− χ̂ · χ̂+ 2divη + 2 |η|2.

We can rewrite this using the Gauss equation K = −ρ+ 1
2 χ̂ · χ̂− 1

4trχtrχ
to obtain

(4.32) ∇3trχ+ trχ trχ = −2K + 2ω trχ+ 2divη + 2 |η|2.

There holds

∇3

(
trχ−

2

u
+

4m0

u2

)
+ trχ

(
trχ−

2

u
+

4m0

u2

)
(4.33)

= −2

(
K −

1

u2

)
−

2

u

(
trχ+

2

u

)
+

2(1− Ω−1)

u2

+
4m0

u2

(
trχ+

2

u

)
+

8m0(Ω
−1 − 1)

u3

+ 2ω trχ+ 2divη + 2 |η|2

:= G0.

Commuting with i angular derivatives, we arrive at

∇3∇
i

(
trχ−

2

u
+

4m0

u2

)
+
i+ 2

2
trχ∇i

(
trχ−

2

u
+

4m0

u2

)
(4.34)
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=
∑

i1+i2+i3=i

∇i1ψi2∇i3G0

+
∑

i1+i2+i3=i

∇i1ψi2∇i3

(
trχ−

2

u
+

4m0

u2

)

+
∑

i1+i2+i3=i
i3≤i−1

trχ∇i1ψi2∇i3

(
trχ−

2

u
+

4m0

u2

)
:= Gi.

Proposition 3.4 implies that we can control

∥ui+1∇i

(
trχ−

2

u
+

4m0

u2

)
∥L2(Su,δ)(4.35)

≲
∥∥∥∇i

(
trχ−

2

u
+

4m0

u2

)∥∥∥
L2(S1,δ)

+
∥∥∥ui+1Gi

∥∥∥
L1

uL
2(Su,δ)

.

Before we continue, we remark the following: As can be seen from the last
two terms in (4.35), the estimates will have to be carried out using induction.
To do this, we first obtain estimates of the form

∥∥∥ui+1
∑

i1+i2+i3=i

∇i1ψi2∇i3G0

∥∥∥
L1

uL
2(Su,δ)

≲ T (δ, a, u).

As soon as we have obtained these estimates, we have essentially obtained
the desired bounds for i = 0. For i ≥ 1, we shall then use the inductive
assumption

∥uj+1∇j

(
trχ−

2

u
+

4m0

u2

)
∥L2(Su,δ) ≲ T (δ, a, u), ∀ j < i,

which we will use to estimate the last two terms in (4.35).

• There holds

∥∥∥
∑

i1+i2+i3=i

ui+1∇i1ψi2∇i3

(
K −

1

u2

)∥∥∥
L1

uL
2(Su,δ)

(4.36)

≲
∥∥∥ui+1∇i

(
K −

1

u2

)∥∥∥
L1

uL
2(Su,δ)

+
∑

i1+i2+i3+1=i

∥ui1+i2+1∇i1ψi2+1∥L2
uL

∞(Su,δ)

×
∥∥∥ui3+1∇i3

(
K −

1

u2

)∥∥∥
L2

uL
2(Su,u)
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≲
∥∥∥ui+1∇i

(
K −

1

u2

)∥∥∥
L2

uL
2(Su,δ)

· ∥1∥L2
u

+
∑

i1+i2+i3+1=i

∥ui1+i2+1∇i1ψi2+1∥L2
uL

∞(Su,δ)

×
∥∥∥ui3+1∇i3

(
K −

1

u2

)∥∥∥
L2

uL
2(Su,u)

≲
δa

1

2

u
1

2

+
δa

1

2

u
1

2

·
δa

1

2

u
1

2

≲
δa

1

2

u
1

2

.

Here we have made use of the improved estimate

∥ui+2∇i
(
K − 1

u2

)
∥L2(Su,u) ≲ δa

1

2 from Theorem 3.2.

• There holds
∥∥∥∥

∑

i1+i2+i3=i

ui∇i1ψi2∇i3

(
trχ+

2

u

)∥∥∥∥
L1

uL
2(Su,δ)

(4.37)

≲

∥∥∥∥u
i∇i

(
trχ+

2

u

)∥∥∥∥
L1

uL
2(Su,δ)

+
∑

i1+i2+i3+1=i

∥ui1+i2+1∇i1ψi2+1∥L∞

u L2(Su,δ)

×
∥∥∥ui3∇i3

(
trχ+

2

u

)∥∥∥
L1

uL
∞(Su,δ)

≲

∥∥∥∥u
i∇i

(
trχ+

2

u

)∥∥∥∥
L2

uL
2(Su,δ)

· ∥1∥L2
u

+
∑

i1+i2+i3+1=i

∥ui1+i2+1∇i1ψi2+1∥L∞

u L2(Su,δ)

×
∥∥∥ui3∇i3

(
trχ+

2

u

)∥∥∥
L1

uL
∞(Su,δ)

≲
δa

1

2

u
1

2

+ δa
1

2 ·
δa

1

2

u
≲
δa

1

2

u
1

2

.

• There holds
∥∥∥∥

∑

i1+i2+i3=i

ui−1m0∇
i1ψi2∇i3

(
trχ+

2

u

)∥∥∥∥
L1

uL
2(Su,δ)

(4.38)

≲

∥∥∥∥
∑

i1+i2+i3=i

ui∇i1ψi2∇i3

(
trχ+

2

u

)∥∥∥∥
L2

uL
2(Su,δ)

·
∥∥∥m0

u

∥∥∥
L2

u

≲
δa

1

2m0

u
≲
δa

1

2

u
.
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• There holds

(4.39)
∥∥∥ui−1

∑

i1+i2+i3=i

∇i1ψi2∇i3
(
1− Ω−1

)∥∥∥
L1

uL
2(Su,δ)

≲
δa

1

2

u
1

2

,

keeping in mind that ω = 1
2∂uΩ

−1 and that Ω−1 = 1 on H0. Indeed,
when i = 0, there holds

∥∥∥u−1
(
1− Ω−1

)∥∥∥
L1

uL
2(Su,δ)

≲ ∥1− Ω−1∥L2
uL

2(Su,δ) · ∥u
−1∥L2

u
≲ δa

1

2 ·
1

u
1

2

.

For i ≥ 1, there holds

∥∥∥ui−1
∑

i1+i2+i3=i

∇i1ψi2∇i3
(
1− Ω−1

)∥∥∥
L1

uL
2(Su,δ)

(4.40)

≲

∥∥∥∥u
i−1∇i

(∫ u

0
2ω(u, u′, θ1, θ2)du′

)∥∥∥∥
L1

uL
2(Su,δ)

+

∥∥∥∥u
i−1

∑

i1+i2+i3=i

∇i1ψi2∇i3

(∫ u

0
2ω(u, u′, θ1, θ2)du′

)∥∥∥∥
L1

uL
2(Su,δ)

≲

∥∥∥∥u
i−1

∫ u

0
∇iω(u, u′, θ1, θ2)du′

∥∥∥∥
L1

uL
2(Su,δ)

+

∥∥∥∥u
i−1

∑

i1+i2+i3+1=i

∇i1ψi2+1

(∫ u

0
∇i3ω(u, u′, θ1, θ2)du′

)∥∥∥∥
L1

uL
2(Su,δ)

≲ ∥u−1∥L2
u
· δ · ∥ui∇iω∥L2

uL
2(Su,δ)

+
∑

i1+i2+i3=i

∥ui1+i2∇i1ψi2+1∥L2
uL

2(Su,δ) · δ · ∥u
i3∇i3ω∥L2

uL
∞(Su,δ)

≲
1

u
1

2

· δ · a
1

2 +
δa

1

2

u
·
δa

1

2

u
1

2

≲
δa

1

2

u
1

2

.

• Similarly, one bounds

∥ui−2m0∇
i
(
1− Ω−1

)
∥L1

uL
2(Su,δ)(4.41)

≲ ∥ui−1∇i
(
1− Ω−1

)
∥L2

uL
2(Su,δ) · ∥u

−1m0∥L2
uL

∞(Su,δ)

≲
δa

1

2m0

u
≲
δa

1

2

u
.
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• There holds

∥∥∥
∑

i1+i2+i3+i4=i

ui+1∇i1ψi2∇i3ω∇i4trχ
∥∥∥
L1

uL
2(Su,δ)

(4.42)

=
∥∥∥

∑

i1+i2+i3=i

ui+1∇i1ψi2+1∇i3trχ
∥∥∥
L1

uL
2(Su,δ)

≲
∑

i1+i2+i3=i

∥ui1+i2∇i1ψi2+1∥L2
uL

2(Su,δ)∥u
i3+1∇i3trχ∥L2

uL
∞(Su,δ)

≲
δa

1

2

u
1

2

· a
1

2 ≲
δa

u
1

2

.

• There holds

∥∥∥ui+1
∑

i1+i2+i3=i

∇i1ψi2∇i3+1η
∥∥∥
L1

uL
2(Su,δ)

(4.43)

= ∥ui+1∇i+1η∥L1
uL

2(Su,δ) + ∥ui+1

×
∑

i1+i2+i3+1=i

∇i1ψi2+1∇i3+1η
∥∥∥
L1

uL
2(Su,δ)

≲ ∥ui+1∇i+1η∥L1
uL

2(Su,δ)

+
∑

i−1

∥ui1+i2−1∇i1ψi2+1∥L1
uL

2(Su,u)∥u
i3+3∇i3+1η∥L∞

u L∞(Su,u)

≲
∥∥∥1
u

∥∥∥
L2

u

∥ui+2∇i+1η∥L2
uL

2(Su,δ)

+
∑

i−1

∥ui1+i2−1∇i1ψi2+1∥L1
uL

2(Su,δ)∥u
i3+3∇i3+1η∥L∞

u L∞(Su,δ)

≲
1

u
1

2

· (δa
1

2 ) +
δa

1

2

u
· δa

1

2 ≲
δa

1

2

u
1

2

.

• There holds

∥∥∥ui+1
∑

i1+i2+i3+i4=i

∇i1ψi2∇i3η∇i4η
∥∥∥
L1

uL
2(Su,δ)

(4.44)

=
∥∥∥ui+1

∑

i1+i2+i3=i

∇i1ψi2+1∇i3η
∥∥∥
L1

uL
2(Su,δ)

≲
∑

i1+i2+i3=i

∥ui1+i2−1∇i1ψi2+1∥L1
uL

2(Su,δ)∥u
i3+2∇i3η∥L∞

u L∞(Su,δ)

≲
δ2a

u
.



✐

✐

“1-Lesourd” — 2023/12/24 — 23:47 — page 2447 — #69
✐

✐

✐

✐

✐

✐

Construction of Cauchy data 2447

This concludes the terms of the form
∑

i1+i2+i3=i∇
i1ψi2∇i3G0. The

worst term that has appeared is δa

u
1
2
+ δa

1
2

u . Consequently, the result

holds for i = 0, namely

∥u trχ− 2 +
4m0

u
∥L2(Su,δ) ≲

δa

u
1

2

+
δa

1

2

u
.

We can therefore set T (a, u, δ) = δa

u
1
2
and make the inductive assump-

tion

(4.45)
∥∥∥uj+1∇j

(
trχ−

2

u
+

4m0

u2

)∥∥∥
L2(Su,δ)

≲
δa

u
1

2

+
δa

1

2

u
,

for all j < i.

• There holds

∥∥∥ui+1
∑

i1+i2+i3=i

∇i1ψi2∇i3

(
trχ−

2

u
+

4m0

u2

)∥∥∥
L1

uL
2(Su,δ)

(4.46)

=
∥∥∥ui+1∇i

(
trχ−

2

u
+

4m0

u2

)∥∥∥
L2(Su,δ)

+
∥∥∥ui+1

∑

i1+i2+i3=i−1

∇i1ψi2+1∇i3

(
trχ−

2

u
+

4m0

u2

)∥∥∥
L1

uL
2(Su,δ)

≲
∥∥∥ui+1∇i

(
trχ−

2

u
+

4m0

u2

)∥∥∥
L1

uL
2(Su,δ)

+
∑

i1+i2+i3=i−1,
i1>i3

∥ui1+i2∇i1ψi2+1∥L1
uL

2(Su,δ)

× ∥ui3+2∇i3

(
trχ−

2

u
+

4m0

u2

)
∥L∞

u L∞(Su,δ)

+
∑

i1+i2+i3=i−1,
i3>i1

∥ui1+i2∇i1ψi2+1∥L1
uL

∞(Su,δ)

× ∥ui3+2∇i3

(
trχ−

2

u
+

4m0

u2

)
∥L∞

u L2(Su,δ)

≲
∥∥∥ui+1∇i

(
trχ−

2

u
+

4m0

u2

)∥∥∥
L1

uL
2(Su,δ)

+
δa

1

2

u
· T (a, u, δ)

The first term in the last inequality is handled by Grönwall’s inequality.
The second term is smaller than δa

u
1
2
.
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• We can also bound

∥∥∥ui+1
∑

i1+i2+i3+1=i

trχ∇i1ψi2+1∇i3

(
trχ−

2

u
+

4m0

u2

)∥∥∥
L1

uL
2(Su,δ)

(4.47)

≲
∥∥∥ui+1

∑

i1+i2+i3+1=i

(
trχ+

2

u

)
∇i1ψi2+1∇i3

(
trχ−

2

u
+

4m0

u2

)∥∥∥
L1

uL
2(Su,δ)

+
∥∥∥ui

∑

i1+i2+i3+1=i

∇i1ψi2+1∇i3

(
trχ−

2

u
+

4m0

u2

)∥∥∥
L1

uL
2(Su,δ)

≲
∑

i1+i2+i3+1=i,
i1<i3

∥ui1+i2+1∇i1ψi2+2∥L1
uL

∞(Su,u)

×

∥∥∥∥u
i3+1∇i3

(
trχ−

2

u
+

4m0

u2

)∥∥∥∥
L∞

u L2(Su,δ)

+
∑

i1+i2+i3+1=i,
i3<i1

∥ui1+i2∇i1ψi2+1∥L1
uL

2(Su,δ)

×

∥∥∥∥u
i3+1∇i3

(
trχ−

2

u
+

4m0

u2

)∥∥∥∥
L∞

u L∞(Su,δ)

≲
δa

1

2

u
T (a, u, δ).

So there holds

∥∥∥ui+1∇i

(
trχ−

2

u
+

4m0

u2

)∥∥∥
L∞

u L∞

u L2(Su,δ)
(4.48)

≲
δa

u
1

2

+
δa

1

2

u
≲
δ

1

2a
1

2

u
1

2

.

□

We now control ω + m0

2u2 .

Proposition 4.5. For i ≥ 1, there holds

∥∥∥ui∇i

(
ω +

m0

2u2

)∥∥∥
L2(Su,δ)

≲
δ

1

2a
1

2

u
1

2

.
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For k = 0, there holds

∥∥∥u
(
ω +

m0

2u2

)∥∥∥
L2(Su,δ)

≲
δ

1

2a
1

2

u
1

2

.

Proof. We first prove the bound for i ≥ 1, then for i = 0. We begin with the
schematic equation

∇3ω = K + ψψ + ψψ + trχtrχ.

Commuting this equation with i angular derivatives, we obtain

∇3∇
iω +

i

2
trχ∇iω =

∑

i1+i2+i3=i

∇i1ψi2∇i3K(4.49)

+
∑

i1+i2=i

∇i1ψi2+2 +
∑

i1+i2+i3=i

∇i1ψi2+1∇i3ψ

+
∑

i1+i2+i3=i−1

1

u
∇i1ψi2+1∇i3ψ +

1

u
∇itrχ := Gi.

Using Proposition 3.4 with λ0 =
i
2 and given that the initial data for

ui−1∇i
(
ω + m0

2u2

)
for i ≥ 1 vanish, we conclude that we can control

∥∥∥ui−1∇i

(
ω +

m0

2u2

)∥∥∥
L∞

u L2(Su,δ)
≲
∥∥∥ui−1Gi

∥∥∥
L1

uL
2(Su,δ)

.

Define

Fi :=
∑

i1+i2=i

∇i1ψi2+2 +
∑

i1+i2+i3=i

∇i1ψi2+1∇i3ψ

+
∑

i1+i2+i3=i−1

1

u
∇i1ψi2+1∇i3ψ.

We claim that

∥ui−1Fi∥L1
uL

2(Su,δ) ≲
δ

1

2a
1

2

|u|
3

2

.

Indeed, there holds

∥ui−1Fi∥L1
uL

2(Su,δ) ≲
1

u
∥uiFi∥L1

uL
2(Su,δ).
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Moreover, we have

∥∥∥ui
∑

i1+i2+i3=i

∇i1ψi2+1∇i3(ψ, ψ)
∥∥∥
L1

uL
2(Su,δ)

(4.50)

≲
∑

i1+i2+i3=i

∥ui1+i2−1∇i1ψi2+1∥L1
uL

2(Su,δ) · ∥u
i3+1∇i3(ψ, ψ)∥L∞

u L∞(Su,δ)

≲
δa

1

2

u

(
a

1

2 +
δa

1

2

u

)
≲
δa

u
,

while

∥∥∥ui−1
∑

i1+i2+i3=i−1

∇i1ψi2+1∇i3ψ
∥∥∥
L1

uL
2(Su,δ)

(4.51)

≲
∑

i1+i2+i3=i−1

∥ui1+i2−1∇i1ψi2+1∥L1
uL

2(Su,δ) · ∥u
i3+1∇i3ψ∥L∞

u L∞(Su,δ)

≲
δa

1

2

u

(
a

1

2 +
δa

1

2

u

)
≲
δa

u
.

We now focus on the two remaining terms, the one involving K and the one
with 1

u∇
itrχ. We first estimate the term containing the Gauss curvature.

We split it as follows:

K =

(
K −

1

u2

)
+

1

u2
.

For the term involving K − 1
u2 , when i2 = 0, we have

∥∥∥ui−1∇i

(
K −

1

u2

)∥∥∥
L1

uL
2(Su,δ)

(4.52)

≲
∥∥∥ui+1∇i

(
K −

1

u2

)∥∥∥
L2

uL
2(Su,δ)

· ∥u−2∥L2
u
≲
δ

1

2a
1

2

u
3

2

.

In the above we have used the improved bounds on R by Theorem 3.2. For
i2 ≥ 1, we have the following improved bound

∥∥∥
∑

i1+i2+i3=i−1

ui−1∇i1ψi2+1∇i3

(
K −

1

u2

)∥∥∥
L1

uL
2(Su,δ)

(4.53)
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≲
∑

i1+i2+i3=i−1

∥ui1+i2+2∇i1ψi2+1∥L∞

u L∞(Su,δ)

×
∥∥∥ui3+1∇i3

(
K −

1

u2

)∥∥∥
L2

uL
2(Su,δ)

· ∥u−3∥L2
u

≲ δa
1

2 · δ
1

2a
1

2 ·
1

u
5

2

≲
δ

3

2a

u
5

2

.

We now examine the contribution arising from the term 1
u2 . The only pos-

sibility in this case for having i2 = 0 is i = 0, which is excluded as we are
working with i ≥ 1. For i2 ≥ 1, we have

∥∥∥
∑

i1+i2=i−1

ui−1∇i1ψi2+1 1

u2

∥∥∥
L1

uL
2(Su,δ)

(4.54)

≲
∑

i1+i2≤i−1

∥ui1+i2+1∇i1ψi2+1∥L∞

u L2(Su,δ) · ∥u
−3∥L1

u
≲
δa

1

2

u2
.

We now estimate the remaining term, given that i ≥ 1, by

(4.55) ∥ui−2∇itrχ∥L1
uL

2(Su,δ) =
∥∥∥ui−2∇i

(
trχ−

2

u

)∥∥∥
L1

uL
2(Su,δ)

≲
δa

u2
.

Multiplying the above estimates by u, we arrive at

(4.56)
∑

k≥1

∥∥∥uk∇k

(
ω +

m0

2u2

)∥∥∥
L2(Su,δ)

≲
δ

1

2a
1

2

u
1

2

.

We finally focus on k = 0. Recall that there holds

∇3ω = 2ωω − η · η +
1

2
|η|2 +

1

2
ρ.

In particular, this implies

∇3

(
ω +

m0

2u2

)
= 2ωω − η · η(4.57)

+
1

2
|η|2 +

1

2

(
ρ+

2m0

u3

)
+

(
1− Ω−1

)
m0

u3
.

Notice the following identity:

ρ+
2m0

u3
= −

(
K −

1

u2

)
−

1

4

(
trχ−

2

u
+

4m0

u2

)(
trχ+

2

u

)
(4.58)
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+
1

2
χ̂ · χ̂+

1

2u

(
trχ−

2

u
+

4m0

u2

)

−
1

2u

(
trχ+

2

u

)
+
m0

u2

(
trχ+

2

u

)
.

Looking at (4.57) and using Proposition 3.4, we can bound
∥u−1

(
ω + m0

2u2

)
∥L2(Su,δ) by the initial data ∥ω + m0

2 ∥L2(S1,δ) and the
∥u−1·∥L1

uL
2(Su,δ)–norm of the right-hand side of (4.57).

• There holds

(4.59) ∥u−1ωω∥L1
uL

2(Su,δ) ≲

∫ 1

u
|u′|−1∥ω∥L∞(Su′,δ)∥ω∥L2(Su′,δ) du

′ ≲
δ a

u2
.

• There holds

(4.60) ∥u−1η η∥L1
uL

2(Su,δ) ≲

∫ 1

u
|u′|−1∥η∥L∞(Su′,δ)∥η∥L2(Su′,δ) du

′ ≲
δ2a

u3
.

• Similarly, there holds

(4.61)
∥∥∥u−1|η|2

∥∥∥
L1

uL
2(Su,δ)

≲
δ2a

u3
.

• There holds

(4.62)

∥∥∥∥

(
1− Ω−1

)
m0

u4

∥∥∥∥
L1

uL
2(Su,δ)

≲
δa

1

2m0

u3
.

• There holds
∥∥∥∥u

−1

(
K −

1

|u|2

)∥∥∥∥
L1

uL
2(Su,δ)

(4.63)

≲ ∥u−2∥L2
u
·

∥∥∥∥u
(
K −

1

|u|2

)∥∥∥∥
L∞

u L2
uL

2(Su,δ)

≲
δ

1

2a
1

2

u
3

2

.

• There holds

∥∥∥∥u
−1

(
trχ−

2

u
+

4m0

u2

)(
trχ+

2

u

)∥∥∥∥
L1

uL
2(Su,δ)

(4.64)

≲

∫ 1

u

∥∥∥u−1
∥∥∥
L∞(Su,δ)

·
∥∥∥trχ+

2

u

∥∥∥
L∞(Su,δ)

·
∥∥∥trχ−

2

u
+

4m0

u2

∥∥∥
L2(Su,δ)

du′
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≲

∫ 1

u
|u′|−1 ·

δa
1

2

|u′|2
·
a

1

2

b · u′
≲

δa

bu3

• There holds

∥u−1χ̂ · χ̂∥L1
uL

2(Su,δ)(4.65)

≲

∫ 1

u
∥u−1∥L∞(Su,δ) · ∥χ̂∥L∞ · ∥χ̂∥L2(Su,δ) du

′

≲

∫ 1

u
|u′|−1 ·

a
1

2

u′
·
δa

1

2

u′
du′ ≲

δa

u2
.

• There holds

(4.66)
∥∥∥u−2

(
trχ−

2

u
+

4m0

u2

)∥∥∥
L1

uL
2(Su,δ)

≲

∫ 1

u

δ
1

2a
1

2

u
7

2

du′ ≲
δ

1

2a
1

2

u
5

2

• There holds

(4.67)
∥∥∥u−2

(
trχ+

2

u

)∥∥∥
L1

uL
2(Su,δ)

≲

∫ 1

u

δa
1

2

u3
du′ ≲

δa
1

2

u2
.

• There holds

(4.68)
∥∥∥u−3m0

(
trχ+

2

u

)∥∥∥
L1

uL
2(Su,δ)

≲

∫ 1

u

δa
1

2 m0

u4
du′ ≲

δa
1

2 m0

u3
.

Multiplying all the above estimates by i and putting them together, there
holds

(4.69)
∥∥∥uω +

m0

2u

∥∥∥
L∞

u L∞

u L2(Su,δ)
≲
δ

1

2a
1

2

u
1

2

.

□

Remark 2. Notice that we need an extra u in (4.69), but this will not affect
our construction of the Transition Region.

We proceed with ρ+ 2m0

u3 .

Proposition 4.6. There holds

∥∥∥uk+2∇k

(
ρ+

2m0

u3

)∥∥∥
L2(Su,δ)

≲
δ

1

2a
1

2

u
1

2

.
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Proof. Notice the following identity

ρ+
2m0

u3
= −

(
K −

1

u2

)
−

1

4

(
trχ−

2

u
+

4m0

u2

)(
trχ+

2

u

)
(4.70)

+
1

2
χ̂ · χ̂+

1

2u

(
trχ−

2

u
+

4m0

u2

)

−
1

2u

(
trχ+

2

u

)
+
m0

u2

(
trχ+

2

u

)
.

Multiplying both sides of the equation by uk+2∇k, we arrive at the following

• There holds

(4.71)
∥∥∥uk+2∇k

(
K −

1

u2

)∥∥∥
L2(Su,δ)

≲ δa
1

2 .

• There holds

∥∥∥uk+2
∑

k1+k+2=k

∇k1

(
trχ−

2

u
+

4m0

u2

)
· ∇k2

(
trχ+

2

u

)∥∥∥
L2(Su,δ)

(4.72)

≲
∑

k1+k2=k

∥uk1+1∇k1

(
trχ−

2

u
+

4m0

u2

)
∥L2(Su,δ)

× ∥uk2+1∇k2

(
trχ+

2

u

)
∥L∞(Su,δ)

≲

(
δa

u
1

2

+
δa

1

2

u

)
·
δa

1

2

u
.

• Similarly, we can prove that the remaining terms, when controlled in

the L2(Su,δ)–norm, are bounded above by δ
1
2 a

1
2

u
1
2

.

The result follows. □

We finally bound α and α. We begin with estimates for α on Cδ.

Proposition 4.7. There holds

∥ui+1∇iα∥L2(Su,δ) ≲
δa

u
.
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Proof. Recall the Bianchi equation for α:

∇4α+
1

2
trχα = −∇⊗ β + 4ωα− 3(χ̂ ρ− ∗χ̂σ) + (ζ − 4η)⊗̂β.

Using the constraint equation

β = div χ̂−
1

2
∇ trχ−

1

2
(η − η) ·

(
χ̂−

1

2
trχ

)
,

an application of Proposition 3.13 yields

∇4∇
iα =

∑

i1+i2+i3+i4=i

∇i1ψi2∇i3ψ∇i4α(4.73)

+
∑

i1+i2+i3+i4=i

∇i1ψi2∇i3χ̂∇i4(ρ, σ)

+
∑

i1+i2+i3+i4=i

∇i1ψi2∇i3(η, η)∇i4+1(χ̂, trχ)

+
∑

i1+i2+i3+i4+i5=i

∇i1ψi2∇i3(η, η)∇i4(η, η)∇i5(χ̂, trχ)

+
∑

i1+i2+i3=i

∇i1ψi2∇i3+2(χ̂, trχ)

+
∑

i1+i2+i3+i4=i

∇i1ψi2∇i3(χ̂, trχ)∇i4+1(η, η).

Notice, furthermore, that ∇iα = 0 on the initial incoming cone, because it is
a Minkowski null cone. We shall prove the estimates inductively. For i = 0,
using Proposition 3.3, we have

∥α∥L2(Su,δ) ≲

∫ δ

0
∥(ω, trχ)α∥L2(Su,u′ ) du

′(4.74)

+

∫ δ

0
∥∇2(χ̂, trχ)∥L2(Su,u′ ) du

′

+

∫ δ

0
∥(η, η)∇(χ̂, trχ)∥L2(Su,u′ ) du

′

+

∫ δ

0
∥(χ̂, trχ)∇(η, η)∥L2(Su,u′ ) du

′

+

∫ δ

0
∥χ̂ · (ρ, σ)∥L2(Su,u′ ) du

′

+

∫ δ

0
∥(η, η) · (η, η) · (χ̂, trχ)∥L2(Su,u′ ) du

′.
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We treat each term separately.

• There holds ∥(ω, trχ)α∥L1
uL

2(S) ≲ ∥(ω, trχ)∥L∞(S)∥α∥L1
uL

2(S) ≲
a

1
2

u ·

∥α∥L1
uL

2(S). This term is thus absorbed to the left by Grönwall’s in-
equality.

• There holds

∥∇2(χ̂, trχ)∥L1
uL

2(S) ≲ δ ∥∇2(χ̂, trχ)∥L∞

u L2(S) ≲ δ ·
δ a

1

2

u3
.

• There holds

∥(η, η)∇(χ̂, trχ)∥L1
uL

2(S) ≲ δ∥(η, η)∥L∞

u L∞(S)∥∇(χ̂, trχ)∥L∞

u L2(S) ≲
δ3a

u4
.

• There holds

∥(χ̂, trχ)∇(η, η)∥L1
uL

2(S) ≲ δ∥∇(η, η)∥L∞

u L∞(S)∥(χ̂, trχ)∥L∞

u L2(S) ≲ δ ·
δa

1

2

u3
·

• There holds

∥χ̂ · (ρ, σ)∥L1
uL

2(S)(4.75)

≲ ∥χ̂ · ρ∥L1
uL

2(S) + ∥χ̂ · ∇η∥L1
uL

2(S) + ∥χ̂ · χ̂ · χ̂∥L1
uL

2(S)

≲ ∥χ̂ · ρ∥L1
uL

2(S) + δ · ∥χ̂∥L∞

u L∞(S)∥∇η∥L∞

u L2(S)

+ δ∥χ̂∥2L∞

u L∞(S)∥χ̂∥L∞

u L2(S)

≲ ∥χ̂ · ρ∥L1
uL

2(S) +
δ2a

u3
+
δ2a

3

2

u3
.

For χ̂ · ρ, we can rewrite this term as

χ̂ · ρ = χ̂ · (K −
1

u2
) +

1

4

(
χ̂ · trχ · (trχ−

2

u
) +

2χ̂

u
(trχ+

2

u
)

)
+

1

2
χ̂ · χ̂ · χ̂.

We thus have

∥χ̂ · ρ∥L1
uL

2(S) ≲ ∥χ̂∥L2
uL

∞(S) ·
∥∥∥K −

1

u2

∥∥∥
L2

uL
2(S)

(4.76)

+
1

u
∥χ̂∥L∞

u L∞(S)∥trχ+
2

u
∥L1

uL
2(S)

+
1

u
∥χ̂∥L∞

u L∞(S)∥trχ−
2

u
∥L1

uL
2(S)

+ δ∥χ̂∥2L∞

u L∞(S)∥χ̂∥L∞

u L2(S)
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≲
δa

u2
+
δ2a

u3
+
δ2a

3

2

u3
++

δ2a
3

2

u3
≲
δa

u2
.

• Finally,

∥(η, η) · (η, η) · (χ̂, trχ)∥L1
uL

2(S)(4.77)

≲ δ∥(η, η)∥2L∞

u L∞(S)∥(χ̂, trχ)∥L∞

u L2(S) ≲
δ3a

u4
.

Combining the above estimates together we see that there holds

(4.78) ∥uα∥L2(Su,u) ≲
δa

u
≲
δ

1

2a
1

2

u
1

2

.

A routine induction argument using (4.73) yields, for all i and for all u ≥ 1
2 ,

that

(4.79) ∥ui+1∇iα∥L2(Su,u) ≲
δa

u
≲
δ

1

2a
1

2

u
1

2

.

□

Finally, we move on to estimates for α on the incoming cone Cδ.

Proposition 4.8. There holds

∥ui+1∇iα∥L2(Su,δ) ≲
δa

u
.

Proof. Recall the Bianchi equation for α, given by

∇3α+
1

2
trχα = ∇⊗ β + 4ωα− 3(χ̂ρ+ ∗χ̂σ + (ζ + 4η)⊗̂β.

Using Proposition 3.4, there holds

∥α∥L2(Su,δ) ≲ ∥∇β∥L1
uL

2(S)(4.80)

+

∫ 1

u
∥ωα∥L2(Su′,δ) du

′

+

∫ 1

u
∥χ̂ · (ρ, σ)∥L2(Su′,δ) du

′

+

∫ 1

u
∥(η, η) · β∥L2(Su′,δ) du

′.
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At this point we crucially use the estimates for β obtained in this section.
We have

∥ui+1∇iβ∥L2(Su,δ) ≲
δa

u
.

∥α∥L2(Su,δ) ≲

∫ 1

u

δa

|u′|3
du′(4.81)

+

∫ 1

u
∥ω∥L∞(Su′,δ)∥α∥L2(Su′,δ) du

′

+

∫ 1

u
∥(η, η)∥L∞(Su′,δ)∥β∥L2(Su′,δ) du

′

+

∫ 1

u
∥χ̂∥L∞(Su′,δ)∥(ρ, σ)∥L2(Su′,δ) du

′

≲
δa

u2
+

∫ 1

u

δa
1

2

|u′|2
∥α∥L2(Su′,δ) du

′ +

∫ 1

u

δ a
1

2

|u′|2
·
δa

|u′|2
du′

≲
δa

u2
+
δ2a

3

2

u3
+

∫ 1

u

δa
1

2

|u′|2
∥α∥L2(Su′,δ) du

′

+

∫ 1

u

δa

u′
· ∥(ρ, σ)∥L2(Su′,δ) du

′.

By using Grönwall’s inequality and the improved estimates on χ̂ from Propo-
sition 4.1, we arrive at

∥a∥L2(Su,δ) ≲
δa

u2
+

∫ 1

u

δa

|u′|2
· ∥(ρ, σ)∥L2(Su′,δ) du

′(4.82)

≲
δa

u2
+

∫ 1

u

δa

|u′|2
·
(
∥∇η∥L2(Su′,δ) + ∥χ̂ · χ̂∥L2(Su′,δ)

)
du′

+

∫ 1

u

δa

|u′|2

(
∥K −

1

|u′|2
∥L2(Su′,δ) + ∥trχ+

2

u′
∥L2(Su′,δ)

)
du′

+

∫ 1

u

δa

|u′|2
·
1

u′
· ∥trχ−

2

u′
∥L2(Su′,δ) du

′.

Putting everything together, there holds

(4.83) ∥a∥L2(Su,δ) ≲
δa

u2
+
δ2a2

u3
≲
δa

u2
.

A simple induction argument then yields

(4.84) ∥ui+1∇iα∥L2(Su,δ) ≲
δa

u
. □
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Remark 3. The problem with using α and α in [5] is not that these quan-
tities are singular, as in [21], but rather that they are large. So large, in fact,
that with them it would be impossible to prove the existence of the spacetime
up to u = δa

1

2 b. The reason we are able to obtain better estimates here is
that we have started with χ̂ = 0 and gradually improved every Ricci coeffi-
cient and curvature component. At most steps through the incoming cone
estimates, we have used the improved estimates on the incoming cone that
arose from previous propositions in this section. In other words, the improve-
ment on χ̂ and its implications is what ultimately gives us better control on
these quantities.

4.3. The geometry of the outgoing cone C
[δ,δ+1]
0

We extend the data onto an outgoing cone, extending the original data, so

that χ̂ = 0 on this extension, now labelled C
[δ,δ+1]
0 .m0 is the mass parameter

of a Schwarzschild spacetime, and the various curvature and connection
terms will be renormalized with respect to the values they take in a certain
patch of an m0 Schwarzschild spacetime. The quantities η, η, ω, ω, σ̌m0

and

Km0
− 1

u2 all vanish in any Schwarzschild spacetime.

We begin with a few preliminary remarks on setting up the problem.

Remark 4. We extend the initial data on a cone C
[δ,δ+1]
0 with Ω ≡ 1 on

the cone.

Remark 5. The fact that χ̂ = 0 and ω = 0 on C
[δ,δ+1]
0 implies that, ini-

tially, trχ satisfies an equation of the form

∇4trχ = −
1

2
(trχ)2 .

In particular, trχ is pointwise bounded by a uniform constant on this outgo-
ing cone. Using the identity

d

du

∫

Su,u

f =

∫

Su,u

(
df

du
+Ω trχf

)
=

∫

Su,u

Ω
(
e4(f) + trχf

)
,

plugging in f = |ϕ|2γ and using Cauchy-Schwartz on the sphere along with
the L∞ bounds on Ω and trχ, we have for u ≥ δ that

∥ϕ∥L2(S1,u) ≲ ∥ϕ∥L2(S1,δ) +

∫ u

δ
∥∇4ϕ∥L2(S1,u′ ) du

′.
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Remark 6. The fact that the areas of the spheres S1,u for δ ≤ u ≤ δ + 1 are
uniformly bounded above and below by positive constants implies a Sobolev
embedding statement:

∥ϕ∥L∞(S1,u) ≲

2∑

i=0

∥∇iϕ∥L2(S1,u).

Proposition 4.9. On the outgoing cone C
[δ,δ+1]
0 , we have χ̂ = 0, ω = 0,

and for all k the following:

∇k
(
trχ− trχm0

, η, β,K − 1, σ̌, ω − ωm0
, trχ− trχ

m0
, β
)
≲ δa.

Proof. The proof will proceed via an induction argument on the number k
of derivatives. We will obtain these estimates in the order in which they
are stated. This reflects how various terms come into the null structure and
transport equations.

Since on the outgoing cone u ∈ [δ, δ + 1] we have χ̂ = α = ω = 0, η = −η,
σ = σ̌, ζ = η the transport and Bianchi equations of interest in the ∇4 direc-
tion may be written as follows. Note below that we are loose with notation:
for ‘ div ’ we write ∇, for η⊗̂η we write η2, and for ∗∇σ we simply write ∇σ.

∇4trχ = −
1

2
(trχ)2,(4.85)

∇4η = −trχη − β,(4.86)

∇4β = −2trχβ,(4.87)

∇4K = −trχK −∇β − ηβ +
1

2
trχ∇η +

1

2
trχη2,(4.88)

∇4σ̌ = −
3

2
trχσ̌ −∇β + ηβ,(4.89)

∇4ω =
3

2
η2 +

1

2
ρ,(4.90)

∇4trχ = −
1

2
trχtrχ+ 2ρ− 2∇η + 2η2,(4.91)

∇4χ̂ = −
1

2
(trχ)χ̂−∇η + η2,(4.92)

∇4β = −trχβ −∇ρ+∇σ̌ + 2χ̂β + 3η(ρ− σ̌),(4.93)

Note here on the outgoing cone the constraint equations for ρ and β become

β =
1

2
∇trχ+

1

2
trχη,(4.94)

ρ = −K −
1

4
trχtrχ,(4.95)
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The proof will proceed via an induction argument on the number k of deriva-
tives. Before starting, we note that, since η + η = 0 on the cone, the com-
mutation formula in Proposition 5.12 of [AL17] becomes.

Proposition 4.10. If ∇4ϕ = F0 then ∇4∇
iϕ = Fi is schematically given

by

Fi = ∇iF0 +
∑

i1+i2=i

∇i1trχ∇i2ϕ+
∑

i1+i2=i−1

∇i1β∇i2ϕ

We are now in a position to prove the desired statements.

Lemma 4.2. For all k there holds |∇k+1trχ|+ |∇kη| ≲ δa.

Proof. We begin with k = 0 and with trχ− trχm0
. There holds

∇4(trχ− trχm0
) = −

1

2
(trχ+ trχm0

)(trχ− trχm0
).

Since trχ+ trχm0
is pointwise bounded on C

[δ,δ+1]
0 , there holds

∥trχ− trχm0
∥L∞(S1,u) ≲ ∥trχ− trχm0

∥L∞(S1,δ) ≲ δa,

where in particular we have made use of the sphere estimates from Propo-
sition 4.1. From now on, we shall make the following bootstrap assumption
on η:

Assumption 1. There holds ∥∇jη∥L∞(S1,u) ≲ 1 for all 0 ≤ j ≤ k, δ ≤ u ≤
δ + 1.

Assume, as an inductive step, that |∇j(trχ− trχm0
)| ≲ δa for all j < k.

Using Assumption 1, we notice that the following schematic commutation
formula holds:

∇4∇
k+1 (trχ− trχm0

)(4.96)

=
∑

i1+i2=k+1

∇i1(trχ− trχm0
)∇i2(trχ+ trχm0

)

+
∑

i1+i2=k+1

∇i1trχ∇i2(trχ− trχm0
)

+
∑

i1+i2+i3=k

∇i1trχ∇i2η∇i3(trχ− trχm0
).
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Consequently, there holds

∥∇k+1(trχ− trχm0
)∥L2(S1,u)

(4.97)

≲ δa+

∫ u

δ

∥∥∥
∑

i1+i2=k+1

∇i1(trχ− trχm0
)∇i2(trχ+ trχm0

)
∥∥∥
L2(S1,u′ )

du′

+

∫ u

δ

∥∥∥
∑

i1+i2=k+1

∇i1trχ∇i2(trχ− trχm0
)
∥∥∥
L2(S1,u′ )

du′

+

∫ u

δ

∥∥∥
∑

i1+i2+i3=k

∇i1(trχ− trχm0
)∇i2η∇i3(trχ− trχm0

)
∥∥∥
L2(S1,u′ )

du′.

For the first two terms, whenever either i1 or i2 equals k + 1, we can use
Grönwall’s inequality to absorb the corresponding term. When neither of the
derivatives are of top order, we bound the term using our inductive step. For
the third term, we use the inductive step along with the auxiliary bootstrap
assumption on η to bound the integral by δa. The result follows for trχ.

For η, there holds

∇4η +
1

2
trχη =

1

2
∇trχ.

Commuting with i angular derivatives, for all j ≤ k there holds

∇4∇
jη = ∇j+1trχ+

∑

j1+j2=j

∇j1trχ∇j2η(4.98)

+
∑

j1+j2+j3=j−1

∇j1trχ∇j2η∇j3η.

We see that there holds

∥∇jη∥L2(S1,u) ≲ ∥∇jη∥L2(S1,δ) +

∫ u

δ
∥∇j+1trχ∥L2(S1,u′ ) du

′(4.99)

+

∫ u

δ

∥∥∥
∑

j1+j2=j

∇j1trχ∇j2η
∥∥∥
L2(S1,u′ )

du′

+

∫ u

δ

∥∥∥
∑

j1+j2+j3=j−1

∇j1trχ∇j2η∇j3η
∥∥∥
L2(S1,u′ )

du′.

Using the recently obtained estimates on ∇j+1trχ and the Sobolev embed-
ding statement, along with Proposition 4.1 for the sphere S1,δ, we can bound
∇jη in L∞ by δa. The result follows. □
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We move on to estimates for β. There holds, taking into account that ω, χ̂
and α vanish from δ to δ + 1 initially,

∇4β = −2trχβ.

A direct application of Grönwall’s inequality implies that ∥β∥L∞(S1,u) ≲ δa.
Upon commutation with i ≥ 1 angular derivatives, we get

(4.100) ∇4∇
iβ =

∑

i1+i2=i

∇i1trχ∇i2β +
∑

i1+i2+i3=i−1

∇i1trχ∇i2η∇i3β.

Using the estimates on trχ and η obtained above as well as Grönwall’s
inequality, we obtain that |∇iβ| ≲ δa for all i. □

We move on to estimates for K and σ̌. We have the following structure
equation:

∇4K = −trχK − div β + η · β −
1

2
trχdiv η −

1

2
trχ|η|2,

∇4Km0
= −trχm0

Km0
.

At first instance, the equation for K implies along with the bounds on
trχ, η and β implies the bound ∥K − 1∥L∞(S1,u) ≲ δa, so that K is uniformly
bounded above and below. Subtracting those two equations, we arrive at

∇4 (K −Km0
) = − (trχ− trχm0

)K − trχm0
(K −Km0

)

− div β + η · β −
1

2
trχdivη −

1

2
trχ|η|2.

Given the fact that K is uniformly bounded, along with the estimates on
trχ− trχm0

, trχm0
, β and η, we can conclude using Grönwall’s inequality

that

|K −Km0
| ≲ δa.

An induction argument gives us the result for all higher orders of angular
derivatives. Furthermore, the fact that σ̌ = curl η implies the same bounds
for σ̌ as those of η, so that |∇kσ̌| ≲ δa.
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We move on to estimates for χ̂. There holds

∇4χ̂+
1

2
trχχ̂ = −∇⊗̂η + η⊗̂η.

Using the uniform pointwise bound on trχ and the estimates on all deriva-
tives of η, we can use the inequality

∥χ̂∥L2(S1,u) ≲ ∥χ̂∥L2(S1,δ) +

∫ u

δ
∥∇4χ̂∥L2(S1,u′)

du′

along with a standard application of Grönwall’s lemma to conclude that

∥χ̂∥L2(S1,u) ≲ δa.

An application of the commutation formula offers the same estimate for any
number k of angular derivatives acting on χ̂. For trχ− trχ

m0
, there holds

∇4

(
trχ− trχ

m0

)
+ trχ

(
trχ− trχ

m0

)

= −trχ
m0

(trχ− trχm0
) + 2 (Km0

−K)− 2div η + 2|η|2.

Using the pointwise bounds on trχ, trχ− trχm0
, K −Km0

and on η and its
derivatives, an application of Grönwall’s inequality yields the desired bound

∥trχ− trχ
m0

∥L2(S1,u) ≲ δa.

An application of the commutation formula offers the same estimate for any
number k of angular derivatives.

For β, we work with the constraint equation

div χ̂ =
1

2
∇trχ−

1

2
trχη + β.

Using the estimates on η, trχ and χ̂ we arrive at the desired conclusion, which
can also be obtained for higher numbers of derivatives via the commutation
formula.

Finally, for ω − ωm0
, there holds

∇4

(
ω − ωm0

)
=

3

2
|η|2 +

1

2
(Km0

−K) +
1

8
(trχtrχ− trχm0

trχ
m0

)
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and using the bounds on η,K −Km0
, trχ− trχm0

, trχ− trχ
m0

, the result
follows. An application of the commutation formula offers the same estimate
for any number of angular derivatives.

4.4. Construction of the transition region

We consider a characteristic initial data problem on H
[δ,δ+1]
1 ∪H

[1, 1
2
]

δ , where

the data on H
[δ,δ+1]
1 are given by χ̂ = 0 and on the incoming and outgoing

cone the data coincide with the estimates in the previous section. We shall
continue, by a slight abuse of notation, to use the space-time metric g to
denote the solution of this problem.

Adapted to this framework, we introduce the following norms:

R
u
k(u) :=

∥∥∥∇k
(
α, β, ρ− ρm0

, σ, β
)∥∥∥

L2

(

H
(δ,u)
u

),

R
u
k(u) :=

∥∥∥∇k
(
β, ρ− ρm0

, σ, β, α
)∥∥∥

L2

(

H(u,1)
u

)

Ok(u, u) =
∥∥∥∇k

(
χ̂, χ̂, η, η, trχ− trχm0

, trχ− trχ
m0
, ω − ωm0

, ω − ωm0

)∥∥∥
L2(Su,u)

.

Remark 7. Here and throughout we fix a maximum number of derivatives
kmax and only work with k ≤ kmax. Since the number of derivatives is now
bounded and u ≥ 1

2 in our setting, every weighted norm involved in Subsec-
tion 4.2 is equivalent to its natural unweighted norm. Consequently, in what
follows, we will drop the powers of u that we have used so far.

The results of Subsection 4.2 and Proposition 4.9 are then summarised in
the following.

Proposition 4.11. There exists a small number ϵ ≈ δ
1

2a
1

2 such that

∑

k≤kmax

(
Rδ+1

k (1) +Rδ
k(1/2) + sup

δ≤u≤δ+1
Ok(u, 1) + sup

1/2≤u≤1
Ok(δ, u)

)
≲ ϵ.

Based on this Proposition, we shall prove the following Theorem.

Theorem 4.1. There exists an ϵ0 > 0 which is independent of δ, for δ
sufficiently small, such that a solution to the Einstein equations exists in the
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slab

D̃ :=
{
(u, u) ∈ [1− ϵ0, 1]× [δ, δ + ϵ0]

}

with the data satifying the bounds in Proposition 4.11. Moreover, with ϵ as
in Proposition 4.11, there holds

∑

k≤kmax

(
R

u
k(u) +R

u
k(u) +Ok(u, u)

)
≲ ϵ.

A theorem of Rendall [24] gives us a local solution in the neighbourhood
of the sphere S1,δ. However, at this point, we follow the methodology of [17]
and make use of a result of Luk [19]. Apart from the existence in a neigh-
bourhood of the two null cones, Luk’s result provides us with a quantitative
control on the solution depending on the initial data. In particular, we have
the following

Proposition 4.12. There exists a smooth solution (Mϵ0 , g) corresponding
to the slab D. Moreover, for all (u, u) ∈ D, there exists a constant C(ϵ0)
such that there holds holds

(4.101)
∑

k≤kmax

(
R

u
k(u) +R

u
k(u) +Ok(u, u)

)
≲ C(ϵ0).

Moreover, the following Sobolev inequalities hold in D:

∥ϕ∥L4(Su,u) ≤ C(ϵ0)
(
∥∇ϕ∥L2(Su,u) + ∥ϕ∥L2(Su,u)

)
,(4.102)

∥ϕ∥L∞(Su,u) ≤ C(ϵ0)
∑

i≤2

∥∇iϕ∥L2(Su,u).(4.103)

Equations (4.101) and (4.102)–(4.103) will be pivotal to what will follow.

Remark 8. Throughout this section, by A ≲ B we shall mean that there
exists a constant C depending only on ϵ0 for δ sufficiently small, such that
A ≤ CB.

We begin by establishing the following lemma, which states that the con-
nection coefficients can be controlled by the initial data and the curvature
components.

Lemma 4.3. There holds

O(u, u) ≲ sup
δ≤u′≤u

(
O(u′, 1) +Ru(u′)

)
+ sup

1≤u′≤u

(
O(δ, u′) +Ru(u′)

)
.



✐

✐

“1-Lesourd” — 2023/12/24 — 23:47 — page 2467 — #89
✐

✐

✐

✐

✐

✐

Construction of Cauchy data 2467

Proof. The proof shall be carried out by integrating the null structure equa-
tions. We begin with the bounds on η and η.

Recall the following structure equations

∇4η = −

(
χ̂+

1

2
trχγ

)
· (η − η)− β,(4.104)

∇3η = −

(
χ̂+

1

2
trχγ

)
· (η − η)− β.(4.105)

Notice that, according to our notations, (4.101) along with (4.102)–(4.103)
imply that

∥χ̂∥L∞(Su,u) + ∥trχ∥L∞(Su,u) ≲ 1.

Using this and integrating along the outgoing and incoming directions re-
spectively, an application of Grönwall’s inequality yields

∥η∥L2(Su,u) ≲

∫ u

δ

(
∥η∥L2(Su,u′ ) + ∥β∥L2(Su,u′ )

)
du′,(4.106)

∥η∥L2(Su,u) ≲ ∥η∥L2(Su,0) +

∫ 1

u

(
∥η∥L2(Su′,u) + ∥β∥L2(Su′,u)

)
du′.(4.107)

Adding (4.106) and (4.107) together and using Grönwall’s inequality, we
arrive at

(4.108) ∥η∥L2(Su,u) + ∥η∥L2(Su,u) ≲ P(u, u),

where

(4.109) P(u, u) := sup
δ≤u′≤u

(
O(u′, 1) +Ru(u′)

)
+ sup

u≤u′≤1

(
O(δ, u′) +Ru(u′)

)
.

Let us move on to χ̂ and χ̂. There holds

∇4χ̂+ trχχ̂ = −2ωχ̂− α.

Consequently,

∥χ̂∥L2(Su,u) ≲ ∥χ̂∥L2(Su,δ) +

∫ u

δ
∥(ω, trχ)χ̂∥L2(Su,u′ ) du

′(4.110)

+

∫ u

δ
∥α∥L2(Su,u′ ) du

′

≲ O(δ, u) +

∫ u

δ
∥χ̂∥L2(Su,u′ ) du

′ +Ru(u).



✐

✐

“1-Lesourd” — 2023/12/24 — 23:47 — page 2468 — #90
✐

✐

✐

✐

✐

✐

2468 N. Athanasiou and M. Lesourd

Using Grönwall’s inequality, there holds

(4.111) ∥χ̂∥L2(Su,u) ≲ O(δ, u) +Ru(u) ≲ P(u, u).

We now continue with the induction hypothesis that for all j < i, there holds
∥∇jχ̂∥L2(Su,u) ≲ P(u, u). Using the commutation formula from Proposition
3.13, there holds

∇4∇
iχ̂ =

∑

i1+i2+i3+i4=i

∇i1ψi2∇i3(trχ, ω)∇i4χ̂(4.112)

+
∑

i1+i2+i3=i

∇i1ψi2∇i3α

+
∑

i1+i2+i3+i4=i

∇i1ψi2∇i3(ψ, χ̂)∇i4χ̂.

Using Proposition 3.3 and bounding all terms apart from those involving
∇i4 in L∞ by 1 using (4.101) and using the induction hypothesis, we can
also show

(4.113) ∥∇iχ̂∥L2(Su,u) ≲ P(u, u).

We move on to estimates for ω − ωm0
and ω − ωm0

. The estimates for these
two terms will be obtained in a similar way to those for η and η, meaning
in a coupled way. We recall the structure equation for ∇4ω, which reads

∇4ω = 2ωω − η · η +
1

2
|η|2 +

1

2
ρ.

Similarly, there holds

∇4ωm0
= 2ωm0

ωm0
+

1

2
ρm0

.

Combining the two, there holds

(4.114) ∇4

(
ω − ωm0

)
= 2

(
ωω − ωm0

ωm0

)
− η · η +

1

2
|η|2 +

1

2
(ρ− ρm0

) .

We can thus estimate, using ∥ωω − ωm0
ωm0

∥L2(Su,u) ≲ ∥ω − ωm0
∥L2(Su,u) +

∥ω − ωm0
∥L2(Su,u),

(4.115) ∥ω − ωm0
∥L2(Su,u) ≲ ∥ω − ωm0

∥L2(Su,δ)

+

∫ u

δ

(
∥ω − ωm0

∥L2(Su,u′ ) + ∥ω − ωm0
∥L2(Su,u′ )

)
du′

+

∫ u

δ

(
∥η · (η, η)∥L2(Su,u′ ) + ∥χ̂ · χ̂∥L2(Su,u′ ) + ∥ρ− ρm0

∥L2(Su,u′ )

)
du′.
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The terms involving a product of two quantities are estimated by the product
of one quantity in L∞ and the other in L2. We contol each term separately.

• There holds ∥ω − ωm0
∥L2(Su,δ) ≲ P(u, u).

• In the term
∫ u

δ

(
∥ω − ωm0

∥L2(Su,u′ ) + ∥ω − ωm0
∥L2(Su,u′ )

)
du′,

the second integrand is absorbed to the left by Grönwall’s inequality.

• There holds

∥η · (η, η)∥L2(Su,u) ≲ ∥η, η∥L∞(Su,u) · ∥η∥L2(Su,u) ≲ 1 ·P(u, u),

where we have used (4.108).

• Similarly, there holds

∥χ̂ · χ̂∥L2(Su,u) ≲ ∥χ̂∥L∞(Su,u) · ∥χ̂∥L2(Su,u) ≲ P(u, u).

Here we have used (4.111).

• Finally, there holds

∫ u

δ
∥ρ− ρm0

∥L2(Su,u′ ) du
′ ≲

(∫ u

δ
∥ρ− ρm0

∥2L2(Su,u′ ) du
′

) 1

2

≲ P(u, u).

Putting all the above estimates together, we conclude that

(4.116) ∥ω − ωm0
∥L2(Su,u) ≲

∫ u

δ
∥ω − ωm0

∥L2(Su,u′ ) du
′ +P(u, u).

Through a similar procedure, we have

(4.117) ∥ω − ωm0
∥L2(Su,u) ≲

∫ 1

u
∥ω − ωm0

∥L2(Su′,u) du
′ +P(u, u).

Coupling (4.116) with (4.117) and using Grönwall’s inequality, we arrive at

(4.118) ∥ω − ωm0
∥L2(Su,u) + ∥ω − ωm0

∥L2(Su,u) ≲ P(u, u).

Next, we move on to estimates for trχ− trχm0
and trχ− trχ

m0
. There holds

∇4trχ+
1

2
(trχ)2 = −|χ̂|2 − 2ω trχ,(4.119)
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∇4trχm0
+

1

2
(trχm0

)2 = −2ωm0
trχm0

.(4.120)

Consequently,

∇4(trχ− trχm0
) = −

1

2
(trχ+ trχm0

)(trχ− trχm0
)(4.121)

− |χ̂|2 − 2(ωtrχ− ωm0
trχm0

).

We notice the following things:

• Equations (4.101) and (4.102)–(4.103) imply that

∥trχ+ trχm0
∥L∞(Su,u) ≲ 1.

• From (4.111) and (4.101)–(4.103), there holds

∥|χ̂|2∥L2(Su,u) ≲ ∥χ̂∥L∞(Su,u)∥χ̂∥L2(Su,u) ≲ P(u, u).

• There holds

∥ωtrχ− ωm0
trχm0

∥L2(Su,u) ≲ ∥ω − ωm0
∥L2(Su,u) + ∥trχ− trχm0

∥L2(Su,u).

Integrating along the ∇4–direction, we have

∥trχ− trχm0
∥L2(Su,u)(4.122)

≲ ∥trχ− trχm0
∥L2(Su,δ)

+

∫ u

δ

(
∥trχ+ trχm0

∥L∞(Su,u′ ) + 1
)
· ∥trχ− trχm0

∥L2(Su,u′ ) du
′

+

∫ u

δ
∥ω − ωm0

∥L2(Su,u′ ) du
′ +P(u, u).

The first integrand is absorbed to the left by Grönwall’s inequality. The
second one is bounded by P(u, u), from the estimates obtained in (4.118).
Finally,

(4.123) ∥trχ− trχm0
∥L2(Su,u) ≲ P(u, u).

Similarly, using the structure equation for ∇3trχ, we can show that there
holds

(4.124) ∥trχ− trχ
m0

∥L2(Su,u) ≲ P(u, u).
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The estimates for a higher number of derivatives are done through an in-
duction argument. We conclude that

O(u, u) ≲ P(u, u).

□

We proceed by rewriting the Bianchi equations to accommodate for the non–
trivial curvature component ρm0

. Notice, to begin with, that ρm0
satisfies

the following equations:

∇4ρm0
+

3

2
trχm0

ρm0
= 0,(4.125)

∇3ρm0
+

3

2
trχ

m0
ρm0

= 0.(4.126)

Using these, we arrive at the following equations:

∇4(ρ− ρm0
) +

3

2
(trχρ− trχm0

ρm0
)(4.127)

= div β −
1

2
χ̂ · α+ (ζ + 2η) · β,

∇3(ρ− ρm0
) +

3

2
(trχρ− trχ

m0
ρm0

)(4.128)

= −div β −
1

2
χ̂ · α+ (ζ − 2η) · β.

Moreover, since ρm0
is constant on each Su,u, we can rewrite the Bianchi

equations for β and β as

∇3β + trχβ = ∇(ρ− ρm0
) + 2ωβ + ∗∇σ + 2χ̂ · β + 3(η ρ+ ∗ησ),(4.129)

∇4β + trχβ = −∇(ρ− ρm0
) + ∗∇σ + 2ωβ + 2χ̂ · β − 3(ηρ− ∗ησ).(4.130)

We call (4.127)–(4.128) along with (4.129)–(4.130) and the six original
Bianchi equations the renormalized Bianchi equations. Using these Bianchi
equations, the following energy inequalities hold for all (u, u) ∈ D:

(4.131)
∑

R∈{α,β,ρ−ρm0
,σ,β}

∫

H
(δ,u)
u

|R|2 du′ +
∑

R∈{β,ρ−ρm0
,σ,β,α}

∫

H(u,1)
u

|R|2 du′

≲
∑

R∈{α,β,ρ−ρm0
,σ,β}

∫

H
(δ,u)
1

|R|2 du′ +
∑

R∈{β,ρ−ρm0
,σ,β,α}

∫

H
(u,1)
δ

|R|2 du′
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+
∑

R∈{α,β,ρ−ρm0
,σ,β},

R∈{β,ρ−ρm0 ,σ,β,α},

R1,R2∈{α,β,ρ−ρm0 ,σ,β,α}

∫∫

D(u,u)

(
|Γ · R1 · R2|+ |ρ||(trχ− trχm0

)(ρ− ρm0
)

+ χ̂ · α+ η · β + χ̂ · α+ η · β|
)
du′ du′.

Moreover, for i = 1, 2, 3, the similar energy inequalities hold:

(4.132)
∑

R∈{α,β,ρ−ρm0
,σ,β}

∫

H
(δ,u)
u

|∇iR|2 du′ +
∑

R∈{β,ρ−ρm0
,σ,β,α}

∫

H(u,1)
u

|∇iR|2 du′

≲
∑

R∈{α,β,ρ−ρm0 ,σ,β}

∫

H
(δ,u)
1

|∇iR|2 du′ +
∑

R∈{β,ρ−ρm0 ,σ,β,α}

∫

H
(u,1)
δ

|∇iR|2 du′

+
∑

R∈{α,β,ρ−ρm0
,σ,β},

R∈{β,ρ−ρm0
,σ,β,α},

R1,R2∈{α,β,ρ−ρm0 ,σ,β,α}

∫∫

D(u,u)

( i−1∑

j=0

|∇j+1χ̂∇i−j−1R∇iR

+∇j+1χ̂∇i−j−1R∇iR|

+

i−1∑

j=0

|∇jK∇i−j−1R∇iR+∇jK∇i−j−1R∇iR|

+ |∇i(Γ · R1)∇
iR2|+ |ρ||∇i(trχ− trχm0

) · ∇iρ|

+ |ρ||∇iχ̂ · ∇iα+∇iη · ∇iβ +∇iχ̂ · ∇iα+∇iη · ∇iβ|
)
du′ du′.

We notice at this point that in the terms of the form R1 · R2 the term α · α
does not appear. We can, therefore, hence regard R1 · R2 as either R1 ·R2

or R1 ·R2. We now follow closely the approach of [LiYu] and obtain the
following estimates using the Sobolev embedding theorem:

1∑

j=0

∫∫

D(u,u)
|∇jΓ · ∇i−jR1|

2 du′ du′(4.133)

≲

∫ 1

u

∫

H
(δ,u)

u′

i∑

j=0

|∇jR1|
2 du′ du′ for i ≤ 3,
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∫∫

D(u,u)
|∇2Γ · ∇iR1|

2 du′ du′(4.134)

≲

∫ 1

u

∫

H
(δ,u)

u′

i+1∑

j=0

|∇jR1|
2 du′ du′ for i ≤ 1,

∫∫

D(u,u)
|∇3Γ ·R1|

2 du′ du′(4.135)

≲

∫ 1

u

∫

H
(δ,u)

u′

2∑

j=0

|∇jR1|
2 du′ du′.

Taking these into account and using the Cauchy–Schwartz inequality, we
have

3∑

i=0

∫∫

D(u,u)
|∇i(Γ ·R1) · ∇

iR2|
2 du′ du′(4.136)

≲

3∑

i=0

∫ 1

u

∫

H
(δ,u)

u′

(
|∇iR1|

2 + |∇iR2|
2
)
du′ du′,

3∑

i=0

∫∫

D(u,u)
|∇i(Γ ·R1) · ∇

iR2|
2 du′ du′(4.137)

≲

3∑

i=0

∫ u

δ

∫

H
(u,1)

u′

(
|∇iR1|

2 + |∇iR2|
2
)
du′ du′.

The terms

(4.138)

2∑

j=0

∫∫

D(u,u)

(
|∇j+1χ̂∇i−j−1R∇iR+∇j+1χ̂∇i−j−1R∇iR|

+ |∇jK∇i−j−1R∇iR+∇jK∇i−j−1R∇iR|
)
du′ du′

can also be bounded by

3∑

i=0



∫ 1

u

∫

H
(δ,u)

u′

|∇iR|2 du′ du′ +

∫ u

δ

∫

H
(u,1)

u′

|∇iR|2 du′ du′


 .
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Finally,

3∑

i=0

∫∫

D(u,u)

(
|ρ||∇i(trχ− trχm0

) · ∇iρ|

+ |ρ||∇iχ̂ · ∇iα+∇iη · ∇iβ +∇iχ̂ · ∇iα+∇iη · ∇iβ|
)

can be bounded, using Lemma 4.3, by

sup
δ≤u≤δ+ϵ0

O(u, 1)2 + sup
1−ϵ0≤u≤1

O(δ, u)2

+

3∑

i=0



∫ 1

u
sup

1−ϵ0≤u′′≤u′

∫

H
(δ,u)

u′′

|∇iR|2 +

∫ u

δ
sup

δ≤u′′≤u′

∫

H
(u,1)

u′′

|∇iR|2


 .

We define

E(u) :=
∑

R∈{α,β,ρ−ρm0
,σ,β}

sup
u≤u′≤1

3∑

i=0

∫

H
(δ,δ+ϵ0)

u′

|∇iR|2,

F(u) :=
∑

R∈{β,ρ−ρm0 ,σ,β,α}

sup
δ≤u′≤u

3∑

i=0

∫

H
(1−ϵ0,1)

u′

|∇iR|2.

The above estimates can then be summarized as

(4.139) E(u) + F(u) ≲ E(1) + F(δ) + sup
δ≤u≤δ+ϵ0

O(u, 1)2

+ sup
1−ϵ0≤u≤1

O(δ, u)2 +

(∫ 1

u
E(u′)du′ +

∫ u

δ
F(u′)du′

)
.

Applying Grönwall’s inequality, the result follows.

4.5. Closeness to Schwarzschild

With the transition region obtained, we now seek to show that some por-
tion of the region is close to a patch of the Schwarzschild spacetime. The
closeness is only obtained in some subregion of the L-shaped region of exis-
tence obtained in Theorem 4.1. The two crucial points here are that the size
of the spacetime in which closeness is shown is independent of δ, and that
the closeness permits direct application of the Corvino-Schoen [12] gluing
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arguments. The first point guarantees that when we take δ to be small, the
region in which the gluing is performed remains of finite size, which is crucial
for the argument in [12].

Theorem 4.2 (Geometry of the Transition Square). In the region of
existence obtained in Theorem 4.1, there is a parameter ϵ0 > 0 depending
only on m0 and independent of δ, such that the spacetime subregion (Mϵ0 , g)
corresponding to δ ≤ u ≤ δ + ϵ0 and 1− ϵ0 ≤ u ≤ 1 is close to a compact
subregion of a Schwarzschild spacetime with mass m0 in the following sense

||g − gm0
||Ck−3(Mϵ0,gm0

) ≲ ϵ

Proof. We recall that we have managed to show, within Mϵ0 , the following
bounds:

(4.140) sup
(u,u)∈Mϵ0

∑

k≤kmax

(
R

u
k(u) +R

u
k(u) +Ok(u, u)

)
≲ ϵ.

We begin with the C0 norms. In canonical double null coordinates g can be
written as follows

g = −2Ω2 (du⊗ du+ du⊗ du) + /gAB

(
dθA − bAdu

)
⊗
(
dθB − bBdu

)
.

Using the bounds on ω − ωm0
, χ− χ

m0
and ζ due to (4.140) as well as the

Sobolev inequalities, there holds

(4.141) ∥g − gm0
∥C0(Mϵ0 ,gm0 )

≲ ϵ.

Moving on to C1 estimates, There holds ∇m0
(g − gm0

) = (∇m0
−∇)g.To

obtain the L∞ bounds on ∇−∇m0
, we need the L∞ bounds on Γ− Γm0

and /Γ− /Γm0
. Here Γ refers to the null connection coefficients and /Γ to the

Christoffel symbols of /g. The bounds on (4.140) imply

|Γ− Γm0
| ≲ ϵ.

Moreover, to estimate /Γ− /Γm0
, given the variational formula Le3/g = 2χ,

we need to control ∇χ. But this also follows from (4.140). Consequently,
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|/Γ− /Γm0
| ≲ ϵ and hence

(4.142) ∥g − gm0
∥C1(Mϵ0 ,gm0 )

≲ ϵ.

For C2 estimates, there holds

∇2
m0

(g − gm0
) = (∇2 −∇2

m0
)g = ∇ (∇−∇m0

g) + (∇−∇m0
)∇m0

g.

The last term (∇−∇m0
)∇m0

g has been controlled. Hence, we need the L∞

bounds of the following quantities:

∇4 (Γ− Γm0
) , ∇4

(
/Γ− /Γm0

)
, ∇3 (Γ− Γm0

) ,

∇3

(
/Γ− /Γm0

)
, ∇ (Γ− Γm0

) , ∇
(
/Γ− /Γm0

)

The estimates for the first four quantities can be obtained using the null
structure equations, provided we have L∞ bounds of all first derivatives of
null curvature components. We lack control at this stage, however, on

∇4 (ω − ωm0
) ,∇3

(
ω − ωm0

)
.

The estimates on the fifth quantity can be directly inferred from (4.140).
Finally, the bounds for the last quantity are also obtained by the propagation
equation for /Γ− /Γm0

, provided we have an L∞ bound on χ̂. The goal of
obtaining C2 estimates on g − gm0

then reduces to proving bounds for

∥∇4 (ω − ωm0
)∥L∞ , ∥∇3

(
ω − ωm0

)
∥L∞ and ∥∇2χ̂∥L∞ .

The bounds on∇2χ follow from (4.140) and the Sobolev inequalities. For the
first two quantities, notice that∇4(ω − ωm0

) satisfies the following transport
equation

∇3∇4(ω − ωm0
) = ∇4∇3 (ω − ωm0

) + l.o.t

= ∇4(ρ− ρm0
) + l.o.t = ∇β + l.o.t

By (4.140) again, we have ∥∇β∥L∞≲ ϵ. The same procedure can be done for
∇3(ω − ωm0

). It follows that

∥g − gm0
∥C2(Mϵ0

,gm0
) ≲ ϵ.

An induction argument now proves the same control holds up to Ckmax−1.
The result follows. □
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5. Horizon Formation and the Penrose Inequality

We split this section in two parts.
We first treat the emergence of a unique smooth MOTS, for each

u ∈ [γ a1/2

b δ, 2δ] for some ϵ to be specified. Together, these MOTS are leaves
of a smooth topological hypersurface S2 × R in the spacetime. That this hy-
persurface is in fact everywhere spacelike can be shown under an additional
assumption on the initial data; something which we explain but not assume
for our initial data.

We then show how this leads to a dynamical setting in which to test the
spacetime Penrose inequality.

The full set of details for the arguments below are contained in the works
[12], [17], [2], and as such our task here is to describe how to apply these in
the current setting.

5.1. Horizon Emergence

Here we show how An’s argument [2] leads to the existence of a horizon with
the desired properties. Our goal is to prove the following.

Theorem 5.1. Take as starting point the existence theorem of [5]. Suppose
that the initial data |χ̂0| is prescribed as in Section 1.4. Then, for each

u ∈ [γδ a
1
2

b , 2δ], there is a unique spherical MOTS Mu,u and together these
form a smooth topological hypersurface S2 × R in the spacetime.

Since the argument [2] is long and computationally heavy, we will
simply describe the necessary adjustments.

To begin with, let us quickly recall what is done in [5]. The setting
there is b ≤ a and δa1/2b < 1, and existence is shown for [δa1/2b ≤ u ≤ 1],
[0 ≤ u ≤ δ] with u decreasing towards the future. They then show that
after imposing a bound on the incoming shear of the initial outgoing null
hypersurface

(5.1) inf
ω∈S0,0

∫ δ

0
|χ̂0(u

′, ω)|2du′ ≥ 4bδa1/2
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the sphere Sbδa1/2,δ is trapped.4

An takes as starting point the existence theorem of [5] but constructs
the initial shear differently to (5.1), yielding extra control permitting
to prove the formation of the relevant MOTS hypersurface. To explain
his work we first briefly recall the relevant previous work on which it is based.

For what follows we will use the u co-ordinate and the gauge func-
tion Ω as they appear in [16] and [2]. u in [16] and [2] corresponds to 1− u
in the current set-up, which also what is employed in [5].

In [16] the authors prescribe the co-ordinates of a 2-sphere embedded
in the u = δ hypersurface by (u = δ, u = 1−R(ω), ω) where ω denotes the
angular co-ordinates on the initial sphere at u = 0. The u co-ordinate of
this sphere is allowed to vary with ω and so this sphere is not one of the
S2 that appears in the original double null foliation (i.e. it is not defined
by Hu ∩Hu). To compute the null expansion of this sphere, one transforms
to an adapted frame {e} → {e′} where e3 = e′3, e′a = ea − Ωea(R)e3,
e′4 = e4 − 2Ωea(R)ea +Ω2|∇R|2e3, where by definition e3(R) = Ω−1

and consequently g(e′a, e
′
b) = g(ea, eb) = δab, g(e′4, e

′
a) = g(e′4, e

′
4) = 0,

g(e′3, e
′
4) = −2. In this frame, the authors in [16] show, owing to the

pre-existing estimates in the slab, that this new sphere is trapped, trχ′ < 0,
provided there holds a certain elliptic inequality on the initial sphere, which
they then show can be satisfied.

The method of An [2] is entirely analogous. Since the aim is to iden-
tify a MOTS for each u, one aims to solve the elliptic PDE corresponding to
the MOTS condition trχ′ = 0. Combining with the computation in [16], he
shows that the null expansion of the sphere located at (u = 1−R(u, ω), u, ω)
is given by the following.

Proposition 5.1 (A18).

trχ′ = trχ− 2Ω∆′R− 4Ωη · ∇R− Ω2trχ|∇R|2 − 8Ω2ω|∇R|2

Here, for each u, ∆′ denotes the Laplace-Beltrami operator on the
sphere (u = 1−R(ω), u, ω) and, as before, ∇ denotes the induced covariant
derivative on Su,u.

4ω previously denoted a Ricci component. In this section it also denotes the
angular co-ordinates on the spheres foliating the initial null hypersurface Hu=1.
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This suggests defining the following operator

(5.2) L(R) ≡ ∆′
MR+ 2η · ∇R− Ωtrχ|∇R|2 − 8ω|∇R|2 −

Ω−1

2
trχ

so that finding a MOTS on each u reduces to solving the following.5

(5.3) L(R(ω)) = 0

To do so, An makes the choice b ≤ a1/2 and imposes the following condition
on the initial data.

(5.4)

∫ u

0
|χ̂0(u

′, ω)|2du′ = f(u, ω)ua for each
bδ

a1/2
≤ u ≤ δ

after having made the choice b ≤ a1/2, where f(u, ω) is a smooth function
with properties 20

21 ≤ f(u, ω) ≤ 22
21 and |∂iωf(u, ω)| ≲ 1 for all i ∈ N and

ω ∈ S2. He then shows that along every Hu for bδ
a1/2 ≤ u ≤ δ there is a

unique MOTS. He then also shows that if one takes i, j → ∞ in the initial
data of [5], then the MOTS are strung together in a smooth topological
hypersurface in the spacetime.

Remark. In [2] the result just mentioned appears as Theorem 1.4.
[2] also contains Theorems 1.5 and 1.7. In Theorem 1.5 the integral
condition is extended to 0 ≤ u ≤ δ, and in Theorem 1.7 he considers an
additional null hypersurface data u ∈ [δ, 2δ] along which χ̂0 = 0.

We note here that the integral condition becomes increasingly difficult
to construct as the lower bound of u approaches 0. Since χ̂0 is allowed
to have angular freedom (its zero set moves from sphere to sphere), the
angular derivatives of χ̂0 become increasingly large as u→ 0. It is not clear
to us, from Appendix B in [2], whether χ̂0 is C1 or even C0 in the angular
directions on approach of u = 0. We completely avoid such issues by setting

integral condition for the interval u ∈ [γ a
1
2

b δ, λδ].
As for Theorem 1.7, the conclusion he obtains is a piecewise smooth

dynamical horizon with a C1 discontinuity at u = δ. This discontinuity is
due to a C0 discontinuity in χ̂0 at u = δ. This discontinuity is not present in
our data and we will show that the dynamical horizon obtained is entirely
smooth. We avoid discontinuous data to make the connection with the Final

5Note here that ω denotes angular co-ordinates of the initial sphere and that
R(ω) is a function of these co-ordinates.
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State and Weak Cosmic Censorship conjectures more direct (i.e. global well
posedness ought not to be expected for discontinuous initial data).

As in [16], the [2] argument relies on pre-established dynamical esti-
mates, which in this case come from [5] and are as follows.

|χ̂, ω, η, trχ+
2

R(ω)
| ≤

ua1/2

R(ω)2
(5.5)

|Ω− 1| ≤
ua1/2b1/4

R(ω)
(5.6)

|trχ−
2

R(ω)
+

1

R(ω)2

∫ u

0
|χ̂0|

2(u′, ω)du′| ≤
ua1/2b1/4

R(ω)2
(5.7)

Note that owing to a different orientation for u in [5], they appear in a form
where R is replaced with u and Ω with Ω−1. To de-clutter, we drop the ω
dependence in R.

With the operator (5.2) in hand, An considers two PDEs and uses a
method of continuity argument to prove the existence of a solution to (5.3).
Given the initial data (5.4), the appropriate PDEs are

(5.8) ∆′R+
1

2
Ωtrχ|∇R|2 −

1

R
+

au

2R2
[1 + (f(u, ω)− 1)λ] = 0

and

(5.9) ∆′R+
1

2
Ωtrχ|∇R|2 −

1

R
+

au

2R2
+ λ[2ηb∇

bR

+ 4Ωω|∇R|2 −
Ω−1

2
trχ+

1

R
−
auf(u, ω)

2R2
] = 0

Using the estimates (5.5-7), and absorbing lower order terms into c1, c2, c3,
these equations become equivalent, for any λ ∈ [0, 1], to the following PDE

(5.10) ∆′R−
1

R
|∇R|2 −

1

R
+
auf(u, ω)

2R2

+ ua1/2c1,a
∇aR

R2
+ ua1/2c2bc

∇bR∇cR

R2
+
ua1/2c3
R2

= 0

where 20
21 ≤ f(u, ω) ≤ 22

21 , |c1, c2, c3| ≤ b1/4 and c1, c2, c3 do not depend on
∇R, ∇2R but only on R, and ζ(u)(1− 1

c2
) ≤ ζ(u, ω) ≤ ζ(u)(1 + 1

c2
). We

label (5.10) by H = 0.
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Construction of Cauchy data 2481

This equation straightforwardly leads to a C0 estimate, a different
version of which is shown below.

For the rest of what follows let F (R, λ) denote the left hand side of
(5.8) and G(R, λ) that of (5.9). Note that F (R, λ = 0) = G(R, λ = 0), and
that trχ′ = 0 is equivalent to G(u, λ = 1) = 0.

The first observation is that F (R, λ = 0) = 0 has an explicit solution
R = au

2 . Thus, to solve F (R, λ) = 0, the method of continuity tells us that

it suffices to show that F (R̃, λ̃)[W ] ≡ limϵ→0
1
ϵ (F (ũ+ ϵW, γ̃)− F (ũ, γ̃))

is invertible forW . This will follow from a priori estimates gathered for (5.8).

Solving G(R, λ) = 0 is done analogously, where we note that
the explicit solution for F (R, λ = 0) = 0 is also a solution to
G(R, λ = 0) = 0. By the method of continuity, it suffices to show that
G(R̃, λ̃)[W ] ≡ limϵ→0

1
ϵ (G(R̃+ ϵW, λ̃)−G(R̃, λ̃)) is invertible for W when

λ̃ is close to λ. One can show this explicitly from a priori estimates for
(5.9) and by using the analysis that was done for F (R, λ). Note that the
role of F (R, λ) is simply to facilitate the analysis of G(R, λ). In particular,
the invertibility of G(R̃, λ̃) turns out to involve only modest modifications
to the analysis of F (R̃, λ̃).

The uniqueness and regularity parts of An’s argument proceed using
what has already established. The argument is computationally demanding
but the ideas proceed naturally. Supposing there are two solutions R and
R̃, one writes two versions of (5.3), which in turn leads to an equation for
∆R(R̃−R). Expanding the Laplacian ∆R(R̃−R) into its components and
using the estimate

(5.11)
∂2R

∂θi∂θj
≪ ua

coming from the C1 estimate

(5.12) |∇R| ≪ 1

then yields estimates for each of these components. Using a null structure
equation and a coarse version of the C0 estimate 3

8u ≤ R, R̃ ≤ 5
8ua, one



✐

✐

“1-Lesourd” — 2023/12/24 — 23:47 — page 2482 — #104
✐

✐

✐

✐

✐

✐

2482 N. Athanasiou and M. Lesourd

obtains a further estimate

(5.13) ν(ω) ≥ ua
1

(3ua8 )3
=

64

81u2a2

where ν(ω) is a term defined in terms of the decomposition for the leading
term in the equation for R̃−R.

Based on these, the equation for the difference R̃−R becomes

(5.14) ∆R(R̃−R)− ν(ω)(R̃−R)

+
1

u2a2
(R− R̃)o(1) +

1

u2a2
∂

∂θi
(R̃−R)o(1) = 0

and using the estimate for ν(ω) along with the maximum principle yields
R̃ = R, as desired.

Regularity proceeds somewhat analogously. One starts by writing two
versions of equation (5.3) for u and u′ and one writes the equation for

(5.15) ∆R

(
R(u′, ω)−R(u, ω)

u′ − u

)

which is then split into two components, each of which are estimated. Ex-
panding (5.15) into its components and using the estimates (5.12) and the
C0 estimate (5.11), when u is close to u′, one obtains uniform (independent
of u) upper and lower bounds on the quantity ν(u, ω;u), defined analogously
to ν(ω) above. This leads to the following equation

(5.16) ∆R

(
R(u′, ω)−R(u, ω)

u′ − u

)
−
ν(u, ω;u′)

u2a2

(
R(u′, ω)−R(u, ω)

u′ − u

)

+ ν̃(u, ω;u′)
a

u2a2
+

1

u2a2
R(u′, ω)−R(u, ω)

u′ − u
o(1)

+
1

u2a2
∂

∂θi

R(u′, ω)−R(u, ω)

u′ − u
o(1) =

a

u2a2
o(1)

The next step is to define a function h(u, ω;u′) via the following equation

(5.17) ∆Rh(u, ω;u
′)−

ν(u, ω;u′)

u2a2
h(u, ω;u′) + ν̃(u, ω;u′)

a

u2a2
= 0

where ν̃(u, ω;u′) is a quantity defined in terms of the components one
obtains in the expansion of the components of (5.15).



✐

✐

“1-Lesourd” — 2023/12/24 — 23:47 — page 2483 — #105
✐

✐

✐

✐

✐

✐

Construction of Cauchy data 2483

Given the bounds on ν and ν̃, what has already been shown makes
it clear that there is a unique smooth solution h(u, ω;u′). One uses it to
rewrite (5.16) as follows.

(5.18) ∆R

(
R(u′, ω)−R(u, ω)

u′ − u
− h(u, ω;u′)

)

−
ν(u, ω;u′)

u2a2

(
R(u′, ω)−R(u, ω)

u′ − u
− h(u, ω;u′)

)

+
1

u2a2

(
R(u′, ω)−R(u, ω)

u′ − u
− h(u, ω;u′)

)
o(1)

+
1

u2a2

(
∂

∂θi

R(u′, ω)−R(u, ω)

u′ − u
− h(u, ω;u′)

)
o(1) =

a

u2a2
o(1)

Working now with (5.16), standard elliptic theory eventually leads to

(5.19) ||
R(u′, ω)−R(u, ω)

u′ − u
− h(u, ω)||L∞(Mu) ≤ ao(1)

where h(u, ω) is defined as the solution to an equation of the form (5.17)
but with ν and ν̃ replaced with their respective limits as u→ u′.

Further standard elliptic theory combined with the estimates obtained
yields

(5.20)
∂R

∂u
∈ C∞(Mu)

One then studies

(5.21)

∂R
u (u′, ω)− ∂R

∂u (u, ω)

u′ − u

which by the same argument yields that

(5.22)
∂2R

∂u2
∈ C∞(Mu)

Iterating this argument finally yields

(5.23)
∂kR

∂uk
∈ C∞(Mu)
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for all k ∈ Z+, as desired.

To establish the spacelike nature of the hypersurface u = 1−R(u, ω),
An makes the additional assumption that on small discs Du ⊂ S2 the initial
shear satisfies

0 ≤ |χ̂0(u, ω)| ≤ a for ω ∈ Du(5.24)

|χ̂0(u, ω)|
2 = a for ω ∈ Du\S

2(5.25) ∫

Du

dω ∼
1

c2
(5.26)

where 1 ≪ c≪ b ≤ a1/2.

By the structure equation for ∇3χ̂ and dynamical estimates from
[AL17] for the terms appearing in the ∇3χ̂ equation, we have

(5.27) u2|χ̂(u, u, ω)| ∼ |χ̂(0, u, ω)|2

Combining with previously established bounds and the assumption on the
discs Du eventually leads to

(5.28)

∣∣∣∣
∂R(u, θ1, θ2)

∂u
− h(θ1, θ2)

∣∣∣∣ ≤ ao(1)

and

(5.29) h(u, θ1, θ2) = (
1

2
+ o(1))a

where θ1, θ2 are angular co-ordinates on the sphere at u, u = 1−R.

Given that a is a fixed large positive constant, the tangent vectors
∂
∂u ,

∂
∂θ1

, ∂
∂θ2

are all spacelike. Letting λ1,2,3 be any real numbers, and using

the estimate h(u, θ1, θ2) = (12 + o(1))a, one computes

(5.30) g′(λ1
∂

∂θ1
+ λ2

∂

∂θ2
+ λ3

∂

∂u
, λ1

∂

∂θ1
+ λ2

∂

∂θ2
+ λ3

∂

∂u
)

= λ21gθ1θ1 + λ2gθ2θ2 + 4λ1λ3
∂R

∂θ1

+ 4λ2λ3
∂R

∂θ2
+ λ23h(u, θ1, θ2)(1 + o(1))
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Seeking to show g′(·, ·) is always > 0, the interesting term is

(5.31) λ3

(
4λ1

∂R

∂θ1
+ 4λ2

∂R

∂θ2
+ λ3h(u, θ1, θ2)(1 + o(1))

)

The mixed terms ∂R
∂θ1,2

involve a power of δ compared to h(u, θ1, θ2), and so

these are lower order. If λ1,2 are large compared to λ3 by an order δ−1 or
more, then this term could be negative but in that case at least one of first
two terms in (5.25) is very large and positive.

So g′(·, ·) > 0 for any spacelike vector · and the horizon is spacelike.

In summary, the main argument in [2] goes as follows.

1) Use the idea of [16] to write a MOTS equation. Use it to write two
further equations, F = 0 and G = 0, and use the a priori estimates of
[5] to derive a third equation, H = 0, from F = 0 and G = 0.

2) Derive a C0 estimate, with α coming from the bounds on f(u, ω).

(5.32) (1−
1

α
)(
1

2
+ o(1))ua ≤ R(u, θ) ≤ (1 +

1

α
)(
1

2
+ o(1))ua

3) Use (5.32) to obtain a W 1,p estimate

(5.33)

∫

Mu

|∇R|2 ≪ ua

4) Define a function h(R) = 1 + 8
u2a2 (R− ua

2 )2, and use (5.32), Bochner’s

formula, and an estimate for the Ricci curvature, to obtain the C1

estimate

(5.34) |∇R| ≪ 1

5) Use (5.34) and standard elliptic theory to obtain

(5.35) |
∂2

∂θi∂θj
R| ≪ ua

6) Use (5.34/5) and other a priori estimates to work through two con-
tinuity arguments for F and G to yield existence of solution for the
MOTS equation.

7) Use (5.32/4) and standard elliptic theory to show uniqueness.
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8) Use (5.32/35) and standard elliptic theory to show

(5.36)
∂kR

∂uk
∈ C∞(Mu)

for all k.

9) Combine dynamical and elliptic estimates so that the assumption on
the discs Du yields a uniform estimate for h(u, θ1, θ2) to prove that
the horizon is spacelike.

An also uses this proof to show that if one places trivial data χ̂0 = 0 on
a subsequent null hypersurface u ∈ [δ, 2δ], then there remains a dynamical
horizon satisfying the relevant properties. He can no longer prove that it
is spacelike however, and the differences from the above argument are as
follows.

• The equation H = 0 derived from F = 0 and G = 0 is different owing
to the fact that χ̂0 = 0 is on this null hypersurface. This leads to a C0

estimate that is independent of u.

• The C1 estimate is the same, but it is obtained by defining h(R) =
1 + 8

δa(R− δa
2 )

2.

• The proof of existence and uniqueness proceeds as above, but there
is a difference for regularity. In working out the analog of (5.29), one
obtains

(5.37) |h(u, θ1, θ2)| ≤ o(1)a

whereas previously that had been

(5.38) h(u, θ1, θ2) = (
1

2
+ o(1))a

Since (5.28) holds in both cases, the quantity ∂R
∂u must jump at u = δ.

This C1 discontinuity in the dynamical horizon is caused by a C0

discontinuity in χ̂0 on the initial null hypersurface, which we avoid in
our setting.
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Our initial data differs from [2] in the following sense.

• First note that δa1/2b < 1, δa1/2bµ < 1 and that a1/2 < b.

• Let λ be a constant satisfying 1 > λ > a
1
2

b > 0, µ > 1 a constant to
be specified, and γ a free o(1) parameter > 0. Then require, for all

u ∈ [γ a
1
2

b δ, λδ] the following

(5.39)

∫ u

0
|χ̂0|

2(u′, ω)du′ = a1/2bµf(u, ω)u

for a smooth (in u and ω) function f(u, ω) such that 1− 1
c1

≤ f(u, ω) ≤

1 + 1
c1

for a constant c1 ≥ 20, and moreover |∂iωf(u, ω)| ≲ 1 for all i ∈

N and all ω ∈ S2.

• For u ∈ [λδ, λ′δ] where λ′ is a constant such that λ < λ′ < 1, we have

(5.40) |χ̂0(u, ω)|
2 = A(u, ω)|χ̂0(u = λδ, ω)|2

whereA(u, ω) is a smooth (in u and ω) cut-off function withA(λδ, ω) =
1 and A(λ′δ, ω) = 0.

• The total shear from 0 to u > λ′δ is dominated by the contribution
from u ∈ [0, λδ]

∫ u

0
|χ̂0(u

′, ω)|2du′ =

∫ λδ

0
|χ̂0(u

′, ω)|2du′ +

∫ λ′δ

λδ
|χ̂0(u

′, ω)|2du′(5.41)

+

∫ u

λ′δ
|χ̂0(u

′, ω)|2du′

=M∗(ω) + ϵ(λ′δ, ω) + 0 = 4m0

where M∗(ω) =
∫ λδ
0 |χ̂0(u

′, ω)|2du′ ≈ d0ϵ(λ
′δ, ω) for some universal

large constant d0 and

(5.42)

∫ u

0
|χ̂0(u

′, ω)|2du′ = bµa1/2µuf(u, ω)ζ(u, ω) + (1− ζ(u, ω))4m0

where ζ(u, ω) is a smooth (in both ω and u) function resulting from
integrating A(u, ω), which is = 1 for u ≤ λδ, and = 0 for u ≥ λ′δ,
and moreover which satisfies ζ(u)(1− 1

c2
) ≤ ζ(u, ω) ≤ ζ(u)(1 + 1

c2
) for

a constant c2 ≥ 20, |∂iωζ(u, ω)| ≲ 1 for i ∈ N and ω ∈ S2, with ζ(u) a
smooth cut-off function in u such that ζ(λδ) = 1 and ζ(λ′δ) = 0.
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We now describe how this initial data permits the above argument in [2] to
proceed more or less unchanged.

First, the analogs to F = 0, G = 0 are as follows.

(5.43) ∆′R+
1

2
Ωtrχ|∇R|2 −

1

R

+

(
bµa1/2uf(u, ω)ζ(u, ω) + (1− ζ(u, ω))4m0

2R2

)

× [1 + (f(u, ω)− 1)λ] = 0

(5.44) ∆′R+
1

2
Ωtrχ|∇R|2 −

1

R

+

(
bµa1/2uf(u, ω)ζ(u, ω) + (1− ζ(u, ω))4m0

2R2

)

+ λ

[
2ηb∇

bR+ 4Ωω|∇R|2 −
Ω−1

2
trχ+

1

R

−

(
bµa1/2uf(u, θ)ζ(u, ω) + (1− ζ(u, ω))4m0)

2R2

)]
= 0

Substituting the dynamical estimates from [5] onto these equations whilst
re-absorbing the contributions by lower order terms into c1, c2, c3 leads to
the following analog of H = 0.

(5.45) ∆′R−
1

R
|∇R|2 −

1

R

+

(
bµa1/2uf(u, ω)ζ(u, ω) + (1− ζ(u, ω))4m0

2R2

)

+ ua1/2c1,a
∇aR

R2
+ ua1/2c2bc

∇bR∇cR

R2
+
ua1/2c3
R2

= 0

where (1− 1
α1
) ≤ f(u, ω) ≤ (1 + 1

α1
), |c1, c2, c3| ≤ b1/4 and c1, c2, c3 do

not depend on ∇R, ∇2R but only on R, and ζ(u)(1− 1
c2
) ≤ ζ(u, ω) ≤

ζ(u)(1 + 1
c2
).

For the C0 estimate, we use (5.45) directly as follows.
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Let M0(u, ω) ≡ bµa1/2uf(u, ω)ζ(u, ω) + (1− ζ(u, ω))4m0, and Rmax ≡
maxω R(ω) (and equivalently for Rmin). At Rmax we have ∇Rmax =
0,∆Rmax ≤ 0, and so (5.22) yields

0 ≤
−2Rmax +M0max + 2ua1/2c3

2R2
max

with |c3| ≤ b1/4 which leads to

Rmax ≤ (
1

2
+ o(1))M0max

and

Rmin ≥ (
1

2
+ o(1))M0min

which when combined gives

(5.46) (
1

2
+ o(1))(1−

1

α1
)bµa1/2u(1−

1

α2
)ζ(u) + (1− ζ(u))(1−

1

α2
)2m0

≤ R ≤ (
1

2
+ o(1))(1 +

1

α1
)bµa1/2u(1 +

1

α2
)ζ(u) + (1− ζ(u))(1 +

1

α2
)2m0

The terms involving α1 and α2 come from the the angular bounds on
f(u, ω) and ζ(u, ω) as in [2], the o(1) term comes from ua1/2c3 which is ≪ 1
since u ≤ δ, c3 ≤ b1/4 and yet δa1/2b < 1 with b, a both large constants.

So long as α1, α2 are chosen suitably large, integrating (5.21) yields
the following W 1,2 estimate.

(5.47)

∫

M
|∇R|2 ≲ a1/2bµuζ(u) + (1− ζ(u))4m0

The next and key estimate in [2] is the C1 estimate |∇R| ≪ 1. To ob-
tain this, An considers a function h(R) = 1 + 8

u2a2 (R− ua
2 )2, computes

∆′(h(R)|∇R|2) with the help of Bochner’s formula, and estimates each term
using the slab estimates derived from [5]. In our case, we use

(5.48) h(R) = 1 +

(
8

(ua1/2bµζ(u) + (1− ζ(u))4m0)2

)

×


R−

(
ua1/2bµζ(u)

2
+ (1− ζ(u))2m0

)

2
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ua with ua1/2bµζ(u) + (1− ζ(u))4m0. Note that for suitable α1,2, many
functions like h(R) will do and in particular the factor ‘8’ in [2] is to some
extent arbitrary and can be replaced by any other real number with lower
bound depending on how close R is to 1

2ub
µδa1/2.

For the first term estimated, one uses the transport equations for χ,
χ̂, trχ and the ∇4 equation for ρ̌ = ρ− 1

2 χ̂ · χ̂ which reads

∇4ρ̌ =
−3

2
trχρ̌+ div β + ζ · β + 2η · β −

1

2
χ̂ · ∇⊗̂η(5.49)

−
1

2
χ̂ · (η⊗̂η) +

1

4
trχ|χ̂|2

Using once more the estimates in [5], one gets

(5.50) ρ̌|S1−R,u
=

−bµa1/2f(u, ω)ζ(u, ω) + (1− ζ(u, ω))4m0

2R3
+
ua1/2c3
R3

and upon combining with the ∇3 equation for trχ this leads to

∇3trχ|S1−R,u
=

1

R
(
2

R
−
ubµa1/2f(u, ω)ζ(u, ω) + (1− ζ(u, ω))4m0

R2
)(5.51)

−
bµuf(u, ω)a1/2ζ(u, ω) + (1− ζ(u, ω))4m0

R3

+
ua1/2c3
R3

where c3 is used to mean a quantity ≤ b1/4. The analog of the quantity on
pg.23 of [2] for which one needs a lower bound is

(5.52) −2R+ 2bµa1/2f(u, ω)ζ(u, ω) + (1− ζ(u, ω))8m0

which in [2] satisfies > 1
2R and so too in our case by our assumption on the

initial data.

As in [2], the C1 estimate for R will come from term-by-term analy-
sis of (4.7) on p.22 of [2]. From the C0 estimate (5.42) we get

(5.53)

∣∣∣∣∣∣
R−

(
ubµa1/2ζ(u) + (1− ζ(u))4m0

2

)∣∣∣∣∣∣

≤ o(1)

(
(1 +

1

α1
)(1 +

1

α2
)ubµa1/2ζ(u) + (1 +

1

α2
)(1− ζ(u))4m0

)
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With this it is clear that the estimates in the middle of p.24 [2] go through in
their analogous form here, which in turn suffices to guarantee that |∇R| ≪ 1.

The other estimates - W 2,p, C1,p, and C2,q - proceed as in [2] and
involve no significant modification and so one finally obtains the following
analog of (4.14) on p.27 of [2]

(5.54) |
∂2

∂θi∂θj
R| ≪ bµa1/2uζ(u) + 4m0(1− ζ(u))

Existence. The invertibility of F (R̃, γ̃)[W ] ≡ limϵ→0
1
ϵ (F (R̃+ ϵW, γ̃)−

F (R̃, γ̃)) proceeds virtually identically. Since we share the estimates for
dynamical quantities as in [5], the computation and estimates which lead to
an expression for the coefficients of I1 + I2 + I3 on p.30 of [2] will be identi-
cal bar the relevant replacements of ua with ua1/2bµζ(u) + (1− ζ(u))4m0,
and since the estimate |∇R| ≪ 1 holds, the invertibility of F (R, λ) follows.
The second continuity argument in section 6 of [2] proceeds identically,
with ua→ ua1/2bµζ(u) + (1− ζ(u))4m0 and with |c| ≤ 1

a1/2 → 1
b1/4 in the

lower part of p.32 of [2], but again the invertibility of G(R̃, λ̃) follows
straightforwardly.

Uniqueness. This proceeds with the same kind of superficial modi-
fications: ua→ ubµa1/2ζ(u) + (1− (ζ(u))4m0. One key estimate is for
a quantity ν(ω) defined on p.35 and shown to obey the lower bound
ν(ω) ≥ 64

81u2a2 . This guarantees that uniqueness via a maximum principle
argument. In our case the estimate becomes

(5.55) ν(ω) ≥
64

81(a1/2bµuζ(u) + (1− ζ(u))2)4m0)

and the same maximum principle argument yields uniqueness.

Regularity. As described, one starts by writing out the equation for
∆R(u,ω)

(R(u′,ω)−R(u,ω)
u′−u . The long computation yields terms which are

estimated via the estimate ∂2R(u′,ω)
∂θiθi

≈ o(1)ua, a similar version of which

holds in our case. Using our C0 estimate (5.46) and (5.54), the argument
p.41-4 of [2] proceeds.

Spacelike. Conditions (5.21)-(5.23) lead to the uniform estimate on
h(u, θ1, θ2) which eventually permits proving that the horizon is spacelike.
Although we could do something similar, we choose not to since the
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assumption is rather strong. Another issue is that our condition that

(5.56)

∫ δ

0
|χ̂0(u, ω)|

2du′ = 4m0

be independent on ω implies that whatever happens in the small discs has
to cancel appropriately. If we made such an assumption, χ̂0 would have
to compensate for this in the region u ∈ (0, a

1/2

b δ), i.e., before the integral
condition on χ̂0 is imposed, and, presumably also after, i.e., from λδ to λ′δ.
In that case, schematically, one obtains an estimate of the form

h(u, θ1, θ2) ∼ [
1

2
(ζ(u) + uζ ′(u)− ζ ′(u)) + o(1)]a1/2bµ

which in turn would permit proving that the horizon is spacelike, at least
for u ≤ λδ. We omit the details.

5.2. Gluing

The gluing procedure that eventually permits us a test of the Penrose in-
equality follows from Theorem 4.3, which gave the estimate for the spacetime
metric g in the region u ∈ [δ + ϵ0] and u ∈ [1, 1− ϵ0]

(5.57) ||g − gm0
||Ck−3

with gm0
the Schwarzschild metric with mass m0. This is the same as that

obtained in [17] and since the spacetime is smooth, the gluing argument is
exactly as in [17], which itself is based on [12].

The result is simple to state. One can glue the t = 0 slice of the
Kerr spacetime onto the region [u, u] ∈ [δ + ϵ0, 1− ϵ0] with ADM mass and
angular momentum satisfying

(5.58) |m−m0|+ |a| ≲ ϵ

where ϵ is as in Theorem 1.8. The initial data of [5] and estimates obtained
in this region permits picking the δ dependence of ϵ. The best possible
choice gives ϵ = Ca1/2δ1/2 for a constant C indepedent of a, δ.

Finally, the absence of trapped surfaces or MOTS on this slice fol-
lows by an elementary maximum principle argument and the fact that the
slice is asymptotically flat.
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5.3. Area Estimate

Here we give the areal estimate for the MOTS obtained in the region u ∈
[γ a1/2

b δ, δ]. On each MOTS Mu, the induced metric is given by

g′θiθj = gθiθj +
∂(1−R)

∂θi

∂(1−R)

∂θj
g(
∂

∂u
,
∂

∂u
) = gθiθj

So along Hu

√
detg′ =

√
detg

By the first variation formula and properties of the double null foliation we
have

∂

∂u

√
detg =

√
detgΩtrχ

which in turn leads to

∂

∂u

√
detg =

√
detgΩtrχ

and

|

√
detg(u, u, θ1, θ2)√
detg(u, 0, θ1, θ2)

− 1| ≤
ua1/2b1/4

|u|
≪ 1

So for some constant f0 ≫ 1.

(1−
1

f0
)(
√

detg(u, 0, θ1, θ2))

≤
√

detg(u, u, θ1, θ2) ≤ (1 +
1

f0
)
√

detg(u, 0, θ1, θ2)

which in turn gives

|Mu| =

∫ ∫

S2

√
detg(u, u, θ1, θ2)dθ1dθ2

≤ (1 +
1

f0
)

∫ ∫

S2

√
detg(u, 0, θ1, θ2)dθ1dθ2

= (1 +
1

f0
)4π|1− u|2
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Using the C0 estimate (5.46) for R = 1− u for u ≤ λδ and including the
lower bound we obtain

(5.59) (
1

4
− o(1))bµa1/2u ≤

√
|Mu|

16π
≤ (

1

4
+ o(1))bµa1/2u

for some o(1) ≪ 1
4 .
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